51
|
Hazini A, Fisher K, Seymour L. Deregulation of HLA-I in cancer and its central importance for immunotherapy. J Immunother Cancer 2021; 9:e002899. [PMID: 34353849 PMCID: PMC8344275 DOI: 10.1136/jitc-2021-002899] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 12/28/2022] Open
Abstract
It is now well accepted that many tumors undergo a process of clonal selection which means that tumor antigens arising at various stages of tumor progression are likely to be represented in just a subset of tumor cells. This process is thought to be driven by constant immunosurveillance which applies selective pressure by eliminating tumor cells expressing antigens that are recognized by T cells. It is becoming increasingly clear that the same selective pressure may also select for tumor cells that evade immune detection by acquiring deficiencies in their human leucocyte antigen (HLA) presentation pathways, allowing important tumor antigens to persist within cells undetected by the immune system. Deficiencies in antigen presentation pathway can arise by a variety of mechanisms, including genetic and epigenetic changes, and functional antigen presentation is a hard phenomenon to assess using our standard analytical techniques. Nevertheless, it is likely to have profound clinical significance and could well define whether an individual patient will respond to a particular type of therapy or not. In this review we consider the mechanisms by which HLA function may be lost in clinical disease, we assess the implications for current immunotherapy approaches using checkpoint inhibitors and examine the prognostic impact of HLA loss demonstrated in clinical trials so far. Finally, we propose strategies that might be explored for possible patient stratification.
Collapse
Affiliation(s)
- Ahmet Hazini
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Kerry Fisher
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Len Seymour
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| |
Collapse
|
52
|
Ray SK, Mukherjee S. Imitating Hypoxia and Tumor Microenvironment with Immune Evasion by Employing Three Dimensional in vitro Cellular Models: Impressive Tool in Drug Discovery. Recent Pat Anticancer Drug Discov 2021; 17:80-91. [PMID: 34323197 DOI: 10.2174/1574892816666210728115605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 11/22/2022]
Abstract
The heterogeneous tumor microenvironment is exceptionally perplexing and not wholly comprehended. Different multifaceted alignments lead to the generation of oxygen destitute situations within the tumor niche that modulate numerous intrinsic tumor microenvironments. Disentangling these communications is vital for scheming practical therapeutic approaches that can successfully decrease tumor allied chemotherapy resistance by utilizing the innate capability of the immune system. Several research groups have concerned with a protruding role for oxygen metabolism along with hypoxia in the immunity of healthy tissue. Hypoxia in addition to hypoxia-inducible factors (HIFs) in the tumor microenvironment plays an important part in tumor progression and endurance. Although numerous hypoxia-focused therapies have shown promising outcomes both in vitro and in vivo these outcomes have not effectively translated into clinical preliminaries. Distinctive cell culture techniques have utilized as an in vitro model for tumor niche along with tumor microenvironment and proficient in more precisely recreating tumor genomic profiles as well as envisaging therapeutic response. To study the dynamics of tumor immune evasion, three-dimensional (3D) cell cultures are more physiologically important to the hypoxic tumor microenvironment. Recent research has revealed new information and insights into our fundamental understanding of immune systems, as well as novel results that have been established as potential therapeutic targets. There are a lot of patented 3D cell culture techniques which will be highlighted in this review. At present notable 3D cell culture procedures in the hypoxic tumor microenvironment, discourse open doors to accommodate both drug repurposing, advancement, and divulgence of new medications and will deliberate the 3D cell culture methods into standard prescription disclosure especially in the field of cancer biology which will be discussing here.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Department of Applied Sciences. Indira Gandhi Technological and Medical Sciences University, Ziro, Arunachal Pradesh-791120, India
| | - Sukhes Mukherjee
- Department of Biochemistry. All India Institute of Medical Sciences. Bhopal, Madhya Pradesh-462020, India
| |
Collapse
|
53
|
Jiang M, Qin B, Luo L, Li X, Shi Y, Zhang J, Luo Z, Zhu C, Guan G, Du Y, You J. A clinically acceptable strategy for sensitizing anti-PD-1 treatment by hypoxia relief. J Control Release 2021; 335:408-419. [PMID: 34089792 DOI: 10.1016/j.jconrel.2021.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 01/02/2023]
Abstract
The hypoxic tumor microenvironment (TME) hinders the effectiveness of immunotherapy. Alleviating tumor hypoxia to improve the efficacy of immune checkpoint inhibitors (ICIs) represented by programmed cell death protein 1 (PD-1) antibody has become a meaningful strategy. In this study, we adopted three methods to alleviate hypoxia, including direct oxygen delivery using two different carriers and an indirect way involving HIF-1α inhibition. Both in vivo and in vitro experiments showed that liposomes modified with perfluorocarbon or hemoglobin (PFC@lipo or Hb@lipo) were able to efficiently load and release oxygen, relieving tumor hypoxia. However, the gas release behavior of PFC@lipo was uncontrollable, which might induce acute hyperoxia side effects during intravenous injection and reduce its biosafety. In contrast, whether administered locally or systemically, Hb@lipo revealed high animal tolerance, and was much safer than commercial HIF-1α inhibitor (PX-478), displaying prospects as a promising oxygen carrier for clinical practice. Pharmacodynamic experiments suggested that Hb@lipo helped PD-1 antibody break the therapeutic bottleneck and significantly inhibited the progression of 4 T1 breast cancer. But in CT26 colon cancer, the combination therapy failed to suppress tumor growth. After in-depth analysis and comparison, we found that the ratio of M1/M2 tumor associated macrophages (TAMs) between these two tumor models were dramatically different. And the lower M1/M2 ratio in CT26 tumors limited the anti-tumor effect of combination therapy. In this study, three methods for alleviating tumor hypoxia were compared from the perspectives of biosafety, efficacy and clinical applicability. Among them, Hb@lipo stood out, and its combined use with PD-1 antibody exhibit a distinct synergistic suppression effect on tumors with more M1 macrophages presented in the microenvironment. Our work provided a good reference for improving the efficacy of PD-1 antibody by alleviating tumor hypoxia.
Collapse
Affiliation(s)
- Mengshi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Bing Qin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Xiang Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Chunqi Zhu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Guannan Guan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Yongzhong Du
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
54
|
Cruz-Bermúdez A, Laza-Briviesca R, Casarrubios M, Sierra-Rodero B, Provencio M. The Role of Metabolism in Tumor Immune Evasion: Novel Approaches to Improve Immunotherapy. Biomedicines 2021; 9:361. [PMID: 33807260 PMCID: PMC8067102 DOI: 10.3390/biomedicines9040361] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 12/16/2022] Open
Abstract
The tumor microenvironment exhibits altered metabolic properties as a consequence of the needs of tumor cells, the natural selection of the most adapted clones, and the selfish relationship with other cell types. Beyond its role in supporting uncontrolled tumor growth, through energy and building materials obtention, metabolism is a key element controlling tumor immune evasion. Immunotherapy has revolutionized the treatment of cancer, being the first line of treatment for multiple types of malignancies. However, many patients either do not benefit from immunotherapy or eventually relapse. In this review we overview the immunoediting process with a focus on the metabolism-related elements that are responsible for increased immune evasion, either through reduced immunogenicity or increased resistance of tumor cells to the apoptotic action of immune cells. Finally, we describe the main molecules to modulate these immune evasion processes through the control of the metabolic microenvironment as well as their clinical developmental status.
Collapse
Affiliation(s)
- Alberto Cruz-Bermúdez
- Medical Oncology Department, Health Research Institute Puerta de Hierro–Segovia de Arana (IDIPHISA) & Puerta de Hierro Hospital, Manuel de Falla Street #1, 28222 Madrid, Spain; (R.L.-B.); (M.C.); (B.S.-R.)
| | - Raquel Laza-Briviesca
- Medical Oncology Department, Health Research Institute Puerta de Hierro–Segovia de Arana (IDIPHISA) & Puerta de Hierro Hospital, Manuel de Falla Street #1, 28222 Madrid, Spain; (R.L.-B.); (M.C.); (B.S.-R.)
- PhD Programme in Molecular Biosciences, Faculty of Medicine Doctoral School, Universidad Autónoma de Madrid, 28222 Madrid, Spain
| | - Marta Casarrubios
- Medical Oncology Department, Health Research Institute Puerta de Hierro–Segovia de Arana (IDIPHISA) & Puerta de Hierro Hospital, Manuel de Falla Street #1, 28222 Madrid, Spain; (R.L.-B.); (M.C.); (B.S.-R.)
- PhD Programme in Molecular Biosciences, Faculty of Medicine Doctoral School, Universidad Autónoma de Madrid, 28222 Madrid, Spain
| | - Belén Sierra-Rodero
- Medical Oncology Department, Health Research Institute Puerta de Hierro–Segovia de Arana (IDIPHISA) & Puerta de Hierro Hospital, Manuel de Falla Street #1, 28222 Madrid, Spain; (R.L.-B.); (M.C.); (B.S.-R.)
