51
|
Porcine Epidemic Diarrhea Virus and the Host Innate Immune Response. Pathogens 2020; 9:pathogens9050367. [PMID: 32403318 PMCID: PMC7281546 DOI: 10.3390/pathogens9050367] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a swine enteropathogenic coronavirus (CoV), is the causative agent of porcine epidemic diarrhea (PED). PED causes lethal watery diarrhea in piglets, which has led to substantial economic losses in many countries and is a great threat to the global swine industry. Interferons (IFNs) are major cytokines involved in host innate immune defense, which induce the expression of a broad range of antiviral effectors that help host to control and antagonize viral infections. PEDV infection does not elicit a robust IFN response, and some of the mechanisms used by the virus to counteract the host innate immune response have been unraveled. PEDV evades the host innate immune response by two main strategies including: (1) encoding IFN antagonists to disrupt innate immune pathway, and (2) hiding its viral RNA to avoid the exposure of viral RNA to immune sensors. This review highlights the immune evasion mechanisms employed by PEDV, which provides insights for the better understanding of PEDV-host interactions and developing effective vaccines and antivirals against CoVs.
Collapse
|
52
|
Khailany RA, Safdar M, Ozaslan M. Genomic characterization of a novel SARS-CoV-2. GENE REPORTS 2020; 19:100682. [PMID: 32300673 PMCID: PMC7161481 DOI: 10.1016/j.genrep.2020.100682] [Citation(s) in RCA: 488] [Impact Index Per Article: 97.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/05/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
A new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) associated with human to human transmission and extreme human sickness has been as of late announced from the city of Wuhan in China. Our objectives were to mutation analysis between recently reported genomes at various times and locations and to characterize the genomic structure of SARS-CoV-2 using bioinformatics programs. Information on the variation of viruses is of considerable medical and biological impacts on the prevention, diagnosis, and therapy of infectious diseases. To understand the genomic structure and variations of the SARS-CoV-2. The study analyzed 95 SARS-CoV-2 complete genome sequences available in GenBank, National MicrobiologyData Center (NMDC) and NGDC Genome Warehouse from December-2019 until 05 of April-2020. The genomic signature analysis demonstrates that a strong association between the time of sample collection, location of sample and accumulation of genetic diversity. We found 116 mutations, the three most common mutations were 8782C>T in ORF1ab gene, 28144T>C in ORF8 gene and 29095C>T in the N gene. The mutations might affect the severity and spread of the SARS-CoV-2. The finding heavily supports an intense requirement for additional prompt, inclusive investigations that combine genomic detail, epidemiological information and graph records of the clinical features of patients with COVID-19.
Collapse
Key Words
- BLAST, Basic Local Alignment Search Tool
- CDC, Centers of Disease Control and Prevention
- COVID-19
- COVID-19, Coronavirus disease 2019
- EMBOSS, The European Molecular Biology Open Software Suite
- Genomic characterization
- MERS, Middle East Respiratory Syndrome
- Mutation
- NCBI, National Center for Biotechnology Information
- NGDC, National Genomics Data Center
- NMDC, National Microbiology Data Center
- NSP, nonstructural protein
- ORF, Open Reading Frame
- SARS-CoV-2
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- UTR, Untranslated region
- WHO, World Health Organization
Collapse
Affiliation(s)
- Rozhgar A Khailany
- Department of Biology, College of Science, University of Salahaddin-Erbil, Iraq
| | - Muhamad Safdar
- Department of Breeding and Genetics, Cholistan University of Veterinary & Animal Sciences, Bahawalpur 63100, Pakistan
| | - Mehmet Ozaslan
- Department of Biology, Gaziantep University, 27310 Gaziantep, Turkey
| |
Collapse
|
53
|
Hu F, Zhang Y, Li M, Bai Y, Zhang X. Expression and role of HEPIS in breast cancer. Oncol Lett 2019; 18:6648-6656. [PMID: 31788121 PMCID: PMC6865829 DOI: 10.3892/ol.2019.10993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 09/06/2019] [Indexed: 12/24/2022] Open
Abstract
Human embryo lung cellular protein interacting with severe acute respiratory syndrome-coronavirus nonstructural protein-10 (HEPIS) is expressed at varying levels in multiple organs and breast cancer cell lines. However, its expression and function in breast cancer cells has yet to be studied. Therefore, RNA in situ hybridization was used to detect the expression of HEPIS in breast cancer and cancer-adjacent normal breast tissue. HEPIS was expressed at lower levels in breast cancer compared with that in adjacent normal tissue. Subcellular localization of HEPIS was mainly found in the cytoplasm of HeLa cells. Cell Counting Kit-8 and 5-ethynyl-2′-deoxyuridine cell proliferation assays were used to investigate the role of HEPIS in cancer cell proliferation. Ectopic expression of HEPIS in MCF-7 cells was found to significantly inhibit cell proliferation. In contrast, knockdown of HEPIS by RNA interference exhibited the opposite effect. Furthermore, a dual-luciferase reporter assay was performed and HEPIS overexpression specifically inhibited the activity of the NF-κB reporter gene. Results of the gene chip assay revealed that 2,231 genes were differentially expressed in HEPIS-overexpressing cells. Results of the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that these genes were enriched in the ‘mitogen-activated protein kinase signaling pathway’, ‘JAK-STAT signaling pathway’ and ‘focal adhesion’. Reverse transcription-quantitative PCR was used to confirm the expression levels of the differentially expressed genes interleukin 2 receptor subunit α (IL2RA), interferon α and β receptor subunit 2 (IFNAR2) and IFα8 (IFNA8). In conclusion, the results of the present study indicated that HEPIS may function as a potential repressor of breast cancer.
Collapse
Affiliation(s)
- Fen Hu
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Yunfeng Zhang
- Department of Life Sciences, Tangshan Normal University, Tangshan, Hebei 063000, P.R. China
| | - Mi Li
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Yun Bai
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Xiujun Zhang
- College of Psychology, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| |
Collapse
|
54
|
Banerjee A, Baid K, Mossman K. Molecular Pathogenesis of Middle East Respiratory Syndrome (MERS) Coronavirus. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019; 6:139-147. [PMID: 32226718 PMCID: PMC7100557 DOI: 10.1007/s40588-019-00122-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012 and is listed in the World Health Organization's blueprint of priority diseases that need immediate research. Camels are reservoirs of this virus, and the virus spills over into humans through direct contact with camels. Human-to-human transmission and travel-associated cases have been identified as well. Limited studies have characterized the molecular pathogenesis of MERS-CoV. Most studies have used ectopic expression of viral proteins to characterize MERS-CoV and its ability to modulate antiviral responses in human cells. Studies with live virus are limited, largely due to the requirement of high containment laboratories. In this review, we have summarized current studies on MERS-CoV molecular pathogenesis and have mentioned some recent strategies that are being developed to control MERS-CoV infection. RECENT FINDINGS Multiple antiviral molecules with the potential to inhibit MERS-CoV infection by disrupting virus-receptor interactions are being developed and tested. Although human vaccine candidates are still being developed, a candidate camel vaccine is being tested for efficacy. Combination of supportive treatment with interferon and antivirals is also being explored. SUMMARY New antiviral molecules that inhibit MERS-CoV and host cell receptor interaction may become available in the future. Additional studies are required to identify and characterize the pathogenesis of MERS-CoV EMC/2012 and other circulating strains. An effective MERS-CoV vaccine, for humans and/or camels, along with an efficient combination antiviral therapy may help us prevent future MERS cases.
Collapse
Affiliation(s)
- Arinjay Banerjee
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8 Canada
| | - Kaushal Baid
- Department of Biochemistry and Biomedical Sciences, McMaster Immunology Research Center, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8 Canada
| | - Karen Mossman
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8 Canada
- Department of Biochemistry and Biomedical Sciences, McMaster Immunology Research Center, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8 Canada
| |
Collapse
|
55
|
Hu F, Zhang Y. Expression profile and promoter analysis of HEPIS. Exp Ther Med 2018; 15:569-575. [PMID: 29399063 DOI: 10.3892/etm.2017.5374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 08/01/2017] [Indexed: 02/01/2023] Open
Abstract
Human embryo lung cellular protein interacting with severe acute respiratory syndrome-coronavirus nonstructural protein-10 (HEPIS) is a novel transcriptional repressor, the expression profile and promoter activity of which have not been well studied. In the present study, in situ hybridization of RNA was used to study differential HEPIS expression levels in different types of cancer and normal tissues. A total of six truncated lengths of the HEPIS promoter regulatory sequences were cloned into the pGL3-basic vector, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and dual luciferase reporter assays were performed. The results of RT-qPCR demonstrated that HEPIS expression levels differed across four breast cancer cell lines. The results of the dual luciferase reporter assays revealed that the activities of the reporter gene fragments spanning -1334/+373, -1203/+373, -1060/+373 and -899/+373 bp were higher compared with the reporter gene fragments spanning -759/+373 and -279/+373 bp. A search of the transcription factor database TRANSFAC identified numerous octamer transcription factor-1 (OCT-1), nuclear factor (NF)-κB and C-JUN transcription factor binding sites located on the HEPIS promoter (pHEPIS). Furthermore, the results revealed that mutations of the OCT-1 (-1236/-1223 bp), NF-κB (-1186/-1176 bp) and C-JUN (-856/-846 bp) sites on the human pHEPIS resulted in a decrease in luciferase activity. A chromatin immunoprecipitation assay revealed that OCT-1, NF-κB and C-JUN bound to pHEPIS in a site-dependent manner at the basal state. The TRANSFAC database was used to analyze the pHEPIS of multiple species and several activator protein-1, NF-κB and OCT-1 transcription factor binding sites were predicted. In conclusion, the results of the present study suggest that HEPIS is expressed at different levels in multiple organs and breast cancer cell lines. Furthermore, these findings indicate that OCT-1, NF-κB and C-JUN transcription factors are associated with transcriptional regulation of the HEPIS gene.
Collapse
Affiliation(s)
- Fen Hu
- Department of Biological Information, College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Yunfeng Zhang
- Department of Life Sciences, Tangshan Normal University, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
56
|
Neuman BW. Bioinformatics and functional analyses of coronavirus nonstructural proteins involved in the formation of replicative organelles. Antiviral Res 2016; 135:97-107. [PMID: 27743916 PMCID: PMC7113682 DOI: 10.1016/j.antiviral.2016.10.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/23/2016] [Accepted: 10/12/2016] [Indexed: 12/13/2022]
Abstract
Replication of eukaryotic positive-stranded RNA viruses is usually linked to the presence of membrane-associated replicative organelles. The purpose of this review is to discuss the function of proteins responsible for formation of the coronavirus replicative organelle. This will be done by identifying domains that are conserved across the order Nidovirales, and by summarizing what is known about function and structure at the level of protein domains. Bioinformatics reveals a new domain-level map of coronavirus nsp3-nsp6. Domain-level protein variability is a tool for functional annotation. Ten nsp3 domains are conserved in all known coronaviruses. Review of the role of the nsp5 main protease in RNA synthesis.
Collapse
Affiliation(s)
- Benjamin W Neuman
- University of Reading, School of Biological Sciences, RG6 6AH, United Kingdom; College of STEM, Texas A&M University-Texarkana, Texarkana, TX 75503, USA.
| |
Collapse
|
57
|
Abstract
Coronaviruses are animal and human pathogens that can cause lethal zoonotic infections like SARS and MERS. They have polycistronic plus-stranded RNA genomes and belong to the order Nidovirales, a diverse group of viruses for which common ancestry was inferred from the common principles underlying their genome organization and expression, and from the conservation of an array of core replicase domains, including key RNA-synthesizing enzymes. Coronavirus genomes (~ 26–32 kilobases) are the largest RNA genomes known to date and their expansion was likely enabled by acquiring enzyme functions that counter the commonly high error frequency of viral RNA polymerases. The primary functions that direct coronavirus RNA synthesis and processing reside in nonstructural protein (nsp) 7 to nsp16, which are cleavage products of two large replicase polyproteins translated from the coronavirus genome. Significant progress has now been made regarding their structural and functional characterization, stimulated by technical advances like improved methods for bioinformatics and structural biology, in vitro enzyme characterization, and site-directed mutagenesis of coronavirus genomes. Coronavirus replicase functions include more or less universal activities of plus-stranded RNA viruses, like an RNA polymerase (nsp12) and helicase (nsp13), but also a number of rare or even unique domains involved in mRNA capping (nsp14, nsp16) and fidelity control (nsp14). Several smaller subunits (nsp7–nsp10) act as crucial cofactors of these enzymes and contribute to the emerging “nsp interactome.” Understanding the structure, function, and interactions of the RNA-synthesizing machinery of coronaviruses will be key to rationalizing their evolutionary success and the development of improved control strategies.
