51
|
Heng N, Gao S, Chen Y, Wang L, Li Z, Guo Y, Sheng X, Wang X, Xing K, Xiao L, Ni H, Qi X. Dietary supplementation with natural astaxanthin from Haematococcus pluvialis improves antioxidant enzyme activity, free radical scavenging ability, and gene expression of antioxidant enzymes in laying hens. Poult Sci 2021; 100:101045. [PMID: 33752070 PMCID: PMC8005829 DOI: 10.1016/j.psj.2021.101045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 01/15/2021] [Accepted: 02/04/2021] [Indexed: 10/28/2022] Open
Abstract
The objective of this study was to evaluate the effects of natural astaxanthin (ASTA) from Haematococcus pluvialis on production performance, egg quality, antioxidant enzyme activity, free radical scavenging ability, and gene expression of antioxidant enzymes in laying hens. Nongda No. 3 laying hens (n = 450) were randomly allocated to 1 of 5 dietary treatments. Each treatment had 6 replicates of 15 hens each. All birds were assigned to a corn-soybean meal-based diet containing 0, 20, 40, 80, or 160 mg/kg ASTA for 4 wk. With increasing dietary ASTA, no significant effects were observed on egg weight, feed consumption, feed efficiency, laying rate, Haugh unit, or eggshell strength. Yolk color darkened linearly with increasing dose of ASTA (P < 0.05). Glutathione peroxidase activity was improved in the kidney with dietary ASTA at levels of 40 mg/kg. Total superoxide dismutase (SOD) was significantly increased in the liver, kidney, and plasma with dietary ASTA supplementation at 40 mg/kg. With increasing dietary ASTA, the scavenging abilities of hydroxyl radicals and superoxide anions were linearly increased (P < 0.05), and the malondialdehyde content decreased linearly (P < 0.05). Compared with the control group, mRNA expression of Cu-Zn SOD (SOD1), Mn SOD (SOD2), and nuclear factor E2-related factor 2 (NRF2) in the liver and kidney was significantly increased in the 40 mg/kg ASTA group (P < 0.05). The level of GPX4 mRNA in the liver and kidney was significantly increased with ASTA supplementation at 40 and 80 mg/kg (P < 0.05). The results demonstrate that dietary ASTA improves free radical scavenging ability and antioxidant enzyme activity, which may be related in part to the upregulated mRNA expression of genes encoding antioxidant enzymes and NRF2.
Collapse
Affiliation(s)
- Nuo Heng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Shan Gao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yu Chen
- Department of Livestock and Poultry Products Testing, Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Liang Wang
- Department of Livestock and Poultry Products Testing, Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Zheng Li
- Feed Analysis Lab, Beijing Institute of Feed Control, Beijing 100012, China
| | - Yong Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xihui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Kai Xing
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Hemin Ni
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xiaolong Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
52
|
Madia VN, De Vita D, Messore A, Toniolo C, Tudino V, De Leo A, Pindinello I, Ialongo D, Saccoliti F, D’Ursi AM, Grimaldi M, Ceccobelli P, Scipione L, Di Santo R, Costi R. Analytical Characterization of an Inulin-Type Fructooligosaccharide from Root-Tubers of Asphodelusramosus L. Pharmaceuticals (Basel) 2021; 14:ph14030278. [PMID: 33808608 PMCID: PMC8003451 DOI: 10.3390/ph14030278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022] Open
Abstract
Plant-based systems continue to play a pivotal role in healthcare, and their use has been extensively documented. Asphodelus L. is a genus comprising various herbaceous species, known by the trivial name Asphodelus. These plants have been known since antiquity for both food and therapeutic uses, especially for treating several diseases associated with inflammatory and infectious skin disorders. Phytochemical studies revealed the presence of different constituents, mainly anthraquinones, triterpenoids, phenolic acids, and flavonoids. Although extensive literature has been published on these constituents, a paucity of information has been reported regarding the carbohydrate composition, such as fructans and fructan-like derivatives. The extraction of water-soluble neutral polysaccharides is commonly performed using water extraction, at times assisted by microwaves and ultrasounds. Herein, we reported the investigation of the alkaline extraction of root-tubers of Asphodelus ramosus L., analyzing the water-soluble polysaccharides obtained by precipitation from the alkaline extract and its subsequent purification by chromatography. A polysaccharide was isolated by alkaline extraction; the HPTLC study to determine its composition showed fructose as the main monosaccharide. FT-IR analysis showed the presence of an inulin-type structure, and NMR analyses allowed us to conclude that A. ramosus roots contain polysaccharide with an inulin-type fructooligosaccharide with a degree of polymerization of 7–8.