- PhD Programme in Molecular Biosciences, Faculty of Medicine Doctoral School, Universidad Autónoma de Madrid, 28222 Madrid, Spain
| | - Mariano Provencio
- Medical Oncology Department, Health Research Institute Puerta de Hierro–Segovia de Arana (IDIPHISA) & Puerta de Hierro Hospital, Manuel de Falla Street #1, 28222 Madrid, Spain; (R.L.-B.); (M.C.); (B.S.-R.)
| |
Collapse
|
55
|
The Role of Biomimetic Hypoxia on Cancer Cell Behaviour in 3D Models: A Systematic Review. Cancers (Basel) 2021; 13:cancers13061334. [PMID: 33809554 PMCID: PMC7999912 DOI: 10.3390/cancers13061334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/05/2021] [Accepted: 03/13/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Cancer remains one of the leading causes of death worldwide. The advancements in 3D tumour models provide in vitro test-beds to study cancer growth, metastasis and response to therapy. We conducted this systematic review on existing experimental studies in order to identify and summarize key biomimetic tumour microenvironmental features which affect aspects of cancer biology. The review noted the significance of in vitro hypoxia and 3D tumour models on epithelial to mesenchymal transition, drug resistance, invasion and migration of cancer cells. We highlight the importance of various experimental parameters used in these studies and their subsequent effects on cancer cell behaviour. Abstract The development of biomimetic, human tissue models is recognized as being an important step for transitioning in vitro research findings to the native in vivo response. Oftentimes, 2D models lack the necessary complexity to truly recapitulate cellular responses. The introduction of physiological features into 3D models informs us of how each component feature alters specific cellular response. We conducted a systematic review of research papers where the focus was the introduction of key biomimetic features into in vitro models of cancer, including 3D culture and hypoxia. We analysed outcomes from these and compiled our findings into distinct groupings to ascertain which biomimetic parameters correlated with specific responses. We found a number of biomimetic features which primed cancer cells to respond in a manner which matched in vivo response.
Collapse
|
56
|
Semenza GL. Intratumoral Hypoxia and Mechanisms of Immune Evasion Mediated by Hypoxia-Inducible Factors. Physiology (Bethesda) 2021; 36:73-83. [DOI: 10.1152/physiol.00034.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Activation of the innate and adaptive immune systems represents a promising strategy for defeating cancer. However, during tumor progression, cancer cells battle to shift the balance from immune activation to immunosuppression. Critical sites of this battle are regions of intratumoral hypoxia, and a major driving force for immunosuppression is the activity of hypoxia-inducible factors, which regulate the transcription of large batteries of genes in both cancer and stromal cells that block the infiltration and activity of cytotoxic T lymphocytes and natural killer cells, while stimulating the infiltration and activity of regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages. Targeting hypoxia-inducible factors or their target gene products may restore anticancer immunity and improve the response to immunotherapies.
Collapse
Affiliation(s)
- Gregg L. Semenza
- Vascular Program, Institute for Cell Engineering; and Departments of Genetic Medicine, Pediatrics, Oncology, Radiation Oncology, Medicine, and Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
57
|
Fisher K, Hazini A, Seymour LW. Tackling HLA Deficiencies Head on with Oncolytic Viruses. Cancers (Basel) 2021; 13:719. [PMID: 33578735 PMCID: PMC7916504 DOI: 10.3390/cancers13040719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of HLA (human leukocyte antigen) function is increasingly recognized as a common escape mechanism for cancers subject to the pressures exerted by immunosurveillance or immunotherapeutic interventions. Oncolytic viruses have the potential to counter this resistance by upregulating HLA expression or encouraging an HLA-independent immunological responses. However, to achieve the best therapeutic outcomes, a prospective understanding of the HLA phenotype of cancer patients is required to match them to the characteristics of different oncolytic strategies. Here, we consider the spectrum of immune competence observed in clinical disease and discuss how it can be best addressed using this novel and powerful treatment approach.
Collapse
Affiliation(s)
- Kerry Fisher
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK;
| | | | | |
Collapse
|
58
|
Bernauer C, Man YKS, Chisholm JC, Lepicard EY, Robinson SP, Shipley JM. Hypoxia and its therapeutic possibilities in paediatric cancers. Br J Cancer 2021; 124:539-551. [PMID: 33106581 PMCID: PMC7851391 DOI: 10.1038/s41416-020-01107-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/20/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022] Open
Abstract
In tumours, hypoxia-a condition in which the demand for oxygen is higher than its availability-is well known to be associated with reduced sensitivity to radiotherapy and chemotherapy, and with immunosuppression. The consequences of hypoxia on tumour biology and patient outcomes have therefore led to the investigation of strategies that can alleviate hypoxia in cancer cells, with the aim of sensitising cells to treatments. An alternative therapeutic approach involves the design of prodrugs that are activated by hypoxic cells. Increasing evidence indicates that hypoxia is not just clinically significant in adult cancers but also in paediatric cancers. We evaluate relevant methods to assess the levels and extent of hypoxia in childhood cancers, including novel imaging strategies such as oxygen-enhanced magnetic resonance imaging (MRI). Preclinical and clinical evidence largely supports the use of hypoxia-targeting drugs in children, and we describe the critical need to identify robust predictive biomarkers for the use of such drugs in future paediatric clinical trials. Ultimately, a more personalised approach to treatment that includes targeting hypoxic tumour cells might improve outcomes in subgroups of paediatric cancer patients.
Collapse
Affiliation(s)
- Carolina Bernauer
- Sarcoma Molecular Pathology Team, The Institute of Cancer Research, London, UK
| | - Y K Stella Man
- Sarcoma Molecular Pathology Team, The Institute of Cancer Research, London, UK
| | - Julia C Chisholm
- Children and Young People's Unit, The Royal Marsden NHS Foundation Trust, Surrey, UK
- Sarcoma Clinical Trials in Children and Young People Team, The Institute of Cancer Research, London, UK
| | - Elise Y Lepicard
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Simon P Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Janet M Shipley
- Sarcoma Molecular Pathology Team, The Institute of Cancer Research, London, UK.
| |
Collapse
|
59
|
Yuan Z, Gardiner JC, Maggi EC, Huang S, Adem A, Li G, Lee S, Slegowski D, Exarchakis A, Howe JR, Lattime EC, Zang X, Libutti SK. B7 immune-checkpoints as targets for the treatment of neuroendocrine tumors. Endocr Relat Cancer 2021; 28:135-149. [PMID: 33410766 PMCID: PMC8486311 DOI: 10.1530/erc-20-0337] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 11/08/2022]
Abstract
The B7 family, and their receptors, the CD28 family, are major immune checkpoints that regulate T-cell activation and function. In the present study, we explore the role of two B7 immune-checkpoints: HERV-H LTR-Associating Protein 2 (HHLA2) and B7 Family Member, H4 (B7x), in the progression of gastrointestinal and pancreatic neuroendocrine tumors (GINETs and PNETs). We demonstrated that both HHLA2 and B7x were expressed to a high degree in human GINETs and PNETs. We determined that the expression of B7x and HHLA2 correlates with higher grade and higher incidence of nodal and distant spread. Furthermore, we confirmed that HIF-1α overexpression is associated with the upregulation of B7x both in our in vivo (animal model) and in vitro (cell culture) models. When grown in vitro, islet tumor β-cells lack B7x expression, unless cultured under hypoxic conditions, which results in both hypoxia-inducible factor 1 subunit alpha (HIF-1α) and B7x upregulation. In vivo, we demonstrated that Men1/B7x double knockout (KO) mice (with loss of B7x expression) exhibited decreased islet β-cell proliferation and tumor transformation accompanied by increased T-cell infiltration compared with Men1 single knockout mice. We have also shown that systemic administration of a B7x mAb to our Men1 KO mice with PNETs promotes an antitumor response mediated by increased T-cell infiltration. These findings suggest that B7x may be a critical mediator of tumor immunity in the tumor microenvironment of NETs. Therefore, targeting B7x offers an attractive strategy for the immunotherapy of patients suffering from NETs.
Collapse
Affiliation(s)
- Ziqiang Yuan
- Division of Medical Oncology, Rutgers Robert Wood Johnson Medical School, New Jersey
- Rutgers Cancer Institute of New Jersey, Department of Surgery, Rutgers Robert Wood Johnson Medical School New Brunswick, New Jersey
| | - Juliet C. Gardiner
- Rutgers Cancer Institute of New Jersey, Department of Surgery, Rutgers Robert Wood Johnson Medical School New Brunswick, New Jersey
| | - Elaine C. Maggi
- Rutgers Cancer Institute of New Jersey, Department of Surgery, Rutgers Robert Wood Johnson Medical School New Brunswick, New Jersey
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Shuyu Huang
- Department of Microbiology and immunology, Albert Einstein College of Medicine, Bronx, New York
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Asha Adem
- Rutgers Cancer Institute of New Jersey, Department of Surgery, Rutgers Robert Wood Johnson Medical School New Brunswick, New Jersey
| | - Guiying Li
- Department of Surgery, Roy J and Lucille A. Carver University of Iowa College of Medicine, Iowa city, Iowa
| | - Sylvia Lee
- Rutgers Cancer Institute of New Jersey, Department of Surgery, Rutgers Robert Wood Johnson Medical School New Brunswick, New Jersey
| | - Daniel Slegowski
- Rutgers Cancer Institute of New Jersey, Department of Surgery, Rutgers Robert Wood Johnson Medical School New Brunswick, New Jersey
| | - Alyssa Exarchakis
- Rutgers Cancer Institute of New Jersey, Department of Surgery, Rutgers Robert Wood Johnson Medical School New Brunswick, New Jersey
| | - James R. Howe
- Department of Surgery, Roy J and Lucille A. Carver University of Iowa College of Medicine, Iowa city, Iowa
| | - Edmund C. Lattime
- Rutgers Cancer Institute of New Jersey, Department of Surgery, Rutgers Robert Wood Johnson Medical School New Brunswick, New Jersey
| | - Xingxing Zang
- Department of Microbiology and immunology, Albert Einstein College of Medicine, Bronx, New York
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Steven K. Libutti
- Rutgers Cancer Institute of New Jersey, Department of Surgery, Rutgers Robert Wood Johnson Medical School New Brunswick, New Jersey
| |
Collapse
|
60
|
Abstract
Over the last few years, cancer immunotherapy experienced tremendous developments and it is nowadays considered a promising strategy against many types of cancer. However, the exclusion of lymphocytes from the tumor nest is a common phenomenon that limits the efficiency of immunotherapy in solid tumors. Despite several mechanisms proposed during the years to explain the immune excluded phenotype, at present, there is no integrated understanding about the role played by different models of immune exclusion in human cancers. Hypoxia is a hallmark of most solid tumors and, being a multifaceted and complex condition, shapes in a unique way the tumor microenvironment, affecting gene transcription and chromatin remodeling. In this review, we speculate about an upstream role for hypoxia as a common biological determinant of immune exclusion in solid tumors. We also discuss the current state of ex vivo and in vivo imaging of hypoxic determinants in relation to T cell distribution that could mechanisms of immune exclusion and discover functional-morphological tumor features that could support clinical monitoring.
