51
|
Simões ML, Dong Y, Hammond A, Hall A, Crisanti A, Nolan T, Dimopoulos G. The Anopheles FBN9 immune factor mediates Plasmodium species-specific defense through transgenic fat body expression. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:257-265. [PMID: 27667688 DOI: 10.1016/j.dci.2016.09.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
Mosquitoes have a multifaceted innate immune system that is actively engaged in warding off various pathogens, including the protozoan malaria parasite Plasmodium. Various immune signaling pathways and effectors have been shown to mediate a certain degree of defense specificity against different Plasmodium species. A key pattern recognition receptor of the Anopheles gambiae immune system is the fibrinogen domain-containing immunolectin FBN9, which has been shown to be transcriptonally induced by Plasmodium infection, and to mediate defense against both rodent and human malaria parasites and bacteria. Here we have further studied the defense specificity of FBN9 using a transgenic approach, in which FBN9 is overexpressed in the fat body tissue after a blood meal through a vitellogenin promoter. Interestingly, the Vg-FBN9 transgenic mosquitoes showed increased resistance only to the rodent parasite P. berghei, and not to the human parasite P. falciparum, pointing to differences in the mosquito's defense mechanisms against the two parasite species. The Vg-FBN9 transgenic mosquitoes were also more resistant to infection with both Gram-positive and Gram-negative bacteria and showed increased longevity when infected with P. berghei. Our study points to the importance of both experimentally depleting and enriching candidate anti-Plasmodium effectors in functional studies in order to ascertain their suitability for the development of transgenic mosquito-based malaria control strategies.
Collapse
Affiliation(s)
- Maria L Simões
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - Andrew Hammond
- Department of Life Sciences, Imperial College London, SW7 2AZ, UK
| | - Ann Hall
- Department of Life Sciences, Imperial College London, SW7 2AZ, UK
| | - Andrea Crisanti
- Department of Life Sciences, Imperial College London, SW7 2AZ, UK
| | - Tony Nolan
- Department of Life Sciences, Imperial College London, SW7 2AZ, UK
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA.
| |
Collapse
|
52
|
Kohl A, Pondeville E, Schnettler E, Crisanti A, Supparo C, Christophides GK, Kersey PJ, Maslen GL, Takken W, Koenraadt CJM, Oliva CF, Busquets N, Abad FX, Failloux AB, Levashina EA, Wilson AJ, Veronesi E, Pichard M, Arnaud Marsh S, Simard F, Vernick KD. Advancing vector biology research: a community survey for future directions, research applications and infrastructure requirements. Pathog Glob Health 2016; 110:164-72. [PMID: 27677378 PMCID: PMC5072118 DOI: 10.1080/20477724.2016.1211475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Vector-borne pathogens impact public health, animal production, and animal welfare. Research on arthropod vectors such as mosquitoes, ticks, sandflies, and midges which transmit pathogens to humans and economically important animals is crucial for development of new control measures that target transmission by the vector. While insecticides are an important part of this arsenal, appearance of resistance mechanisms is increasingly common. Novel tools for genetic manipulation of vectors, use of Wolbachia endosymbiotic bacteria, and other biological control mechanisms to prevent pathogen transmission have led to promising new intervention strategies, adding to strong interest in vector biology and genetics as well as vector-pathogen interactions. Vector research is therefore at a crucial juncture, and strategic decisions on future research directions and research infrastructure investment should be informed by the research community. A survey initiated by the European Horizon 2020 INFRAVEC-2 consortium set out to canvass priorities in the vector biology research community and to determine key activities that are needed for researchers to efficiently study vectors, vector-pathogen interactions, as well as access the structures and services that allow such activities to be carried out. We summarize the most important findings of the survey which in particular reflect the priorities of researchers in European countries, and which will be of use to stakeholders that include researchers, government, and research organizations.
Collapse
Affiliation(s)
- Alain Kohl
- a MRC-University of Glasgow Centre for Virus Research , Glasgow , UK
| | - Emilie Pondeville
- a MRC-University of Glasgow Centre for Virus Research , Glasgow , UK
| | - Esther Schnettler
- a MRC-University of Glasgow Centre for Virus Research , Glasgow , UK
| | - Andrea Crisanti
- b Department of Life Sciences , Imperial College London , London , UK
| | - Clelia Supparo
- b Department of Life Sciences , Imperial College London , London , UK
| | | | - Paul J Kersey
- c The European Molecular Biology Laboratory , The European Bioinformatics Institute, Wellcome Trust Genome Campus , Cambridge , UK
| | - Gareth L Maslen
- c The European Molecular Biology Laboratory , The European Bioinformatics Institute, Wellcome Trust Genome Campus , Cambridge , UK
| | - Willem Takken
- d Laboratory of Entomology , Wageningen University and Research Centre , Wageningen , The Netherlands
| | | | - Clelia F Oliva
- e Polo d'Innovazione di Genomica, Genetica e Biologia , Perugia , Italy
| | - Núria Busquets
- f Centre de Recerca en Sanitat Animal (CReSA) , Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB , Barcelona , Spain
| | - F Xavier Abad
- f Centre de Recerca en Sanitat Animal (CReSA) , Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB , Barcelona , Spain
| | - Anna-Bella Failloux
- g Arboviruses and Insect Vectors Unit, Department of Virology , Institut Pasteur , Paris cedex 15 , France
| | - Elena A Levashina
- h Department of Vector Biology , Max-Planck-Institut für Infektionsbiologie, Campus Charité Mitte , Berlin , Germany
| | - Anthony J Wilson
- i Integrative Entomology Group, Vector-borne Viral Diseases Programme , The Pirbright Institute , Surrey , UK
| | - Eva Veronesi
- j Swiss National Centre for Vector Entomology, Institute of Parasitology , University of Zürich , Zürich , Switzerland
| | - Maëlle Pichard
- k Department of Parasites and Insect Vectors , Institut Pasteur, Unit of Insect Vector Genetics and Genomics , Paris cedex 15 , France
| | - Sarah Arnaud Marsh
- k Department of Parasites and Insect Vectors , Institut Pasteur, Unit of Insect Vector Genetics and Genomics , Paris cedex 15 , France
| | - Frédéric Simard
- l MIVEGEC "Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle" , UMR IRD224-CNRS5290-Université de Montpellier , Montpellier France
| | - Kenneth D Vernick
- k Department of Parasites and Insect Vectors , Institut Pasteur, Unit of Insect Vector Genetics and Genomics , Paris cedex 15 , France.,m CNRS Unit of Hosts, Vectors and Pathogens (URA3012) , Institut Pasteur , Paris cedex 15 , France
| |
Collapse
|
53
|
Zamanian M, Andersen EC. Prospects and challenges of CRISPR/Cas genome editing for the study and control of neglected vector-borne nematode diseases. FEBS J 2016; 283:3204-21. [PMID: 27300487 PMCID: PMC5053252 DOI: 10.1111/febs.13781] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/05/2016] [Accepted: 06/13/2016] [Indexed: 01/19/2023]
Abstract
Neglected tropical diseases caused by parasitic nematodes inflict an immense health and socioeconomic burden throughout much of the developing world. Current estimates indicate that more than two billion people are infected with nematodes, resulting in the loss of 14 million disability-adjusted life years per annum. Although these parasites cause significant mortality, they primarily cause chronic morbidity through a wide range of severe clinical ailments. Treatment options for nematode infections are restricted to a small number of anthelmintic drugs, and the rapid expansion of anthelmintic mass drug administration raises concerns of drug resistance. Preservation of existing drugs is necessary, as well as the development of new treatment options and methods of control. We focus this review on how the democratization of CRISPR/Cas9 genome editing technology can be enlisted to improve our understanding of the biology of nematode parasites and our ability to treat the infections they cause. We will first explore how this robust method of genome manipulation can be used to newly exploit the powerful model nematode Caenorhabditis elegans for parasitology research. We will then discuss potential avenues to develop CRISPR/Cas9 editing protocols in filarial nematodes. Lastly, we will propose potential ways in which CRISPR/Cas9 can be used to engineer gene drives that target the transmission of mosquito-borne filarial nematodes.
