51
|
Lysyk L, Brassard R, Arutyunova E, Siebert V, Jiang Z, Takyi E, Morrison M, Young HS, Lemberg MK, O'Donoghue AJ, Lemieux MJ. Insights into the catalytic properties of the mitochondrial rhomboid protease PARL. J Biol Chem 2021; 296:100383. [PMID: 33556373 PMCID: PMC7966987 DOI: 10.1016/j.jbc.2021.100383] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/20/2022] Open
Abstract
The rhomboid protease PARL is a critical regulator of mitochondrial homeostasis through its cleavage of substrates such as PINK1, PGAM5, and Smac/Diablo, which have crucial roles in mitochondrial quality control and apoptosis. However, the catalytic properties of PARL, including the effect of lipids on the protease, have never been characterized in vitro. To address this, we isolated human PARL expressed in yeast and used FRET-based kinetic assays to measure proteolytic activity in vitro. We show that PARL activity in detergent is enhanced by cardiolipin, a lipid enriched in the mitochondrial inner membrane. Significantly higher turnover rates were observed for PARL reconstituted in proteoliposomes, with Smac/Diablo being cleaved most rapidly at a rate of 1 min−1. In contrast, PGAM5 is cleaved with the highest efficiency (kcat/KM) compared with PINK1 and Smac/Diablo. In proteoliposomes, a truncated β-cleavage form of PARL, a physiological form known to affect mitochondrial fragmentation, is more active than the full-length enzyme for hydrolysis of PINK1, PGAM5, and Smac/Diablo. Multiplex profiling of 228 peptides reveals that PARL prefers substrates with a bulky side chain such as Phe in P1, which is distinct from the preference for small side chain residues typically found with bacterial rhomboid proteases. This study using recombinant PARL provides fundamental insights into its catalytic activity and substrate preferences that enhance our understanding of its role in mitochondrial function and has implications for specific inhibitor design.
Collapse
Affiliation(s)
- Laine Lysyk
- Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Raelynn Brassard
- Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Elena Arutyunova
- Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Verena Siebert
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Emmanuella Takyi
- Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Melissa Morrison
- Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Howard S Young
- Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Marius K Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - M Joanne Lemieux
- Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
52
|
Xue C, Gu X, Li G, Bao Z, Li L. Mitochondrial Mechanisms of Necroptosis in Liver Diseases. Int J Mol Sci 2020; 22:ijms22010066. [PMID: 33374660 PMCID: PMC7793526 DOI: 10.3390/ijms22010066] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/20/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022] Open
Abstract
Cell death represents a basic biological paradigm that governs outcomes and long-term sequelae in almost every hepatic disease. Necroptosis is a common form of programmed cell death in the liver. Necroptosis can be activated by ligands of death receptors, which then interact with receptor-interactive protein kinases 1 (RIPK1). RIPK1 mediates receptor interacting receptor-interactive protein kinases 3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL) and necrosome formation. Regarding the molecular mechanisms of mitochondrial-mediated necroptosis, the RIPK1/RIPK3/MLKL necrosome complex can enhance oxidative respiration and generate reactive oxygen species, which can be a crucial factor in the susceptibility of cells to necroptosis. The necrosome complex is also linked to mitochondrial components such as phosphoglycerate mutase family member 5 (PGAM5), metabolic enzymes in the mitochondrial matrix, mitochondrial permeability protein, and cyclophilin D. In this review, we focus on the role of mitochondria-mediated cell necroptosis in acute liver injury, chronic liver diseases, and hepatocellular carcinoma, and its possible translation into clinical applications.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China; (C.X.); (X.G.); (Z.B.)
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China; (C.X.); (X.G.); (Z.B.)
| | - Ganglei Li
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China;
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China; (C.X.); (X.G.); (Z.B.)
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China; (C.X.); (X.G.); (Z.B.)
- Correspondence:
| |
Collapse
|
53
|
Russo GL, Sonsalla G, Natarajan P, Breunig CT, Bulli G, Merl-Pham J, Schmitt S, Giehrl-Schwab J, Giesert F, Jastroch M, Zischka H, Wurst W, Stricker SH, Hauck SM, Masserdotti G, Götz M. CRISPR-Mediated Induction of Neuron-Enriched Mitochondrial Proteins Boosts Direct Glia-to-Neuron Conversion. Cell Stem Cell 2020; 28:524-534.e7. [PMID: 33202244 PMCID: PMC7939544 DOI: 10.1016/j.stem.2020.10.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/11/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022]
Abstract
Astrocyte-to-neuron conversion is a promising avenue for neuronal replacement therapy. Neurons are particularly dependent on mitochondrial function, but how well mitochondria adapt to the new fate is unknown. Here, we determined the comprehensive mitochondrial proteome of cortical astrocytes and neurons, identifying about 150 significantly enriched mitochondrial proteins for each cell type, including transporters, metabolic enzymes, and cell-type-specific antioxidants. Monitoring their transition during reprogramming revealed late and only partial adaptation to the neuronal identity. Early dCas9-mediated activation of genes encoding mitochondrial proteins significantly improved conversion efficiency, particularly for neuron-enriched but not astrocyte-enriched antioxidant proteins. For example, Sod1 not only improves the survival of the converted neurons but also elicits a faster conversion pace, indicating that mitochondrial proteins act as enablers and drivers in this process. Transcriptional engineering of mitochondrial proteins with other functions improved reprogramming as well, demonstrating a broader role of mitochondrial proteins during fate conversion. Mitochondrial proteomes of cortical astrocytes and neurons are distinct Astrocyte-enriched mitochondrial proteins are downregulated late in neuronal conversion Neuron-enriched mitochondrial proteins are upregulated late in neuronal conversion Early induction of neuronal mitochondrial proteins improves neuronal reprogramming
Collapse
Affiliation(s)
- Gianluca L Russo
- Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians-Universität (LMU), Planegg-Martinsried, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, BMC LMU, Planegg-Martinsried, Germany; Graduate School of Systemic Neurosciences, BMC, LMU, Planegg-Martinsried, Germany
| | - Giovanna Sonsalla
- Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians-Universität (LMU), Planegg-Martinsried, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, BMC LMU, Planegg-Martinsried, Germany; Graduate School of Systemic Neurosciences, BMC, LMU, Planegg-Martinsried, Germany
| | - Poornemaa Natarajan
- Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians-Universität (LMU), Planegg-Martinsried, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, BMC LMU, Planegg-Martinsried, Germany; Graduate School of Systemic Neurosciences, BMC, LMU, Planegg-Martinsried, Germany
| | - Christopher T Breunig
- MCN Junior Research Group, Munich Center for Neurosciences, BMC, LMU, Planegg-Martinsried, Germany; Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, Planegg-Martinsried, Germany
| | - Giorgia Bulli
- Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians-Universität (LMU), Planegg-Martinsried, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, BMC LMU, Planegg-Martinsried, Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science, Helmholtz Center Munich, Neuherberg, Germany
| | - Sabine Schmitt
- Institute of Toxicology and Environmental Hygiene, School of Medicine, Technical University Munich (TUM), Munich, Germany
| | | | - Florian Giesert
- Institute of Developmental Genetics, Helmholtz Center Munich, Neuherberg, Germany; Developmental Genetics, TUM, Munich-Weihenstephan, Germany
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden
| | - Hans Zischka
- Institute of Toxicology and Environmental Hygiene, School of Medicine, Technical University Munich (TUM), Munich, Germany; Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, Neuherberg, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Center Munich, Neuherberg, Germany; Developmental Genetics, TUM, Munich-Weihenstephan, Germany; German Center for Neurodegenerative Diseases (DZNE) Site Munich, Munich, Germany
| | - Stefan H Stricker
- MCN Junior Research Group, Munich Center for Neurosciences, BMC, LMU, Planegg-Martinsried, Germany; Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, Planegg-Martinsried, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, Neuherberg, Germany
| | - Giacomo Masserdotti
- Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians-Universität (LMU), Planegg-Martinsried, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, BMC LMU, Planegg-Martinsried, Germany
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians-Universität (LMU), Planegg-Martinsried, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, BMC LMU, Planegg-Martinsried, Germany; Excellence Cluster of Systems Neurology (SYNERGY), Munich, Germany.
| |
Collapse
|
54
|
Phosphoglycerate mutase 5 exacerbates cardiac ischemia-reperfusion injury through disrupting mitochondrial quality control. Redox Biol 2020; 38:101777. [PMID: 33166869 PMCID: PMC7658715 DOI: 10.1016/j.redox.2020.101777] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
The death of cardiomyocytes either through apoptosis or necroptosis is the pathological feature of cardiac ischemia-reperfusion (I/R) injury. Phosphoglycerate mutase 5 (PGAM5), a mitochondrially-localized serine/threonine-protein phosphatase, functions as a novel inducer of necroptosis. However, intense debate exists regarding the effect of PGAM5 on I/R-related cardiomyocyte death. Using cardiac-specific PGAM5 knockout (PGAM5CKO) mice, we comprehensively investigated the precise contribution and molecular mechanism of PGAM5 in cardiomyocyte death. Our data showed that both PGAM5 transcription and expression were upregulated in reperfused myocardium. Genetic ablation of PGAM5 suppressed I/R-mediated necroptosis but failed to prevent apoptosis activation, a result that went along with improved heart function and decreased inflammation response. Regardless of PGAM5 status, mitophagy-related cell death was not apparent following I/R. Under physiological conditions, PGAM5 overexpression in primary cardiomyocytes was sufficient to induce cardiomyocyte necroptosis rather than apoptosis. At the sub-cellular levels, PGAM5 deficiency increased mitochondrial DNA copy number and transcript levels, normalized mitochondrial respiration, repressed mitochondrial ROS production, and prevented abnormal mPTP opening upon I/R. Molecular investigation demonstrated that PGAM5 deletion interrupted I/R-mediated DrpS637 dephosphorylation but failed to abolish I/R-induce Drp1S616 phosphorylation, resulting in partial inhibition of mitochondrial fission. In addition, declining Mfn2 and OPA1 levels were restored in PGAM5CKO cardiomyocytes following I/R. Nevertheless, PGAM5 depletion did not rescue suppressed mitophagy upon I/R injury. In conclusion, our results provide an insight into the specific role and working mechanism of PGAM5 in driving cardiomyocyte necroptosis through imposing mitochondrial quality control in cardiac I/R injury.
Collapse
|
55
|
Kaludercic N, Maiuri MC, Kaushik S, Fernández ÁF, de Bruijn J, Castoldi F, Chen Y, Ito J, Mukai R, Murakawa T, Nah J, Pietrocola F, Saito T, Sebti S, Semenzato M, Tsansizi L, Sciarretta S, Madrigal-Matute J. Comprehensive autophagy evaluation in cardiac disease models. Cardiovasc Res 2020; 116:483-504. [PMID: 31504266 PMCID: PMC7064050 DOI: 10.1093/cvr/cvz233] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/01/2019] [Accepted: 08/22/2019] [Indexed: 12/24/2022] Open
Abstract
Autophagy is a highly conserved recycling mechanism essential for maintaining cellular homeostasis. The pathophysiological role of autophagy has been explored since its discovery 50 years ago, but interest in autophagy has grown exponentially over the last years. Many researchers around the globe have found that autophagy is a critical pathway involved in the pathogenesis of cardiac diseases. Several groups have created novel and powerful tools for gaining deeper insights into the role of autophagy in the aetiology and development of pathologies affecting the heart. Here, we discuss how established and emerging methods to study autophagy can be used to unravel the precise function of this central recycling mechanism in the cardiac system.