Collapse
Affiliation(s)
- E J Snijder
- Leiden University Medical Center, Leiden, The Netherlands.
| | - E Decroly
- Aix-Marseille Université, AFMB UMR 7257, Marseille, France; CNRS, AFMB UMR 7257, Marseille, France
| | - J Ziebuhr
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
58
|
Chen Y, Guo D. Molecular mechanisms of coronavirus RNA capping and methylation. Virol Sin 2016; 31:3-11. [PMID: 26847650 PMCID: PMC7091378 DOI: 10.1007/s12250-016-3726-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 01/25/2016] [Indexed: 12/17/2022] Open
Abstract
The 5′-cap structures of eukaryotic mRNAs are important for RNA stability, pre-mRNA splicing, mRNA export, and protein translation. Many viruses have evolved mechanisms for generating their own cap structures with methylation at the N7 position of the capped guanine and the ribose 2′-Oposition of the first nucleotide, which help viral RNAs escape recognition by the host innate immune system. The RNA genomes of coronavirus were identified to have 5′-caps in the early 1980s. However, for decades the RNA capping mechanisms of coronaviruses remained unknown. Since 2003, the outbreak of severe acute respiratory syndrome coronavirus has drawn increased attention and stimulated numerous studies on the molecular virology of coronaviruses. Here, we review the current understanding of the mechanisms adopted by coronaviruses to produce the 5′-cap structure and methylation modification of viral genomic RNAs.![]()
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430070, China.
| | - Deyin Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430070, China.
| |
Collapse
|
59
|
Extensive Positive Selection Drives the Evolution of Nonstructural Proteins in Lineage C Betacoronaviruses. J Virol 2016; 90:3627-39. [PMID: 26792741 DOI: 10.1128/jvi.02988-15] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/12/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Middle East respiratory syndrome-related coronavirus (MERS-CoV) spreads to humans via zoonotic transmission from camels. MERS-CoV belongs to lineage C of betacoronaviruses (betaCoVs), which also includes viruses isolated from bats and hedgehogs. A large portion of the betaCoV genome consists of two open reading frames (ORF1a and ORF1b) that are translated into polyproteins. These are cleaved by viral proteases to generate 16 nonstructural proteins (nsp1 to nsp16) which compose the viral replication-transcription complex. We investigated the evolution of ORF1a and ORF1b in lineage C betaCoVs. Results indicated widespread positive selection, acting mostly on ORF1a. The proportion of positively selected sites in ORF1a was much higher than that previously reported for the surface-exposed spike protein. Selected sites were unevenly distributed, with nsp3 representing the preferential target. Several pairs of coevolving sites were also detected, possibly indicating epistatic interactions; most of these were located in nsp3. Adaptive evolution at nsp3 is ongoing in MERS-CoV strains, and two selected sites (G720 and R911) were detected in the protease domain. While position 720 is variable in camel-derived viruses, suggesting that the selective event does not represent a specific adaptation to humans, the R911C substitution was observed only in human-derived MERS-CoV isolates, including the viral strain responsible for the recent South Korean outbreak. It will be extremely important to assess whether these changes affect host range or other viral phenotypes. More generally, data herein indicate that CoV nsp3 represents a major selection target and that nsp3 sequencing should be envisaged in monitoring programs and field surveys. IMPORTANCE Both severe acute respiratory syndrome coronavirus (SARS-CoV) and MERS-CoV originated in bats and spread to humans via an intermediate host. This clearly highlights the potential for coronavirus host shifting and the relevance of understanding the molecular events underlying the adaptation to new host species. We investigated the evolution of ORF1a and ORF1b in lineage C betaCoVs and in 87 sequenced MERS-CoV isolates. Results indicated widespread positive selection, stronger in ORF1a than in ORF1b. Several selected sites were found to be located in functionally relevant protein regions, and some of them corresponded to functional mutations in other coronaviruses. The proportion of selected sites we identified in ORF1a is much higher than that for the surface-exposed spike protein. This observation suggests that adaptive evolution in ORF1a might contribute to host shifts or immune evasion. Data herein also indicate that genetic diversity at nonstructural proteins should be taken into account when antiviral compounds are developed.
Collapse
|
60
|
V'kovski P, Al-Mulla H, Thiel V, Neuman BW. New insights on the role of paired membrane structures in coronavirus replication. Virus Res 2014; 202:33-40. [PMID: 25550072 PMCID: PMC7114427 DOI: 10.1016/j.virusres.2014.12.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 12/22/2022]
Abstract
Coronavirus replication is tied to formation of double-membrane organelles (DMOs). DMO-making genes are conserved across the Nidovirales. Here, we interpret recent experiments on the role and importance of coronavirus DMOs.
The replication of coronaviruses, as in other positive-strand RNA viruses, is closely tied to the formation of membrane-bound replicative organelles inside infected cells. The proteins responsible for rearranging cellular membranes to form the organelles are conserved not just among the Coronaviridae family members, but across the order Nidovirales. Taken together, these observations suggest that the coronavirus replicative organelle plays an important role in viral replication, perhaps facilitating the production or protection of viral RNA. However, the exact nature of this role, and the specific contexts under which it is important have not been fully elucidated. Here, we collect and interpret the recent experimental evidence about the role and importance of membrane-bound organelles in coronavirus replication.
Collapse
Affiliation(s)
- Philip V'kovski
- Federal Institute of Virology and Immunology, Mittelhäusern, Bern, Switzerland; Graduate School for Biomedical Sciences, University of Bern, Switzerland
| | - Hawaa Al-Mulla
- School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom; University of Baghdad, College of Science, Baghdad, Iraq
| | - Volker Thiel
- Federal Institute of Virology and Immunology, Mittelhäusern, Bern, Switzerland; Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - Benjamin W Neuman
- School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom.
| |
Collapse
|
61
|
Lehmann KC, Snijder EJ, Posthuma CC, Gorbalenya AE. What we know but do not understand about nidovirus helicases. Virus Res 2014; 202:12-32. [PMID: 25497126 PMCID: PMC7114383 DOI: 10.1016/j.virusres.2014.12.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/28/2014] [Accepted: 12/01/2014] [Indexed: 01/24/2023]
Abstract
The ubiquitous nidovirus helicase is a multi-functional enzyme of superfamily 1. Its unique N-terminal domain is most similar to the Upf1 multinuclear zinc-binding domain. It has been implicated in replication, transcription, virion biogenesis, translation and post-transcriptional viral RNA processing. Four different classes of antiviral compounds targeting the helicase have been identified.
Helicases are versatile NTP-dependent motor proteins of monophyletic origin that are found in all kingdoms of life. Their functions range from nucleic acid duplex unwinding to protein displacement and double-strand translocation. This explains their participation in virtually every metabolic process that involves nucleic acids, including DNA replication, recombination and repair, transcription, translation, as well as RNA processing. Helicases are encoded by all plant and animal viruses with a positive-sense RNA genome that is larger than 7 kb, indicating a link to genome size evolution in this virus class. Viral helicases belong to three out of the six currently recognized superfamilies, SF1, SF2, and SF3. Despite being omnipresent, highly conserved and essential, only a few viral helicases, mostly from SF2, have been studied extensively. In general, their specific roles in the viral replication cycle remain poorly understood at present. The SF1 helicase protein of viruses classified in the order Nidovirales is encoded in replicase open reading frame 1b (ORF1b), which is translated to give rise to a large polyprotein following a ribosomal frameshift from the upstream ORF1a. Proteolytic processing of the replicase polyprotein yields a dozen or so mature proteins, one of which includes a helicase. Its hallmark is the presence of an N-terminal multi-nuclear zinc-binding domain, the nidoviral genetic marker and one of the most conserved domains across members of the order. This review summarizes biochemical, structural, and genetic data, including drug development studies, obtained using helicases originating from several mammalian nidoviruses, along with the results of the genomics characterization of a much larger number of (putative) helicases of vertebrate and invertebrate nidoviruses. In the context of our knowledge of related helicases of cellular and viral origin, it discusses the implications of these results for the protein's emerging critical function(s) in nidovirus evolution, genome replication and expression, virion biogenesis, and possibly also post-transcriptional processing of viral RNAs. Using our accumulated knowledge and highlighting gaps in our data, concepts and approaches, it concludes with a perspective on future research aimed at elucidating the role of helicases in the nidovirus replication cycle.
Collapse
Affiliation(s)
- Kathleen C Lehmann
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric J Snijder
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Clara C Posthuma
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alexander E Gorbalenya
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russia.
| |
Collapse
|
62
|
Menachery VD, Debbink K, Baric RS. Coronavirus non-structural protein 16: evasion, attenuation, and possible treatments. Virus Res 2014; 194:191-9. [PMID: 25278144 PMCID: PMC4260984 DOI: 10.1016/j.virusres.2014.09.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 12/15/2022]
Abstract
Identifies components required for CoV 2′O-MTase activity including structural motifs and interaction partners. Demonstrates attenuation of NSP16 mutants in multiple CoV strains. Defines innate immune components including MDA5 and IFIT proteins that mediate the attenuation of 2′O-MTase CoV mutants. Provides approaches to exploit 2′O-MTase pathways for antiviral treatment of CoVs and other viruses.
The recent emergence of Middle East Respiratory Syndrome Coronavirus (MERS-CoV), nearly a decade after the Severe Acute Respiratory Syndrome (SARS) CoV, highlights the importance of understanding and developing therapeutic treatment for current and emergent CoVs. This manuscript explores the role of NSP16, a 2′O-methyl-transferase (2′O-MTase), in CoV infection and the host immune response. The review highlights conserved motifs, required interaction partners, as well as the attenuation of NSP16 mutants, and restoration of these mutants in specific immune knockouts. Importantly, the work also identifies a number of approaches to exploit this understanding for therapeutic treatment and the data clearly illustrate the importance of NSP16 2′O-MTase activity for CoV infection and pathogenesis.
Collapse
Affiliation(s)
- Vineet D Menachery
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Kari Debbink
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
63
|
Bouvet M, Lugari A, Posthuma CC, Zevenhoven JC, Bernard S, Betzi S, Imbert I, Canard B, Guillemot JC, Lécine P, Pfefferle S, Drosten C, Snijder EJ, Decroly E, Morelli X. Coronavirus Nsp10, a critical co-factor for activation of multiple replicative enzymes. J Biol Chem 2014; 289:25783-96. [PMID: 25074927 PMCID: PMC4162180 DOI: 10.1074/jbc.m114.577353] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The RNA-synthesizing machinery of the severe acute respiratory syndrome
Coronavirus (SARS-CoV) is composed of 16 non-structural
proteins (nsp1–16) encoded by ORF1a/1b. The 148-amino acid nsp10 subunit
contains two zinc fingers and is known to interact with both nsp14 and nsp16,
stimulating their respective 3′-5′ exoribonuclease and
2′-O-methyltransferase activities. Using
alanine-scanning mutagenesis, in cellulo bioluminescence
resonance energy transfer experiments, and in vitro pulldown
assays, we have now identified the key residues on the nsp10 surface that
interact with nsp14. The functional consequences of mutations introduced at
these positions were first evaluated biochemically by monitoring nsp14
exoribonuclease activity. Disruption of the nsp10-nsp14 interaction abrogated
the nsp10-driven activation of the nsp14 exoribonuclease. We further showed that
the nsp10 surface interacting with nsp14 overlaps with the surface involved in
the nsp10-mediated activation of nsp16
2′-O-methyltransferase activity, suggesting that nsp10
is a major regulator of SARS-CoV replicase function. In line with this notion,
reverse genetics experiments supported an essential role of the nsp10 surface
that interacts with nsp14 in SARS-CoV replication, as several mutations that
abolished the interaction in vitro yielded a
replication-negative viral phenotype. In contrast, mutants in which the
nsp10-nsp16 interaction was disturbed proved to be crippled but viable. These
experiments imply that the nsp10 surface that interacts with nsp14 and nsp16 and
possibly other subunits of the viral replication complex may be a target for the
development of antiviral compounds against pathogenic coronaviruses.
