51
|
Vo KC, Ruga L, Psathaki OE, Franzkoch R, Distler U, Tenzer S, Hensel M, Hegemann P, Gupta N. Plasticity and therapeutic potential of cAMP and cGMP-specific phosphodiesterases in Toxoplasma gondii. Comput Struct Biotechnol J 2022; 20:5775-5789. [PMID: 36382189 PMCID: PMC9619220 DOI: 10.1016/j.csbj.2022.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/03/2022] Open
Abstract
Toxoplasma gondii is a common zoonotic protozoan pathogen adapted to intracellular parasitism in many host cells of diverse organisms. Our previous work has identified 18 cyclic nucleotide phosphodiesterase (PDE) proteins encoded by the parasite genome, of which 11 are expressed during the lytic cycle of its acutely-infectious tachyzoite stage in human cells. Here, we show that ten of these enzymes are promiscuous dual-specific phosphodiesterases, hydrolyzing cAMP and cGMP. TgPDE1 and TgPDE9, with a Km of 18 μM and 31 μM, respectively, are primed to hydrolyze cGMP, whereas TgPDE2 is highly specific to cAMP (Km, 14 μM). Immuno-electron microscopy revealed various subcellular distributions of TgPDE1, 2, and 9, including in the inner membrane complex, apical pole, plasma membrane, cytosol, dense granule, and rhoptry, indicating spatial control of signaling within tachyzoites. Notably, despite shared apical location and dual-catalysis, TgPDE8 and TgPDE9 are fully dispensable for the lytic cycle and show no functional redundancy. In contrast, TgPDE1 and TgPDE2 are individually required for optimal growth, and their collective loss is lethal to the parasite. In vitro phenotyping of these mutants revealed the roles of TgPDE1 and TgPDE2 in proliferation, gliding motility, invasion and egress of tachyzoites. Moreover, our enzyme inhibition assays in conjunction with chemogenetic phenotyping underpin TgPDE1 as a target of commonly-used PDE inhibitors, BIPPO and zaprinast. Finally, we identified a retinue of TgPDE1 and TgPDE2-interacting kinases and phosphatases, possibly regulating the enzymatic activity. In conclusion, our datasets on the catalytic function, physiological relevance, subcellular localization and drug inhibition of key phosphodiesterases highlight the previously-unanticipated plasticity and therapeutic potential of cyclic nucleotide signaling in T. gondii.
Collapse
Key Words
- 3′IT, 3′-insertional tagging
- Apicomplexa
- COS, crossover sequence
- CRISPR, clustered regularly interspaced short palindromic repeats
- DHFR-TS, dihydrofolate reductase – thymidylate synthase
- HFF, human foreskin fibroblast
- HXGPRT, hypoxanthine-xanthine-guanine phosphoribosyl transferase
- IMC, inner membrane complex
- Lytic cycle
- MoI, multiplicity of infection
- PDE, phosphodiesterase
- PKA, protein kinase A
- PKG, protein kinase G
- PM, plasma membrane
- Phosphodiesterase
- S. C., selection cassette
- TEM, transmission electron microscopy
- Tachyzoite
- cAMP & cGMP signaling
- sgRNA, single guide RNA
- smHA, spaghetti monster-HA
Collapse
Affiliation(s)
- Kim Chi Vo
- Department of Molecular Parasitology, Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Liberta Ruga
- Department of Molecular Parasitology, Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Olympia Ekaterini Psathaki
- University of Osnabrück, Center of Cellular Nanoanalytics (CellNanOs), Integrated Bioimaging Faciltiy (iBiOs), Germany
| | - Rico Franzkoch
- University of Osnabrück, Center of Cellular Nanoanalytics (CellNanOs), Integrated Bioimaging Faciltiy (iBiOs), Germany
| | - Ute Distler
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Michael Hensel
- University of Osnabrück, Center of Cellular Nanoanalytics (CellNanOs), Integrated Bioimaging Faciltiy (iBiOs), Germany
| | - Peter Hegemann
- Department of Molecular Parasitology, Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Nishith Gupta
- Department of Molecular Parasitology, Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani (BITS-P), Hyderabad, India
| |
Collapse
|
52
|
Lidumniece E, Withers-Martinez C, Hackett F, Blackman MJ, Jirgensons A. Subtilisin-like Serine Protease 1 (SUB1) as an Emerging Antimalarial Drug Target: Current Achievements in Inhibitor Discovery. J Med Chem 2022; 65:12535-12545. [PMID: 36137276 DOI: 10.1021/acs.jmedchem.2c01093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Widespread resistance to many antimalarial therapies currently in use stresses the need for the discovery of new classes of drugs with new modes of action. The subtilisin-like serine protease SUB1 controls egress of malaria parasites (merozoites) from the parasite-infected red blood cell. As such, SUB1 is considered a prospective target for drugs designed to interrupt the asexual blood stage life cycle of the malaria parasite. Inhibitors of SUB1 have potential as wide-spectrum antimalarial drugs, as a single orthologue of SUB1 is found in the genomes of all known Plasmodium species. This mini-perspective provides a short overview of the function and structure of SUB1 and summarizes all of the published SUB1 inhibitors. The inhibitors are classified by the methods of their discovery, including both rational design and screening.
Collapse
Affiliation(s)
| | | | - Fiona Hackett
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom.,Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, United Kingdom
| | | |
Collapse
|
53
|
Abstract
Human malaria, caused by infection with Plasmodium parasites, remains one of the most important global public health problems, with the World Health Organization reporting more than 240 million cases and 600,000 deaths annually as of 2020 (World malaria report 2021). Our understanding of the biology of these parasites is critical for development of effective therapeutics and prophylactics, including both antimalarials and vaccines. Plasmodium is a protozoan organism that is intracellular for most of its life cycle. However, to complete its complex life cycle and to allow for both amplification and transmission, the parasite must egress out of the host cell in a highly regulated manner. This review discusses the major pathways and proteins involved in the egress events during the Plasmodium life cycle-merozoite and gametocyte egress out of red blood cells, sporozoite egress out of the oocyst, and merozoite egress out of the hepatocyte. The similarities, as well as the differences, between the various egress pathways of the parasite highlight both novel cell biology and potential therapeutic targets to arrest its life cycle.
Collapse
Affiliation(s)
- Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA;
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel E Goldberg
- Division of Infectious Diseases, Department of Medicine; and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
54
|
Functional inactivation of Plasmodium falciparum glycogen synthase kinase GSK3 modulates erythrocyte invasion and blocks gametocyte maturation. J Biol Chem 2022; 298:102360. [PMID: 35961464 PMCID: PMC9478393 DOI: 10.1016/j.jbc.2022.102360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Malaria is responsible for hundreds of thousands of deaths every year. The lack of an effective vaccine and the global spread of multidrug resistant parasites hampers the fight against the disease and underlines the need for new antimalarial drugs. Central to the pathogenesis of malaria is the proliferation of Plasmodium parasites within human erythrocytes. Parasites invade erythrocytes via a coordinated sequence of receptor–ligand interactions between the parasite and the host cell. Posttranslational modifications such as protein phosphorylation are known to be key regulators in this process and are mediated by protein kinases. For several parasite kinases, including the Plasmodium falciparum glycogen synthase kinase 3 (PfGSK3), inhibitors have been shown to block erythrocyte invasion. Here, we provide an assessment of PfGSK3 function by reverse genetics. Using targeted gene disruption, we show the active gene copy, PfGSK3β, is not essential for asexual blood stage proliferation, although it modulates efficient erythrocyte invasion. We found functional inactivation leads to a 69% decreased growth rate and confirmed this growth defect by rescue experiments with wildtype and catalytically inactive mutants. Functional knockout of PfGSK3β does not lead to transcriptional upregulation of the second copy of PfGSK3. We further analyze expression, localization, and function of PfGSK3β during gametocytogenesis using a parasite line allowing conditional induction of sexual commitment. We demonstrate PfGSK3β-deficient gametocytes show a strikingly malformed morphology leading to the death of parasites in later stages of gametocyte development. Taken together, these findings are important for our understanding and the development of PfGSK3 as an antimalarial target.
Collapse
|
55
|
Mukherjee S, Nguyen S, Sharma E, Goldberg DE. Maturation and substrate processing topography of the Plasmodium falciparum invasion/egress protease plasmepsin X. Nat Commun 2022; 13:4537. [PMID: 35927261 PMCID: PMC9352755 DOI: 10.1038/s41467-022-32271-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/22/2022] [Indexed: 11/08/2022] Open
Abstract
The malaria parasite Plasmodium invades a host erythrocyte, multiplies within a parasitophorous vacuole (PV) and then ruptures the PV and erythrocyte membranes in a process known as egress. Both egress and invasion are controlled by effector proteins discharged from specialized secretory organelles. The aspartic protease plasmepsin X (PM X) regulates activity for many of these effectors, but it is unclear how PM X accesses its diverse substrates that reside in different organelles. PM X also autoprocesses to generate different isoforms. The function of this processing is not understood. We have mapped the self-cleavage sites and have constructed parasites with cleavage site mutations. Surprisingly, a quadruple mutant that remains full-length retains in vitro activity, is trafficked normally, and supports normal egress, invasion and parasite growth. The N-terminal half of the prodomain stays bound to the catalytic domain even after processing and is required for proper intracellular trafficking of PM X. We find that this enzyme cleaves microneme and exoneme substrates before discharge, while the rhoptry substrates that are dependent on PM X activity are cleaved after exoneme discharge into the PV. The data give insight into the temporal, spatial and biochemical control of this unusual but important aspartic protease.
Collapse
Affiliation(s)
- Sumit Mukherjee
- Division of Infectious Diseases, Department of Medicine, and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Suong Nguyen
- Division of Infectious Diseases, Department of Medicine, and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Eashan Sharma
- Division of Infectious Diseases, Department of Medicine, and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel E Goldberg
- Division of Infectious Diseases, Department of Medicine, and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
56
|
Activity-Based Protein Profiling of Human and Plasmodium Serine Hydrolases and Interrogation of Potential Antimalarial Targets. iScience 2022; 25:104996. [PMID: 36105595 PMCID: PMC9464883 DOI: 10.1016/j.isci.2022.104996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Malaria remains a global health issue requiring the identification of novel therapeutic targets to combat drug resistance. Metabolic serine hydrolases are druggable enzymes playing essential roles in lipid metabolism. However, very few have been investigated in malaria-causing parasites. Here, we used fluorophosphonate broad-spectrum activity-based probes and quantitative chemical proteomics to annotate and profile the activity of more than half of predicted serine hydrolases in P. falciparum across the erythrocytic cycle. Using conditional genetics, we demonstrate that the activities of four serine hydrolases, previously annotated as essential (or important) in genetic screens, are actually dispensable for parasite replication. Of importance, we also identified eight human serine hydrolases that are specifically activated at different developmental stages. Chemical inhibition of two of them blocks parasite replication. This strongly suggests that parasites co-opt the activity of host enzymes and that this opens a new drug development strategy against which the parasites are less likely to develop resistance. P. falciparum has 48 predicted metabolic SHs. Many react with the ABP, FP-N3 The activity of 25 PfSHs and 8 HsSHs was profiled throughout the asexual life cycle Catalytic mutants of 4 PfSHs (formerly held essential) had no parasite growth effect Selective inhibitors for 2 HsSHs (APEH and LPLA2) affected parasite growth
Collapse
|
57
|
CDC50 Orthologues in Plasmodium falciparum Have Distinct Roles in Merozoite Egress and Trophozoite Maturation. mBio 2022; 13:e0163522. [PMID: 35862778 PMCID: PMC9426505 DOI: 10.1128/mbio.01635-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In model organisms, type IV ATPases (P4-ATPases) require cell division control protein 50 (CDC50) chaperones for their phospholipid flipping activity. In the malaria parasite Plasmodium falciparum, guanylyl cyclase alpha (GCα) is an integral membrane protein that is essential for release (egress) of merozoites from their host erythrocytes. GCα is unusual in that it contains both a C-terminal cyclase domain and an N-terminal P4-ATPase domain of unknown function. We sought to investigate whether any of the three CDC50 orthologues (termed A, B, and C) encoded by P. falciparum are required for GCα function. Using gene tagging and conditional gene disruption, we demonstrate that CDC50B and CDC50C but not CDC50A are expressed in the clinically important asexual blood stages and that CDC50B is a binding partner of GCα whereas CDC50C is the binding partner of another putative P4-ATPase, phospholipid-transporting ATPase 2 (ATP2). Our findings indicate that CDC50B has no essential role for intraerythrocytic parasite maturation but modulates the rate of parasite egress by interacting with GCα for optimal cGMP synthesis. In contrast, CDC50C is essential for blood stage trophozoite maturation. Additionally, we find that the CDC50C-ATP2 complex may influence parasite endocytosis of host cell hemoglobin and consequently hemozoin formation.
