51
|
Hoenigl M, Orasch T, Faserl K, Prattes J, Loeffler J, Springer J, Gsaller F, Reischies F, Duettmann W, Raggam RB, Lindner H, Haas H. Triacetylfusarinine C: A urine biomarker for diagnosis of invasive aspergillosis. J Infect 2019; 78:150-157. [PMID: 30267801 PMCID: PMC6361682 DOI: 10.1016/j.jinf.2018.09.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/20/2018] [Accepted: 09/11/2018] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Early diagnosis of invasive aspergillosis (IA) remains challenging, with available diagnostics being limited by inadequate sensitivities and specificities. Triacetylfusarinine C, a fungal siderophore that has been shown to accumulate in urine in animal models, is a potential new biomarker for diagnosis of IA. METHODS We developed a method allowing absolute and matrix-independent mass spectrometric quantification of TAFC. Urine TAFC, normalized to creatinine, was determined in 44 samples from 24 patients with underlying hematologic malignancies and probable, possible or no IA according to current EORTC/MSG criteria and compared to other established biomarkers measured in urine and same-day blood samples. RESULTS TAFC/creatinine sensitivity, specificity, positive and negative likelihood ratio for probable versus no IA (cut-off ≥ 3) were 0.86, 0.88, 6.86, 0.16 per patient. CONCLUSION For the first time, we provide proof for the occurrence of TAFC in human urine. TAFC/creatinine index determination in urine showed promising results for diagnosis of IA offering the advantages of non-invasive sampling. Sensitivity and specificity were similar as reported for GM determination in serum and bronchoalveolar lavage, the gold standard mycological criterion for IA diagnosis.
Collapse
Affiliation(s)
- Martin Hoenigl
- Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, Graz, Austria; CBmed Center for Biomarker Research in Medicine, Graz, Austria; Division of Infectious Diseases, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Thomas Orasch
- Division of Molecular Biology, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Klaus Faserl
- Division of Clinical Biochemistry, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Juergen Prattes
- Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, Graz, Austria; CBmed Center for Biomarker Research in Medicine, Graz, Austria
| | - Juergen Loeffler
- Department for Internal Medicine II, University of Wuerzburg Medical Centre, Wuerzburg, Germany
| | - Jan Springer
- Department for Internal Medicine II, University of Wuerzburg Medical Centre, Wuerzburg, Germany
| | - Fabio Gsaller
- Division of Molecular Biology, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Frederike Reischies
- Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, Graz, Austria
| | - Wiebke Duettmann
- Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, Graz, Austria
| | - Reinhard B Raggam
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria; Division of Angiology, Medical University of Graz, Graz, Austria
| | - Herbert Lindner
- Division of Clinical Biochemistry, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Hubertus Haas
- Division of Molecular Biology, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
52
|
Imaging of Pseudomonas aeruginosa infection with Ga-68 labelled pyoverdine for positron emission tomography. Sci Rep 2018; 8:15698. [PMID: 30356077 PMCID: PMC6200719 DOI: 10.1038/s41598-018-33895-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/08/2018] [Indexed: 01/05/2023] Open
Abstract
Pseudomonas aeruginosa is an increasingly prevalent opportunistic pathogen that causes a variety of life-threatening nosocomial infections. Novel strategies for the development of new antibacterial treatments as well as diagnostic tools are needed. One of the novel diagnostic strategies for the detection of infection could be the utilization of siderophores. Siderophores are low-molecular-weight chelators produced by microbes to scavenge essential iron. Replacing iron in siderophores by suitable radiometals, such as Ga-68 for positron emission tomography (PET) imaging, opens approaches for targeted imaging of infection. Here we report on pyoverdine PAO1 (PVD-PAO1), a siderophore produced by P. aeruginosa, labelled with Ga-68 for specific imaging of Pseudomonas infections. PVD-PAO1 was labelled with Ga-68 with high radiochemical purity. The resulting complex showed hydrophilic properties, low protein binding and high stability in human serum. In vitro uptake of 68Ga-PVD-PAO1 was highly dependent on the type of microbial culture. In normal mice 68Ga-PVD-PAO1 showed rapid pharmacokinetics with urinary excretion. PET imaging in infected animals displayed specific accumulation of 68Ga-PVD-PAO1 in infected tissues and better distribution than clinically used 18F-fluorodeoxyglucose (18F-FDG) and 68Ga-citrate. Ga-68 labelled pyoverdine PAO1 seems to be a promising agent for imaging of P. aeruginosa infections by means of PET.
Collapse
|
53
|
Abstract
In bacteria, more than half of the genes in the genome are organized in operons. In contrast, in eukaryotes, functionally related genes are usually dispersed across the genome. There are, however, numerous examples of functional clusters of nonhomologous genes for metabolic pathways in fungi and plants. Despite superficial similarities with operons (physical clustering, coordinate regulation), these clusters have not usually originated by horizontal gene transfer from bacteria, and (unlike operons) the genes are typically transcribed separately rather than as a single polycistronic message. This clustering phenomenon raises intriguing questions about the origins of clustered metabolic pathways in eukaryotes and the significance of clustering for pathway function. Here we review metabolic gene clusters from fungi and plants, highlight commonalities and differences, and consider how these clusters form and are regulated. We also identify opportunities for future research in the areas of large-scale genomics, synthetic biology, and experimental evolution.
Collapse
Affiliation(s)
- Hans-Wilhelm Nützmann
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom; .,Current affiliation: Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom;
| | - Claudio Scazzocchio
- Department of Microbiology, Imperial College, London SW7 2AZ, United Kingdom; .,Institute for Integrative Biology of the Cell, 91190 Gif-sur-Yvette, France
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom;
| |
Collapse
|
54
|
Zhao S, Gibbons JG. A population genomic characterization of copy number variation in the opportunistic fungal pathogen Aspergillus fumigatus. PLoS One 2018; 13:e0201611. [PMID: 30071059 PMCID: PMC6072042 DOI: 10.1371/journal.pone.0201611] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022] Open
Abstract
Aspergillus fumigatus is a potentially deadly opportunistic fungal pathogen. Molecular studies have shaped our understanding of the genes, proteins, and molecules that contribute to A. fumigatus pathogenicity, but few studies have characterized genome-wide patterns of genetic variation at the population level. Of A. fumigatus genomic studies to-date, most focus mainly on single nucleotide polymorphisms and large structural variants, while overlooking the contribution of copy number variation (CNV). CNV is a class of small structural variation defined as loci that vary in their number of copies between individuals due to duplication, gain, or deletion. CNV can influence phenotype, including fungal virulence. In the present study, we characterized the population genomic patterns of CNV in a diverse collection of 71 A. fumigatus isolates using publicly available sequencing data. We used genome-wide single nucleotide polymorphisms to infer the population structure of these isolates and identified three populations consisting of at least 8 isolates. We then computationally predicted genome-wide CNV profiles for each isolate and conducted analyses at the species-, population-, and individual levels. Our results suggest that CNV contributes to genetic variation in A. fumigatus, with ~10% of the genome being CN variable. Our analysis indicates that CNV is non-randomly distributed across the A. fumigatus genome, and is overrepresented in subtelomeric regions. Analysis of gene ontology categories in genes that overlapped CN variants revealed an enrichment of genes related to transposable element and secondary metabolism functions. We further identified 72 loci containing 33 genes that showed divergent copy number profiles between the three A. fumigatus populations. Many of these genes encode proteins that interact with the cell surface or are involved in pathogenicity. Our results suggest that CNV is an important source of genetic variation that could account for some of the phenotypic differences between A. fumigatus populations and isolates.
Collapse
Affiliation(s)
- Shu Zhao
- Biology Department, Clark University, Worcester, Massachusetts, United States of America
| | - John G. Gibbons
- Biology Department, Clark University, Worcester, Massachusetts, United States of America
| |
Collapse
|
55
|
Identification of Antifungal Targets Based on Computer Modeling. J Fungi (Basel) 2018; 4:jof4030081. [PMID: 29973534 PMCID: PMC6162656 DOI: 10.3390/jof4030081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/24/2018] [Accepted: 06/29/2018] [Indexed: 01/07/2023] Open
Abstract
Aspergillus fumigatus is a saprophytic, cosmopolitan fungus that attacks patients with a weak immune system. A rational solution against fungal infection aims to manipulate fungal metabolism or to block enzymes essential for Aspergillus survival. Here we discuss and compare different bioinformatics approaches to analyze possible targeting strategies on fungal-unique pathways. For instance, phylogenetic analysis reveals fungal targets, while domain analysis allows us to spot minor differences in protein composition between the host and fungi. Moreover, protein networks between host and fungi can be systematically compared by looking at orthologs and exploiting information from host⁻pathogen interaction databases. Further data—such as knowledge of a three-dimensional structure, gene expression data, or information from calculated metabolic fluxes—refine the search and rapidly put a focus on the best targets for antimycotics. We analyzed several of the best targets for application to structure-based drug design. Finally, we discuss general advantages and limitations in identification of unique fungal pathways and protein targets when applying bioinformatics tools.
Collapse
|
56
|
Kurucz V, Krüger T, Antal K, Dietl AM, Haas H, Pócsi I, Kniemeyer O, Emri T. Additional oxidative stress reroutes the global response of Aspergillus fumigatus to iron depletion. BMC Genomics 2018; 19:357. [PMID: 29747589 PMCID: PMC5946477 DOI: 10.1186/s12864-018-4730-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/26/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Aspergillus fumigatus has to cope with a combination of several stress types while colonizing the human body. A functional interplay between these different stress responses can increase the chances of survival for this opportunistic human pathogen during the invasion of its host. In this study, we shed light on how the H2O2-induced oxidative stress response depends on the iron available to this filamentous fungus, using transcriptomic analysis, proteomic profiles, and growth assays. RESULTS The applied H2O2 treatment, which induced only a negligible stress response in iron-replete cultures, deleteriously affected the fungus under iron deprivation. The majority of stress-induced changes in gene and protein expression was not predictable from data coming from individual stress exposure and was only characteristic for the combination of oxidative stress plus iron deprivation. Our experimental data suggest that the physiological effects of combined stresses and the survival of the fungus highly depend on fragile balances between economization of iron and production of essential iron-containing proteins. One observed strategy was the overproduction of iron-independent antioxidant proteins to combat oxidative stress during iron deprivation, e.g. the upregulation of superoxide dismutase Sod1, the thioredoxin reductase Trr1, and the thioredoxin orthologue Afu5g11320. On the other hand, oxidative stress induction overruled iron deprivation-mediated repression of several genes. In agreement with the gene expression data, growth studies underlined that in A. fumigatus iron deprivation aggravates oxidative stress susceptibility. CONCLUSIONS Our data demonstrate that studying stress responses under separate single stress conditions is not sufficient to understand how A. fumigatus adapts in a complex and hostile habitat like the human body. The combinatorial stress of iron depletion and hydrogen peroxide caused clear non-additive effects upon the stress response of A. fumigatus. Our data further supported the view that the ability of A. fumigatus to cause diseases in humans strongly depends on its fitness attributes and less on specific virulence factors. In summary, A. fumigatus is able to mount and coordinate complex and efficient responses to combined stresses like iron deprivation plus H2O2-induced oxidative stress, which are exploited by immune cells to kill fungal pathogens.