Collapse
Affiliation(s)
- Mickaël Bouvet
- From the Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France, CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - Adrien Lugari
- Cancer Research Center of Marseille (CRCM), CNRS UMR7258, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille Université, F-13009 Marseille, France
| | - Clara C Posthuma
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, P. O. Box 9600, 2300RC Leiden, The Netherlands
| | - Jessika C Zevenhoven
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, P. O. Box 9600, 2300RC Leiden, The Netherlands
| | - Stéphanie Bernard
- Cancer Research Center of Marseille (CRCM), CNRS UMR7258, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille Université, F-13009 Marseille, France
| | - Stéphane Betzi
- Cancer Research Center of Marseille (CRCM), CNRS UMR7258, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille Université, F-13009 Marseille, France
| | - Isabelle Imbert
- From the Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France, CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - Bruno Canard
- From the Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France, CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - Jean-Claude Guillemot
- From the Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France, CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - Patrick Lécine
- CIRI, INSERM U1111, CNRS UMR5308, Université Lyon 1, ENS de Lyon, 69007 Lyon, France, and
| | - Susanne Pfefferle
- Institute of Virology, University of Bonn Medical Center, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Christian Drosten
- Institute of Virology, University of Bonn Medical Center, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Eric J Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, P. O. Box 9600, 2300RC Leiden, The Netherlands
| | - Etienne Decroly
- From the Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France, CNRS, AFMB UMR 7257, 13288 Marseille, France,
| | - Xavier Morelli
- Cancer Research Center of Marseille (CRCM), CNRS UMR7258, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille Université, F-13009 Marseille, France,
| |
Collapse
|
64
|
Competitive fitness in coronaviruses is not correlated with size or number of double-membrane vesicles under reduced-temperature growth conditions. mBio 2014; 5:e01107-13. [PMID: 24692638 PMCID: PMC3977362 DOI: 10.1128/mbio.01107-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Positive-stranded viruses synthesize their RNA in membrane-bound organelles, but it is not clear how this benefits the virus or the host. For coronaviruses, these organelles take the form of double-membrane vesicles (DMVs) interconnected by a convoluted membrane network. We used electron microscopy to identify murine coronaviruses with mutations in nsp3 and nsp14 that replicated normally while producing only half the normal amount of DMVs under low-temperature growth conditions. Viruses with mutations in nsp5 and nsp16 produced small DMVs but also replicated normally. Quantitative reverse transcriptase PCR (RT-PCR) confirmed that the most strongly affected of these, the nsp3 mutant, produced more viral RNA than wild-type virus. Competitive growth assays were carried out in both continuous and primary cells to better understand the contribution of DMVs to viral fitness. Surprisingly, several viruses that produced fewer or smaller DMVs showed a higher fitness than wild-type virus at the reduced temperature, suggesting that larger and more numerous DMVs do not necessarily confer a competitive advantage in primary or continuous cell culture. For the first time, this directly demonstrates that replication and organelle formation may be, at least in part, studied separately during infection with positive-stranded RNA virus. IMPORTANCE The viruses that cause severe acute respiratory syndrome (SARS), poliomyelitis, and hepatitis C all replicate in double-membrane vesicles (DMVs). The big question about DMVs is why they exist in the first place. In this study, we looked at thousands of infected cells and identified two coronavirus mutants that made half as many organelles as normal and two others that made typical numbers but smaller organelles. Despite differences in DMV size and number, all four mutants replicated as efficiently as wild-type virus. To better understand the relative importance of replicative organelles, we carried out competitive fitness experiments. None of these viruses was found to be significantly less fit than wild-type, and two were actually fitter in tests in two kinds of cells. This suggests that viruses have evolved to have tremendous plasticity in the ability to form membrane-associated replication complexes and that large and numerous DMVs are not exclusively associated with efficient coronavirus replication.
Collapse
|
65
|
Subissi L, Imbert I, Ferron F, Collet A, Coutard B, Decroly E, Canard B. SARS-CoV ORF1b-encoded nonstructural proteins 12-16: replicative enzymes as antiviral targets. Antiviral Res 2014; 101:122-30. [PMID: 24269475 PMCID: PMC7113864 DOI: 10.1016/j.antiviral.2013.11.006] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 10/22/2013] [Accepted: 11/11/2013] [Indexed: 12/17/2022]
Abstract
The SARS (severe acute respiratory syndrome) pandemic caused ten years ago by the SARS-coronavirus (SARS-CoV) has stimulated a number of studies on the molecular biology of coronaviruses. This research has provided significant new insight into many mechanisms used by the coronavirus replication-transcription complex (RTC). The RTC directs and coordinates processes in order to replicate and transcribe the coronavirus genome, a single-stranded, positive-sense RNA of outstanding length (∼27-32kilobases). Here, we review the up-to-date knowledge on SARS-CoV replicative enzymes encoded in the ORF1b, i.e., the main RNA-dependent RNA polymerase (nsp12), the helicase/triphosphatase (nsp13), two unusual ribonucleases (nsp14, nsp15) and RNA-cap methyltransferases (nsp14, nsp16). We also review how these enzymes co-operate with other viral co-factors (nsp7, nsp8, and nsp10) to regulate their activity. These last ten years of research on SARS-CoV have considerably contributed to unravel structural and functional details of one of the most fascinating replication/transcription machineries of the RNA virus world. This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses".
Collapse
Affiliation(s)
- Lorenzo Subissi
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 - CNRS et Aix-Marseille Université, ESIL Case 925, 13288 Marseille, France
| | - Isabelle Imbert
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 - CNRS et Aix-Marseille Université, ESIL Case 925, 13288 Marseille, France
| | - François Ferron
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 - CNRS et Aix-Marseille Université, ESIL Case 925, 13288 Marseille, France
| | - Axelle Collet
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 - CNRS et Aix-Marseille Université, ESIL Case 925, 13288 Marseille, France
| | - Bruno Coutard
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 - CNRS et Aix-Marseille Université, ESIL Case 925, 13288 Marseille, France
| | - Etienne Decroly
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 - CNRS et Aix-Marseille Université, ESIL Case 925, 13288 Marseille, France
| | - Bruno Canard
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 - CNRS et Aix-Marseille Université, ESIL Case 925, 13288 Marseille, France.
| |
Collapse
|
66
|
Yang X, Chen X, Bian G, Tu J, Xing Y, Wang Y, Chen Z. Proteolytic processing, deubiquitinase and interferon antagonist activities of Middle East respiratory syndrome coronavirus papain-like protease. J Gen Virol 2013; 95:614-626. [PMID: 24362959 DOI: 10.1099/vir.0.059014-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The emerging Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe pulmonary disease in humans and represents the second example of a highly pathogenic coronavirus (CoV) following severe acute respiratory syndrome coronavirus (SARS-CoV). Genomic studies revealed that two viral proteases, papain-like protease (PLpro) and 3C-like protease (3CLpro), process the polyproteins encoded by the MERS-CoV genomic RNA. We previously reported that SARS-CoV PLpro acts as both deubiquitinase (DUB) and IFN antagonist, but the function of the MERS-CoV PLpro was poorly understood. In this study, we characterized MERS-CoV PLpro, which is a protease and can recognize and process the cleavage sites (CS) of nsp1-2, nsp2-3 and nsp3-4. The LXGG consensus cleavage sites in the N terminus of pp1a/1ab, which is generally essential for CoV PLpro-mediated processing, were also characterized in MERS-CoV. MERS-CoV PLpro, like human SARS-CoV PLpro and NL63-CoV PLP2, is a viral deubiquitinating enzyme. It acts on both K48- and K63-linked ubiquitination and ISG15-linked ISGylation. We confirmed that MERS-CoV PLpro acts as an IFN antagonist through blocking the phosphorylation and nuclear translocation of IFN regulatory factor 3 (IRF3). These findings indicate that MERS-CoV PLpro acts as a viral DUB and suppresses production of IFN-β by an interfering IRF3-mediated signalling pathway, in addition to recognizing and processing the CS at the N terminus of replicase polyprotein to release the non-structural proteins. The characterization of proteolytic processing, DUB and IFN antagonist activities of MERS-CoV PLpro would reveal the interactions between MERS-CoV and its host, and be applicable to develop strategies targeting PLpro for the effective control of MERS-CoV infection.
Collapse
Affiliation(s)
- Xingxing Yang
- Anhui Medical University, Hefei, Anhui Province 230032, PR China.,Division of Infection and Immunity, Department of Electromagnetic and Laser Biology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Xiaojuan Chen
- Division of Infection and Immunity, Department of Electromagnetic and Laser Biology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Guangxing Bian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Jian Tu
- Australian School of Advanced Medicine, Macquarie University, Sydney, NSW 2109, Australia
| | - Yaling Xing
- Division of Infection and Immunity, Department of Electromagnetic and Laser Biology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Yayun Wang
- Division of Infection and Immunity, Department of Electromagnetic and Laser Biology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Zhongbin Chen
- Anhui Medical University, Hefei, Anhui Province 230032, PR China.,Division of Infection and Immunity, Department of Electromagnetic and Laser Biology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| |
Collapse
|
67
|
Neuman BW, Chamberlain P, Bowden F, Joseph J. Atlas of coronavirus replicase structure. Virus Res 2013; 194:49-66. [PMID: 24355834 PMCID: PMC7114488 DOI: 10.1016/j.virusres.2013.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/03/2013] [Accepted: 12/05/2013] [Indexed: 12/13/2022]
Abstract
Complete and up to date coverage of replicase protein structures for SARS-CoV. Discusses SARS-CoV structure in the context of other coronavirus structures. Summarizes data from a variety of structural methods to illuminate protein function. Uses models and predictions to fill gaps in the SARS-CoV structure. Discusses the high percentage of novel protein folds among SARS-CoV proteins.
The international response to SARS-CoV has produced an outstanding number of protein structures in a very short time. This review summarizes the findings of functional and structural studies including those derived from cryoelectron microscopy, small angle X-ray scattering, NMR spectroscopy, and X-ray crystallography, and incorporates bioinformatics predictions where no structural data is available. Structures that shed light on the function and biological roles of the proteins in viral replication and pathogenesis are highlighted. The high percentage of novel protein folds identified among SARS-CoV proteins is discussed.
Collapse
Affiliation(s)
| | | | - Fern Bowden
- School of Biological Sciences, University of Reading, Reading, UK
| | | |
Collapse
|
68
|
Chimeric exchange of coronavirus nsp5 proteases (3CLpro) identifies common and divergent regulatory determinants of protease activity. J Virol 2013; 87:12611-8. [PMID: 24027335 DOI: 10.1128/jvi.02050-13] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Human coronaviruses (CoVs) such as severe acute respiratory syndrome CoV (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV) cause epidemics of severe human respiratory disease. A conserved step of CoV replication is the translation and processing of replicase polyproteins containing 16 nonstructural protein domains (nsp's 1 to 16). The CoV nsp5 protease (3CLpro; Mpro) processes nsp's at 11 cleavage sites and is essential for virus replication. CoV nsp5 has a conserved 3-domain structure and catalytic residues. However, the intra- and intermolecular determinants of nsp5 activity and their conservation across divergent CoVs are unknown, in part due to challenges in cultivating many human and zoonotic CoVs. To test for conservation of nsp5 structure-function determinants, we engineered chimeric betacoronavirus murine hepatitis virus (MHV) genomes encoding nsp5 proteases of human and bat alphacoronaviruses and betacoronaviruses. Exchange of nsp5 proteases from HCoV-HKU1 and HCoV-OC43, which share the same genogroup, genogroup 2a, with MHV, allowed for immediate viral recovery with efficient replication albeit with impaired fitness in direct competition with wild-type MHV. Introduction of MHV nsp5 temperature-sensitive mutations into chimeric HKU1 and OC43 nsp5 proteases resulted in clear differences in viability and temperature-sensitive phenotypes compared with MHV nsp5. These data indicate tight genetic linkage and coevolution between nsp5 protease and the genomic background and identify differences in intramolecular networks regulating nsp5 function. Our results also provide evidence that chimeric viruses within coronavirus genogroups can be used to test nsp5 determinants of function and inhibition in common isogenic backgrounds and cell types.