Collapse
|
61
|
Senchukova MA, Makarova EV, Kalinin EA, Tkachev VV, Zubareva EY. MODERN CONCEPTS ON THE ROLE OF HYPOXIA IN THE DEVELOPMENT OF TUMOR RADIORESISTANCE. SIBERIAN JOURNAL OF ONCOLOGY 2020; 19:141-147. [DOI: 10.21294/1814-4861-2020-19-6-141-147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The purpose of the study was to systematize and summarize modern ideas about the role of hypoxia in the development of tumor radioresistance.Material and Methods. PubMed, eLibrary and Springer databases were used to identify reviews published from 1953 to 2020, of which 57 were selected to write our review.Results. Radiation therapy is one of the most important components in cancer treatment. The major drawback of radiation therapy is the development radiation resistance in cancerous cells and secondary malignancies. The mechanisms of cancer radioresistance are very complicated and affected by many factors, of which hypoxia is the most important. Hypoxia is able to activate the mechanisms of angiogenesis, epithelial-mesenchymal transformation and contribute to the formation of the pool of cancer stem cell, which are characterized by chemo- and radioresistance. In turn, the severity of hypoxia largely dependent on tumor blood flow. Moreover, not only the quantitative but also the qualitative characteristics of blood vessels can affect the development of tissue hypoxia in the tumor.Conclusion. A comprehensive assessment of the severity of hypoxia, as well as characteristics of angiogenesis and EMT can contribute to a better understanding of the mechanisms of development of cancer radioresistance.
Collapse
Affiliation(s)
- M. A. Senchukova
- Orenburg State Medical University;
Orenburg Regional Oncology Clinic
| | - E. V. Makarova
- Orenburg State Medical University;
Orenburg Regional Oncology Clinic
| | | | | | - E. Y. Zubareva
- Orenburg State Medical University;
Orenburg Regional Oncology Clinic
| |
Collapse
|
62
|
Lee TW, Lai A, Harms JK, Singleton DC, Dickson BD, Macann AMJ, Hay MP, Jamieson SMF. Patient-Derived Xenograft and Organoid Models for Precision Medicine Targeting of the Tumour Microenvironment in Head and Neck Cancer. Cancers (Basel) 2020; 12:E3743. [PMID: 33322840 PMCID: PMC7763264 DOI: 10.3390/cancers12123743] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022] Open
Abstract
Patient survival from head and neck squamous cell carcinoma (HNSCC), the seventh most common cause of cancer, has not markedly improved in recent years despite the approval of targeted therapies and immunotherapy agents. Precision medicine approaches that seek to individualise therapy through the use of predictive biomarkers and stratification strategies offer opportunities to improve therapeutic success in HNSCC. To enable precision medicine of HNSCC, an understanding of the microenvironment that influences tumour growth and response to therapy is required alongside research tools that recapitulate the features of human tumours. In this review, we highlight the importance of the tumour microenvironment in HNSCC, with a focus on tumour hypoxia, and discuss the fidelity of patient-derived xenograft and organoids for modelling human HNSCC and response to therapy. We describe the benefits of patient-derived models over alternative preclinical models and their limitations in clinical relevance and how these impact their utility in precision medicine in HNSCC for the discovery of new therapeutic agents, as well as predictive biomarkers to identify patients' most likely to respond to therapy.
Collapse
Affiliation(s)
- Tet Woo Lee
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand; (T.W.L.); (A.L.); (J.K.H.); (D.C.S.); (B.D.D.); (M.P.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand;
| | - Amy Lai
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand; (T.W.L.); (A.L.); (J.K.H.); (D.C.S.); (B.D.D.); (M.P.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand;
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland 1023, New Zealand
| | - Julia K. Harms
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand; (T.W.L.); (A.L.); (J.K.H.); (D.C.S.); (B.D.D.); (M.P.H.)
| | - Dean C. Singleton
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand; (T.W.L.); (A.L.); (J.K.H.); (D.C.S.); (B.D.D.); (M.P.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand;
| | - Benjamin D. Dickson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand; (T.W.L.); (A.L.); (J.K.H.); (D.C.S.); (B.D.D.); (M.P.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand;
| | - Andrew M. J. Macann
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand;
- Department of Radiation Oncology, Auckland City Hospital, Auckland 1023, New Zealand
| | - Michael P. Hay
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand; (T.W.L.); (A.L.); (J.K.H.); (D.C.S.); (B.D.D.); (M.P.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand;
| | - Stephen M. F. Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand; (T.W.L.); (A.L.); (J.K.H.); (D.C.S.); (B.D.D.); (M.P.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand;
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
63
|
You L, Wu W, Wang X, Fang L, Adam V, Nepovimova E, Wu Q, Kuca K. The role of hypoxia-inducible factor 1 in tumor immune evasion. Med Res Rev 2020; 41:1622-1643. [PMID: 33305856 DOI: 10.1002/med.21771] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/08/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022]
Abstract
Hypoxia-inducible factor 1 (HIF-1) plays an indispensable role in the hypoxic tumor microenvironment. Hypoxia and HIF-1 are involved in multiple aspects of tumor progression, such as metastasis, angiogenesis, and immune evasion. In innate and adaptive immune systems, malignant tumor cells avoid their recognition and destruction by HIF-1. Tumor immune evasion allows cancer cells to proliferate and metastasize and is associated with immunotherapy failure and chemoresistance. In the hypoxic tumor microenvironment, HIF-1 signaling suppresses the innate and adaptive immune systems to evade immune attack by inducing the expression of immunosuppressive factors and immune checkpoint molecules, including vascular endothelial growth factor, prostaglandin E2 , and programmed death-ligand 1/programmed death-1. Moreover, HIF-1 blocks tumor-associated antigen presentation via major histocompatibility complex class I chain-related/natural killer group 2, member D signaling. Tumor-associated autophagy and the release of tumor-derived exosomes contribute to HIF-1-mediated immune evasion. This review focuses on recent findings on the potential mechanism(s) underlying the effect of hypoxia and HIF-1 signaling on tumor immune evasion in the hypoxic tumor microenvironment. The effects of HIF-1 on immune checkpoint molecules, immunosuppressive molecules, autophagy, and exosomes have been described. Additionally, the potential role of HIF-1 in the regulation of tumor-derived exosomes, as well as the roles of HIF-1 and exosomes in tumor evasion, are discussed. This study will contribute to our understanding of HIF-1-mediated tumor immune evasion, leading to the development of effective HIF-1-targeting drugs and immunotherapies.
Collapse
Affiliation(s)
- Li You
- College of Life Science, Yangtze University, Jingzhou, China
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
64
|
Hatfield SM, Sitkovsky MV. Antihypoxic oxygenation agents with respiratory hyperoxia to improve cancer immunotherapy. J Clin Invest 2020; 130:5629-5637. [PMID: 32870821 PMCID: PMC7598059 DOI: 10.1172/jci137554] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hypoxia/HIF-1α- and extracellular adenosine/A2 adenosine receptor-mediated immunosuppression protects tissues from collateral damage by antipathogen immune cells. However, this mechanism also protects cancerous tissues by inhibiting antitumor immune cells in hypoxic and extracellular adenosine-rich tumors that are the most resistant to current therapies. Here, we explain a potentially novel, antiimmunosuppressive reasoning to justify strategies using respiratory hyperoxia and oxygenation agents in cancer treatment. Earlier attempts to use oxygenation of tumors as a monotherapy or to improve radiotherapy have failed because oxygenation protocols were not combined with immunotherapies of cancer. In contrast, the proposal for therapeutic use of antihypoxic oxygenation described here was motivated by the need to prevent the hypoxia/HIF-1α-driven accumulation of extracellular adenosine to (a) unleash antitumor immune cells from inhibition by intracellular cAMP and (b) prevent immunosuppressive transcription of cAMP response element- and hypoxia response element-containing immunosuppressive gene products (e.g., TGF-β). Use of oxygenation agents together with inhibitors of the A2A adenosine receptor may be required to enable the most effective cancer immunotherapy. The emerging outcomes of clinical trials of cancer patients refractory to all other treatments provide support for the molecular and immunological mechanism-based approach to cancer immunotherapy described here.