Collapse
|
58
|
Retana Moreira L, Steller Espinoza MF, Chacón Camacho N, Cornet-Gomez A, Sáenz-Arce G, Osuna A, Lomonte B, Abrahams Sandí E. Characterization of Extracellular Vesicles Secreted by a Clinical Isolate of Naegleria fowleri and Identification of Immunogenic Components within Their Protein Cargo. BIOLOGY 2022; 11:983. [PMID: 36101365 PMCID: PMC9312180 DOI: 10.3390/biology11070983] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Extracellular vesicles (EVs) are small lipid vesicles released by both prokaryotic and eukaryotic cells, involved in intercellular communication, immunomodulation and pathogenesis. In this study, we performed a characterization of the EVs produced by trophozoites of a clinical isolate of the free-living amoeba Naegleria fowleri (N. fowleri). Size distribution, zeta potential, protein profile and protease activity were analyzed. Under our incubation conditions, EVs of different sizes were observed, with a predominant population ranging from 206 to 227 nm. SDS-PAGE revealed protein bands of 25 to 260 KDa. The presence of antigenic proteins was confirmed by Western blot, which evidenced strongest recognition by rat polyclonal antibodies raised against N. fowleri in the region close to 80 KDa and included peptidases, as revealed by zymography. Proteins in selected immunorecognized bands were further identified using nano-ESI-MS/MS. A preliminary proteomic profile of the EVs identified at least 184 proteins as part of the vesicles' cargo. Protease activity assays, in combination with the use of inhibitors, revealed the predominance of serine proteases. The present characterization uncovers the complexity of EVs produced by N. fowleri, suggesting their potential relevance in the release of virulence factors involved in pathogenicity. Owing to their cargo's diversity, further research on EVs could reveal new therapeutic targets or biomarkers for developing rapid and accurate diagnostic tools for lethal infections such as the one caused by this amoeba.
Collapse
Affiliation(s)
- Lissette Retana Moreira
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica; (M.F.S.E.); (N.C.C.); (E.A.S.)
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José 11501, Costa Rica
| | - María Fernanda Steller Espinoza
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica; (M.F.S.E.); (N.C.C.); (E.A.S.)
| | - Natalia Chacón Camacho
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica; (M.F.S.E.); (N.C.C.); (E.A.S.)
| | - Alberto Cornet-Gomez
- Grupo de Bioquímica y Parasitología Molecular (CTS 183), Departamento de Parasitología, Campus de Fuentenueva, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; (A.C.-G.); (A.O.)
| | | | - Antonio Osuna
- Grupo de Bioquímica y Parasitología Molecular (CTS 183), Departamento de Parasitología, Campus de Fuentenueva, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; (A.C.-G.); (A.O.)
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica;
| | - Elizabeth Abrahams Sandí
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica; (M.F.S.E.); (N.C.C.); (E.A.S.)
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José 11501, Costa Rica
| |
Collapse
|
59
|
Smith TA, Lopez-Perez GS, Herneisen AL, Shortt E, Lourido S. Screening the Toxoplasma kinome with high-throughput tagging identifies a regulator of invasion and egress. Nat Microbiol 2022; 7:868-881. [PMID: 35484233 PMCID: PMC9167752 DOI: 10.1038/s41564-022-01104-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/11/2022] [Indexed: 12/26/2022]
Abstract
Protein kinases regulate fundamental aspects of eukaryotic cell biology, making them attractive chemotherapeutic targets in parasites like Plasmodium spp. and Toxoplasma gondii. To systematically examine the parasite kinome, we developed a high-throughput tagging (HiT) strategy to endogenously label protein kinases with an auxin-inducible degron and fluorophore. Hundreds of tagging vectors were assembled from synthetic sequences in a single reaction and used to generate pools of mutants to determine localization and function. Examining 1,160 arrayed clones, we assigned 40 protein localizations and associated 15 kinases with distinct defects. The fitness of tagged alleles was also measured by pooled screening, distinguishing delayed from acute phenotypes. A previously unstudied kinase, associated with a delayed phenotype, was shown to be a regulator of invasion and egress. We named the kinase Store Potentiating/Activating Regulatory Kinase (SPARK), based on its impact on intracellular Ca2+ stores. Despite homology to mammalian 3-phosphoinositide-dependent protein kinase-1 (PDK1), SPARK lacks a lipid-binding domain, suggesting a rewiring of the pathway in parasites. HiT screening extends genome-wide approaches into complex cellular phenotypes, providing a scalable and versatile platform to dissect parasite biology.
Collapse
Affiliation(s)
- Tyler A Smith
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Alice L Herneisen
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily Shortt
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
60
|
Bernard MM, Mohanty A, Rajendran V. Title: A Comprehensive Review on Classifying Fast-acting and Slow-acting Antimalarial Agents Based on Time of Action and Target Organelle of Plasmodium sp. Pathog Dis 2022; 80:6589403. [PMID: 35588061 DOI: 10.1093/femspd/ftac015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/20/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
The clinical resistance towards malarial parasites has rendered many antimalarials ineffective, likely due to a lack of understanding of time of action and stage specificity of all life stages. Therefore, to tackle this problem a more incisive comprehensive analysis of the fast and slow-acting profile of antimalarial agents relating to parasite time-kill kinetics and the target organelle on the progression of blood-stage parasites was carried out. It is evident from numerous findings that drugs targeting food vacuole, nuclear components, and endoplasmic reticulum mainly exhibit a fast-killing phenotype within 24h affecting first-cycle activity. Whereas drugs targeting mitochondria, apicoplast, microtubules, parasite invasion and egress exhibit a largely slow-killing phenotype within 96-120h, affecting second-cycle activity with few exemptions as moderately fast-killing. It is essential to understand the susceptibility of drugs on rings, trophozoites, schizonts, merozoites, and the appearance of organelle at each stage of 48h intraerythrocytic parasite cycle. Therefore, these parameters may facilitate the paradigm for understanding the timing of antimalarials action in deciphering its precise mechanism linked with time. Thus, classifying drugs based on the time of killing may promote designing new combination regimens against varied strains of P. falciparum and evaluating potential clinical resistance.
Collapse
Affiliation(s)
- Monika Marie Bernard
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Abhinab Mohanty
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Vinoth Rajendran
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
61
|
Wichers JS, Mesén-Ramírez P, Fuchs G, Yu-Strzelczyk J, Stäcker J, von Thien H, Alder A, Henshall I, Liffner B, Nagel G, Löw C, Wilson D, Spielmann T, Gao S, Gilberger TW, Bachmann A, Strauss J. PMRT1, a Plasmodium-Specific Parasite Plasma Membrane Transporter, Is Essential for Asexual and Sexual Blood Stage Development. mBio 2022; 13:e0062322. [PMID: 35404116 PMCID: PMC9040750 DOI: 10.1128/mbio.00623-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
Membrane transport proteins perform crucial roles in cell physiology. The obligate intracellular parasite Plasmodium falciparum, an agent of human malaria, relies on membrane transport proteins for the uptake of nutrients from the host, disposal of metabolic waste, exchange of metabolites between organelles, and generation and maintenance of transmembrane electrochemical gradients for its growth and replication within human erythrocytes. Despite their importance for Plasmodium cellular physiology, the functional roles of a number of membrane transport proteins remain unclear, which is particularly true for orphan membrane transporters that have no or limited sequence homology to transporter proteins in other evolutionary lineages. Therefore, in the current study, we applied endogenous tagging, targeted gene disruption, conditional knockdown, and knockout approaches to investigate the subcellular localization and essentiality of six membrane transporters during intraerythrocytic development of P. falciparum parasites. They are localized at different subcellular structures-the food vacuole, the apicoplast, and the parasite plasma membrane-and four out of the six membrane transporters are essential during asexual development. Additionally, the plasma membrane resident transporter 1 (PMRT1; PF3D7_1135300), a unique Plasmodium-specific plasma membrane transporter, was shown to be essential for gametocytogenesis and functionally conserved within the genus Plasmodium. Overall, we reveal the importance of four orphan transporters to blood stage P. falciparum development, which have diverse intracellular localizations and putative functions. IMPORTANCE Plasmodium falciparum-infected erythrocytes possess multiple compartments with designated membranes. Transporter proteins embedded in these membranes not only facilitate movement of nutrients, metabolites, and other molecules between these compartments, but also are common therapeutic targets and can confer antimalarial drug resistance. Orphan membrane transporters in P. falciparum without sequence homology to transporters in other evolutionary lineages and divergent from host transporters may constitute attractive targets for novel intervention approaches. Here, we localized six of these putative transporters at different subcellular compartments and probed their importance during asexual parasite growth by using reverse genetic approaches. In total, only two candidates turned out to be dispensable for the parasite, highlighting four candidates as putative targets for therapeutic interventions. This study reveals the importance of several orphan transporters to blood stage P. falciparum development.
Collapse
Affiliation(s)
- Jan Stephan Wichers
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | | | - Gwendolin Fuchs
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Jing Yu-Strzelczyk
- Institute of Physiology, Department of Neurophysiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jan Stäcker
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Heidrun von Thien
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Arne Alder
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Isabelle Henshall
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Benjamin Liffner
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Georg Nagel
- Institute of Physiology, Department of Neurophysiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology, Hamburg, Germany
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Danny Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia
- Burnet Institute, Melbourne, Victoria, Australia
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Shiqiang Gao
- Institute of Physiology, Department of Neurophysiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Tim-Wolf Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Anna Bachmann
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Jan Strauss
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| |
Collapse
|
62
|
Mallaupoma LRC, Dias BKDM, Singh MK, Honorio RI, Nakabashi M, Kisukuri CDM, Paixão MW, Garcia CRS. Decoding the Role of Melatonin Structure on Plasmodium falciparum Human Malaria Parasites Synchronization Using 2-Sulfenylindoles Derivatives. Biomolecules 2022; 12:biom12050638. [PMID: 35625565 PMCID: PMC9138683 DOI: 10.3390/biom12050638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/04/2022] Open
Abstract
Melatonin acts to synchronize the parasite’s intraerythrocytic cycle by triggering the phospholipase C-inositol 1,4,5-trisphosphate (PLC-IP3) signaling cascade. Compounds with an indole scaffold impair in vitro proliferation of blood-stage malaria parasites, indicating that this class of compounds is potentially emerging antiplasmodial drugs. Therefore, we aimed to study the role of the alkyl and aryl thiol moieties of 14 synthetic indole compounds against chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) strains of Plasmodium falciparum. Four compounds (3, 26, 18, 21) inhibited the growth of P. falciparum (3D7) by 50% at concentrations below 20 µM. A set of 2-sulfenylindoles also showed activity against Dd2 parasites. Our data suggest that Dd2 parasites are more susceptible to compounds 20 and 28 than 3D7 parasites. These data show that 2-sulfenylindoles are promising antimalarials against chloroquine-resistant parasite strains. We also evaluated the effects of the 14 compounds on the parasitemia of the 3D7 strain and their ability to interfere with the effect of 100 nM melatonin on the parasitemia of the 3D7 strain. Our results showed that compounds 3, 7, 8, 10, 14, 16, 17, and 20 slightly increased the effect of melatonin by increasing parasitemia by 8–20% compared with that of melatonin-only-treated 3D7 parasites. Moreover, we found that melatonin modulates the expression of kinase-related signaling components giving additional evidence to investigate inhibitors that can block melatonin signaling.
Collapse
Affiliation(s)
- Lenna Rosanie Cordero Mallaupoma
- Departamento de Química, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, Brazil;
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (B.K.d.M.D.); (M.K.S.); (R.I.H.); (M.N.)
| | - Bárbara Karina de Menezes Dias
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (B.K.d.M.D.); (M.K.S.); (R.I.H.); (M.N.)
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Maneesh Kumar Singh
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (B.K.d.M.D.); (M.K.S.); (R.I.H.); (M.N.)
| | - Rute Isabel Honorio
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (B.K.d.M.D.); (M.K.S.); (R.I.H.); (M.N.)
| | - Myna Nakabashi
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (B.K.d.M.D.); (M.K.S.); (R.I.H.); (M.N.)
| | - Camila de Menezes Kisukuri
- Centro de Excelência para Pesquisa em Química Sustentável (CERSusChem), Departamento de Química, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil; (C.d.M.K.); (M.W.P.)
| | - Márcio Weber Paixão
- Centro de Excelência para Pesquisa em Química Sustentável (CERSusChem), Departamento de Química, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil; (C.d.M.K.); (M.W.P.)
| | - Celia R. S. Garcia
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (B.K.d.M.D.); (M.K.S.); (R.I.H.); (M.N.)