Collapse
|
69
|
Hilgenfeld R, Peiris M. From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses. Antiviral Res 2013; 100:286-95. [PMID: 24012996 PMCID: PMC7113673 DOI: 10.1016/j.antiviral.2013.08.015] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 08/18/2013] [Indexed: 12/13/2022]
Abstract
We review the outbreak of severe acute respiratory syndrome (SARS) in 2002–2003 and antiviral treatment of patients. We review efforts towards the rational design of anti-SARS therapeutics. We present a comprehensive list of all available 3-dimensional structures of coronavirus proteins. We discuss the emerging MERS coronavirus and review the few antivirals available for treatment. We critically discuss which lessons have been learned from SARS and which are yet to be learned.
This article introduces a series of invited papers in Antiviral Research marking the 10th anniversary of the outbreak of severe acute respiratory syndrome (SARS), caused by a novel coronavirus that emerged in southern China in late 2002. Until that time, coronaviruses had not been recognized as agents causing severe disease in humans, hence, the emergence of the SARS-CoV came as a complete surprise. Research during the past ten years has revealed the existence of a diverse pool of coronaviruses circulating among various bat species and other animals, suggesting that further introductions of highly pathogenic coronaviruses into the human population are not merely probable, but inevitable. The recent emergence of another coronavirus causing severe disease, Middle East respiratory syndrome (MERS), in humans, has made it clear that coronaviruses pose a major threat to human health, and that more research is urgently needed to elucidate their replication mechanisms, identify potential drug targets, and develop effective countermeasures. In this series, experts in many different aspects of coronavirus replication and disease will provide authoritative, up-to-date reviews of the following topics: – clinical management and infection control of SARS; – reservoir hosts of coronaviruses; – receptor recognition and cross-species transmission of SARS-CoV; – SARS-CoV evasion of innate immune responses; – structures and functions of individual coronaviral proteins; – anti-coronavirus drug discovery and development; and – the public health legacy of the SARS outbreak. Each article will be identified in the last line of its abstract as belonging to the series “From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses.”
Collapse
Affiliation(s)
- Rolf Hilgenfeld
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; German Center for Infection Research (DZIF), University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| | | |
Collapse
|
70
|
Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles. mBio 2013; 4:mBio.00524-13. [PMID: 23943763 PMCID: PMC3747587 DOI: 10.1128/mbio.00524-13] [Citation(s) in RCA: 367] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Coronaviruses (CoV), like other positive-stranded RNA viruses, redirect and rearrange host cell membranes for use as part of the viral genome replication and transcription machinery. Specifically, coronaviruses induce the formation of double-membrane vesicles in infected cells. Although these double-membrane vesicles have been well characterized, the mechanism behind their formation remains unclear, including which viral proteins are responsible. Here, we use transfection of plasmid constructs encoding full-length versions of the three transmembrane-containing nonstructural proteins (nsps) of the severe acute respiratory syndrome (SARS) coronavirus to examine the ability of each to induce double-membrane vesicles in tissue culture. nsp3 has membrane disordering and proliferation ability, both in its full-length form and in a C-terminal-truncated form. nsp3 and nsp4 working together have the ability to pair membranes. nsp6 has membrane proliferation ability as well, inducing perinuclear vesicles localized around the microtubule organizing center. Together, nsp3, nsp4, and nsp6 have the ability to induce double-membrane vesicles that are similar to those observed in SARS coronavirus-infected cells. This activity appears to require the full-length form of nsp3 for action, as double-membrane vesicles were not seen in cells coexpressing the C-terminal truncation nsp3 with nsp4 and nsp6. Although the majority of infections caused by coronaviruses in humans are relatively mild, the SARS outbreak of 2002 to 2003 and the emergence of the human coronavirus Middle Eastern respiratory syndrome (MERS-CoV) in 2012 highlight the ability of these viruses to cause severe pathology and fatality. Insight into the molecular biology of how coronaviruses take over the host cell is critical for a full understanding of any known and possible future outbreaks caused by these viruses. Additionally, since membrane rearrangement is a tactic used by all known positive-sense single-stranded RNA viruses, this work adds to that body of knowledge and may prove beneficial in the development of future therapies not only for human coronavirus infections but for other pathogens as well.
Collapse
|
71
|
Abstract
The small size of RNA virus genomes (2-to-32 kb) has been attributed to high mutation rates during replication, which is thought to lack proof-reading. This paradigm is being revisited owing to the discovery of a 3'-to-5' exoribonuclease (ExoN) in nidoviruses, a monophyletic group of positive-stranded RNA viruses with a conserved genome architecture. ExoN, a homolog of canonical DNA proof-reading enzymes, is exclusively encoded by nidoviruses with genomes larger than 20 kb. All other known non-segmented RNA viruses have smaller genomes. Here we use evolutionary analyses to show that the two- to three-fold expansion of the nidovirus genome was accompanied by a large number of replacements in conserved proteins at a scale comparable to that in the Tree of Life. To unravel common evolutionary patterns in such genetically diverse viruses, we established the relation between genomic regions in nidoviruses in a sequence alignment-free manner. We exploited the conservation of the genome architecture to partition each genome into five non-overlapping regions: 5' untranslated region (UTR), open reading frame (ORF) 1a, ORF1b, 3'ORFs (encompassing the 3'-proximal ORFs), and 3' UTR. Each region was analyzed for its contribution to genome size change under different models. The non-linear model statistically outperformed the linear one and captured >92% of data variation. Accordingly, nidovirus genomes were concluded to have reached different points on an expansion trajectory dominated by consecutive increases of ORF1b, ORF1a, and 3'ORFs. Our findings indicate a unidirectional hierarchical relation between these genome regions, which are distinguished by their expression mechanism. In contrast, these regions cooperate bi-directionally on a functional level in the virus life cycle, in which they predominantly control genome replication, genome expression, and virus dissemination, respectively. Collectively, our findings suggest that genome architecture and the associated region-specific division of labor leave a footprint on genome expansion and may limit RNA genome size.
Collapse
|
72
|
Lauber C, Goeman JJ, Parquet MDC, Thi Nga P, Snijder EJ, Morita K, Gorbalenya AE. The footprint of genome architecture in the largest genome expansion in RNA viruses. PLoS Pathog 2013; 9:e1003500. [PMID: 23874204 PMCID: PMC3715407 DOI: 10.1371/journal.ppat.1003500] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 06/02/2013] [Indexed: 12/16/2022] Open
Abstract
The small size of RNA virus genomes (2-to-32 kb) has been attributed to high mutation rates during replication, which is thought to lack proof-reading. This paradigm is being revisited owing to the discovery of a 3'-to-5' exoribonuclease (ExoN) in nidoviruses, a monophyletic group of positive-stranded RNA viruses with a conserved genome architecture. ExoN, a homolog of canonical DNA proof-reading enzymes, is exclusively encoded by nidoviruses with genomes larger than 20 kb. All other known non-segmented RNA viruses have smaller genomes. Here we use evolutionary analyses to show that the two- to three-fold expansion of the nidovirus genome was accompanied by a large number of replacements in conserved proteins at a scale comparable to that in the Tree of Life. To unravel common evolutionary patterns in such genetically diverse viruses, we established the relation between genomic regions in nidoviruses in a sequence alignment-free manner. We exploited the conservation of the genome architecture to partition each genome into five non-overlapping regions: 5' untranslated region (UTR), open reading frame (ORF) 1a, ORF1b, 3'ORFs (encompassing the 3'-proximal ORFs), and 3' UTR. Each region was analyzed for its contribution to genome size change under different models. The non-linear model statistically outperformed the linear one and captured >92% of data variation. Accordingly, nidovirus genomes were concluded to have reached different points on an expansion trajectory dominated by consecutive increases of ORF1b, ORF1a, and 3'ORFs. Our findings indicate a unidirectional hierarchical relation between these genome regions, which are distinguished by their expression mechanism. In contrast, these regions cooperate bi-directionally on a functional level in the virus life cycle, in which they predominantly control genome replication, genome expression, and virus dissemination, respectively. Collectively, our findings suggest that genome architecture and the associated region-specific division of labor leave a footprint on genome expansion and may limit RNA genome size.
Collapse
Affiliation(s)
- Chris Lauber
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jelle J. Goeman
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - Maria del Carmen Parquet
- Department of Virology, Institute of Tropical Medicine, Global COE Program, Nagasaki University, Nagasaki, Japan
| | - Phan Thi Nga
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Eric J. Snijder
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine, Global COE Program, Nagasaki University, Nagasaki, Japan
| | - Alexander E. Gorbalenya
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
73
|
Structure-function analysis of severe acute respiratory syndrome coronavirus RNA cap guanine-N7-methyltransferase. J Virol 2013; 87:6296-305. [PMID: 23536667 DOI: 10.1128/jvi.00061-13] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coronaviruses possess a cap structure at the 5' ends of viral genomic RNA and subgenomic RNAs, which is generated through consecutive methylations by virally encoded guanine-N7-methyltransferase (N7-MTase) and 2'-O-methyltransferase (2'-O-MTase). The coronaviral N7-MTase is unique for its physical linkage with an exoribonuclease (ExoN) harbored in nonstructural protein 14 (nsp14) of coronaviruses. In this study, the structure-function relationships of the N7-MTase were analyzed by deletion and site-directed mutagenesis of severe acute respiratory syndrome coronavirus (SARS-CoV) nsp14. The results showed that the ExoN domain is closely involved in the activity of the N7-MTase, suggesting that coronavirus N7-MTase is different from all other viral N7-MTases, which are separable from other structural domains located in the same polypeptide. Two of the 12 critical residues identified to be essential for the N7-MTase were located at the N terminus of the core ExoN domain, reinforcing a role of the ExoN domain in the N7-MTase activity of nsp14. The other 10 critical residues were distributed throughout the N7-MTase domain but localized mainly in the S-adenosyl-l-methionine (SAM)-binding pocket and key structural elements of the MTase fold of nsp14. The sequence motif DxGxPxA (amino acids [aa] 331 to 338) was identified as the key part of the SAM-binding site. These results provide insights into the structure and functional mechanisms of coronaviral nsp14 N7-MTase.
Collapse
|
74
|
Abstract
Coronaviruses are positive-strand RNA viruses that are important infectious agents of both animals and humans. A common feature among positive-strand RNA viruses is their assembly of replication-transcription complexes in association with cytoplasmic membranes. Upon infection, coronaviruses extensively rearrange cellular membranes into organelle-like replicative structures that consist of double-membrane vesicles and convoluted membranes to which the nonstructural proteins involved in RNA synthesis localize. Double-stranded RNA, presumably functioning as replicative intermediate during viral RNA synthesis, has been detected at the double-membrane vesicle interior. Recent studies have provided new insights into the assembly and functioning of the coronavirus replicative structures. This review will summarize the current knowledge on the biogenesis of the replicative structures, the membrane anchoring of the replication-transcription complexes, and the location of viral RNA synthesis, with particular focus on the dynamics of the coronavirus replicative structures and individual replication-associated proteins.