Collapse
Affiliation(s)
- Vivien Kurucz
- Department of Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, Egyetem tér 1, Debrecen, H-4032 Hungary
| | - Thomas Krüger
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), 07745 Jena, Germany
| | - Károly Antal
- Department of Zoology, Faculty of Sciences, Eszterházy Károly University, Eszterházy tér 1, Eger, H-3300 Hungary
| | - Anna-Maria Dietl
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, A6020 Innsbruck, Austria
| | - Hubertus Haas
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, A6020 Innsbruck, Austria
| | - István Pócsi
- Department of Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, Egyetem tér 1, Debrecen, H-4032 Hungary
| | - Olaf Kniemeyer
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), 07745 Jena, Germany
| | - Tamás Emri
- Department of Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, Egyetem tér 1, Debrecen, H-4032 Hungary
| |
Collapse
|
57
|
Comparative systems analysis of the secretome of the opportunistic pathogen Aspergillus fumigatus and other Aspergillus species. Sci Rep 2018; 8:6617. [PMID: 29700415 PMCID: PMC5919931 DOI: 10.1038/s41598-018-25016-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/13/2018] [Indexed: 12/11/2022] Open
Abstract
Aspergillus fumigatus and multiple other Aspergillus species cause a wide range of lung infections, collectively termed aspergillosis. Aspergilli are ubiquitous in environment with healthy immune systems routinely eliminating inhaled conidia, however, Aspergilli can become an opportunistic pathogen in immune-compromised patients. The aspergillosis mortality rate and emergence of drug-resistance reveals an urgent need to identify novel targets. Secreted and cell membrane proteins play a critical role in fungal-host interactions and pathogenesis. Using a computational pipeline integrating data from high-throughput experiments and bioinformatic predictions, we have identified secreted and cell membrane proteins in ten Aspergillus species known to cause aspergillosis. Small secreted and effector-like proteins similar to agents of fungal-plant pathogenesis were also identified within each secretome. A comparison with humans revealed that at least 70% of Aspergillus secretomes have no sequence similarity with the human proteome. An analysis of antigenic qualities of Aspergillus proteins revealed that the secretome is significantly more antigenic than cell membrane proteins or the complete proteome. Finally, overlaying an expression dataset, four A. fumigatus proteins upregulated during infection and with available structures, were found to be structurally similar to known drug target proteins in other organisms, and were able to dock in silico with the respective drug.
Collapse
|
58
|
Lipid Biosynthesis as an Antifungal Target. J Fungi (Basel) 2018; 4:jof4020050. [PMID: 29677130 PMCID: PMC6023442 DOI: 10.3390/jof4020050] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 12/15/2022] Open
Abstract
Lipids, commonly including phospholipids, sphingolipids, fatty acids, sterols, and triacylglycerols (TAGs), are important biomolecules for the viability of all cells. Phospholipids, sphingolipids, and sterols are important constituents of biological membranes. Many lipids play important roles in the regulation of cell metabolism by acting as signaling molecules. Neutral lipids, including TAGs and sterol esters (STEs), are important storage lipids in cells. In view of the importance of lipid molecules, this review briefly summarizes the metabolic pathways for sterols, phospholipids, sphingolipids, fatty acids, and neutral lipids in fungi and illustrates the differences between fungal and human (or other mammalian) cells, especially in relation to lipid biosynthetic pathways. These differences might provide valuable clues for us to find target proteins for novel antifungal drugs. In addition, the development of lipidomics technology in recent years has supplied us with a shortcut for finding new antifungal drug targets; this ability is important for guiding our research on pathogenic fungi.
Collapse
|
59
|
Ghods N, Falahati M, Roudbary M, Farahyar S, Shamaei M, Pourabdollah M, Seif F. Differential role of gpaB and sidA gene expressions in relation to virulence in Aspergillus species from patients with invasive aspergillosis. Braz J Microbiol 2018; 49:668-674. [PMID: 29452846 PMCID: PMC6066728 DOI: 10.1016/j.bjm.2017.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 09/18/2017] [Accepted: 10/04/2017] [Indexed: 11/29/2022] Open
Abstract
The virulence genes in invasive aspergillosis (IA) have not been analyzed adequately. The present study was designed to evaluate the expression of gpaB and sidA genes, which are important virulence genes in Aspergillus spp. from bronchoalveolar lavage (BAL) samples. Direct examination and culture on Czapek Agar and Sabouraud Dextrose Agar media were performed for 600 BAL specimens isolated from patients with possible aspergillosis. A Galactomannan ELISA assay was also carried out. The expression levels of the gpaB and sidA genes in isolates were analyzed using quantitative real-time PCR (qRT-PCR). We identified 2 species, including Aspergillus flavus (A. flavus) and Aspergillus fumigatus (A. fumigatus) in 25 positive samples for invasive aspergillosis as validated using GM-ELISA. A. flavus is the main pathogen threatening transplant recipients and cancer patients worldwide. In this study, A. flavus had low levels of the gpaB gene expression compared to A. fumigatus (p = 0.006). The highest sidA expression was detected in transplant recipients (p = 0.05). There was no significant correlation between sidA expression and underlying disease (p = 0.15). The sidA and gpaB gene expression patterns may provide evidence that these virulence genes play important roles in the pathogenicity of Aspergillus isolates; however, there are several regulatory genes responsible for the unexpressed sidA and gpaB genes in the isolates.
Collapse
Affiliation(s)
- Nayereh Ghods
- Iran University of Medical Sciences, School of Medicine, Department of Medical Mycology and Parasitology, Tehran, Iran
| | - Mehraban Falahati
- Iran University of Medical Sciences, School of Medicine, Department of Medical Mycology and Parasitology, Tehran, Iran.
| | - Maryam Roudbary
- Iran University of Medical Sciences, School of Medicine, Department of Medical Mycology and Parasitology, Tehran, Iran.
| | - Shirin Farahyar
- Iran University of Medical Sciences, School of Medicine, Department of Medical Mycology and Parasitology, Tehran, Iran
| | - Masoud Shamaei
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahin Pourabdollah
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhad Seif
- Iran University of Medical Sciences, School of Medicine, Department of Immunology, Tehran, Iran
| |
Collapse
|
60
|
Shimizu M. NAD +/NADH homeostasis affects metabolic adaptation to hypoxia and secondary metabolite production in filamentous fungi. Biosci Biotechnol Biochem 2018; 82:216-224. [PMID: 29327656 DOI: 10.1080/09168451.2017.1422972] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Filamentous fungi are used to produce fermented foods, organic acids, beneficial secondary metabolites and various enzymes. During such processes, these fungi balance cellular NAD+:NADH ratios to adapt to environmental redox stimuli. Cellular NAD(H) status in fungal cells is a trigger of changes in metabolic pathways including those of glycolysis, fermentation, and the production of organic acids, amino acids and secondary metabolites. Under hypoxic conditions, high NADH:NAD+ ratios lead to the inactivation of various dehydrogenases, and the metabolic flow involving NAD+ is down-regulated compared with normoxic conditions. This review provides an overview of the metabolic mechanisms of filamentous fungi under hypoxic conditions that alter the cellular NADH:NAD+ balance. We also discuss the relationship between the intracellular redox balance (NAD/NADH ratio) and the production of beneficial secondary metabolites that arise from repressing the HDAC activity of sirtuin A via Nudix hydrolase A (NdxA)-dependent NAD+ degradation.
Collapse
Affiliation(s)
- Motoyuki Shimizu
- a Faculty of Agriculture, Department of Applied Biological Chemistry , Meijo University , Nagoya , Japan
| |
Collapse
|
61
|
Guruceaga X, Ezpeleta G, Mayayo E, Sueiro-Olivares M, Abad-Diaz-De-Cerio A, Aguirre Urízar JM, Liu HG, Wiemann P, Bok JW, Filler SG, Keller NP, Hernando FL, Ramirez-Garcia A, Rementeria A. A possible role for fumagillin in cellular damage during host infection by Aspergillus fumigatus. Virulence 2018; 9:1548-1561. [PMID: 30251593 PMCID: PMC6177242 DOI: 10.1080/21505594.2018.1526528] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/10/2018] [Indexed: 01/31/2023] Open
Abstract
Virulence mechanisms of the pathogenic fungus Aspergillus fumigatus are multifactorial and depend on the immune state of the host, but little is known about the fungal mechanism that develops during the process of lung invasion. In this study, microarray technology was combined with a histopathology evaluation of infected lungs so that the invasion strategy followed by the fungus could be described. To achieve this, an intranasal mice infection was performed to extract daily fungal samples from the infected lungs over four days post-infection. The pathological study revealed a heavy fungal progression throughout the lung, reaching the blood vessels on the third day after exposure and causing tissue necrosis. One percent of the fungal genome followed a differential expression pattern during this process. Strikingly, most of the genes of the intertwined fumagillin/pseurotin biosynthetic gene cluster were upregulated as were genes encoding lytic enzymes such as lipases, proteases (DppIV, DppV, Asp f 1 or Asp f 5) and chitinase (chiB1) as well as three genes related with pyomelanin biosynthesis process. Furthermore, we demonstrate that fumagillin is produced in an in vitro pneumocyte cell line infection model and that loss of fumagillin synthesis reduces epithelial cell damage. These results suggest that fumagillin contributes to tissue damage during invasive aspergillosis. Therefore, it is probable that A. fumigatus progresses through the lungs via the production of the mycotoxin fumagillin combined with the secretion of lytic enzymes that allow fungal growth, angioinvasion and the disruption of the lung parenchymal structure.
Collapse
Affiliation(s)
- Xabier Guruceaga
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Guillermo Ezpeleta
- Preventive Medicine and Hospital Hygiene Service, Complejo Hospitalario de Navarra, Pamplona, Spain
- Department of Preventive Medicine and Public Health, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Emilio Mayayo
- Pathology Unit, Medicine and Health Science Faculty, University of Rovira i Virgili, Reus, Tarragona, Spain
| | - Monica Sueiro-Olivares
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Ana Abad-Diaz-De-Cerio
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - José Manuel Aguirre Urízar
- Department of Stomatology II, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Hong G. Liu
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Philipp Wiemann
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Jin Woo Bok
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Scott G. Filler
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Fernando L. Hernando
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Andoni Ramirez-Garcia
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aitor Rementeria
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
62
|
Ries LNA, Beattie S, Cramer RA, Goldman GH. Overview of carbon and nitrogen catabolite metabolism in the virulence of human pathogenic fungi. Mol Microbiol 2017; 107:277-297. [PMID: 29197127 DOI: 10.1111/mmi.13887] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/20/2017] [Accepted: 11/23/2017] [Indexed: 12/12/2022]
Abstract
It is estimated that fungal infections, caused most commonly by Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans, result in more deaths annually than malaria or tuberculosis. It has long been hypothesized the fungal metabolism plays a critical role in virulence though specific nutrient sources utilized by human pathogenic fungi in vivo has remained enigmatic. However, the metabolic utilisation of preferred carbon and nitrogen sources, encountered in a host niche-dependent manner, is known as carbon catabolite and nitrogen catabolite repression (CCR, NCR), and has been shown to be important for virulence. Several sensory and uptake systems exist, including carbon and nitrogen source-specific sensors and transporters, that allow scavenging of preferred nutrient sources. Subsequent metabolic utilisation is governed by transcription factors, whose functions and essentiality differ between fungal species. Furthermore, additional factors exist that contribute to the implementation of CCR and NCR. The role of the CCR and NCR-related factors in virulence varies greatly between fungal species and a substantial gap in knowledge exists regarding specific pathways. Further elucidation of carbon and nitrogen metabolism mechanisms is therefore required in a fungal species- and animal model-specific manner in order to screen for targets that are potential candidates for anti-fungal drug development.