- Correspondence:
| |
Collapse
|
63
|
Abstract
Toxoplasma motility is both activated and suppressed by 3′,5′-cyclic nucleotide signaling. Cyclic GMP (cGMP) signaling through Toxoplasma gondii protein kinase G (TgPKG) activates motility, whereas cyclic AMP (cAMP) signaling through TgPKAc1 inhibits motility. Despite their importance, it remains unclear how cGMP and cAMP levels are maintained in Toxoplasma. Phosphodiesterases (PDEs) are known to inactivate cyclic nucleotides and are highly expanded in the Toxoplasma genome. Here, we analyzed the expression and function of the 18-member TgPDE family in tachyzoites, the virulent life stage of Toxoplasma. We detected the expression of 11 of 18 TgPDEs, confirming prior expression studies. A knockdown screen of the TgPDE family revealed four TgPDEs that contribute to lytic Toxoplasma growth (TgPDE1, TgPDE2, TgPDE5, and TgPDE9). Depletion of TgPDE1 or TgPDE2 caused severe growth defects, prompting further investigation. While TgPDE1 was important for extracellular motility, TgPDE2 was important for host cell invasion, parasite replication, host cell egress, and extracellular motility. TgPDE1 displayed a plasma membrane/cytomembranous distribution, whereas TgPDE2 displayed an endoplasmic reticulum/cytomembranous distribution. Biochemical analysis of TgPDE1 and TgPDE2 purified from Toxoplasma lysates revealed that TgPDE1 hydrolyzes both cGMP and cAMP, whereas TgPDE2 was cAMP specific. Interactome studies of TgPDE1 and TgPDE2 indicated that they do not physically interact with each other or other TgPDEs but may be regulated by kinases and proteases. Our studies have identified TgPDE1 and TgPDE2 as central regulators of tachyzoite cyclic nucleotide levels and enable future studies aimed at determining how these enzymes are regulated and cooperate to control Toxoplasma motility and growth. IMPORTANCE Apicomplexan parasites require motility to actively infect host cells and cause disease. Cyclic nucleotide signaling governs apicomplexan motility, but it is unclear how cyclic nucleotide levels are maintained in these parasites. In search of novel regulators of cyclic nucleotides in the model apicomplexan Toxoplasma, we identified and characterized two catalytically active phosphodiesterases, TgPDE1 and TgPDE2, that are important for Toxoplasma’s virulent tachyzoite life cycle. Enzymes that generate, sense, or degrade cyclic nucleotides make attractive targets for therapies aimed at paralyzing and killing apicomplexan parasites.
Collapse
|
64
|
Frasse PM, Miller JJ, Polino AJ, Soleimani E, Zhu JS, Jakeman DL, Jez JM, Goldberg DE, Odom John AR. Enzymatic and structural characterization of HAD5, an essential phosphomannomutase of malaria-causing parasites. J Biol Chem 2022; 298:101550. [PMID: 34973333 PMCID: PMC8808168 DOI: 10.1016/j.jbc.2021.101550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/05/2022] Open
Abstract
The malaria-causing parasite Plasmodium falciparum is responsible for over 200 million infections and 400,000 deaths per year. At multiple stages during its complex life cycle, P. falciparum expresses several essential proteins tethered to its surface by glycosylphosphatidylinositol (GPI) anchors, which are critical for biological processes such as parasite egress and reinvasion of host red blood cells. Targeting this pathway therapeutically has the potential to broadly impact parasite development across several life stages. Here, we characterize an upstream component of parasite GPI anchor biosynthesis, the putative phosphomannomutase (PMM) (EC 5.4.2.8), HAD5 (PF3D7_1017400). We confirmed the PMM and phosphoglucomutase activities of purified recombinant HAD5 by developing novel linked enzyme biochemical assays. By regulating the expression of HAD5 in transgenic parasites with a TetR-DOZI-inducible knockdown system, we demonstrated that HAD5 is required for malaria parasite egress and erythrocyte reinvasion, and we assessed the role of HAD5 in GPI anchor synthesis by autoradiography of radiolabeled glucosamine and thin layer chromatography. Finally, we determined the three-dimensional X-ray crystal structure of HAD5 and identified a substrate analog that specifically inhibits HAD5 compared to orthologous human PMMs in a time-dependent manner. These findings demonstrate that the GPI anchor biosynthesis pathway is exceptionally sensitive to inhibition in parasites and that HAD5 has potential as a specific, multistage antimalarial target.
Collapse
Affiliation(s)
- Philip M Frasse
- Division of Infectious Diseases, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Justin J Miller
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Alexander J Polino
- Division of Infectious Diseases, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ebrahim Soleimani
- College of Pharmacy, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Chemistry, Razi University, Kermanshah, Iran
| | - Jian-She Zhu
- College of Pharmacy, Dalhousie University, Halifax, Nova Scotia, Canada
| | - David L Jakeman
- College of Pharmacy, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Daniel E Goldberg
- Division of Infectious Diseases, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Audrey R Odom John
- Division of Infectious Diseases, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
65
|
Ressurreição M, Moon RW, Baker DA, van Ooij C. Synchronisation of Plasmodium falciparum and P. knowlesi In Vitro Cultures Using a Highly Specific Protein Kinase Inhibitor. Methods Mol Biol 2022; 2470:101-120. [PMID: 35881342 DOI: 10.1007/978-1-0716-2189-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Synchronisation of Plasmodium cultures is essential to investigate the complexities of time-dependent events associated with the asexual blood stage of the malaria parasite life cycle. Here we describe a procedure using ML10, a highly specific inhibitor of the parasite cyclic GMP-dependent protein kinase (PKG), to attain high synchronicity of Plasmodium falciparum and P. knowlesi asexual blood-stage cultures and to obtain high levels of arrested mature schizonts as well as viable released merozoites. Additionally, we describe how to use ML10 to improve the transfection efficiency of P. falciparum parasites and also how to derive the half maximal effective concentration (EC50) of ML10 in other P. falciparum laboratory lines and clinical isolates.
Collapse
Affiliation(s)
- Margarida Ressurreição
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Robert William Moon
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - David Andrew Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Christiaan van Ooij
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
66
|
de Oliveira LS, Alborghetti MR, Carneiro RG, Bastos IMD, Amino R, Grellier P, Charneau S. Calcium in the Backstage of Malaria Parasite Biology. Front Cell Infect Microbiol 2021; 11:708834. [PMID: 34395314 PMCID: PMC8355824 DOI: 10.3389/fcimb.2021.708834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/14/2021] [Indexed: 12/26/2022] Open
Abstract
The calcium ion (Ca2+) is a ubiquitous second messenger involved in key biological processes in prokaryotes and eukaryotes. In Plasmodium species, Ca2+ signaling plays a central role in the parasite life cycle. It has been associated with parasite development, fertilization, locomotion, and host cell infection. Despite the lack of a canonical inositol-1,4,5-triphosphate receptor gene in the Plasmodium genome, pharmacological evidence indicates that inositol-1,4,5-triphosphate triggers Ca2+ mobilization from the endoplasmic reticulum. Other structures such as acidocalcisomes, food vacuole and mitochondria are proposed to act as supplementary intracellular Ca2+ reservoirs. Several Ca2+-binding proteins (CaBPs) trigger downstream signaling. Other proteins with no EF-hand motifs, but apparently involved with CaBPs, are depicted as playing an important role in the erythrocyte invasion and egress. It is also proposed that a cross-talk among kinases, which are not members of the family of Ca2+-dependent protein kinases, such as protein kinases G, A and B, play additional roles mediated indirectly by Ca2+ regulation. This statement may be extended for proteins directly related to invasion or egress, such as SUB1, ERC, IMC1I, IMC1g, GAP45 and EBA175. In this review, we update our understanding of aspects of Ca2+-mediated signaling correlated to the developmental stages of the malaria parasite life cycle.
Collapse
Affiliation(s)
- Lucas Silva de Oliveira
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
- UMR 7245 MCAM, Molécules de Communication et Adaptation des Micro-organismes, Muséum National d’Histoire Naturelle, CNRS, Équipe Parasites et Protistes Libres, Paris, France
| | - Marcos Rodrigo Alborghetti
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Renata Garcia Carneiro
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Izabela Marques Dourado Bastos
- Laboratory of Host-Pathogen Interaction, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Rogerio Amino
- Unité Infection et Immunité Paludéennes, Institut Pasteur, Paris, France
| | - Philippe Grellier
- UMR 7245 MCAM, Molécules de Communication et Adaptation des Micro-organismes, Muséum National d’Histoire Naturelle, CNRS, Équipe Parasites et Protistes Libres, Paris, France
| | - Sébastien Charneau
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
67
|
Huang J, Byun JA, VanSchouwen B, Henning P, Herberg FW, Kim C, Melacini G. Dynamical Basis of Allosteric Activation for the Plasmodium falciparum Protein Kinase G. J Phys Chem B 2021; 125:6532-6542. [PMID: 34115498 DOI: 10.1021/acs.jpcb.1c03622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Plasmodium falciparum cGMP-dependent protein kinase (PfPKG) is required for the progression of the Plasmodium's life cycle and is therefore a promising malaria drug target. PfPKG includes four cGMP-binding domains (CBD-A to CBD-D). CBD-D plays a crucial role in PfPKG regulation as it is the primary determinant for the inhibition and cGMP-dependent activation of the catalytic domain. Hence, it is critical to understand how CBD-D is allosterically regulated by cGMP. Although the apo versus holo conformational changes of CBD-D have been reported, information on the intermediates of the activation pathway is currently lacking. Here, we employed molecular dynamics simulations to model four key states along the thermodynamic cycle for the cGMP-dependent activation of the PfPKG CBD-D domain. The simulations were compared to NMR data, and they revealed that the PfPKG CBD-D activation pathway samples a compact intermediate in which the N- and C-terminal helices approach the central β-barrel. In addition, by comparing the cGMP-bound active and inactive states, the essential binding interactions that differentiate these states were identified. The identification of structural and dynamical features unique to the cGMP-bound inactive state provides a promising basis to design PfPKG-selective allosteric inhibitors as a viable treatment for malaria.
Collapse
Affiliation(s)
- Jinfeng Huang
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Jung Ah Byun
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Bryan VanSchouwen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Philipp Henning
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Friedrich W Herberg
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Choel Kim
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, United States.,Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
68
|
Tan MSY, Koussis K, Withers‐Martinez C, Howell SA, Thomas JA, Hackett F, Knuepfer E, Shen M, Hall MD, Snijders AP, Blackman MJ. Autocatalytic activation of a malarial egress protease is druggable and requires a protein cofactor. EMBO J 2021; 40:e107226. [PMID: 33932049 PMCID: PMC8167364 DOI: 10.15252/embj.2020107226] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/11/2021] [Accepted: 03/23/2021] [Indexed: 12/21/2022] Open
Abstract
Malaria parasite egress from host erythrocytes (RBCs) is regulated by discharge of a parasite serine protease called SUB1 into the parasitophorous vacuole (PV). There, SUB1 activates a PV-resident cysteine protease called SERA6, enabling host RBC rupture through SERA6-mediated degradation of the RBC cytoskeleton protein β-spectrin. Here, we show that the activation of Plasmodium falciparum SERA6 involves a second, autocatalytic step that is triggered by SUB1 cleavage. Unexpectedly, autoproteolytic maturation of SERA6 requires interaction in multimolecular complexes with a distinct PV-located protein cofactor, MSA180, that is itself a SUB1 substrate. Genetic ablation of MSA180 mimics SERA6 disruption, producing a fatal block in β-spectrin cleavage and RBC rupture. Drug-like inhibitors of SERA6 autoprocessing similarly prevent β-spectrin cleavage and egress in both P. falciparum and the emerging zoonotic pathogen P. knowlesi. Our results elucidate the egress pathway and identify SERA6 as a target for a new class of antimalarial drugs designed to prevent disease progression.