Collapse
Affiliation(s)
- Valentina Noemi Madia
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (V.N.M.); (V.T.); (A.D.L.); (I.P.); (D.I.); (L.S.); (R.D.S.); (R.C.)
| | - Daniela De Vita
- Department of Environmental Biology, “Sapienza” University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy; (D.D.V.); (C.T.)
| | - Antonella Messore
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (V.N.M.); (V.T.); (A.D.L.); (I.P.); (D.I.); (L.S.); (R.D.S.); (R.C.)
- Correspondence: ; Tel.: +39-06-4991-3965
| | - Chiara Toniolo
- Department of Environmental Biology, “Sapienza” University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy; (D.D.V.); (C.T.)
| | - Valeria Tudino
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (V.N.M.); (V.T.); (A.D.L.); (I.P.); (D.I.); (L.S.); (R.D.S.); (R.C.)
| | - Alessandro De Leo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (V.N.M.); (V.T.); (A.D.L.); (I.P.); (D.I.); (L.S.); (R.D.S.); (R.C.)
| | - Ivano Pindinello
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (V.N.M.); (V.T.); (A.D.L.); (I.P.); (D.I.); (L.S.); (R.D.S.); (R.C.)
| | - Davide Ialongo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (V.N.M.); (V.T.); (A.D.L.); (I.P.); (D.I.); (L.S.); (R.D.S.); (R.C.)
| | - Francesco Saccoliti
- D3 PharmaChemistry, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy;
| | - Anna Maria D’Ursi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, Fisciano, 84084 Salerno, Italy; (A.M.D.); (M.G.)
| | - Manuela Grimaldi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, Fisciano, 84084 Salerno, Italy; (A.M.D.); (M.G.)
| | | | - Luigi Scipione
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (V.N.M.); (V.T.); (A.D.L.); (I.P.); (D.I.); (L.S.); (R.D.S.); (R.C.)
| | - Roberto Di Santo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (V.N.M.); (V.T.); (A.D.L.); (I.P.); (D.I.); (L.S.); (R.D.S.); (R.C.)
| | - Roberta Costi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (V.N.M.); (V.T.); (A.D.L.); (I.P.); (D.I.); (L.S.); (R.D.S.); (R.C.)
| |
Collapse
|
53
|
Jiang Y, Zhou W, Zhang X, Wang Y, Yang D, Li S. Protective Effect of Blood Cora Polysaccharides on H9c2 Rat Heart Cells Injury Induced by Oxidative Stress by Activating Nrf2/HO-1 Signal Pathway. Front Nutr 2021; 8:632161. [PMID: 33738296 PMCID: PMC7960668 DOI: 10.3389/fnut.2021.632161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/10/2021] [Indexed: 01/14/2023] Open
Abstract
The protective effect of blood cora polysaccharides (BCP) on H9c2 rat heart cells under oxidative stress was explored with the use of a H9c2 cell oxidative stress model. The ability of BCP to scavenge 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 1,1-diphenyl-2-picrylhydrazyl (DPPH), and hydroxyl radicals and its reducing power were measured in vitro, indicating a more powerful antioxidant effect of BCP compared to a similar concentration of vitamin C. The cellular metabolic activity was tested through the MTT [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide] assay. Additionally, the relevant oxidation indicator level within the cell supernatant and cells was tested with reagent kits, and mRNA and protein expression levels in the cells were tested through quantitative polymerase chain reaction (qPCR) and western blot. The chemical composition of BCP was determined through high performance liquid chromatography (HPLC). The results show that compared with the normal group, the model group's cell survival rate (28.75 ± 2.56%) decreased, lactate dehydrogenase (LDH) leakage and the malondialdehyde (MDA) content increased, and superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) levels decreased. The results of qPCR and western blot show that compared with the normal group, the model group's Bcl-2 associated X protein (Bax), caspase-3, nuclear factor erythroid-2 related factor 2 (Nrf2), heme oxygenase-1 (HO-1) expression, NAD(P)H:quinoneoxidoreductase 1 (NQO1), and cytochrome c (Cyt C) decreased, and B-cell lymphoma-2 (Bcl-2) expression was increased, with significant statistical differences. Compared with the model group, the cell survival rate for each BCP-treated group increased, the LDH leakage decreased, the SOD, CAT, and GSH levels in the cells increased, the MDA content decreased, the Bax, caspase-3, Nrf2, HO-1, NQO1, and Cyt C expression was weakened, and the Bcl-2 expression was strengthened. BCP inhibited the reduction of mitochondrial membrane potential caused by H2O2 treatment. According to the component analysis, BCP mainly consist of mannitol, ribose, glucosum anhydricum, galactose, and xylose. It was observed that the Nrf2/HO-1 signaling pathway can be activated, regulated, and controlled by functional BCP to protect H9c2 cells injured by oxidative stress.