Collapse
|
75
|
Beachboard DC, Lu X, Baker SC, Denison MR. Murine hepatitis virus nsp4 N258T mutants are not temperature-sensitive. Virology 2012; 435:210-3. [PMID: 23099203 PMCID: PMC3804408 DOI: 10.1016/j.virol.2012.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/15/2012] [Accepted: 10/01/2012] [Indexed: 11/25/2022]
Abstract
Coronavirus replicase nsp4 is critical for virus-induced membrane modifications. An nsp4 mutant (N258T) of murine hepatitis virus (MHV) has been reported to be temperature-sensitive (ts) and to alter membrane targeting. We engineered and recovered all four possible codon variants of N258T in the cloned MHV-A59 background. All mutant viruses demonstrated impaired replication compared to wildtype MHV, but no nsp4 N258T mutant virus was ts, and all variants colocalized with viral protein markers for replication complexes, but not with markers for mitochondria. This study emphasizes that complete genome sequencing may be necessary, even with directed and confirmed reverse genetic mutants.
Collapse
Affiliation(s)
- Dia C Beachboard
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
76
|
Abstract
Coronaviruses induce in infected cells the formation of replicative structures, consisting of double-membrane vesicles (DMVs) and convoluted membranes, where viral RNA synthesis supposedly takes place and to which the nonstructural proteins (nsp's) localize. Double-stranded RNA (dsRNA), the presumed intermediate in RNA synthesis, is localized to the DMV interior. However, as pores connecting the DMV interior with the cytoplasm have not been detected, it is unclear whether RNA synthesis occurs at these same sites. Here, we studied coronavirus RNA synthesis by feeding cells with a uridine analogue, after which nascent RNAs were detected using click chemistry. Early in infection, nascent viral RNA and nsp's colocalized with or occurred adjacent to dsRNA foci. Late in infection, the correlation between dsRNA dots, then found dispersed throughout the cytoplasm, and nsp's and nascent RNAs was less obvious. However, foci of nascent RNAs were always found to colocalize with the nsp12-encoded RNA-dependent RNA polymerase. These results demonstrate the feasibility of detecting viral RNA synthesis by using click chemistry and indicate that dsRNA dots do not necessarily correspond with sites of active viral RNA synthesis. Rather, late in infection many DMVs may harbor dsRNA molecules that are no longer functioning as intermediates in RNA synthesis.
Collapse
|
77
|
Temperature-sensitive mutants and revertants in the coronavirus nonstructural protein 5 protease (3CLpro) define residues involved in long-distance communication and regulation of protease activity. J Virol 2012; 86:4801-10. [PMID: 22345451 DOI: 10.1128/jvi.06754-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Positive-strand RNA virus genomes are translated into polyproteins that are processed by viral proteases to yield functional intermediate and mature proteins. Coronaviruses (CoVs) carry genes that encode an nsp5 protease (also known as 3CLpro or Mpro) responsible for 11 maturation cleavages. The nsp5 structure contains two chymotrypsin-like domains (D1 and D2) and a unique domain (D3), and forms functional dimers. However, little is known of interactions or communication across the structure of the protease during nsp5 activity. Using reverse genetic mutagenesis of the CoV murine hepatitis virus (MHV) nsp5, we identified a new temperature-sensitive (ts) mutation in D2 of nsp5 (Ser133Ala) and confirmed a ts residue in D3 (Phe219Leu). Both D2-tsS133A and D3-tsF219L were impaired for viral replication and nsp5-mediated polyprotein processing at the nonpermissive temperature. Passage of tsS133A and tsF219L at the nonpermissive temperature resulted in emergence of multiple second-site suppressor mutations, singly and in combinations. Among the second-site mutations, a D2 His134Tyr change suppressed the ts phenotype of D2-tsS133A and D3-tsF219L, as well as the previously reported D2-tsV148A. Analysis of multiple CoV nsp5 structures, and alignment of nonredundant nsp5 primary sequences, demonstrated that ts and suppressor residues are not conserved across CoVs and are physically distant (>10 Å) from each other, from catalytic and substrate-binding residues, and from the nsp5 dimer interface. These findings demonstrate that long-distance communication pathways between multiple residues and domains of nsp5 play a significant role in nsp5 activity and viral replication, suggesting possible novel targets for non-active site inhibitors of nsp5.
Collapse
|
78
|
Nonstructural proteins 7 and 8 of feline coronavirus form a 2:1 heterotrimer that exhibits primer-independent RNA polymerase activity. J Virol 2012; 86:4444-54. [PMID: 22318142 DOI: 10.1128/jvi.06635-11] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Nonstructural proteins 7 and 8 of severe acute respiratory syndrome coronavirus (SARS-CoV) have previously been shown by X-ray crystallography to form an 8:8 hexadecamer. In addition, it has been demonstrated that N-terminally His(6)-tagged SARS-CoV Nsp8 is a primase able to synthesize RNA oligonucleotides with a length of up to 6 nucleotides. We present here the 2.6-Å crystal structure of the feline coronavirus (FCoV) Nsp7:Nsp8 complex, which is a 2:1 heterotrimer containing two copies of the α-helical Nsp7 with conformational differences between them, and one copy of Nsp8 that consists of an α/β domain and a long-α-helix domain. The same stoichiometry is found for the Nsp7:Nsp8 complex in solution, as demonstrated by chemical cross-linking, size exclusion chromatography, and small-angle X-ray scattering. Furthermore, we show that FCoV Nsp8, like its SARS-CoV counterpart, is able to synthesize short oligoribonucleotides of up to 6 nucleotides in length when carrying an N-terminal His(6) tag. Remarkably, the same protein harboring the sequence GPLG instead of the His(6) tag at its N terminus exhibits a substantially increased, primer-independent RNA polymerase activity. Upon addition of Nsp7, the RNA polymerase activity is further enhanced so that RNA up to template length (67 nucleotides) can be synthesized. Further, we show that the unprocessed intermediate polyprotein Nsp7-10 of human coronavirus (HCoV) 229E is also capable of synthesizing oligoribonucleotides up to a chain length of six. These results indicate that in case of FCoV as well as of HCoV 229E, the formation of a hexadecameric Nsp7:Nsp8 complex is not necessary for RNA polymerase activity. Further, the FCoV Nsp7:Nsp8 complex functions as a noncanonical RNA polymerase capable of synthesizing RNA of up to template length.
Collapse
|
79
|
Neighborhood properties are important determinants of temperature sensitive mutations. PLoS One 2011; 6:e28507. [PMID: 22164302 PMCID: PMC3229608 DOI: 10.1371/journal.pone.0028507] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 11/09/2011] [Indexed: 02/08/2023] Open
Abstract
Temperature-sensitive (TS) mutants are powerful tools to study gene function in vivo. These mutants exhibit wild-type activity at permissive temperatures and reduced activity at restrictive temperatures. Although random mutagenesis can be used to generate TS mutants, the procedure is laborious and unfeasible in multicellular organisms. Further, the underlying molecular mechanisms of the TS phenotype are poorly understood. To elucidate TS mechanisms, we used a machine learning method–logistic regression–to investigate a large number of sequence and structure features. We developed and tested 133 features, describing properties of either the mutation site or the mutation site neighborhood. We defined three types of neighborhood using sequence distance, Euclidean distance, and topological distance. We discovered that neighborhood features outperformed mutation site features in predicting TS mutations. The most predictive features suggest that TS mutations tend to occur at buried and rigid residues, and are located at conserved protein domains. The environment of a buried residue often determines the overall structural stability of a protein, thus may lead to reversible activity change upon temperature switch. We developed TS prediction models based on logistic regression and the Lasso regularized procedure. Through a ten-fold cross-validation, we obtained the area under the curve of 0.91 for the model using both sequence and structure features. Testing on independent datasets suggested that the model predicted TS mutations with a 50% precision. In summary, our study elucidated the molecular basis of TS mutants and suggested the importance of neighborhood properties in determining TS mutations. We further developed models to predict TS mutations derived from single amino acid substitutions. In this way, TS mutants can be efficiently obtained through experimentally introducing the predicted mutations.
Collapse
|
80
|
Abstract
Coronaviruses infect many species of animals including humans, causing acute and chronic diseases. This review focuses primarily on the pathogenesis of murine coronavirus mouse hepatitis virus (MHV) and severe acute respiratory coronavirus (SARS-CoV). MHV is a collection of strains, which provide models systems for the study of viral tropism and pathogenesis in several organs systems, including the central nervous system, the liver, and the lung, and has been cited as providing one of the few animal models for the study of chronic demyelinating diseases such as multiple sclerosis. SARS-CoV emerged in the human population in China in 2002, causing a worldwide epidemic with severe morbidity and high mortality rates, particularly in older individuals. We review the pathogenesis of both viruses and the several reverse genetics systems that made much of these studies possible. We also review the functions of coronavirus proteins, structural, enzymatic, and accessory, with an emphasis on roles in pathogenesis. Structural proteins in addition to their roles in virion structure and morphogenesis also contribute significantly to viral spread in vivo and in antagonizing host cell responses. Nonstructural proteins include the small accessory proteins that are not at all conserved between MHV and SARS-CoV and the 16 conserved proteins encoded in the replicase locus, many of which have enzymatic activities in RNA metabolism or protein processing in addition to functions in antagonizing host response.
Collapse
Affiliation(s)
- Susan R Weiss
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, USA
| | | |
Collapse
|
81
|
Decroly E, Debarnot C, Ferron F, Bouvet M, Coutard B, Imbert I, Gluais L, Papageorgiou N, Sharff A, Bricogne G, Ortiz-Lombardia M, Lescar J, Canard B. Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2'-O-methyltransferase nsp10/nsp16 complex. PLoS Pathog 2011; 7:e1002059. [PMID: 21637813 PMCID: PMC3102710 DOI: 10.1371/journal.ppat.1002059] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 03/23/2011] [Indexed: 12/20/2022] Open
Abstract
Cellular and viral S-adenosylmethionine-dependent methyltransferases are involved in many regulated processes such as metabolism, detoxification, signal transduction, chromatin remodeling, nucleic acid processing, and mRNA capping. The Severe Acute Respiratory Syndrome coronavirus nsp16 protein is a S-adenosylmethionine-dependent (nucleoside-2′-O)-methyltransferase only active in the presence of its activating partner nsp10. We report the nsp10/nsp16 complex structure at 2.0 Å resolution, which shows nsp10 bound to nsp16 through a ∼930 Å2 surface area in nsp10. Functional assays identify key residues involved in nsp10/nsp16 association, and in RNA binding or catalysis, the latter likely through a SN2-like mechanism. We present two other crystal structures, the inhibitor Sinefungin bound in the S-adenosylmethionine binding pocket and the tighter complex nsp10(Y96F)/nsp16, providing the first structural insight into the regulation of RNA capping enzymes in (+)RNA viruses. A novel coronavirus emerged in 2003 and was identified as the etiological agent of the deadly disease called Severe Acute Respiratory Syndrome. This coronavirus replicates and transcribes its giant genome using sixteen non-structural proteins (nsp1-16). Viral RNAs are capped to ensure stability, efficient translation, and evading the innate immunity system of the host cell. The nsp16 protein is a RNA cap modifying enzyme only active in the presence of its activating partner nsp10. We have crystallized the nsp10/16 complex and report its crystal structure at atomic resolution. Nsp10 binds to nsp16 through a ∼930 Å2 activation surface area in nsp10, and the resulting complex exhibits RNA cap (nucleoside-2′-O)-methyltransferase activity. We have performed mutational and functional assays to identify key residues involved in catalysis and/or in RNA binding, and in the association of nsp10 to nsp16. We present two additional crystal structures, that of the known inhibitor Sinefungin bound in the SAM binding pocket, and that of a tighter complex made of the mutant nsp10(Y96F) bound to nsp16. Our study provides a basis for antiviral drug design as well as the first structural insight into the regulation of RNA capping enzymes in (+)RNA viruses.
