51
|
Abstract
The goal of genomics and systems biology is to understand how complex systems of factors assemble into pathways and structures that combine to form living organisms. Great advances in understanding biological processes result from determining the function of individual genes, a process that has classically relied on characterizing single mutations. Advances in DNA sequencing has made available the complete set of genetic instructions for an astonishing and growing number of species. To understand the function of this ever-increasing number of genes, a high-throughput method was developed that in a single experiment can measure the function of genes across the genome of an organism. This occurred approximately 10 years ago, when high-throughput DNA sequencing was combined with advances in transposon-mediated mutagenesis in a method termed transposon insertion sequencing (TIS). In the subsequent years, TIS succeeded in addressing fundamental questions regarding the genes of bacteria, many of which have been shown to play central roles in bacterial infections that result in major human diseases. The field of TIS has matured and resulted in studies of hundreds of species that include significant innovations with a number of transposons. Here, we summarize a number of TIS experiments to provide an understanding of the method and explanation of approaches that are instructive when designing a study. Importantly, we emphasize critical aspects of a TIS experiment and highlight the extension and applicability of TIS into nonbacterial species such as yeast.
Collapse
Affiliation(s)
- Tim van Opijnen
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA;
| | - Henry L Levin
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
52
|
Abstract
Vibrio cholerae remains a challenge in the developing world and incidence of the disease it causes, cholera, is anticipated to increase with rising global temperatures and with emergent, highly infectious strains. At present, the underlying metabolic processes that support V. cholerae growth during infection are less well understood than specific virulence traits, such as production of a toxin or pilus. In this study, we determined that oxidative metabolism of host substrates such as mucin contribute significantly to V. cholerae population expansion in vivo. Identifying metabolic pathways critical for growth can provide avenues for controlling V. cholerae infection and the knowledge may be translatable to other pathogens of the gastrointestinal tract. Vibrio cholerae replicates to high cell density in the human small intestine, leading to the diarrheal disease cholera. During infection, V. cholerae senses and responds to environmental signals that govern cellular responses. Spatial localization of V. cholerae within the intestine affects nutrient availability and metabolic pathways required for replicative success. Metabolic processes used by V. cholerae to reach such high cell densities are not fully known. We sought to better define the metabolic traits that contribute to high levels of V. cholerae during infection. By disrupting the pyruvate dehydrogenase (PDH) complex and pyruvate formate-lyase (PFL), we could differentiate aerobic and anaerobic metabolic pathway involvement in V. cholerae proliferation. We demonstrate that oxidative metabolism is a key contributor to the replicative success of V. choleraein vivo using an infant mouse model in which PDH mutants were attenuated 100-fold relative to the wild type for colonization. Additionally, metabolism of host substrates, including mucin, was determined to support V. cholerae growth in vitro as a sole carbon source, primarily under aerobic growth conditions. Mucin likely contributes to population expansion during human infection as it is a ubiquitous source of carbohydrates. These data highlight oxidative metabolism as important in the intestinal environment and warrant further investigation of how oxygen and other host substrates shape the intestinal landscape that ultimately influences bacterial disease. We conclude from our results that oxidative metabolism of host substrates is a key driver of V. cholerae proliferation during infection, leading to the substantial bacterial burden exhibited in cholera patients.
Collapse
|
53
|
Guérin F, Lallement C, Goudergues B, Isnard C, Sanguinetti M, Cacaci M, Torelli R, Cattoir V, Giard JC. Landscape of in vivo Fitness-Associated Genes of Enterobacter cloacae Complex. Front Microbiol 2020; 11:1609. [PMID: 32754144 PMCID: PMC7365913 DOI: 10.3389/fmicb.2020.01609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/19/2020] [Indexed: 11/13/2022] Open
Abstract
Species of the Enterobacter cloacae complex (ECC) represent an increasing cause of hospital-acquired infections and commonly exhibit multiple antibiotic resistances. In order to identify genes that may play a role in its ability to colonize the host, we used the transposon-sequencing (Tn-seq) approach. To this end, a high-density random transposon insertion library was obtained from E. cloacae subsp. cloacae ATCC 13047, which was used to analyze the fitness of ca. 300,000 mutants in Galleria mellonella colonization model. Following massively parallel sequencing, we identified 624 genes that seemed essential for the optimal growth and/or the fitness within the host. Moreover, 63 genes where mutations resulted in positive selection were found, while 576 genes potentially involved in the in vivo fitness were observed. These findings pointed out the role of some transcriptional regulators, type VI secretion system, and surface-associated proteins in the in vivo fitness of E. cloacae ATCC 13047. We then selected eight genes based on their high positive or negative fold changes (FCs) and tested the corresponding deletion mutants for their virulence and ability to cope with stresses. Thereby, we showed that ECL_02247 (encoding the NAD-dependent epimerase/dehydratase) and ECL_04444 (coding for a surface antigen-like protein) may correspond to new virulence factors, and that the regulator ECL_00056 was involved in in vivo fitness. In addition, bacterial cells lacking the flagellum-specific ATP synthase FliI (ECL_03223) and the hypothetical protein ECL_01421 were affected for mobility and resistance to H2O2, respectively. All these results yield valuable information regarding genes important for infection process and stress response of E. cloacae ATCC 13047 and participate to a better understanding of the opportunistic traits in this bacterial pathogen.
Collapse
Affiliation(s)
- François Guérin
- Université de Caen Normandie, EA4655 U2RM (Équipe «Antibio-Résistance»), Caen, France.,CHU de Caen, Service de Microbiologie, Caen, France
| | - Claire Lallement
- Université de Caen Normandie, EA4655 U2RM (Équipe «Antibio-Résistance»), Caen, France
| | - Benoit Goudergues
- Université de Caen Normandie, EA4655 U2RM (Équipe «Antibio-Résistance»), Caen, France
| | - Christophe Isnard
- Université de Caen Normandie, EA4655 U2RM (Équipe «Antibio-Résistance»), Caen, France.,CHU de Caen, Service de Microbiologie, Caen, France
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy.,Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Margherita Cacaci
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy.,Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Riccardo Torelli
- Institute of Microbiology, Catholic University of the Sacred Heart, Rome, Italy
| | - Vincent Cattoir
- Rennes University Hospital, Department of Clinical Microbiology, Rennes, France.,Inserm U1230, University of Rennes 1, Rennes, France
| | - Jean-Christophe Giard
- Université de Caen Normandie, EA4655 U2RM (Équipe «Antibio-Résistance»), Caen, France
| |
Collapse
|
54
|
Abstract
Cholera is a devastating illness that kills tens of thousands of people annually. Vibrio cholerae, the causative agent of cholera, is an important model organism to investigate both bacterial pathogenesis and the impact of horizontal gene transfer on the emergence and dissemination of new virulent strains. Despite the importance of this pathogen, roughly one-third of V. cholerae genes are functionally unannotated, leaving large gaps in our understanding of this microbe. Through coexpression network analysis of existing RNA sequencing data, this work develops an approach to uncover novel gene-gene relationships and contextualize genes with no known function, which will advance our understanding of V. cholerae virulence and evolution. Research into the evolution and pathogenesis of Vibrio cholerae has benefited greatly from the generation of high-throughput sequencing data to drive molecular analyses. The steady accumulation of these data sets now provides a unique opportunity for in silico hypothesis generation via coexpression analysis. Here, we leverage all published V. cholerae RNA sequencing data, in combination with select data from other platforms, to generate a gene coexpression network that validates known gene interactions and identifies novel genetic partners across the entire V. cholerae genome. This network provides direct insights into genes influencing pathogenicity, metabolism, and transcriptional regulation, further clarifies results from previous sequencing experiments in V. cholerae (e.g., transposon insertion sequencing [Tn-seq] and chromatin immunoprecipitation sequencing [ChIP-seq]), and expands upon microarray-based findings in related Gram-negative bacteria. IMPORTANCE Cholera is a devastating illness that kills tens of thousands of people annually. Vibrio cholerae, the causative agent of cholera, is an important model organism to investigate both bacterial pathogenesis and the impact of horizontal gene transfer on the emergence and dissemination of new virulent strains. Despite the importance of this pathogen, roughly one-third of V. cholerae genes are functionally unannotated, leaving large gaps in our understanding of this microbe. Through coexpression network analysis of existing RNA sequencing data, this work develops an approach to uncover novel gene-gene relationships and contextualize genes with no known function, which will advance our understanding of V. cholerae virulence and evolution.