Collapse
|
65
|
Hossain MA, Liu G, Dai B, Si Y, Yang Q, Wazir J, Birnbaumer L, Yang Y. Reinvigorating exhausted CD8 + cytotoxic T lymphocytes in the tumor microenvironment and current strategies in cancer immunotherapy. Med Res Rev 2020; 41:156-201. [PMID: 32844499 DOI: 10.1002/med.21727] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/26/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
Immunotherapy has revolutionized the treatment of cancer in recent years and achieved overall success and long-term clinical benefit in patients with a wide variety of cancer types. However, there is still a large proportion of patients exhibiting limited or no responses to immunotherapeutic strategy, some of which were even observed with hyperprogressive disease. One major obstacle restricting the efficacy is that tumor-reactive CD8+ T cells, which are central for tumor control, undergo exhaustion, and lose their ability to eliminate cancer cells after infiltrating into the strongly immunosuppressive tumor microenvironment. Thus, as a potential therapeutic rationale in the development of cancer immunotherapy, targeting or reinvigorating exhausted CD8+ T cells has been attracting much interest. Hitherto, both intrinsic and extrinsic mechanisms that govern CD8+ T-cell exhaustion have been explored. Specifically, the transcriptional and epigenetic landscapes have been depicted utilizing single-cell RNA sequencing or mass cytometry (CyTOF). In addition, cellular metabolism dictating the tumor-infiltrating CD8+ T-cell fate is currently under investigation. A series of clinical trials are being carried out to further establish the current strategies targeting CD8+ T-cell exhaustion. Taken together, despite the proven benefit of immunotherapy in cancer patients, additional efforts are still needed to fully circumvent limitations of exhausted T cells in the treatment. In this review, we will focus on the current cellular and molecular understanding of metabolic changes, epigenetic remodeling, and transcriptional regulation in CD8+ T-cell exhaustion and describe hypothetical treatment approaches based on immunotherapy aiming at reinvigorating exhausted CD8+ T cells.
Collapse
Affiliation(s)
- Md Amir Hossain
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Guilai Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Beiying Dai
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yaxuan Si
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Qitao Yang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Junaid Wazir
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina, USA.,Institute of Biomedical Research (BIOMED), Catholic University of Argentina, Buenos Aires, Argentina
| | - Yong Yang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.,Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
66
|
Halpin-Veszeleiova K, Hatfield SM. Oxygenation and A2AR blockade to eliminate hypoxia/HIF-1α-adenosinergic immunosuppressive axis and improve cancer immunotherapy. Curr Opin Pharmacol 2020; 53:84-90. [PMID: 32841869 DOI: 10.1016/j.coph.2020.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 02/08/2023]
Abstract
The promising results of the first in-human clinical study using A2AR antagonists for treatment of renal cell carcinoma highlight two decades of research into the hypoxia-A2-adenosinergic pathway. Importantly, clinical responses have been observed in patients who previously progressed on anti-PD-1/PDL-1 therapy, emphasizing the clinical importance of targeting A2AR signaling in cancer immunotherapies. Recently, it has been shown that systemic oxygenation weakens all known stages of the hypoxia-A2-adenosinergic axis. Therefore, we advocate the clinical use of systemic oxygenation and oxygenation agents in combination with A2AR blockade to further improve cancer immunotherapies. This approach is expected to completely eliminate the upstream (hypoxia-HIF-1α) and downstream (adenosine-A2AR) stages of the immunosuppressive hypoxia-adenosinergic signaling axis. This might be a necessary strategy to maximize the therapeutic benefits of A2AR antagonists and increase susceptibility of tumors to cancer treatments.
Collapse
Affiliation(s)
- Katarina Halpin-Veszeleiova
- New England Inflammation and Tissue Protection Institute, Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, United States
| | - Stephen M Hatfield
- New England Inflammation and Tissue Protection Institute, Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, United States.
| |
Collapse
|
67
|
Hiraoka N, Ino Y, Hori S, Yamazaki‐Itoh R, Naito C, Shimasaki M, Esaki M, Nara S, Kishi Y, Shimada K, Nakamura N, Torigoe T, Heike Y. Expression of classical human leukocyte antigen class I antigens, HLA-E and HLA-G, is adversely prognostic in pancreatic cancer patients. Cancer Sci 2020; 111:3057-3070. [PMID: 32495519 PMCID: PMC7419048 DOI: 10.1111/cas.14514] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 01/18/2023] Open
Abstract
The expression of classical human leukocyte antigen class I antigens (HLA-I) on the surfaces of cancer cells allows cytotoxic T cells to recognize and eliminate these cells. Reduction or loss of HLA-I is a mechanism of escape from antitumor immunity. The present study aimed to investigate the clinicopathological impacts of HLA-I and non-classical HLA-I antigens expressed on pancreatic ductal adenocarcinoma (PDAC) cells. We performed immunohistochemistry to detect expression of HLA-I antigens in PDAC using 243 PDAC cases and examined their clinicopathological influences. We also investigated the expression of immune-related genes to characterize PDAC tumor microenvironments. Lower expression of HLA-I, found in 33% of PDAC cases, was significantly associated with longer overall survival. Higher expression of both HLA-E and HLA-G was significantly associated with shorter survival. Multivariate analyses revealed that higher expression of these three HLA-I antigens was significantly correlated with shorter survival. Higher HLA-I expression on PDAC cells was significantly correlated with higher expression of IFNG, which also correlated with PD1, PD-L1 and PD-L2 expression. In vitro assay revealed that interferon gamma (IFNγ) stimulation increased surface expression of HLA-I in three PDAC cell lines. It also upregulated surface expression of HLA-E, HLA-G and immune checkpoint molecules, including PD-L1 and PD-L2. These results suggest that the higher expression of HLA-I, HLA-E and HLA-G on PDAC cells is an unfavorable prognosticator. It is possible that IFNγ promotes a tolerant microenvironment by inducing immune checkpoint molecules in PDAC tissues with higher HLA-I expression on PDAC cells.
Collapse
Affiliation(s)
- Nobuyoshi Hiraoka
- Division of Molecular PathologyNational Cancer Center Research InstituteTokyoJapan
- Department of Analytical PathologyNational Cancer Center Research InstituteTokyoJapan
- Division of Pathology and Clinical LaboratoriesNational Cancer Center HospitalTokyoJapan
| | - Yoshinori Ino
- Division of Molecular PathologyNational Cancer Center Research InstituteTokyoJapan
- Department of Analytical PathologyNational Cancer Center Research InstituteTokyoJapan
| | - Shutaro Hori
- Division of Molecular PathologyNational Cancer Center Research InstituteTokyoJapan
- Division of Pathology and Clinical LaboratoriesNational Cancer Center HospitalTokyoJapan
- Department of PathologyTokai University School of MedicineIseharaJapan
| | - Rie Yamazaki‐Itoh
- Division of Molecular PathologyNational Cancer Center Research InstituteTokyoJapan
| | - Chie Naito
- Division of Molecular PathologyNational Cancer Center Research InstituteTokyoJapan
| | - Mari Shimasaki
- Division of Molecular PathologyNational Cancer Center Research InstituteTokyoJapan
| | - Minoru Esaki
- Hepato‐Biliary and Pancreatic Surgery DivisionNational Cancer Center HospitalTokyoJapan
| | - Satoshi Nara
- Hepato‐Biliary and Pancreatic Surgery DivisionNational Cancer Center HospitalTokyoJapan
| | - Yoji Kishi
- Hepato‐Biliary and Pancreatic Surgery DivisionNational Cancer Center HospitalTokyoJapan
| | - Kazuaki Shimada
- Hepato‐Biliary and Pancreatic Surgery DivisionNational Cancer Center HospitalTokyoJapan
| | - Naoya Nakamura
- Department of PathologyTokai University School of MedicineIseharaJapan
| | | | - Yuji Heike
- Division of Biomedical SciencesSt. Luke’s International University Graduate School of Public HealthTokyoJapan
| |
Collapse
|
68
|
Luo A, Gong Y, Kim H, Chen Y. Proteome dynamics analysis identifies functional roles of SDE2 and hypoxia in DNA damage response in prostate cancer cells. NAR Cancer 2020; 2:zcaa010. [PMID: 32743553 PMCID: PMC7380487 DOI: 10.1093/narcan/zcaa010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/19/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Mechanistic understanding of hypoxia-responsive signaling pathways provides important insights into oxygen- and metabolism-dependent cellular phenotypes in diseases. Using SILAC-based quantitative proteomics, we provided a quantitative map identifying over 6300 protein groups in response to hypoxia in prostate cancer cells and identified both canonical and novel cellular networks dynamically regulated under hypoxia. Particularly, we identified SDE2, a DNA stress response modulator, that was significantly downregulated by hypoxia, independent of HIF (hypoxia-inducible factor) transcriptional activity. Mechanistically, hypoxia treatment promoted SDE2 polyubiquitination and degradation. Such regulation is independent of previously identified Arg/N-end rule proteolysis or the ubiquitin E3 ligase, CDT2. Depletion of SDE2 increased cellular sensitivity to DNA damage and inhibited cell proliferation. Interestingly, either SDE2 depletion or hypoxia treatment potentiated DNA damage-induced PCNA (proliferating cell nuclear antigen) monoubiquitination, a key step for translesion DNA synthesis. Furthermore, knockdown of SDE2 desensitized, while overexpression of SDE2 protected the hypoxia-mediated regulation of PCNA monoubiquitination upon DNA damage. Taken together, our quantitative proteomics and biochemical study revealed diverse hypoxia-responsive pathways that strongly associated with prostate cancer tumorigenesis and identified the functional roles of SDE2 and hypoxia in regulating DNA damage-induced PCNA monoubiquitination, suggesting a possible link between hypoxic microenvironment and the activation of error-prone DNA repair pathway in tumor cells.