Collapse
Affiliation(s)
- Nina Kaludercic
- Neuroscience Institute, Department of Biomedical Sciences, National Research Council of Italy (CNR), 35131, Padova, Italy
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Descartes, Université Paris Diderot, 75006, Paris, France
| | - Susmita Kaushik
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Álvaro F Fernández
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jenny de Bruijn
- Department of Pathology, Cardiovascular Research Institute (CARIM), Maastricht University, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands; Institute of Molecular Cardiovascular Research (IMCAR), RWTH Aachen, University, Pauwelsstrase 30, 52074, Aachen, Germany
| | - Francesca Castoldi
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Descartes, Université Paris Diderot, 75006, Paris, France
| | - Yun Chen
- Departments of Medicine (Cardiology) and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Jumpei Ito
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, London SE5 9NU, UK
| | - Risa Mukai
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NY, USA
| | - Tomokazu Murakawa
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, London SE5 9NU, UK
| | - Jihoon Nah
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NY, USA
| | - Federico Pietrocola
- Cellular Plasticity and Disease Laboratory. Institute for Research in Biomedicine (IRB Barcelona), Barcelona; Institute of Science and Technology (BIST), Barcelona, Spain
| | - Toshiro Saito
- Department of Surgery and Clinical Science, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Salwa Sebti
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Martina Semenzato
- Department of Biology, University of Padua, Via U Bassi 58B, 35121, Padua, Italy.,Venetian Institute of Molecular Medicine, Via Orus 2, 35129, Padua, Italy
| | - Lorenza Tsansizi
- Department of Biology, University of Padua, Via U Bassi 58B, 35121, Padua, Italy.,Venetian Institute of Molecular Medicine, Via Orus 2, 35129, Padua, Italy
| | - Sebastiano Sciarretta
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100, Latina, LT, Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, 86077, Pozzilli, IS, Italy
| | - Julio Madrigal-Matute
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| |
Collapse
|
56
|
Liao S, Apaijai N, Chattipakorn N, Chattipakorn SC. The possible roles of necroptosis during cerebral ischemia and ischemia / reperfusion injury. Arch Biochem Biophys 2020; 695:108629. [PMID: 33068524 DOI: 10.1016/j.abb.2020.108629] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/03/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
Cell death is a process consequential to cerebral ischemia and cerebral ischemia/reperfusion (I/R) injury. Recent evidence suggest that necroptosis has been involved in the pathogenesis of ischemic brain injury. The mechanism of necroptosis is initiated by an activation of inflammatory receptors including tumor necrosis factor, toll like receptor, and fas ligands. The signals activate the receptor-interacting protein kinase (RIPK) 1, 3, and a mixed-lineage kinase domain-like pseudokinase (MLKL) to instigate necroptosis. RIPK1 inhibitor, necrostatin-1, was developed, and dramatically reduced brain injury following cerebral ischemia in mice. Consequently, necroptosis could be a novel therapeutic target for stroke, which aims to reduce long-term adverse outcomes after cerebral ischemia. Several studies have been conducted to test the roles of necroptosis on cerebral ischemia and cerebral I/R injury, and the efficacy of necrostatin-1 has been tested in those models. Evidence regarding the roles of necroptosis and the effects of necrostatin-1, from in vitro and in vivo studies, has been summarized and discussed. In addition, other therapeutic managements, involving in necroptosis, are also included in this review. We believe that the insights from this review might clarify the clinical perspective and challenges involved in future stroke treatment by targeting the necroptosis pathway.
Collapse
Affiliation(s)
- Suchan Liao
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
57
|
Wu X, Liu Z, Yu XY, Xu S, Luo J. Autophagy and cardiac diseases: Therapeutic potential of natural products. Med Res Rev 2020; 41:314-341. [PMID: 32969064 DOI: 10.1002/med.21733] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/28/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022]
Abstract
The global incidence of cardiac diseases is expected to increase in the coming years, imposing a substantial socioeconomic burden on healthcare systems. Autophagy is a tightly regulated lysosomal degradation mechanism important for cell survival, homeostasis, and function. Accumulating pieces of evidence have indicated a major role of autophagy in the regulation of cardiac homeostasis and function. It is well established that dysregulation of autophagy in cardiomyocytes is involved in cardiac hypertrophy, myocardial infarction, diabetic cardiomyopathy, and heart failure. In this sense, autophagy seems to be an attractive therapeutic target for cardiac diseases. Recently, multiple natural products/phytochemicals, such as resveratrol, berberine, and curcumin have been shown to regulate cardiomyocyte autophagy via different pathways. The autophagy-modifying capacity of these compounds should be taken into consideration for designing novel therapeutic agents. This review focuses on the role of autophagy in various cardiac diseases and the pharmacological basis and therapeutic potential of reported natural products in cardiac diseases by modifying autophagic processes.
Collapse
Affiliation(s)
- Xiaoqian Wu
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zumei Liu
- Department of Central Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Xi-Yong Yu
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Suowen Xu
- Department of Endocrinology and Metabolism, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Jiandong Luo
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
58
|
Zhou H, He L, Xu G, Chen L. Mitophagy in cardiovascular disease. Clin Chim Acta 2020; 507:210-218. [DOI: 10.1016/j.cca.2020.04.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 02/08/2023]
|
59
|
A Novel Molecular Mechanism of IKK ε-Mediated Akt/mTOR Inhibition in the Cardiomyocyte Autophagy after Myocardial Infarction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7046923. [PMID: 32724494 PMCID: PMC7382748 DOI: 10.1155/2020/7046923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/31/2020] [Accepted: 06/09/2020] [Indexed: 12/25/2022]
Abstract
Autophagy of cardiomyocytes after myocardial infarction (MI) is an important factor affecting the prognosis of MI. Excessive autophagy can lead to massive death of cardiomyocytes, which will seriously affect cardiac function. IKKε plays a crucial role in the occurrence of autophagy, but the functional role in MI remains largely unknown. To evaluate the impact of IKKε on the autophagy of cardiomyocytes after MI, MI was induced by surgical left anterior descending coronary artery ligation in IKKε knockout (KO) mice and wild-type (WT) mice. Starvation of H9c2 cells with IKKε siRNA and rescued with IKKε overexpressed afterwards to test the mechanism of IKKε in autophagy in vitro. Our results demonstrated that the expression of IKKε was upregulated in mice myocardial tissues which were consistent with cardiomyocyte autophagy after MI. Significantly, the IKKε KO mice showed increased infarct size, decreased viable cardiomyocytes, and exacerbated cardiac dysfunction when compared with the wild-type mice. Western blot and electron micrography analysis also revealed that loss of IKKε induces excessive cardiomyocyte autophagy and reduced the expression of p-Akt and p-mTOR. Similar results were observed in IKKε siRNA H9c2 cells in vitro which were under starvation injury. Notably, the levels of p-Akt and p-mTOR can restore in IKKε rescued cells. In conclusion, our results indicated that IKKε protects cardiomyocyte survival by reduced autophagy following MI via regulation of the Akt/mTOR signaling pathway. Thus, our study suggests that IKKε might represent a potential therapeutic target for the treatment of MI.
Collapse
|
60
|
Manivanh R, Mehrbach J, Charron AJ, Grassetti A, Cerón S, Taylor SA, Cabrera JR, Gerber S, Leib DA. Herpes Simplex Virus 1 ICP34.5 Alters Mitochondrial Dynamics in Neurons. J Virol 2020; 94:e01784-19. [PMID: 32376626 PMCID: PMC7343198 DOI: 10.1128/jvi.01784-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/30/2020] [Indexed: 12/17/2022] Open
Abstract
Expression of viral genes and activation of innate antiviral responses during infection result in an increase in reactive oxygen species (ROS) and toxic by-products of energy metabolism which can lead to cell death. The mitochondrion and its associated proteins are crucial regulators of these responses and related pathways such as autophagy and apoptosis. Through a mass spectrometry approach, we have shown that the herpes simplex virus 1 (HSV-1) neurovirulence- and autophagy-modulating protein ICP34.5 interacts with numerous mitochondrion-associated factors. Specifically, we showed that amino acids 68 to 87 of ICP34.5, the domain that binds beclin1 and controls neurovirulence, are necessary for interactions with PGAM5, KEAP1, and other regulators of the antioxidant response, mitochondrial trafficking, and programmed cell death. We further show that while this domain interacts with multiple cellular stress response factors, it does not alter apoptosis or antioxidant gene expression. That said, the attenuated replication of a recombinant virus lacking residues 68 to 87 (termed Δ68-87) in primary human fibroblasts was restored by addition of ferric nitrate. Furthermore, in primary mouse neurons, the perinuclear localization of mitochondria that follows infection with HSV-1 was notably absent following Δ68-87 infection. Through this 20-amino-acid domain, ICP34.5 significantly reduces mitochondrial motility in axons of neurons. We propose the hypothesis that ICP34.5 promotes perinuclear mitochondrial localization by modulating transport of mitochondria through interaction with PGAM5. These data expand upon previous observations of altered mitochondrial dynamics following alphaherpesvirus infections and identify a key determinant of this activity during HSV-1 infections.IMPORTANCE Herpes simplex virus persists lifelong in neurons and can reactivate to cause recurrent lesions in mucosal tissues. A key determinant of virulence is the viral protein ICP34.5, of which residues 68 to 87 significantly contribute to neurovirulence through an unknown mechanism. Our report provides evidence that residues 68 to 87 of ICP34.5 are required for binding mitochondrion-associated factors. These interactions alter mitochondrial dynamics in neurons, thereby facilitating viral replication and pathogenesis.
Collapse
Affiliation(s)
- Richard Manivanh
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Jesse Mehrbach
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Audra J Charron
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Andrew Grassetti
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Stacey Cerón
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Sean A Taylor
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Jorge Rubén Cabrera
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Scott Gerber
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - David A Leib
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
61
|
Nordgren KKS, Wallace KB. Disruption of the Keap1/Nrf2-Antioxidant Response System After Chronic Doxorubicin Exposure In Vivo. Cardiovasc Toxicol 2020; 20:557-570. [DOI: 10.1007/s12012-020-09581-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
62
|
Pan Y, Ai CX, Zeng L, Liu C, Li WC. Modulation of copper-induced antioxidant defense, Cu transport, and mitophagy by hypoxia in the large yellow croaker (Larimichthys crocea). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:997-1010. [PMID: 31925663 DOI: 10.1007/s10695-020-00765-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
This study aimed to investigate the effects of hypoxia on Cu-induced antioxidant defense, Cu transport, and mitophagy in the liver of the large yellow croaker. Fish were exposed to hypoxia (3.0 mg L-1), Cu (120 μg L-1), and hypoxia (3.0 mg L-1) plus Cu (120 μg L-1) for 48 h. Hypoxia exposure increased antioxidant abilities to maintain cellular redox balance. Although Cu exposure alone improved antioxidant defense, Cu transport, and mitophagy, these stress responses could not completely neutralize Cu toxicity, as reflected by the elevated reactive oxygen species (ROS) and lipid peroxidation (LPO) and hepatic vacuoles. When compared with Cu stress alone, hypoxia increased Cu toxicity by inhibiting antioxidant defense, Cu transport, and mitophagy, leading to the increment of mortality, ROS, and LPO, and the deterioration of histological structure. The adverse effects of hypoxia on Cu-induced metal transport and mitophagy might be involved in metal-responsive element-binding transcription factor-1 (MTF-1) and Forkhead box O-3 (FoxO3) signaling pathways, respectively. Overall, hypoxia reduced antioxidant response, Cu transport, and mitophagy in fish exposed to Cu, which contributes to understanding the molecular mechanisms underlying negative effects of hypoxia on Cu toxicity in fish.
Collapse
Affiliation(s)
- Yun Pan
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Chun-Xiang Ai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Lin Zeng
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316000, China.
| | - Can Liu
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Wen-Cheng Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316000, China
| |
Collapse
|
63
|
Hernandez‐Resendiz S, Prunier F, Girao H, Dorn G, Hausenloy DJ. Targeting mitochondrial fusion and fission proteins for cardioprotection. J Cell Mol Med 2020; 24:6571-6585. [PMID: 32406208 PMCID: PMC7299693 DOI: 10.1111/jcmm.15384] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 01/05/2023] Open
Abstract
New treatments are needed to protect the myocardium against the detrimental effects of acute ischaemia/reperfusion (IR) injury following an acute myocardial infarction (AMI), in order to limit myocardial infarct (MI) size, preserve cardiac function and prevent the onset of heart failure (HF). Given the critical role of mitochondria in energy production for cardiac contractile function, prevention of mitochondrial dysfunction during acute myocardial IRI may provide novel cardioprotective strategies. In this regard, the mitochondrial fusion and fissions proteins, which regulate changes in mitochondrial morphology, are known to impact on mitochondrial quality control by modulating mitochondrial biogenesis, mitophagy and the mitochondrial unfolded protein response. In this article, we review how targeting these inter-related processes may provide novel treatment targets and new therapeutic strategies for reducing MI size, preventing the onset of HF following AMI.