Collapse
Affiliation(s)
- Laure Nicolas Annick Ries
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, Ribeirão Preto, São Paulo, 3900, CEP 14049-900, Brazil
| | - Sarah Beattie
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, 74 College Street Remsen 213, Hanover, NH 03755, USA
| | - Robert A Cramer
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, 74 College Street Remsen 213, Hanover, NH 03755, USA
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n°, Ribeirão Preto, São Paulo, CEP 14040903, Brazil
| |
Collapse
|
63
|
Takahashi-Nakaguchi A, Sakai K, Takahashi H, Hagiwara D, Toyotome T, Chibana H, Watanabe A, Yaguchi T, Yamaguchi M, Kamei K, Gonoi T. Aspergillus fumigatus adhesion factors in dormant conidia revealed through comparative phenotypic and transcriptomic analyses. Cell Microbiol 2017; 20. [PMID: 29113011 PMCID: PMC5838799 DOI: 10.1111/cmi.12802] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/11/2017] [Accepted: 10/30/2017] [Indexed: 01/29/2023]
Abstract
Aspergillus fumigatus is an important fungal pathogen of humans. Inhaled conidia of A. fumigatus adhere to pulmonary epithelial cells, causing opportunistic infection. However, little is known about the molecular mechanism of the adherence of resting conidia. Fungal molecules adhesive to host cells are presumed to be displayed on the conidial surface during conidial formation as a result of changes in gene expression. Therefore, we exhaustively searched for adhesion molecules by comparing the phenotypes and the gene expression profiles of A. fumigatus strains that have conidia showing either high or low adherence to human pulmonary A549 cells. Morphological observation suggested that strains that produce conidia of reduced size, hydrophobicity, or number show decreased adherence to A549 cells. K-means cluster analyses of gene expression revealed 31 genes that were differentially expressed in the high-adherence strains during conidial formation. We knocked out three of these genes and showed that the conidia of AFUA_4G01030 (encoding a hypothetical protein) and AFUA_4G08805 (encoding a haemolysin-like protein) knockout strains had significantly reduced adherence to host cells. Furthermore, the conidia of these knockout strains had lower hydrophobicity and fewer surface spikes compared to the control strain. We suggest that the selectively expressed gene products, including those we identified experimentally, have composite synergistic roles in the adhesion of conidia to pulmonary epithelial cells.
Collapse
Affiliation(s)
| | - Kanae Sakai
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Hiroki Takahashi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Daisuke Hagiwara
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | | | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Akira Watanabe
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Takashi Yaguchi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | | | - Katsuhiko Kamei
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Tohru Gonoi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| |
Collapse
|
64
|
Shemesh E, Hanf B, Hagag S, Attias S, Shadkchan Y, Fichtman B, Harel A, Krüger T, Brakhage AA, Kniemeyer O, Osherov N. Phenotypic and Proteomic Analysis of the Aspergillus fumigatus Δ PrtT, Δ XprG and Δ XprG/Δ PrtT Protease-Deficient Mutants. Front Microbiol 2017; 8:2490. [PMID: 29312198 PMCID: PMC5732999 DOI: 10.3389/fmicb.2017.02490] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 11/30/2017] [Indexed: 11/13/2022] Open
Abstract
Aspergillus fumigatus is the most common mold species to cause disease in immunocompromised patients. Infection usually begins when its spores (conidia) are inhaled into the airways, where they germinate, forming hyphae that penetrate and destroy the lungs and disseminate to other organs, leading to high mortality. The ability of hyphae to penetrate the pulmonary epithelium is a key step in the infectious process. A. fumigatus produces extracellular proteases that are thought to enhance penetration by degrading host structural barriers. This study explores the role of the A. fumigatus transcription factor XprG in controlling secreted proteolytic activity and fungal virulence. We deleted xprG, alone and in combination with prtT, a transcription factor previously shown to regulate extracellular proteolysis. xprG deletion resulted in abnormal conidiogenesis and formation of lighter colored, more fragile conidia and a moderate reduction in the ability of culture filtrates (CFs) to degrade substrate proteins. Deletion of both xprG and prtT resulted in an additive reduction, generating a mutant strain producing CF with almost no ability to degrade substrate proteins. Detailed proteomic analysis identified numerous secreted proteases regulated by XprG and PrtT, alone and in combination. Interestingly, proteomics also identified reduced levels of secreted cell wall modifying enzymes (glucanases, chitinases) and allergens following deletion of these genes, suggesting they target additional cellular processes. Surprisingly, despite the major alteration in the secretome of the xprG/prtT null mutant, including two to fivefold reductions in the level of 24 proteases, 18 glucanases, 6 chitinases, and 19 allergens, it retained wild-type virulence in murine systemic and pulmonary models of infection. This study highlights the extreme adaptability of A. fumigatus during infection based on extensive gene redundancy.
Collapse
Affiliation(s)
- Einav Shemesh
- Aspergillus and Antifungal Research Laboratory, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Benjamin Hanf
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Shelly Hagag
- Aspergillus and Antifungal Research Laboratory, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shani Attias
- Aspergillus and Antifungal Research Laboratory, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yana Shadkchan
- Aspergillus and Antifungal Research Laboratory, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Boris Fichtman
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Amnon Harel
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Thomas Krüger
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Axel A Brakhage
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Olaf Kniemeyer
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Nir Osherov
- Aspergillus and Antifungal Research Laboratory, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
65
|
Takahashi H, Kusuya Y, Hagiwara D, Takahashi-Nakaguchi A, Sakai K, Gonoi T. Global gene expression reveals stress-responsive genes in Aspergillus fumigatus mycelia. BMC Genomics 2017; 18:942. [PMID: 29202712 PMCID: PMC5715996 DOI: 10.1186/s12864-017-4316-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/17/2017] [Indexed: 11/10/2022] Open
Abstract
Background Aspergillus fumigatus is a human fungal pathogen that causes aspergillosis in immunocompromised hosts. A. fumigatus is believed to be exposed to diverse environmental stresses in the host cells. The adaptation mechanisms are critical for infections in human bodies. Transcriptional networks in response to diverse environmental challenges remain to be elucidated. To gain insights into the adaptation to environmental stresses in A. fumigatus mycelia, we conducted time series transcriptome analyses. Results With the aid of RNA-seq, we explored the global gene expression profiles of mycelia in A. fumigatus upon exposure to diverse environmental changes, including heat, superoxide, and osmotic stresses. From the perspective of global transcriptomes, transient responses to superoxide and osmotic stresses were observed while responses to heat stresses were gradual. We identified the stress-responsive genes for particular stresses, and the 266 genes whose expression levels drastically fluctuated upon exposure to all tested stresses. Among these, the 77 environmental stress response genes are conserved in S. cerevisiae, suggesting that these genes might be more general prerequisites for adaptation to environmental stresses. Finally, we revealed the strong correlations among expression profiles of genes related to ‘rRNA processing’. Conclusions The time series transcriptome analysis revealed the stress-responsive genes underlying the adaptation mechanisms in A. fumigatus mycelia. These results will shed light on the regulatory networks underpinning the adaptation of the filamentous fungi. Electronic supplementary material The online version of this article (10.1186/s12864-017-4316-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hiroki Takahashi
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan. .,Molecular Chirality Research Center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| | - Yoko Kusuya
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Daisuke Hagiwara
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | | | - Kanae Sakai
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Tohru Gonoi
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan
| |
Collapse
|
66
|
Bignell E, Cairns TC, Throckmorton K, Nierman WC, Keller NP. Secondary metabolite arsenal of an opportunistic pathogenic fungus. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2016.0023. [PMID: 28080993 DOI: 10.1098/rstb.2016.0023] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2016] [Indexed: 12/31/2022] Open
Abstract
Aspergillus fumigatus is a versatile fungus able to successfully exploit diverse environments from mammalian lungs to agricultural waste products. Among its many fitness attributes are dozens of genetic loci containing biosynthetic gene clusters (BGCs) producing bioactive small molecules (often referred to as secondary metabolites or natural products) that provide growth advantages to the fungus dependent on environment. Here we summarize the current knowledge of these BGCs-18 of which can be named to product-their expression profiles in vivo, and which BGCs may enhance virulence of this opportunistic human pathogen. Furthermore, we find extensive evidence for the presence of many of these BGCs, or similar BGCs, in distantly related genera including the emerging pathogen Pseudogymnoascus destructans, the causative agent of white-nose syndrome in bats, and suggest such BGCs may be predictive of pathogenic potential in other fungi.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'.
Collapse
Affiliation(s)
- Elaine Bignell
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, 2.24 Core Technology Facility, Grafton Street, Manchester, M13 9NT, UK
| | - Timothy C Cairns
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Berlin University of Technology, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Kurt Throckmorton
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | | | - Nancy P Keller
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA, .,Department of Medical Microbiology, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
67
|
Blatzer M, Latgé JP. Metal-homeostasis in the pathobiology of the opportunistic human fungal pathogen Aspergillus fumigatus. Curr Opin Microbiol 2017; 40:152-159. [PMID: 29179120 DOI: 10.1016/j.mib.2017.11.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022]
Abstract
In contrast to obligate pathogens opportunistic pathogens such as Aspergillus fumigatus do not need a specific host to propagate or survive. However several characteristics of the saprophytic life-style and the selective pressure encountered in the primary ecological niche contribute to the virulence of A. fumigatus. All fungi depend on metals for growth and proliferation, like iron, copper, zinc, manganese or calcium. In the recent past several studies explored the manifold impact of metals modulating virulence of pathogens. Components which might be scarce in the natural environment but also in the host due to nutritional immunity. This review recapitulates molecular constituents of metal ion uptake systems in A. fumigatus, their regulation and their significance at the host-pathogen battlefield.
Collapse
|
68
|
Loss O, Bertuzzi M, Yan Y, Fedorova N, McCann BL, Armstrong-James D, Espeso EA, Read ND, Nierman WC, Bignell EM. Mutual independence of alkaline- and calcium-mediated signalling in Aspergillus fumigatus refutes the existence of a conserved druggable signalling nexus. Mol Microbiol 2017; 106:861-875. [PMID: 28922497 PMCID: PMC5725717 DOI: 10.1111/mmi.13840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2017] [Indexed: 01/03/2023]
Abstract
Functional coupling of calcium‐ and alkaline responsive signalling occurs in multiple fungi to afford efficient cation homeostasis. Host microenvironments exert alkaline stress and potentially toxic concentrations of Ca2+, such that highly conserved regulators of both calcium‐ (Crz) and pH‐ (PacC/Rim101) responsive signalling are crucial for fungal pathogenicity. Drugs targeting calcineurin are potent antifungal agents but also perturb human immunity thereby negating their use as anti‐infectives, abrogation of alkaline signalling has, therefore, been postulated as an adjunctive antifungal strategy. We examined the interdependency of pH‐ and calcium‐mediated signalling in Aspergillus fumigatus and found that calcium chelation severely impedes hyphal growth indicating a critical requirement for this ion independently of ambient pH. Transcriptomic responses to alkaline pH or calcium excess exhibited minimal similarity. Mutants lacking calcineurin, or its client CrzA, displayed normal alkaline tolerance and nuclear translocation of CrzA was unaffected by ambient pH. Expression of a highly conserved, alkaline‐regulated, sodium ATPase was tolerant of genetic or chemical perturbations of calcium‐mediated signalling, but abolished in null mutants of the pH‐responsive transcription factor PacC, and PacC proteolytic processing occurred normally during calcium excess. Taken together our data demonstrate that in A. fumigatus the regulatory hierarchy governing alkaline tolerance circumvents calcineurin signalling.