Collapse
Affiliation(s)
- Ang Luo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Yao Gong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Hyungjin Kim
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
69
|
Maggs L, Ferrone S. Improving the Clinical Significance of Preclinical Immunotherapy Studies through Incorporating Tumor Microenvironment-like Conditions. Clin Cancer Res 2020; 26:4448-4453. [PMID: 32571789 DOI: 10.1158/1078-0432.ccr-20-0358] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/03/2020] [Accepted: 06/05/2020] [Indexed: 01/22/2023]
Abstract
Frequently, the results generated when testing novel antitumor immunotherapies in vitro do not correlate with data collected in in vivo models and/or in clinical settings. It is our hypothesis that this discrepancy is caused by the use of in vitro conditions, such as normoxia, a two-dimensional surface, optimal growth media, and lack of cell complexity and heterogeneity. These conditions do not accurately reflect the tumor microenvironment (TME) that the tested immunotherapeutic strategies experience in vivo While there are many variables which can have an impact upon the antitumor efficacy of an immunotherapy, the immunosuppressive TME is one in which several of the conditions commonly found in vivo can be mimicked in vitro These conditions, which include hypoxia, low pH, low glucose, presence of adenosine, cell complexity and heterogeneity, as well as the three-dimensional structure of TME, can all affect immune cell-tumor cell interactions. Here, we discuss the impact that these conditions, either individually or in combination, can have on these interactions. Furthermore, we propose that performing in vitro assays under TME-like conditions improves the clinical relevance of the yielded results. This, in turn, contributes to accelerate the speed, reduce the cost, and increase efficiency of screening novel immunotherapies and eventually the development of prospective clinical trials.
Collapse
Affiliation(s)
- Luke Maggs
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
70
|
Phung CD, Tran TH, Pham LM, Nguyen HT, Jeong JH, Yong CS, Kim JO. Current developments in nanotechnology for improved cancer treatment, focusing on tumor hypoxia. J Control Release 2020; 324:413-429. [PMID: 32461115 DOI: 10.1016/j.jconrel.2020.05.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
Hypoxia is a common feature of the tumor microenvironment, which is characterized by tissue oxygen deficiency due to an aggressive proliferation of cancer cells. Hypoxia activates hypoxia-inducible factor-dependent signaling, which in turn regulates metabolic reprogramming, immune suppression, resistance to apoptosis, angiogenesis, metastasis, and invasion to secondary sites. In this review, we provide an overview of the use of nanotechnology to harmonize intra-tumoral oxygen or suppress hypoxia-related signaling for an improved efficacy of cancer treatment. The biological background was followed by conducting a literature review on the (1) nanoparticles responsible for enhancing oxygen levels within the tumor, (2) nanoparticles sensitizing hypoxia, (3) nanoparticles suppressing hypoxia-inducing factor, (4) nanoparticles that relieve tumor hypoxia for enhancement of chemotherapy, photodynamic therapy, and immunotherapy, either individually or in combination. Lastly, the heterogeneity of cancer and limitations of nanotechnology are discussed to facilitate translational therapeutic treatment.
Collapse
Affiliation(s)
- Cao Dai Phung
- College of Pharmacy, Yeungnam University, 280 Deahak-ro, Gyeongsan 38541, Republic of Korea
| | - Tuan Hiep Tran
- Faculty of Pharmacy, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; PHENIKAA Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, No.167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi 11313, Viet Nam
| | - Le Minh Pham
- College of Pharmacy, Yeungnam University, 280 Deahak-ro, Gyeongsan 38541, Republic of Korea
| | - Hanh Thuy Nguyen
- Department of Industrial & Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, United States
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, 280 Deahak-ro, Gyeongsan 38541, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 280 Deahak-ro, Gyeongsan 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 280 Deahak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
71
|
Bhattacharya S, Calar K, de la Puente P. Mimicking tumor hypoxia and tumor-immune interactions employing three-dimensional in vitro models. J Exp Clin Cancer Res 2020; 39:75. [PMID: 32357910 PMCID: PMC7195738 DOI: 10.1186/s13046-020-01583-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
The heterogeneous tumor microenvironment (TME) is highly complex and not entirely understood. These complex configurations lead to the generation of oxygen-deprived conditions within the tumor niche, which modulate several intrinsic TME elements to promote immunosuppressive outcomes. Decoding these communications is necessary for designing effective therapeutic strategies that can effectively reduce tumor-associated chemotherapy resistance by employing the inherent potential of the immune system.While classic two-dimensional in vitro research models reveal critical hypoxia-driven biochemical cues, three-dimensional (3D) cell culture models more accurately replicate the TME-immune manifestations. In this study, we review various 3D cell culture models currently being utilized to foster an oxygen-deprived TME, those that assess the dynamics associated with TME-immune cell penetrability within the tumor-like spatial structure, and discuss state of the art 3D systems that attempt recreating hypoxia-driven TME-immune outcomes. We also highlight the importance of integrating various hallmarks, which collectively might influence the functionality of these 3D models.This review strives to supplement perspectives to the quickly-evolving discipline that endeavors to mimic tumor hypoxia and tumor-immune interactions using 3D in vitro models.
Collapse
Affiliation(s)
- Somshuvra Bhattacharya
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 E 60th Street N, Sioux Falls, SD, 57104, USA
| | - Kristin Calar
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 E 60th Street N, Sioux Falls, SD, 57104, USA
| | - Pilar de la Puente
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 E 60th Street N, Sioux Falls, SD, 57104, USA.
- Department of Surgery, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, USA.
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, USA.
| |
Collapse
|
72
|
Abstract
IMPACT STATEMENT Tumor hypoxia promotes cancer cell aggressiveness, and is strongly associated with poor prognosis across multiple tumor types. The hypoxic microenvironments inside tumors also limit the effectiveness of radiotherapy, chemotherapy, and immunotherapy. Several approaches to eliminate hypoxic state in tumors have been proposed to delay cancer progression and improve therapeutic efficacies. This review will summarize current knowledge on hyperoxia, used alone or in combination with other therapeutic modalities, in cancer treatment. Molecular mechanisms and undesired side effects of hyperoxia will also be discussed.
Collapse
Affiliation(s)
- Sei W Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| | - In K Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sang H Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
73
|
Vito A, El-Sayes N, Mossman K. Hypoxia-Driven Immune Escape in the Tumor Microenvironment. Cells 2020; 9:E992. [PMID: 32316260 PMCID: PMC7227025 DOI: 10.3390/cells9040992] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/05/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022] Open
Abstract
The tumor microenvironment is a complex ecosystem comprised of many different cell types, abnormal vasculature and immunosuppressive cytokines. The irregular growth kinetics with which tumors grow leads to increased oxygen consumption and, in turn, hypoxic conditions. Hypoxia has been associated with poor clinical outcome, increased tumor heterogeneity, emergence of resistant clones and evasion of immune detection. Additionally, hypoxia-driven cell death pathways have traditionally been thought of as tolerogenic processes. However, as researchers working in the field of immunotherapy continue to investigate and unveil new types of immunogenic cell death (ICD), it has become clear that, in some instances, hypoxia may actually induce ICD within a tumor. In this review, we will discuss hypoxia-driven immune escape that drives poor prognostic outcomes, the ability of hypoxia to induce ICD and potential therapeutic targets amongst hypoxia pathways.
Collapse
Affiliation(s)
- Alyssa Vito
- Department of Biochemistry and Biomedical Sciences, McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada; (A.V.); (N.E.-S.)
| | - Nader El-Sayes
- Department of Biochemistry and Biomedical Sciences, McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada; (A.V.); (N.E.-S.)
| | - Karen Mossman
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
74
|
Zahedi S, Mulcahy Levy JM. Autophagy: When to strike? JOURNAL OF CANCER IMMUNOLOGY 2020; 2:13-16. [PMID: 32457939 PMCID: PMC7250464 DOI: 10.33696/cancerimmunol.2.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Shadi Zahedi
- Department of of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, USA
| | - Jean M Mulcahy Levy
- Department of of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, USA.,Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
75
|
Martin JD, Cabral H, Stylianopoulos T, Jain RK. Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges. Nat Rev Clin Oncol 2020; 17:251-266. [PMID: 32034288 DOI: 10.1038/s41571-019-0308-z] [Citation(s) in RCA: 433] [Impact Index Per Article: 86.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2019] [Indexed: 02/08/2023]
Abstract
Multiple nanotherapeutics have been approved for patients with cancer, but their effects on survival have been modest and, in some examples, less than those of other approved therapies. At the same time, the clinical successes achieved with immunotherapy have revolutionized the treatment of multiple advanced-stage malignancies. However, the majority of patients do not benefit from the currently available immunotherapies and many develop immune-related adverse events. By contrast, nanomedicines can reduce - but do not eliminate - the risk of certain life-threatening toxicities. Thus, the combination of these therapeutic classes is of intense research interest. The tumour microenvironment (TME) is a major cause of the failure of both nanomedicines and immunotherapies that not only limits delivery, but also can compromise efficacy, even when agents accumulate in the TME. Coincidentally, the same TME features that impair nanomedicine delivery can also cause immunosuppression. In this Perspective, we describe TME normalization strategies that have the potential to simultaneously promote the delivery of nanomedicines and reduce immunosuppression in the TME. Then, we discuss the potential of a combined nanomedicine-based TME normalization and immunotherapeutic strategy designed to overcome each step of the cancer-immunity cycle and propose a broadly applicable 'minimal combination' of therapies designed to increase the number of patients with cancer who are able to benefit from immunotherapy.
Collapse
Affiliation(s)
- John D Martin
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
76
|
Abou Khouzam R, Goutham HV, Zaarour RF, Chamseddine AN, Francis A, Buart S, Terry S, Chouaib S. Integrating tumor hypoxic stress in novel and more adaptable strategies for cancer immunotherapy. Semin Cancer Biol 2020; 65:140-154. [PMID: 31927131 DOI: 10.1016/j.semcancer.2020.01.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/10/2019] [Accepted: 01/07/2020] [Indexed: 12/14/2022]
Abstract
Immunotherapy is poised to become an increasingly utilized therapy in the treatment of cancer. However, several abnormalities in the tumor microenvironment (TME) that can thwart the efficacy of immunotherapies have been established. Microenvironmental hypoxia is a determining factor in shaping aggressiveness, metastatic potential and treatment resistance of solid tumors. The characterization of this phenomenon could prove beneficial for determining a patient's treatment path and for the introduction of novel targetable factors that can enhance therapeutic outcome. Indeed, the ablation of hypoxia has the potential to sensitize tumors to immunotherapy by metabolically remodeling their microenvironment. In this review, we discuss the intrinsic contributions of hypoxia to cellular plasticity, heterogeneity, stemness and genetic instability in the context of immune escape. In addition, we will shed light on how managing hypoxia can ameliorate response to immunotherapy and how integrating hypoxia gene signatures could play a role in this pursuit.