Collapse
Affiliation(s)
- Mostafa Zamanian
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonILUSA
| | - Erik C. Andersen
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonILUSA
| |
Collapse
|
54
|
Hien DFDS, Dabiré KR, Roche B, Diabaté A, Yerbanga RS, Cohuet A, Yameogo BK, Gouagna LC, Hopkins RJ, Ouedraogo GA, Simard F, Ouedraogo JB, Ignell R, Lefevre T. Plant-Mediated Effects on Mosquito Capacity to Transmit Human Malaria. PLoS Pathog 2016; 12:e1005773. [PMID: 27490374 PMCID: PMC4973987 DOI: 10.1371/journal.ppat.1005773] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/27/2016] [Indexed: 01/25/2023] Open
Abstract
The ecological context in which mosquitoes and malaria parasites interact has received little attention, compared to the genetic and molecular aspects of malaria transmission. Plant nectar and fruits are important for the nutritional ecology of malaria vectors, but how the natural diversity of plant-derived sugar sources affects mosquito competence for malaria parasites is unclear. To test this, we infected Anopheles coluzzi, an important African malaria vector, with sympatric field isolates of Plasmodium falciparum, using direct membrane feeding assays. Through a series of experiments, we then examined the effects of sugar meals from Thevetia neriifolia and Barleria lupilina cuttings that included flowers, and fruit from Lannea microcarpa and Mangifera indica on parasite and mosquito traits that are key for determining the intensity of malaria transmission. We found that the source of plant sugar meal differentially affected infection prevalence and intensity, the development duration of the parasites, as well as the survival and fecundity of the vector. These effects are likely the result of complex interactions between toxic secondary metabolites and the nutritional quality of the plant sugar source, as well as of host resource availability and parasite growth. Using an epidemiological model, we show that plant sugar source can be a significant driver of malaria transmission dynamics, with some plant species exhibiting either transmission-reducing or -enhancing activities.
Collapse
Affiliation(s)
| | - Kounbobr R. Dabiré
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo Dioulasso, Burkina Faso
| | - Benjamin Roche
- UMISCO lab (Unité de Modélisation Mathématique et Informatique des Systèmes Complexes), UMI IRD/UPMC 209, Bondy, France
| | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo Dioulasso, Burkina Faso
| | | | - Anna Cohuet
- MIVEGEC lab (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), UMR Université Montpellier, CNRS 5290, IRD 224, 911 Av. Agropolis, Montpellier, France
| | - Bienvenue K. Yameogo
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo Dioulasso, Burkina Faso
| | - Louis-Clément Gouagna
- MIVEGEC lab (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), UMR Université Montpellier, CNRS 5290, IRD 224, 911 Av. Agropolis, Montpellier, France
| | - Richard J. Hopkins
- University of Greenwich, Natural Resource Institute–Department of Agriculture Health and Environment, Chatham Maritime, Kent, United Kingdom
| | | | - Frédéric Simard
- MIVEGEC lab (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), UMR Université Montpellier, CNRS 5290, IRD 224, 911 Av. Agropolis, Montpellier, France
| | - Jean-Bosco Ouedraogo
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo Dioulasso, Burkina Faso
| | - Rickard Ignell
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Thierry Lefevre
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo Dioulasso, Burkina Faso
- MIVEGEC lab (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), UMR Université Montpellier, CNRS 5290, IRD 224, 911 Av. Agropolis, Montpellier, France
| |
Collapse
|
55
|
Kojin BB, Costa-da-Silva AL, Maciel C, Henriques DA, Carvalho DO, Martin K, Marinotti O, James AA, Bonaldo MC, Capurro ML. Endogenously-expressed NH2-terminus of circumsporozoite protein interferes with sporozoite invasion of mosquito salivary glands. Malar J 2016; 15:153. [PMID: 26964736 PMCID: PMC4785649 DOI: 10.1186/s12936-016-1207-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 03/01/2016] [Indexed: 11/28/2022] Open
Abstract
Background The circumsporozoite protein is the most abundant polypeptide expressed by sporozoites, the malaria parasite stage capable of infecting humans. Sporozoite invasion of mosquito salivary glands prior to transmission is likely mediated by a receptor/ligand-like interaction of the parasites with the target tissues, and the amino (NH2)-terminal portion of CSP is involved in this interaction but not the TSR region on the carboxyl (C)-terminus. Peptides based on the NH2-terminal domain could compete with the parasites for the salivary gland receptors and thus inhibit penetration. Methods Peptides based on the NH2-terminus and TSR domains of the CSP from avian or human malaria parasites, Plasmodium gallinaceum and Plasmodium falciparum, respectively, were expressed endogenously in mosquito haemolymph using a transient (Sindbis virus-mediated) or stable (piggyBac-mediated transgenesis) system. Results Transient endogenous expression of partial NH2-terminus peptide from P. falciparum CSP in P. gallinaceum-infected Aedes aegypti resulted in a reduced number of sporozoites in the salivary glands. When a transgenic approach was used to express a partial CSP NH2-terminal domain from P. gallinaceum the number of sporozoites in the salivary glands did not show a difference when compared to controls. However, a significant difference could be observed when mosquitoes with a lower infection were analysed. The same result could not be observed with mosquitoes endogenously expressing peptides based on the TSR domain from either P. gallinaceum or P. falciparum. Conclusion These results support the conclusion that CSP partial NH2-terminal domain can be endogenously expressed to promote a competition for the receptor used by sporozoites to invade salivary glands, and they could be used to block this interaction and reduce parasite transmission. The same effect cannot be obtained with peptides based on the TSR domain. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1207-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bianca B Kojin
- Laboratório de Mosquitos Geneticamente Modificados, Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - André Luis Costa-da-Silva
- Laboratório de Mosquitos Geneticamente Modificados, Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Ceres Maciel
- Laboratório de Mosquitos Geneticamente Modificados, Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Dayane Alves Henriques
- BSL3+ Laboratory, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Danilo O Carvalho
- Laboratório de Mosquitos Geneticamente Modificados, Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Kelcie Martin
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Osvaldo Marinotti
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Anthony A James
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA.,Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, 92697, USA
| | - Myrna C Bonaldo
- Laboratório de Biologia Molecular de Flavivirus, Instituto Oswaldo Cruz/FIOCRUZ, Manguinhos, RJ, 21040-360, Brazil
| | - Margareth Lara Capurro
- Laboratório de Mosquitos Geneticamente Modificados, Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
56
|
Abstract
On December 18, 2014, a yellow female fly quietly emerged from her pupal case. What made her unique was that she had only one parent carrying a mutant allele of this classic recessive locus. Then, one generation later, after mating with a wild-type male, all her offspring displayed the same recessive yellow phenotype. Further analysis of other such yellow females revealed that the construct causing the mutation was converting the opposing chromosome with 95% efficiency. These simple results, seen also in mosquitoes and yeast, open the door to a new era of genetics wherein the laws of traditional Mendelian inheritance can be bypassed for a broad variety of purposes. Here, we consider the implications of this fundamentally new form of "active genetics," its applications for gene drives, reversal and amplification strategies, its potential for contributing to cell and gene therapy strategies, and ethical/biosafety considerations associated with such active genetic elements. Also watch the Video Abstract.
Collapse
Affiliation(s)
- Valentino M Gantz
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
57
|
|
58
|
Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc Natl Acad Sci U S A 2015; 112:E6736-43. [PMID: 26598698 DOI: 10.1073/pnas.1521077112] [Citation(s) in RCA: 623] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genetic engineering technologies can be used both to create transgenic mosquitoes carrying antipathogen effector genes targeting human malaria parasites and to generate gene-drive systems capable of introgressing the genes throughout wild vector populations. We developed a highly effective autonomous Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9)-mediated gene-drive system in the Asian malaria vector Anopheles stephensi, adapted from the mutagenic chain reaction (MCR). This specific system results in progeny of males and females derived from transgenic males exhibiting a high frequency of germ-line gene conversion consistent with homology-directed repair (HDR). This system copies an ∼ 17-kb construct from its site of insertion to its homologous chromosome in a faithful, site-specific manner. Dual anti-Plasmodium falciparum effector genes, a marker gene, and the autonomous gene-drive components are introgressed into ∼ 99.5% of the progeny following outcrosses of transgenic lines to wild-type mosquitoes. The effector genes remain transcriptionally inducible upon blood feeding. In contrast to the efficient conversion in individuals expressing Cas9 only in the germ line, males and females derived from transgenic females, which are expected to have drive component molecules in the egg, produce progeny with a high frequency of mutations in the targeted genome sequence, resulting in near-Mendelian inheritance ratios of the transgene. Such mutant alleles result presumably from nonhomologous end-joining (NHEJ) events before the segregation of somatic and germ-line lineages early in development. These data support the design of this system to be active strictly within the germ line. Strains based on this technology could sustain control and elimination as part of the malaria eradication agenda.