Collapse
|
55
|
Vibrio cholerae OmpR Contributes to Virulence Repression and Fitness at Alkaline pH. Infect Immun 2020; 88:IAI.00141-20. [PMID: 32284367 DOI: 10.1128/iai.00141-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 04/05/2020] [Indexed: 12/13/2022] Open
Abstract
Vibrio cholerae is a Gram-negative human pathogen and the causative agent of the life-threatening disease cholera. V. cholerae is a natural inhabitant of marine environments and enters humans through the consumption of contaminated food or water. The ability to transition between aquatic ecosystems and the human host is paramount to the pathogenic success of V. cholerae The transition between these two disparate environments requires the expression of adaptive responses, and such responses are most often regulated by two-component regulatory systems such as the EnvZ/OmpR system, which responds to osmolarity and acidic pH in many Gram-negative bacteria. Previous work in our laboratory indicated that V. cholerae OmpR functioned as a virulence regulator through repression of the LysR-family transcriptional regulator aphB; however, the role of OmpR in V. cholerae biology outside virulence regulation remained unknown. In this work, we sought to further investigate the function of OmpR in V. cholerae biology by defining the OmpR regulon through RNA sequencing. This led to the discovery that V. cholerae ompR was induced at alkaline pH to repress genes involved in acid tolerance and virulence factor production. In addition, OmpR was required for V. cholerae fitness during growth under alkaline conditions. These findings indicate that V. cholerae OmpR has evolved the ability to respond to novel signals during pathogenesis, which may play a role in the regulation of adaptive responses to aid in the transition between the human gastrointestinal tract and the marine ecosystem.
Collapse
|
56
|
Sozhamannan S, Waldminghaus T. Exception to the exception rule: synthetic and naturally occurring single chromosome Vibrio cholerae. Environ Microbiol 2020; 22:4123-4132. [PMID: 32237026 DOI: 10.1111/1462-2920.15002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/25/2020] [Indexed: 12/26/2022]
Abstract
The genome of Vibrio cholerae, the etiological agent of cholera, is an exception to the single chromosome rule found in the vast majority of bacteria and has its genome partitioned between two unequally sized chromosomes. This unusual two-chromosome arrangement in V. cholerae has sparked considerable research interest since its discovery. It was demonstrated that the two chromosomes could be fused by deliberate genome engineering or forced to fuse spontaneously by blocking the replication of Chr2, the secondary chromosome. Recently, natural isolates of V. cholerae with chromosomal fusion have been found. Here, we summarize the pertinent findings on this exception to the exception rule and discuss the potential utility of single-chromosome V. cholerae to address fundamental questions on chromosome biology in general and DNA replication in particular.
Collapse
Affiliation(s)
- Shanmuga Sozhamannan
- Defense Biological Product Assurance Office, CBRND-Enabling Biotechnologies, 110 Thomas Johnson Drive, Frederick, MD, 21702, USA.,Logistics Management Institute, Tysons, VA, 22102, USA
| | - Torsten Waldminghaus
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany.,Centre for Synthetic Biology, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
57
|
Gould AL, Dunlap PV. Shedding Light on Specificity: Population Genomic Structure of a Symbiosis Between a Coral Reef Fish and Luminous Bacterium. Front Microbiol 2019; 10:2670. [PMID: 31824455 PMCID: PMC6879551 DOI: 10.3389/fmicb.2019.02670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/01/2019] [Indexed: 11/13/2022] Open
Abstract
All organisms depend on symbiotic associations with bacteria for their success, yet how these interspecific interactions influence the population structure, ecology, and evolution of microbial symbionts is not well understood. Additionally, patterns of genetic variation in interacting species can reveal ecological traits that are important to gene flow and co-evolution. In this study, we define patterns of spatial and temporal genetic variation of a coral reef fish, Siphamia tubifer, and its luminous bacterial symbiont, Photobacterium mandapamensis in the Okinawa Islands, Japan. Using restriction site-associated sequencing (RAD-Seq) methods, we show that populations of the facultative light organ symbiont of S. tubifer exhibit genetic structure at fine spatial scales of tens of kilometers despite the absence of physical barriers to dispersal and in contrast to populations of the host fish. These results suggest that the host’s behavioral ecology and environmental interactions between host and symbiont help to structure symbiont populations in the region, consequently fostering the specificity of the association between host generations. Our approach also revealed several symbiont genes that were divergent between host populations, including hfq and a homolog of varS, both of which play a role in host association in Vibrio cholerae. Overall, this study highlights the important role that a host animal can play in structuring the distribution of its bacterial symbiont, particularly in highly connected marine environments, thereby promoting specificity of the symbiosis between host generations.
Collapse
Affiliation(s)
- Alison L Gould
- Department of Ichthyology, California Academy of Sciences, San Francisco, CA, United States.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States
| | - Paul V Dunlap
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
58
|
Steering Phages to Combat Bacterial Pathogens. Trends Microbiol 2019; 28:85-94. [PMID: 31744662 DOI: 10.1016/j.tim.2019.10.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/10/2019] [Accepted: 10/17/2019] [Indexed: 12/21/2022]
|
59
|
Modulating Pathogenesis with Mobile-CRISPRi. J Bacteriol 2019; 201:JB.00304-19. [PMID: 31481541 PMCID: PMC6805112 DOI: 10.1128/jb.00304-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022] Open
Abstract
Conditionally essential (CE) genes are required by pathogenic bacteria to establish and maintain infections. CE genes encode virulence factors, such as secretion systems and effector proteins, as well as biosynthetic enzymes that produce metabolites not found in the host environment. Due to their outsized importance in pathogenesis, CE gene products are attractive targets for the next generation of antimicrobials. However, the precise manipulation of CE gene expression in the context of infection is technically challenging, limiting our ability to understand the roles of CE genes in pathogenesis and accordingly design effective inhibitors. We previously developed a suite of CRISPR interference-based gene knockdown tools that are transferred by conjugation and stably integrate into bacterial genomes that we call Mobile-CRISPRi. Here, we show the efficacy of Mobile-CRISPRi in controlling CE gene expression in an animal infection model. We optimize Mobile-CRISPRi in Pseudomonas aeruginosa for use in a murine model of pneumonia by tuning the expression of CRISPRi components to avoid nonspecific toxicity. As a proof of principle, we demonstrate that knock down of a CE gene encoding the type III secretion system (T3SS) activator ExsA blocks effector protein secretion in culture and attenuates virulence in mice. We anticipate that Mobile-CRISPRi will be a valuable tool to probe the function of CE genes across many bacterial species and pathogenesis models.IMPORTANCE Antibiotic resistance is a growing threat to global health. To optimize the use of our existing antibiotics and identify new targets for future inhibitors, understanding the fundamental drivers of bacterial growth in the context of the host immune response is paramount. Historically, these genetic drivers have been difficult to manipulate precisely, as they are requisite for pathogen survival. Here, we provide the first application of Mobile-CRISPRi to study conditionally essential virulence genes in mouse models of lung infection through partial gene perturbation. We envision the use of Mobile-CRISPRi in future pathogenesis models and antibiotic target discovery efforts.
Collapse
|
60
|
Hubbard TP, Billings G, Dörr T, Sit B, Warr AR, Kuehl CJ, Kim M, Delgado F, Mekalanos JJ, Lewnard JA, Waldor MK. A live vaccine rapidly protects against cholera in an infant rabbit model. Sci Transl Med 2019; 10:10/445/eaap8423. [PMID: 29899024 DOI: 10.1126/scitranslmed.aap8423] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/26/2018] [Indexed: 12/17/2022]
Abstract
Outbreaks of cholera, a rapidly fatal diarrheal disease, often spread explosively. The efficacy of reactive vaccination campaigns-deploying Vibrio cholerae vaccines during epidemics-is partially limited by the time required for vaccine recipients to develop adaptive immunity. We created HaitiV, a live attenuated cholera vaccine candidate, by deleting diarrheagenic factors from a recent clinical isolate of V. cholerae and incorporating safeguards against vaccine reversion. We demonstrate that administration of HaitiV 24 hours before lethal challenge with wild-type V. cholerae reduced intestinal colonization by the wild-type strain, slowed disease progression, and reduced mortality in an infant rabbit model of cholera. HaitiV-mediated protection required viable vaccine, and rapid protection kinetics are not consistent with development of adaptive immunity. These features suggest that HaitiV mediates probiotic-like protection from cholera, a mechanism that is not known to be elicited by traditional vaccines. Mathematical modeling indicates that an intervention that works at the speed of HaitiV-mediated protection could improve the public health impact of reactive vaccination.