Collapse
Affiliation(s)
- Etienne Decroly
- Centre National de la Recherche Scientifique and Université de la Méditerranée, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, Marseille, France
- * E-mail: (ED); (BC)
| | - Claire Debarnot
- Centre National de la Recherche Scientifique and Université de la Méditerranée, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, Marseille, France
| | - François Ferron
- Centre National de la Recherche Scientifique and Université de la Méditerranée, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, Marseille, France
| | - Mickael Bouvet
- Centre National de la Recherche Scientifique and Université de la Méditerranée, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, Marseille, France
| | - Bruno Coutard
- Centre National de la Recherche Scientifique and Université de la Méditerranée, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, Marseille, France
| | - Isabelle Imbert
- Centre National de la Recherche Scientifique and Université de la Méditerranée, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, Marseille, France
| | - Laure Gluais
- Centre National de la Recherche Scientifique and Université de la Méditerranée, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, Marseille, France
| | - Nicolas Papageorgiou
- Centre National de la Recherche Scientifique and Université de la Méditerranée, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, Marseille, France
| | - Andrew Sharff
- Global Phasing Ltd., Sheraton House, Castle Park, Cambridge, United Kingdom
| | - Gérard Bricogne
- Global Phasing Ltd., Sheraton House, Castle Park, Cambridge, United Kingdom
| | - Miguel Ortiz-Lombardia
- Centre National de la Recherche Scientifique and Université de la Méditerranée, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, Marseille, France
| | - Julien Lescar
- Centre National de la Recherche Scientifique and Université de la Méditerranée, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, Marseille, France
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - Bruno Canard
- Centre National de la Recherche Scientifique and Université de la Méditerranée, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, Marseille, France
- * E-mail: (ED); (BC)
| |
Collapse
|
82
|
Sola I, Mateos-Gomez PA, Almazan F, Zuñiga S, Enjuanes L. RNA-RNA and RNA-protein interactions in coronavirus replication and transcription. RNA Biol 2011; 8:237-48. [PMID: 21378501 PMCID: PMC3230552 DOI: 10.4161/rna.8.2.14991] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/17/2011] [Accepted: 01/19/2011] [Indexed: 02/07/2023] Open
Abstract
Coronavirus (CoV) RNA synthesis includes the replication of the viral genome, and the transcription of sgRNAs by a discontinuous mechanism. Both processes are regulated by RNA sequences such as the 5' and 3' untranslated regions (UTRs), and the transcription regulating sequences (TRSs) of the leader (TRS-L) and those preceding each gene (TRS-Bs). These distant RNA regulatory sequences interact with each other directly and probably through protein-RNA and protein-protein interactions involving viral and cellular proteins. By analogy to other plus-stranded RNA viruses, such as polioviruses, in which translation and replication switch involves a cellular factor (PCBP) and a viral protein (3CD) it is conceivable that in CoVs the switch between replication and transcription is also associated with the binding of proteins that are specifically recruited by the replication or transcription complexes. Complexes between RNA motifs such as TRS-L and the TRS-Bs located along the CoV genome are probably formed previously to the transcription start, and most likely promote template-switch of the nascent minus RNA to the TRS-L region. Many cellular proteins interacting with regulatory CoV RNA sequences are members of the heterogeneous nuclear ribonucleoprotein (hnRNP) family of RNA-binding proteins, involved in mRNA processing and transport, which shuttle between the nucleus and the cytoplasm. In the context of CoV RNA synthesis, these cellular ribonucleoproteins might also participate in RNA-protein complexes to bring into physical proximity TRS-L and distant TRS-B, as proposed for CoV discontinuous transcription. In this review, we summarize RNA-RNA and RNA-protein interactions that represent modest examples of complex quaternary RNA-protein structures required for the fine-tuning of virus replication. Design of chemically defined replication and transcription systems will help to clarify the nature and activity of these structures.
Collapse
Affiliation(s)
- Isabel Sola
- Department of Molecular and Cell Biology, CNB, CSIC, Cantoblanco, Madrid, Spain
| | | | | | | | | |
Collapse
|
83
|
Construction and genetic analysis of murine hepatitis virus strain A59 Nsp16 temperature sensitive mutant and the revertant virus. Virol Sin 2011; 26:19-29. [PMID: 21331887 PMCID: PMC7091325 DOI: 10.1007/s12250-011-3145-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 11/19/2010] [Indexed: 10/25/2022] Open
Abstract
Coronaviruses (CoVs) are generally associated with respiratory and enteric infections and have long been recognized as important pathogens of livestock and companion animals. Mouse hepatitis virus (MHV) is a widely studied model system for Coronavirus replication and pathogenesis. In this study, we created a MHV-A59 temperature sensitive (ts) mutant Wu"-ts18(cd) using the recombinant vaccinia reverse genetics system. Virus replication assay in 17C1-1 cells showed the plaque phenotype and replication characterization of constructed Wu"-ts18(cd) were indistinguishable from the reported ts mutant Wu"-ts18. Then we cultured the ts mutant Wu"-ts18(cd) at non-permissive temperature 39.5 °C, which "forced" the ts recombinant virus to use second-site mutation to revert from a ts to a non-ts phenotype. Sequence analysis showed most of the revertants had the same single amino acid mutation at Nsp16 position 43. The single amino acid mutation at Nsp16 position 76 or position 130 could also revert the ts mutant Wu"-ts18 (cd) to non-ts phenotype, an additional independent mutation in Nsp13 position 115 played an important role on plaque size. The results provided us with genetic information on the functional determinants of Nsp16. This allowed us to build up a more reasonable model of CoVs replication-transcription complex.
Collapse
|
84
|
Abstract
Coronaviruses infect many species of animals including humans, causing acute and chronic diseases. This review focuses primarily on the pathogenesis of murine coronavirus mouse hepatitis virus (MHV) and severe acute respiratory coronavirus (SARS-CoV). MHV is a collection of strains, which provide models systems for the study of viral tropism and pathogenesis in several organs systems, including the central nervous system, the liver, and the lung, and has been cited as providing one of the few animal models for the study of chronic demyelinating diseases such as multiple sclerosis. SARS-CoV emerged in the human population in China in 2002, causing a worldwide epidemic with severe morbidity and high mortality rates, particularly in older individuals. We review the pathogenesis of both viruses and the several reverse genetics systems that made much of these studies possible. We also review the functions of coronavirus proteins, structural, enzymatic, and accessory, with an emphasis on roles in pathogenesis. Structural proteins in addition to their roles in virion structure and morphogenesis also contribute significantly to viral spread in vivo and in antagonizing host cell responses. Nonstructural proteins include the small accessory proteins that are not at all conserved between MHV and SARS-CoV and the 16 conserved proteins encoded in the replicase locus, many of which have enzymatic activities in RNA metabolism or protein processing in addition to functions in antagonizing host response.
Collapse
Affiliation(s)
- Susan R Weiss
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, USA
| | | |
Collapse
|
85
|
Chang GH, Oliver E, Stanton I, Wilson M, Luo BJ, Lin L, Davidson A, Siddell S. Genetic analysis of murine hepatitis virus non-structural protein 16. J Gen Virol 2010; 92:122-7. [PMID: 20943891 DOI: 10.1099/vir.0.026781-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
MHV-Wüts18 is an RNA-negative, temperature-sensitive mutant of mouse coronavirus, strain murine hepatitis virus (MHV)-A59. We have previously identified the putative causal mutation of MHV-Wüts18 as a C to U transition at codon 2446 in ORF1b, which results in a substitution of proline 12 with serine in non-structural protein 16. Here, we have used a vaccinia virus-based reverse genetic system to produce a recombinant virus, inf-MHV-Wüts18((AGC)) that encodes nsp16 serine 12 with AGC rather than UCU; a difference that facilitates the isolation of second-site revertants. Sequence analysis of nine inf-MHV-Wüts18((AGC)) revertant viruses suggests that their phenotype is most probably due to the intra-molecular substitution of amino acids in nsp16. However, the revertant viruses displayed different plaque sizes and whole genome sequencing of two revertants showed that they were isogenic apart from a mutation in nsp13. These results are discussed in the context of a model of coronavirus MHV nsp16 structure.
Collapse
Affiliation(s)
- Guo-hui Chang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dongda Street, Fengtai District, Beijing 100071, PR China
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Xu L, Khadijah S, Fang S, Wang L, Tay FPL, Liu DX. The cellular RNA helicase DDX1 interacts with coronavirus nonstructural protein 14 and enhances viral replication. J Virol 2010; 84:8571-83. [PMID: 20573827 PMCID: PMC2918985 DOI: 10.1128/jvi.00392-10] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 06/03/2010] [Indexed: 02/07/2023] Open
Abstract
The involvement of host proteins in the replication and transcription of viral RNA is a poorly understood area for many RNA viruses. For coronaviruses, it was long speculated that replication of the giant RNA genome and transcription of multiple subgenomic mRNA species by a unique discontinuous transcription mechanism may require host cofactors. To search for such cellular proteins, yeast two-hybrid screening was carried out by using the nonstructural protein 14 (nsp14) from the coronavirus infectious bronchitis virus (IBV) as a bait protein, leading to the identification of DDX1, a cellular RNA helicase in the DExD/H helicase family, as a potential interacting partner. This interaction was subsequently confirmed by coimmunoprecipitation assays with cells coexpressing the two proteins and with IBV-infected cells. Furthermore, the endogenous DDX1 protein was found to be relocated from the nucleus to the cytoplasm in IBV-infected cells. In addition to its interaction with IBV nsp14, DDX1 could also interact with the nsp14 protein from severe acute respiratory syndrome coronavirus (SARS-CoV), suggesting that interaction with DDX1 may be a general feature of coronavirus nsp14. The interacting domains were mapped to the C-terminal region of DDX1 containing motifs V and VI and to the N-terminal portion of nsp14. Manipulation of DDX1 expression, either by small interfering RNA-induced knockdown or by overexpression of a mutant DDX1 protein, confirmed that this interaction may enhance IBV replication. This study reveals that DDX1 contributes to efficient coronavirus replication in cell culture.
Collapse
Affiliation(s)
- Linghui Xu
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Siti Khadijah
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Shouguo Fang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Li Wang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Felicia P. L. Tay
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Ding Xiang Liu
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
87
|
Lugari A, Betzi S, Decroly E, Bonnaud E, Hermant A, Guillemot JC, Debarnot C, Borg JP, Bouvet M, Canard B, Morelli X, Lécine P. Molecular mapping of the RNA Cap 2'-O-methyltransferase activation interface between severe acute respiratory syndrome coronavirus nsp10 and nsp16. J Biol Chem 2010; 285:33230-33241. [PMID: 20699222 PMCID: PMC2963367 DOI: 10.1074/jbc.m110.120014] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Several protein-protein interactions within the SARS-CoV proteome have been
identified, one of them being between non-structural proteins nsp10 and nsp16. In
this work, we have mapped key residues on the nsp10 surface involved in this
interaction. Alanine-scanning mutagenesis, bioinformatics, and molecular modeling
were used to identify several “hot spots,” such as Val42,
Met44, Ala71, Lys93, Gly94, and
Tyr96, forming a continuous protein-protein surface of about 830
Å2, bearing very conserved amino acids among coronaviruses.
Because nsp16 carries RNA cap 2′-O-methyltransferase
(2′O-MTase) activity only in the presence of its
interacting partner nsp10 (Bouvet, M., Debarnot, C., Imbert, I., Selisko, B.,
Snijder, E. J., Canard, B., and Decroly, E. (2010) PLoS Pathog. 6,
e1000863), functional consequences of mutations on this surface were evaluated
biochemically. Most changes that disrupted the nsp10-nsp16 interaction without
structural perturbations were shown to abrogate stimulation of nsp16 RNA cap
2′O-MTase activity. More strikingly, the Y96A mutation
abrogates stimulation of nsp16 2′O-MTase activity, whereas
Y96F overstimulates it. Thus, the nsp10-nsp16 interface may represent an attractive
target for antivirals against human and animal pathogenic coronaviruses.