Collapse
Affiliation(s)
- Sauri Hernandez‐Resendiz
- National Heart Research Institute SingaporeNational Heart Centre SingaporeSingaporeSingapore
- Cardiovascular & Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingaporeSingapore
- Centro de Biotecnologia‐FEMSATecnologico de MonterreyNuevo LeonMexico
| | - Fabrice Prunier
- Institut MITOVASCCNRS UMR 6015 INSERM U1083University Hospital Center of AngersUniversity of AngersAngersFrance
| | - Henrique Girao
- Faculty of MedicineCoimbra Institute for Clinical and Biomedical Research (iCBR)University of CoimbraPortugal
- Center for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbraPortugal
- Clinical Academic Centre of Coimbra (CACC)CoimbraPortugal
| | - Gerald Dorn
- Department of Internal MedicineCenter for PharmacogenomicsWashington University School of MedicineSt. LouisMOUSA
| | - Derek J. Hausenloy
- National Heart Research Institute SingaporeNational Heart Centre SingaporeSingaporeSingapore
- Cardiovascular & Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingaporeSingapore
- Yong Loo Lin School of MedicineNational University SingaporeSingaporeSingapore
- The Hatter Cardiovascular InstituteUniversity College LondonLondonUK
- Cardiovascular Research CenterCollege of Medical and Health SciencesAsia UniversityTaichungTaiwan
| | | |
Collapse
|
64
|
Lo B, Marty-Gasset N, Manse H, Bannelier C, Bravo C, Domitile R, Rémignon H. Cellular markers of mule duck livers after force-feeding. Poult Sci 2020; 99:3567-3573. [PMID: 32616253 PMCID: PMC7597809 DOI: 10.1016/j.psj.2020.03.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/26/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023] Open
Abstract
The “Foie gras” or fatty liver is the result of hepatic steatosis from nutritional origin and induced by the force-feeding of palmipeds. Despite identical rearing and force-feeding conditions of ducks from the same breed, different liver weights, within a range of 500 to more than 700 g, are generally observed at the time of evisceration. To better understand the determinism of this large variability in fatty liver weights, the activity of various metabolic pathways has been explored in 4 groups of steatotic livers differing by their weights. Different analyses were performed using biochemical assays on metabolites as well as ELISA tests or enzyme activity assays. The result showed that an increase in the final liver weight is always associated with a hypoxic response and even a severe hypoxia observed in livers with the highest weights (more than 650 g). This is also combined with a rise in the cellular oxidative stress level. In addition, for the heaviest livers (more than 700 g), signs of cell death by apoptosis were also observed, while others programmed cell death pathways, such as ferroptosis or necroptosis, seemed to be nonactive.
Collapse
Affiliation(s)
- Bara Lo
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326 Castanet Tolosan, France
| | | | - Hélène Manse
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326 Castanet Tolosan, France
| | - Carole Bannelier
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326 Castanet Tolosan, France
| | - Céline Bravo
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326 Castanet Tolosan, France
| | | | - Hervé Rémignon
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326 Castanet Tolosan, France.
| |
Collapse
|
65
|
The role of Drp1 in mitophagy and cell death in the heart. J Mol Cell Cardiol 2020; 142:138-145. [PMID: 32302592 DOI: 10.1016/j.yjmcc.2020.04.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/25/2020] [Accepted: 04/11/2020] [Indexed: 12/20/2022]
Abstract
Maintenance of mitochondrial function and integrity is critical for normal cell survival, particularly in non-dividing cells with a high-energy demand such as cardiomyocytes. Well-coordinated quality control mechanisms in cardiomyocytes, involving mitochondrial biogenesis, mitochondrial dynamics-fission and fusion, and mitophagy, act to protect against mitochondrial dysfunction. Mitochondrial fission, which requires dynamin-related protein 1 (Drp1), is essential for segregation of damaged mitochondria for degradation. Alterations in this process have been linked to cardiomyocyte apoptosis and cardiomyopathy. In this review, we discuss the role of Drp1 in mitophagy and apoptosis in the context of cardiac pathology, including myocardial ischemia and heart failure.
Collapse
|
66
|
Zeng L, Ai CX, Zhang JS, Li WC. Pre-hypoxia exposure inhibited copper toxicity by improving energy metabolism, antioxidant defence and mitophagy in the liver of the large yellow croaker Larimichthys crocea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:134961. [PMID: 31787300 DOI: 10.1016/j.scitotenv.2019.134961] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/26/2019] [Accepted: 10/11/2019] [Indexed: 05/14/2023]
Abstract
This study investigated the effects of moderate hypoxia pre-exposure on energy metabolism, antioxidant defence and mitophagy in the liver of the large yellow croaker Larimichthys crocea exposed to Cu. Fish were pre-exposed to either normoxia or hypoxia (~3.0 mg L-1, 42% O2 saturation) for 48 h, and subsequently were subjected to either control (without Cu addition) or Cu (168 μg L-1) under normoxic conditions for another 48 h. Copper exposure under normoxia induced Cu toxicity that increased mortality, the production of reactive oxygen species (ROS) and malondialdehyde, and aberrant hepatic mitochondrial ultrastructure. Interestingly, hypoxia pre-exposure improved energy metabolism, antioxidant ability and mitophagy response, and reduced the Cu content to inhibit Cu toxicity, reflecting the enhanced survival rate and reduced oxidative damage. In these processes, hypoxia-inducible factor-1α (HIF-1α), transcription factors NFE2-related nuclear factor 2 (Nrf2), and forkhead box O-3 (FoxO3) mRNA levels were correlated with expression of genes related to energy metabolism, antioxidant defence and mitophagy, respectively, indicating HIF-1α, Nrf2, and FoxO3 are required for the induction of their respective target genes. Overall, moderate hypoxia pre-exposure was able to generate adaptive responses to mitigate Cu-induced toxicological effects, underlining a central role of hormesis.
Collapse
Affiliation(s)
- Lin Zeng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Chun-Xiang Ai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, PR China
| | - Jian-She Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Wen-Cheng Li
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| |
Collapse
|
67
|
Davidson SM, Adameová A, Barile L, Cabrera-Fuentes HA, Lazou A, Pagliaro P, Stensløkken KO, Garcia-Dorado D. Mitochondrial and mitochondrial-independent pathways of myocardial cell death during ischaemia and reperfusion injury. J Cell Mol Med 2020; 24:3795-3806. [PMID: 32155321 PMCID: PMC7171390 DOI: 10.1111/jcmm.15127] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/08/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myocardial infarction causes lethal injury to cardiomyocytes during both ischaemia and reperfusion (IR). It is important to define the precise mechanisms by which they die in order to develop strategies to protect the heart from IR injury. Necrosis is known to play a major role in myocardial IR injury. There is also evidence for significant myocardial death by other pathways such as apoptosis, although this has been challenged. Mitochondria play a central role in both of these pathways of cell death, as either a causal mechanism is the case of mitochondrial permeability transition leading to necrosis, or as part of the signalling pathway in mitochondrial cytochrome c release and apoptosis. Autophagy may impact this process by removing dysfunctional proteins or even entire mitochondria through a process called mitophagy. More recently, roles for other programmed mechanisms of cell death such as necroptosis and pyroptosis have been described, and inhibitors of these pathways have been shown to be cardioprotective. In this review, we discuss both mitochondrial and mitochondrial‐independent pathways of the major modes of cell death, their role in IR injury and their potential to be targeted as part of a cardioprotective strategy. This article is part of a special Issue entitled ‘Mitochondria as targets of acute cardioprotection’ and emerged as part of the discussions of the European Union (EU)‐CARDIOPROTECTION Cooperation in Science and Technology (COST) Action, CA16225.
Collapse
Affiliation(s)
- Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Adriana Adameová
- Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia.,Centre of Experimental Medicine SAS, Bratislava, Slovakia
| | - Lucio Barile
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation and Faculty of Biomedical Sciences, Università Svizzera Italiana, Lugano, Switzerland
| | - Hector Alejandro Cabrera-Fuentes
- SingHealth Duke-NUS Cardiovascular Sciences Academic Clinical Programme and Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Monterrey, Nuevo Leon, México.,Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia.,Institute of Physiology, Medical School, Justus-Liebig-University, Giessen, Germany
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pasquale Pagliaro
- Department of Biological and Clinical Sciences, University of Turin, Torino, Italy.,National Institute for Cardiovascular Research, Bologna, Italy
| | - Kåre-Olav Stensløkken
- Section of Physiology, Department of Molecular Medicine, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - David Garcia-Dorado
- IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain.,Department of Cardiology, Vascular Biology and Metabolism Area, Vall d'Hebron University Hospital and Research Institute (VHIR), Barcelona, Spain.,Universitat Autónoma de Barcelona, Barcelona, Spain
| | | |
Collapse
|
68
|
Kulek AR, Anzell A, Wider JM, Sanderson TH, Przyklenk K. Mitochondrial Quality Control: Role in Cardiac Models of Lethal Ischemia-Reperfusion Injury. Cells 2020; 9:cells9010214. [PMID: 31952189 PMCID: PMC7016592 DOI: 10.3390/cells9010214] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 02/07/2023] Open
Abstract
The current standard of care for acute myocardial infarction or 'heart attack' is timely restoration of blood flow to the ischemic region of the heart. While reperfusion is essential for the salvage of ischemic myocardium, re-introduction of blood flow paradoxically kills (rather than rescues) a population of previously ischemic cardiomyocytes-a phenomenon referred to as 'lethal myocardial ischemia-reperfusion (IR) injury'. There is long-standing and exhaustive evidence that mitochondria are at the nexus of lethal IR injury. However, during the past decade, the paradigm of mitochondria as mediators of IR-induced cardiomyocyte death has been expanded to include the highly orchestrated process of mitochondrial quality control. Our aims in this review are to: (1) briefly summarize the current understanding of the pathogenesis of IR injury, and (2) incorporating landmark data from a broad spectrum of models (including immortalized cells, primary cardiomyocytes and intact hearts), provide a critical discussion of the emerging concept that mitochondrial dynamics and mitophagy (the components of mitochondrial quality control) may contribute to the pathogenesis of cardiomyocyte death in the setting of ischemia-reperfusion.
Collapse
Affiliation(s)
- Andrew R. Kulek
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.R.K.); (A.A.); (T.H.S.)
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Anthony Anzell
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.R.K.); (A.A.); (T.H.S.)
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Departments of Emergency Medicine and Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Joseph M. Wider
- Departments of Emergency Medicine and Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Thomas H. Sanderson
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.R.K.); (A.A.); (T.H.S.)
- Departments of Emergency Medicine and Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Karin Przyklenk
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.R.K.); (A.A.); (T.H.S.)
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Correspondence: ; Tel.: +1-313-577-9047
| |
Collapse
|
69
|
Miller DR, Cramer SD, Thorburn A. The interplay of autophagy and non-apoptotic cell death pathways. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 352:159-187. [PMID: 32334815 DOI: 10.1016/bs.ircmb.2019.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autophagy, the process of macromolecular degradation through the lysosome, has been extensively studied for the past decade or two. Autophagy can regulate cell death, especially apoptosis, through selective degradation of both positive and negative apoptosis regulators. However, multiple other programmed cell death pathways exist. As knowledge of these other types of cell death expand, it has been suggested that they also interact with autophagy. In this review, we discuss the molecular mechanisms that comprise three non-apoptotic forms of cell death (necroptosis, pyroptosis and ferroptosis) focusing on how the autophagy machinery regulates these different cell death mechanisms through (i) its degradative functions, i.e., true autophagy, and (ii) other non-degradative functions of the autophagy machinery such as serving as a signaling scaffold or by participating in other autophagy-independent cellular processes.