Collapse
Affiliation(s)
- Troy P Hubbard
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Gabriel Billings
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Tobias Dörr
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Brandon Sit
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Alyson R Warr
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Carole J Kuehl
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Minsik Kim
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Fernanda Delgado
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - John J Mekalanos
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph A Lewnard
- Center for Communicable Disease Dynamics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Matthew K Waldor
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA. .,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Boston, MA 02115, USA.,Department of Immunology and Infectious Disease, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
61
|
Giles M, Cawthraw SA, AbuOun M, Thomas CM, Munera D, Waldor MK, La Ragione RM, Ritchie JM. Host-specific differences in the contribution of an ESBL IncI1 plasmid to intestinal colonization by Escherichia coli O104:H4. J Antimicrob Chemother 2019; 73:1579-1585. [PMID: 29506073 DOI: 10.1093/jac/dky037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 01/18/2018] [Indexed: 11/13/2022] Open
Abstract
Objectives To assess stability and contribution of a large ESBL-encoding IncI1 plasmid to intestinal colonization by Escherichia coli O104:H4 in two different mammalian hosts. Methods Specific-pathogen-free 3-4-day-old New Zealand White rabbits and conventionally reared 6-week-old weaned lambs were orally infected with WT E. coli O104:H4 or the ESBL-plasmid-cured derivative, and the recovery of bacteria in intestinal homogenates and faeces monitored over time. Results Carriage of the ESBL plasmid had differing impacts on E. coli O104:H4 colonization of the two experimental hosts. The plasmid-cured strain was recovered at significantly higher levels than WT during late-stage colonization of rabbits, but at lower levels than WT in sheep. Regardless of the animal host, the ESBL plasmid was stably maintained in virtually all in vivo passaged bacteria that were examined. Conclusions These findings suggest that carriage of ESBL plasmids has distinct effects on the host bacterium depending upon the animal species it encounters and demonstrates that, as for E. coli O157:H7, ruminants could represent a potential transmission reservoir.
Collapse
Affiliation(s)
- M Giles
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, UK
| | - S A Cawthraw
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, UK
| | - M AbuOun
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, UK
| | - C M Thomas
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - D Munera
- Division of Infectious Diseases, Brigham and Women's Hospital/Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - M K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital/Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - R M La Ragione
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - J M Ritchie
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
62
|
Abstract
Genes necessary for the survival or reproduction of a cell are an attractive class of antibiotic targets. Studying essential genes by classical genetics, however, is inherently problematic because it is impossible to knock them out. Here, we screened a set of predicted essential genes for growth inhibition using CRISPR-interference (CRISPRi) knockdown in the human pathogen Vibrio cholerae We demonstrate that CRISPRi knockdown of 37 predicted essential genes inhibits V. cholerae viability, thus validating the products of these genes as potential drug target candidates. V. cholerae was particularly vulnerable to lethal inhibition of the system for lipoprotein transport (Lol), a central hub for directing lipoproteins from the inner to the outer membrane (OM), with many of these lipoproteins coordinating their own essential processes. Lol depletion makes cells prone to plasmolysis and elaborate membrane reorganization, during which the periplasm extrudes into a mega outer membrane vesicle or "MOMV" encased by OM which dynamically emerges specifically at plasmolysis sites. Our work identifies the Lol system as an ideal drug target, whose inhibition could deplete gram-negative bacteria of numerous proteins that reside in the periplasm.
Collapse
|
63
|
Minato Y, Gohl DM, Thiede JM, Chacón JM, Harcombe WR, Maruyama F, Baughn AD. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways. mSystems 2019; 4:e00070-19. [PMID: 31239393 PMCID: PMC6593218 DOI: 10.1128/msystems.00070-19] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/07/2019] [Indexed: 11/30/2022] Open
Abstract
A better understanding of essential cellular functions in pathogenic bacteria is important for the development of more effective antimicrobial agents. We performed a comprehensive identification of essential genes in Mycobacterium tuberculosis, the major causative agent of tuberculosis, using a combination of transposon insertion sequencing (Tn-seq) and comparative genomic analysis. To identify conditionally essential genes by Tn-seq, we used media with different nutrient compositions. Although many conditional gene essentialities were affected by the presence of relevant nutrient sources, we also found that the essentiality of genes in a subset of metabolic pathways was unaffected by metabolite availability. Comparative genomic analysis revealed that not all essential genes identified by Tn-seq were fully conserved within the M. tuberculosis complex, including some existing antitubercular drug target genes. In addition, we utilized an available M. tuberculosis genome-scale metabolic model, iSM810, to predict M. tuberculosis gene essentiality in silico Comparing the sets of essential genes experimentally identified by Tn-seq to those predicted in silico reveals the capabilities and limitations of gene essentiality predictions, highlighting the complexity of M. tuberculosis essential metabolic functions. This study provides a promising platform to study essential cellular functions in M. tuberculosis IMPORTANCE Mycobacterium tuberculosis causes 10 million cases of tuberculosis (TB), resulting in over 1 million deaths each year. TB therapy is challenging because it requires a minimum of 6 months of treatment with multiple drugs. Protracted treatment times and the emergent spread of drug-resistant M. tuberculosis necessitate the identification of novel targets for drug discovery to curb this global health threat. Essential functions, defined as those indispensable for growth and/or survival, are potential targets for new antimicrobial drugs. In this study, we aimed to define gene essentialities of M. tuberculosis on a genomewide scale to comprehensively identify potential targets for drug discovery. We utilized a combination of experimental (functional genomics) and in silico approaches (comparative genomics and flux balance analysis). Our functional genomics approach identified sets of genes whose essentiality was affected by nutrient availability. Comparative genomics revealed that not all essential genes were fully conserved within the M. tuberculosis complex. Comparing sets of essential genes identified by functional genomics to those predicted by flux balance analysis highlighted gaps in current knowledge regarding M. tuberculosis metabolic capabilities. Thus, our study identifies numerous potential antitubercular drug targets and provides a comprehensive picture of the complexity of M. tuberculosis essential cellular functions.
Collapse
Affiliation(s)
- Yusuke Minato
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Daryl M Gohl
- University of Minnesota Genomics Center, Minneapolis, Minnesota, USA
| | - Joshua M Thiede
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Jeremy M Chacón
- Biotechnology Institute and Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - William R Harcombe
- Biotechnology Institute and Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Fumito Maruyama
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- The Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development (JST/JICA, SATREPS), Tokyo, Japan
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Anthony D Baughn
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
64
|
Kim SK, Lormand JD, Weiss CA, Eger KA, Turdiev H, Turdiev A, Winkler WC, Sondermann H, Lee VT. A dedicated diribonucleotidase resolves a key bottleneck for the terminal step of RNA degradation. eLife 2019; 8:46313. [PMID: 31225796 PMCID: PMC6613908 DOI: 10.7554/elife.46313] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/14/2019] [Indexed: 12/28/2022] Open
Abstract
Degradation of RNA polymers, an ubiquitous process in all cells, is catalyzed by specific subsets of endo- and exoribonucleases that together recycle RNA fragments into nucleotide monophosphate. In γ-proteobacteria, 3-'5' exoribonucleases comprise up to eight distinct enzymes. Among them, Oligoribonuclease (Orn) is unique as its activity is required for clearing short RNA fragments, which is important for cellular fitness. However, the molecular basis of Orn's unique cellular function remained unclear. Here, we show that Orn exhibits exquisite substrate preference for diribonucleotides. Crystal structures of substrate-bound Orn reveal an active site optimized for diribonucleotides. While other cellular RNases process oligoribonucleotides down to diribonucleotide entities, Orn is the one and only diribonucleotidase that completes the terminal step of RNA degradation. Together, our studies indicate RNA degradation as a step-wise process with a dedicated enzyme for the clearance of a specific intermediate pool, diribonucleotides, that affects cellular physiology and viability.