Collapse
|
59
|
Wilke ABB, Marrelli MT. Paratransgenesis: a promising new strategy for mosquito vector control. Parasit Vectors 2015; 8:342. [PMID: 26104575 PMCID: PMC4489152 DOI: 10.1186/s13071-015-0959-2] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/17/2015] [Indexed: 11/23/2022] Open
Abstract
The three main mosquito genera, Anopheles, Aedes and Culex, transmit respectively malaria, dengue and lymphatic filariasis. Current mosquito control strategies have proved unsuccessful, and there still is a substantial number of morbidity and mortality from these diseases. Genetic control methods have now arisen as promising alternative strategies, based on two approaches: the replacement of a vector population by disease-refractory mosquitoes and the release of mosquitoes carrying a lethal gene to suppress target populations. However, substantial hurdles and limitations need to be overcome if these methods are to be used successfully, the most significant being that a transgenic mosquito strain is required for every target species, making genetically modified mosquito strategies inviable when there are multiple vector mosquitoes in the same area. Genetically modified bacteria capable of colonizing a wide range of mosquito species may be a solution to this problem and another option for the control of these diseases. In the paratransgenic approach, symbiotic bacteria are genetically modified and reintroduced in mosquitoes, where they express effector molecules. For this approach to be used in practice, however, requires a better understanding of mosquito microbiota and that symbiotic bacteria and effector molecules be identified. Paratransgenesis could prove very useful in mosquito species that are inherently difficult to transform or in sibling species complexes. In this approach, a genetic modified bacteria can act by: (a) causing pathogenic effects in the host; (b) interfering with the host's reproduction; (c) reducing the vector's competence; and (d) interfering with oogenesis and embryogenesis. It is a much more flexible and adaptable approach than the use of genetically modified mosquitoes because effector molecules and symbiotic bacteria can be replaced if they do not achieve the desired result. Paratransgenesis may therefore become an important integrated pest management tool for mosquito control.
Collapse
Affiliation(s)
- André Barretto Bruno Wilke
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo 715, São Paulo, SP, CEP-01246-904, Brazil.
| | - Mauro Toledo Marrelli
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo 715, São Paulo, SP, CEP-01246-904, Brazil.
| |
Collapse
|
60
|
Pimenta PFP, Orfano AS, Bahia AC, Duarte APM, Ríos-Velásquez CM, Melo FF, Pessoa FAC, Oliveira GA, Campos KMM, Villegas LM, Rodrigues NB, Nacif-Pimenta R, Simões RC, Monteiro WM, Amino R, Traub-Cseko YM, Lima JBP, Barbosa MGV, Lacerda MVG, Tadei WP, Secundino NFC. An overview of malaria transmission from the perspective of Amazon Anopheles vectors. Mem Inst Oswaldo Cruz 2015; 110:23-47. [PMID: 25742262 PMCID: PMC4371216 DOI: 10.1590/0074-02760140266] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/18/2014] [Indexed: 02/07/2023] Open
Abstract
In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Anopheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence.
Collapse
Affiliation(s)
- Paulo FP Pimenta
- Centro de Pesquisas René Rachou-Fiocruz, Belo Horizonte, MG,
Brasil
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | | | - Ana C Bahia
- Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Ana PM Duarte
- Centro de Pesquisas René Rachou-Fiocruz, Belo Horizonte, MG,
Brasil
| | | | - Fabrício F Melo
- Centro de Pesquisas René Rachou-Fiocruz, Belo Horizonte, MG,
Brasil
| | | | | | - Keillen MM Campos
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | | | | | | | - Rejane C Simões
- Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brasil
| | - Wuelton M Monteiro
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | - Rogerio Amino
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, Paris,
France
| | | | - José BP Lima
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
- Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Maria GV Barbosa
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | - Marcus VG Lacerda
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
- Instituto Leônidas e Maria Deane-Fiocruz, Manaus, AM, Brasil
| | | | | |
Collapse
|
61
|
Abstract
Recent advances in genetic engineering are bringing new promise for controlling mosquito populations that transmit deadly pathogens. Here we discuss past and current efforts to engineer mosquito strains that are refractory to disease transmission or are suitable for suppressing wild disease-transmitting populations.
Collapse
Affiliation(s)
| | - Andrea Smidler
- />Department of Immunology and Infectious Diseases, Harvard School of Public Health, Avenue Louis Pasteur, Boston, MA 021155 USA
- />Department of Genetics, Harvard Medical School, Avenue Louis Pasteur, Boston, MA 02115 USA
| | - Flaminia Catteruccia
- />Department of Immunology and Infectious Diseases, Harvard School of Public Health, Avenue Louis Pasteur, Boston, MA 021155 USA
- />Department of Microbiology, Perugia University, Perugia, 06100 Italy
| |
Collapse
|
62
|
Costa-da-Silva AL, Marinotti O, Ribeiro JMC, Silva MCP, Lopes AR, Barros MS, Sá-Nunes A, Kojin BB, Carvalho E, Suesdek L, Silva-Neto MAC, James AA, Capurro ML. Transcriptome sequencing and developmental regulation of gene expression in Anopheles aquasalis. PLoS Negl Trop Dis 2014; 8:e3005. [PMID: 25033462 PMCID: PMC4102416 DOI: 10.1371/journal.pntd.0003005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 06/02/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Anopheles aquasalis is a major malaria vector in coastal areas of South and Central America where it breeds preferentially in brackish water. This species is very susceptible to Plasmodium vivax and it has been already incriminated as responsible vector in malaria outbreaks. There has been no high-throughput investigation into the sequencing of An. aquasalis genes, transcripts and proteins despite its epidemiological relevance. Here we describe the sequencing, assembly and annotation of the An. aquasalis transcriptome. METHODOLOGY/PRINCIPAL FINDINGS A total of 419 thousand cDNA sequence reads, encompassing 164 million nucleotides, were assembled in 7544 contigs of ≥ 2 sequences, and 1999 singletons. The majority of the An. aquasalis transcripts encode proteins with their closest counterparts in another neotropical malaria vector, An. darlingi. Several analyses in different protein databases were used to annotate and predict the putative functions of the deduced An. aquasalis proteins. Larval and adult-specific transcripts were represented by 121 and 424 contig sequences, respectively. Fifty-one transcripts were only detected in blood-fed females. The data also reveal a list of transcripts up- or down-regulated in adult females after a blood meal. Transcripts associated with immunity, signaling networks and blood feeding and digestion are discussed. CONCLUSIONS/SIGNIFICANCE This study represents the first large-scale effort to sequence the transcriptome of An. aquasalis. It provides valuable information that will facilitate studies on the biology of this species and may lead to novel strategies to reduce malaria transmission on the South American continent. The An. aquasalis transcriptome is accessible at http://exon.niaid.nih.gov/transcriptome/An_aquasalis/Anaquexcel.xlsx.
Collapse
Affiliation(s)
- André L. Costa-da-Silva
- Laboratório de Mosquitos Geneticamente Modificados, Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, INCT-EM, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Osvaldo Marinotti
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - José M. C. Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Maria C. P. Silva
- Laboratório de Mosquitos Geneticamente Modificados, Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Adriana R. Lopes
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Michele S. Barros
- Laboratório de Imunologia Experimental, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Anderson Sá-Nunes
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, INCT-EM, Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Imunologia Experimental, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Bianca B. Kojin
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Eneas Carvalho
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Lincoln Suesdek
- Laboratório de Mosquitos Geneticamente Modificados, Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Mário Alberto C. Silva-Neto
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, INCT-EM, Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Sinalização Celular, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anthony A. James
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, United States of America
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Margareth L. Capurro
- Laboratório de Mosquitos Geneticamente Modificados, Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, INCT-EM, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
63
|
Reeves RG, Bryk J, Altrock PM, Denton JA, Reed FA. First steps towards underdominant genetic transformation of insect populations. PLoS One 2014; 9:e97557. [PMID: 24844466 PMCID: PMC4028297 DOI: 10.1371/journal.pone.0097557] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/08/2014] [Indexed: 11/18/2022] Open
Abstract
The idea of introducing genetic modifications into wild populations of insects to stop them from spreading diseases is more than 40 years old. Synthetic disease refractory genes have been successfully generated for mosquito vectors of dengue fever and human malaria. Equally important is the development of population transformation systems to drive and maintain disease refractory genes at high frequency in populations. We demonstrate an underdominant population transformation system in Drosophila melanogaster that has the property of being both spatially self-limiting and reversible to the original genetic state. Both population transformation and its reversal can be largely achieved within as few as 5 generations. The described genetic construct {Ud} is composed of two genes; (1) a UAS-RpL14.dsRNA targeting RNAi to a haploinsufficient gene RpL14 and (2) an RNAi insensitive RpL14 rescue. In this proof-of-principle system the UAS-RpL14.dsRNA knock-down gene is placed under the control of an Actin5c-GAL4 driver located on a different chromosome to the {Ud} insert. This configuration would not be effective in wild populations without incorporating the Actin5c-GAL4 driver as part of the {Ud} construct (or replacing the UAS promoter with an appropriate direct promoter). It is however anticipated that the approach that underlies this underdominant system could potentially be applied to a number of species.