Collapse
Affiliation(s)
- Dannah R Miller
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Scott D Cramer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Andrew Thorburn
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| |
Collapse
|
70
|
Sundarraj K, Raghunath A, Panneerselvam L, Perumal E. Fisetin, a phytopolyphenol, targets apoptotic and necroptotic cell death in HepG2 cells. Biofactors 2020; 46:118-135. [PMID: 31634424 DOI: 10.1002/biof.1577] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 09/23/2019] [Indexed: 01/27/2023]
Abstract
Fisetin (3,7,3',4'-tetrahydroxyflavone), a bioactive dietary flavonoid, intrigued scientists for its anticancer potential against various cancer types. We investigated the fisetin-induced inhibition of growth and survival of human hepatocellular carcinoma. Fisetin decreased cell viability and proliferation of HepG2 cells as revealed from MTT and clonogenicity assays. Cell cycle arrest in the G2/M phase was observed. Annexin V/propidium iodide (PI) staining followed by flow cytometry revealed that fisetin induced both apoptosis and necroptosis in HepG2 cells. Apoptotic cells were significantly increased on fisetin treatment as observed in morphological evaluations and 4',6-diamidino-2-phenylindole and Acridine orange staining. Flow cytometry, fluorescence imaging, and 2', 7'-dichlorofluorescein diacetate analyses showed an increase in reactive oxygen species (ROS) generation on fisetin treatment. Pretreatment with N-acetyl cysteine inhibited ROS production and also rescued mitochondrial membrane potential in HepG2 cells. The underlying mechanisms of apoptosis and necroptosis were determined by analysis of their respective signaling molecules using qRT-PCR and Western blotting. Fisetin showed a marked increase in the expression of TNFα and IKκB with a decrease in NF-κB, pNF-κB and pIKκB expression. Fisetin reduced the expression of Bcl2, and elevated levels of Bax, caspase-3, and PARP and thus induced apoptosis in HepG2 cells. zVAD suppressed the fisetin-induced expression of caspase-8, RIPK1, RIPK3, and MLKL as opposed to fisetin treatment. Nec-1 + fisetin could not completely block necroptosis, which warrants further investigation. Taken together, our findings demonstrate that the fisetin exhibited anti-proliferative effects on HepG2 cells through apoptosis and necroptosis via multiple signaling pathways. Fiestin has potential as a therapeutic agent against hepatocellular carcinoma.
Collapse
Affiliation(s)
- Kiruthika Sundarraj
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Azhwar Raghunath
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Lakshmikanthan Panneerselvam
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamilnadu, India
| |
Collapse
|
71
|
Abstract
Histidine phosphorylation of proteins is increasingly recognised as an important regulatory posttranslational modification in eukaryotes as well as prokaryotes. The HP (Histidine Phosphatase) superfamily, named for a key catalytic His residue, harbors two known groups of protein phosphohistidine phosphatases (PPHPs). The bacterial SixA protein acts as a regulator of His-Asp phosphorelays with two substrates characterized in vitro and/or in vivo. The recently characterized eukaryotic PHPP PGAM5 only has one currently known substrate, NDPK-B, through which it helps regulate T-cell signaling. SixA and PGAM5 appear to share no particular sequence or structural features relating to their PPHP activity suggesting that PHPP activity has arisen independently in different lineages of the HP superfamily. Further members of the HP superfamily may thus harbor (additional) unsuspected PHPP activity.
Collapse
|
72
|
Ganzleben I, He GW, Günther C, Prigge ES, Richter K, Rieker RJ, Mougiakakos D, Neurath MF, Becker C. PGAM5 is a key driver of mitochondrial dysfunction in experimental lung fibrosis. Cell Mol Life Sci 2019; 76:4783-4794. [PMID: 31168659 PMCID: PMC11105634 DOI: 10.1007/s00018-019-03133-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/06/2019] [Indexed: 01/24/2023]
Abstract
RATIONALE Mitochondrial homeostasis has recently emerged as a focal point in the pathophysiology of idiopathic pulmonary fibrosis (IPF), but conflicting data have been reported regarding its regulation. We speculated that phosphoglycerate mutase family member 5 (PGAM5), a mitochondrial protein at the intersection of multiple cell death and mitochondrial turnover pathways, might be involved in the pathogenesis of IPF. METHODS PGAM5-deficient mice and human pulmonary epithelial cells were analyzed comparatively with PGAM5-proficient controls in a bleomycin-based model of pulmonary fibrogenesis. Mitochondria were visualized by confocal and transmission electron microscopy. Mitochondrial homeostasis was assessed using JC1 (ΔΨ) and flow cytometry. RESULTS PGAM5 plays an important role in pulmonary fibrogenesis. Pgam5-/- mice displayed significantly attenuated lung fibrosis compared to controls. Complementary, in vitro studies demonstrated that PGAM5 impaired mitochondrial integrity on a functional and structural level independently of mtROS-production. On a molecular level, reduced mitophagy caused by PGAM5 deficiency improved mitochondrial homeostasis. CONCLUSIONS Our study identifies PGAM5 as an important regulator of mitochondrial homeostasis in pulmonary fibrosis. Our data further indicate PGAM5-mediated mitophagy itself as a pivotal gateway event in the mediation of self-sustaining mitochondrial damage and membrane depolarization. Our work hereby highlights the importance of mitochondrial dynamics and identifies a potential therapeutic target that warrants further studies. Toxic agents lead to mitochondrial damage resulting in depolarization of the mitochondrial membrane potential (ΔΨ) which is a gateway event for the initiation of PGAM5-mediated mitophagy. PGAM5-mediated mitophagy in turn leads to a self-perpetuating escalation of ΔΨ depolarization. Loss of the mitophagy-based damage-enhancing loop under PGAM5-deficient conditions breaks this vicious cycle, leading to improved mitochondrial homeostasis.
Collapse
Affiliation(s)
- Ingo Ganzleben
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Gui-Wei He
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elena-Sophie Prigge
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karsten Richter
- Central Unit Electron Microscopy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ralf J Rieker
- Department of Pathology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Dimitrios Mougiakakos
- Department of Medicine 5, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
73
|
Bonora M, Wieckowski MR, Sinclair DA, Kroemer G, Pinton P, Galluzzi L. Targeting mitochondria for cardiovascular disorders: therapeutic potential and obstacles. Nat Rev Cardiol 2019; 16:33-55. [PMID: 30177752 DOI: 10.1038/s41569-018-0074-0] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A large body of evidence indicates that mitochondrial dysfunction has a major role in the pathogenesis of multiple cardiovascular disorders. Over the past 2 decades, extraordinary efforts have been focused on the development of agents that specifically target mitochondria for the treatment of cardiovascular disease. Despite such an intensive wave of investigation, no drugs specifically conceived to modulate mitochondrial functions are currently available for the clinical management of cardiovascular disease. In this Review, we discuss the therapeutic potential of targeting mitochondria in patients with cardiovascular disease, examine the obstacles that have restrained the development of mitochondria-targeting agents thus far, and identify strategies that might empower the full clinical potential of this approach.
Collapse
Affiliation(s)
- Massimo Bonora
- Ruth L. and David S. Gottesman Institute for Stem Cell, Regenerative Medicine Research, Department of Cell Biology and Stem Cell Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mariusz R Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - David A Sinclair
- Department of Genetics, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA.,Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Guido Kroemer
- Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Paolo Pinton
- Department of Morphology, Surgery, and Experimental Medicine, Section of Pathology, Oncology, and Experimental Biology, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy. .,Maria Cecilia Hospital, GVM Care & Research, E.S. Health Science Foundation, Cotignola, Italy.
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Paris, France. .,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA. .,Sandra and Edward Meyer Cancer Center, New York, NY, USA.
| |
Collapse
|
74
|
Thakur B, Kumar Y, Bhatia A. Programmed necrosis and its role in management of breast cancer. Pathol Res Pract 2019; 215:152652. [PMID: 31570277 DOI: 10.1016/j.prp.2019.152652] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
Breast cancer is one of the major causes of cancer related deaths in women worldwide. A major factor responsible for treatment failure in breast cancer is the development of resistance to commonly used chemotherapeutic drugs leading to disease relapse. Several studies have shown dysregulation of molecular machinery of apoptosis, the major programmed cell death pathway in breast malignancies. Thus, there is an unmet need to search for an alternative cell death pathway which can work when apoptosis is compromised. Necroptosis or programmed necrosis is a relatively recently described entity which has attracted attention in this context. Classically, even in physiological conditions necroptosis is found to act if apoptosis is not functional due to some reason. Recently, more and more studies are being conducted in different malignancies to explore the possibility and utility of inducing cell death by necroptosis. The present review describes the key molecular players involved in necroptotic pathway and their status in breast cancer. In addition, the research done to utilize this pathway for treatment of breast cancer has also been highlighted.
Collapse
Affiliation(s)
- Banita Thakur
- Department of Experimental Medicine & Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Yashwant Kumar
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine & Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
75
|
Wemyss MA, Pearson JS. Host Cell Death Responses to Non-typhoidal Salmonella Infection. Front Immunol 2019; 10:1758. [PMID: 31402916 PMCID: PMC6676415 DOI: 10.3389/fimmu.2019.01758] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022] Open
Abstract
Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative bacterium with a broad host range that causes non-typhoidal salmonellosis in humans. S. Typhimurium infects epithelial cells and macrophages in the small intestine where it replicates in a specialized intracellular niche called the Salmonella-containing vacuole (SCV) and promotes inflammation of the mucosa to induce typically self-limiting gastroenteritis. Virulence and spread of the bacterium is determined in part by the host individual's ability to limit the infection through innate immune responses at the gastrointestinal mucosa, including programmed cell death. S. Typhimurium however, has evolved a myriad of mechanisms to counteract or exploit host responses through the use of Type III Secretion Systems (T3SS), which allow the translocation of virulence (effector) proteins into the host cell for the benefit of optimal bacterial replication and dissemination. T3SS effectors have been found to interact with apoptotic, necroptotic, and pyroptotic cell death cascades, interfering with both efficient clearance of the bacteria and the recruitment of neutrophils or dendritic cells to the area of infection. The interplay of host inflammation, programmed cell death responses, and bacterial defenses in the context of non-typhoidal Salmonella (NTS) infection is a continuing area of interest within the field, and as such has been reviewed here.
Collapse
Affiliation(s)
- Madeleine A Wemyss
- Department of Molecular and Translational Research, Monash University, Clayton, VIC, Australia.,Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Jaclyn S Pearson
- Department of Molecular and Translational Research, Monash University, Clayton, VIC, Australia.,Department of Microbiology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
76
|
Implications of Necroptosis for Cardiovascular Diseases. Curr Med Sci 2019; 39:513-522. [PMID: 31346984 DOI: 10.1007/s11596-019-2067-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 03/01/2019] [Indexed: 02/08/2023]
Abstract
Necroptosis is a non-apoptotic programmed cell death pathway, which causes necrosis-like morphologic changes and triggers inflammation in the surrounding tissues. Accumulating evidence has demonstrated that necroptosis is involved in a number of pathological processes that lead to cardiovascular diseases. However, the exact molecular pathways linking them remain unknown. Herein, this review summarizes the necroptosis-related pathways involved in the development of various cardiovascular diseases, including atherosclerosis, cardiac ischemia-reperfusion injury, cardiac hypertrophy, dilated cardiomyopathy and myocardial infarction, and may shed light on the diagnosis and treatment of these diseases.
Collapse
|
77
|
Functional role of PGAM5 multimeric assemblies and their polymerization into filaments. Nat Commun 2019; 10:531. [PMID: 30705304 PMCID: PMC6355839 DOI: 10.1038/s41467-019-08393-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 01/08/2019] [Indexed: 01/01/2023] Open
Abstract
PGAM5 is a mitochondrial protein phosphatase whose genetic ablation in mice results in mitochondria-related disorders, including neurodegeneration. Functions of PGAM5 include regulation of mitophagy, cell death, metabolism and aging. However, mechanisms regulating PGAM5 activation and signaling are poorly understood. Using electron cryo-microscopy, we show that PGAM5 forms dodecamers in solution. We also present a crystal structure of PGAM5 that reveals the determinants of dodecamer formation. Furthermore, we observe PGAM5 dodecamer assembly into filaments both in vitro and in cells. We find that PGAM5 oligomerization into a dodecamer is not only essential for catalytic activation, but this form also plays a structural role on mitochondrial membranes, which is independent of phosphatase activity. Together, these findings suggest that modulation of the oligomerization of PGAM5 may be a regulatory switch of potential therapeutic interest. PGAM5 is a mitochondrial protein phosphatase whose functions include regulation of mitophagy and cell death. Here, the authors use x-ray crystallography and EM to show that PGAM5 forms dodecameric rings and filaments in solution, and find that PGAM5 rings are essential for catalysis and for a structural effect PGAM5 has on mitochondrial membranes, independently of catalytic activity.