Collapse
Affiliation(s)
- Omar Loss
- Microbiology Section, Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Margherita Bertuzzi
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9NT, UK
| | - Yu Yan
- The J. Craig Venter Institute, Infectious Diseases Program, Rockville, MD, USA
| | - Natalie Fedorova
- The J. Craig Venter Institute, Infectious Diseases Program, Rockville, MD, USA
| | - Bethany L McCann
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9NT, UK
| | - Darius Armstrong-James
- Fungal Pathogens Laboratory, National Heart and Lung Institute, Imperial College London SW7 2AY, UK
| | - Eduardo A Espeso
- Department of Molecular and Cellular Biology, Centro de Investigaciones Biologicas (C.S.I.C.), Madrid, Spain
| | - Nick D Read
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9NT, UK
| | - William C Nierman
- The J. Craig Venter Institute, Infectious Diseases Program, Rockville, MD, USA
| | - Elaine M Bignell
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9NT, UK
| |
Collapse
|
69
|
Secretome profiling reveals temperature-dependent growth of Aspergillus fumigatus. SCIENCE CHINA-LIFE SCIENCES 2017; 61:578-592. [PMID: 29067645 DOI: 10.1007/s11427-017-9168-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/29/2017] [Indexed: 12/11/2022]
Abstract
Aspergillus fumigatus is a ubiquitous opportunistic fungus. In this study, systematic analyses were carried out to study the temperature adaptability of A. fumigatus. A total of 241 glycoside hydrolases and 69 proteases in the secretome revealed the strong capability of A. fumigatus to degrade plant biomass and protein substrates. In total, 129 pathogenesis-related proteins detected in the secretome were strongly correlated with glycoside hydrolases and proteases. The variety and abundance of proteins remained at temperatures of 34°C-45°C. The percentage of endo-1,4-xylanase increased when the temperature was lowered to 20°C, while the percentage of cellobiohydrolase increased as temperature was increased, suggesting that the strain obtains carbon mainly by degrading xylan and cellulose, and the main types of proteases in the secretome were aminopeptidases and carboxypeptidases. Only half of the proteins were retained and their abundance declined to 9.7% at 55°C. The activities of the remaining β-glycosidases and proteases were merely 35% and 24%, respectively, when the secretome was treated at 60°C for 2 h. Therefore, temperatures >60°C restrict the growth of A. fumigatus.
Collapse
|
70
|
Yu Y, Hube B, Kämper J, Meyer V, Krappmann S. When green and red mycology meet: Impressions from an interdisciplinary forum on virulence mechanisms of phyto- and human-pathogenic fungi. Virulence 2017; 8:1435-1444. [PMID: 28723316 DOI: 10.1080/21505594.2017.1356502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fungal infections pose a constant threat to plants and humans, but detailed knowledge about pathogenesis, immunity, or virulence is rather scarce. Due to the fact that a certain overlap in the armoury of infection exists between plant- and human-pathogenic fungi, an interdisciplinary forum was held in October 2016 at the Institute for Clinical Microbiology, Immunology and Hygiene in Erlangen under the organisational umbrella from two special interest groups of German microbial societies. Scientific exchange and intense discussion of this timely topic was fostered by bringing together renowned experts in their respective fields to present their thoughts and recent findings in the course of a plenary lecture and six themed sessions, accompanied by oral and poster contributions of young researchers. By targeting the topic of fungal virulence mechanisms from various angles and in the context of plant and human hosts, some common grounds and exciting perspectives could be deduced during this vibrant scientific event.
Collapse
Affiliation(s)
- Yidong Yu
- a Institute for Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nürnberg , Erlangen , Bavaria , Germany
| | - Bernhard Hube
- b Department of Microbial Pathogenicity Mechanisms , Hans Knöll Institute , Jena , Thuringia , Germany
| | - Jörg Kämper
- c Department of Genetics , Institute of Applied Biosciences, Karlsruhe Institute of Technology , Karlsruhe , Baden-Wuerttemberg , Germany
| | - Vera Meyer
- d Institute of Biotechnology , Department of Applied and Molecular Microbiology, Technische Universität Berlin , Berlin , Germany
| | - Sven Krappmann
- a Institute for Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nürnberg , Erlangen , Bavaria , Germany
| |
Collapse
|
71
|
Abstract
Aspergillus fumigatus is an environmental filamentous fungus that can cause life-threatening disease in immunocompromised individuals. The interactions between A. fumigatus and the host environment are dynamic and complex. The host immune system needs to recognize the distinct morphological forms of A. fumigatus to control fungal growth and prevent tissue invasion, whereas the fungus requires nutrients and needs to adapt to the hostile environment by escaping immune recognition and counteracting host responses. Understanding these highly dynamic interactions is necessary to fully understand the pathogenesis of aspergillosis and to facilitate the design of new therapeutics to overcome the morbidity and mortality caused by A. fumigatus. In this Review, we describe how A. fumigatus adapts to environmental change, the mechanisms of host defence, and our current knowledge of the interplay between the host immune response and the fungus.
Collapse
|
72
|
Dallery JF, Lapalu N, Zampounis A, Pigné S, Luyten I, Amselem J, Wittenberg AHJ, Zhou S, de Queiroz MV, Robin GP, Auger A, Hainaut M, Henrissat B, Kim KT, Lee YH, Lespinet O, Schwartz DC, Thon MR, O’Connell RJ. Gapless genome assembly of Colletotrichum higginsianum reveals chromosome structure and association of transposable elements with secondary metabolite gene clusters. BMC Genomics 2017; 18:667. [PMID: 28851275 PMCID: PMC5576322 DOI: 10.1186/s12864-017-4083-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/21/2017] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The ascomycete fungus Colletotrichum higginsianum causes anthracnose disease of brassica crops and the model plant Arabidopsis thaliana. Previous versions of the genome sequence were highly fragmented, causing errors in the prediction of protein-coding genes and preventing the analysis of repetitive sequences and genome architecture. RESULTS Here, we re-sequenced the genome using single-molecule real-time (SMRT) sequencing technology and, in combination with optical map data, this provided a gapless assembly of all twelve chromosomes except for the ribosomal DNA repeat cluster on chromosome 7. The more accurate gene annotation made possible by this new assembly revealed a large repertoire of secondary metabolism (SM) key genes (89) and putative biosynthetic pathways (77 SM gene clusters). The two mini-chromosomes differed from the ten core chromosomes in being repeat- and AT-rich and gene-poor but were significantly enriched with genes encoding putative secreted effector proteins. Transposable elements (TEs) were found to occupy 7% of the genome by length. Certain TE families showed a statistically significant association with effector genes and SM cluster genes and were transcriptionally active at particular stages of fungal development. All 24 subtelomeres were found to contain one of three highly-conserved repeat elements which, by providing sites for homologous recombination, were probably instrumental in four segmental duplications. CONCLUSION The gapless genome of C. higginsianum provides access to repeat-rich regions that were previously poorly assembled, notably the mini-chromosomes and subtelomeres, and allowed prediction of the complete SM gene repertoire. It also provides insights into the potential role of TEs in gene and genome evolution and host adaptation in this asexual pathogen.
Collapse
Affiliation(s)
- Jean-Félix Dallery
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | - Nicolas Lapalu
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | - Antonios Zampounis
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
- Present Address: Department of Deciduous Fruit Trees, Institute of Plant Breeding and Plant Genetic Resources, Hellenic Agricultural Organization ‘Demeter’, Naoussa, Greece
| | - Sandrine Pigné
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | | | | | | | - Shiguo Zhou
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin USA
| | - Marisa V. de Queiroz
- Laboratório de Genética Molecular de Fungos, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Guillaume P. Robin
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | - Annie Auger
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | - Matthieu Hainaut
- CNRS UMR 7257, Aix-Marseille University, Marseille, France
- INRA, USC 1408 AFMB, Marseille, France
| | - Bernard Henrissat
- CNRS UMR 7257, Aix-Marseille University, Marseille, France
- INRA, USC 1408 AFMB, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ki-Tae Kim
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, Seoul National University, Seoul, Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, Seoul National University, Seoul, Korea
| | - Olivier Lespinet
- Laboratoire de Recherche en Informatique, CNRS, Université Paris-Sud, Orsay, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Orsay, France
| | - David C. Schwartz
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin USA
| | - Michael R. Thon
- Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Department of Microbiology and Genetics, University of Salamanca, Salamanca, Spain
| | - Richard J. O’Connell
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| |
Collapse
|
73
|
Manfiolli AO, de Castro PA, dos Reis TF, Dolan S, Doyle S, Jones G, Riaño Pachón DM, Ulaş M, Noble LM, Mattern DJ, Brakhage AA, Valiante V, Silva-Rocha R, Bayram O, Goldman GH. Aspergillus fumigatusprotein phosphatase PpzA is involved in iron assimilation, secondary metabolite production, and virulence. Cell Microbiol 2017; 19. [DOI: 10.1111/cmi.12770] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/28/2017] [Accepted: 07/14/2017] [Indexed: 01/19/2023]
Affiliation(s)
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto Brazil
| | - Thaila Fernanda dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto Brazil
| | - Stephen Dolan
- Department of Biology; Maynooth University; Maynooth Co. Kildare Ireland
| | - Sean Doyle
- Department of Biology; Maynooth University; Maynooth Co. Kildare Ireland
| | - Gary Jones
- Department of Biology; Maynooth University; Maynooth Co. Kildare Ireland
| | - Diego M. Riaño Pachón
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE); Centro Nacional de Pesquisa em Energia e Materiais (CNPEM); Campinas São Paulo Brazil
| | - Mevlüt Ulaş
- Department of Biology; Maynooth University; Maynooth Co. Kildare Ireland
| | | | - Derek J. Mattern
- Department of Molecular and Applied Microbiology; Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute; Jena Germany
- University of Jena; Jena Germany
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology; Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute; Jena Germany
- University of Jena; Jena Germany
| | - Vito Valiante
- Leibniz Research Group-Biobricks of Microbial Natural Product Syntheses; Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute; Jena Germany
| | - Rafael Silva-Rocha
- Faculdade de Medicina de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto Brazil
| | - Ozgur Bayram
- Department of Biology; Maynooth University; Maynooth Co. Kildare Ireland
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto Brazil
| |
Collapse
|
74
|
Cairns T, Meyer V. In silico prediction and characterization of secondary metabolite biosynthetic gene clusters in the wheat pathogen Zymoseptoria tritici. BMC Genomics 2017; 18:631. [PMID: 28818040 PMCID: PMC5561558 DOI: 10.1186/s12864-017-3969-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/31/2017] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Fungal pathogens of plants produce diverse repertoires of secondary metabolites, which have functions ranging from iron acquisition, defense against immune perturbation, to toxic assaults on the host. The wheat pathogen Zymoseptoria tritici causes Septoria tritici blotch, a foliar disease which is a significant threat to global food security. Currently, there is limited knowledge of the secondary metabolite arsenal produced by Z. tritici, which significantly restricts mechanistic understanding of infection. In this study, we analyzed the genome of Z. tritici isolate IP0323 to identify putative secondary metabolite biosynthetic gene clusters, and used comparative genomics to predict their encoded products. RESULTS We identified 32 putative secondary metabolite clusters. These were physically enriched at subtelomeric regions, which may facilitate diversification of cognate products by rapid gene rearrangement or mutations. Comparative genomics revealed a four gene cluster with significant similarity to the ferrichrome-A biosynthetic locus of the maize pathogen Ustilago maydis, suggesting this siderophore is deployed by Z. tritici to acquire iron. The Z. tritici genome also contains several isoprenoid biosynthetic gene clusters, including one with high similarity to a carotenoid/opsin producing locus in several fungi. Furthermore, we identify putative phytotoxin biosynthetic clusters, suggesting Z. tritici can produce an epipolythiodioxopiperazine, and a polyketide and non-ribosomal peptide with predicted structural similarities to fumonisin and the Alternaria alternata AM-toxin, respectively. Interrogation of an existing transcriptional dataset suggests stage specific deployment of numerous predicted loci during infection, indicating an important role of these secondary metabolites in Z. tritici disease. CONCLUSIONS We were able to assign putative biosynthetic products to numerous clusters based on conservation amongst other fungi. However, analysis of the majority of secondary metabolite loci did not enable prediction of a cluster product, and consequently the capacity of these loci to play as yet undetermined roles in disease or other stages of the Z. tritici lifecycle is significant. These data will drive future experimentation for determining the role of these clusters and cognate secondary metabolite products in Z. tritici virulence, and may lead to discovery of novel bioactive molecules.