Collapse
Affiliation(s)
- Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, 4184, United Arab Emirates.
| | - Hassan Venkatesh Goutham
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, 4184, United Arab Emirates.
| | - Rania Faouzi Zaarour
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, 4184, United Arab Emirates.
| | - Ali N Chamseddine
- Département d'Oncologie Médicale, Gustave Roussy Cancer Campus Grand Paris, Villejuif, France.
| | - Amirtharaj Francis
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, 4184, United Arab Emirates.
| | - Stéphanie Buart
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Faculty. De médecine Univ. Paris-Sud, University Paris-Saclay, Villejuif F-94805, France
| | - Stéphane Terry
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Faculty. De médecine Univ. Paris-Sud, University Paris-Saclay, Villejuif F-94805, France.
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, 4184, United Arab Emirates; INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Faculty. De médecine Univ. Paris-Sud, University Paris-Saclay, Villejuif F-94805, France.
| |
Collapse
|
77
|
Harel M, Ortenberg R, Varanasi SK, Mangalhara KC, Mardamshina M, Markovits E, Baruch EN, Tripple V, Arama-Chayoth M, Greenberg E, Shenoy A, Ayasun R, Knafo N, Xu S, Anafi L, Yanovich-Arad G, Barnabas GD, Ashkenazi S, Besser MJ, Schachter J, Bosenberg M, Shadel GS, Barshack I, Kaech SM, Markel G, Geiger T. Proteomics of Melanoma Response to Immunotherapy Reveals Mitochondrial Dependence. Cell 2019; 179:236-250.e18. [PMID: 31495571 PMCID: PMC7993352 DOI: 10.1016/j.cell.2019.08.012] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/24/2019] [Accepted: 08/06/2019] [Indexed: 01/03/2023]
Abstract
Immunotherapy has revolutionized cancer treatment, yet most patients do not respond. Here, we investigated mechanisms of response by profiling the proteome of clinical samples from advanced stage melanoma patients undergoing either tumor infiltrating lymphocyte (TIL)-based or anti- programmed death 1 (PD1) immunotherapy. Using high-resolution mass spectrometry, we quantified over 10,300 proteins in total and ∼4,500 proteins across most samples in each dataset. Statistical analyses revealed higher oxidative phosphorylation and lipid metabolism in responders than in non-responders in both treatments. To elucidate the effects of the metabolic state on the immune response, we examined melanoma cells upon metabolic perturbations or CRISPR-Cas9 knockouts. These experiments indicated lipid metabolism as a regulatory mechanism that increases melanoma immunogenicity by elevating antigen presentation, thereby increasing sensitivity to T cell mediated killing both in vitro and in vivo. Altogether, our proteomic analyses revealed association between the melanoma metabolic state and the response to immunotherapy, which can be the basis for future improvement of therapeutic response.
Collapse
Affiliation(s)
- Michal Harel
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Rona Ortenberg
- Ella Lemelbaum Institute of Immuno-Oncology, Sheba Medical Center, Tel Hashomer 5265601, Israel; Department of Clinical Immunology and Microbiology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Siva Karthik Varanasi
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | - Mariya Mardamshina
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Ettai Markovits
- Ella Lemelbaum Institute of Immuno-Oncology, Sheba Medical Center, Tel Hashomer 5265601, Israel; Department of Clinical Immunology and Microbiology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Erez N Baruch
- Ella Lemelbaum Institute of Immuno-Oncology, Sheba Medical Center, Tel Hashomer 5265601, Israel; Department of Clinical Immunology and Microbiology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Victoria Tripple
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - May Arama-Chayoth
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Eyal Greenberg
- Ella Lemelbaum Institute of Immuno-Oncology, Sheba Medical Center, Tel Hashomer 5265601, Israel
| | - Anjana Shenoy
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Ruveyda Ayasun
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Naama Knafo
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Shihao Xu
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Liat Anafi
- Institute of Pathology, Sheba Medical Center, Tel Hashomer 5265601, Israel
| | - Gali Yanovich-Arad
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Georgina D Barnabas
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Shira Ashkenazi
- Ella Lemelbaum Institute of Immuno-Oncology, Sheba Medical Center, Tel Hashomer 5265601, Israel; Department of Clinical Immunology and Microbiology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Michal J Besser
- Ella Lemelbaum Institute of Immuno-Oncology, Sheba Medical Center, Tel Hashomer 5265601, Israel; Department of Clinical Immunology and Microbiology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Jacob Schachter
- Ella Lemelbaum Institute of Immuno-Oncology, Sheba Medical Center, Tel Hashomer 5265601, Israel; The Sackler School of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Marcus Bosenberg
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Comprehensive Cancer Center, New Haven, CT 06510, USA; Department of Dermatology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Gerald S Shadel
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Iris Barshack
- Institute of Pathology, Sheba Medical Center, Tel Hashomer 5265601, Israel; The Sackler School of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Gal Markel
- Ella Lemelbaum Institute of Immuno-Oncology, Sheba Medical Center, Tel Hashomer 5265601, Israel; Department of Clinical Immunology and Microbiology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel.
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel.
| |
Collapse
|
78
|
Ohta A. Oxygen-dependent regulation of immune checkpoint mechanisms. Int Immunol 2019; 30:335-343. [PMID: 29846615 DOI: 10.1093/intimm/dxy038] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/27/2018] [Indexed: 12/21/2022] Open
Abstract
Immunotherapy of cancer has finally materialized following the success of immune checkpoint blockade. Since down-regulation of immune checkpoint mechanisms is beneficial in cancer treatment, it is important to ask why tumors are infamously filled with the immunosuppressive mechanisms. Indeed, immune checkpoints are physiological negative feedback mechanisms of immune activities, and the induction of such mechanisms is important in preventing excessive destruction of inflamed normal tissues. A condition commonly found in tumors and inflamed tissues is tissue hypoxia. Oxygen deprivation under hypoxic conditions by itself is immunosuppressive because proper oxygen supply could support bioenergetic demands of immune cells for optimal immune responses. However, importantly, hypoxia has been found to up-regulate a variety of immune checkpoints and to be able to drive a shift toward a more immunosuppressive environment. Moreover, extracellular adenosine, which accumulates due to tissue hypoxia, also contributes to the up-regulation of other immune checkpoints. Taken together, tissue oxygen is a key regulator of the immune response by directly affecting the energy status of immune effectors and by regulating the intensity of immunoregulatory activity in the environment. The regulators of various immune checkpoint mechanisms may represent the next focus to modulate the intensity of immune responses and to improve cancer immunotherapy.
Collapse
Affiliation(s)
- Akio Ohta
- Department of Immunology, Foundation for Biomedical Research and Innovation at Kobe, Minatojima-Minamimachi, Kobe, Japan
| |
Collapse
|
79
|
Fluorine-19 Cellular MRI Detection of In Vivo Dendritic Cell Migration and Subsequent Induction of Tumor Antigen-Specific Immunotherapeutic Response. Mol Imaging Biol 2019; 22:549-561. [DOI: 10.1007/s11307-019-01393-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
80
|
Shen H, Yang ESH, Conry M, Fiveash J, Contreras C, Bonner JA, Shi LZ. Predictive biomarkers for immune checkpoint blockade and opportunities for combination therapies. Genes Dis 2019; 6:232-246. [PMID: 32042863 PMCID: PMC6997608 DOI: 10.1016/j.gendis.2019.06.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/07/2019] [Accepted: 06/16/2019] [Indexed: 12/30/2022] Open
Abstract
Immune checkpoint blockade therapies (ICBs) are a prominent breakthrough in cancer immunotherapy in recent years (named the 2013 “Breakthrough of the Year” by the Science magazine). Thus far, FDA-approved ICBs primarily target immune checkpoints CTLA-4, PD-1, and PD-L1. Notwithstanding their impressive long-term therapeutic benefits, their efficacy is limited to a small subset of cancer patients. In addition, ICBs induce inadvertent immune-related adverse events (irAEs) and can be costly for long-term use. To overcome these limitations, two strategies are actively being pursued: identification of predictive biomarkers for clinical response to ICBs and multi-pronged combination therapies. Biomarkers will allow clinicians to practice a precision medicine approach in ICBs (biomarker-based patient selection) such as treating triple-negative breast cancer patients that exhibit PD-L1 staining of tumor-infiltrating immune cells in ≥1% of the tumor area with nanoparticle albumin-bound (nab)–paclitaxel plus anti-PD-L1 and treating patients of MSI-H or MMR deficient unresectable or metastatic solid tumors with pembrolizumab (anti-PD-1). Importantly, the insights gained from these biomarker studies can guide rational combinatorial strategies such as CDK4/6 inhibitor/fractionated radiotherapy/HDACi in conjunction with ICBs to maximize therapeutic benefits. Further, with the rapid technological advents (e.g., ATCT-Seq), we predict more reliable biomarkers will be identified, which in turn will inspire more promising combination therapies.