Collapse
Affiliation(s)
- Adrien Lugari
- From the CNRS and Aix-Marseille Universités, IMR Laboratory (UPR 3243), Institut de Microbiologie de la Méditérannée, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Stephane Betzi
- From the CNRS and Aix-Marseille Universités, IMR Laboratory (UPR 3243), Institut de Microbiologie de la Méditérannée, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Etienne Decroly
- Architecture et Fonction des Macromolécules Biologiques, CNRS and Universités d'Aix-Marseille I et II, UMR 6098, ESIL Case 925, 13288 Marseille, France
| | - Emmanuel Bonnaud
- INSERM, UMR891, Centre de Recherche en Cancérologie de Marseille, Marseille F-13009, France; Institut Paoli-Calmettes, Marseille F-13009, France; Université Méditerranée, Marseille F-13007, France
| | - Aurélie Hermant
- INSERM, UMR891, Centre de Recherche en Cancérologie de Marseille, Marseille F-13009, France; Institut Paoli-Calmettes, Marseille F-13009, France; Université Méditerranée, Marseille F-13007, France
| | - Jean-Claude Guillemot
- Architecture et Fonction des Macromolécules Biologiques, CNRS and Universités d'Aix-Marseille I et II, UMR 6098, ESIL Case 925, 13288 Marseille, France
| | - Claire Debarnot
- Architecture et Fonction des Macromolécules Biologiques, CNRS and Universités d'Aix-Marseille I et II, UMR 6098, ESIL Case 925, 13288 Marseille, France
| | - Jean-Paul Borg
- INSERM, UMR891, Centre de Recherche en Cancérologie de Marseille, Marseille F-13009, France; Institut Paoli-Calmettes, Marseille F-13009, France; Université Méditerranée, Marseille F-13007, France
| | - Mickaël Bouvet
- Architecture et Fonction des Macromolécules Biologiques, CNRS and Universités d'Aix-Marseille I et II, UMR 6098, ESIL Case 925, 13288 Marseille, France
| | - Bruno Canard
- Architecture et Fonction des Macromolécules Biologiques, CNRS and Universités d'Aix-Marseille I et II, UMR 6098, ESIL Case 925, 13288 Marseille, France
| | - Xavier Morelli
- From the CNRS and Aix-Marseille Universités, IMR Laboratory (UPR 3243), Institut de Microbiologie de la Méditérannée, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | - Patrick Lécine
- INSERM, UMR891, Centre de Recherche en Cancérologie de Marseille, Marseille F-13009, France; Institut Paoli-Calmettes, Marseille F-13009, France; Université Méditerranée, Marseille F-13007, France.
| |
Collapse
|
88
|
Ma Y, Tong X, Xu X, Li X, Lou Z, Rao Z. Structures of the N- and C-terminal domains of MHV-A59 nucleocapsid protein corroborate a conserved RNA-protein binding mechanism in coronavirus. Protein Cell 2010; 1:688-97. [PMID: 21203940 PMCID: PMC4875274 DOI: 10.1007/s13238-010-0079-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 06/07/2010] [Indexed: 11/24/2022] Open
Abstract
Coronaviruses are the causative agent of respiratory and enteric diseases in animals and humans. One example is SARS, which caused a worldwide health threat in 2003. In coronaviruses, the structural protein N (nucleocapsid protein) associates with the viral RNA to form the filamentous nucleocapsid and plays a crucial role in genome replication and transcription. The structure of Nterminal domain of MHV N protein also implicated its specific affinity with transcriptional regulatory sequence (TRS) RNA. Here we report the crystal structures of the two proteolytically resistant N- (NTD) and C-terminal (CTD) domains of the N protein from murine hepatitis virus (MHV). The structure of NTD in two different crystal forms was solved to 1.5 Å. The higher resolution provides more detailed structural information than previous reports, showing that the NTD structure from MHV shares a similar overall and topology structure with that of SARS-CoV and IBV, but varies in its potential surface, which indicates a possible difference in RNA-binding module. The structure of CTD was solved to 2.0-Å resolution and revealed a tightly intertwined dimer. This is consistent with analytical ultracentrifugation experiments, suggesting a dimeric assembly of the N protein. The similarity between the structures of these two domains from SARS-CoV, IBV and MHV corroborates a conserved mechanism of nucleocapsid formation for coronaviruses.
Collapse
Affiliation(s)
- Yanlin Ma
- Life National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
- Graduate University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaohang Tong
- Life National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
- Graduate University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaoling Xu
- Laboratory of Structural Biology, Tsinghua University, Beijing, 100084 China
| | - Xuemei Li
- Life National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Zhiyong Lou
- Laboratory of Structural Biology, Tsinghua University, Beijing, 100084 China
| | - Zihe Rao
- Life National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
- Laboratory of Structural Biology, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
89
|
Abstract
We report an RNA-negative, temperature-sensitive (ts) mutant of Murine hepatitis virus, Bristol ts31 (MHV-Brts31), that defines a new complementation group within the MHV replicase gene locus. MHV-Brts31 has near-normal levels of RNA synthesis at the permissive temperature of 33 degrees C but is unable to synthesize viral RNA when the infection is initiated and maintained at the nonpermissive temperature of 39.5 degrees C. Sequence analysis of MHV-Brts31 RNA indicated that a single G-to-A transition at codon 1307 in open reading frame 1a, which results in a replacement of methionine-475 with isoleucine in nonstructural protein 3 (nsp3), was responsible for the ts phenotype. This conclusion was confirmed using a vaccinia virus-based reverse genetics system to produce a recombinant virus, Bristol tsc31 (MHV-Brtsc31), which has the same RNA-negative ts phenotype and complementation profile as those of MHV-Brts31. The analysis of protein synthesis in virus-infected cells showed that, at the nonpermissive temperature, MHV-Brtsc31 was not able to proteolytically process either p150, the precursor polypeptide of the replicase nonstructural proteins nsp4 to nsp10, or the replicase polyprotein pp1ab to produce nsp12. The processing of replicase polyprotein pp1a in the region of nsp1 to nsp3 was not affected. Transmission electron microscopy showed that, compared to revertant virus, the number of double-membrane vesicles in MHV-Brts31-infected cells is reduced at the nonpermissive temperature. These results identify a new cistron in the MHV replicase gene locus and show that nsp3 has an essential role in the assembly of a functional MHV replication-transcription complex.
Collapse
|
90
|
An interaction between the nucleocapsid protein and a component of the replicase-transcriptase complex is crucial for the infectivity of coronavirus genomic RNA. J Virol 2010; 84:10276-88. [PMID: 20660183 DOI: 10.1128/jvi.01287-10] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The coronavirus nucleocapsid (N) protein plays an essential role in virion assembly via interactions with the large, positive-strand RNA viral genome and the carboxy-terminal endodomain of the membrane protein (M). To learn about the functions of N protein domains in the coronavirus mouse hepatitis virus (MHV), we replaced the MHV N gene with its counterpart from the closely related bovine coronavirus (BCoV). The resulting viral mutant was severely defective, even though individual domains of the N protein responsible for N-RNA, N-M, or N-N interactions were completely interchangeable between BCoV and MHV. The lesion in the BCoV N substitution mutant could be compensated for by reverting mutations in the central, serine- and arginine-rich (SR) domain of the N protein. Surprisingly, a second class of reverting mutations were mapped to the amino terminus of a replicase subunit, nonstructural protein 3 (nsp3). A similarly defective MHV N mutant bearing an insertion of the SR region from the severe acute respiratory syndrome coronavirus N protein was rescued by the same two classes of reverting mutations. Our genetic results were corroborated by the demonstration that the expressed amino-terminal segment of nsp3 bound selectively to N protein from infected cells, and this interaction was RNA independent. Moreover, we found a direct correlation between the N-nsp3 interaction and the ability of N protein to stimulate the infectivity of transfected MHV genomic RNA (gRNA). Our results suggest a role for this previously unknown N-nsp3 interaction in the localization of genomic RNA to the replicase complex at an early stage of infection.
Collapse
|
91
|
Fang S, Shen H, Wang J, Tay FPL, Liu DX. Functional and genetic studies of the substrate specificity of coronavirus infectious bronchitis virus 3C-like proteinase. J Virol 2010; 84:7325-36. [PMID: 20444893 PMCID: PMC2898227 DOI: 10.1128/jvi.02490-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 04/24/2010] [Indexed: 11/20/2022] Open
Abstract
Coronavirus (CoV) 3C-like proteinase (3CLpro), located in nonstructural protein 5 (nsp5), processes the replicase polyproteins 1a and 1ab (pp1a and pp1ab) at 11 specific sites to produce 12 mature nonstructural proteins (nsp5 to nsp16). Structural and biochemical studies suggest that a conserved Gln residue at the P1 position is absolutely required for efficient cleavage. Here, we investigate the effects of amino acid substitution at the P1 position of 3CLpro cleavage sites of infectious bronchitis virus (IBV) on the cleavage efficiency and viral replication by in vitro cleavage assays and reverse genetic approaches. Our results demonstrated that a P1-Asn substitution at the nsp4-5/Q2779, nsp5-6/Q3086, nsp7-8/Q3462, nsp8-9/Q3672, and nsp9-10/Q3783 sites, a P1-Glu substitution at the nsp8-9/Q3672 site, and a P1-His substitution at the nsp15-16/Q6327 site were tolerated and allowed recovery of infectious mutant viruses, albeit with variable degrees of growth defects. In contrast, a P1-Asn substitution at the nsp6-7/Q3379, nsp12-13/Q4868, nsp13-14/Q5468, and nsp14-15/Q5989 sites, as well as a P1-Pro substitution at the nsp15-16/Q6327 site, abolished 3CLpro-mediated cleavage at the corresponding position and blocked the recovery of infectious viruses. Analysis of the effects of these lethal mutations on RNA synthesis suggested that processing intermediates, such as the nsp6-7, nsp12-13, nsp13-14, nsp14-15, and nsp15-16 precursors, may function in negative-stranded genomic RNA replication, whereas mature proteins may be required for subgenomic RNA (sgRNA) transcription. More interestingly, a mutant 3CLpro with either a P166S or P166L mutation was selected when an IBV infectious cDNA clone carrying the Q6327N mutation at the nsp15-16 site was introduced into cells. Either of the two mutations was proved to enhance significantly the 3CLpro-mediated cleavage efficiency at the nsp15-16 site with a P1-Asn substitution and compensate for the detrimental effects on recovery of infectious virus.
Collapse
Affiliation(s)
- Shouguo Fang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Hongyuan Shen
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jibin Wang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Felicia P. L. Tay
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Ding Xiang Liu
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
92
|
Tong X, Ma Y, Li X. Expression, crystallization and preliminary crystallographic study of mouse hepatitis virus (MHV) nucleocapsid protein C-terminal domain. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:674-6. [PMID: 20516597 PMCID: PMC2882767 DOI: 10.1107/s1744309110012492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 04/02/2010] [Indexed: 05/29/2023]
Abstract
Mouse hepatitis virus (MHV) belongs to the group II coronaviruses. The virus produces nine genes encoding 11 proteins that could be recognized as structural proteins and nonstructural proteins and are crucial for viral RNA synthesis. The nucleocapsid (N) protein, one of the structural proteins, interacts with the 30.4 kb virus genomic RNA to form the helical nucleocapsid and associates with the membrane glycoprotein via its C-terminus to stabilize virion assembly. Here, the expression and crystallization of the MHV nucleocapsid protein C-terminal domain are reported. The crystals diffracted to 2.20 A resolution and belonged to space group P422, with unit-cell parameters a = 66.6, c = 50.8 A. Assuming the presence of two molecules in the asymmetric unit, the solvent content is 43.0% (V(M) = 2.16 A(3) Da(-1)).
Collapse
Affiliation(s)
- Xiaohang Tong
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, People’s Republic of China
| | - Yanlin Ma
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, People’s Republic of China
| | - Xuemei Li
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, People’s Republic of China
| |
Collapse
|
93
|
The ubiquitin-proteasome system plays an important role during various stages of the coronavirus infection cycle. J Virol 2010; 84:7869-79. [PMID: 20484504 DOI: 10.1128/jvi.00485-10] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is a key player in regulating the intracellular sorting and degradation of proteins. In this study we investigated the role of the UPS in different steps of the coronavirus (CoV) infection cycle. Inhibition of the proteasome by different chemical compounds (i.e., MG132, epoxomicin, and Velcade) appeared to not only impair entry but also RNA synthesis and subsequent protein expression of different CoVs (i.e., mouse hepatitis virus [MHV], feline infectious peritonitis virus, and severe acute respiratory syndrome CoV). MHV assembly and release were, however, not appreciably affected by these compounds. The inhibitory effect on CoV protein expression did not appear to result from a general inhibition of translation due to induction of a cellular stress response by the inhibitors. Stress-induced phosphorylation of eukaryotic translation initiation factor 2alpha (eIF2alpha) generally results in impaired initiation of protein synthesis, but the sensitivity of MHV infection to proteasome inhibitors was unchanged in cells lacking a phosphorylatable eIF2alpha. MHV infection was affected not only by inhibition of the proteasome but also by interfering with protein ubiquitination. Viral protein expression was reduced in cells expressing a temperature-sensitive ubiquitin-activating enzyme E1 at the restrictive temperature, as well as in cells in which ubiquitin was depleted by using small interfering RNAs. Under these conditions, the susceptibility of the cells to virus infection was, however, not affected, excluding an important role of ubiquitination in virus entry. Our observations reveal an important role of the UPS in multiple steps of the CoV infection cycle and identify the UPS as a potential drug target to modulate the impact of CoV infection.