Collapse
Affiliation(s)
- Timothy Cairns
- Institute of Biotechnology, Department of Applied and Molecular Microbiology, Berlin University of Technology, Gustav-Meyer-Allee 25, 13355, Berlin, Germany.
| | - Vera Meyer
- Institute of Biotechnology, Department of Applied and Molecular Microbiology, Berlin University of Technology, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| |
Collapse
|
75
|
Desoubeaux G, Cray C. Rodent Models of Invasive Aspergillosis due to Aspergillus fumigatus: Still a Long Path toward Standardization. Front Microbiol 2017; 8:841. [PMID: 28559881 PMCID: PMC5432554 DOI: 10.3389/fmicb.2017.00841] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/24/2017] [Indexed: 01/09/2023] Open
Abstract
Invasive aspergillosis has been studied in laboratory by the means of plethora of distinct animal models. They were developed to address pathophysiology, therapy, diagnosis, or miscellaneous other concerns associated. However, there are great discrepancies regarding all the experimental variables of animal models, and a thorough focus on them is needed. This systematic review completed a comprehensive bibliographic analysis specifically-based on the technical features of rodent models infected with Aspergillus fumigatus. Out the 800 articles reviewed, it was shown that mice remained the preferred model (85.8% of the referenced reports), above rats (10.8%), and guinea pigs (3.8%). Three quarters of the models involved immunocompromised status, mainly by steroids (44.4%) and/or alkylating drugs (42.9%), but only 27.7% were reported to receive antibiotic prophylaxis to prevent from bacterial infection. Injection of spores (30.0%) and inhalation/deposition into respiratory airways (66.9%) were the most used routes for experimental inoculation. Overall, more than 230 distinct A. fumigatus strains were used in models. Of all the published studies, 18.4% did not mention usage of any diagnostic tool, like histopathology or mycological culture, to control correct implementation of the disease and to measure outcome. In light of these findings, a consensus discussion should be engaged to establish a minimum standardization, although this may not be consistently suitable for addressing all the specific aspects of invasive aspergillosis.
Collapse
Affiliation(s)
- Guillaume Desoubeaux
- Division of Comparative Pathology, Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of MiamiMiami, FL, USA.,Service de Parasitologie-Mycologie-Médecine tropicale, Centre Hospitalier Universitaire de ToursTours, France.,Centre d'Etude des Pathologies Respiratoires (CEPR) Institut National de la Santé et de la Recherche Médicale U1100/Équipe 3, Université François-RabelaisTours, France
| | - Carolyn Cray
- Division of Comparative Pathology, Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of MiamiMiami, FL, USA
| |
Collapse
|
76
|
Pradhan A, Herrero-de-Dios C, Belmonte R, Budge S, Lopez Garcia A, Kolmogorova A, Lee KK, Martin BD, Ribeiro A, Bebes A, Yuecel R, Gow NAR, Munro CA, MacCallum DM, Quinn J, Brown AJP. Elevated catalase expression in a fungal pathogen is a double-edged sword of iron. PLoS Pathog 2017; 13:e1006405. [PMID: 28542620 PMCID: PMC5456399 DOI: 10.1371/journal.ppat.1006405] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 06/02/2017] [Accepted: 05/09/2017] [Indexed: 11/18/2022] Open
Abstract
Most fungal pathogens of humans display robust protective oxidative stress responses that contribute to their pathogenicity. The induction of enzymes that detoxify reactive oxygen species (ROS) is an essential component of these responses. We showed previously that ectopic expression of the heme-containing catalase enzyme in Candida albicans enhances resistance to oxidative stress, combinatorial oxidative plus cationic stress, and phagocytic killing. Clearly ectopic catalase expression confers fitness advantages in the presence of stress, and therefore in this study we tested whether it enhances fitness in the absence of stress. We addressed this using a set of congenic barcoded C. albicans strains that include doxycycline-conditional tetON-CAT1 expressors. We show that high basal catalase levels, rather than CAT1 induction following stress imposition, reduce ROS accumulation and cell death, thereby promoting resistance to acute peroxide or combinatorial stress. This conclusion is reinforced by our analyses of phenotypically diverse clinical isolates and the impact of stochastic variation in catalase expression upon stress resistance in genetically homogeneous C. albicans populations. Accordingly, cat1Δ cells are more sensitive to neutrophil killing. However, we find that catalase inactivation does not attenuate C. albicans virulence in mouse or invertebrate models of systemic candidiasis. Furthermore, our direct comparisons of fitness in vitro using isogenic barcoded CAT1, cat1Δ and tetON-CAT1 strains show that, while ectopic catalase expression confers a fitness advantage during peroxide stress, it confers a fitness defect in the absence of stress. This fitness defect is suppressed by iron supplementation. Also high basal catalase levels induce key iron assimilatory functions (CFL5, FET3, FRP1, FTR1). We conclude that while high basal catalase levels enhance peroxide stress resistance, they place pressure on iron homeostasis through an elevated cellular demand for iron, thereby reducing the fitness of C. albicans in iron-limiting tissues within the host.
Collapse
Affiliation(s)
- Arnab Pradhan
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Carmen Herrero-de-Dios
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Rodrigo Belmonte
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Susan Budge
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Angela Lopez Garcia
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Aljona Kolmogorova
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Keunsook K. Lee
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Brennan D. Martin
- Centre for Genome-Enabled Biology and Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | - Antonio Ribeiro
- Centre for Genome-Enabled Biology and Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | - Attila Bebes
- Iain Fraser Cytometry Centre, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Raif Yuecel
- Iain Fraser Cytometry Centre, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Neil A. R. Gow
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Carol A. Munro
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Donna M. MacCallum
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Janet Quinn
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Alistair J. P. Brown
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| |
Collapse
|
77
|
Abstract
Proteases play an important role in health and disease of the lung. In the normal lungs, proteases maintain their homeostatic functions that regulate processes like its regeneration and repair. Dysregulation of proteases–antiproteases balance is crucial in the manifestation of different types of lung diseases. Chronic inflammatory lung pathologies are associated with a marked increase in protease activities. Thus, in addition to protease activities, inhibition of anti-proteolytic control mechanisms are also important for effective microbial infection and inflammation in the lung. Herein, we briefly summarize the role of different proteases and to some extent antiproteases in regulating a variety of lung diseases.
Collapse
|
78
|
Macheleidt J, Mattern DJ, Fischer J, Netzker T, Weber J, Schroeckh V, Valiante V, Brakhage AA. Regulation and Role of Fungal Secondary Metabolites. Annu Rev Genet 2016; 50:371-392. [DOI: 10.1146/annurev-genet-120215-035203] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Juliane Macheleidt
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
| | - Derek J. Mattern
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
- Institute for Microbiology, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Juliane Fischer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
- Institute for Microbiology, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Tina Netzker
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
- Institute for Microbiology, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Jakob Weber
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
- Institute for Microbiology, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Volker Schroeckh
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
| | - Vito Valiante
- Research Group Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745 Jena, Germany;
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
- Institute for Microbiology, Friedrich Schiller University Jena, 07737 Jena, Germany
| |
Collapse
|
79
|
Krappmann S. How to invade a susceptible host: cellular aspects of aspergillosis. Curr Opin Microbiol 2016; 34:136-146. [PMID: 27816786 DOI: 10.1016/j.mib.2016.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 02/07/2023]
Abstract
Diseases caused by Aspergillus spp. and in particular A. fumigatus are manifold and affect individuals suffering from immune dysfunctions, among them immunocompromised ones. The determinants of whether the encounter of a susceptible host with infectious propagules of this filamentous saprobe results in infection have been characterized to a limited extent. Several cellular characteristics of A. fumigatus that have evolved in its natural environment contribute to its virulence, among them general traits as well as particular ones that affect interaction with the mammalian host. Among the latter, conidial constituents, cell wall components, secreted proteins as well as extrolites shape the tight interaction of A. fumigatus with the host milieu and also contribute to evasion from immune surveillance.
Collapse
Affiliation(s)
- Sven Krappmann
- Institute of Microbiology - Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nürnberg, Wasserturmstr. 3/5, D-91054 Erlangen, Germany.
| |
Collapse
|
80
|
Petrik M, Zhai C, Haas H, Decristoforo C. Siderophores for molecular imaging applications. Clin Transl Imaging 2016; 5:15-27. [PMID: 28138436 PMCID: PMC5269471 DOI: 10.1007/s40336-016-0211-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/30/2016] [Indexed: 01/21/2023]
Abstract
This review covers publications on siderophores applied for molecular imaging applications, mainly for radionuclide-based imaging. Siderophores are low molecular weight chelators produced by bacteria and fungi to scavenge essential iron. Research on these molecules has a continuing history over the past 50 years. Many biomedical applications have been developed, most prominently the use of the siderophore desferrioxamine (DFO) to tackle iron overload related diseases. Recent research described the upregulation of siderophore production and transport systems during infection. Replacing iron in siderophores by radionuclides, the most prominent Ga-68 for PET, opens approaches for targeted imaging of infection; the proof of principle has been reported for fungal infections using 68Ga-triacetylfusarinine C (TAFC). Additionally, fluorescent siderophores and therapeutic conjugates have been described and may be translated to optical imaging and theranostic applications. Siderophores have also been applied as bifunctional chelators, initially DFO as chelator for Ga-67 and more recently for Zr-89 where it has become the standard chelator in Immuno-PET. Improved DFO constructs and bifunctional chelators based on cyclic siderophores have recently been developed for Ga-68 and Zr-89 and show promising properties for radiopharmaceutical development in PET. A huge potential from basic biomedical research on siderophores still awaits to be utilized for clinical and translational imaging.