Collapse
Affiliation(s)
- Michele S Y Tan
- Malaria Biochemistry LaboratoryThe Francis Crick InstituteLondonUK
| | | | | | - Steven A Howell
- Protein Analysis and Proteomics PlatformThe Francis Crick InstituteLondonUK
| | - James A Thomas
- Faculty of Infectious and Tropical DiseasesLondon School of Hygiene & Tropical MedicineLondonUK
| | - Fiona Hackett
- Malaria Biochemistry LaboratoryThe Francis Crick InstituteLondonUK
| | - Ellen Knuepfer
- Department of Pathobiology and Population SciencesRoyal Veterinary CollegeHertfordshireUK
| | - Min Shen
- National Center for Advancing Translational Sciences (NCATS)National Institutes of HealthRockvilleMDUSA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences (NCATS)National Institutes of HealthRockvilleMDUSA
| | | | - Michael J Blackman
- Malaria Biochemistry LaboratoryThe Francis Crick InstituteLondonUK
- Faculty of Infectious and Tropical DiseasesLondon School of Hygiene & Tropical MedicineLondonUK
| |
Collapse
|
69
|
Lasonder E, More K, Singh S, Haidar M, Bertinetti D, Kennedy EJ, Herberg FW, Holder AA, Langsley G, Chitnis CE. cAMP-Dependent Signaling Pathways as Potential Targets for Inhibition of Plasmodium falciparum Blood Stages. Front Microbiol 2021; 12:684005. [PMID: 34108954 PMCID: PMC8183823 DOI: 10.3389/fmicb.2021.684005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
We review the role of signaling pathways in regulation of the key processes of merozoite egress and red blood cell invasion by Plasmodium falciparum and, in particular, the importance of the second messengers, cAMP and Ca2+, and cyclic nucleotide dependent kinases. cAMP-dependent protein kinase (PKA) is comprised of cAMP-binding regulatory, and catalytic subunits. The less well conserved cAMP-binding pockets should make cAMP analogs attractive drug leads, but this approach is compromised by the poor membrane permeability of cyclic nucleotides. We discuss how the conserved nature of ATP-binding pockets makes ATP analogs inherently prone to off-target effects and how ATP analogs and genetic manipulation can be useful research tools to examine this. We suggest that targeting PKA interaction partners as well as substrates, or developing inhibitors based on PKA interaction sites or phosphorylation sites in PKA substrates, may provide viable alternative approaches for the development of anti-malarial drugs. Proximity of PKA to a substrate is necessary for substrate phosphorylation, but the P. falciparum genome encodes few recognizable A-kinase anchor proteins (AKAPs), suggesting the importance of PKA-regulatory subunit myristylation and membrane association in determining substrate preference. We also discuss how Pf14-3-3 assembles a phosphorylation-dependent signaling complex that includes PKA and calcium dependent protein kinase 1 (CDPK1) and how this complex may be critical for merozoite invasion, and a target to block parasite growth. We compare altered phosphorylation levels in intracellular and egressed merozoites to identify potential PKA substrates. Finally, as host PKA may have a critical role in supporting intracellular parasite development, we discuss its role at other stages of the life cycle, as well as in other apicomplexan infections. Throughout our review we propose possible new directions for the therapeutic exploitation of cAMP-PKA-signaling in malaria and other diseases caused by apicomplexan parasites.
Collapse
Affiliation(s)
- Edwin Lasonder
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Kunal More
- Unité de Biologie de Plasmodium et Vaccins, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Malak Haidar
- Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France.,INSERM U1016, CNRS UMR 8104, Cochin Institute, Paris, France
| | | | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, United States
| | | | - Anthony A Holder
- Malaria Parasitology Laboratory, Francis Crick Institute, London, United Kingdom
| | - Gordon Langsley
- Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France.,INSERM U1016, CNRS UMR 8104, Cochin Institute, Paris, France
| | - Chetan E Chitnis
- Unité de Biologie de Plasmodium et Vaccins, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| |
Collapse
|
70
|
Shakya B, Patel SD, Tani Y, Egan ES. Erythrocyte CD55 mediates the internalization of Plasmodium falciparum parasites. eLife 2021; 10:61516. [PMID: 34028351 PMCID: PMC8184214 DOI: 10.7554/elife.61516] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 05/20/2021] [Indexed: 01/04/2023] Open
Abstract
Invasion of human erythrocytes by the malaria parasite Plasmodium falciparum is a multi-step process. Previously, a forward genetic screen for P. falciparum host factors identified erythrocyte CD55 as essential for invasion, but its specific role and how it interfaces with the other factors that mediate this complex process are unknown. Using CRISPR-Cas9 editing, antibody-based inhibition, and live cell imaging, here we show that CD55 is specifically required for parasite internalization. Pre-invasion kinetics, erythrocyte deformability, and echinocytosis were not influenced by CD55, but entry was inhibited when CD55 was blocked or absent. Visualization of parasites attached to CD55-null erythrocytes points to a role for CD55 in stability and/or progression of the moving junction. Our findings demonstrate that CD55 acts after discharge of the parasite’s rhoptry organelles, and plays a unique role relative to all other invasion receptors. As the requirement for CD55 is strain-transcendent, these results suggest that CD55 or its interacting partners may hold potential as therapeutic targets for malaria.
Collapse
Affiliation(s)
- Bikash Shakya
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, United States
| | - Saurabh D Patel
- Zuckerman Institute, Columbia University, New York City, United States
| | | | - Elizabeth S Egan
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
71
|
Peptidic boronic acids are potent cell-permeable inhibitors of the malaria parasite egress serine protease SUB1. Proc Natl Acad Sci U S A 2021; 118:2022696118. [PMID: 33975947 PMCID: PMC8157947 DOI: 10.1073/pnas.2022696118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Malaria is a devastating infectious disease, which causes over 400,000 deaths per annum and impacts the lives of nearly half the world's population. The causative agent, a protozoan parasite, replicates within red blood cells (RBCs), eventually destroying the cells in a lytic process called egress to release a new generation of parasites. These invade fresh RBCs to repeat the cycle. Egress is regulated by an essential parasite subtilisin-like serine protease called SUB1. Here, we describe the development and optimization of substrate-based peptidic boronic acids that inhibit Plasmodium falciparum SUB1 with low nanomolar potency. Structural optimization generated membrane-permeable, slow off-rate inhibitors that prevent Pfalciparum egress through direct inhibition of SUB1 activity and block parasite replication in vitro at submicromolar concentrations. Our results validate SUB1 as a potential target for a new class of antimalarial drugs designed to prevent parasite replication and disease progression.
Collapse
|
72
|
Wichers JS, Wunderlich J, Heincke D, Pazicky S, Strauss J, Schmitt M, Kimmel J, Wilcke L, Scharf S, von Thien H, Burda PC, Spielmann T, Löw C, Filarsky M, Bachmann A, Gilberger TW. Identification of novel inner membrane complex and apical annuli proteins of the malaria parasite Plasmodium falciparum. Cell Microbiol 2021; 23:e13341. [PMID: 33830607 DOI: 10.1111/cmi.13341] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/29/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
The inner membrane complex (IMC) is a defining feature of apicomplexan parasites, which confers stability and shape to the cell, functions as a scaffolding compartment during the formation of daughter cells and plays an important role in motility and invasion during different life cycle stages of these single-celled organisms. To explore the IMC proteome of the malaria parasite Plasmodium falciparum we applied a proximity-dependent biotin identification (BioID)-based proteomics approach, using the established IMC marker protein Photosensitized INA-Labelled protein 1 (PhIL1) as bait in asexual blood-stage parasites. Subsequent mass spectrometry-based peptide identification revealed enrichment of 12 known IMC proteins and several uncharacterized candidate proteins. We validated nine of these previously uncharacterized proteins by endogenous GFP-tagging. Six of these represent new IMC proteins, while three proteins have a distinct apical localization that most likely represents structures described as apical annuli in Toxoplasma gondii. Additionally, various Kelch13 interacting candidates were identified, suggesting an association of the Kelch13 compartment and the IMC in schizont and merozoite stages. This work extends the number of validated IMC proteins in the malaria parasite and reveals for the first time the existence of apical annuli proteins in P. falciparum. Additionally, it provides evidence for a spatial association between the Kelch13 compartment and the IMC in late blood-stage parasites.
Collapse
Affiliation(s)
- Jan Stephan Wichers
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Juliane Wunderlich
- Centre for Structural Systems Biology, Hamburg, Germany.,European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Dorothee Heincke
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Samuel Pazicky
- Centre for Structural Systems Biology, Hamburg, Germany.,European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Jan Strauss
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Marius Schmitt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jessica Kimmel
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Louisa Wilcke
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Sarah Scharf
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Heidrun von Thien
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Paul-Christian Burda
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology, Hamburg, Germany.,European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Michael Filarsky
- Centre for Structural Systems Biology, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Anna Bachmann
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany.,German Centre for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Braunschweig, Germany
| | - Tim W Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| |
Collapse
|
73
|
Perrin AJ, Bisson C, Faull PA, Renshaw MJ, Lees RA, Fleck RA, Saibil HR, Snijders AP, Baker DA, Blackman MJ. Malaria Parasite Schizont Egress Antigen-1 Plays an Essential Role in Nuclear Segregation during Schizogony. mBio 2021; 12:e03377-20. [PMID: 33688001 PMCID: PMC8092294 DOI: 10.1128/mbio.03377-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/25/2021] [Indexed: 01/08/2023] Open
Abstract
Malaria parasites cause disease through repeated cycles of intraerythrocytic proliferation. Within each cycle, several rounds of DNA replication produce multinucleated forms, called schizonts, that undergo segmentation to form daughter merozoites. Upon rupture of the infected cell, the merozoites egress to invade new erythrocytes and repeat the cycle. In human malarial infections, an antibody response specific for the Plasmodium falciparum protein PF3D7_1021800 was previously associated with protection against malaria, leading to an interest in PF3D7_1021800 as a candidate vaccine antigen. Antibodies to the protein were reported to inhibit egress, resulting in it being named schizont egress antigen-1 (SEA1). A separate study found that SEA1 undergoes phosphorylation in a manner dependent upon the parasite cGMP-dependent protein kinase PKG, which triggers egress. While these findings imply a role for SEA1 in merozoite egress, this protein has also been implicated in kinetochore function during schizont development. Therefore, the function of SEA1 remains unclear. Here, we show that P. falciparum SEA1 localizes in proximity to centromeres within dividing nuclei and that conditional disruption of SEA1 expression severely impacts the distribution of DNA and formation of merozoites during schizont development, with a proportion of SEA1-null merozoites completely lacking nuclei. SEA1-null schizonts rupture, albeit with low efficiency, suggesting that neither SEA1 function nor normal segmentation is a prerequisite for egress. We conclude that SEA1 does not play a direct mechanistic role in egress but instead acts upstream of egress as an essential regulator required to ensure the correct packaging of nuclei within merozoites.IMPORTANCE Malaria is a deadly infectious disease. Rationally designed novel therapeutics will be essential for its control and eradication. The Plasmodium falciparum protein PF3D7_1021800, annotated as SEA1, is under investigation as a prospective component of a malaria vaccine, based on previous indications that antibodies to SEA1 interfere with parasite egress from infected erythrocytes. However, a consensus on the function of SEA1 is lacking. Here, we demonstrate that SEA1 localizes to dividing parasite nuclei and is necessary for the correct segregation of replicated DNA into individual daughter merozoites. In the absence of SEA1, merozoites develop defectively, often completely lacking a nucleus, and, consequently, egress is impaired and/or aberrant. Our findings provide insights into the divergent mechanisms by which intraerythrocytic malaria parasites develop and divide. Our conclusions regarding the localization and function of SEA1 are not consistent with the hypothesis that antibodies against it confer protective immunity to malaria by blocking merozoite egress.