Collapse
Affiliation(s)
- Yong Jiang
- Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Wei Zhou
- Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Xin Zhang
- Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Ying Wang
- Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Dingyi Yang
- Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Shujie Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| |
Collapse
|
54
|
Yang G, Qiu H, Yu R, Xiong L, Yan Q, Wen C, Peng M. Dietary supplementation of β-glucan, inulin and emodin modulates antioxidant response and suppresses intestinal inflammation of grass carp (Ctenopharyngodon idellus). Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2020.114789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
55
|
Savych A, Marchyshyn S, Kozyr H, Yarema N. Determination of inulin in the herbal mixtures by GC-MS method. PHARMACIA 2021. [DOI: 10.3897/pharmacia.68.e55051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The herbal mixtures due to the wide range of biologically active substances can influence on various links of the pathogenetic mechanism of development of diabetes mellitus and its complications. The carbohydrates, especially inulin, deserve the particular attention through their hypoglycemic, hypolipidemic, anticholesterolemic and detoxifying activities. The aim of the study was to investigate the content of inulin in the herbal mixtures No. 3, No. 4, No. 7, No. 13 and No. 19, which are used in folk medicine for the prevention and treatment of diabetes mellitus type 2 in Ukraine. The quantity content of inulin was defined by the difference between fructose as a product of enzymatic hydrolysis and fructose, a constituent of sucrose and free fructose, taking into account the empirical factor for the conversion of fructose from inulin. The carbohydrates were separated by gas chromatography-mass spectrometry after conversion into volatile derivatives as aldononitrile acetate. According to the results, the herbal mixture No. 3 contains 458.97 mg/g of inulin, the herbal mixture No. 4 – 99.21 mg/g, the herbal mixture No. 7 – 139.93 mg/g, the herbal mixture No. 13 – 203.84 mg/g, the herbal mixture No. 19 – 359.65 mg/g. The availability of inulin and its high content in the investigated herbal mixtures due to the presence of inulin-containing medicinal plants, such as Cichorium intubus roots (mixtures No. 3 and No. 13), Taraxacum officinale roots (mixtures No. 3, No. 7 and No. 19), Arctium lappa roots (mixture No. 4), Inula helenium rhizome with roots (mixture No. 7).
Collapse
|
56
|
Medlej MK, Batoul C, Olleik H, Li S, Hijazi A, Nasser G, Maresca M, Pochat-Bohatier C. Antioxidant Activity and Biocompatibility of Fructo-Polysaccharides Extracted from a Wild Species of Ornithogalum from Lebanon. Antioxidants (Basel) 2021; 10:antiox10010068. [PMID: 33430440 PMCID: PMC7827233 DOI: 10.3390/antiox10010068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 12/25/2022] Open
Abstract
The present study aims to investigate the properties of biopolymers extracted from a Lebanese onion non edible plant. The extraction was performed under mild conditions by varying the percentage of ultra-sound (US) treatment duration to a total extraction time of 30 min (0, 50, 100% US). The extracts were characterized using FTIR, SEC, GC-MS, TGA, and DSC analyses. The composition of the extracts was determined from the total carbohydrate content and protein content measurements. The thermal analyses indicate that all samples have high thermal stability. The antioxidant activities of the extracts were investigated, using β-carotene bleaching, scavenging activity of ABTS, metal chelating ability, and total antioxidant activity tests. The results indicate that the 50% US treatment leads to the best antioxidant activity. Biocompatibility of the extracts was evaluated using hemolysis and cytotoxicity assays. The results showed that 0 and 50% US samples are not toxic to human cells, in contrary to 100% US.
Collapse
Affiliation(s)
- Mohammad Kazem Medlej
- Institut Européen des Membranes, IEM UMR 5635, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (M.K.M.); (C.B.); (S.L.)
- Platform for Research and Analysis in Environmental Sciences (PRASE), Lebanese University, Beirut, Lebanon; (A.H.); (G.N.)
| | - Cherri Batoul
- Institut Européen des Membranes, IEM UMR 5635, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (M.K.M.); (C.B.); (S.L.)
- Platform for Research and Analysis in Environmental Sciences (PRASE), Lebanese University, Beirut, Lebanon; (A.H.); (G.N.)
| | - Hamza Olleik
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France; (H.O.); (M.M.)
| | - Suming Li
- Institut Européen des Membranes, IEM UMR 5635, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (M.K.M.); (C.B.); (S.L.)
| | - Akram Hijazi
- Platform for Research and Analysis in Environmental Sciences (PRASE), Lebanese University, Beirut, Lebanon; (A.H.); (G.N.)
| | - Ghassan Nasser
- Platform for Research and Analysis in Environmental Sciences (PRASE), Lebanese University, Beirut, Lebanon; (A.H.); (G.N.)
| | - Marc Maresca
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France; (H.O.); (M.M.)
| | - Céline Pochat-Bohatier
- Institut Européen des Membranes, IEM UMR 5635, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (M.K.M.); (C.B.); (S.L.)