Collapse
Affiliation(s)
- Milos Petrik
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czech Republic
| | - Chuangyan Zhai
- Universitätsklinik für Nuklearmedizin, Medizinische Universität Innsbruck, Anichstr. 35, 6020 Innsbruck, Austria
- Department of Experimental Nuclear Medicine, Guangzhou Medical University, Guangzhou, Guangdong China
| | - Hubertus Haas
- Division of Molecular Biology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Clemens Decristoforo
- Universitätsklinik für Nuklearmedizin, Medizinische Universität Innsbruck, Anichstr. 35, 6020 Innsbruck, Austria
| |
Collapse
|
81
|
Wand T, Fang M, Chen C, Hardy N, McCoy JP, Dumitriu B, Young NS, Biancotto A. Telomere content measurement in human hematopoietic cells: Comparative analysis of qPCR and Flow-FISH techniques. Cytometry A 2016; 89:914-921. [PMID: 27717244 PMCID: PMC6482817 DOI: 10.1002/cyto.a.22982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/13/2016] [Accepted: 08/31/2016] [Indexed: 12/30/2022]
Abstract
Abnormal telomere lengths have been linked to cancer and other hematologic disorders. Determination of mean telomere content (MTC) is traditionally performed by Southern blotting and densitometry, giving a mean telomere restriction fragment (TRF) value for the total cell population studied. Here, we compared a quantitative Polymerase Chain Reaction approach (qPCR) and a flow cytometric approach, fluorescence in situ hybridization (Flow-FISH), to evaluate telomere content distribution in total patient peripheral blood mononuclear cells or specific cell populations. Flow-FISH is based on in situ hybridization using a fluorescein-labeled peptide nucleic acid (PNA) (CCCTAA)3 probe and DNA staining with propidium iodide. We showed that both qPCR and Flow-FISH provide a robust measurement, with Flow-FISH measuring a relative content longer than qPCR at a single cell approach and that TRF2 fluorescence intensity did not correlate with MTC. Both methods showed comparable telomere content reduction with age, and the rate of relative telomere loss was similar. Published 2016 Wiley Periodicals Inc. This article is a US government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Taylor Wand
- Center for Human Immunology, Autoimmunity, and Inflammation, National Institutes of Health, Bethesda, Maryland, 28092
| | - Mike Fang
- Hematology Branch, National Heart Lung and Blood Institute National Institutes of Health, Bethesda, Maryland, 28092
| | - Christina Chen
- Hematology Branch, National Heart Lung and Blood Institute National Institutes of Health, Bethesda, Maryland, 28092
| | - Nathan Hardy
- Hematology Branch, National Heart Lung and Blood Institute National Institutes of Health, Bethesda, Maryland, 28092
| | - J Philip McCoy
- Flow Cytometry Core, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, 28092
| | - Bogdan Dumitriu
- Hematology Branch, National Heart Lung and Blood Institute National Institutes of Health, Bethesda, Maryland, 28092
| | - Neal S Young
- Center for Human Immunology, Autoimmunity, and Inflammation, National Institutes of Health, Bethesda, Maryland, 28092
- Hematology Branch, National Heart Lung and Blood Institute National Institutes of Health, Bethesda, Maryland, 28092
| | - Angélique Biancotto
- Center for Human Immunology, Autoimmunity, and Inflammation, National Institutes of Health, Bethesda, Maryland, 28092.
| |
Collapse
|
82
|
de Castro PA, Chiaratto J, Morais ER, Dos Reis TF, Mitchell TK, Brown NA, Goldman GH. The putative flavin carrier family FlcA-C is important for Aspergillus fumigatus virulence. Virulence 2016; 8:797-809. [PMID: 27652896 DOI: 10.1080/21505594.2016.1239010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Aspergillus fumigatus is an opportunistic fungal pathogen and the most important species causing pulmonary fungal infections. The signaling by calcium is very important for A. fumigatus pathogenicity and it is regulated by the transcription factor CrzA. We have previously used used ChIP-seq (Chromatin Immunoprecipitation DNA sequencing) aiming to identify gene targets regulated by CrzA. We have identified among several genes regulated by calcium stress, the putative flavin transporter, flcA. This transporter belongs to a small protein family composed of FlcA, B, and C. The ΔflcA null mutant showed several phenotypes, such as morphological defects, increased sensitivity to calcium chelating-agent ethylene glycol tetraacetic acid (EGTA), cell wall or oxidative damaging agents and metals, repre-sentative of deficiencies in calcium signaling and iron homeostasis. Increasing calcium concentrations improved significantly the ΔflcA growth and conidiation, indicating that ΔflcA mutant has calcium insufficiency. Finally, ΔflcA-C mutants showed reduced flavin adenine dinucleotide (FAD) and were avirulent in a low dose murine infection model.
Collapse
Affiliation(s)
- Patrícia A de Castro
- a Faculdade de Ciências Farmacêuticas de Ribeirão Preto and Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Jéssica Chiaratto
- a Faculdade de Ciências Farmacêuticas de Ribeirão Preto and Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Enyara Rezende Morais
- a Faculdade de Ciências Farmacêuticas de Ribeirão Preto and Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Thaila Fernanda Dos Reis
- a Faculdade de Ciências Farmacêuticas de Ribeirão Preto and Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Thomas K Mitchell
- b Department of Plant Pathology , The Ohio State University , Columbus , OH , USA
| | - Neil A Brown
- c Plant Biology and Crop Science, Rothamsted Research , Harpenden, Herts , UK
| | - Gustavo H Goldman
- a Faculdade de Ciências Farmacêuticas de Ribeirão Preto and Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| |
Collapse
|
83
|
Moloney NM, Owens RA, Doyle S. Proteomic analysis of Aspergillus fumigatus – clinical implications. Expert Rev Proteomics 2016; 13:635-49. [DOI: 10.1080/14789450.2016.1203783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
84
|
Kaltdorf M, Srivastava M, Gupta SK, Liang C, Binder J, Dietl AM, Meir Z, Haas H, Osherov N, Krappmann S, Dandekar T. Systematic Identification of Anti-Fungal Drug Targets by a Metabolic Network Approach. Front Mol Biosci 2016; 3:22. [PMID: 27379244 PMCID: PMC4911368 DOI: 10.3389/fmolb.2016.00022] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/24/2016] [Indexed: 11/13/2022] Open
Abstract
New antimycotic drugs are challenging to find, as potential target proteins may have close human orthologs. We here focus on identifying metabolic targets that are critical for fungal growth and have minimal similarity to targets among human proteins. We compare and combine here: (I) direct metabolic network modeling using elementary mode analysis and flux estimates approximations using expression data, (II) targeting metabolic genes by transcriptome analysis of condition-specific highly expressed enzymes, and (III) analysis of enzyme structure, enzyme interconnectedness ("hubs"), and identification of pathogen-specific enzymes using orthology relations. We have identified 64 targets including metabolic enzymes involved in vitamin synthesis, lipid, and amino acid biosynthesis including 18 targets validated from the literature, two validated and five currently examined in own genetic experiments, and 38 further promising novel target proteins which are non-orthologous to human proteins, involved in metabolism and are highly ranked drug targets from these pipelines.
Collapse
Affiliation(s)
- Martin Kaltdorf
- Department of Bioinformatics, Biocenter, University of Würzburg Würzburg, Germany
| | - Mugdha Srivastava
- Department of Bioinformatics, Biocenter, University of Würzburg Würzburg, Germany
| | - Shishir K Gupta
- Department of Bioinformatics, Biocenter, University of Würzburg Würzburg, Germany
| | - Chunguang Liang
- Department of Bioinformatics, Biocenter, University of Würzburg Würzburg, Germany
| | - Jasmin Binder
- Microbiology Institute - Clinical Microbiology, Immunology and Hygiene, Friedrich-Alexander University Erlangen-Nürnberg, University Hospital of Erlangen Erlangen, Germany
| | - Anna-Maria Dietl
- Division of Molecular Biology/Biocenter, Medical University Innsbruck Innsbruck, Austria
| | - Zohar Meir
- Aspergillus and Antifungal Research Laboratory, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University Tel-Aviv, Israel
| | - Hubertus Haas
- Division of Molecular Biology/Biocenter, Medical University Innsbruck Innsbruck, Austria
| | - Nir Osherov
- Aspergillus and Antifungal Research Laboratory, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University Tel-Aviv, Israel
| | - Sven Krappmann
- Microbiology Institute - Clinical Microbiology, Immunology and Hygiene, Friedrich-Alexander University Erlangen-Nürnberg, University Hospital of Erlangen Erlangen, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg Würzburg, Germany
| |
Collapse
|
85
|
Linde T, Zoglowek M, Lübeck M, Frisvad JC, Lübeck PS. The global regulator LaeA controls production of citric acid and endoglucanases in Aspergillus carbonarius. J Ind Microbiol Biotechnol 2016; 43:1139-47. [PMID: 27169528 DOI: 10.1007/s10295-016-1781-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/28/2016] [Indexed: 01/11/2023]
Abstract
The global regulatory protein LaeA is known for regulating the production of many kinds of secondary metabolites in Aspergillus species, as well as sexual and asexual reproduction, and morphology. In Aspergillus carbonarius, it has been shown that LaeA regulates production of ochratoxin. We have investigated the regulatory effect of LaeA on production of citric acid and cellulolytic enzymes in A. carbonarius. Two types of A. carbonarius strains, having laeA knocked out or overexpressed, were constructed and tested in fermentation. The knockout of laeA significantly decreased the production of citric acid and endoglucanases, but did not reduce the production of beta-glucosidases or xylanases. The citric acid accumulation was reduced with 74-96 % compared to the wild type. The endoglucanase activity was reduced with 51-78 %. Overexpression of LaeA seemed not to have an effect on citric acid production or on cellulose or xylanase activity.
Collapse
Affiliation(s)
- Tore Linde
- Section for Sustainable Biotechnology, Aalborg University, A.C. Meyers Vaenge 15, 2450, Copenhagen SV, Denmark
| | - Marta Zoglowek
- Carlsberg Research Laboratory, Yeast & Fermentation, Group Commercial, Gamle Carlsberg Vej 4, 1799, Copenhagen V, Denmark
| | - Mette Lübeck
- Section for Sustainable Biotechnology, Aalborg University, A.C. Meyers Vaenge 15, 2450, Copenhagen SV, Denmark
| | - Jens Christian Frisvad
- DTU, Institute for System-biologi, Fungal Chemodiversity, Søltofts Plads, 2800, Kgs. Lyngby, Denmark
| | - Peter Stephensen Lübeck
- Section for Sustainable Biotechnology, Aalborg University, A.C. Meyers Vaenge 15, 2450, Copenhagen SV, Denmark.
| |
Collapse
|
86
|
In Vivo Transcriptional Profiling of Human Pathogenic Fungi during Infection: Reflecting the Real Life? PLoS Pathog 2016; 12:e1005471. [PMID: 27078150 PMCID: PMC4831747 DOI: 10.1371/journal.ppat.1005471] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
87
|
Exploration of Sulfur Assimilation of Aspergillus fumigatus Reveals Biosynthesis of Sulfur-Containing Amino Acids as a Virulence Determinant. Infect Immun 2016; 84:917-929. [PMID: 26787716 DOI: 10.1128/iai.01124-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/07/2016] [Indexed: 12/17/2022] Open
Abstract
Fungal infections are of major relevance due to the increased numbers of immunocompromised patients, frequently delayed diagnosis, and limited therapeutics. To date, the growth and nutritional requirements of fungi during infection, which are relevant for invasion of the host, are poorly understood. This is particularly true for invasive pulmonary aspergillosis, as so far, sources of (macro)elements that are exploited during infection have been identified to only a limited extent. Here, we have investigated sulfur (S) utilization by the human-pathogenic mold Aspergillus fumigatus during invasive growth. Our data reveal that inorganic S compounds or taurine is unlikely to serve as an S source during invasive pulmonary aspergillosis since a sulfate transporter mutant strain and a sulfite reductase mutant strain are fully virulent. In contrast, the S-containing amino acid cysteine is limiting for fungal growth, as proven by the reduced virulence of a cysteine auxotroph. Moreover, phenotypic characterization of this strain further revealed the robustness of the subordinate glutathione redox system. Interestingly, we demonstrate that methionine synthase is essential for A. fumigatus virulence, defining the biosynthetic route of this proteinogenic amino acid as a potential antifungal target. In conclusion, we provide novel insights into the nutritional requirements ofA. fumigatus during pathogenesis, a prerequisite to understanding and fighting infection.