Collapse
|
78
|
Wilson RJ, Drake JC, Cui D, Ritger ML, Guan Y, Call JA, Zhang M, Leitner LM, Gödecke A, Yan Z. Voluntary running protects against neuromuscular dysfunction following hindlimb ischemia-reperfusion in mice. J Appl Physiol (1985) 2019; 126:193-201. [PMID: 30433863 PMCID: PMC6383643 DOI: 10.1152/japplphysiol.00358.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022] Open
Abstract
Ischemia-reperfusion (IR) due to temporary restriction of blood flow causes tissue/organ damages under various disease conditions, including stroke, myocardial infarction, trauma, and orthopedic surgery. In the limbs, IR injury to motor nerves and muscle fibers causes reduced mobility and quality of life. Endurance exercise training has been shown to increase tissue resistance to numerous pathological insults. To elucidate the impact of endurance exercise training on IR injury in skeletal muscle, sedentary and exercise-trained mice (5 wk of voluntary running) were subjected to ischemia by unilateral application of a rubber band tourniquet above the femur for 1 h, followed by reperfusion. IR caused significant muscle injury and denervation at neuromuscular junction (NMJ) as early as 3 h after tourniquet release as well as depressed muscle strength and neuromuscular transmission in sedentary mice. Despite similar degrees of muscle atrophy and oxidative stress, exercise-trained mice had significantly reduced muscle injury and denervation at NMJ with improved regeneration and functional recovery following IR. Together, these data suggest that endurance exercise training preserves motor nerve and myofiber structure and function from IR injury and promote functional regeneration. NEW & NOTEWORTHY This work provides the first evidence that preemptive voluntary wheel running reduces neuromuscular dysfunction following ischemia-reperfusion injury in skeletal muscle. These findings may alter clinical practices in which a tourniquet is used to modulate blood flow.
Collapse
Affiliation(s)
- Rebecca J Wilson
- Department of Biochemistry and Molecular Genetics, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
- Center for Skeletal Muscle Research, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Joshua C Drake
- Center for Skeletal Muscle Research, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Di Cui
- Center for Skeletal Muscle Research, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Matthew L Ritger
- Center for Skeletal Muscle Research, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Yuntian Guan
- Center for Skeletal Muscle Research, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Jarrod A Call
- Department of Kinesiology, University of Georgia , Athens, Georgia
- Regenerative Bioscience Center, University of Georgia , Athens, Georgia
| | - Mei Zhang
- Department of Medicine, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
- Center for Skeletal Muscle Research, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Lucia M Leitner
- Institute of Cardiovascular Physiology, Heinrich Heine University of Düsseldorf , Düsseldorf , Germany
| | - Axel Gödecke
- Institute of Cardiovascular Physiology, Heinrich Heine University of Düsseldorf , Düsseldorf , Germany
| | - Zhen Yan
- Department of Medicine, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
- Department of Pharmacology, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
- Department of Molecular Physiology and Biological Physics, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
- Center for Skeletal Muscle Research, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
| |
Collapse
|
79
|
Ng Kee Kwong F, Nicholson AG, Pavlidis S, Adcock IM, Chung KF. PGAM5 expression and macrophage signatures in non-small cell lung cancer associated with chronic obstructive pulmonary disease (COPD). BMC Cancer 2018; 18:1238. [PMID: 30526542 PMCID: PMC6288964 DOI: 10.1186/s12885-018-5140-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/27/2018] [Indexed: 12/19/2022] Open
Abstract
Background COPD patients are at increased risk of developing non-small cell lung carcinoma that has a worse prognosis. Oxidative stress contributes to carcinogenesis and is increased in COPD patients due to mitochondrial dysfunction. We determined whether mitochondrial dysfunction is a contributing factor to the reduced survival of COPD patients with non-small cell lung carcinoma (NSCLC). Methods Using a transcriptomic database and outcome data of 3553 NSCLC samples, we selected mitochondrial-related genes whose levels in the tumour correlated with patient mortality. We further selected those genes showing a ≥ 2 fold expression in cancer compared to normal tissue. Cell-type specific expression of these proteins in lung tissue from NSCLC patients who were non-smokers or smokers with or without COPD (healthy smokers) was determined by immunohistochemistry. Gene set variation analysis was used in additional NSCLC datasets to determine the relative expression of specific macrophage transcriptomic signatures within lung cancer tissue. Results The expression of 14 mitochondrial-related genes was correlated with patient mortality and these were differentially expressed between cancer and normal lung tissue. We studied further the expression of one of these genes, PGAM5 which is a regulator of mitochondrial degradation by mitophagy. In background lung tissue, PGAM5 was only expressed in alveolar macrophages, with the highest expression in smokers with COPD compared to healthy smokers and non-smokers. In cancerous tissue, only the malignant epithelial cells and associated macrophages at the periphery of the cancer expressed PGAM5. Pre-neoplastic epithelium also showed the expression of PGAM5. There was no difference in expression in cancer tissue between COPD, healthy smoker and non-smoker groups. Macrophages at the edge of the cancer from COPD patients showed a trend towards higher expression of PGAM5 compared to those from the other groups. There was a significant correlation between PGAM5 expression in cancer tissue and the level of expression of 9 out of 49 previously-defined macrophage transcriptomic signatures with a particular one associated with patient mortality (p < 0.05). Conclusion PGAM5 is expressed in pre-neoplastic tissue and NSCLC, but not in normal epithelium. The association between PGAM5 expression and patient mortality may be mediated through the induction of specific macrophage phenotypes. Electronic supplementary material The online version of this article (10.1186/s12885-018-5140-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- F Ng Kee Kwong
- Airways Disease, National Heart and Lung Institute, Imperial College London, London, UK. .,Department of Histopathology, Royal Brompton & Harefield NHS Foundation Trust, London, UK. .,Department of Histopathology, The Cotman Centre, Norfolk and Norwich University Hospital NHS Foundation Trust, Colney Lane, Norwich, NR4 7UB, UK.
| | - A G Nicholson
- Airways Disease, National Heart and Lung Institute, Imperial College London, London, UK.,Department of Histopathology, Royal Brompton & Harefield NHS Foundation Trust, London, UK
| | - S Pavlidis
- Airways Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - I M Adcock
- Airways Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - K F Chung
- Airways Disease, National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
80
|
Wang YS, Yu P, Wang Y, Zhang J, Hang W, Yin ZX, Liu G, Chen J, Werle KD, Quan CS, Gao H, Zeng Q, Cui R, Liang J, Ding Q, Li YL, Xu ZX. AMP-activated protein kinase protects against necroptosis via regulation of Keap1-PGAM5 complex. Int J Cardiol 2018; 259:153-162. [PMID: 29579593 DOI: 10.1016/j.ijcard.2018.01.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/19/2017] [Accepted: 01/10/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND The AMP-activated protein kinase (AMPK) plays critical roles in growth regulation and metabolism reprogramming. AMPK activation protects cells against apoptosis from injury in different cell and animal models. However, its function in necroptosis remains largely unclear. METHODS AND RESULTS In the current study, we demonstrated that AMPK was activated upon necroptosis induction and protected mouse embryonic fibroblasts (MEFs) and cardiomyocytes from N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and reactive oxygen species (ROS) induced necroptosis. Activation of AMPK with chemicals A-769662, 2-deoxyglucose (2-DG), and metformin or constitutively active (CA) AMPK markedly decreased necroptosis and cytotoxicity induced by MNNG. In contrast, AMPK inhibitor compound C, dominant negative (DN) AMPK, as well as AMPK shRNAs increased necroptosis and cytotoxicity induced by MNNG. We further showed that AMPK physically associated with a protein complex containing PGAM5 and Keap1 whereby facilitating Keap1-mediated PGAM5 ubiquitination upon necroptosis induction. The AMPK agonist metformin ameliorated myocardial ischemia and reperfusion (IR) injury and reduced necroptosis through down-regulating the expression of PGAM5 in the Langendorff-perfused rat hearts. CONCLUSION Activation of AMPK protects against necroptosis via promoting Keap1-mediated PGAM5 degradation. Metformin may act as a valuable agent for the protection of myocardial ischemia and reperfusion injury by activating AMPK and reducing necroptosis.
Collapse
Affiliation(s)
- Yi-Shu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yong Wang
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei Hang
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Otorhinolaryngology Head and Neck Surgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhi-Xian Yin
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Gang Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Jianfeng Chen
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kaitlin D Werle
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cheng-Shi Quan
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Hang Gao
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Qinghua Zeng
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Rutao Cui
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiyong Liang
- Department of Systems Biology, UT MD Anderson Cancer Center, TX, USA
| | - Qiang Ding
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama Birmingham, Birmingham, AL, USA
| | - Yu-Lin Li
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China; Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
81
|
Cheng J, Qian D, Ding X, Song T, Cai M, Dan Xie, Wang Y, Zhao J, Liu Z, Wu Z, Pang Q, Zhu L, Wang P, Hao X, Yuan Z. High PGAM5 expression induces chemoresistance by enhancing Bcl-xL-mediated anti-apoptotic signaling and predicts poor prognosis in hepatocellular carcinoma patients. Cell Death Dis 2018; 9:991. [PMID: 30250224 PMCID: PMC6155280 DOI: 10.1038/s41419-018-1017-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is the one of most common and deadly cancers, and is also highly resistant to conventional chemotherapy treatments. Mitochondrial phosphoglycerate mutase/protein phosphatase (PGAM5) regulates mitochondrial homeostasis and cell death, however, little is known about its roles in cancer. The aim of this study was to explore the clinical significance and potential biological functions of PGAM5 in hepatocellular carcinoma. For the first time, our results show that PGAM5 is significantly upregulated in HCC compared with corresponding adjacent noncancerous hepatic tissues and high PGAM5 expression is an independent predictor of reduced survival times in both univariate and multivariate analyses. Additionally, in vivo and in vitro studies showed that depleting PGAM5 expression inhibited tumor growth and increased the 5-fluorouracil sensitivity of HCC cells. Conversely, restoring PGAM5 expression in PGAM5-knockdown cells dramatically enhanced HCC cell resistance to 5-fluorouracil. Importantly, we demonstrated that the mechanism of 5-fluorouracil resistance conferred to HCC cells by PGAM5 was via inhibiting BAX- and cytochrome C-mediated apoptotic signaling by interacting and stabilizing Bcl-xL. Consistently, in the same cohorts of HCC patient tissues, Bcl-xL expression was positively correlated with PGAM5, and together predicted poor prognoses. In Conclusion, Our data highlight the molecular etiology and clinical significance of PGAM5 in HCC. Targeting the novel signaling pathway mediated by PGAM5/Bcl-xL may represent a new therapeutic strategy to improve the survival outcomes of HCC patients.
Collapse
Affiliation(s)
- Jingjing Cheng
- Department of radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Dong Qian
- Department of radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Xiaofeng Ding
- Department of radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Tianqiang Song
- Department of Pathology, State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Muyan Cai
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Dan Xie
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yuwen Wang
- Department of radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jinlin Zhao
- Department of radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhuang Liu
- Department of radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhiqiang Wu
- Department of radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Qingsong Pang
- Department of radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Li Zhu
- Department of radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ping Wang
- Department of radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xishan Hao
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Zhiyong Yuan
- Department of radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
82
|
Sugo M, Kimura H, Arasaki K, Amemiya T, Hirota N, Dohmae N, Imai Y, Inoshita T, Shiba-Fukushima K, Hattori N, Cheng J, Fujimoto T, Wakana Y, Inoue H, Tagaya M. Syntaxin 17 regulates the localization and function of PGAM5 in mitochondrial division and mitophagy. EMBO J 2018; 37:embj.201798899. [PMID: 30237312 DOI: 10.15252/embj.201798899] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 08/03/2018] [Accepted: 08/13/2018] [Indexed: 12/26/2022] Open
Abstract
PGAM5, a mitochondrial protein phosphatase that is genetically and biochemically linked to PINK1, facilitates mitochondrial division by dephosphorylating the mitochondrial fission factor Drp1. At the onset of mitophagy, PGAM5 is cleaved by PARL, a rhomboid protease that degrades PINK1 in healthy cells, and the cleaved form facilitates the engulfment of damaged mitochondria by autophagosomes by dephosphorylating the mitophagy receptor FUNDC1. Here, we show that the function and localization of PGAM5 are regulated by syntaxin 17 (Stx17), a mitochondria-associated membrane/mitochondria protein implicated in mitochondrial dynamics in fed cells and autophagy in starved cells. In healthy cells, loss of Stx17 causes PGAM5 aggregation within mitochondria and thereby failure of the dephosphorylation of Drp1, leading to mitochondrial elongation. In Parkin-mediated mitophagy, Stx17 is prerequisite for PGAM5 to interact with FUNDC1. Our results reveal that the Stx17-PGAM5 axis plays pivotal roles in mitochondrial division and PINK1/Parkin-mediated mitophagy.