- Correspondence: ; Tel.: +33-467-143-327
| |
Collapse
|
57
|
Abdel-Wahhab MA, El-Nekeety AA. Mycotoxin deoxynivalenol and oxidative stress: Role of silymarin and inulin protection. Toxicology 2021. [DOI: 10.1016/b978-0-12-819092-0.00045-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
58
|
Wan X, Guo H, Liang Y, Zhou C, Liu Z, Li K, Niu F, Zhai X, Wang L. The physiological functions and pharmaceutical applications of inulin: A review. Carbohydr Polym 2020; 246:116589. [PMID: 32747248 DOI: 10.1016/j.carbpol.2020.116589] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022]
Abstract
Inulin (IN), a fructan-type plant polysaccharide, is widely found in nature. The major plant sources of IN include chicory, Jerusalem artichoke, dahlia etc. Studies have found that IN possessed a wide array of biological activities, e.g. as a prebiotic to improve the intestinal microbe environment, regulating blood sugar, regulating blood lipids, antioxidant, anticancer, immune regulation and so on. Currently, IN is widely used in the food and pharmaceutical industries. IN can be used as thickener, fat replacer, sweetener and water retaining agent in the food industry. IN also can be applied in the pharmaceutics as stabilizer, drug carrier, and auxiliary therapeutic agent for certain diseases such as constipation and diabetes. This paper reviews the physiological functions of IN and its applications in the field of pharmaceutics, analyzes its present research status and future research direction. This review will serve as a one-in-all resource for the researchers who are interested to work on IN.
Collapse
Affiliation(s)
- Xinhuan Wan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hao Guo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiyu Liang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changzheng Zhou
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zihao Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kunwei Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fengju Niu
- Shandong Institute of Traditional Chinese Medicine, Ji'nan, China
| | - Xin Zhai
- Department of Ecology and Evolution, University of Chicago, Chicago, USA
| | - Lizhu Wang
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
59
|
Chaves PFP, Adami ER, Acco A, Iacomini M, Cordeiro LMC. Chemical characterization of polysaccharides from Baccharis trimera (Less.) DC. infusion and its hepatoprotective effects. Food Res Int 2020; 136:109510. [PMID: 32846588 DOI: 10.1016/j.foodres.2020.109510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/25/2020] [Accepted: 06/28/2020] [Indexed: 12/13/2022]
Abstract
Baccharis trimera is a native medicinal plant from South America popularly known as "carqueja". Its infusion is traditionally ingested for the treatment and prevention of hepatic disorders. Up to now, only the crude aqueous extract or hydroethanolic fractions, containing the secondary metabolites, have been studied and correlated with their biological action on the liver. Here we report that an inulin type fructan is present in the B. trimera infusion and contributes to the hepatoprotective effect of the species. In vitro, inulin at 300 μg/mL, was able to scavenger 97% of the DPPH radicals. In vivo experiments showed that it protected the liver against CCl4-induced injuries. The administration of inulin at low dose of 1 mg/kg significantly reduced the blood levels of ALT, AST and ALP, reduced the lipid peroxidation and increased the catalase activity and the levels of reduced glutathione in the liver of CCl4-treated mice. Moreover, the administration of inulin at 100 mg/kg increased GSH levels in the liver of Naïve mice. No signs of toxicity were observed. Thus, inulin present in B. trimera infusion protects the liver from the oxidative stress caused by CCl4 administration and can corroborate with the hepatoprotective effects presented by the species infusion.
Collapse
Affiliation(s)
- Pedro Felipe Pereira Chaves
- Biochemistry and Molecular Biology Department, Federal University of Paraná, CP 19.046, CEP 81.531-980 Curitiba, PR, Brazil
| | - Eliana Rezende Adami
- Pharmacology Department, Federal University of Paraná, CEP 81.531-980 Curitiba, PR, Brazil
| | - Alexandra Acco
- Pharmacology Department, Federal University of Paraná, CEP 81.531-980 Curitiba, PR, Brazil
| | - Marcello Iacomini
- Biochemistry and Molecular Biology Department, Federal University of Paraná, CP 19.046, CEP 81.531-980 Curitiba, PR, Brazil
| | - Lucimara Mach Côrtes Cordeiro
- Biochemistry and Molecular Biology Department, Federal University of Paraná, CP 19.046, CEP 81.531-980 Curitiba, PR, Brazil.