Collapse
Affiliation(s)
- Abigail J Perrin
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Claudine Bisson
- Department of Biological Sciences, Institute of Structural & Molecular Biology, Birkbeck College, University of London, London, United Kingdom
- Centre for Ultrastructural Imaging, Guy's Campus, King's College London, London, United Kingdom
| | - Peter A Faull
- Mass Spectrometry Proteomics Platform, The Francis Crick Institute, London, United Kingdom
| | - Matthew J Renshaw
- Advanced Light Microscopy, The Francis Crick Institute, London, United Kingdom
| | - Rebecca A Lees
- Department of Biological Sciences, Institute of Structural & Molecular Biology, Birkbeck College, University of London, London, United Kingdom
| | - Roland A Fleck
- Centre for Ultrastructural Imaging, Guy's Campus, King's College London, London, United Kingdom
| | - Helen R Saibil
- Department of Biological Sciences, Institute of Structural & Molecular Biology, Birkbeck College, University of London, London, United Kingdom
| | - Ambrosius P Snijders
- Mass Spectrometry Proteomics Platform, The Francis Crick Institute, London, United Kingdom
| | - David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
74
|
Abstract
All intracellular pathogens must escape (egress) from the confines of their host cell to disseminate and proliferate. The malaria parasite only replicates in an intracellular vacuole or in a cyst, and must undergo egress at four distinct phases during its complex life cycle, each time disrupting, in a highly regulated manner, the membranes or cyst wall that entrap the parasites. This Cell Science at a Glance article and accompanying poster summarises our current knowledge of the morphological features of egress across the Plasmodium life cycle, the molecular mechanisms that govern the process, and how researchers are working to exploit this knowledge to develop much-needed new approaches to malaria control. ![]()
Collapse
Affiliation(s)
- Michele S Y Tan
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, UK .,Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
75
|
Balestra AC, Koussis K, Klages N, Howell SA, Flynn HR, Bantscheff M, Pasquarello C, Perrin AJ, Brusini L, Arboit P, Sanz O, Castaño LPB, Withers-Martinez C, Hainard A, Ghidelli-Disse S, Snijders AP, Baker DA, Blackman MJ, Brochet M. Ca 2+ signals critical for egress and gametogenesis in malaria parasites depend on a multipass membrane protein that interacts with PKG. SCIENCE ADVANCES 2021; 7:7/13/eabe5396. [PMID: 33762339 PMCID: PMC7990342 DOI: 10.1126/sciadv.abe5396] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Calcium signaling regulated by the cGMP-dependent protein kinase (PKG) controls key life cycle transitions in the malaria parasite. However, how calcium is mobilized from intracellular stores in the absence of canonical calcium channels in Plasmodium is unknown. Here, we identify a multipass membrane protein, ICM1, with homology to transporters and calcium channels that is tightly associated with PKG in both asexual blood stages and transmission stages. Phosphoproteomic analyses reveal multiple ICM1 phosphorylation events dependent on PKG activity. Stage-specific depletion of Plasmodium berghei ICM1 prevents gametogenesis due to a block in intracellular calcium mobilization, while conditional loss of Plasmodium falciparum ICM1 is detrimental for the parasite resulting in severely reduced calcium mobilization, defective egress, and lack of invasion. Our findings suggest that ICM1 is a key missing link in transducing PKG-dependent signals and provide previously unknown insights into atypical calcium homeostasis in malaria parasites essential for pathology and disease transmission.
Collapse
Affiliation(s)
- Aurélia C Balestra
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Konstantinos Koussis
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| | - Natacha Klages
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Steven A Howell
- Mass Spectrometry Proteomics Platform, The Francis Crick Institute, London, UK
| | - Helen R Flynn
- Mass Spectrometry Proteomics Platform, The Francis Crick Institute, London, UK
| | - Marcus Bantscheff
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline, 69117 Heidelberg, Germany
| | - Carla Pasquarello
- Proteomics Core Facility, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Abigail J Perrin
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Lorenzo Brusini
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Patrizia Arboit
- Proteomics Core Facility, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Olalla Sanz
- Diseases of the Developing World Global Health Pharma Unit, GlaxoSmithKline, 28760 Tres Cantos, Spain
| | | | | | - Alexandre Hainard
- Proteomics Core Facility, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Sonja Ghidelli-Disse
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline, 69117 Heidelberg, Germany
| | | | - David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Mathieu Brochet
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland.
| |
Collapse
|
76
|
Rotella D, Siekierka J, Bhanot P. Plasmodium falciparum cGMP-Dependent Protein Kinase - A Novel Chemotherapeutic Target. Front Microbiol 2021; 11:610408. [PMID: 33613463 PMCID: PMC7886688 DOI: 10.3389/fmicb.2020.610408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
The primary effector of cGMP signaling in Plasmodium is the cGMP-dependent protein kinase (PKG). Work in human-infective Plasmodium falciparum and rodent-infective Plasmodium berghei has provided biological validation of P. falciparum PKG (PfPKG) as a drug target for treating and/or protecting against malaria. PfPKG is essential in the asexual erythrocytic and sexual cycles as well as the pre-erythrocytic cycle. Medicinal chemistry efforts, both target-based and phenotype-based, have targeted PfPKG in the past few years. This review provides a brief overview of their results and challenges.
Collapse
Affiliation(s)
- David Rotella
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, NJ, United States
| | - John Siekierka
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, NJ, United States
| | - Purnima Bhanot
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
77
|
Adderley J, Williamson T, Doerig C. Parasite and Host Erythrocyte Kinomics of Plasmodium Infection. Trends Parasitol 2021; 37:508-524. [PMID: 33593681 DOI: 10.1016/j.pt.2021.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
Malaria remains a heavy public health and socioeconomic burden in tropical and subtropical regions. Increasing resistance against front-line treatments implies that novel targets for antimalarial intervention are urgently required. Protein kinases of both the parasites and their host cells possess strong potential in this respect. We present an overview of the updated kinome of Plasmodium falciparum, the species that is the largest contributor to malaria mortality, and of current knowledge pertaining to the function of parasite-encoded protein kinases during the parasite's life cycle. Furthermore, we detail recent advances in drug initiatives targeting Plasmodium kinases and outline the potential of protein kinases in the context of the growing field of host-directed therapies, which is currently being explored as a novel way to combat parasite drug resistance.
Collapse
Affiliation(s)
- Jack Adderley
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Tayla Williamson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Christian Doerig
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia.
| |
Collapse
|
78
|
Nofal SD, Patel A, Blackman MJ, Flueck C, Baker DA. Plasmodium falciparum Guanylyl Cyclase-Alpha and the Activity of Its Appended P4-ATPase Domain Are Essential for cGMP Synthesis and Blood-Stage Egress. mBio 2021; 12:e02694-20. [PMID: 33500341 PMCID: PMC7858053 DOI: 10.1128/mbio.02694-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
Guanylyl cyclases (GCs) synthesize cyclic GMP (cGMP) and, together with cyclic nucleotide phosphodiesterases, are responsible for regulating levels of this intracellular messenger which mediates myriad functions across eukaryotes. In malaria parasites (Plasmodium spp), as well as their apicomplexan and ciliate relatives, GCs are associated with a P4-ATPase-like domain in a unique bifunctional configuration. P4-ATPases generate membrane bilayer lipid asymmetry by translocating phospholipids from the outer to the inner leaflet. Here, we investigate the role of Plasmodium falciparum guanylyl cyclase alpha (GCα) and its associated P4-ATPase module, showing that asexual blood-stage parasites lacking both the cyclase and P4-ATPase domains are unable to egress from host erythrocytes. GCα-null parasites cannot synthesize cGMP or mobilize calcium, a cGMP-dependent protein kinase (PKG)-driven requirement for egress. Using chemical complementation with a cGMP analogue and point mutagenesis of a crucial conserved residue within the P4-ATPase domain, we show that P4-ATPase activity is upstream of and linked to cGMP synthesis. Collectively, our results demonstrate that GCα is a critical regulator of PKG and that its associated P4-ATPase domain plays a primary role in generating cGMP for merozoite egress.IMPORTANCE The clinical manifestations of malaria arise due to successive rounds of replication of Plasmodium parasites within red blood cells. Once mature, daughter merozoites are released from infected erythrocytes to invade new cells in a tightly regulated process termed egress. Previous studies have shown that the activation of cyclic GMP (cGMP) signaling is critical for initiating egress. Here, we demonstrate that GCα, a unique bifunctional enzyme, is the sole enzyme responsible for cGMP production during the asexual blood stages of Plasmodium falciparum and is required for the cellular events leading up to merozoite egress. We further demonstrate that in addition to the GC domain, the appended ATPase-like domain of GCα is also involved in cGMP production. Our results highlight the critical role of GCα in cGMP signaling required for orchestrating malaria parasite egress.
Collapse
Affiliation(s)
- Stephanie D Nofal
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Avnish Patel
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael J Blackman
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Christian Flueck
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
79
|
Vella SA, Moore CA, Li ZH, Hortua Triana MA, Potapenko E, Moreno SNJ. The role of potassium and host calcium signaling in Toxoplasma gondii egress. Cell Calcium 2021; 94:102337. [PMID: 33524795 DOI: 10.1016/j.ceca.2020.102337] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/22/2023]
Abstract
Toxoplasma gondii is an obligate intracellular parasite and replicates inside a parasitophorous vacuole (PV) within the host cell. The membrane of the PV (PVM) contains pores that permits for equilibration of ions and small molecules between the host cytosol and the PV lumen. Ca2+ signaling is universal and both T. gondii and its mammalian host cell utilize Ca2+ signals to stimulate diverse cellular functions. Egress of T. gondii from host cells is an essential step for the infection cycle of T. gondii, and a cytosolic Ca2+ increase initiates a Ca2+ signaling cascade that culminates in the stimulation of motility and egress. In this work we demonstrate that intracellular T. gondii tachyzoites are able to take up Ca2+ from the host cytoplasm during host cell signaling events. Both intracellular and extracellular Ca2+ sources are important in reaching a threshold of parasite cytosolic Ca2+ needed for successful egress. Two peaks of Ca2+ were observed in egressing single parasites with the second peak resulting from Ca2+ entry. We patched infected host cells to allow the delivery of precise concentrations of Ca2+ for the stimulation of motility and egress. Using this approach of patching infected host cells, allowed us to determine that increasing the host cytosolic Ca2+ to a specific concentration can trigger egress, which is further accelerated by diminishing the concentration of potassium (K+).
Collapse
Affiliation(s)
- Stephen A Vella
- Center for Tropical and Emerging Global Diseases, University of Georgia, United States; Department of Microbiology, University of Georgia, United States
| | - Christina A Moore
- Center for Tropical and Emerging Global Diseases, University of Georgia, United States; Department of Cellular Biology, University of Georgia, Athens, GA, 30602, United States
| | - Zhu-Hong Li
- Center for Tropical and Emerging Global Diseases, University of Georgia, United States
| | | | - Evgeniy Potapenko
- Center for Tropical and Emerging Global Diseases, University of Georgia, United States
| | - Silvia N J Moreno
- Center for Tropical and Emerging Global Diseases, University of Georgia, United States; Department of Cellular Biology, University of Georgia, Athens, GA, 30602, United States.
| |
Collapse
|
80
|
Baker DA, Matralis AN, Osborne SA, Large JM, Penzo M. Targeting the Malaria Parasite cGMP-Dependent Protein Kinase to Develop New Drugs. Front Microbiol 2020; 11:602803. [PMID: 33391223 PMCID: PMC7773720 DOI: 10.3389/fmicb.2020.602803] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022] Open
Abstract
The single-celled apicomplexan parasite Plasmodium falciparum is responsible for the majority of deaths due to malaria each year. The selection of drug resistance has been a recurring theme over the decades with each new drug that is developed. It is therefore crucial that future generations of drugs are explored to tackle this major public health problem. Cyclic GMP (cGMP) signaling is one of the biochemical pathways that is being explored as a potential target for new antimalarial drugs. It has been shown that this pathway is essential for all of the key developmental stages of the complex malaria parasite life cycle. This gives hope that targeting cGMP signaling might give rise to drugs that treat disease, block its transmission and even prevent the establishment of infection. Here we review previous work that has been carried out to develop and optimize inhibitors of the cGMP-dependent protein kinase (PKG) which is a critical regulator of the malaria parasite life cycle.
Collapse
Affiliation(s)
- David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | - Simon A Osborne
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, United Kingdom
| | - Jonathan M Large
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, United Kingdom
| | - Maria Penzo
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
81
|
Transmission of Artemisinin-Resistant Malaria Parasites to Mosquitoes under Antimalarial Drug Pressure. Antimicrob Agents Chemother 2020; 65:AAC.00898-20. [PMID: 33139275 PMCID: PMC7927852 DOI: 10.1128/aac.00898-20] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/20/2020] [Indexed: 12/24/2022] Open
Abstract
Resistance to artemisinin-based combination therapy (ACT) in the Plasmodium falciparum parasite is threatening to reverse recent gains in reducing global deaths from malaria. While resistance manifests as delayed parasite clearance in patients, the phenotype can only spread geographically via the sexual stages and mosquito transmission. In addition to their asexual killing properties, artemisinin and its derivatives sterilize sexual male gametocytes. Whether resistant parasites overcome this sterilizing effect has not, however, been fully tested. Resistance to artemisinin-based combination therapy (ACT) in the Plasmodium falciparum parasite is threatening to reverse recent gains in reducing global deaths from malaria. While resistance manifests as delayed parasite clearance in patients, the phenotype can only spread geographically via the sexual stages and mosquito transmission. In addition to their asexual killing properties, artemisinin and its derivatives sterilize sexual male gametocytes. Whether resistant parasites overcome this sterilizing effect has not, however, been fully tested. Here, we analyzed P. falciparum clinical isolates from the Greater Mekong Subregion, each demonstrating delayed clinical clearance and known resistance-associated polymorphisms in the Kelch13 (PfK13var) gene. As well as demonstrating reduced asexual sensitivity to drug, certain PfK13var isolates demonstrated a marked reduction in sensitivity to artemisinin in an in vitro male gamete formation assay. Importantly, this same reduction in sensitivity was observed when the most resistant isolate was tested directly in mosquito feeds. These results indicate that, under artemisinin drug pressure, while sensitive parasites are blocked, resistant parasites continue transmission. This selective advantage for resistance transmission could favor acquisition of additional host-specificity or polymorphisms affecting partner drug sensitivity in mixed infections. Favored resistance transmission under ACT coverage could have profound implications for the spread of multidrug-resistant malaria beyond Southeast Asia.