Collapse
Affiliation(s)
- Masashi Sugo
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Hana Kimura
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Kohei Arasaki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Toshiki Amemiya
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Naohiko Hirota
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Yuzuru Imai
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tsuyoshi Inoshita
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kahori Shiba-Fukushima
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jinglei Cheng
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyoshi Fujimoto
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichi Wakana
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Hiroki Inoue
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Mitsuo Tagaya
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| |
Collapse
|
83
|
D'Cruz AA, Speir M, Bliss-Moreau M, Dietrich S, Wang S, Chen AA, Gavillet M, Al-Obeidi A, Lawlor KE, Vince JE, Kelliher MA, Hakem R, Pasparakis M, Williams DA, Ericsson M, Croker BA. The pseudokinase MLKL activates PAD4-dependent NET formation in necroptotic neutrophils. Sci Signal 2018; 11:11/546/eaao1716. [PMID: 30181240 DOI: 10.1126/scisignal.aao1716] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neutrophil extracellular trap (NET) formation can generate short-term, functional anucleate cytoplasts and trigger loss of cell viability. We demonstrated that the necroptotic cell death effector mixed lineage kinase domain-like (MLKL) translocated from the cytoplasm to the plasma membrane and stimulated downstream NADPH oxidase-independent ROS production, loss of cytoplasmic granules, breakdown of the nuclear membrane, chromatin decondensation, histone hypercitrullination, and extrusion of bacteriostatic NETs. This process was coordinated by receptor-interacting protein kinase-1 (RIPK1), which activated the caspase-8-dependent apoptotic or RIPK3/MLKL-dependent necroptotic death of mouse and human neutrophils. Genetic deficiency of RIPK3 and MLKL prevented NET formation but did not prevent cell death, which was because of residual caspase-8-dependent activity. Peptidylarginine deiminase 4 (PAD4) was activated downstream of RIPK1/RIPK3/MLKL and was required for maximal histone hypercitrullination and NET extrusion. This work defines a distinct signaling network that activates PAD4-dependent NET release for the control of methicillin-resistant Staphylococcus aureus (MRSA) infection.
Collapse
Affiliation(s)
- Akshay A D'Cruz
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Mary Speir
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Meghan Bliss-Moreau
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Sylvia Dietrich
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Shu Wang
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alyce A Chen
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Mathilde Gavillet
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.,Department of Hematology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Arshed Al-Obeidi
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kate E Lawlor
- Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Parkville 3052, Australia
| | - James E Vince
- Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Parkville 3052, Australia
| | - Michelle A Kelliher
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Razq Hakem
- Ontario Cancer Institute, University Health Network, and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Manolis Pasparakis
- Institute for Genetics, Center for Molecular Medicine, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - David A Williams
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Maria Ericsson
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ben A Croker
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA. .,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
84
|
The Pathogenesis of Necroptosis-Dependent Signaling Pathway in Cerebral Ischemic Disease. Behav Neurol 2018; 2018:6814393. [PMID: 30140326 PMCID: PMC6081565 DOI: 10.1155/2018/6814393] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/13/2018] [Indexed: 11/18/2022] Open
Abstract
Necroptosis is the best-described form of regulated necrosis at present, which is widely recognized as a component of caspase-independent cell death mediated by the concerted action of receptor-interacting protein kinase 1 (RIPK1) and receptor-interacting protein kinase 3 (RIPK3). Mixed-lineage kinase domain-like (MLKL) was phosphorylated by RIPK3 at the threonine 357 and serine 358 residues and then formed tetramers and translocated onto the plasma membrane, which destabilizes plasma membrane integrity leading to cell swelling and membrane rupture. Necroptosis is downstream of the tumor necrosis factor (TNF) receptor family, and also interaction with NOD-like receptor pyrin 3 (NLRP3) induced inflammasome activation. Multiple inhibitors of RIPK1 and MLKL have been developed to block the cascade of signal pathways for procedural necrosis and represent potential leads for drug development. In this review, we highlight recent progress in the study of roles for necroptosis in cerebral ischemic disease and discuss how these modifications delicately control necroptosis.
Collapse
|
85
|
Wang P, Shao BZ, Deng Z, Chen S, Yue Z, Miao CY. Autophagy in ischemic stroke. Prog Neurobiol 2018; 163-164:98-117. [DOI: 10.1016/j.pneurobio.2018.01.001] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 12/04/2017] [Accepted: 01/10/2018] [Indexed: 02/07/2023]
|
86
|
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, et alGalluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Muñoz-Pinedo C, Nagata S, Nuñez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, Vanden Berghe T, Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 2018; 25:486-541. [PMID: 29362479 PMCID: PMC5864239 DOI: 10.1038/s41418-017-0012-4] [Show More Authors] [Citation(s) in RCA: 4372] [Impact Index Per Article: 624.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Paris Descartes/Paris V University, Paris, France.
| | - Ilio Vitale
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Stuart A Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dieter Adam
- Institute of Immunology, Kiel University, Kiel, Germany
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Emad S Alnemri
- Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lucia Altucci
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Ivano Amelio
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - David W Andrews
- Biological Sciences, Sunnybrook Research Institute, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | - Alexey V Antonov
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Nickolai A Barlev
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Francesca Bernassola
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Mathieu J M Bertrand
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Katiuscia Bianchi
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
- Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Albert Ludwigs University, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Center for Biological Investigation (CIB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Catherine Brenner
- INSERM U1180, Châtenay Malabry, France
- University of Paris Sud/Paris Saclay, Orsay, France
| | - Michelangelo Campanella
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
- University College London Consortium for Mitochondrial Research, London, UK
| | - Eleonora Candi
- Biochemistry Laboratory, Dermopatic Institute of Immaculate (IDI) IRCCS, Rome, Italy
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | | | - Francesco Cecconi
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Francis K-M Chan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Navdeep S Chandel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John A Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Aaron Ciechanover
- Technion Integrated Cancer Center (TICC), The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gerald M Cohen
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Juan R Cubillos-Ruiz
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Vincenzo D'Angiolella
- Cancer Research UK and Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vincenzo De Laurenzi
- Department of Medical, Oral and Biotechnological Sciences, CeSI-MetUniversity of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Ruggero De Maria
- Institute of General Pathology, Catholic University "Sacro Cuore", Rome, Italy
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mohanish Deshmukh
- Department of Cell Biology and Physiology, Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Nicola Di Daniele
- Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Vishva M Dixit
- Department of Physiological Chemistry, Genentech, South San Francisco, CA, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Colin S Duckett
- Baylor Scott & White Research Institute, Baylor College of Medicine, Dallas, TX, USA
| | - Brian D Dynlacht
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - John W Elrod
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University School of Medicine, Philadelphia, PA, USA
| | - Gian Maria Fimia
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana J García-Sáez
- Interfaculty Institute of Biochemistry, Tübingen University, Tübingen, Germany
| | - Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Carmen Garrido
- INSERM U1231 "Lipides Nutrition Cancer", Dijon, France
- Faculty of Medicine, University of Burgundy France Comté, Dijon, France
- Cancer Centre Georges François Leclerc, Dijon, France
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Pierre Golstein
- Immunology Center of Marseille-Luminy, Aix Marseille University, Marseille, France
| | - Eyal Gottlieb
- Technion Integrated Cancer Center (TICC), The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Douglas R Green
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lloyd A Greene
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Hinrich Gronemeyer
- Team labeled "Ligue Contre le Cancer", Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- CNRS UMR 7104, Illkirch, France
- INSERM U964, Illkirch, France
- University of Strasbourg, Illkirch, France
| | - Atan Gross
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Gyorgy Hajnoczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - J Marie Hardwick
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Isaac S Harris
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Cellular and Molecular Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Marja Jäättelä
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Bertrand Joseph
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Philipp J Jost
- III Medical Department for Hematology and Oncology, Technical University Munich, Munich, Germany
| | - Philippe P Juin
- Team 8 "Stress adaptation and tumor escape", CRCINA-INSERM U1232, Nantes, France
- University of Nantes, Nantes, France
- University of Angers, Angers, France
- Institute of Cancer Research in Western France, Saint-Herblain, France
| | - William J Kaiser
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Oliver Kepp
- Paris Descartes/Paris V University, Paris, France
- Faculty of Medicine, Paris Sud/Paris XI University, Kremlin-Bicêtre, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Campus, Villejuif, France
- Team 11 labeled "Ligue Nationale contre le Cancer", Cordeliers Research Center, Paris, France
- INSERM U1138, Paris, France
- Pierre et Marie Curie/Paris VI University, Paris, France
| | - Adi Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Richard N Kitsis
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daniel J Klionsky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Richard A Knight
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Sam W Lee
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - John J Lemasters
- Center for Cell Death, Injury and Regeneration, Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
- Center for Cell Death, Injury and Regeneration, Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Beth Levine
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andreas Linkermann
- Division of Nephrology, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Stuart A Lipton
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- Neuroscience Translational Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Richard A Lockshin
- Department of Biology, St. John's University, Queens, NY, USA
- Queens College of the City University of New York, Queens, NY, USA
| | - Carlos López-Otín
- Departament of Biochemistry and Molecular Biology, Faculty of Medicine, University Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Scott W Lowe
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tom Luedde
- Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, University Hospital RWTH Aachen, Aachen, Germany
| | - Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Humanitas Flow Cytometry Core, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Marion MacFarlane
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Frank Madeo
- Department Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Michal Malewicz
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Walter Malorni
- National Centre for Gender Medicine, Italian National Institute of Health (ISS), Rome, Italy
| | - Gwenola Manic
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Seamus J Martin
- Departments of Genetics, Trinity College, University of Dublin, Dublin 2, Ireland
| | - Jean-Claude Martinou
- Department of Cell Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Cancer Genomics Center, Amsterdam, The Netherlands
| | - Patrick Mehlen
- Apoptosis, Cancer and Development laboratory, CRCL, Lyon, France
- Team labeled "La Ligue contre le Cancer", Lyon, France
- LabEx DEVweCAN, Lyon, France
- INSERM U1052, Lyon, France
- CNRS UMR5286, Lyon, France
- Department of Translational Research and Innovation, Léon Bérard Cancer Center, Lyon, France
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, London, UK
| | - Sonia Melino
- Department of Chemical Sciences and Technologies, University of Rome, Tor Vergata, Rome, Italy
| | - Edward A Miao
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffery D Molkentin
- Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ute M Moll
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Cristina Muñoz-Pinedo
- Cell Death Regulation Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Shigekazu Nagata
- Laboratory of Biochemistry and Immunology, World Premier International (WPI) Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Gabriel Nuñez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA
- Center for Innate Immunity and Immune Disease, Seattle, WA, USA
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute, Rehovot, Israel
| | - Michael Overholtzer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michele Pagano
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Manolis Pasparakis
- Institute for Genetics, Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Campus Vienna BioCentre, Vienna, Austria
| | - David M Pereira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- National University Cancer Institute, National University Health System (NUHS), Singapore, Singapore
| | - Marcus E Peter
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mauro Piacentini
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
- LTTA center, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Health Science Foundation, Cotignola, Italy
| | - Jochen H M Prehn
- Department of Physiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hamsa Puthalakath
- Department of Biochemistry, La Trobe University, Victoria, Australia
| | - Gabriel A Rabinovich
- Laboratory of Immunopathology, Institute of Biology and Experimental Medicine (IBYME), National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
- Department of Biological Chemistry, Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, Stuttgart, Germany
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Cecilia M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Emre Sayan
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Luca Scorrano
- Department of Biology, University of Padua, Padua, Italy
- Venetian Institute of Molecular Medicine, Padua, Italy
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, China
| | - Yufang Shi
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences, Shanghai, China
- Jiangsu Key Laboratory of Stem Cells and Medicinal Biomaterials, Institutes for Translational Medicine, Soochow University, Suzhou, China
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - John Silke
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
- Division of Inflammation, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Antonella Sistigu
- Institute of General Pathology, Catholic University "Sacro Cuore", Rome, Italy
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Gyorgy Szabadkai
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Department of Cell and Developmental Biology, University College London Consortium for Mitochondrial Research, London, UK
- Francis Crick Institute, London, UK
| | | | - Daolin Tang
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Center for DAMP Biology, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory for Protein Modification and Degradation of Guangdong Province, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas Medical School, University of Crete, Heraklion, Greece
| | - Andrew Thorburn
- Department of Pharmacology, University of Colorado, Aurora, CO, USA
| | | | - Boris Turk
- Department Biochemistry and Molecular Biology, "Jozef Stefan" Institute, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Tom Vanden Berghe
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Andreas Villunger
- Division of Developmental Immunology, Innsbruck Medical University, Innsbruck, Austria
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Erwin F Wagner
- Genes, Development and Disease Group, Cancer Cell Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London, UK
| | - David Wallach
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ying Wang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Will Wood
- School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, Bristol, UK
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zahra Zakeri
- Department of Biology, Queens College of the City University of New York, Queens, NY, USA
| | - Boris Zhivotovsky
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Laurence Zitvogel
- Faculty of Medicine, Paris Sud/Paris XI University, Kremlin-Bicêtre, France
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1015, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Gerry Melino
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Guido Kroemer
- Paris Descartes/Paris V University, Paris, France.