| |
Collapse
|
60
|
Preparation of Spray-Dried Functional Food: Effect of Adding Bacillus clausii Bacteria as a Co-Microencapsulating Agent on the Conservation of Resveratrol. Processes (Basel) 2020. [DOI: 10.3390/pr8070849] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The effect of bacteria (Bacillus clausii) addition on the culturability and antioxidant activity of resveratrol prepared by spray drying was studied in this work. Inulin and lactose were employed as carrying agents and their performance compared. Resveratrol microencapsulated in inulin showed the highest antioxidant activity (26%) against free radicals. The co-encapsulated materials (bacteria and resveratrol) in inulin and lactose showed similar activities (21%, and 23%, respectively) suggesting that part of resveratrol was absorbed by the bacteria. Particles showed a regular spherical morphology with smooth surfaces, and size in the micrometer range (2–25 μm). The absence of bacteria in the SEM micrographs and the culturability activity suggested the preservation of the organisms within the micro and co-microencapsulated particles. The present work proposes the preparation of a functional food with probiotic and antioxidant properties.
Collapse
|
61
|
Shang H, Zhao J, Dong X, Guo Y, Zhang H, Cheng J, Zhou H. Inulin improves the egg production performance and affects the cecum microbiota of laying hens. Int J Biol Macromol 2020; 155:1599-1609. [PMID: 31751722 DOI: 10.1016/j.ijbiomac.2019.11.137] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 12/11/2022]
Abstract
Egg production performance, egg quality, nutrient digestibility, and microbial composition as affected by dietary inulin supplementation were evaluated in laying hens. A total of 300 laying hens were divided into 5 groups and fed diets containing inulin at levels of 0 (control), 5, 10, 15 and 20 g/kg, respectively. The results showed that the 15 g/kg inulin supplementation level improved average egg weight by 2.54%, egg mass by 5.76%, and laying rate by 3.09%, and decreased the feed conversion ratio by 3.61% compared to those of the control during feeding weeks 1 to 8. Dietary inulin supplementation improved eggshell thickness, nutrient digestibility and cecum Bacteroidales_S24-7_ group abundance in the laying hens. In conclusion, dietary inulin supplementation, particularly at the level of 15 g/kg, improved the egg production performance and eggshell thickness of laying hens, mainly due to increased nutrient digestibility and selective modulations of the cecum microbial communities.
Collapse
Affiliation(s)
- Hongmei Shang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China; Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, Jilin, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Jiangchao Zhao
- Department of Animal Science, University of Arkansas, Fayetteville 72701, AR, USA
| | - Xiaoqing Dong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yang Guo
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Hexiang Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Jianglong Cheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Haizhu Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China.
| |
Collapse
|
62
|
Effects of inulin supplementation in laying hens diet on the antioxidant capacity of refrigerated stored eggs. Int J Biol Macromol 2020; 153:1047-1057. [DOI: 10.1016/j.ijbiomac.2019.10.234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/12/2019] [Accepted: 10/25/2019] [Indexed: 12/29/2022]
|
63
|
Chikkerur J, Samanta AK, Kolte AP, Dhali A, Roy S. Production of Short Chain Fructo-oligosaccharides from Inulin of Chicory Root Using Fungal Endoinulinase. Appl Biochem Biotechnol 2020; 191:695-715. [PMID: 31845198 DOI: 10.1007/s12010-019-03215-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/05/2019] [Indexed: 11/28/2022]
Abstract
Short chain fructo-oligosaccharides (SC-FOS) are the potential prebiotics possessing diverse applications in both food and feed industries. The present study was aimed to extract inulin from chicory roots followed by its conversion into SC-FOS applying endoinulinase from Aspergillus fumigatus. The inulin was extracted from chicory roots through boiling in hot water, followed by precipitation with ethanol at room temperature or freezing condition. Maximum yield (42%) of inulin was obtained with three volumes of chilled absolute ethanol at room temperature. HPLC analysis of enzymatic hydrolysate detected kestose (GF2), nystose (GF3), and other FOS having higher degree of polymerization (DP). Maximum GF2 (5.79 mg/ml) was detected at temperature 50 °C, pH 5.5 with 2 U of enzyme dose after 6 h of hydrolysis; while maximum GF3 (4.33 mg/ml) was recorded at 60 °C, 5.5 pH with 0.5 U enzyme dose after 2 h of hydrolysis. Nevertheless, complete hydrolysis of inulin was noticed with 99% total oligosaccharide yield at 55 °C, 5.5 pH with 0.5 U enzyme dose after 4 h of hydrolysis with negligible amount of mono- and di-saccharides. The present finding demonstrated the process for higher yield of inulin from chicory roots followed by its conversion into SC-FOS applying fungal endoinulinase.
Collapse
Affiliation(s)
- Jayaram Chikkerur
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur road, Bengaluru, Karnataka, 560030, India
- Department of Microbiology, School of Sciences, Jain University, Bengaluru, Karnataka, 560011, India
| | - Ashis Kumar Samanta
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur road, Bengaluru, Karnataka, 560030, India.