Collapse
|
82
|
Collins CR, Hackett F, Howell SA, Snijders AP, Russell MRG, Collinson LM, Blackman MJ. The malaria parasite sheddase SUB2 governs host red blood cell membrane sealing at invasion. eLife 2020; 9:e61121. [PMID: 33287958 PMCID: PMC7723409 DOI: 10.7554/elife.61121] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/26/2020] [Indexed: 12/26/2022] Open
Abstract
Red blood cell (RBC) invasion by malaria merozoites involves formation of a parasitophorous vacuole into which the parasite moves. The vacuole membrane seals and pinches off behind the parasite through an unknown mechanism, enclosing the parasite within the RBC. During invasion, several parasite surface proteins are shed by a membrane-bound protease called SUB2. Here we show that genetic depletion of SUB2 abolishes shedding of a range of parasite proteins, identifying previously unrecognized SUB2 substrates. Interaction of SUB2-null merozoites with RBCs leads to either abortive invasion with rapid RBC lysis, or successful entry but developmental arrest. Selective failure to shed the most abundant SUB2 substrate, MSP1, reduces intracellular replication, whilst conditional ablation of the substrate AMA1 produces host RBC lysis. We conclude that SUB2 activity is critical for host RBC membrane sealing following parasite internalisation and for correct functioning of merozoite surface proteins.
Collapse
Affiliation(s)
- Christine R Collins
- Malaria Biochemistry Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Fiona Hackett
- Malaria Biochemistry Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Steven A Howell
- Protein Analysis and Proteomics Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Matthew RG Russell
- Electron Microscopy Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Lucy M Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Faculty of Infectious Diseases, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
| |
Collapse
|
83
|
Absalon S, Dvorin JD. Depletion of the mini-chromosome maintenance complex binding protein allows the progression of cytokinesis despite abnormal karyokinesis during the asexual development of Plasmodium falciparum. Cell Microbiol 2020; 23:e13284. [PMID: 33124706 DOI: 10.1111/cmi.13284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/23/2022]
Abstract
The eukaryotic cell cycle is typically divided into distinct phases with cytokinesis immediately following mitosis. To ensure proper cell division, each phase is tightly coordinated via feedback controls named checkpoints. During its asexual replication cycle, the malaria parasite Plasmodium falciparum undergoes multiple asynchronous rounds of mitosis with segregation of uncondensed chromosomes followed by nuclear division with intact nuclear envelope. The multi-nucleated schizont is then subjected to a single round of cytokinesis that produces dozens of daughter cells called merozoites. To date, no cell cycle checkpoints have been identified that regulate the Plasmodium spp. mode of division. Here, we identify the Plasmodium homologue of the Mini-Chromosome Maintenance Complex Binding Protein (PfMCMBP), which co-purified with the Mini-Chromosome Maintenance (MCM) complex, a replicative helicase required for genomic DNA replication. By conditionally depleting PfMCMBP, we disrupt nuclear morphology and parasite proliferation without causing a block in DNA replication. By immunofluorescence microscopy, we show that PfMCMBP depletion promotes the formation of mitotic spindle microtubules with extensions to more than one DNA focus and abnormal centrin distribution. Strikingly, PfMCMBP-deficient parasites complete cytokinesis and form aneuploid merozoites with variable cellular and nuclear sizes. Our study demonstrates that the parasite lacks a robust checkpoint response to prevent cytokinesis following aberrant karyokinesis.
Collapse
Affiliation(s)
- Sabrina Absalon
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
84
|
Moolman C, van der Sluis R, Beteck RM, Legoabe LJ. An Update on Development of Small-Molecule Plasmodial Kinase Inhibitors. Molecules 2020; 25:E5182. [PMID: 33171706 PMCID: PMC7664427 DOI: 10.3390/molecules25215182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
Malaria control relies heavily on the small number of existing antimalarial drugs. However, recurring antimalarial drug resistance necessitates the continual generation of new antimalarial drugs with novel modes of action. In order to shift the focus from only controlling this disease towards elimination and eradication, next-generation antimalarial agents need to address the gaps in the malaria drug arsenal. This includes developing drugs for chemoprotection, treating severe malaria and blocking transmission. Plasmodial kinases are promising targets for next-generation antimalarial drug development as they mediate critical cellular processes and some are active across multiple stages of the parasite's life cycle. This review gives an update on the progress made thus far with regards to plasmodial kinase small-molecule inhibitor development.
Collapse
Affiliation(s)
- Chantalle Moolman
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (C.M.); (R.M.B.)
| | - Rencia van der Sluis
- Focus Area for Human Metabolomics, Biochemistry, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa;
| | - Richard M. Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (C.M.); (R.M.B.)
| | - Lesetja J. Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (C.M.); (R.M.B.)
| |
Collapse
|
85
|
Abstract
Malaria is one of the most impacting public health problems in tropical and subtropical areas of the globe, with approximately 200 million cases worldwide annually. In the absence of an effective vaccine, rapid treatment is vital for effective malaria control. However, parasite resistance to currently available drugs underscores the urgent need for identifying new antimalarial therapies with new mechanisms of action. Among potential drug targets for developing new antimalarial candidates, protein kinases are attractive. These enzymes catalyze the phosphorylation of several proteins, thereby regulating a variety of cellular processes and playing crucial roles in the development of all stages of the malaria parasite life cycle. Moreover, the large phylogenetic distance between Plasmodium species and its human host is reflected in marked differences in structure and function of malaria protein kinases between the homologs of both species, indicating that selectivity can be attained. In this review, we describe the functions of the different types of Plasmodium kinases and highlight the main recent advances in the discovery of kinase inhibitors as potential new antimalarial drug candidates.
Collapse
|
86
|
Abstract
Apicomplexans are obligate intracellular parasites harboring three sets of unique secretory organelles termed micronemes, rhoptries, and dense granules that are dedicated to the establishment of infection in the host cell. Apicomplexans rely on the endolysosomal system to generate the secretory organelles and to ingest and digest host cell proteins. These parasites also possess a metabolically relevant secondary endosymbiotic organelle, the apicoplast, which relies on vesicular trafficking for correct incorporation of nuclear-encoded proteins into the organelle. Here, we demonstrate that the trafficking and destination of vesicles to the unique and specialized parasite compartments depend on SNARE proteins that interact with tethering factors. Specifically, all secreted proteins depend on the function of SLY1 at the Golgi. In addition to a critical role in trafficking of endocytosed host proteins, TgVps45 is implicated in the biogenesis of the inner membrane complex (alveoli) in both Toxoplasma gondii and Plasmodium falciparum, likely acting in a coordinated manner with Stx16 and Stx6. Finally, Stx12 localizes to the endosomal-like compartment and is involved in the trafficking of proteins to the apical secretory organelles rhoptries and micronemes as well as to the apicoplast.IMPORTANCE The phylum of Apicomplexa groups medically relevant parasites such as those responsible for malaria and toxoplasmosis. As members of the Alveolata superphylum, these protozoans possess specialized organelles in addition to those found in all members of the eukaryotic kingdom. Vesicular trafficking is the major route of communication between membranous organelles. Neither the molecular mechanism that allows communication between organelles nor the vesicular fusion events that underlie it are completely understood in Apicomplexa. Here, we assessed the function of SEC1/Munc18 and SNARE proteins to identify factors involved in the trafficking of vesicles between these various organelles. We show that SEC1/Munc18 in interaction with SNARE proteins allows targeting of vesicles to the inner membrane complex, prerhoptries, micronemes, apicoplast, and vacuolar compartment from the endoplasmic reticulum, Golgi apparatus, or endosomal-like compartment. These data provide an exciting look at the "ZIP code" of vesicular trafficking in apicomplexans, essential for precise organelle biogenesis, homeostasis, and inheritance.
Collapse
|
87
|
Khalife J, Fréville A, Gnangnon B, Pierrot C. The Multifaceted Role of Protein Phosphatase 1 in Plasmodium. Trends Parasitol 2020; 37:154-164. [PMID: 33036936 DOI: 10.1016/j.pt.2020.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 11/29/2022]
Abstract
Protein phosphatase type 1 (PP1) forms a wide range of Ser/Thr-specific phosphatase holoenzymes which contain one catalytic subunit (PP1c), present in all eukaryotic cells, associated with variable subunits known as regulatory proteins. It has recently been shown that regulators take a leading role in the organization and the control of PP1 functions. Many studies have addressed the role of these regulators in diverse organisms, including humans, and investigated their link to diseases. In this review we summarize recent advances on the role of PP1c in Plasmodium, its interactome and regulators. As a proof of concept, peptides interfering with the regulator binding capacity of PP1c were shown to inhibit the growth of P. falciparum, suggesting their potential as drug precursors.
Collapse
Affiliation(s)
- Jamal Khalife
- Center for Infection and Immunity of Lille, Biology of Apicomplexan Parasites, UMR 9017 CNRS, U1019 INSERM, Université de Lille, Institut Pasteur de Lille, Lille, France.
| | - Aline Fréville
- Center for Infection and Immunity of Lille, Biology of Apicomplexan Parasites, UMR 9017 CNRS, U1019 INSERM, Université de Lille, Institut Pasteur de Lille, Lille, France
| | - Bénédicte Gnangnon
- Center for Infection and Immunity of Lille, Biology of Apicomplexan Parasites, UMR 9017 CNRS, U1019 INSERM, Université de Lille, Institut Pasteur de Lille, Lille, France
| | - Christine Pierrot
- Center for Infection and Immunity of Lille, Biology of Apicomplexan Parasites, UMR 9017 CNRS, U1019 INSERM, Université de Lille, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
88
|
Perrin AJ, Patel A, Flueck C, Blackman MJ, Baker DA. cAMP signalling and its role in host cell invasion by malaria parasites. Curr Opin Microbiol 2020; 58:69-74. [PMID: 33032143 DOI: 10.1016/j.mib.2020.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023]
Abstract
Cyclic adenosine monophosphate (cAMP) is an important signalling molecule across evolution, but until recently there was little information on its role in malaria parasites. Advances in gene editing - in particular conditional genetic approaches and mass spectrometry have paved the way for characterisation of the key components of the cAMP signalling pathway in malaria parasites. This has revealed that cAMP signalling plays a critical role in invasion of host red blood cells by Plasmodium falciparum merozoites through regulating the phosphorylation of key parasite proteins by the cAMP-dependent protein kinase (PKA). These insights will help us to investigate parasite cAMP signalling as a target for novel antimalarial drugs.