Collapse
Affiliation(s)
- R. Guy Reeves
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- * E-mail:
| | - Jarosław Bryk
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Philipp M. Altrock
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jai A. Denton
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Floyd A. Reed
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
64
|
Sangare I, Dabire R, Yameogo B, Da DF, Michalakis Y, Cohuet A. Stress dependent infection cost of the human malaria agent Plasmodium falciparum on its natural vector Anopheles coluzzii. INFECTION GENETICS AND EVOLUTION 2014; 25:57-65. [PMID: 24747607 DOI: 10.1016/j.meegid.2014.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/01/2014] [Accepted: 04/08/2014] [Indexed: 01/25/2023]
Abstract
Unraveling selective forces that shape vector-parasite interactions has critical implications for malaria control. However, it remains unclear whether Plasmodium infection induces a fitness cost to their natural mosquito vectors. Moreover, environmental conditions are known to affect infection outcome and may impact the effect of infection on mosquito fitness. We investigated in the laboratory the effects of exposition to and infection by field isolates of Plasmodium falciparum on fecundity and survival of a major vector in the field, Anopheles coluzzii under different conditions of access to sugar resources after blood feeding. The results evidenced fitness costs induced by exposition and infection. When sugar was available after blood meal, infected and exposed mosquitoes had either reduced or equal to survival to unexposed mosquitoes while fecundity was either increased or decreased depending on the blood donor. Under strong nutritional stress, survival was reduced for exposed and infected mosquitoes in all assays. We therefore provide here evidence of an environmental-dependant reduced survival in mosquitoes exposed to infection in a natural and one of the most important parasite-mosquito species associations for human malaria transmission.
Collapse
Affiliation(s)
- I Sangare
- Institut de Recherche en Sciences de la Santé, Direction Régionale, 399 avenue de la liberté, 01 BP 545 Bobo Dioulasso 01, Burkina Faso; Institut de Recherche pour le Développement, unité MIVEGEC (UM1-UM2-CNRS 5290-IRD 224), 911 avenue Agropolis, 34394 Montpellier Cedex 5, France.
| | - R Dabire
- Institut de Recherche en Sciences de la Santé, Direction Régionale, 399 avenue de la liberté, 01 BP 545 Bobo Dioulasso 01, Burkina Faso.
| | - B Yameogo
- Institut de Recherche en Sciences de la Santé, Direction Régionale, 399 avenue de la liberté, 01 BP 545 Bobo Dioulasso 01, Burkina Faso.
| | - D F Da
- Institut de Recherche en Sciences de la Santé, Direction Régionale, 399 avenue de la liberté, 01 BP 545 Bobo Dioulasso 01, Burkina Faso; Institut de Recherche pour le Développement, unité MIVEGEC (UM1-UM2-CNRS 5290-IRD 224), 911 avenue Agropolis, 34394 Montpellier Cedex 5, France.
| | - Y Michalakis
- Institut de Recherche pour le Développement, unité MIVEGEC (UM1-UM2-CNRS 5290-IRD 224), 911 avenue Agropolis, 34394 Montpellier Cedex 5, France.
| | - A Cohuet
- Institut de Recherche en Sciences de la Santé, Direction Régionale, 399 avenue de la liberté, 01 BP 545 Bobo Dioulasso 01, Burkina Faso; Institut de Recherche pour le Développement, unité MIVEGEC (UM1-UM2-CNRS 5290-IRD 224), 911 avenue Agropolis, 34394 Montpellier Cedex 5, France.
| |
Collapse
|
65
|
McArthur CC, Meredith JM, Eggleston P. Transgenic Anopheles gambiae expressing an antimalarial peptide suffer no significant fitness cost. PLoS One 2014; 9:e88625. [PMID: 24516671 PMCID: PMC3916423 DOI: 10.1371/journal.pone.0088625] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 01/10/2014] [Indexed: 01/11/2023] Open
Abstract
Mosquito-borne diseases present some of the greatest health challenges faced by the world today. In many cases, existing control measures are compromised by insecticide resistance, pathogen tolerance to drugs and the lack of effective vaccines. In light of these difficulties, new genetic tools for disease control programmes, based on the deployment of genetically modified mosquitoes, are seen as having great promise. Transgenic strains may be used to control disease transmission either by suppressing vector populations or by replacing susceptible with refractory genotypes. In practice, the fitness of the transgenic strain relative to natural mosquitoes will be a critical determinant of success. We previously described a transgenic strain of Anopheles gambiae expressing the Vida3 peptide into the female midgut following a blood-meal, which exhibited significant protection against malaria parasites. Here, we investigated the fitness of this strain relative to non-transgenic controls through comparisons of various life history traits. Experiments were designed, as far as possible, to equalize genetic backgrounds and heterogeneity such that fitness comparisons focussed on the presence and expression of the transgene cassette. We also employed reciprocal crosses to identify any fitness disturbance associated with inheritance of the transgene from either the male or female parent. We found no evidence that the presence or expression of the effector transgene or associated fluorescence markers caused any significant fitness cost in relation to larval mortality, pupal sex ratio, fecundity, hatch rate or longevity of blood-fed females. In fact, fecundity was increased in transgenic strains. We did, however, observe some fitness disturbances associated with the route of inheritance of the transgene. Maternal inheritance delayed male pupation whilst paternal inheritance increased adult longevity for both males and unfed females. Overall, in comparison to controls, there was no evidence of significant fitness costs associated with the presence or expression of transgenes in this strain.
Collapse
Affiliation(s)
- Clare C. McArthur
- Centre for Applied Entomology and Parasitology, Keele University, Keele, Staffordshire, United Kingdom
| | - Janet M. Meredith
- Centre for Applied Entomology and Parasitology, Keele University, Keele, Staffordshire, United Kingdom
| | - Paul Eggleston
- Centre for Applied Entomology and Parasitology, Keele University, Keele, Staffordshire, United Kingdom
- * E-mail:
| |
Collapse
|
66
|
Temperature alters Plasmodium blocking by Wolbachia. Sci Rep 2014; 4:3932. [PMID: 24488176 PMCID: PMC3909897 DOI: 10.1038/srep03932] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/07/2014] [Indexed: 12/31/2022] Open
Abstract
Very recently, the Asian malaria vector (Anopheles stephensi) was stably transinfected with the wAlbB strain of Wolbachia, inducing refractoriness to the human malaria parasite Plasmodium falciparum. However, conditions in the field can differ substantially from those in the laboratory. We use the rodent malaria P. yoelii, and somatically transinfected An. stephensi as a model system to investigate whether the transmission blocking potential of wAlbB is likely to be robust across different thermal environments. wAlbB reduced malaria parasite prevalence and oocyst intensity at 28°C. At 24°C there was no effect on prevalence but a marked increase in oocyst intensity. At 20°C, wAlbB had no effect on prevalence or intensity. Additionally, we identified a novel effect of wAlbB that resulted in reduced sporozoite development across temperatures, counterbalancing the oocyst enhancement at 24°C. Our results demonstrate complex effects of temperature on the Wolbachia-malaria interaction, and suggest the impacts of transinfection might vary across diverse environments.
Collapse
|
67
|
Paton D, Underhill A, Meredith J, Eggleston P, Tripet F. Contrasted Fitness Costs of Docking and Antibacterial Constructs in the EE and EVida3 Strains Validates Two-Phase Anopheles gambiae Genetic Transformation System. PLoS One 2013; 8:e67364. [PMID: 23840679 PMCID: PMC3694017 DOI: 10.1371/journal.pone.0067364] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 05/16/2013] [Indexed: 01/25/2023] Open
Abstract
The deployment of transgenic mosquitoes carrying genes for refractoriness to malaria has long been seen as a futuristic scenario riddled with technical difficulties. The integration of anti-malarial effector genes and a gene-drive system into the mosquito genome without affecting mosquito fitness is recognized as critical to the success of this malaria control strategy. Here we conducted detailed fitness studies of two Anopheles gambiae s.s. transgenic lines recently developed using a two-phase targeted genetic transformation system. In replicated cage-invasion experiments, males and females of the EE Phase-1 docking strain and EVida3 Phase-2 strain loaded with an antimicrobial peptide (AMP) expressed upon blood-feeding, were mixed with individuals of a recently-colonized strain of the Mopti chromosomal form. The experimental design enabled us to detect initial strain reproductive success differences, assortative mating and hybrid vigor that may characterize mosquito release situations. In addition, the potential fitness costs of the unloaded Phase-1 and loaded Phase-2 genetic constructs, independent of the strains' original genetic backgrounds, were estimated between the 1(st) instar larvae, pupae and adult stages over 10 generations. The Phase-1 unloaded docking cassette was found to have significantly lower allelic fitness relative to the wild type allele during larval development. However, overall genotypic fitness was comparable to the wild type allele across all stages leading to stable equilibrium in all replicates. In contrast, the Phase-2 construct expressing EVida3 disappeared from all replicates within 10 generations due to lower fitness of hemi- and homozygous larvae, suggesting costly background AMP expression and/or of the DsRed2 marker. This is the first study to effectively partition independent fitness stage-specific determinants in unloaded and loaded transgenic strains of a Phase-1-2 transformation system. Critically, the high fitness of the Phase-1 docking strain makes it the ideal model system for measuring the genetic load of novel candidate anti-malarial molecules in vivo.