- SAARC Agriculture Centre, BARC Complex, Farmgate, Dhaka, 1215, Bangladesh.
| | - Atul P Kolte
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur road, Bengaluru, Karnataka, 560030, India
| | - Arindam Dhali
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur road, Bengaluru, Karnataka, 560030, India
| | - Sohini Roy
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur road, Bengaluru, Karnataka, 560030, India
- Department of Microbiology, School of Sciences, Jain University, Bengaluru, Karnataka, 560011, India
| |
Collapse
|
64
|
Guaragni A, Boiago MM, Bottari NB, Morsch VM, Lopes TF, Schafer da Silva A. Feed supplementation with inulin on broiler performance and meat quality challenged with Clostridium perfringens: Infection and prebiotic impacts. Microb Pathog 2019; 139:103889. [PMID: 31765767 DOI: 10.1016/j.micpath.2019.103889] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/21/2019] [Indexed: 11/27/2022]
Abstract
Following the ban on the use of antibiotics as growth enhancers in 2006 by the European Union, alternative products have been sought. Inulin is a prebiotic that is found naturally in many plants. It reaches large intestine of animals unaltered, where it is fermented by beneficial bacteria that comprise the intestinal microbiota. Inulin also inhibits the growth of pathogenic bacteria. Consumption of inulin in chicken diets improves performance at slaughter; nevertheless, little is known about its effects on poultry meat. Therefore, the objective of this study was to evaluate the effects of inulin on feeding of broilers challenged with Clostridium perfringens (4.0 × 108 CFU) and its consequences on the quality of breast meat. Four hundred Cobb male broiler chickens were distributed in a completely randomized design with four treatments and five replications each, as follows: T1: control treatment, basal diet (DB); T2: DB + 21-day challenged with C. perfringens orally; T3: DB + 21-day challenge with C. perfringens orally +25 mg/kg inulin; T4: DB + 21-day challenge by C. perfringens orally +4.4 mg/kg lincomycin. There were no significant differences between treatments in terms of pH, color parameters (L, a*, b*), water retention capacity, or shear force cooking weight loss. However, we found that the meat of poultry challenged by C. perfringens showed lower lipid peroxidation and increased activity of the antioxidant enzymes SOD and CAT, suggesting improvement in antioxidant profile. Nitrate/nitrite levels were lower with T3 and higher with T4 than with T1. We therefore conclude that inulin can replace antibiotics as growth promoters without causing changes in the physicochemical characteristics of meat. C. perfringens challenge caused lower lipid peroxidation and stimulated antioxidant responses in breast meat.
Collapse
Affiliation(s)
- Andréia Guaragni
- Department of Science and Food Technology, University of Santa Catarina State, Pinhalzinho, SC, Brazil
| | - Marcel Manente Boiago
- Department of Animal Science, University of Santa Catarina State, Chapecó, SC, Brazil.
| | - Nathieli B Bottari
- Graduate Program in Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Vera Maria Morsch
- Graduate Program in Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Thalison F Lopes
- Graduate Program in Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Aleksandro Schafer da Silva
- Department of Animal Science, University of Santa Catarina State, Chapecó, SC, Brazil; Graduate Program in Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, Brazil.
| |
Collapse
|
65
|
Dobrange E, Peshev D, Loedolff B, Van den Ende W. Fructans as Immunomodulatory and Antiviral Agents: The Case of Echinacea. Biomolecules 2019; 9:E615. [PMID: 31623122 PMCID: PMC6843407 DOI: 10.3390/biom9100615] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022] Open
Abstract
Throughout history, medicinal purposes of plants have been studied, documented, and acknowledged as an integral part of human healthcare systems. The development of modern medicine still relies largely on this historical knowledge of the use and preparation of plants and their extracts. Further research into the human microbiome highlights the interaction between immunomodulatory responses and plant-derived, prebiotic compounds. One such group of compounds includes the inulin-type fructans (ITFs), which may also act as signaling molecules and antioxidants. These multifunctional compounds occur in a small proportion of plants, many of which have recognized medicinal properties. Echinacea is a well-known medicinal plant and products derived from it are sold globally for its cold- and flu-preventative and general health-promoting properties. Despite the well-documented phytochemical profile of Echinacea plants and products, little research has looked into the possible role of ITFs in these products. This review aims to highlight the occurrence of ITFs in Echinacea derived formulations and the potential role they play in immunomodulation.
Collapse
Affiliation(s)
- Erin Dobrange
- Laboratory of Molecular Plant Biology, KU Leuven, 3001 Leuven, Belgium.
| | - Darin Peshev
- Laboratory of Molecular Plant Biology, KU Leuven, 3001 Leuven, Belgium.
| | - Bianke Loedolff
- Institute for Plant Biotechnology, Department of Genetics, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa.