Collapse
Affiliation(s)
- Hongxing Shen
- Department of Radiation Oncology, The University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA.,O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA
| | - Eddy Shih-Hsin Yang
- Department of Radiation Oncology, The University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA.,O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA
| | - Marty Conry
- O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA.,Department of Medical Oncology, The University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA
| | - John Fiveash
- Department of Radiation Oncology, The University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA.,O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA
| | - Carlo Contreras
- O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA.,Department of Surgical Oncology, The University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA
| | - James A Bonner
- Department of Radiation Oncology, The University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA.,O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA
| | - Lewis Zhichang Shi
- Department of Radiation Oncology, The University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA.,O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA.,Department of Microbiology, The University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA.,Program in Immunology, The University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA
| |
Collapse
|
81
|
Abstract
PURPOSE OF REVIEW We discuss recent discoveries in hypoxic cellular pathophysiology and explore the interplay between hypoxic malignant cells and other stromal elements. This review will provide an update on the effects of hypoxia on cancer outcomes and therapeutic resistance. RECENT FINDINGS Hypoxia has been discovered to be a key driver for tumor progression, both because of impacts on tumor cells and separately on the wider tumor microenvironment. The latter effects occur via epithelial mesenchymal transition, autophagy and metabolic switching. Through epithelial mesenchymal transition, hypoxia both drives metastasis and renders key target tissues receptive to metastasis. Autophagy is a double-edged sword which requires greater understanding to ascertain when it is a threat. Metabolic switching allows tumor cells to access hypoxic survival mechanisms even under normoxic conditions.Every element of the malignant stroma contributes to hypoxia-driven progression. Exosomal transfer of molecules from hypoxic tumor cells to target stromal cell types and the importance of microRNAs in intercellular communication have emerged as key themes.Antiangiogenic resistance can be caused by hypoxia-driven vasculogenic mimicry. Beyond this, hypoxia contributes to resistance to virtually all oncological treatment modalities. SUMMARY Recent advances have moved us closer to being able to exploit hypoxic mechanisms to overcome hypoxia-driven progression and therapy failure.
Collapse
Affiliation(s)
- Andrew Redfern
- School of Medicine, The University of Western Australia, Perth
| | - Veenoo Agarwal
- Department of Medical Oncology, Fiona Stanley Hospital, Murdoch, Western Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane
- Translational Research Institute, Woolloongabba, Australia
| |
Collapse
|
82
|
Zhang X, Ashcraft KA, Betof Warner A, Nair SK, Dewhirst MW. Can Exercise-Induced Modulation of the Tumor Physiologic Microenvironment Improve Antitumor Immunity? Cancer Res 2019; 79:2447-2456. [PMID: 31068341 DOI: 10.1158/0008-5472.can-18-2468] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/10/2019] [Accepted: 03/05/2019] [Indexed: 12/12/2022]
Abstract
The immune system plays an important role in controlling cancer growth. However, cancers evolve to evade immune detection. Immune tolerance and active immune suppression results in unchecked cancer growth and progression. A major contributor to immune tolerance is the tumor physiologic microenvironment, which includes hypoxia, hypoglucosis, lactosis, and reduced pH. Preclinical and human studies suggest that exercise elicits mobilization of leukocytes into circulation (also known as "exercise-induced leukocytosis"), especially cytotoxic T cells and natural killer cells. However, the tumor physiologic microenvironment presents a significant barrier for these cells to enter the tumor and, once there, properly function. We hypothesize that the effect of exercise on the immune system's ability to control cancer growth is linked to how exercise affects the tumor physiologic microenvironment. Normalization of the microenvironment by exercise may promote more efficient innate and adaptive immunity within the tumor. This review summarizes the current literature supporting this hypothesis.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Duke University Medical Center, Durham, North Carolina
| | | | | | - Smita K Nair
- Duke University Medical Center, Durham, North Carolina
| | | |
Collapse
|
83
|
Rao M, Dodoo E, Zumla A, Maeurer M. Immunometabolism and Pulmonary Infections: Implications for Protective Immune Responses and Host-Directed Therapies. Front Microbiol 2019; 10:962. [PMID: 31134013 PMCID: PMC6514247 DOI: 10.3389/fmicb.2019.00962] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022] Open
Abstract
The biology and clinical efficacy of immune cells from patients with infectious diseases or cancer are associated with metabolic programming. Host immune- and stromal-cell genetic and epigenetic signatures in response to the invading pathogen shape disease pathophysiology and disease outcomes. Directly linked to the immunometabolic axis is the role of the host microbiome, which is also discussed here in the context of productive immune responses to lung infections. We also present host-directed therapies (HDT) as a clinically viable strategy to refocus dysregulated immunometabolism in patients with infectious diseases, which requires validation in early phase clinical trials as adjuncts to conventional antimicrobial therapy. These efforts are expected to be continuously supported by newly generated basic and translational research data to gain a better understanding of disease pathology while devising new molecularly defined platforms and therapeutic options to improve the treatment of patients with pulmonary infections, particularly in relation to multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Martin Rao
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Ernest Dodoo
- Department of Oncology and Haematology, Krankenhaus Nordwest, Frankfurt, Germany
| | - Alimuddin Zumla
- Division of Infection and Immunity, University College London, NIHR Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal.,Department of Oncology and Haematology, Krankenhaus Nordwest, Frankfurt, Germany
| |
Collapse
|
84
|
Crupi MJF, Bell JC, Singaravelu R. Concise Review: Targeting Cancer Stem Cells and Their Supporting Niche Using Oncolytic Viruses. Stem Cells 2019; 37:716-723. [PMID: 30875126 DOI: 10.1002/stem.3004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/08/2019] [Accepted: 03/02/2019] [Indexed: 12/22/2022]
Abstract
Cancer stem cells (CSCs) have the capacity to self-renew and differentiate to give rise to heterogenous cancer cell lineages in solid tumors. These CSC populations are associated with metastasis, tumor relapse, and resistance to conventional anticancer therapies. Here, we focus on the use of oncolytic viruses (OVs) to target CSCs as well as the OV-driven interferon production in the tumor microenvironment (TME) that can repress CSC properties. We explore the ability of OVs to deliver combinations of immune-modulating therapeutic transgenes, such as immune checkpoint inhibitor antibodies. In particular, we highlight the advantages of virally encoded bi-specific T cell engagers (BiTEs) to not only target cell-surface markers on CSCs, but also tumor-associated antigens on contributing components of the surrounding TME and other cancer cells. We also highlight the crucial role of combination anticancer treatments, evidenced by synergy of OV-delivered BiTEs and chimeric-antigen receptor T cell therapy. Stem Cells 2019;37:716-723.
Collapse
Affiliation(s)
- Mathieu J F Crupi
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - John C Bell
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ragunath Singaravelu
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
85
|
Abstract
INTRODUCTION Small cell lung cancer (SCLC) is a highly malignant disease with a dismal prognosis that is currently being tested for theclinical activity of checkpoint inhibitors. SCLC is associated with smoking and exhibits a high mutational burden. However, low expression of PD-L1 and MHC antigens, as well low levels of immune cell infiltration and rapid tumor progress seems to limit the efficacy of anticancer immunity. Nevertheless, long-term survival was reported from studies using anti-PD-1/PD-L1 and CTLA-4 agents. AREAS COVERED Data of clinical trials of checkpoint inhibitors in SCLC show lower success rates compared to NSCLC. The mechanisms of resistance to immunotherapy are discussed for their relevance to SCLC patients. EXPERT OPINION Although some factors, such as a high mutation rate, favor immunotherapy for SCLC patients, downregulation of MHC class I, low expression of PD-L1, poor tumor infiltration by effector T cells, presence of myeloid-derived suppressor cells as well as regulatory T lymphocytes counteract the immune system activation by checkpoint inhibitors. Furthermore, this tumor develops avascular regions which have immunosuppressive effects and restrict access of lymphocytes and antibodies. In conclusion, immunotherapy in SCLC is effective in highly selected patients with good performance status and special and unknown preconditions contributing to long-lasting responses.
Collapse
Affiliation(s)
- Gerhard Hamilton
- a Department of Surgery , Medical University of Vienna , Vienna , Austria
| | - Barbara Rath
- a Department of Surgery , Medical University of Vienna , Vienna , Austria
| |
Collapse
|
86
|
Eckert F, Zwirner K, Boeke S, Thorwarth D, Zips D, Huber SM. Rationale for Combining Radiotherapy and Immune Checkpoint Inhibition for Patients With Hypoxic Tumors. Front Immunol 2019; 10:407. [PMID: 30930892 PMCID: PMC6423917 DOI: 10.3389/fimmu.2019.00407] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/15/2019] [Indexed: 12/19/2022] Open
Abstract
In order to compensate for the increased oxygen consumption in growing tumors, tumors need angiogenesis and vasculogenesis to increase the supply. Insufficiency in this process or in the microcirculation leads to hypoxic tumor areas with a significantly reduced pO2, which in turn leads to alterations in the biology of cancer cells as well as in the tumor microenvironment. Cancer cells develop more aggressive phenotypes, stem cell features and are more prone to metastasis formation and migration. In addition, intratumoral hypoxia confers therapy resistance, specifically radioresistance. Reactive oxygen species are crucial in fixing DNA breaks after ionizing radiation. Thus, hypoxic tumor cells show a two- to threefold increase in radioresistance. The microenvironment is enriched with chemokines (e.g., SDF-1) and growth factors (e.g., TGFβ) additionally reducing radiosensitivity. During recent years hypoxia has also been identified as a major factor for immune suppression in the tumor microenvironment. Hypoxic tumors show increased numbers of myeloid derived suppressor cells (MDSCs) as well as regulatory T cells (Tregs) and decreased infiltration and activation of cytotoxic T cells. The combination of radiotherapy with immune checkpoint inhibition is on the rise in the treatment of metastatic cancer patients, but is also tested in multiple curative treatment settings. There is a strong rationale for synergistic effects, such as increased T cell infiltration in irradiated tumors and mitigation of radiation-induced immunosuppressive mechanisms such as PD-L1 upregulation by immune checkpoint inhibition. Given the worse prognosis of patients with hypoxic tumors due to local therapy resistance but also increased rate of distant metastases and the strong immune suppression induced by hypoxia, we hypothesize that the subgroup of patients with hypoxic tumors might be of special interest for combining immune checkpoint inhibition with radiotherapy.