Collapse
Affiliation(s)
- Soo-Kyoung Kim
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Justin D Lormand
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, United States
| | - Cordelia A Weiss
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Karin A Eger
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, United States
| | - Husan Turdiev
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Asan Turdiev
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Wade C Winkler
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Holger Sondermann
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, United States
| | - Vincent T Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| |
Collapse
|
65
|
Transcription of cis Antisense Small RNA MtlS in Vibrio cholerae Is Regulated by Transcription of Its Target Gene, mtlA. J Bacteriol 2019; 201:JB.00178-19. [PMID: 31036726 PMCID: PMC6597380 DOI: 10.1128/jb.00178-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/22/2019] [Indexed: 01/12/2023] Open
Abstract
Vibrio cholerae is a bacterial pathogen that relies on genetic tools, such as regulatory RNAs, to adapt to changing extracellular conditions. While many studies have focused on how these regulatory RNAs function, fewer have focused on how they are themselves modulated. V. cholerae expresses the noncoding RNA MtlS, which can regulate mannitol transport and use, and here we demonstrate that MtlS levels are controlled by the level of transcription occurring in the antisense direction. Our findings provide a model of regulation describing how bacteria like V. cholerae can modulate the levels of an important regulatory RNA. Our work contributes to knowledge of how bacteria deploy regulatory RNAs as an adaptive mechanism to buffer against environmental flux. Vibrio cholerae, the facultative pathogen responsible for cholera disease, continues to pose a global health burden. Its persistence can be attributed to a flexible genetic tool kit that allows for adaptation to different environments with distinct carbon sources, including the six-carbon sugar alcohol mannitol. V. cholerae takes up mannitol through the transporter protein MtlA, whose production is downregulated at the posttranscriptional level by MtlS, a cis antisense small RNA (sRNA) whose promoter lies within the mtlA open reading frame. Though it is known that mtlS expression is robust under growth conditions lacking mannitol, it has remained elusive as to what factors govern the steady-state levels of MtlS. Here, we show that manipulating mtlA transcription is sufficient to drive inverse changes in MtlS levels, likely through transcriptional interference. This work has uncovered a cis-acting sRNA whose expression pattern is predominantly controlled by transcription of the sRNA’s target gene. IMPORTANCEVibrio cholerae is a bacterial pathogen that relies on genetic tools, such as regulatory RNAs, to adapt to changing extracellular conditions. While many studies have focused on how these regulatory RNAs function, fewer have focused on how they are themselves modulated. V. cholerae expresses the noncoding RNA MtlS, which can regulate mannitol transport and use, and here we demonstrate that MtlS levels are controlled by the level of transcription occurring in the antisense direction. Our findings provide a model of regulation describing how bacteria like V. cholerae can modulate the levels of an important regulatory RNA. Our work contributes to knowledge of how bacteria deploy regulatory RNAs as an adaptive mechanism to buffer against environmental flux.
Collapse
|
66
|
Vibrio cholerae CsrA Directly Regulates varA To Increase Expression of the Three Nonredundant Csr Small RNAs. mBio 2019; 10:mBio.01042-19. [PMID: 31164471 PMCID: PMC6550530 DOI: 10.1128/mbio.01042-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
CsrA, an RNA-binding global regulator, is an essential protein in Vibrio choleraeV. cholerae CsrA is regulated by three small RNAs (sRNAs), namely, CsrB, CsrC, and CsrD, which act to sequester and antagonize the activity of CsrA. Although the sRNAs were considered to be largely redundant, we found that they differ in expression, half-life, and the ability to regulate CsrA. Further, we identified a feedback loop in the Csr system in which CsrA increases the synthesis of these antagonistic sRNAs. Because the Csr sRNAs are positively regulated by VarA, we determined the effects of CsrA on VarA levels. The level of VarA was reduced in a csrA mutant, and we found that CsrA directly bound to varA mRNA in an electrophoretic mobility shift assay in vitro and in an CsrA-RNA immunoprecipitation assay in vivo Thus, varA mRNA is an in vivo-verified direct target of CsrA in V. cholerae, and this is the first demonstration of CsrA directly binding to a varA/uvrY/gacA homolog. Additionally, we demonstrated that a varA translational fusion was less active in a csrA mutant than in wild-type V. cholerae, suggesting that CsrA enhances varA translation. We propose that this autoregulatory feedback loop, in which CsrA increases the production of the nonredundant Csr sRNAs by regulating the amount of VarA, provides a mechanism for fine-tuning the availability of CsrA and, thus, of its downstream targets.IMPORTANCEVibrio cholerae is a major human pathogen, causing epidemics and pandemics of cholera. V. cholerae persists in the aquatic environment, providing a constant source for human infection. Success in transitioning from the environment to the human host and back requires the bacterium to rapidly respond and to adjust its gene expression and metabolism to these two very different habitats. Our findings show that CsrA, an RNA-binding regulatory protein, plays a central role in regulating these transitions. CsrA activity is controlled by the antagonistic sRNAs CsrB, CsrC, and CsrD, and these sRNAs respond to changes in the availability of nutrients. CsrA autoregulates its own activity by controlling these sRNAs via their primary regulator VarA. Thus, the change in CsrA availability in response to nutrient availability allows V. cholerae to alter gene expression in response to environmental cues.
Collapse
|
67
|
Genome-Wide Identification of Fitness Factors in Seawater for Edwardsiella piscicida. Appl Environ Microbiol 2019; 85:AEM.00233-19. [PMID: 30877123 DOI: 10.1128/aem.00233-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/12/2019] [Indexed: 12/29/2022] Open
Abstract
Marine pathogens are transmitted from one host to another through seawater. Therefore, it is important for marine pathogens to maintain survival or growth in seawater. However, little is known about how marine pathogens adapt to living in seawater environments. Here, transposon insertion sequencing was performed to explore the genetic determinants of Edwardsiella piscicida survival in seawater at 16 and 28°C. Seventy-one mutants with mutations mainly in metabolism-, transportation-, and type III secretion system (T3SS)-related genes showed significantly increased or impaired fitness in 16°C water. In 28°C seawater, 63 genes associated with transcription and translation, as well as energy production and conversion, were essential for optimal survival of the bacterium. In particular, 11 T3SS-linked mutants displayed enhanced fitness in 16°C seawater but not in 28°C seawater. In addition, 13 genes associated with oxidative phosphorylation and 4 genes related to ubiquinone synthesis were identified for survival in 28°C seawater but not in 16°C seawater, which suggests that electron transmission and energy-producing aerobic respiration chain factors are indispensable for E. piscicida to maintain survival in higher-temperature seawater. In conclusion, we defined genes and processes related to metabolism and virulence that operate in E. piscicida to facilitate survival in low- and high-temperature seawater, which may underlie the infection outbreak mechanisms of E. piscicida and facilitate the development of improved vaccines against marine pathogens.IMPORTANCE Edwardsiella piscicida is one of the most important marine pathogens and causes serious edwardsiellosis in farmed fish during the summer-autumn seasonal changes, resulting in enormous losses to aquaculture industries worldwide. Survival and transmission of the pathogen in seawater are critical steps that increase the risk of outbreaks. To investigate the mechanism of survival in seawater for this marine pathogen, we used transposon insertion sequencing analysis to explore the fitness determinants in summer and autumn seawater. Approximately 127 genes linked to metabolism and virulence, as well as other processes, were revealed in E. piscicida to contribute to better adaptations to the seasonal alternations of seawater environments; these genes provide important insights into the infection outbreak mechanisms of E. piscicida and potential improved treatments or vaccines against marine pathogens.
Collapse
|
68
|
Silva-Valenzuela CA, Camilli A. Niche adaptation limits bacteriophage predation of Vibrio cholerae in a nutrient-poor aquatic environment. Proc Natl Acad Sci U S A 2019; 116:1627-1632. [PMID: 30635420 PMCID: PMC6358685 DOI: 10.1073/pnas.1810138116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Vibrio cholerae, the causative agent of cholera, has reservoirs in fresh and brackish water where it interacts with virulent bacteriophages. Phages are the most abundant biological entity on earth and coevolve with bacteria. It was reported that concentrations of phage and V. cholerae inversely correlate in aquatic reservoirs and in the human small intestine, and therefore that phages may quench cholera outbreaks. Although there is strong evidence for phage predation in cholera patients, evidence is lacking for phage predation of V. cholerae in aquatic environments. Here, we used three virulent phages, ICP1, ICP2, and ICP3, commonly shed by cholera patients in Bangladesh, as models to understand the predation dynamics in microcosms simulating aquatic environments. None of the phages were capable of predation in fresh water, and only ICP1 was able to prey on V. cholerae in estuarine water due to a requirement for salt. We conclude that ICP2 and ICP3 are better adapted for predation in a nutrient rich environment. Our results point to the evolution of niche-specific predation by V. cholerae-specific virulent phages, which complicates their use in predicting or monitoring cholera outbreaks as well as their potential use in reducing aquatic reservoirs of V. cholerae in endemic areas.