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, 3001 Leuven, Belgium.
| |
Collapse
|
66
|
Golonka R, Yeoh BS, Vijay-Kumar M. Dietary Additives and Supplements Revisited: The Fewer, the Safer for Liver and Gut Health. ACTA ACUST UNITED AC 2019; 5:303-316. [PMID: 32864300 DOI: 10.1007/s40495-019-00187-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose of Review The supplementation of dietary additives into processed foods has exponentially increased in the past few decades. Similarly, the incidence rates of various diseases, including metabolic syndrome, gut dysbiosis and hepatocarcinogenesis, have been elevating. Current research reveals that there is a positive association between food additives and these pathophysiological diseases. This review highlights the research published within the past 5 years that elucidate and update the effects of dietary supplements on liver and intestinal health. Recent Findings Some of the key findings include: enterocyte dysfunction of fructose clearance causes non-alcoholic fatty liver disease (NAFLD); non-caloric sweeteners are hepatotoxic; dietary emulsifiers instigate gut dysbiosis and hepatocarcinogenesis; and certain prebiotics can induce cholestatic hepatocellular carcinoma (HCC) in gut dysbiotic mice. Overall, multiple reports suggest that the administration of purified, dietary supplements could cause functional damage to both the liver and gut. Summary The extraction of bioactive components from natural resources was considered a brilliant method to modulate human health. However, current research highlights that such purified components may negatively affect individuals with microbiotal dysbiosis, resulting in a deeper break of the symbiotic relationship between the host and gut microbiota, which can lead to repercussions on gut and liver health. Therefore, ingestion of these dietary additives should not go without some caution!
Collapse
Affiliation(s)
- Rachel Golonka
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Beng San Yeoh
- Graduate Program in Immunology & Infectious Disease, Pennsylvania State University, University Park, PA 16802, USA
| | - Matam Vijay-Kumar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA.,Department of Medical Microbiology & Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
67
|
Tripodo G, Mandracchia D. Inulin as a multifaceted (active) substance and its chemical functionalization: From plant extraction to applications in pharmacy, cosmetics and food. Eur J Pharm Biopharm 2019; 141:21-36. [PMID: 31102649 DOI: 10.1016/j.ejpb.2019.05.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 01/09/2023]
Abstract
This review is aimed at critically discussing a collection of research papers on Inulin (INU) in different scientific fields. The first part of this work gives an overview on the main characteristics of native INU, including production, applications in food or cosmetics industries, its benefits on human health as well as its main nutraceutical properties. A particular focus is dedicated to the extraction techniques and to the specific effects of INU on intestinal microbiota. Other than in food industry, the number of INU applications increases dramatically in the pharmaceutical field especially due to its simple chemical functionalization. Thus, aim of this review is also to give practical examples of chemical functionalization performed on INU also by including critical comments based on the direct experience of the Authors. With this aim, a full paragraph is dedicated to practical chemical experiences useful to reduce the efforts when establishing new experimental conditions. Moreover, the pharmaceutical technology is also taken in special consideration by underlining the aspects leading at the preparation of formulations based on INU. At the end of the review, a critical paragraph is intended to feed the scientists' curiosity on this versatile polysaccharide.
Collapse
Affiliation(s)
- Giuseppe Tripodo
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Delia Mandracchia
- Department of Pharmacy-Drug Science, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
68
|
Zhu Z, Huang Y, Luo X, Wu Q, He J, Li S, Barba FJ. Modulation of lipid metabolism and colonic microbial diversity of high-fat-diet C57BL/6 mice by inulin with different chain lengths. Food Res Int 2019; 123:355-363. [PMID: 31284986 DOI: 10.1016/j.foodres.2019.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/28/2022]
Abstract
The physicochemical properties, biological functions and microbial degradation of inulins differ according to their degree of polymerization. However, the relationship between inulin activities and its effect on gut microbiota remains unknown. In this study, high fat diet with inulin (1 or 5 g/kg·bw), either with short or long chains groups were administered to different groups of mice (n = 10) for 10 weeks in order to investigate the effect of inulin on the microbial diversity of the animals. Litchi pericarp procyanidins (LPPC) were used for comparison purposes. Furthermore, the lipid metabolism and key regulator genes in mice were determined. The results indicated that natural inulin (1 g/kg·bw) ingestion reduced the body weight of fat mice between week 6-9. Glutathione peroxidase (GSH-Px) activity in liver was remarkably higher after adding long chain inulin (5 g/kg·bw) compared to high-fat-diet mice. Moreover, high dose of natural inulin regulated malondialdehyde and advanced glycation end-products levels in mice liver. Likewise, the high dose of short-chain inulin increased sterol response element binding protein 1 (SREBP-1), β-Hydroxy β-methylglutaryl-CoA (HMG-CoA) and ATP-binding cassette transporter A1 (ABCA1) genetic expression. A significant change on the abundance of six genera in gut microbial profile suggested that inulin has the ability to modulate the lipid metabolism regardless of chain length, mainly due to its impact on colon microbiota variety.