Collapse
Affiliation(s)
- Doug Paton
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire, United Kingdom
| | - Anne Underhill
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire, United Kingdom
| | - Janet Meredith
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire, United Kingdom
| | - Paul Eggleston
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire, United Kingdom
| | - Frederic Tripet
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire, United Kingdom
- * E-mail:
| |
Collapse
|
68
|
Lefèvre T, Vantaux A, Dabiré KR, Mouline K, Cohuet A. Non-genetic determinants of mosquito competence for malaria parasites. PLoS Pathog 2013; 9:e1003365. [PMID: 23818841 PMCID: PMC3688545 DOI: 10.1371/journal.ppat.1003365] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Understanding how mosquito vectors and malaria parasites interact is of fundamental interest, and it also offers novel perspectives for disease control. Both the genetic and environmental contexts are known to affect the ability of mosquitoes to support malaria development and transmission, i.e., vector competence. Although the role of environment has long been recognized, much work has focused on host and parasite genetic effects. However, the last few years have seen a surge of studies revealing a great diversity of ways in which non-genetic factors can interfere with mosquito-Plasmodium interactions. Here, we review the current evidence for such environmentally mediated effects, including ambient temperature, mosquito diet, microbial gut flora, and infection history, and we identify additional factors previously overlooked in mosquito-Plasmodium interactions. We also discuss epidemiological implications, and the evolutionary consequences for vector immunity and parasite transmission strategies. Finally, we propose directions for further research and argue that an improved knowledge of non-genetic influences on mosquito-Plasmodium interactions could aid in implementing conventional malaria control measures and contribute to the design of novel strategies.
Collapse
Affiliation(s)
- Thierry Lefèvre
- MIVEGEC, Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, UMR Universités Montpellier 1 & 2, CNRS 5290, IRD 224, Montpellier, France.
| | | | | | | | | |
Collapse
|
69
|
Marsden CD, Cornel A, Lee Y, Sanford MR, Norris LC, Goodell PB, Nieman CC, Han S, Rodrigues A, Denis J, Ouledi A, Lanzaro GC. An analysis of two island groups as potential sites for trials of transgenic mosquitoes for malaria control. Evol Appl 2013; 6:706-20. [PMID: 23789035 PMCID: PMC3684749 DOI: 10.1111/eva.12056] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 01/13/2013] [Indexed: 11/29/2022] Open
Abstract
Considerable technological advances have been made towards the generation of genetically modified mosquitoes for vector control. In contrast, less progress has been made towards field evaluations of transformed mosquitoes which are critical for evaluating the success of, and hazards associated with, genetic modification. Oceanic islands have been highlighted as potentially the best locations for such trials. However, population genetic studies are necessary to verify isolation. Here, we used a panel of genetic markers to assess for evidence of genetic isolation of two oceanic island populations of the African malaria vector, Anopheles gambiae s.s. We found no evidence of isolation between the Bijagós archipelago and mainland Guinea-Bissau, despite separation by distances beyond the known dispersal capabilities of this taxon. Conversely, the Comoros Islands appear to be genetically isolated from the East African mainland, and thus represent a location worthy of further investigation for field trials. Based on assessments of gene flow within and between the Comoros islands, the island of Grande Comore was found to be genetically isolated from adjacent islands and also exhibited local population structure, indicating that it may be the most suitable site for trials with existing genetic modification technologies.
Collapse
Affiliation(s)
- Clare D Marsden
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Yoshino TP, Bickham U, Bayne CJ. Molluscan cells in culture: primary cell cultures and cell lines. CAN J ZOOL 2013. [PMID: 24198436 DOI: 10.1139/cjz-20120258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as biomonitors for environmental contaminants, as models for gene transfer technologies, and for studies of innate immunity and neoplastic disease. Despite efforts to isolate proliferative cell lines from molluscs, the snail Biomphalaria glabrata Say, 1818 embryonic (Bge) cell line is the only existing cell line originating from any molluscan species. Taking an organ systems approach, this review summarizes efforts to establish molluscan cell cultures and describes the varied applications of primary cell cultures in research. Because of the unique status of the Bge cell line, an account is presented of the establishment of this cell line, and of how these cells have contributed to our understanding of snail host-parasite interactions. Finally, we detail the difficulties commonly encountered in efforts to establish cell lines from molluscs and discuss how these difficulties might be overcome.
Collapse
Affiliation(s)
- T P Yoshino
- Department of Pathobiological Sciences, University of Wisconsin, School of Veterinary Medicine, Madison, WI 53706
| | | | | |
Collapse
|
71
|
Abstract
In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as biomonitors for environmental contaminants, as models for gene transfer technologies, and for studies of innate immunity and neoplastic disease. Despite efforts to isolate proliferative cell lines from molluscs, the snail Biomphalaria glabrata Say, 1818 embryonic (Bge) cell line is the only existing cell line originating from any molluscan species. Taking an organ systems approach, this review summarizes efforts to establish molluscan cell cultures and describes the varied applications of primary cell cultures in research. Because of the unique status of the Bge cell line, an account is presented of the establishment of this cell line, and of how these cells have contributed to our understanding of snail host-parasite interactions. Finally, we detail the difficulties commonly encountered in efforts to establish cell lines from molluscs and discuss how these difficulties might be overcome.
Collapse
Affiliation(s)
- T P Yoshino
- Department of Pathobiological Sciences, University of Wisconsin, School of Veterinary Medicine, Madison, WI 53706
| | | | | |
Collapse
|
72
|
Carballar-Lejarazú R, Jasinskiene N, James AA. Exogenous gypsy insulator sequences modulate transgene expression in the malaria vector mosquito, Anopheles stephensi. Proc Natl Acad Sci U S A 2013; 110:7176-81. [PMID: 23584017 PMCID: PMC3645527 DOI: 10.1073/pnas.1304722110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Malaria parasites are transmitted to humans by mosquitoes of the genus Anopheles, and these insects are the targets of innovative vector control programs. Proposed approaches include the use of genetic strategies based on transgenic mosquitoes to suppress or modify vector populations. Although substantial advances have been made in engineering resistant mosquito strains, limited efforts have been made in refining mosquito transgene expression, in particular attenuating the effects of insertions sites, which can result in variations in phenotypes and impacts on fitness due to the random integration of transposon constructs. A promising strategy to mitigate position effects is the identification of insulator or boundary DNA elements that could be used to isolate transgenes from the effects of their genomic environment. We applied quantitative approaches that show that exogenous insulator-like DNA derived from the Drosophila melanogaster gypsy retrotransposon can increase and stabilize transgene expression in transposon-mediated random insertions and recombinase-catalyzed, site-specific integrations in the malaria vector mosquito, Anopheles stephensi. These sequences can contribute to precise expression of transgenes in mosquitoes engineered for both basic and applied goals.
Collapse
Affiliation(s)
- Rebeca Carballar-Lejarazú
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900; and
| | - Nijole Jasinskiene
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900; and
| | - Anthony A. James
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900; and
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697-4500
| |
Collapse
|
73
|
Marinotti O, Jasinskiene N, Fazekas A, Scaife S, Fu G, Mattingly ST, Chow K, Brown DM, Alphey L, James AA. Development of a population suppression strain of the human malaria vector mosquito, Anopheles stephensi. Malar J 2013; 12:142. [PMID: 23622561 PMCID: PMC3648444 DOI: 10.1186/1475-2875-12-142] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/19/2013] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Transgenic mosquito strains are being developed to contribute to the control of dengue and malaria transmission. One approach uses genetic manipulation to confer conditional, female-specific dominant lethality phenotypes. Engineering of a female-specific flightless phenotype provides a sexing mechanism essential for male-only mosquito, release approaches that result in population suppression of target vector species. METHODS An approach that uses a female-specific gene promoter and antibiotic-repressible lethal factor to produce a sex-specific flightless phenotype was adapted to the human malaria vector, Anopheles stephensi. Transposon- and site-specific recombination-mediated technologies were used to generate a number of transgenic An. stephensi lines that when combined through mating produced the phenotype of flight-inhibited females and flight-capable males. RESULTS The data shown here demonstrate the successful engineering of a female-specific flightless phenotype in a malaria vector. The flightless phenotype was repressible by the addition of tetracycline to the larval diet. This conditional phenotype allows the rearing of the strains under routine laboratory conditions. The minimal level of tetracycline that rescues the flightless phenotype is higher than that found as an environmental contaminant in circumstances where there is intensive use of antibiotics. CONCLUSIONS These studies support the further development of flightless female technology for applications in malaria control programmes that target the vectors.