Collapse
Affiliation(s)
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111
| |
Collapse
|
69
|
Jemielita M, Wingreen NS, Bassler BL. Quorum sensing controls Vibrio cholerae multicellular aggregate formation. eLife 2018; 7:42057. [PMID: 30582742 PMCID: PMC6351105 DOI: 10.7554/elife.42057] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/23/2018] [Indexed: 12/15/2022] Open
Abstract
Bacteria communicate and collectively regulate gene expression using a process called quorum sensing (QS). QS relies on group-wide responses to signal molecules called autoinducers. Here, we show that QS activates a new program of multicellularity in Vibrio cholerae. This program, which we term aggregation, is distinct from the canonical surface-biofilm formation program, which QS represses. Aggregation is induced by autoinducers, occurs rapidly in cell suspensions, and does not require cell division, features strikingly dissimilar from those characteristic of V. cholerae biofilm formation. Extracellular DNA limits aggregate size, but is not sufficient to drive aggregation. A mutagenesis screen identifies genes required for aggregate formation, revealing proteins involved in V. cholerae intestinal colonization, stress response, and a protein that distinguishes the current V. cholerae pandemic strain from earlier pandemic strains. We suggest that QS-controlled aggregate formation is important for V. cholerae to successfully transit between the marine niche and the human host.
Collapse
Affiliation(s)
- Matthew Jemielita
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| |
Collapse
|
70
|
Bruhn M, Schindler D, Kemter FS, Wiley MR, Chase K, Koroleva GI, Palacios G, Sozhamannan S, Waldminghaus T. Functionality of Two Origins of Replication in Vibrio cholerae Strains With a Single Chromosome. Front Microbiol 2018; 9:2932. [PMID: 30559732 PMCID: PMC6284228 DOI: 10.3389/fmicb.2018.02932] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/14/2018] [Indexed: 12/16/2022] Open
Abstract
Chromosomal inheritance in bacteria usually entails bidirectional replication of a single chromosome from a single origin into two copies and subsequent partitioning of one copy each into daughter cells upon cell division. However, the human pathogen Vibrio cholerae and other Vibrionaceae harbor two chromosomes, a large Chr1 and a small Chr2. Chr1 and Chr2 have different origins, an oriC-type origin and a P1 plasmid-type origin, respectively, driving the replication of respective chromosomes. Recently, we described naturally occurring exceptions to the two-chromosome rule of Vibrionaceae: i.e., Chr1 and Chr2 fused single chromosome V. cholerae strains, NSCV1 and NSCV2, in which both origins of replication are present. Using NSCV1 and NSCV2, here we tested whether two types of origins of replication can function simultaneously on the same chromosome or one or the other origin is silenced. We found that in NSCV1, both origins are active whereas in NSCV2 ori2 is silenced despite the fact that it is functional in an isolated context. The ori2 activity appears to be primarily determined by the copy number of the triggering site, crtS, which in turn is determined by its location with respect to ori1 and ori2 on the fused chromosome.
Collapse
Affiliation(s)
- Matthias Bruhn
- LOEWE Centre for Synthetic Microbiology-SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Daniel Schindler
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Franziska S Kemter
- LOEWE Centre for Synthetic Microbiology-SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Michael R Wiley
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Kitty Chase
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Galina I Koroleva
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Gustavo Palacios
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Shanmuga Sozhamannan
- Defense Biological Product Assurance Office, Frederick, MD, United States.,The Tauri Group, LLC, Alexandria, VA, United States
| | - Torsten Waldminghaus
- LOEWE Centre for Synthetic Microbiology-SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
71
|
Vibrio cholerae motility exerts drag force to impede attack by the bacterial predator Bdellovibrio bacteriovorus. Nat Commun 2018; 9:4757. [PMID: 30420597 PMCID: PMC6232129 DOI: 10.1038/s41467-018-07245-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 10/18/2018] [Indexed: 12/21/2022] Open
Abstract
The bacterial predator Bdellovibrio bacteriovorus is evolved to attack and kill other bacteria, including the human intestinal pathogen Vibrio cholerae. Although B. bacteriovorus exhibit a broad prey range, little is known about the genetic determinants of prey resistance and sensitivity. Here we perform a genetic screen on V. cholerae and identify five pathways contributing to predation susceptibility. We find that the essential virulence regulators ToxR/S increase susceptibility to predation, as mutants of these genes are more resistant to predation. We observe by flow cytometry that lipopolysaccharide is a critical defense, as mutants lacking O-antigen are rapidly attacked by predatory B. bacteriovorus. Using polymer solutions to alter media viscosity, we find that when B. bacteriovorus attacks motile V. cholerae, increased drag forces slow its ability to prey. These results provide insights into key prey resistance mechanisms, and may be useful in the application of B. bacteriovorus in treating infections. Prey bacteria have evolved different strategies to counteract predation but the genetic basis remains unclear. Here, Duncan et al. identify key genes involved in Vibrio cholerae sensitivity to Bdellovibrio bacteriovorus predation, providing new insights into prey resistance mechanisms.
Collapse
|
72
|
Wang H, Xing X, Wang J, Pang B, Liu M, Larios-Valencia J, Liu T, Liu G, Xie S, Hao G, Liu Z, Kan B, Zhu J. Hypermutation-induced in vivo oxidative stress resistance enhances Vibrio cholerae host adaptation. PLoS Pathog 2018; 14:e1007413. [PMID: 30376582 PMCID: PMC6226196 DOI: 10.1371/journal.ppat.1007413] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/09/2018] [Accepted: 10/18/2018] [Indexed: 01/08/2023] Open
Abstract
Bacterial pathogens are highly adaptable organisms, a quality that enables them to overcome changing hostile environments. For example, Vibrio cholerae, the causative agent of cholera, is able to colonize host small intestines and combat host-produced reactive oxygen species (ROS) during infection. To dissect the molecular mechanisms utilized by V. cholerae to overcome ROS in vivo, we performed a whole-genome transposon sequencing analysis (Tn-seq) by comparing gene requirements for colonization using adult mice with and without the treatment of the antioxidant, N-acetyl cysteine. We found that mutants of the methyl-directed mismatch repair (MMR) system, such as MutS, displayed significant colonization advantages in untreated, ROS-rich mice, but not in NAC-treated mice. Further analyses suggest that the accumulation of both catalase-overproducing mutants and rugose colony variants in NAC- mice was the leading cause of mutS mutant enrichment caused by oxidative stress during infection. We also found that rugose variants could revert back to smooth colonies upon aerobic, in vitro culture. Additionally, the mutation rate of wildtype colonized in NAC- mice was significantly higher than that in NAC+ mice. Taken together, these findings support a paradigm in which V. cholerae employs a temporal adaptive strategy to battle ROS during infection, resulting in enriched phenotypes. Moreover, ΔmutS passage and complementation can be used to model hypermuation in diverse pathogens to identify novel stress resistance mechanisms. Cholera is a devastating diarrheal disease that is still endemic to many developing nations, with the worst outbreak in history having occurred recently in Yemen. Vibrio cholerae, the causative agent of cholera, transitions from aquatic reservoirs to the human gastrointestinal tract, where it expresses virulence factors to facilitate colonization of the small intestines and to combat host innate immune effectors, such as reactive oxygen species (ROS). We applied a genome-wide transposon screen (Tn-seq) and identified that deletion of mutS, which is part of DNA mismatch repair system, drastically increased colonization in ROS-rich mice. The deletion of mutS led to the accumulation of catalase-overproducing mutants and a high frequency rugose phenotype when exposed to ROS selective pressures in vivo. Additionally, ROS elevated mutation frequency in wildtype, both in vitro and in vivo. Our data imply that V. cholerae may modulate mutation frequency as a temporal adaptive strategy to overcome oxidative stress and to enhance infectivity.