Collapse
Affiliation(s)
- Franziska Eckert
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK) Partnersite Tuebingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kerstin Zwirner
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Simon Boeke
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK) Partnersite Tuebingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Daniela Thorwarth
- German Cancer Consortium (DKTK) Partnersite Tuebingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK) Partnersite Tuebingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan M. Huber
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
87
|
Abstract
Data from observational studies indicate that both physical activity as well as exercise (ie, structured physical activity) is associated with reductions in the risk of recurrence and cancer mortality after a diagnosis of certain forms of cancer. Emerging evidence from preclinical studies indicates that physical activity/exercise paradigms regulate intratumoral vascular maturity and perfusion, hypoxia, and metabolism and augments the antitumor immune response. Such responses may, in turn, enhance response to standard anticancer treatments. For instance, exercise improves efficacy of chemotherapeutic agents, and there is rationale to believe that it will also improve radiotherapy response. This review overviews the current preclinical as well as clinical evidence supporting exercise modulation of therapeutic response and postulated biological mechanisms underpinning such effects. We also examine the implications for tumor response to radiation, chemotherapy, and immunotherapy.
Collapse
Affiliation(s)
- Kathleen A Ashcraft
- Departments of Radiation Oncology, Duke University School of Medicine, Durham, NC
| | | | - Lee W Jones
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.; Weill Cornell Medical College, New York, NY
| | - Mark W Dewhirst
- Departments of Radiation Oncology, Duke University School of Medicine, Durham, NC..
| |
Collapse
|
88
|
Dewhirst MW, Mowery YM, Mitchell JB, Cherukuri MK, Secomb TW. Rationale for hypoxia assessment and amelioration for precision therapy and immunotherapy studies. J Clin Invest 2019; 129:489-491. [PMID: 30614815 DOI: 10.1172/jci126044] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Mark W Dewhirst
- Radiation Oncology Department, Duke University Medical School, Durham, North Carolina, USA
| | - Yvonne M Mowery
- Radiation Oncology Department, Duke University Medical School, Durham, North Carolina, USA
| | - James B Mitchell
- Radiation Biology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Murali K Cherukuri
- Radiation Biology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Timothy W Secomb
- Department of Physiology, University of Arizona College of Medicine, Tucson, Arizona, USA
| |
Collapse
|
89
|
Clinical and Pre-clinical Methods for Quantifying Tumor Hypoxia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1136:19-41. [PMID: 31201714 DOI: 10.1007/978-3-030-12734-3_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypoxia, a prevalent characteristic of most solid malignant tumors, contributes to diminished therapeutic responses and more aggressive phenotypes. The term hypoxia has two definitions. One definition would be a physiologic state where the oxygen partial pressure is below the normal physiologic range. For most normal tissues, the normal physiologic range is between 10 and 20 mmHg. Hypoxic regions develop when there is an imbalance between oxygen supply and demand. The impact of hypoxia on cancer therapeutics is significant: hypoxic tissue is 3× less radiosensitive than normoxic tissue, the impaired blood flow found in hypoxic tumor regions influences chemotherapy delivery, and the immune system is dependent on oxygen for functionality. Despite the clinical implications of hypoxia, there is not a universal, ideal method for quantifying hypoxia, particularly cycling hypoxia because of its complexity and heterogeneity across tumor types and individuals. Most standard imaging techniques can be modified and applied to measuring hypoxia and quantifying its effects; however, the benefits and challenges of each imaging modality makes imaging hypoxia case-dependent. In this chapter, a comprehensive overview of the preclinical and clinical methods for quantifying hypoxia is presented along with the advantages and disadvantages of each.
Collapse
|
90
|
Hatfield S, Veszeleiova K, Steingold J, Sethuraman J, Sitkovsky M. Mechanistic Justifications of Systemic Therapeutic Oxygenation of Tumors to Weaken the Hypoxia Inducible Factor 1α-Mediated Immunosuppression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1136:113-121. [PMID: 31201720 DOI: 10.1007/978-3-030-12734-3_8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Long-term studies of anti-pathogen and anti-tumor immunity have provided complementary genetic and pharmacological evidence for the immunosuppressive and immunomodulatory effects of Hypoxia-HIF-1α and adenosine-mediated suppression via the A2A adenosine receptor signaling pathway (Hypoxia-A2A-adenosinergic). This pathway is life saving when it protects inflamed tissues of vital organs from collateral damage by overactive anti-pathogen immune cells or enables the differentiation of cells of adaptive immunity. However, the Hypoxia-A2A-adenosinergic immunosuppression can also prevent tumor rejection by inhibiting the anti-tumor effects of T and NK cells. In addition, this suppressive pathway has been shown to mask tumors due to the hypoxia-HIF-α-mediated loss of MHC Class I molecules on tumor cells. It is suggested that it will be impossible to realize the full anti-tumor capacities of current cancer immunotherapies without simultaneous administration of anti-Hypoxia-A2A-Adenosinergic drugs that inactivate this tumor-protecting mechanism in hypoxic and adenosine-rich tumors.Here, we overview the supporting evidence for the conceptually novel immunotherapeutic motivation to breathe supplemental oxygen (40-60%) or to repurpose already available oxygenation agents in combination with current immunotherapies. Preclinical studies provide strong support for oxygen immunotherapy to enable much stronger tumor regression by weakening immunosuppression by A2A adenosine receptors and by the Hypoxia➔HIF-1α axis. The results of these studies emphasize the value of systemic oxygenation as clinically feasible, promising, and as a valuable tool for mechanistic investigations of tumor biology and cancer immunology. Perhaps the most effective and feasible among individual members of this novel class of anti-tumor drugs are oxygenation agents.
Collapse
Affiliation(s)
- Stephen Hatfield
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA, USA
| | - Katarina Veszeleiova
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA, USA
| | - Joe Steingold
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA, USA
| | - Jyothi Sethuraman
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA, USA
| | - Michail Sitkovsky
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA, USA.
| |
Collapse
|
91
|
Idorn M, Thor Straten P. Chemokine Receptors and Exercise to Tackle the Inadequacy of T Cell Homing to the Tumor Site. Cells 2018; 7:E108. [PMID: 30126117 PMCID: PMC6115859 DOI: 10.3390/cells7080108] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 01/05/2023] Open
Abstract
While cancer immune therapy has revolutionized the treatment of metastatic disease across a wide range of cancer diagnoses, a major limiting factor remains with regard to relying on adequate homing of anti-tumor effector cells to the tumor site both prior to and after therapy. Adoptive cell transfer (ACT) of autologous T cells have improved the outlook of patients with metastatic melanoma. Prior to the approval of checkpoint inhibitors, this strategy was the most promising. However, while response rates of up to 50% have been reported, this strategy is still rather crude. Thus, improvements are needed and within reach. A hallmark of the developing tumor is the evasion of immune destruction. Achieved through the recruitment of immune suppressive cell subsets, upregulation of inhibitory receptors and the development of physical and chemical barriers (such as poor vascularization and hypoxia) leaves the microenvironment a hostile destination for anti-tumor T cells. In this paper, we review the emerging strategies of improving the homing of effector T cells (TILs, CARs, TCR engineered T cells, etc.) through genetic engineering with chemokine receptors matching the chemokines of the tumor microenvironment. While this strategy has proven successful in several preclinical models of cancer and the strategy has moved into the first phase I/II clinical trial in humans, most of these studies show a modest (doubling) increase in tumor infiltration of effector cells, which raises the question of whether road blocks must be tackled for efficient homing. We propose a role for physical exercise in modulating the tumor microenvironment and preparing the platform for infiltration of anti-tumor immune cells. In a time of personalized medicine and genetic engineering, this "old tool" may be a way to augment efficacy and the depth of response to immune therapy.
Collapse
Affiliation(s)
- Manja Idorn
- Center for Cancer Immune Therapy, Herlev Gentofte University Hospital, Herlev Ringvej 75, 2730 Herlev, Denmark.
| | - Per Thor Straten
- Center for Cancer Immune Therapy, Herlev Gentofte University Hospital, Herlev Ringvej 75, 2730 Herlev, Denmark.
- Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
92
|
Abstract
Hypoxia is a common feature in solid tumors and is associated with cancer progression. The main regulators of the hypoxic response are hypoxia-inducible transcription factors (HIFs) that guide the cellular adaptation to hypoxia by gene activation. The actual oxygen sensing is performed by HIF prolyl hydroxylases (PHDs) that under normoxic conditions mark the HIF-α subunit for degradation. Cancer progression is not regulated only by the cancer cells themselves but also by the whole tumor microenvironment, which consists of cellular and extracellular components. Hypoxic conditions also affect the stromal compartment, where stromal cells are in close contact with the cancer cells. The important function of HIF in cancer cells has been shown by many animal models and described in hundreds of reviews, but less in known about PHDs and even less PHDs in stromal cells. Here, we review hypoxic signaling in tumors, mainly in the tumor stroma, with a focus on HIFs and PHDs.
Collapse
Affiliation(s)
- Anu Laitala
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark
| | - Janine T Erler
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark
| |
Collapse
|