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Campus, Villejuif, France.
- Team 11 labeled "Ligue Nationale contre le Cancer", Cordeliers Research Center, Paris, France.
- INSERM U1138, Paris, France.
- Pierre et Marie Curie/Paris VI University, Paris, France.
- Biology Pole, European Hospital George Pompidou, AP-HP, Paris, France.
| |
Collapse
|
87
|
Anzell AR, Maizy R, Przyklenk K, Sanderson TH. Mitochondrial Quality Control and Disease: Insights into Ischemia-Reperfusion Injury. Mol Neurobiol 2018; 55:2547-2564. [PMID: 28401475 PMCID: PMC5636654 DOI: 10.1007/s12035-017-0503-9] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/20/2017] [Indexed: 12/28/2022]
Abstract
Mitochondria are key regulators of cell fate during disease. They control cell survival via the production of ATP that fuels cellular processes and, conversely, cell death via the induction of apoptosis through release of pro-apoptotic factors such as cytochrome C. Therefore, it is essential to have stringent quality control mechanisms to ensure a healthy mitochondrial network. Quality control mechanisms are largely regulated by mitochondrial dynamics and mitophagy. The processes of mitochondrial fission (division) and fusion allow for damaged mitochondria to be segregated and facilitate the equilibration of mitochondrial components such as DNA, proteins, and metabolites. The process of mitophagy are responsible for the degradation and recycling of damaged mitochondria. These mitochondrial quality control mechanisms have been well studied in chronic and acute pathologies such as Parkinson's disease, Alzheimer's disease, stroke, and acute myocardial infarction, but less is known about how these two processes interact and contribute to specific pathophysiologic states. To date, evidence for the role of mitochondrial quality control in acute and chronic disease is divergent and suggests that mitochondrial quality control processes can serve both survival and death functions depending on the disease state. This review aims to provide a synopsis of the molecular mechanisms involved in mitochondrial quality control, to summarize our current understanding of the complex role that mitochondrial quality control plays in the progression of acute vs chronic diseases and, finally, to speculate on the possibility that targeted manipulation of mitochondrial quality control mechanisms may be exploited for the rationale design of novel therapeutic interventions.
Collapse
Affiliation(s)
- Anthony R Anzell
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Rita Maizy
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Karin Przyklenk
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Thomas H Sanderson
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
88
|
RIPK1-mediated induction of mitophagy compromises the viability of extracellular-matrix-detached cells. Nat Cell Biol 2018; 20:272-284. [PMID: 29459781 DOI: 10.1038/s41556-018-0034-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 01/03/2018] [Indexed: 01/05/2023]
Abstract
For cancer cells to survive during extracellular matrix (ECM) detachment, they must inhibit anoikis and rectify metabolic deficiencies that cause non-apoptotic cell death. Previous studies in ECM-detached cells have linked non-apoptotic cell death to reactive oxygen species (ROS) generation, although the mechanistic underpinnings of this link remain poorly defined. Here, we uncover a role for receptor-interacting protein kinase 1 (RIPK1) in the modulation of ROS and cell viability during ECM detachment. We find that RIPK1 activation during ECM detachment results in mitophagy induction through a mechanism dependent on the mitochondrial phosphatase PGAM5. As a consequence of mitophagy, ECM-detached cells experience diminished NADPH production in the mitochondria, and the subsequent elevation in ROS levels leads to non-apoptotic death. Furthermore, we find that antagonizing RIPK1/PGAM5 enhances tumour formation in vivo. Thus, RIPK1-mediated induction of mitophagy may be an efficacious target for therapeutics aimed at eliminating ECM-detached cancer cells.
Collapse
|
89
|
Şekerdağ E, Solaroğlu I, Gürsoy-Özdemir Y. Cell Death Mechanisms in Stroke and Novel Molecular and Cellular Treatment Options. Curr Neuropharmacol 2018; 16:1396-1415. [PMID: 29512465 PMCID: PMC6251049 DOI: 10.2174/1570159x16666180302115544] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/18/2017] [Accepted: 03/01/2018] [Indexed: 02/06/2023] Open
Abstract
As a result of ischemia or hemorrhage, blood supply to neurons is disrupted which subsequently promotes a cascade of pathophysiological responses resulting in cell loss. Many mechanisms are involved solely or in combination in this disorder including excitotoxicity, mitochondrial death pathways, and the release of free radicals, protein misfolding, apoptosis, necrosis, autophagy and inflammation. Besides neuronal cell loss, damage to and loss of astrocytes as well as injury to white matter contributes also to cerebral injury. The core problem in stroke is the loss of neuronal cells which makes recovery difficult or even not possible in the late states. Acute treatment options that can be applied for stroke are mainly targeting re-establishment of blood flow and hence, their use is limited due to the effective time window of thrombolytic agents. However, if the acute time window is exceeded, neuronal loss starts due to the activation of cell death pathways. This review will explore the most updated cellular death mechanisms leading to neuronal loss in stroke. Ischemic and hemorrhagic stroke as well as subarachnoid hemorrhage will be debated in the light of cell death mechanisms and possible novel molecular and cellular treatment options will be discussed.
Collapse
Affiliation(s)
- Emine Şekerdağ
- Address correspondence to this author at the Neuroscience Research Lab, Research Center for Translational Medicine, Koç University, Istanbul, Turkey; Tel: +90 850 250 8250; E-mail:
| | | | | |
Collapse
|
90
|
Matsuzawa-Ishimoto Y, Shono Y, Gomez LE, Hubbard-Lucey VM, Cammer M, Neil J, Dewan MZ, Lieberman SR, Lazrak A, Marinis JM, Beal A, Harris PA, Bertin J, Liu C, Ding Y, van den Brink MRM, Cadwell K. Autophagy protein ATG16L1 prevents necroptosis in the intestinal epithelium. J Exp Med 2017; 214:3687-3705. [PMID: 29089374 PMCID: PMC5716041 DOI: 10.1084/jem.20170558] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/20/2017] [Accepted: 09/01/2017] [Indexed: 12/22/2022] Open
Abstract
Matsuzawa-Ishimoto et al. show that autophagy gene ATG16L1, which is associated with inflammatory diseases of the gastrointestinal tract, is essential for preventing necroptotic cell death and loss of Paneth cells in the intestinal epithelium. A variant of the autophagy gene ATG16L1 is associated with Crohn’s disease, an inflammatory bowel disease (IBD), and poor survival in allogeneic hematopoietic stem cell transplant recipients. We demonstrate that ATG16L1 in the intestinal epithelium is essential for preventing loss of Paneth cells and exaggerated cell death in animal models of virally triggered IBD and allogeneic hematopoietic stem cell transplantation. Intestinal organoids lacking ATG16L1 reproduced this loss in Paneth cells and displayed TNFα-mediated necroptosis, a form of programmed necrosis. This cytoprotective function of ATG16L1 was associated with the role of autophagy in promoting mitochondrial homeostasis. Finally, therapeutic blockade of necroptosis through TNFα or RIPK1 inhibition ameliorated disease in the virally triggered IBD model. These findings indicate that, in contrast to tumor cells in which autophagy promotes caspase-independent cell death, ATG16L1 maintains the intestinal barrier by inhibiting necroptosis in the epithelium.
Collapse
Affiliation(s)
- Yu Matsuzawa-Ishimoto
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY.,Department of Microbiology, New York University School of Medicine, New York, NY
| | - Yusuke Shono
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Luis E Gomez
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY
| | - Vanessa M Hubbard-Lucey
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY
| | - Michael Cammer
- Microscopy Core, Office of Collaborative Science, New York University School of Medicine, New York, NY
| | - Jessica Neil
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY.,Department of Microbiology, New York University School of Medicine, New York, NY
| | - M Zahidunnabi Dewan
- Histopathology Core, Office of Collaborative Science, New York University School of Medicine, New York, NY
| | - Sophia R Lieberman
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Amina Lazrak
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jill M Marinis
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA
| | - Allison Beal
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA
| | - Philip A Harris
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA
| | - Chen Liu
- Departments of Pathology and Laboratory Medicine, New Jersey Medical School and Robert Wood Johnson Medical School, Rutgers University, Newark, NJ
| | - Yi Ding
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | - Marcel R M van den Brink
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY .,Adult BMT Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.,Weil Medical College of Cornell University, New York, NY
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY .,Department of Microbiology, New York University School of Medicine, New York, NY
| |
Collapse
|
91
|
Abstract
Autophagy is an evolutionarily conserved mechanism by which cytoplasmic elements are degraded intracellularly. Autophagy has also emerged as a major regulator of cardiac homeostasis and function. Autophagy preserves cardiac structure and function under baseline conditions and is activated during stress, limiting damage under most conditions. It reduces injury and preserves cardiac function during ischemia. It also reduces chronic ischemic remodeling and mediates the cardiac adaptation to pressure overload by restricting misfolded protein accumulation, mitochondrial dysfunction, and oxidative stress. Impairment of autophagy is involved in the development of diabetes and aging-induced cardiac abnormalities. Autophagy defects contribute to the development of cardiac proteinopathy and doxorubicin-induced cardiomyopathy. However, massive activation of autophagy may be detrimental for the heart in certain stress conditions, such as reperfusion injury. In this review, we discuss recent evidence supporting the important role of autophagy and mitophagy in the regulation of cardiac homeostasis and adaptation to stress.
Collapse
Affiliation(s)
- Sebastiano Sciarretta
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Yasuhiro Maejima
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Tokyo 113-8510, Japan
| | - Daniela Zablocki
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA;
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA;
| |
Collapse
|
92
|
Nah J, Miyamoto S, Sadoshima J. Mitophagy as a Protective Mechanism against Myocardial Stress. Compr Physiol 2017; 7:1407-1424. [PMID: 28915329 DOI: 10.1002/cphy.c170005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondria are dynamic organelles that can undergo fusion, fission, biogenesis, and autophagic elimination to maintain mitochondrial quality control. Since the heart is in constant need of high amounts of energy, mitochondria, as a central energy supply source, play a crucial role in maintaining optimal cardiac performance. Therefore, it is reasonable to assume that mitochondrial dysfunction is associated with the pathophysiology of heart diseases. In non-dividing, post-mitotic cells such as cardiomyocytes, elimination of dysfunctional organelles is essential to maintaining cellular function because non-dividing cells cannot dilute dysfunctional organelles through cell division. In this review, we discuss the recent findings regarding the physiological role of mitophagy in the heart and cardiomyocytes. Moreover, we discuss the functional role of mitophagy in the progression of cardiovascular diseases, including myocardial ischemic injury, diabetic cardiomyopathy, cardiac hypertrophy, and heart failure. © 2017 American Physiological Society. Compr Physiol 7:1407-1424, 2017.