Collapse
Affiliation(s)
- Hui Wang
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
- * E-mail: (HW); (JH)
| | - Xiaolin Xing
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Jipeng Wang
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Bo Pang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ming Liu
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Jessie Larios-Valencia
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Tao Liu
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Ge Liu
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Saijun Xie
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Guijuan Hao
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Zhi Liu
- Department of Biotechnology, Huazhong University of Science and Technology, Wuhan, China
| | - Biao Kan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun Zhu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
- * E-mail: (HW); (JH)
| |
Collapse
|
73
|
Liu Y, Qin Q, Defoirdt T. Does quorum sensing interference affect the fitness of bacterial pathogens in the real world? Environ Microbiol 2018; 20:3918-3926. [DOI: 10.1111/1462-2920.14446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Yiying Liu
- College of Marine Sciences, South China Agricultural University; Guangzhou China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University; Guangzhou China
| | - Tom Defoirdt
- Center for Microbial Ecology and Technology (CMET); Ghent University; Ghent Belgium
| |
Collapse
|
74
|
Gadwal S, Johnson TL, Remmer H, Sandkvist M. C-terminal processing of GlyGly-CTERM containing proteins by rhombosortase in Vibrio cholerae. PLoS Pathog 2018; 14:e1007341. [PMID: 30352106 PMCID: PMC6219818 DOI: 10.1371/journal.ppat.1007341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/06/2018] [Accepted: 09/17/2018] [Indexed: 11/18/2022] Open
Abstract
Vibrio cholerae and a subset of other Gram-negative bacteria, including Acinetobacter baumannii, express proteins with a C-terminal tripartite domain called GlyGly-CTERM, which consists of a motif rich in glycines and serines, followed by a hydrophobic region and positively charged residues. Here we show that VesB, a V. cholerae serine protease, requires the GlyGly-CTERM domain, the intramembrane rhomboid-like protease rhombosortase, and the type II secretion system (T2SS) for localization at the cell surface. VesB is cleaved by rhombosortase to expose the second glycine residue of the GlyGly-CTERM motif, which is then conjugated to a glycerophosphoethanolamine-containing moiety prior to engagement with the T2SS and outer membrane translocation. In support of this, VesB accumulates intracellularly in the absence of the T2SS, and surface-associated VesB activity is no longer detected when the rhombosortase gene is inactivated. In turn, when VesB is expressed without an intact GlyGly-CTERM domain, VesB is released to the extracellular milieu by the T2SS and does not accumulate on the cell surface. Collectively, our findings suggest that the posttranslational modification of the GlyGly-CTERM domain is essential for cell surface localization of VesB and other proteins expressed with this tripartite extension.
Collapse
Affiliation(s)
- Shilpa Gadwal
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Tanya L. Johnson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States of America
- Department of Chemistry, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Henriette Remmer
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Maria Sandkvist
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States of America
- * E-mail:
| |
Collapse
|
75
|
Misra HS, Maurya GK, Kota S, Charaka VK. Maintenance of multipartite genome system and its functional significance in bacteria. J Genet 2018; 97:1013-1038. [PMID: 30262715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bacteria are unicellular organisms that do not show compartmentalization of the genetic material and other cellular organelles as seen in higher organisms. Earlier, bacterial genomes were defined as single circular chromosome and extrachromosomal plasmids. Recently, many bacteria were found harbouringmultipartite genome system and the numbers of copies of genome elements including chromosomes vary from one to several per cell. Interestingly, it is noticed that majority of multipartite genome-harbouring bacteria are either stress tolerant or pathogens. Further, it is observed that the secondary genomes in these bacteria encode proteins that are involved in bacterial genome maintenance and also contribute to higher stress tolerance, and pathogenicity in pathogenic bacteria. Surprisingly, in some bacteria the genes encoding the proteins of classical homologous recombination pathways are present only on the secondary chromosomes, and some do not have either of the classical homologous recombination pathways. This review highlights the presence of ploidy and multipartite genomes in bacterial system, the underlying mechanisms of genome maintenance and the possibilities of these features contributing to higher abiotic and biotic stress tolerance in these bacteria.
Collapse
Affiliation(s)
- Hari Sharan Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | | | | | | |
Collapse
|
76
|
Misra HS, Maurya GK, Kota S, Charaka VK. Maintenance of multipartite genome system and its functional significance in bacteria. J Genet 2018. [DOI: 10.1007/s12041-018-0969-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
77
|
Valiente E, Davies C, Mills DC, Getino M, Ritchie JM, Wren BW. Vibrio cholerae accessory colonisation factor AcfC: a chemotactic protein with a role in hyperinfectivity. Sci Rep 2018; 8:8390. [PMID: 29849063 PMCID: PMC5976639 DOI: 10.1038/s41598-018-26570-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/10/2018] [Indexed: 12/25/2022] Open
Abstract
Vibrio cholerae O1 El Tor is an aquatic Gram-negative bacterium responsible for the current seventh pandemic of the diarrheal disease, cholera. A previous whole-genome analysis on V. cholerae O1 El Tor strains from the 2010 epidemic in Pakistan showed that all strains contained the V. cholerae pathogenicity island-1 and the accessory colonisation gene acfC (VC_0841). Here we show that acfC possess an open reading frame of 770 bp encoding a protein with a predicted size of 28 kDa, which shares high amino acid similarity with two adhesion proteins found in other enteropathogens, including Paa in serotype O45 porcine enteropathogenic Escherichia coli and PEB3 in Campylobacter jejuni. Using a defined acfC deletion mutant, we studied the specific role of AcfC in V. cholerae O1 El Tor environmental survival, colonisation and virulence in two infection model systems (Galleria mellonella and infant rabbits). Our results indicate that AcfC might be a periplasmic sulfate-binding protein that affects chemotaxis towards mucin and bacterial infectivity in the infant rabbit model of cholera. Overall, our findings suggest that AcfC contributes to the chemotactic response of WT V. cholerae and plays an important role in defining the overall distribution of the organism within the intestine.
Collapse
Affiliation(s)
- Esmeralda Valiente
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | - Cadi Davies
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | - Dominic C Mills
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK.,Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY, USA
| | - Maria Getino
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Jennifer M Ritchie
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Brendan W Wren
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK.
| |
Collapse
|
78
|
Fu Y, Ho BT, Mekalanos JJ. Tracking Vibrio cholerae Cell-Cell Interactions during Infection Reveals Bacterial Population Dynamics within Intestinal Microenvironments. Cell Host Microbe 2018; 23:274-281.e2. [PMID: 29398650 PMCID: PMC6031135 DOI: 10.1016/j.chom.2017.12.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/09/2017] [Accepted: 12/13/2017] [Indexed: 01/20/2023]
Abstract
Vibrio cholerae is the causative agent of the diarrheal disease cholera. Although many V. cholerae virulence factors have been studied, the role of interbacterial interactions within the host gut and their influence on colonization are poorly understood. Here, we utilized the conjugative properties of a Vibrio-specific plasmid to serve as a quantifiable genetic marker for direct contact among V. cholerae cells in the infant rabbit model for cholera. In conjunction, we also quantified contact-dependent type 6 secretion system (T6SS)-mediated killing of co-infecting V. cholerae strains. Tracking these interbacterial interactions revealed that most contact-dependent cell-cell interactions among V. cholerae occur in specific intestinal microenvironments, notably the distal small intestine and cecum, and that the T6SS confers a competitive advantage within the middle small intestine. These results support a model for V. cholerae gut colonization, which includes microenvironments where critical microbial-host and bacterial-bacterial interactions occur to facilitate colonization by this pathogen.
Collapse
Affiliation(s)
- Yang Fu
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Brian T Ho
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - John J Mekalanos
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
79
|
Abstract
Transposon sequencing, or Tn-seq, combines transposon mutagenesis and massively parallel sequencing to allow for rapid and high-throughput identification of genes that play roles in fitness within environments of interest. The bacterial pathogen Vibrio cholerae is an excellent candidate for Tn-seq screens due to the availability of a plasmid-based in vivo transposition system and the relative ease with which the cholera disease state can be modeled in animals. This chapter will describe a method for performing Tn-seq screens on V. cholerae in the infant rabbit model of cholera.