Collapse
Affiliation(s)
- Osvaldo Marinotti
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, 92697-3900, USA
| | - Nijole Jasinskiene
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, 92697-3900, USA
| | - Aniko Fazekas
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, 92697-3900, USA
| | - Sarah Scaife
- Oxitec Ltd, 71 Milton Park, Abingdon, Oxfordshire, OX14 4RX, UK
| | - Guoliang Fu
- Oxitec Ltd, 71 Milton Park, Abingdon, Oxfordshire, OX14 4RX, UK
| | - Stefanie T Mattingly
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, 92697-3900, USA
| | - Karissa Chow
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, 92697-3900, USA
| | - David M Brown
- Departments of Microbiology & Molecular Genetics and Molecular Biology & Biochemistry, 3205 McGaugh Hall, University of California, Irvine, CA, 92697-3900, USA
| | - Luke Alphey
- Oxitec Ltd, 71 Milton Park, Abingdon, Oxfordshire, OX14 4RX, UK
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Anthony A James
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, 92697-3900, USA
- Departments of Microbiology & Molecular Genetics and Molecular Biology & Biochemistry, 3205 McGaugh Hall, University of California, Irvine, CA, 92697-3900, USA
| |
Collapse
|
74
|
Yamamoto DS, Hatakeyama M, Matsuoka H. Artificial activation of mature unfertilized eggs in the malaria vector mosquito, Anopheles stephensi (Diptera, Culicidae). ACTA ACUST UNITED AC 2013; 216:2960-6. [PMID: 23619405 DOI: 10.1242/jeb.084293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the past decade, many transgenic lines of mosquitoes have been generated and analyzed, whereas the maintenance of a large number of transgenic lines requires a great deal of effort and cost. In vitro fertilization by an injection of cryopreserved sperm into eggs has been proven to be effective for the maintenance of strains in mammals. The technique of artificial egg activation is a prerequisite for the establishment of in vitro fertilization by sperm injection. We demonstrated that artificial egg activation is feasible in the malaria vector mosquito, Anopheles stephensi (Diptera, Culicidae). Nearly 100% of eggs dissected from virgin females immersed in distilled water darkened, similar to normally oviposited fertilized eggs. It was revealed by the cytological examination of chromosomes that meiotic arrest was relieved in these eggs approximately 20 min after incubation in water. Biochemical examinations revealed that MAPK (mitogen-activated protein kinase)/ERK (extracellular signal-regulated protein kinase) and MEK (MAPK/ERK kinase) were dephosphorylated similar to that in fertilized eggs. These results indicate that dissected unfertilized eggs were activated in distilled water and started development. Injection of distilled water into body cavity of the virgin blood-fed females also induced activation of a portion of eggs in the ovaries. The technique of artificial egg activation is expected to contribute to the success of in vitro fertilization in A. stephensi.
Collapse
Affiliation(s)
- Daisuke S Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.
| | | | | |
Collapse
|
75
|
Meredith JM, Underhill A, McArthur CC, Eggleston P. Next-generation site-directed transgenesis in the malaria vector mosquito Anopheles gambiae: self-docking strains expressing germline-specific phiC31 integrase. PLoS One 2013; 8:e59264. [PMID: 23516619 PMCID: PMC3596282 DOI: 10.1371/journal.pone.0059264] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 02/13/2013] [Indexed: 01/27/2023] Open
Abstract
Diseases transmitted by mosquitoes have a devastating impact on global health and the situation is complicated due to difficulties with both existing control measures and the impact of climate change. Genetically modified mosquitoes that are refractory to disease transmission are seen as having great potential in the delivery of novel control strategies. The Streptomyces phage phiC31 integrase system has been successfully adapted for site-directed transgene integration in a range of insects, thus overcoming many limitations due to size constraints and random integration associated with transposon-mediated transformation. Using this technology, we previously published the first site-directed transformation of Anopheles gambiae, the principal vector of human malaria. Mosquitoes were initially engineered to incorporate the phiC31 docking site at a defined genomic location. A second phase of genetic modification then achieved site-directed integration of an anti-malarial effector gene. In the current publication we report improved efficiency and utility of the phiC31 integrase system following the generation of Anopheles gambiae self-docking strains. Four independent strains, with docking sites at known locations on three different chromosome arms, were engineered to express integrase under control of the regulatory regions of the nanos gene from Anopheles gambiae. The resulting protein accumulates in the posterior oocyte to provide integrase activity at the site of germline development. Two self-docking strains, exhibiting significantly different levels of integrase expression, were assessed for site-directed transgene integration and found to demonstrate greatly improved survival and efficiency of transformation. In the fight against malaria, it is imperative to establish a broad repertoire of both anti-malarial effector genes and tissue-specific promoters to regulate their expression, enabling those offering maximum effect with minimum fitness cost to be identified. The improved technology we describe here will facilitate comparative studies of effector transgenes, allowing informed choices to be made that potentially lead to transmission blockade.
Collapse
Affiliation(s)
- Janet M. Meredith
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire, United Kingdom
| | - Ann Underhill
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire, United Kingdom
| | - Clare C. McArthur
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire, United Kingdom
| | - Paul Eggleston
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire, United Kingdom
- * E-mail:
| |
Collapse
|
76
|
Wang S, Jacobs-Lorena M. Genetic approaches to interfere with malaria transmission by vector mosquitoes. Trends Biotechnol 2013; 31:185-93. [PMID: 23395485 PMCID: PMC3593784 DOI: 10.1016/j.tibtech.2013.01.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/03/2013] [Accepted: 01/03/2013] [Indexed: 11/20/2022]
Abstract
Malaria remains one of the most devastating diseases worldwide, causing over 1 million deaths every year. The most vulnerable stages of Plasmodium development in the vector mosquito occur in the midgut lumen, making the midgut a prime target for intervention. Mosquito transgenesis and paratransgenesis are two novel strategies that aim at rendering the vector incapable of sustaining Plasmodium development. Mosquito transgenesis involves direct genetic engineering of the mosquito itself for delivery of anti-Plasmodium effector molecules. Conversely, paratransgenesis involves the genetic modification of mosquito symbionts for expression of anti-pathogen effector molecules. Here we consider both genetic manipulation strategies for rendering mosquitoes refractory to Plasmodium infection, and discuss challenges for the translation of laboratory findings to field applications.
Collapse
Affiliation(s)
- Sibao Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | | |
Collapse
|
77
|
Sumitani M, Kasashima K, Yamamoto DS, Yagi K, Yuda M, Matsuoka H, Yoshida S. Reduction of malaria transmission by transgenic mosquitoes expressing an antisporozoite antibody in their salivary glands. INSECT MOLECULAR BIOLOGY 2013; 22:41-51. [PMID: 23176559 DOI: 10.1111/j.1365-2583.2012.01168.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We have previously developed a robust salivary gland-specific expression system in transgenic Anopheles stephensi mosquitoes. To establish transgenic mosquito lines refractory to Plasmodium falciparum using this system, we generated a transgenic mosquito harbouring the gene encoding an anti-P. falciparum circumsporozoite protein (PfCSP) single-chain antibody (scFv) fused to DsRed in a secretory form (mDsRed-2A10 scFv). Fluorescence microscopy showed that the mDsRed-2A10 scFv was localized in the secretory cavities and ducts of the salivary glands in a secreted form. To evaluate P. falciparum transmission-blocking in a rodent malaria model, a transgenic Plasmodium berghei line expressing PfCSP in place of PbCSP (PfCSP/Pb) was constructed. The PfCSP/Pb parasites were able to bind to the mDsRed-2A10 scFv in the salivary glands of the transgenic mosquitoes. Importantly, the infectivity of the transgenic mosquitoes to mice was strongly impaired, indicating that the parasites had been inactivated. These results suggest that salivary gland-specific expression of antisporozoite molecules could be a promising strategy for blocking malaria transmission to humans.
Collapse
Affiliation(s)
- M Sumitani
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Owashi, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
78
|
Rethinking vector immunology: the role of environmental temperature in shaping resistance. Nat Rev Microbiol 2012; 10:869-76. [PMID: 23147703 DOI: 10.1038/nrmicro2900] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent ecological research has revealed that environmental factors can strongly affect insect immunity and influence the outcome of host-parasite interactions. To date, however, most studies examining immune function in mosquitoes have ignored environmental variability. We argue that one such environmental variable, temperature, influences both vector immunity and the parasite itself. As temperatures in the field can vary greatly from the ambient temperature in the laboratory, it will be essential to take temperature into account when studying vector immunology.