Collapse
Affiliation(s)
- Abigail J Perrin
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Avnish Patel
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Christian Flueck
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom; Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom.
| |
Collapse
|
89
|
Phosphorylation-Dependent Assembly of a 14-3-3 Mediated Signaling Complex during Red Blood Cell Invasion by Plasmodium falciparum Merozoites. mBio 2020; 11:mBio.01287-20. [PMID: 32817103 PMCID: PMC7439480 DOI: 10.1128/mbio.01287-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Red blood cell (RBC) invasion by Plasmodium merozoites requires multiple steps that are regulated by signaling pathways. Exposure of P. falciparum merozoites to the physiological signal of low K+, as found in blood plasma, leads to a rise in cytosolic Ca2+, which mediates microneme secretion, motility, and invasion. We have used global phosphoproteomic analysis of merozoites to identify signaling pathways that are activated during invasion. Using quantitative phosphoproteomics, we found 394 protein phosphorylation site changes in merozoites subjected to different ionic environments (high K+/low K+), 143 of which were Ca2+ dependent. These included a number of signaling proteins such as catalytic and regulatory subunits of protein kinase A (PfPKAc and PfPKAr) and calcium-dependent protein kinase 1 (PfCDPK1). Proteins of the 14-3-3 family interact with phosphorylated target proteins to assemble signaling complexes. Here, using coimmunoprecipitation and gel filtration chromatography, we demonstrate that Pf14-3-3I binds phosphorylated PfPKAr and PfCDPK1 to mediate the assembly of a multiprotein complex in P. falciparum merozoites. A phospho-peptide, P1, based on the Ca2+-dependent phosphosites of PKAr, binds Pf14-3-3I and disrupts assembly of the Pf14-3-3I-mediated multiprotein complex. Disruption of the multiprotein complex with P1 inhibits microneme secretion and RBC invasion. This study thus identifies a novel signaling complex that plays a key role in merozoite invasion of RBCs. Disruption of this signaling complex could serve as a novel approach to inhibit blood-stage growth of malaria parasites.IMPORTANCE Invasion of red blood cells (RBCs) by Plasmodium falciparum merozoites is a complex process that is regulated by intricate signaling pathways. Here, we used phosphoproteomic profiling to identify the key proteins involved in signaling events during invasion. We found changes in the phosphorylation of various merozoite proteins, including multiple kinases previously implicated in the process of invasion. We also found that a phosphorylation-dependent multiprotein complex including signaling kinases assembles during the process of invasion. Disruption of this multiprotein complex impairs merozoite invasion of RBCs, providing a novel approach for the development of inhibitors to block the growth of blood-stage malaria parasites.
Collapse
|
90
|
Vanaerschot M, Murithi JM, Pasaje CFA, Ghidelli-Disse S, Dwomoh L, Bird M, Spottiswoode N, Mittal N, Arendse LB, Owen ES, Wicht KJ, Siciliano G, Bösche M, Yeo T, Kumar TRS, Mok S, Carpenter EF, Giddins MJ, Sanz O, Ottilie S, Alano P, Chibale K, Llinás M, Uhlemann AC, Delves M, Tobin AB, Doerig C, Winzeler EA, Lee MCS, Niles JC, Fidock DA. Inhibition of Resistance-Refractory P. falciparum Kinase PKG Delivers Prophylactic, Blood Stage, and Transmission-Blocking Antiplasmodial Activity. Cell Chem Biol 2020; 27:806-816.e8. [PMID: 32359426 PMCID: PMC7369637 DOI: 10.1016/j.chembiol.2020.04.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/20/2020] [Accepted: 03/31/2020] [Indexed: 12/28/2022]
Abstract
The search for antimalarial chemotypes with modes of action unrelated to existing drugs has intensified with the recent failure of first-line therapies across Southeast Asia. Here, we show that the trisubstituted imidazole MMV030084 potently inhibits hepatocyte invasion by Plasmodium sporozoites, merozoite egress from asexual blood stage schizonts, and male gamete exflagellation. Metabolomic, phosphoproteomic, and chemoproteomic studies, validated with conditional knockdown parasites, molecular docking, and recombinant kinase assays, identified cGMP-dependent protein kinase (PKG) as the primary target of MMV030084. PKG is known to play essential roles in Plasmodium invasion of and egress from host cells, matching MMV030084's activity profile. Resistance selections and gene editing identified tyrosine kinase-like protein 3 as a low-level resistance mediator for PKG inhibitors, while PKG itself never mutated under pressure. These studies highlight PKG as a resistance-refractory antimalarial target throughout the Plasmodium life cycle and promote MMV030084 as a promising Plasmodium PKG-targeting chemotype.
Collapse
Affiliation(s)
- Manu Vanaerschot
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - James M Murithi
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Charisse Flerida A Pasaje
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Louis Dwomoh
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK, Scotland
| | - Megan Bird
- Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Natasha Spottiswoode
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nimisha Mittal
- School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Lauren B Arendse
- Drug Discovery and Development Centre (H3D), South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry & Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Edward S Owen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16801, USA; Huck Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA
| | - Kathryn J Wicht
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Giulia Siciliano
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Markus Bösche
- Cellzome GmbH, GlaxoSmithKline, 69117 Heidelberg, Germany
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - T R Santha Kumar
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Emma F Carpenter
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Marla J Giddins
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Olalla Sanz
- Diseases of the Developing World Global Health Pharma Unit, GlaxoSmithKline, 28760 Tres Cantos, Spain
| | - Sabine Ottilie
- School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry & Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16801, USA; Huck Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA; Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Michael Delves
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Andrew B Tobin
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK, Scotland
| | - Christian Doerig
- Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora VIC 3083, Australia
| | | | - Marcus C S Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
91
|
Ressurreição M, Thomas JA, Nofal SD, Flueck C, Moon RW, Baker DA, van Ooij C. Use of a highly specific kinase inhibitor for rapid, simple and precise synchronization of Plasmodium falciparum and Plasmodium knowlesi asexual blood-stage parasites. PLoS One 2020; 15:e0235798. [PMID: 32673324 PMCID: PMC7365400 DOI: 10.1371/journal.pone.0235798] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
During the course of the asexual erythrocytic stage of development, Plasmodium spp. parasites undergo a series of morphological changes and induce alterations in the host cell. At the end of this stage, the parasites egress from the infected cell, after which the progeny invade a new host cell. These processes are rapid and occur in a time-dependent manner. Of particular importance, egress and invasion of erythrocytes by the parasite are difficult to capture in an unsynchronized culture, or even a culture that has been synchronized within a window of one to several hours. Therefore, precise synchronization of parasite cultures is of paramount importance for the investigation of these processes. Here we describe a method for synchronizing Plasmodium falciparum and Plasmodium knowlesi asexual blood stage parasites with ML10, a highly specific inhibitor of the cGMP-dependent protein kinase (PKG) that arrests parasite growth approximately 15 minutes prior to egress. This inhibitor allows parasite cultures to be synchronized so that all parasites are within a window of development of several minutes, with a simple wash step. Furthermore, we show that parasites remain viable for several hours after becoming arrested by the compound and that ML10 has advantages, owing to its high specificity and low EC50, over the previously used PKG inhibitor Compound 2. Here, we demonstrate that ML10 is an invaluable tool for the study of Plasmodium spp. asexual blood stage biology and for the routine synchronization of P. falciparum and P. knowlesi cultures.
Collapse
Affiliation(s)
- Margarida Ressurreição
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - James A. Thomas
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Stephanie D. Nofal
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Christian Flueck
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Robert W. Moon
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - David A. Baker
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Christiaan van Ooij
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
92
|
Paul AS, Miliu A, Paulo JA, Goldberg JM, Bonilla AM, Berry L, Seveno M, Braun-Breton C, Kosber AL, Elsworth B, Arriola JSN, Lebrun M, Gygi SP, Lamarque MH, Duraisingh MT. Co-option of Plasmodium falciparum PP1 for egress from host erythrocytes. Nat Commun 2020; 11:3532. [PMID: 32669539 PMCID: PMC7363832 DOI: 10.1038/s41467-020-17306-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
Asexual proliferation of the Plasmodium parasites that cause malaria follows a developmental program that alternates non-canonical intraerythrocytic replication with dissemination to new host cells. We carried out a functional analysis of the Plasmodium falciparum homolog of Protein Phosphatase 1 (PfPP1), a universally conserved cell cycle factor in eukaryotes, to investigate regulation of parasite proliferation. PfPP1 is indeed required for efficient replication, but is absolutely essential for egress of parasites from host red blood cells. By phosphoproteomic and chemical-genetic analysis, we isolate two functional targets of PfPP1 for egress: a HECT E3 protein-ubiquitin ligase; and GCα, a fusion protein composed of a guanylyl cyclase and a phospholipid transporter domain. We hypothesize that PfPP1 regulates lipid sensing by GCα and find that phosphatidylcholine stimulates PfPP1-dependent egress. PfPP1 acts as a key regulator that integrates multiple cell-intrinsic pathways with external signals to direct parasite egress from host cells.
Collapse
Affiliation(s)
- Aditya S Paul
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Alexandra Miliu
- Laboratory of Pathogen Host Interaction (LPHI), UMR5235, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34095, Montpellier, France
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, 02115, MA, USA
| | - Jonathan M Goldberg
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Arianna M Bonilla
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Laurence Berry
- Laboratory of Pathogen Host Interaction (LPHI), UMR5235, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34095, Montpellier, France
| | - Marie Seveno
- Laboratory of Pathogen Host Interaction (LPHI), UMR5235, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34095, Montpellier, France
| | - Catherine Braun-Breton
- Laboratory of Pathogen Host Interaction (LPHI), UMR5235, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34095, Montpellier, France
| | - Aziz L Kosber
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Brendan Elsworth
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Jose S N Arriola
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Maryse Lebrun
- Laboratory of Pathogen Host Interaction (LPHI), UMR5235, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34095, Montpellier, France
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, 02115, MA, USA
| | - Mauld H Lamarque
- Laboratory of Pathogen Host Interaction (LPHI), UMR5235, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34095, Montpellier, France.
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA.
| |
Collapse
|
93
|
Defining multiplicity of vector uptake in transfected Plasmodium parasites. Sci Rep 2020; 10:10894. [PMID: 32616799 PMCID: PMC7331667 DOI: 10.1038/s41598-020-67791-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/15/2020] [Indexed: 11/08/2022] Open
Abstract
The recurrent emergence of drug resistance in Plasmodium falciparum increases the urgency to genetically validate drug resistance mechanisms and identify new targets. Reverse genetics have facilitated genome-scale knockout screens in Plasmodium berghei and Toxoplasma gondii, in which pooled transfections of multiple vectors were critical to increasing scale and throughput. These approaches have not yet been implemented in human malaria species such as P. falciparum and P. knowlesi, in part because the extent to which pooled transfections can be performed in these species remains to be evaluated. Here we use next-generation sequencing to quantitate uptake of a pool of 94 barcoded vectors. The distribution of vector acquisition allowed us to estimate the number of barcodes and DNA molecules taken up by the parasite population. Dilution cloning of P. falciparum transfectants showed that individual clones possess as many as seven episomal barcodes, revealing that an intake of multiple vectors is a frequent event despite the inefficient transfection efficiency. Transfection of three spectrally-distinct fluorescent reporters allowed us to evaluate different transfection methods and revealed that schizont-stage transfection limited the tendency for parasites to take up multiple vectors. In contrast to P. falciparum, we observed that the higher transfection efficiency of P. knowlesi resulted in near complete representation of the library. These findings have important implications for how reverse genetics can be scaled in culturable Plasmodium species.
Collapse
|
94
|
A malaria parasite subtilisin propeptide-like protein is a potent inhibitor of the egress protease SUB1. Biochem J 2020; 477:525-540. [PMID: 31942933 PMCID: PMC6993865 DOI: 10.1042/bcj20190918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/23/2022]
Abstract
Subtilisin-like serine peptidases (subtilases) play important roles in the life cycle of many organisms, including the protozoan parasites that are the causative agent of malaria, Plasmodium spp. As with other peptidases, subtilase proteolytic activity has to be tightly regulated in order to prevent potentially deleterious uncontrolled protein degradation. Maturation of most subtilases requires the presence of an N-terminal propeptide that facilitates folding of the catalytic domain. Following its proteolytic cleavage, the propeptide acts as a transient, tightly bound inhibitor until its eventual complete removal to generate active protease. Here we report the identification of a stand-alone malaria parasite propeptide-like protein, called SUB1-ProM, encoded by a conserved gene that lies in a highly syntenic locus adjacent to three of the four subtilisin-like genes in the Plasmodium genome. Template-based modelling and ab initio structure prediction showed that the SUB1-ProM core structure is most similar to the X-ray crystal structure of the propeptide of SUB1, an essential parasite subtilase that is discharged into the parasitophorous vacuole (PV) to trigger parasite release (egress) from infected host cells. Recombinant Plasmodium falciparum SUB1-ProM was found to be a fast-binding, potent inhibitor of P. falciparum SUB1, but not of the only other essential blood-stage parasite subtilase, SUB2, or of other proteases examined. Mass-spectrometry and immunofluorescence showed that SUB1-ProM is expressed in the PV of blood stage P. falciparum, where it may act as an endogenous inhibitor to regulate SUB1 activity in the parasite.