Collapse
Affiliation(s)
- Zhenzhou Zhu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuqi Huang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiao Luo
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qian Wu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jingren He
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuyi Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain.
| |
Collapse
|
69
|
Wu XQ, Yu JX, Xu H, Huang XS. WITHDRAWN: Purification and characterization of a bifunctional fructan: Fructan 6G-fructosyl transferase from garlic (Allium sativum). Food Chem 2019. [DOI: 10.1016/j.foodchem.2019.05.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
70
|
Gupta N, Jangid AK, Pooja D, Kulhari H. Inulin: A novel and stretchy polysaccharide tool for biomedical and nutritional applications. Int J Biol Macromol 2019; 132:852-863. [PMID: 30926495 DOI: 10.1016/j.ijbiomac.2019.03.188] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/25/2022]
Abstract
Inulin (INU) is a flexible, fructan type polysaccharide carbohydrate, mainly obtained from the root of chicory. It is a water-soluble dietary fibre and has been recently approved by the Food and Drug Administration for improving the nutritional values of food products. INU is not digested or fermented in the initial portion of the human digestive system and directly reaches on the distal portion of the colon. Owing to this superior property, INU is specially applied to develop specific carrier systems for localized delivery of drugs related to colon diseases. Several studies proved that the fermented bi-products of INU help the growth and stimulating activity of colon bacteria e.g. Bifidobacterium and Lactobacilli. INU also has several inherent therapeutic effects like reduction of tumor risks, help in calcium ion absorption, anti-inflammatory, antioxidant properties etc. Apart from these, INU has been used for different pharmaceutical applications as a drug carrier, stabilizing agent, cryoprotectant, and an alternative to fats and sugars. Here, we review the applications of INU in different areas of biomedical science, look back into the nutritional effects of INU and outline various routes of administration of INU-based formulations.
Collapse
Affiliation(s)
- Nitin Gupta
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Ashok Kumar Jangid
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Deep Pooja
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India.
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India.
| |
Collapse
|
71
|
Cao X, Tang J, Fu Z, Feng Z, Wang S, Yang M, Wu C, Wang Y, Yang X. Identification and Characterization of a Novel Gene-encoded Antioxidant Peptide from Odorous Frog Skin. Protein Pept Lett 2019; 26:160-169. [DOI: 10.2174/0929866525666181114153136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 11/22/2022]
Abstract
Background:
Amphibian skin plays an essential role in protecting organisms from harmful
external factors such as UV radiation. How amphibians protect themselves from reactive oxygen
species following long-term sun exposure is an important and interesting question. Amphibian
skins possess a novel antioxidant system composed of various Antioxidant Peptides (AOPs), which
maintain redox homeostasis. However, only a few AOPs have been identified so far.
Methods:
Using combinational methods of peptidomics and genomics, we characterized a novel
gene-encoded antioxidant peptide (herein named OA-VI12) from Odorrana andersonii skin secretions,
which was produced by the post-translational processing of a 59-residue prepropeptide. The
amino acid sequence of the OA-V112 was 'VIPFLACRPLGL', with a molecular mass of 1298.6 Da
and no observed post-transcriptional modifications. Functional analysis demonstrated that OA-VI12
was capable of scavenging ABTS+, DPPH, NO and decreasing the Fe3+ production.
Results:
We determined that the C7 amino acid was responsible for ABTS+ and Fe3+ scavenging,
activities, the F4, C7, and P9 amino acids were crucial for DPPH scavenging activity, and the P9
amino acid was responsible for NO scavenging activity. Unlike several other amphibian peptides,
OA-VI12 did not accelerate wound healing in a full-thickness skin-wound mouse model and did not
demonstrate direct microbial killing. Here, we identified and named a novel gene-encoded antioxidant
peptide from the skin secretions of an odorous frog species, which may assist in the development
of potential antioxidant candidates.
Conclusion:
This study may help improve our understanding of the molecular basis of amphibians’
adaptation to environments experiencing long-term UV radiation.
Collapse
Affiliation(s)
- Xiaoqing Cao
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Jing Tang
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Zhe Fu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Zhuo Feng
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Siyuan Wang
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming 650500, Yunnan, China
| | - Meifeng Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Chunyun Wu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming 650500, Yunnan, China
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| |
Collapse
|
72
|
Characterization and prebiotic activity in vitro of inulin-type fructan from Codonopsis pilosula roots. Carbohydr Polym 2018; 193:212-220. [DOI: 10.1016/j.carbpol.2018.03.065] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 11/19/2022]
|