Collapse
|
80
|
Establishing a System for Testing Replication Inhibition of the Vibrio cholerae Secondary Chromosome in Escherichia coli. Antibiotics (Basel) 2017; 7:antibiotics7010003. [PMID: 29295515 PMCID: PMC5872114 DOI: 10.3390/antibiotics7010003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/05/2017] [Accepted: 12/20/2017] [Indexed: 12/29/2022] Open
Abstract
Regulators of DNA replication in bacteria are an attractive target for new antibiotics, as not only is replication essential for cell viability, but its underlying mechanisms also differ from those operating in eukaryotes. The genetic information of most bacteria is encoded on a single chromosome, but about 10% of species carry a split genome spanning multiple chromosomes. The best studied bacterium in this context is the human pathogen Vibrio cholerae, with a primary chromosome (Chr1) of 3 M bps, and a secondary one (Chr2) of about 1 M bps. Replication of Chr2 is under control of a unique mechanism, presenting a potential target in the development of V. cholerae-specific antibiotics. A common challenge in such endeavors is whether the effects of candidate chemicals can be focused on specific mechanisms, such as DNA replication. To test the specificity of antimicrobial substances independent of other features of the V. cholerae cell for the replication mechanism of the V. cholerae secondary chromosome, we establish the replication machinery in the heterologous E. coli system. We characterize an E. coli strain in which chromosomal replication is driven by the replication origin of V. cholerae Chr2. Surprisingly, the E. coli ori2 strain was not inhibited by vibrepin, previously found to inhibit ori2-based replication.
Collapse
|
81
|
Lourdault K, Matsunaga J, Evangelista KV, Haake DA. High-throughput Parallel Sequencing to Measure Fitness of Leptospira interrogans Transposon Insertion Mutants During Golden Syrian Hamster Infection. J Vis Exp 2017. [PMID: 29286406 DOI: 10.3791/56442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this manuscript, we describe a transposon sequencing (Tn-Seq) technique to identify and quantify Leptospira interrogans mutants altered in fitness during infection of Golden Syrian hamsters. Tn-Seq combines random transposon mutagenesis with the power of high-throughput sequencing technology. Animals are challenged with a pool of transposon mutants (input pool), followed by harvesting of blood and tissues a few days later to identify and quantify the number of mutants in each organ (output pools). The output pools are compared to the input pool to evaluate the in vivo fitness of each mutant. This approach enables screening of a large pool of mutants in a limited number of animals. With minor modifications, this protocol can be performed with any animal model of leptospirosis, reservoir host models such as rats and acute infection models such as hamsters, as well as in vitro studies. Tn-Seq provides a powerful tool to screen for mutants with in vivo and in vitro fitness defects.
Collapse
Affiliation(s)
- Kristel Lourdault
- Veterans Affairs Greater Los Angeles Healthcare System; Departments of Medicine, David Geffen School of Medicine at University of California Los Angeles;
| | - James Matsunaga
- Veterans Affairs Greater Los Angeles Healthcare System; Departments of Medicine, David Geffen School of Medicine at University of California Los Angeles
| | - Karen V Evangelista
- Veterans Affairs Greater Los Angeles Healthcare System; Departments of Medicine, David Geffen School of Medicine at University of California Los Angeles
| | - David A Haake
- Veterans Affairs Greater Los Angeles Healthcare System; Departments of Medicine, David Geffen School of Medicine at University of California Los Angeles; Departments of Urology, David Geffen School of Medicine at University of California Los Angeles; Departments of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles
| |
Collapse
|
82
|
Silva-Valenzuela CA, Lazinski DW, Kahne SC, Nguyen Y, Molina-Quiroz RC, Camilli A. Growth arrest and a persister state enable resistance to osmotic shock and facilitate dissemination of Vibrio cholerae. THE ISME JOURNAL 2017; 11:2718-2728. [PMID: 28742070 PMCID: PMC5702728 DOI: 10.1038/ismej.2017.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/27/2017] [Accepted: 06/04/2017] [Indexed: 11/09/2022]
Abstract
Vibrio cholerae is a water-borne bacterial pathogen and causative agent of cholera. Although V. cholerae is a halophile, it can survive in fresh water, and this has a major role in cholera epidemics through consumption of contaminated water and subsequent fecal-oral spread. After dissemination from humans back into fresh water, V. cholerae encounters limited nutrient availability and an abrupt drop in conductivity but little is known about how V. cholerae adapts to, and survives in this environment. In this work, by abolishing or altering the expression of V. cholerae genes in a high-throughput manner, we observed that many osmotic shock tolerant mutants exhibited slowed or arrested growth, and/or generated a higher proportion of persister cells. In addition, we show that growth-arrested V. cholerae, including a persister subpopulation, are generated during infection of the intestinal tract and together allow for the successful dissemination to fresh water. Our results suggest that growth-arrested and persister subpopulations enable survival of V. cholerae upon shedding to the aquatic environment.
Collapse
Affiliation(s)
- Cecilia A Silva-Valenzuela
- Department of Molecular Biology and Microbiology and Howard Hughes Medical Institute, Tufts University, Boston, MA, USA
| | - David W Lazinski
- Department of Molecular Biology and Microbiology and Howard Hughes Medical Institute, Tufts University, Boston, MA, USA
| | - Shoshanna C Kahne
- Department of Molecular Biology and Microbiology and Howard Hughes Medical Institute, Tufts University, Boston, MA, USA
| | - Y Nguyen
- Department of Molecular Biology and Microbiology and Howard Hughes Medical Institute, Tufts University, Boston, MA, USA
| | - Roberto C Molina-Quiroz
- Department of Molecular Biology and Microbiology and Howard Hughes Medical Institute, Tufts University, Boston, MA, USA
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology and Howard Hughes Medical Institute, Tufts University, Boston, MA, USA
| |
Collapse
|
83
|
Barquist L, Westermann AJ, Vogel J. Molecular phenotyping of infection-associated small non-coding RNAs. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2016.0081. [PMID: 27672158 DOI: 10.1098/rstb.2016.0081] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2016] [Indexed: 02/07/2023] Open
Abstract
Infection is a complicated balance, with both pathogen and host struggling to tilt the result in their favour. Bacterial infection biology has relied on forward genetics for many of its advances, defining phenotype in terms of replication in model systems. However, many known virulence factors fail to produce robust phenotypes, particularly in the systems most amenable to genetic manipulation, such as cell-culture models. This has particularly been limiting for the study of the bacterial regulatory small RNAs (sRNAs) in infection. We argue that new sequencing-based technologies can work around this problem by providing a 'molecular phenotype', defined in terms of the specific transcriptional dysregulation in the infection system induced by gene deletion. We illustrate this using the example of our recent study of the PinT sRNA using dual RNA-seq, that is, simultaneous RNA sequencing of host and pathogen during infection. We additionally discuss how other high-throughput technologies, in particular genetic interaction mapping using transposon insertion sequencing, may be used to further dissect molecular phenotypes. We propose a strategy for how high-throughput technologies can be integrated in the study of non-coding regulators as well as bacterial virulence factors, enhancing our ability to rapidly generate hypotheses with regards to their function.This article is part of the themed issue 'The new bacteriology'.
Collapse
Affiliation(s)
- Lars Barquist
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2/D15, 97080 Würzburg, Germany
| | - Alexander J Westermann
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2/D15, 97080 Würzburg, Germany
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2/D15, 97080 Würzburg, Germany Research Centre for Infectious Diseases (ZINF), University of Würzburg, 97070 Würzburg, Germany
| |
Collapse
|
84
|
Mima T, Gotoh K, Yamamoto Y, Maeda K, Shirakawa T, Matsui S, Murata Y, Koide T, Tokumitsu H, Matsushita O. Expression of Collagenase is Regulated by the VarS/VarA Two-Component Regulatory System in Vibrio alginolyticus. J Membr Biol 2017; 251:51-63. [PMID: 28993850 DOI: 10.1007/s00232-017-9991-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022]
Abstract
Vibrio alginolyticus is an opportunistic pathogen in both humans and marine animals. Collagenase encoded by colA is considered to be one of the virulence factors. Expression of colA is regulated by multiple environmental factors, e.g., temperature, growth phase, and substrate. To elucidate the mechanism of regulation of colA expression, transposon mutagenesis was performed. VarS, a sensor histidine kinase of the two-component regulatory system, was demonstrated to regulate the expression of colA. VarA, a cognate response regulator of VarS, was also identified and shown to be involved in the regulation of colA expression. In vitro phosphorylation assays showed that phosphorylated VarS acted as a phosphoryl group donor to VarA. A site-directed mutagenesis study showed that the His300, Asp718 and His874 residues in VarS were essential for the phosphorylation of VarS, and the Asp54 residue in VarA was likely to receive the phosphoryl group from VarS. The results demonstrate that the VarS/VarA two-component regulatory system regulates the expression of collagenase in V. alginolyticus.