Collapse
|
95
|
Marr EJ, Milne RM, Anar B, Girling G, Schwach F, Mooney JP, Nahrendorf W, Spence PJ, Cunningham D, Baker DA, Langhorne J, Rayner JC, Billker O, Bushell ES, Thompson J. An enhanced toolkit for the generation of knockout and marker-free fluorescent Plasmodium chabaudi. Wellcome Open Res 2020; 5:71. [PMID: 32500098 PMCID: PMC7236590 DOI: 10.12688/wellcomeopenres.15587.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2020] [Indexed: 11/20/2022] Open
Abstract
The rodent parasite
Plasmodium chabaudi is an important
in vivo model of malaria. The ability to produce chronic infections makes it particularly useful for investigating the development of anti-
Plasmodium immunity, as well as features associated with parasite virulence during both the acute and chronic phases of infection.
P. chabaudi also undergoes asexual maturation (schizogony) and erythrocyte invasion in culture, so offers an experimentally-amenable
in vivo to
in vitro model for studying gene function and drug activity during parasite replication. To extend the usefulness of this model, we have further optimised transfection protocols and plasmids for
P. chabaudi and generated stable, fluorescent lines that are free from drug-selectable marker genes. These mother-lines show the same infection dynamics as wild-type parasites throughout the lifecycle in mice and mosquitoes; furthermore, their virulence can be increased by serial blood passage and reset by mosquito transmission. We have also adapted the large-insert, linear
PlasmoGEM vectors that have revolutionised the scale of experimental genetics in another rodent malaria parasite and used these to generate barcoded
P. chabaudi gene-deletion and –tagging vectors for transfection in our fluorescent
P. chabaudi mother-lines. This produces a tool-kit of
P. chabaudi lines, vectors and transfection approaches that will be of broad utility to the research community.
Collapse
Affiliation(s)
- Edward J Marr
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, The King's Buildings, Edinburgh, EH9 3FL, UK
| | - Rachel M Milne
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, The King's Buildings, Edinburgh, EH9 3FL, UK
| | - Burcu Anar
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Gareth Girling
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Frank Schwach
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Jason P Mooney
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian, EH25 9RG, UK
| | - Wiebke Nahrendorf
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, The King's Buildings, Edinburgh, EH9 3FL, UK
| | - Philip J Spence
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, The King's Buildings, Edinburgh, EH9 3FL, UK
| | | | - David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | | | - Julian C Rayner
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK.,Cambridge Institute for Medical Research, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Oliver Billker
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK.,Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | - Ellen S Bushell
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK.,Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | - Joanne Thompson
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, The King's Buildings, Edinburgh, EH9 3FL, UK
| |
Collapse
|
96
|
Marr EJ, Milne RM, Anar B, Girling G, Schwach F, Mooney JP, Nahrendorf W, Spence PJ, Cunningham D, Baker DA, Langhorne J, Rayner JC, Billker O, Bushell ES, Thompson J. An enhanced toolkit for the generation of knockout and marker-free fluorescent Plasmodium chabaudi. Wellcome Open Res 2020; 5:71. [PMID: 32500098 PMCID: PMC7236590 DOI: 10.12688/wellcomeopenres.15587.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2020] [Indexed: 08/17/2023] Open
Abstract
The rodent parasite Plasmodium chabaudi is an important in vivo model of malaria. The ability to produce chronic infections makes it particularly useful for investigating the development of anti- Plasmodium immunity, as well as features associated with parasite virulence during both the acute and chronic phases of infection. P. chabaudi also undergoes asexual maturation (schizogony) and erythrocyte invasion in culture, so offers an experimentally-amenable in vivo to in vitro model for studying gene function and drug activity during parasite replication. To extend the usefulness of this model, we have further optimised transfection protocols and plasmids for P. chabaudi and generated stable, fluorescent lines that are free from drug-selectable marker genes. These mother-lines show the same infection dynamics as wild-type parasites throughout the lifecycle in mice and mosquitoes; furthermore, their virulence can be increased by serial blood passage and reset by mosquito transmission. We have also adapted the large-insert, linear PlasmoGEM vectors that have revolutionised the scale of experimental genetics in another rodent malaria parasite and used these to generate barcoded P. chabaudi gene-deletion and -tagging vectors for transfection in our fluorescent P. chabaudi mother-lines. This produces a tool-kit of P. chabaudi lines, vectors and transfection approaches that will be of broad utility to the research community.
Collapse
Affiliation(s)
- Edward J Marr
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, The King's Buildings, Edinburgh, EH9 3FL, UK
| | - Rachel M Milne
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, The King's Buildings, Edinburgh, EH9 3FL, UK
| | - Burcu Anar
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Gareth Girling
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Frank Schwach
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Jason P Mooney
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian, EH25 9RG, UK
| | - Wiebke Nahrendorf
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, The King's Buildings, Edinburgh, EH9 3FL, UK
| | - Philip J Spence
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, The King's Buildings, Edinburgh, EH9 3FL, UK
| | | | - David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | | | - Julian C Rayner
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
- Cambridge Institute for Medical Research, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Oliver Billker
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | - Ellen S Bushell
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | - Joanne Thompson
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, The King's Buildings, Edinburgh, EH9 3FL, UK
| |
Collapse
|
97
|
Nava S, Sadiqova A, Castellanos-Gonzalez A, White AC. Cryptosporidium parvum cyclic GMP-dependent protein kinase (PKG): An essential mediator of merozoite egress. Mol Biochem Parasitol 2020; 237:111277. [PMID: 32348840 PMCID: PMC7262579 DOI: 10.1016/j.molbiopara.2020.111277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 11/26/2022]
Abstract
Cryptosporidium protein kinase G mRNA was silenced using siRNA, which led to decreased expression of the PKG protein. After silencing, merozoite egress was blocked and merozoites retained within the host epithelical cells. PKG plays an essential role in Cryptosporidium merozoite egress.
Cryptosporidiosis is an obligate intracellular pathogen causing diarrhea. Merozoite egress is essential for infection to spread between host cells. However, the mechanisms of egress have yet to be defined. We hypothesized that Cyclic GMP-Dependent Protein Kinase G (PKG) may be involved in Cryptosporidium egress. In this study, Cryptosporidium parvum PKG was silenced by using antisense RNA sequences. PKG-silencing significantly inhibited egress of merozoites from infected HCT-8 cells into the supernatant and led to retention of intracellular forms within the host cells. This data identifies PKG as a key mediator of merozoite egress, a key step in the parasite lifecycle.
Collapse
Affiliation(s)
- Samantha Nava
- Infectious Diseases Division, Department of Internal Medicine, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555-0435, USA
| | - Aygul Sadiqova
- Infectious Diseases Division, Department of Internal Medicine, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555-0435, USA
| | - Alejandro Castellanos-Gonzalez
- Infectious Diseases Division, Department of Internal Medicine, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555-0435, USA
| | - A Clinton White
- Infectious Diseases Division, Department of Internal Medicine, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555-0435, USA.
| |
Collapse
|
98
|
Byun JA, Van K, Huang J, Henning P, Franz E, Akimoto M, Herberg FW, Kim C, Melacini G. Mechanism of allosteric inhibition in the Plasmodium falciparum cGMP-dependent protein kinase. J Biol Chem 2020; 295:8480-8491. [PMID: 32317283 DOI: 10.1074/jbc.ra120.013070] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/16/2020] [Indexed: 11/06/2022] Open
Abstract
Most malaria deaths are caused by the protozoan parasite Plasmodium falciparum Its life cycle is regulated by a cGMP-dependent protein kinase (PfPKG), whose inhibition is a promising antimalaria strategy. Allosteric kinase inhibitors, such as cGMP analogs, offer enhanced selectivity relative to competitive kinase inhibitors. However, the mechanisms underlying allosteric PfPKG inhibition are incompletely understood. Here, we show that 8-NBD-cGMP is an effective PfPKG antagonist. Using comparative NMR analyses of a key regulatory domain, PfD, in its apo, cGMP-bound, and cGMP analog-bound states, we elucidated its inhibition mechanism of action. Using NMR chemical shift analyses, molecular dynamics simulations, and site-directed mutagenesis, we show that 8-NBD-cGMP inhibits PfPKG not simply by reverting a two-state active versus inactive equilibrium, but by sampling also a distinct inactive "mixed" intermediate. Surface plasmon resonance indicates that the ability to stabilize a mixed intermediate provides a means to effectively inhibit PfPKG, without losing affinity for the cGMP analog. Our proposed model may facilitate the rational design of PfPKG-selective inhibitors for improved management of malaria.
Collapse
Affiliation(s)
- Jung Ah Byun
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Katherine Van
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Jinfeng Huang
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Philipp Henning
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Eugen Franz
- Biaffin GmbH & Co. KG, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Madoka Akimoto
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Friedrich W Herberg
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Choel Kim
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030.,Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Giuseppe Melacini
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada .,Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
99
|
Koussis K, Withers-Martinez C, Baker DA, Blackman MJ. Simultaneous multiple allelic replacement in the malaria parasite enables dissection of PKG function. Life Sci Alliance 2020; 3:e201900626. [PMID: 32179592 PMCID: PMC7081069 DOI: 10.26508/lsa.201900626] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 01/28/2023] Open
Abstract
Over recent years, a plethora of new genetic tools has transformed conditional engineering of the malaria parasite genome, allowing functional dissection of essential genes in the asexual and sexual blood stages that cause pathology or are required for disease transmission, respectively. Important challenges remain, including the desirability to complement conditional mutants with a correctly regulated second gene copy to confirm that observed phenotypes are due solely to loss of gene function and to analyse structure-function relationships. To meet this challenge, here we combine the dimerisable Cre (DiCre) system with the use of multiple lox sites to simultaneously generate multiple recombination events of the same gene. We focused on the Plasmodium falciparum cGMP-dependent protein kinase (PKG), creating in parallel conditional disruption of the gene plus up to two allelic replacements. We use the approach to demonstrate that PKG has no scaffolding or adaptor role in intraerythrocytic development, acting solely at merozoite egress. We also show that a phosphorylation-deficient PKG is functionally incompetent. Our method provides valuable new tools for analysis of gene function in the malaria parasite.
Collapse
Affiliation(s)
| | | | - David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, Francis Crick Institute, London, UK
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
100
|
Dans MG, Weiss GE, Wilson DW, Sleebs BE, Crabb BS, de Koning-Ward TF, Gilson PR. Screening the Medicines for Malaria Venture Pathogen Box for invasion and egress inhibitors of the blood stage of Plasmodium falciparum reveals several inhibitory compounds. Int J Parasitol 2020; 50:235-252. [PMID: 32135179 DOI: 10.1016/j.ijpara.2020.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/30/2019] [Accepted: 01/05/2020] [Indexed: 12/14/2022]
Abstract
With emerging resistance to frontline treatments, it is vital that new drugs are identified to target Plasmodium falciparum. One of the most critical processes during parasites asexual lifecycle is the invasion and subsequent egress of red blood cells (RBCs). Many unique parasite ligands, receptors and enzymes are employed during egress and invasion that are essential for parasite proliferation and survival, therefore making these processes druggable targets. To identify potential inhibitors of egress and invasion, we screened the Medicines for Malaria Venture Pathogen Box, a 400 compound library against neglected tropical diseases, including 125 with antimalarial activity. For this screen, we utilised transgenic parasites expressing a bioluminescent reporter, nanoluciferase (Nluc), to measure inhibition of parasite egress and invasion in the presence of the Pathogen Box compounds. At a concentration of 2 µM, we found 15 compounds that inhibited parasite egress by >40% and 24 invasion-specific compounds that inhibited invasion by >90%. We further characterised 11 of these inhibitors through cell-based assays and live cell microscopy, and found two compounds that inhibited merozoite maturation in schizonts, one compound that inhibited merozoite egress, one compound that directly inhibited parasite invasion and one compound that slowed down invasion and arrested ring formation. The remaining compounds were general growth inhibitors that acted during the egress and invasion phase of the cell cycle. We found the sulfonylpiperazine, MMV020291, to be the most invasion-specific inhibitor, blocking successful merozoite internalisation within human RBCs and having no substantial effect on other stages of the cell cycle. This has significant implications for the possible development of an invasion-specific inhibitor as an antimalarial in a combination based therapy, in addition to being a useful tool for studying the biology of the invading parasite.
Collapse
Affiliation(s)
- Madeline G Dans
- Burnet Institute, Melbourne, Victoria 3004, Australia; School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| | - Greta E Weiss
- Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Danny W Wilson
- Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, South Australia 5005, Australia; Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Brad E Sleebs
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia; The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Brendan S Crabb
- Burnet Institute, Melbourne, Victoria 3004, Australia; The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Paul R Gilson
- Burnet Institute, Melbourne, Victoria 3004, Australia.
| |
Collapse
|