Collapse
|
88
|
Moloney NM, Owens RA, Meleady P, Henry M, Dolan SK, Mulvihill E, Clynes M, Doyle S. The iron-responsive microsomal proteome of Aspergillus fumigatus. J Proteomics 2016; 136:99-111. [DOI: 10.1016/j.jprot.2015.12.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/02/2015] [Accepted: 12/23/2015] [Indexed: 01/17/2023]
|
89
|
The contribution of Aspergillus fumigatus stress responses to virulence and antifungal resistance. J Microbiol 2016; 54:243-53. [PMID: 26920884 DOI: 10.1007/s12275-016-5510-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022]
Abstract
Invasive aspergillosis has emerged as one of the most common life-threatening fungal disease of humans. The emergence of antifungal resistant pathogens represents a current and increasing threat to society. In turn, new strategies to combat fungal infection are urgently required. Fungal adaptations to stresses experienced within the human host are a prerequisite for the survival and virulence strategies of the pathogen. Here, we review the latest information on the signalling pathways in Aspergillus fumigatus that contribute to stress adaptations and virulence, while highlighting their potential as targets for the development of novel combinational antifungal therapies.
Collapse
|
90
|
Amorim-Vaz S, Sanglard D. Novel Approaches for Fungal Transcriptomics from Host Samples. Front Microbiol 2016; 6:1571. [PMID: 26834721 PMCID: PMC4717316 DOI: 10.3389/fmicb.2015.01571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/28/2015] [Indexed: 11/13/2022] Open
Abstract
Candida albicans adaptation to the host requires a profound reprogramming of the fungal transcriptome as compared to in vitro laboratory conditions. A detailed knowledge of the C. albicans transcriptome during the infection process is necessary in order to understand which of the fungal genes are important for host adaptation. Such genes could be thought of as potential targets for antifungal therapy. The acquisition of the C. albicans transcriptome is, however, technically challenging due to the low proportion of fungal RNA in host tissues. Two emerging technologies were used recently to circumvent this problem. One consists of the detection of low abundance fungal RNA using capture and reporter gene probes which is followed by emission and quantification of resulting fluorescent signals (nanoString). The other is based first on the capture of fungal RNA by short biotinylated oligonucleotide baits covering the C. albicans ORFome permitting fungal RNA purification. Next, the enriched fungal RNA is amplified and subjected to RNA sequencing (RNA-seq). Here we detail these two transcriptome approaches and discuss their advantages and limitations and future perspectives in microbial transcriptomics from host material.
Collapse
Affiliation(s)
- Sara Amorim-Vaz
- Institute of Microbiology, University Hospital Center, University of Lausanne Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, University Hospital Center, University of Lausanne Lausanne, Switzerland
| |
Collapse
|
91
|
Frisvad JC, Larsen TO. Extrolites of Aspergillus fumigatus and Other Pathogenic Species in Aspergillus Section Fumigati. Front Microbiol 2016; 6:1485. [PMID: 26779142 PMCID: PMC4703822 DOI: 10.3389/fmicb.2015.01485] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/09/2015] [Indexed: 11/13/2022] Open
Abstract
Aspergillus fumigatus is an important opportunistic human pathogen known for its production of a large array of extrolites. Up to 63 species have been described in Aspergillus section Fumigati, some of which have also been reliably reported to be pathogenic, including A. felis, A. fischeri, A. fumigatiaffinis, A. fumisynnematus, A. hiratsukae, A. laciniosus, A. lentulus, A. novofumigatus, A. parafelis, A. pseudofelis, A. pseudoviridinutans, A. spinosus, A. thermomutatus, and A. udagawae. These species share the production of hydrophobins, melanins, and siderophores and ability to grow well at 37°C, but they only share some small molecule extrolites, that could be important factors in pathogenicity. According to the literature gliotoxin and other exometabolites can be contributing factors to pathogenicity, but these exometabolites are apparently not produced by all pathogenic species. It is our hypothesis that species unable to produce some of these metabolites can produce proxy-exometabolites that may serve the same function. We tabulate all exometabolites reported from species in Aspergillus section Fumigati and by comparing the profile of those extrolites, suggest that those producing many different kinds of exometabolites are potential opportunistic pathogens. The exometabolite data also suggest that the profile of exometabolites are highly specific and can be used for identification of these closely related species.
Collapse
Affiliation(s)
- Jens C. Frisvad
- Section of Eukaryotic Biotechnology, Department of Systems Biology, Technical University of DenmarkKongens Lyngby, Denmark
| | | |
Collapse
|
92
|
Scharf DH, Brakhage AA, Mukherjee PK. Gliotoxin--bane or boon? Environ Microbiol 2015; 18:1096-109. [PMID: 26443473 DOI: 10.1111/1462-2920.13080] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/30/2015] [Accepted: 10/04/2015] [Indexed: 12/31/2022]
Abstract
Gliotoxin (GT) is the most important epidithiodioxopiperazine (ETP)-type fungal toxin. GT was originally isolated from Trichoderma species as an antibiotic substance involved in biological control of plant pathogenic fungi. A few isolates of GT-producing Trichoderma virens are commercially marketed for biological control and widely used in agriculture. Furthermore, GT is long known as an immunosuppressive agent and also reported to have anti-tumour properties. However, recent publications suggest that GT is a virulence determinant of the human pathogen Aspergillus fumigatus. This compound is thus important on several counts - it has medicinal properties, is a pathogenicity determinant, is a potential diagnostic marker and is important in biological crop protection. The present article addresses this paradox and the ecological role of GT. We discuss the function of GT as defence molecule, the role in aspergillosis and suggest solutions for safe application of Trichoderma-based biofungicides.
Collapse
Affiliation(s)
- Daniel H Scharf
- Department of Molecular and Applied Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI) and Institute for Microbiology, Friedrich Schiller University Jena, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI) and Institute for Microbiology, Friedrich Schiller University Jena, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Prasun K Mukherjee
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| |
Collapse
|
93
|
A Novel Type Pathway-Specific Regulator and Dynamic Genome Environments of a Solanapyrone Biosynthesis Gene Cluster in the Fungus Ascochyta rabiei. EUKARYOTIC CELL 2015; 14:1102-13. [PMID: 26342019 PMCID: PMC4621316 DOI: 10.1128/ec.00084-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/31/2015] [Indexed: 01/07/2023]
Abstract
Secondary metabolite genes are often clustered together and situated in particular genomic regions, like the subtelomere, that can facilitate niche adaptation in fungi. Solanapyrones are toxic secondary metabolites produced by fungi occupying different ecological niches. Full-genome sequencing of the ascomycete Ascochyta rabiei revealed a solanapyrone biosynthesis gene cluster embedded in an AT-rich region proximal to a telomere end and surrounded by Tc1/Mariner-type transposable elements. The highly AT-rich environment of the solanapyrone cluster is likely the product of repeat-induced point mutations. Several secondary metabolism-related genes were found in the flanking regions of the solanapyrone cluster. Although the solanapyrone cluster appears to be resistant to repeat-induced point mutations, a P450 monooxygenase gene adjacent to the cluster has been degraded by such mutations. Among the six solanapyrone cluster genes (sol1 to sol6), sol4 encodes a novel type of Zn(II)2Cys6 zinc cluster transcription factor. Deletion of sol4 resulted in the complete loss of solanapyrone production but did not compromise growth, sporulation, or virulence. Gene expression studies with the sol4 deletion and sol4-overexpressing mutants delimited the boundaries of the solanapyrone gene cluster and revealed that sol4 is likely a specific regulator of solanapyrone biosynthesis and appears to be necessary and sufficient for induction of the solanapyrone cluster genes. Despite the dynamic surrounding genomic regions, the solanapyrone gene cluster has maintained its integrity, suggesting important roles of solanapyrones in fungal biology.
Collapse
|
94
|
Irmer H, Tarazona S, Sasse C, Olbermann P, Loeffler J, Krappmann S, Conesa A, Braus GH. RNAseq analysis of Aspergillus fumigatus in blood reveals a just wait and see resting stage behavior. BMC Genomics 2015; 16:640. [PMID: 26311470 PMCID: PMC4551469 DOI: 10.1186/s12864-015-1853-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/17/2015] [Indexed: 12/20/2022] Open
Abstract
Background Invasive aspergillosis is started after germination of Aspergillus fumigatus conidia that are inhaled by susceptible individuals. Fungal hyphae can grow in the lung through the epithelial tissue and disseminate hematogenously to invade into other organs. Low fungaemia indicates that fungal elements do not reside in the bloodstream for long. Results We analyzed whether blood represents a hostile environment to which the physiology of A. fumigatus has to adapt. An in vitro model of A. fumigatus infection was established by incubating mycelium in blood. Our model allowed to discern the changes of the gene expression profile of A. fumigatus at various stages of the infection. The majority of described virulence factors that are connected to pulmonary infections appeared not to be activated during the blood phase. Three active processes were identified that presumably help the fungus to survive the blood environment in an advanced phase of the infection: iron homeostasis, secondary metabolism, and the formation of detoxifying enzymes. Conclusions We propose that A. fumigatus is hardly able to propagate in blood. After an early stage of sensing the environment, virtually all uptake mechanisms and energy-consuming metabolic pathways are shut-down. The fungus appears to adapt by trans-differentiation into a resting mycelial stage. This might reflect the harsh conditions in blood where A. fumigatus cannot take up sufficient nutrients to establish self-defense mechanisms combined with significant growth. Electronic supplementary material The online version of this article (doi10.1186/s12864-015-1853-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Henriette Irmer
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstraße 8, D-37077, Göttingen, Germany.
| | - Sonia Tarazona
- Genomics of Gene Expression Lab, Prince Felipe Research Center, Av. Eduardo Primo Yufera 3, 46012, Valencia, Spain.
| | - Christoph Sasse
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstraße 8, D-37077, Göttingen, Germany.
| | - Patrick Olbermann
- Research Center for Infectious Diseases, Julius-Maximilians University Würzburg, Würzburg, Germany.
| | - Jürgen Loeffler
- Laboratory WÜ4i, Medical Clinic and Policlinic II, University Clinic Würzburg, Würzburg, Germany.
| | - Sven Krappmann
- Research Center for Infectious Diseases, Julius-Maximilians University Würzburg, Würzburg, Germany. .,Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinik Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Ana Conesa
- Genomics of Gene Expression Lab, Prince Felipe Research Center, Av. Eduardo Primo Yufera 3, 46012, Valencia, Spain. .,Department of Microbiology and Cell Science, Institute for Food and Agricultura Sciences, University of Florida at Gainesville, Gainesville, FL, USA.
| | - Gerhard H Braus
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstraße 8, D-37077, Göttingen, Germany.
| |
Collapse
|
95
|
Crawford A, Wilson D. Essential metals at the host-pathogen interface: nutritional immunity and micronutrient assimilation by human fungal pathogens. FEMS Yeast Res 2015; 15:fov071. [PMID: 26242402 PMCID: PMC4629794 DOI: 10.1093/femsyr/fov071] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2015] [Indexed: 12/23/2022] Open
Abstract
The ability of pathogenic microorganisms to assimilate sufficient nutrients for growth within their hosts is a fundamental requirement for pathogenicity. However, certain trace nutrients, including iron, zinc and manganese, are actively withheld from invading pathogens in a process called nutritional immunity. Therefore, successful pathogenic species must have evolved specialized mechanisms in order to adapt to the nutritionally restrictive environment of the host and cause disease. In this review, we discuss recent advances which have been made in our understanding of fungal iron and zinc acquisition strategies and nutritional immunity against fungal infections, and explore the mechanisms of micronutrient uptake by human pathogenic fungi. The human body tightly sequesters essential micronutrients, restricting their access to invading microorganisms, and pathogenic species must counteract this action of ‘nutritional immunity’.