Collapse
Affiliation(s)
- Jihoon Nah
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Shigeki Miyamoto
- University of California San Diego, Department of Pharmacology, La Jolla, California, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
93
|
Long Z, Duan G, Li H, Yi T, Wu X, Chen F, Wu Z, Gao Y. Ubiquinol-cytochrome c reductase core protein 1 may be involved in delayed cardioprotection from preconditioning induced by diazoxide. PLoS One 2017; 12:e0181903. [PMID: 28750029 PMCID: PMC5531499 DOI: 10.1371/journal.pone.0181903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 07/10/2017] [Indexed: 12/26/2022] Open
Abstract
This study aimed to use long-term diazoxide treatment to establish a loss-of-cardioprotection model and then perform proteomics analysis to explore which proteins of mitochondrial inner membrane (MIM) are potentially involved in delayed cardioprotection. Rats received 1 to 8 weeks of diazoxide treatments (20 mg•kg-1•d-1) to establish a loss-of-cardioprotection model in different groups. Detection of serum cTnI levels and cell apoptosis assays in heart tissue were performed. Then, rats MIM after 0, 4 and 6 weeks of diazoxide treatment was isolated and proteomics analysis was performed. An invitro model of H9C2 cells was performed to explore the effects of targeted protein on delayed cardioprotection. The effect of delayed cardioprotection by diazoxide preconditioning disappeared when diazoxide treatments were given for six weeks or longer. Ubiquinol-cytochrome c reductase core protein 1 (UQCRC1) was identified in the proteomics analysis. UQCRC1 expression was upregulated by diazoxide treatment in H9C2 cells, and UQCRC1 down-regulation could increase the lactate dehydrogenase release and apoptosis rate after injury induced by oxygen glucose deprivation. These results showed that UQCRC1 might contribute to the loss-of-cardioprotection model induced by long-term diazoxide treatment and play a role in delayed cardioprotection.
Collapse
Affiliation(s)
- Zonghong Long
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Guangyou Duan
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Hong Li
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
- * E-mail:
| | - Tingting Yi
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoxiao Wu
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Feng Chen
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zhuoxi Wu
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yuqi Gao
- Key Laboratory of High Altitude Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
94
|
Suliman HB, Kraft B, Bartz R, Chen L, Welty-Wolf KE, Piantadosi CA. Mitochondrial quality control in alveolar epithelial cells damaged by S. aureus pneumonia in mice. Am J Physiol Lung Cell Mol Physiol 2017; 313:L699-L709. [PMID: 28663335 DOI: 10.1152/ajplung.00197.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/23/2017] [Accepted: 06/23/2017] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial damage is often overlooked in acute lung injury (ALI), yet most of the lung's physiological processes, such as airway tone, mucociliary clearance, ventilation-perfusion (Va/Q) matching, and immune surveillance require aerobic energy provision. Because the cell's mitochondrial quality control (QC) process regulates the elimination and replacement of damaged mitochondria to maintain cell survival, we serially evaluated mitochondrial biogenesis and mitophagy in the alveolar regions of mice in a validated Staphylococcus aureus pneumonia model. We report that apart from cell lysis by direct contact with microbes, modest epithelial cell death was detected despite significant mitochondrial damage. Cell death by TdT-mediated dUTP nick-end labeling staining occurred on days 1 and 2 postinoculation: apoptosis shown by caspase-3 cleavage was present on days 1 and 2, while necroptosis shown by increased levels of phospho- mixed lineage kinase domain-like protein (MLKL) and receptor-interacting serine/threonine-protein kinase 1 (RIPK1) was present on day 1 Cell death in alveolar type I (AT1) cells assessed by bronchoalveolar lavage fluid receptor for advanced glycation end points (RAGE) levels was high, yet AT2 cell death was limited while both mitochondrial biogenesis and mitophagy were induced. These mitochondrial QC mechanisms were evaluated mainly in AT2 cells by localizing increases in citrate synthase content, increases in nuclear mitochondrial biogenesis regulators nuclear respiratory factor-1 (NRF-1) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), and increases in light chain 3B protein (LC3-I)/LC3II ratios. Concomitant changes in p62, Pink 1, and Parkin protein levels indicated activation of mitophagy. By confocal microscopy, mitochondrial biogenesis and mitophagy were often observed on day 1 within the same AT2 cells. These findings imply that mitochondrial QC activation in pneumonia-damaged AT2 cells promotes cell survival in support of alveolar function.
Collapse
Affiliation(s)
- Hagir B Suliman
- Departments of Medicine, Pathology, and Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - Bryan Kraft
- Departments of Medicine, Pathology, and Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - Raquel Bartz
- Departments of Medicine, Pathology, and Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - Lingye Chen
- Departments of Medicine, Pathology, and Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - Karen E Welty-Wolf
- Departments of Medicine, Pathology, and Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - Claude A Piantadosi
- Departments of Medicine, Pathology, and Anesthesiology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
95
|
Abstract
PGAM5 is a mitochondrial membrane protein that functions as an atypical Ser/Thr phosphatase and is a regulator of oxidative stress response, necroptosis, and autophagy. Here we present several crystal structures of PGAM5 including the activating N-terminal regulatory sequences, providing a model for structural plasticity, dimerization of the catalytic domain, and the assembly into an enzymatically active dodecameric form. Oligomeric states observed in structures were supported by hydrogen exchange mass spectrometry, size-exclusion chromatography, and analytical ultracentrifugation experiments in solution. We report that the catalytically important N-terminal WDPNWD motif acts as a structural integrator assembling PGAM5 into a dodecamer, allosterically activating the phosphatase by promoting an ordering of the catalytic loop. Additionally the observed active site plasticity enabled visualization of essential conformational rearrangements of catalytic elements. The comprehensive biophysical characterization offers detailed structural models of this key mitochondrial phosphatase that has been associated with the development of diverse diseases. PGAM5 catalytic domain shares phosphoglycerate mutase fold and forms stable dimer WDPNWD motif allosterically activates the fully active dodecameric form Crystal structures reveal conformational plasticity of the PGAM5 active site
Collapse
|
96
|
Li MX, Mu DZ. [Mitophagy and nervous system disease]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:724-729. [PMID: 28606244 PMCID: PMC7390300 DOI: 10.7499/j.issn.1008-8830.2017.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/15/2017] [Indexed: 06/07/2023]
Abstract
Mitophagy is a process during which the cell selectively removes the mitochondria via the mechanism of autophagy. It is crucial to the functional completeness of the whole mitochondrial network and determines cell survival and death. On the one hand, the damaged mitochondria releases pro-apoptotic factors which induce cell apoptosis; on the other hand, the damaged mitochondria eliminates itself via autophagy, which helps to maintain cell viability. Mitophagy is of vital importance for the development and function of the nervous system. Neural cells rely on autophagy to control protein quality and eliminate the damaged mitochondria, and under normal circumstances, mitophagy can protect the neural cells. Mutations in genes related to mitophagy may cause the development and progression of neurodegenerative diseases. An understanding of the role of mitophagy in nervous system diseases may provide new theoretical bases for clinical treatment. This article reviews the research advances in the relationship between mitophagy and different types of nervous system diseases.
Collapse
Affiliation(s)
- Ming-Xi Li
- Department of Pediatrics, West China Second Hospital, Sichuan University/Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education/Key Laboratory of Development and Related Diseases of Women and Children, Chengdu 610041, China.
| | | |
Collapse
|
97
|
Abstract
Autophagy contributes to the maintenance of intracellular homeostasis in most cells of cardiovascular origin, including cardiomyocytes, endothelial cells, and arterial smooth muscle cells. Mitophagy is an autophagic response that specifically targets damaged, and hence potentially cytotoxic, mitochondria. As these organelles occupy a critical position in the bioenergetics of the cardiovascular system, mitophagy is particularly important for cardiovascular homeostasis in health and disease. Consistent with this notion, genetic defects in autophagy or mitophagy have been shown to exacerbate the propensity of laboratory animals to spontaneously develop cardiodegenerative disorders. Moreover, pharmacological or genetic maneuvers that alter the autophagic or mitophagic flux have been shown to influence disease outcome in rodent models of several cardiovascular conditions, such as myocardial infarction, various types of cardiomyopathy, and atherosclerosis. In this review, we discuss the intimate connection between autophagy, mitophagy, and cardiovascular disorders.
Collapse
|
98
|
Rauschenberger V, Bernkopf DB, Krenn S, Jalal K, Heller J, Behrens J, Gentzel M, Schambony A. The phosphatase Pgam5 antagonizes Wnt/β-Catenin signaling in embryonic anterior-posterior axis patterning. Development 2017; 144:2234-2247. [PMID: 28506997 DOI: 10.1242/dev.144477] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 05/03/2017] [Indexed: 12/13/2022]
Abstract
The scaffold protein Dishevelled is a central intracellular component of Wnt signaling pathways. Various kinases have been described that regulate and modulate Wnt signaling through phosphorylation of Dishevelled. However, besides general protein phosphatases 1 and 2 (PP1 and PP2), no specific protein phosphatases have been identified. Here, we report on the identification and functional characterization of the protein phosphatase Pgam5 in vitro and in vivo in Xenopus Pgam5 is a novel antagonist of Wnt/β-Catenin signaling in human cells and Xenopus embryogenesis. In early development, Pgam5 is essential for head formation, and for establishing and maintaining the Wnt/β-Catenin signaling gradient that patterns the anterior-posterior body axis. Inhibition of Wnt/β-Catenin signaling and developmental function depend on Pgam5 phosphatase activity. We show that Pgam5 interacts with Dishevelled2 and that Dishevelled2 is a substrate of Pgam5. Pgam5 mediates a marked decrease in Dishevelled2 phosphorylation in the cytoplasm and in the nucleus, as well as decreased interaction between Dishevelled2, Tcf1 and β-Catenin, indicating that Pgam5 regulates Dishevelled function upstream and downstream of β-Catenin stabilization.
Collapse
Affiliation(s)
- Verena Rauschenberger
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Dominic B Bernkopf
- Experimental Medicine II, Nikolaus-Fiebiger-Centre, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Sabrina Krenn
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Kowcee Jalal
- Experimental Medicine II, Nikolaus-Fiebiger-Centre, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Jens Heller
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Jürgen Behrens
- Experimental Medicine II, Nikolaus-Fiebiger-Centre, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Marc Gentzel
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.,Center for Molecular and Cellular Bioengineering, Molecular Analysis - Mass Spectrometry, TU Dresden, 01307 Dresden, Germany
| | - Alexandra Schambony
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
99
|
Shao L, Yu S, Ji W, Li H, Gao Y. The Contribution of Necroptosis in Neurodegenerative Diseases. Neurochem Res 2017; 42:2117-2126. [PMID: 28382594 DOI: 10.1007/s11064-017-2249-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 03/06/2017] [Accepted: 03/25/2017] [Indexed: 12/29/2022]
Abstract
Over the past decades, cell apoptosis has been significantly reputed as an accidental, redundant and alternative manner of cell demise which partakes in homeostasis in the development of extensive diseases. Nevertheless, necroptosis, another novel manner of cell death through a caspase-independent way, especially in neurodegenerative diseases remains ambiguous. The cognition of this form of cell demise is helpful to understand other forms of morphological resemblance of necrosis. Additionally, the concrete signal mechanism in the regulation of necroptosis is beneficial to the diagnosis and treatment of neurodegenerative diseases. Recent studies have demonstrated that necroptotic inhibitor, 24(S)-Hydroxycholesterol and partial specific histone deacetylase inhibitors could alleviate pathogenetic conditions of neurodegenerative diseases via necroptosis pathway. In this review, we summarize recent researches about mechanisms and modulation of necroptotic signaling pathways and probe into the role of programmed necroptotic cell demise in neurodegenerative diseases such as Parkinson's disease, Multiple sclerosis, Amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Lifei Shao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Medical College, Nantong University, Nantong, 226001, Jiangsu, China
| | - Shuping Yu
- Department of Blood Transfusion, The Forth Affiliated Hospital of Nantong University, Yancheng, 224006, Jiangsu, China.,Center of Laboratory Medicine, Affiliate Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Wei Ji
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Medical College, Nantong University, Nantong, 226001, Jiangsu, China
| | - Haizhen Li
- Medical College, Nantong University, Nantong, 226001, Jiangsu, China.,Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Yilu Gao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
100
|
Ramachandran A, Jaeschke H. PGAM5: a new player in immune-mediated liver injury. Gut 2017; 66:567-568. [PMID: 27797941 PMCID: PMC5479066 DOI: 10.1136/gutjnl-2016-312775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 09/26/2016] [Indexed: 12/08/2022]
Affiliation(s)
- Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|