Collapse
|
79
|
Aguiar ACC, Rocha EMMD, Souza NBD, França TCC, Krettli AU. New approaches in antimalarial drug discovery and development: a review. Mem Inst Oswaldo Cruz 2012; 107:831-45. [DOI: 10.1590/s0074-02762012000700001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 08/16/2012] [Indexed: 01/22/2023] Open
|
80
|
Wang S, Ghosh AK, Bongio N, Stebbings KA, Lampe DJ, Jacobs-Lorena M. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. Proc Natl Acad Sci U S A 2012; 109:12734-9. [PMID: 22802646 PMCID: PMC3412027 DOI: 10.1073/pnas.1204158109] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The most vulnerable stages of Plasmodium development occur in the lumen of the mosquito midgut, a compartment shared with symbiotic bacteria. Here, we describe a strategy that uses symbiotic bacteria to deliver antimalaria effector molecules to the midgut lumen, thus rendering host mosquitoes refractory to malaria infection. The Escherichia coli hemolysin A secretion system was used to promote the secretion of a variety of anti-Plasmodium effector proteins by Pantoea agglomerans, a common mosquito symbiotic bacterium. These engineered P. agglomerans strains inhibited development of the human malaria parasite Plasmodium falciparum and rodent malaria parasite Plasmodium berghei by up to 98%. Significantly, the proportion of mosquitoes carrying parasites (prevalence) decreased by up to 84% for two of the effector molecules, scorpine, a potent antiplasmodial peptide and (EPIP)(4), four copies of Plasmodium enolase-plasminogen interaction peptide that prevents plasminogen binding to the ookinete surface. We demonstrate the use of an engineered symbiotic bacterium to interfere with the development of P. falciparum in the mosquito. These findings provide the foundation for the use of genetically modified symbiotic bacteria as a powerful tool to combat malaria.
Collapse
Affiliation(s)
- Sibao Wang
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205; and
| | - Anil K. Ghosh
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205; and
| | - Nicholas Bongio
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282
| | - Kevin A. Stebbings
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282
| | - David J. Lampe
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205; and
| |
Collapse
|
81
|
Caljon G, De Vooght L, Van Den Abbeele J. Options for the delivery of anti-pathogen molecules in arthropod vectors. J Invertebr Pathol 2012; 112 Suppl:S75-82. [PMID: 22841635 DOI: 10.1016/j.jip.2012.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/15/2012] [Accepted: 05/18/2012] [Indexed: 10/28/2022]
Abstract
Blood feeding arthropods are responsible for the transmission of a large array of medically important infectious agents that include viruses, bacteria, protozoan parasites and helminths. The recent development of transgenic and paratransgenic technologies have enabled supplementing the immune system of these arthropod vectors with anti-pathogen effector molecules in view of compromising their vector competence for these microbial agents. The characteristics of the selected anti-pathogen compound will largely determine the efficacy and specificity of this approach. Low specificity will generally result in bystander effects, likely having a direct or indirect fitness cost for the arthropod. In contrast, the use of highly specific compounds from the adaptive immune system of vertebrates such as antibody derived fragments is more likely to enable highly specific effects without conferring a selective disadvantage to the (para)transgenic arthropods. Here, Nanobodies® are excellent candidates to increase the immune competence of arthropods. Moreover they were shown to exert a novel type of anti-pathogen activity that uniquely depends on their small size.
Collapse
Affiliation(s)
- Guy Caljon
- Department of Biomedical Sciences, Unit of Veterinary Protozoology, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium.
| | | | | |
Collapse
|
82
|
Isaacs AT, Jasinskiene N, Tretiakov M, Thiery I, Zettor A, Bourgouin C, James AA. Transgenic Anopheles stephensi coexpressing single-chain antibodies resist Plasmodium falciparum development. Proc Natl Acad Sci U S A 2012; 109:E1922-30. [PMID: 22689959 PMCID: PMC3396534 DOI: 10.1073/pnas.1207738109] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Anopheles stephensi mosquitoes expressing m1C3, m4B7, or m2A10 single-chain antibodies (scFvs) have significantly lower levels of infection compared to controls when challenged with Plasmodium falciparum, a human malaria pathogen. These scFvs are derived from antibodies specific to a parasite chitinase, the 25 kDa protein and the circumsporozoite protein, respectively. Transgenes comprising m2A10 in combination with either m1C3 or m4B7 were inserted into previously-characterized mosquito chromosomal "docking" sites using site-specific recombination. Transgene expression was evaluated at four different genomic locations and a docking site that permitted tissue- and sex-specific expression was researched further. Fitness studies of docking site and dual scFv transgene strains detected only one significant fitness cost: adult docking-site males displayed a late-onset reduction in survival. The m4B7/m2A10 mosquitoes challenged with P. falciparum had few or no sporozoites, the parasite stage infective to humans, in three of four experiments. No sporozoites were detected in m1C3/m2A10 mosquitoes in challenge experiments when both genes were induced at developmentally relevant times. These studies support the conclusion that expression of a single copy of a dual scFv transgene can completely inhibit parasite development without imposing a fitness cost on the mosquito.
Collapse
Affiliation(s)
- Alison T. Isaacs
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697-4500
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900
| | - Nijole Jasinskiene
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900
| | - Mikhail Tretiakov
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900
| | - Isabelle Thiery
- Institut Pasteur, Center for Production and Infection of Anopheles, 75724 Paris, cedex 15, France; and
| | - Agnès Zettor
- Institut Pasteur, Center for Production and Infection of Anopheles, 75724 Paris, cedex 15, France; and
| | - Catherine Bourgouin
- Institut Pasteur, Center for Production and Infection of Anopheles, 75724 Paris, cedex 15, France; and
- Institut Pasteur, Unité Génétique et Génomique des Insectes Vecteurs-Centre National de la Recherche Scientifique URA 3012, 75724 Paris, cedex 15, France
| | - Anthony A. James
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697-4500
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900
| |
Collapse
|
83
|
Yang G, Wong A, Rooke R. ATon, abundant novel nonautonomous mobile genetic elements in yellow fever mosquito (Aedes aegypti). BMC Genomics 2012; 13:283. [PMID: 22738224 PMCID: PMC3422177 DOI: 10.1186/1471-2164-13-283] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 06/27/2012] [Indexed: 12/16/2022] Open
Abstract
Background Mosquitoes are important pathogen vectors affecting human and other animals. Studies on genetic control of mosquito mediated disease transmission gained traction recently due to mosquito transgenesis technology. Active transposons are considered valuable tools to propagate pathogen resistance transgenes among mosquitoes, rendering the whole population recalcitrant to diseases. A major hurdle in this approach is the inefficient remobilization activity after the integration of heterologous transposon vectors bearing transgenes into chromosomes. Therefore, endogenous active transposons in mosquito genomes are highly desirable. Results Starting with the transposable element database of the yellow fever mosquito Aedes aegypti genome, detailed analyses of the members of each TE family were performed to identify sequences with multiple identical copies, an indicator of their latest or current transposition activity. Among a dozen of potentially active TE families, two DNA elements (TF000728 and TF000742 in TEfam) are short and nonautonomous. Close inspection of the elements revealed that these two families were previously mis-categorized and, unlike other known TEs, insert specifically at dinucleotide “AT”. These two families were therefore designated as ATon-I and ATon-II. ATon-I has a total copy number of 294, among which three elements have more than 10 identical copies (146, 61 and 17). ATon-II has a total copy number of 317, among which three elements have more than 10 identical copies (84, 15 and 12). Genome wide searches revealed additional 24 ATon families in A. aegypti genome with nearly 6500 copies in total. Transposon display analysis of ATon-1 family using different A. aegypti strains suggests that the elements are similarly abundant in the tested mosquito strains. Conclusion ATons are novel mobile genetic elements bearing terminal inverted repeats and insert specifically at dinucleotide “AT”. Five ATon families contain elements existing at more than 10 identical copies, suggesting very recent or current transposition activity. A total of 24 new TE families with nearly 6000 copies were identified in this study.