Collapse
|
94
|
In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathog 2010; 6:e1000863. [PMID: 20421945 PMCID: PMC2858705 DOI: 10.1371/journal.ppat.1000863] [Citation(s) in RCA: 275] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 03/18/2010] [Indexed: 01/17/2023] Open
Abstract
SARS-coronavirus (SARS-CoV) genome expression depends on the synthesis of a set of mRNAs, which presumably are capped at their 5' end and direct the synthesis of all viral proteins in the infected cell. Sixteen viral non-structural proteins (nsp1 to nsp16) constitute an unusually large replicase complex, which includes two methyltransferases putatively involved in viral mRNA cap formation. The S-adenosyl-L-methionine (AdoMet)-dependent (guanine-N7)-methyltransferase (N7-MTase) activity was recently attributed to nsp14, whereas nsp16 has been predicted to be the AdoMet-dependent (nucleoside-2'O)-methyltransferase. Here, we have reconstituted complete SARS-CoV mRNA cap methylation in vitro. We show that mRNA cap methylation requires a third viral protein, nsp10, which acts as an essential trigger to complete RNA cap-1 formation. The obligate sequence of methylation events is initiated by nsp14, which first methylates capped RNA transcripts to generate cap-0 (7Me)GpppA-RNAs. The latter are then selectively 2'O-methylated by the 2'O-MTase nsp16 in complex with its activator nsp10 to give rise to cap-1 (7Me)GpppA(2'OMe)-RNAs. Furthermore, sensitive in vitro inhibition assays of both activities show that aurintricarboxylic acid, active in SARS-CoV infected cells, targets both MTases with IC(50) values in the micromolar range, providing a validated basis for anti-coronavirus drug design.
Collapse
|
95
|
Ulasli M, Verheije MH, de Haan CAM, Reggiori F. Qualitative and quantitative ultrastructural analysis of the membrane rearrangements induced by coronavirus. Cell Microbiol 2010; 12:844-61. [PMID: 20088951 PMCID: PMC7159092 DOI: 10.1111/j.1462-5822.2010.01437.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Coronaviruses (CoV) are enveloped positive‐strand RNA viruses that induce different membrane rearrangements in infected cells in order to efficiently replicate and assemble. The origin, the protein composition and the function of these structures are not well established. To shed further light on these structures, we have performed a time‐course experiment in which the mouse hepatitis virus (MHV)‐induced membrane rearrangements were examined qualitatively and quantitatively by (immuno)‐electron microscopy. With our approach we were able to confirm the appearance of 6, previously reported, membranous structures during the course of a complete infection cycle. These structures include the well‐characterized double‐membrane vesicles (DMVs), convoluted membranes (CMs) and virions but also the more enigmatic large virion‐containing vacuoles (LVCVs), tubular bodies (TBs) and cubic membrane structures (CMSs). We have characterized the LVCVs, TBs and CMSs, and found that the CoV‐induced structures appear in a strict order. By combining these data with quantitative analyses on viral RNA, protein synthesis and virion release, this study generates an integrated molecular and ultrastructural overview of CoV infection. In particular, it provides insights in the role of each CoV‐induced structure and reveals that LVCVs are ERGIC/Golgi compartments that expand to accommodate an increasing production of viral particles.
Collapse
Affiliation(s)
- Mustafa Ulasli
- Department of Cell Biology and Institute of Biomembranes, University Medical Centre Utrecht, The Netherlands
| | | | | | | |
Collapse
|
96
|
SARS Coronavirus Replicative Enzymes: Structures and Mechanisms. MOLECULAR BIOLOGY OF THE SARS-CORONAVIRUS 2010. [PMCID: PMC7176173 DOI: 10.1007/978-3-642-03683-5_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
97
|
Abstract
Coronaviruses induce in infected cells the formation of double-membrane vesicles (DMVs) in which the replication-transcription complexes (RTCs) are anchored. To study the dynamics of these coronavirus replicative structures, we generated recombinant murine hepatitis coronaviruses that express tagged versions of the nonstructural protein nsp2. We demonstrated by using immunofluorescence assays and electron microscopy that this protein is recruited to the DMV-anchored RTCs, for which its C terminus is essential. Live-cell imaging of infected cells demonstrated that small nsp2-positive structures move through the cytoplasm in a microtubule-dependent manner. In contrast, large fluorescent structures are rather immobile. Microtubule-mediated transport of DMVs, however, is not required for efficient replication. Biochemical analyses indicated that the nsp2 protein is associated with the cytoplasmic side of the DMVs. Yet, no recovery of fluorescence was observed when (part of) the nsp2-positive foci were bleached. This result was confirmed by the observation that preexisting RTCs did not exchange fluorescence after fusion of cells expressing either a green or a red fluorescent nsp2. Apparently, nsp2, once recruited to the RTCs, is not exchanged with nsp2 present in the cytoplasm or at other DMVs. Our data show a remarkable resemblance to results obtained recently by others with hepatitis C virus. The observations point to intriguing and as yet unrecognized similarities between the RTC dynamics of different plus-strand RNA viruses.
Collapse
|
98
|
Pankraz A, Preis S, Thiel HJ, Gallei A, Becher P. A single point mutation in nonstructural protein NS2 of bovine viral diarrhea virus results in temperature-sensitive attenuation of viral cytopathogenicity. J Virol 2009; 83:12415-23. [PMID: 19776121 PMCID: PMC2786742 DOI: 10.1128/jvi.01487-09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 09/15/2009] [Indexed: 11/20/2022] Open
Abstract
For Bovine viral diarrhea virus (BVDV), the type species of the genus Pestivirus in the family Flaviviridae, cytopathogenic (cp) and noncytopathogenic (ncp) viruses are distinguished according to their effect on cultured cells. It has been established that cytopathogenicity of BVDV correlates with efficient production of viral nonstructural protein NS3 and with enhanced viral RNA synthesis. Here, we describe generation and characterization of a temperature-sensitive (ts) mutant of cp BVDV strain CP7, termed TS2.7. Infection of bovine cells with TS2.7 and the parent CP7 at 33 degrees C resulted in efficient viral replication and a cytopathic effect. In contrast, the ability of TS2.7 to cause cytopathogenicity at 39.5 degrees C was drastically reduced despite production of high titers of infectious virus. Further experiments, including nucleotide sequencing of the TS2.7 genome and reverse genetics, showed that a Y1338H substitution at residue 193 of NS2 resulted in the temperature-dependent attenuation of cytopathogenicity despite high levels of infectious virus production. Interestingly, TS2.7 and the reconstructed mutant CP7-Y1338H produced NS3 in addition to NS2-3 throughout infection. Compared to the parent CP7, NS2-3 processing was slightly decreased at both temperatures. Quantification of viral RNAs that were accumulated at 10 h postinfection demonstrated that attenuation of the cytopathogenicity of the ts mutants at 39.5 degrees C correlated with reduced amounts of viral RNA, while the efficiency of viral RNA synthesis at 33 degrees C was not affected. Taken together, the results of this study show that a mutation in BVDV NS2 attenuates viral RNA replication and suppresses viral cytopathogenicity at high temperature without altering NS3 expression and infectious virus production in a temperature-dependent manner.
Collapse
Affiliation(s)
- Alexander Pankraz
- Institute of Virology, Justus-Liebig University, D-35392 Giessen, Germany, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, D-30559 Hannover, Germany
| | - Simone Preis
- Institute of Virology, Justus-Liebig University, D-35392 Giessen, Germany, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, D-30559 Hannover, Germany
| | - Heinz-Jürgen Thiel
- Institute of Virology, Justus-Liebig University, D-35392 Giessen, Germany, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, D-30559 Hannover, Germany
| | - Andreas Gallei
- Institute of Virology, Justus-Liebig University, D-35392 Giessen, Germany, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, D-30559 Hannover, Germany
| | - Paul Becher
- Institute of Virology, Justus-Liebig University, D-35392 Giessen, Germany, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, D-30559 Hannover, Germany
| |
Collapse
|
99
|
Crystal structure of the C-terminal cytoplasmic domain of non-structural protein 4 from mouse hepatitis virus A59. PLoS One 2009; 4:e6217. [PMID: 19593433 PMCID: PMC2703826 DOI: 10.1371/journal.pone.0006217] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 03/04/2009] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The replication of coronaviruses takes place on cytoplasmic double membrane vesicles (DMVs) originating in the endoplasmic reticulum (ER). Three trans-membrane non-structural proteins, nsp3, nsp4 and nsp6, are understood to be membrane anchors of the coronavirus replication complex. Nsp4 is localized to the ER membrane when expressed alone but is recruited into the replication complex in infected cells. It is revealed to contain four trans-membrane regions and its N- and C-termini are exposed to the cytosol. METHODOLOGY/PRINCIPAL FINDINGS We have determined the crystal structures of the C-terminal hydrophilic domain of nsp4 (nsp4C) from MHV strain A59 and a C425S site-directed mutant. The highly conserved 89 amino acid region from T408 to Q496 is shown to possess a new fold. The wild-type (WT) structure features two monomers linked by a Cys425-Cys425 disulfide bond in one asymmetric unit. The monomers are arranged with their N- and C-termini in opposite orientations to form an "open" conformation. Mutation of Cys425 to Ser did not affect the monomer structure, although the mutant dimer adopts strikingly different conformations by crystal packing, with the cross-linked C-termini and parallel N-termini of two monomers forming a "closed" conformation. The WT nsp4C exists as a dimer in solution and can dissociate easily into monomers in a reducing environment. CONCLUSIONS/SIGNIFICANCE As nsp4C is exposed in the reducing cytosol, the monomer of nsp4C should be physiological. This structure may serve as a basis for further functional studies of nsp4.
Collapse
|
100
|
Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proc Natl Acad Sci U S A 2009; 106:3484-9. [PMID: 19208801 DOI: 10.1073/pnas.0808790106] [Citation(s) in RCA: 335] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The N7-methylguanosine (m7G) cap is the defining structural feature of eukaryotic mRNAs. Most eukaryotic viruses that replicate in the cytoplasm, including coronaviruses, have evolved strategies to cap their RNAs. In this report, we used a yeast genetic system to functionally screen for the cap-forming enzymes encoded by severe acute respiratory syndrome (SARS) coronavirus and identified the nonstructural protein (nsp) 14 of SARS coronavirus as a (guanine-N7)-methyltransferase (N7-MTase) in vivo in yeast cells and in vitro using purified enzymes and RNA substrates. Interestingly, coronavirus nsp14 was previously characterized as a 3'-to-5' exoribonuclease, and by mutational analysis, we mapped the N7-MTase domain to the carboxy-terminal part of nsp14 that shows features conserved with cellular N7-MTase in structure-based sequence alignment. The exoribonuclease active site was dispensable but the exoribonuclease domain was required for N7-MTase activity. Such combination of the 2 functional domains in coronavirus nsp14 suggests that it may represent a novel form of RNA-processing enzymes. Mutational analysis in a replicon system showed that the N7-MTase activity was important for SARS virus replication/transcription and can thus be used as an attractive drug target to develop antivirals for control of coronaviruses including the deadly SARS virus. Furthermore, the observation that the N7-MTase of RNA life could function in lieu of that in DNA life provides interesting evolutionary insight and practical possibilities in antiviral drug screening.
Collapse
|