Collapse
Affiliation(s)
- Aaron Crawford
- Aberdeen Fungal Group, School of Medical Sciences, Aberdeen AB25 2ZD, UK
| | - Duncan Wilson
- Aberdeen Fungal Group, School of Medical Sciences, Aberdeen AB25 2ZD, UK
| |
Collapse
|
96
|
Macheleidt J, Scherlach K, Neuwirth T, Schmidt-Heck W, Straßburger M, Spraker J, Baccile JA, Schroeder FC, Keller NP, Hertweck C, Heinekamp T, Brakhage AA. Transcriptome analysis of cyclic AMP-dependent protein kinase A-regulated genes reveals the production of the novel natural compound fumipyrrole by Aspergillus fumigatus. Mol Microbiol 2015; 96:148-62. [PMID: 25582336 DOI: 10.1111/mmi.12926] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2015] [Indexed: 01/31/2023]
Abstract
Aspergillus fumigatus is an opportunistic human pathogenic fungus causing life-threatening infections in immunocompromised patients. Adaptation to different habitats and also virulence of the fungus depends on signal perception and transduction by modules such as the cyclic AMP-dependent protein kinase A (PKA) pathway. Here, by transcriptome analysis, 632 differentially regulated genes of this important signaling cascade were identified, including 23 putative transcriptional regulators. The highest upregulated transcription factor gene was located in a previously unknown secondary metabolite gene cluster, which we named fmp, encoding an incomplete non-ribosomal peptide synthetase, FmpE. Overexpression of the regulatory gene fmpR using the Tet(On) system led to the specific expression of the other six genes of the fmp cluster. Metabolic profiling of wild type and fmpR overexpressing strain by HPLC-DAD and HPLC-HRESI-MS and structure elucidation by NMR led to identification of 5-benzyl-1H-pyrrole-2-carboxylic acid, which we named fumipyrrole. Fumipyrrole was not described as natural product yet. Chemical synthesis of fumipyrrole confirmed its structure. Interestingly, deletion of fmpR or fmpE led to reduced growth and sporulation of the mutant strains. Although fmp cluster genes were transcribed in infected mouse lungs, deletion of fmpR resulted in wild-type virulence in a murine infection model.
Collapse
Affiliation(s)
- Juliane Macheleidt
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745, Jena, Germany; Institute for Microbiology, Friedrich Schiller University, 07745, Jena, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Activation and alliance of regulatory pathways in C. albicans during mammalian infection. PLoS Biol 2015; 13:e1002076. [PMID: 25693184 PMCID: PMC4333574 DOI: 10.1371/journal.pbio.1002076] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 01/09/2015] [Indexed: 11/24/2022] Open
Abstract
Gene expression dynamics have provided foundational insight into almost all biological processes. Here, we analyze expression of environmentally responsive genes and transcription factor genes to infer signals and pathways that drive pathogen gene regulation during invasive Candida albicans infection of a mammalian host. Environmentally responsive gene expression shows that there are early and late phases of infection. The early phase includes induction of zinc and iron limitation genes, genes that respond to transcription factor Rim101, and genes characteristic of invasive hyphal cells. The late phase includes responses related to phagocytosis by macrophages. Transcription factor gene expression also reflects early and late phases. Transcription factor genes that are required for virulence or proliferation in vivo are enriched among highly expressed transcription factor genes. Mutants defective in six transcription factor genes, three previously studied in detail (Rim101, Efg1, Zap1) and three less extensively studied (Rob1, Rpn4, Sut1), are profiled during infection. Most of these mutants have distinct gene expression profiles during infection as compared to in vitro growth. Infection profiles suggest that Sut1 acts in the same pathway as Zap1, and we verify that functional relationship with the finding that overexpression of either ZAP1 or the Zap1-dependent zinc transporter gene ZRT2 restores pathogenicity to a sut1 mutant. Perturbation with the cell wall inhibitor caspofungin also has distinct gene expression impact in vivo and in vitro. Unexpectedly, caspofungin induces many of the same genes that are repressed early during infection, a phenomenon that we suggest may contribute to drug efficacy. The pathogen response circuitry is tailored uniquely during infection, with many relevant regulatory relationships that are not evident during growth in vitro. Our findings support the principle that virulence is a property that is manifested only in the distinct environment in which host–pathogen interaction occurs. A study of the invasive infection of a mammalian host by the pathogenic fungus Candida albicans reveals characteristic gene regulation patterns in response to the host environment, distinct from those seen when growing in vitro. We have a limited understanding of how the expression of pathogens’ genes changes during infection of humans or other animal hosts, in contrast to in vitro models of infection. Here we profile the alteration in gene expression over time as a predictor of functional consequences during invasive growth of Candida in the kidney; a situation in which the limited number of pathogen cells makes gene expression challenging to assay. Our findings reveal that there are distinct early and late phases of infection, and identify new genes that govern the early zinc acquisition response necessary for proliferation in vivo—and thus required for infection. We also find that the response to drug treatment that manifests during infection can be distinct from that detected in vitro. We show that a well-known gene expression response to the antifungal drug caspofungin is naturally down-regulated in infecting cells, suggesting that the efficacy of the drug may be enhanced by a susceptible state of the pathogen during invasive proliferation.
Collapse
|
98
|
Haas H, Petrik M, Decristoforo C. An iron-mimicking, Trojan horse-entering fungi--has the time come for molecular imaging of fungal infections? PLoS Pathog 2015; 11:e1004568. [PMID: 25634225 PMCID: PMC4310729 DOI: 10.1371/journal.ppat.1004568] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Hubertus Haas
- Division of Molecular Biology/Biocenter, Innsbruck Medical University, Innsbruck, Austria
- * E-mail: (HH); (CD)
| | - Milos Petrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Clemens Decristoforo
- Clinical Department of Nuclear Medicine, Innsbruck Medical University, Innsbruck, Austria
- * E-mail: (HH); (CD)
| |
Collapse
|
99
|
Perkhofer S, Zenzmaier C, Frealle E, Blatzer M, Hackl H, Sartori B, Lass-Flörl C. Differential gene expression in Aspergillus fumigatus induced by human platelets in vitro. Int J Med Microbiol 2015; 305:327-38. [PMID: 25661519 PMCID: PMC4415150 DOI: 10.1016/j.ijmm.2015.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 12/10/2014] [Accepted: 01/11/2015] [Indexed: 12/19/2022] Open
Abstract
Invasive aspergillosis is characterized by vascular invasion and thrombosis. In order to determine the antifungal activity of human platelets, hyphal elongation and metabolic activity of a clinical A. fumigatus isolate were measured. Genome-wide identification of differentially expressed genes in A. fumigatus was performed after exposure to platelets for 15, 30, 60 and 180 min. Data were analyzed by gene ontology annotation as well as functional categories (FunCat) and KEGG enrichment analyses. Platelets attenuated hyphal elongation and viability of A. fumigatus and in total 584 differentially expressed genes were identified, many of which were associated with regulation of biological processes, stress response, transport and metabolism. FunCat and KEGG enrichment analyses showed stress response and metabolic adaptation to be increased in response to platelets. Our findings demonstrate that A. fumigatus displayed a specific transcriptional response when exposed to platelets, thus reflecting their antifungal activities.
Collapse
Affiliation(s)
- Susanne Perkhofer
- University of Applied Sciences Tyrol, 6020 Innsbruck, Austria; Division of Hygiene and Medical Microbiology, Innsbruck Medical University, 6020 Innsbruck, Austria.
| | | | - Emilie Frealle
- Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, Biology and Diversity of Emerging Eukaryotic Pathogens (BDEEP), INSERM U1019, CNRS UMR 8204, Univ. Lille Nord de France, Lille, France
| | - Michael Blatzer
- Division of Hygiene and Medical Microbiology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Hubert Hackl
- Division of Bioinformatics, Biocenter, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Bettina Sartori
- Division of Hygiene and Medical Microbiology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Innsbruck Medical University, 6020 Innsbruck, Austria
| |
Collapse
|
100
|
Sheridan KJ, Dolan SK, Doyle S. Endogenous cross-talk of fungal metabolites. Front Microbiol 2015; 5:732. [PMID: 25601857 PMCID: PMC4283610 DOI: 10.3389/fmicb.2014.00732] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/04/2014] [Indexed: 12/21/2022] Open
Abstract
Non-ribosomal peptide (NRP) synthesis in fungi requires a ready supply of proteogenic and non-proteogenic amino acids which are subsequently incorporated into the nascent NRP via a thiotemplate mechanism catalyzed by NRP synthetases. Substrate amino acids can be modified prior to or during incorporation into the NRP, or following incorporation into an early stage amino acid-containing biosynthetic intermediate. These post-incorporation modifications involve a range of additional enzymatic activities including but not exclusively, monooxygenases, methyltransferases, epimerases, oxidoreductases, and glutathione S-transferases which are essential to effect biosynthesis of the final NRP. Likewise, polyketide biosynthesis is directly by polyketide synthase megaenzymes and cluster-encoded ancillary decorating enzymes. Additionally, a suite of additional primary metabolites, for example: coenzyme A (CoA), acetyl CoA, S-adenosylmethionine, glutathione (GSH), NADPH, malonyl CoA, and molecular oxygen, amongst others are required for NRP and polyketide synthesis (PKS). Clearly these processes must involve exquisite orchestration to facilitate the simultaneous biosynthesis of different types of NRPs, polyketides, and related metabolites requiring identical or similar biosynthetic precursors or co-factors. Moreover, the near identical structures of many natural products within a given family (e.g., ergot alkaloids), along with localization to similar regions within fungi (e.g., conidia) suggests that cross-talk may exist, in terms of biosynthesis and functionality. Finally, we speculate if certain biosynthetic steps involved in NRP and PKS play a role in cellular protection or environmental adaptation, and wonder if these enzymatic reactions are of equivalent importance to the actual biosynthesis of the final metabolite.
Collapse
Affiliation(s)
| | - Stephen K Dolan
- Department of Biology, Maynooth University Maynooth, Ireland
| | - Sean Doyle
- Department of Biology, Maynooth University Maynooth, Ireland
| |
Collapse
|