Collapse
Affiliation(s)
- Guojun Yang
- Department of Biology, University of Toronto Mississauga, SB3058, Mississauga, ON, L5L 1 C6, Canada.
| | | | | |
Collapse
|
84
|
Gregory JA, Li F, Tomosada LM, Cox CJ, Topol AB, Vinetz JM, Mayfield S. Algae-produced Pfs25 elicits antibodies that inhibit malaria transmission. PLoS One 2012; 7:e37179. [PMID: 22615931 PMCID: PMC3353897 DOI: 10.1371/journal.pone.0037179] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 04/17/2012] [Indexed: 12/21/2022] Open
Abstract
Subunit vaccines are significantly more expensive to produce than traditional vaccines because they are based primarily on recombinant proteins that must be purified from the expression system. Despite the increased cost, subunit vaccines are being developed because they are safe, effective, and can elicit antibodies that confer protection against diseases that are not currently vaccine-preventable. Algae are an attractive platform for producing subunit vaccines because they are relatively inexpensive to grow, genetically tractable, easily scaled to large volumes, have a short generation time, and are devoid of inflammatory, viral, or prion contaminants often present in other systems. We tested whether algal chloroplasts can produce malaria transmission blocking vaccine candidates, Plasmodium falciparum surface protein 25 (Pfs25) and 28 (Pfs28). Antibodies that recognize Pfs25 and Pfs28 disrupt the sexual development of parasites within the mosquito midgut, thus preventing transmission of malaria from one human host to the next. These proteins have been difficult to produce in traditional recombinant systems because they contain tandem repeats of structurally complex epidermal growth factor-like domains, which cannot be produced in bacterial systems, and because they are not glycosylated, so they must be modified for production in eukaryotic systems. Production in algal chloroplasts avoids these issues because chloroplasts can fold complex eukaryotic proteins and do not glycosylate proteins. Here we demonstrate that algae are the first recombinant system to successfully produce an unmodified and aglycosylated version of Pfs25 or Pfs28. These antigens are structurally similar to the native proteins and antibodies raised to these recombinant proteins recognize Pfs25 and Pfs28 from P. falciparum. Furthermore, antibodies to algae-produced Pfs25 bind the surface of in-vitro cultured P. falciparum sexual stage parasites and exhibit transmission blocking activity. Thus, algae are promising organisms for producing cysteine-disulfide-containing malaria transmission blocking vaccine candidate proteins.
Collapse
Affiliation(s)
- James A. Gregory
- Division of Biological Sciences, and the San Diego Center for Algae Biotechnology, University of California San Diego, California, United States of America
| | - Fengwu Li
- Division of Infectious Disease, Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Lauren M. Tomosada
- Division of Biological Sciences, and the San Diego Center for Algae Biotechnology, University of California San Diego, California, United States of America
| | - Chesa J. Cox
- Division of Biological Sciences, and the San Diego Center for Algae Biotechnology, University of California San Diego, California, United States of America
| | - Aaron B. Topol
- Division of Biological Sciences, and the San Diego Center for Algae Biotechnology, University of California San Diego, California, United States of America
| | - Joseph M. Vinetz
- Division of Infectious Disease, Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Stephen Mayfield
- Division of Biological Sciences, and the San Diego Center for Algae Biotechnology, University of California San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
85
|
Carpenetti TLG, Aryan A, Myles KM, Adelman ZN. Robust heat-inducible gene expression by two endogenous hsp70-derived promoters in transgenic Aedes aegypti. INSECT MOLECULAR BIOLOGY 2012; 21:97-106. [PMID: 22142225 PMCID: PMC3259147 DOI: 10.1111/j.1365-2583.2011.01116.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Aedes aegypti is an important vector of the viruses that cause dengue fever, dengue haemorrhagic fever and yellow fever. Reverse genetic approaches to the study of gene function in this mosquito have been limited by the lack of a robust inducible promoter to allow precise temporal control over a protein-encoding or hairpin RNA transgene. Likewise, investigations into the molecular and biochemical basis of vector competence would benefit from the ability to activate an antipathogen molecule at specific times during infection. We have characterized the ability of genomic sequences derived from two Ae. aegypti heat shock protein 70 (hsp70) genes to drive heat-inducible expression of a reporter in both transient and germline transformation contexts. AaHsp70-luciferase transcripts accumulated specifically after heat shock, and displayed a pattern of rapid induction and decay similar to endogenous AaHsp70 genes. Luciferase expression in transgenic Ae. aegypti increased by ~25-50-fold in whole adults by 4 h after heat-shock, with significant activity (~20-fold) remaining at 24 h. Heat-induced expression was even more dramatic in midgut tissues, with one strain showing a ~2500-fold increase in luciferase activity. The AaHsp70 promoters described could be valuable for gene function studies as well as for the precise timing of the expression of antipathogen molecules.
Collapse
Affiliation(s)
- T L G Carpenetti
- Fralin Life Science Institute and Department of Entomology, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
86
|
Yamamoto DS, Sumitani M, Nagumo H, Yoshida S, Matsuoka H. Induction of antisporozoite antibodies by biting of transgenic Anopheles stephensi delivering malarial antigen via blood feeding. INSECT MOLECULAR BIOLOGY 2012; 21:223-33. [PMID: 22787718 DOI: 10.1111/j.1365-2583.2011.01128.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We produced a transgenic mosquito expressing a rodent malaria vaccine candidate antigen in the salivary gland. Three tandemly repeated amino acid units from the repeat region of circumsporozoite protein of Plasmodium berghei (PbCS3R) fused to red fluorescent protein (monomeric DsRed) was chosen as a vaccine candidate antigen. Immunoblot and fluorescence microscopic analyses showed the transgene expression in the female salivary gland. The transgene product was released from the proboscis as a component of saliva. The monomeric DsRed-fusion expression system could be suitable for transgene secretion in the saliva of female mosquitoes. Mice repeatedly bitten by transgenic mosquitoes raised antibodies against P. berghei sporozoites, and the sera had protective ability against sporozoite invasion of human hepatoma HepG2 cells. These results suggest that transgene products are immunogenically active in saliva, and induce the antibodies to malaria parasite. These findings indicate that this technology has the potential for production of a 'flying vaccinator' for rodent malaria parasites.
Collapse
Affiliation(s)
- D S Yamamoto
- Division of Medical Zoology, Department of Infectionand Immunity, Jichi Medical University, Yakushiji,Shimotsuke, Tochigi,
| | | | | | | | | |
Collapse
|
87
|
Thomas MB, Godfray HCJ, Read AF, van den Berg H, Tabashnik BE, van Lenteren JC, Waage JK, Takken W. Lessons from agriculture for the sustainable management of malaria vectors. PLoS Med 2012; 9:e1001262. [PMID: 22802742 PMCID: PMC3393651 DOI: 10.1371/journal.pmed.1001262] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Willem Takken and colleagues argue for the expansion of insecticide monotherapy in malaria control by taking lessons from agriculture and including more sustainable integrated vector management strategies.
Collapse
Affiliation(s)
- Matthew B. Thomas
- Center for Infectious Disease Dynamics and Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - H. Charles J. Godfray
- Ecology Research Group, Department of Zoology, Oxford University, Oxford, United Kingdom
| | - Andrew F. Read
- Center for Infectious Disease Dynamics and Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Henk van den Berg
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Bruce E. Tabashnik
- Department of Entomology, University of Arizona, Tucson, Arizona, United States of America
| | - Joop C. van Lenteren
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Jeff K. Waage
- London International Development Centre, London, United Kingdom
| | - Willem Takken
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
88
|
Abstract
The ability to introduce genetic constructs of choice into the genome of Anopheles mosquitoes provides a valuable tool to study the molecular interactions between the Plasmodium parasite and its insect host. In the long term, this technology could potentially offer new ways to control vector-borne diseases through the suppression of target mosquito populations or through the introgression of traits that preclude pathogen transmission. Here, we describe in detail protocols for the generation of transgenic Anopheles gambiae mosquitoes based on germ-line transformation using either modified transposable elements or the site-specific PhiC31 recombinase.
Collapse
|
89
|
Dong Y, Das S, Cirimotich C, Souza-Neto JA, McLean KJ, Dimopoulos G. Engineered anopheles immunity to Plasmodium infection. PLoS Pathog 2011; 7:e1002458. [PMID: 22216006 PMCID: PMC3245315 DOI: 10.1371/journal.ppat.1002458] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 11/09/2011] [Indexed: 01/07/2023] Open
Abstract
A causative agent of human malaria, Plasmodium falciparum, is transmitted by Anopheles mosquitoes. The malaria parasite is under intensive attack from the mosquito's innate immune system during its sporogonic development. We have used genetic engineering to create immune-enhanced Anopheles stephensi mosquitoes through blood meal-inducible expression of a transgene encoding the IMD pathway-controlled NF-kB Rel2 transcription factor in the midgut and fat-body tissue. Transgenic mosquitoes showed greater resistance to Plasmodium and microbial infection as a result of timely concerted tissue-specific immune attacks involving multiple effectors. The relatively weak impact of this genetic modification on mosquito fitness under laboratory conditions encourages further investigation of this approach for malaria control.
Collapse
Affiliation(s)
- Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Suchismita Das
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Chris Cirimotich
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jayme A. Souza-Neto
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Kyle J. McLean
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
90
|
Marois E. The multifaceted mosquito anti-Plasmodium response. Curr Opin Microbiol 2011; 14:429-35. [DOI: 10.1016/j.mib.2011.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 07/07/2011] [Accepted: 07/07/2011] [Indexed: 11/28/2022]
|