Collapse
Affiliation(s)
- Takehiko Mima
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Kazuyoshi Gotoh
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yumiko Yamamoto
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keiko Maeda
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | - Shunsuke Matsui
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yumi Murata
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Takaki Koide
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Hiroshi Tokumitsu
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Osamu Matsushita
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
85
|
Abstract
Transposon insertion sequencing (TIS) is a powerful high-throughput genetic technique that is transforming functional genomics in prokaryotes, because it enables genome-wide mapping of the determinants of fitness. However, current approaches for analyzing TIS data assume that selective pressures are constant over time and thus do not yield information regarding changes in the genetic requirements for growth in dynamic environments (e.g., during infection). Here, we describe structured analysis of TIS data collected as a time series, termed pattern analysis of conditional essentiality (PACE). From a temporal series of TIS data, PACE derives a quantitative assessment of each mutant’s fitness over the course of an experiment and identifies mutants with related fitness profiles. In so doing, PACE circumvents major limitations of existing methodologies, specifically the need for artificial effect size thresholds and enumeration of bacterial population expansion. We used PACE to analyze TIS samples of Edwardsiella piscicida (a fish pathogen) collected over a 2-week infection period from a natural host (the flatfish turbot). PACE uncovered more genes that affect E. piscicida’s fitness in vivo than were detected using a cutoff at a terminal sampling point, and it identified subpopulations of mutants with distinct fitness profiles, one of which informed the design of new live vaccine candidates. Overall, PACE enables efficient mining of time series TIS data and enhances the power and sensitivity of TIS-based analyses. Transposon insertion sequencing (TIS) enables genome-wide mapping of the genetic determinants of fitness, typically based on observations at a single sampling point. Here, we move beyond analysis of endpoint TIS data to create a framework for analysis of time series TIS data, termed pattern analysis of conditional essentiality (PACE). We applied PACE to identify genes that contribute to colonization of a natural host by the fish pathogen Edwardsiella piscicida. PACE uncovered more genes that affect E. piscicida’s fitness in vivo than were detected using a terminal sampling point, and its clustering of mutants with related fitness profiles informed design of new live vaccine candidates. PACE yields insights into patterns of fitness dynamics and circumvents major limitations of existing methodologies. Finally, the PACE method should be applicable to additional “omic” time series data, including screens based on clustered regularly interspaced short palindromic repeats with Cas9 (CRISPR/Cas9).
Collapse
|
86
|
Exception to the Rule: Genomic Characterization of Naturally Occurring Unusual Vibrio cholerae Strains with a Single Chromosome. Int J Genomics 2017; 2017:8724304. [PMID: 28951866 PMCID: PMC5603330 DOI: 10.1155/2017/8724304] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/15/2017] [Accepted: 06/22/2017] [Indexed: 11/18/2022] Open
Abstract
The genetic make-up of most bacteria is encoded in a single chromosome while about 10% have more than one chromosome. Among these, Vibrio cholerae, with two chromosomes, has served as a model system to study various aspects of chromosome maintenance, mainly replication, and faithful partitioning of multipartite genomes. Here, we describe the genomic characterization of strains that are an exception to the two chromosome rules: naturally occurring single-chromosome V. cholerae. Whole genome sequence analyses of NSCV1 and NSCV2 (natural single-chromosome vibrio) revealed that the Chr1 and Chr2 fusion junctions contain prophages, IS elements, and direct repeats, in addition to large-scale chromosomal rearrangements such as inversions, insertions, and long tandem repeats elsewhere in the chromosome compared to prototypical two chromosome V. cholerae genomes. Many of the known cholera virulence factors are absent. The two origins of replication and associated genes are generally intact with synonymous mutations in some genes, as are recA and mismatch repair (MMR) genes dam, mutH, and mutL; MutS function is probably impaired in NSCV2. These strains are ideal tools for studying mechanistic aspects of maintenance of chromosomes with multiple origins and other rearrangements and the biological, functional, and evolutionary significance of multipartite genome architecture in general.
Collapse
|
87
|
Le Breton Y, Belew AT, Freiberg JA, Sundar GS, Islam E, Lieberman J, Shirtliff ME, Tettelin H, El-Sayed NM, McIver KS. Genome-wide discovery of novel M1T1 group A streptococcal determinants important for fitness and virulence during soft-tissue infection. PLoS Pathog 2017; 13:e1006584. [PMID: 28832676 PMCID: PMC5584981 DOI: 10.1371/journal.ppat.1006584] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/05/2017] [Accepted: 08/15/2017] [Indexed: 01/08/2023] Open
Abstract
The Group A Streptococcus remains a significant human pathogen causing a wide array of disease ranging from self-limiting to life-threatening invasive infections. Epithelium (skin or throat) colonization with progression to the subepithelial tissues is the common step in all GAS infections. Here, we used transposon-sequencing (Tn-seq) to define the GAS 5448 genetic requirements for in vivo fitness in subepithelial tissue. A near-saturation transposon library of the M1T1 GAS 5448 strain was injected subcutaneously into mice, producing suppurative inflammation at 24 h that progressed to prominent abscesses with tissue necrosis at 48 h. The library composition was monitored en masse by Tn-seq and ratios of mutant abundance comparing the output (12, 24 and 48 h) versus input (T0) mutant pools were calculated for each gene. We identified a total of 273 subcutaneous fitness (scf) genes with 147 genes (55 of unknown function) critical for the M1T1 GAS 5448 fitness in vivo; and 126 genes (53 of unknown function) potentially linked to in vivo fitness advantage. Selected scf genes were validated in competitive subcutaneous infection with parental 5448. Two uncharacterized genes, scfA and scfB, encoding putative membrane-associated proteins and conserved among Gram-positive pathogens, were further characterized. Defined scfAB mutants in GAS were outcompeted by wild type 5448 in vivo, attenuated for lesion formation in the soft tissue infection model and dissemination to the bloodstream. We hypothesize that scfAB play an integral role in enhancing adaptation and fitness of GAS during localized skin infection, and potentially in propagation to other deeper host environments. The WHO ranks the Group A Streptococcus (GAS) in the top 10 leading causes of morbidity and mortality from infectious diseases worldwide. GAS is a strict human pathogen causing both benign superficial infections as well as life-threatening invasive diseases. All GAS infections begin by colonization of an epithelium (throat or skin) followed by propagation into subepithelial tissues. The genetic requirements for M1T1 GAS 5448 within this niche were interrogated by in vivo transposon sequencing (Tn-seq), identifying 273 subcutaneous fitness (scf) genes with 108 of those previously of “unknown function”. Two yet uncharacterized genes, scfA and scfB, were shown to be critical during GAS 5448 soft tissue infection and dissemination into the bloodstream. Thus, this study improves the functional annotation of the GAS genome, providing new insights into GAS pathophysiology and enhancing the development of novel GAS therapeutics.
Collapse
Affiliation(s)
- Yoann Le Breton
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (YLB); (KSM)
| | - Ashton T. Belew
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Jeffrey A. Freiberg
- Graduate Program in Life Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ganesh S. Sundar
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
| | - Emrul Islam
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
| | - Joshua Lieberman
- Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Mark E. Shirtliff
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbial Pathogenesis, Dental School, University of Maryland, Baltimore, Maryland, United States of America
| | - Hervé Tettelin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Najib M. El-Sayed
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Kevin S. McIver
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (YLB); (KSM)
| |
Collapse
|
88
|
Abstract
Infectious diseases kill nearly 9 million people annually. Bacterial pathogens are responsible for a large proportion of these diseases, and the bacterial agents of pneumonia, diarrhea, and tuberculosis are leading causes of death and disability worldwide. Increasingly, the crucial role of nonhost environments in the life cycle of bacterial pathogens is being recognized. Heightened scrutiny has been given to the biological processes impacting pathogen dissemination and survival in the natural environment, because these processes are essential for the transmission of pathogenic bacteria to new hosts. This chapter focuses on the model environmental pathogen Vibrio cholerae to describe recent advances in our understanding of how pathogens survive between hosts and to highlight the processes necessary to support the cycle of environmental survival, transmission, and dissemination. We describe the physiological and molecular responses of V. cholerae to changing environmental conditions, focusing on its survival in aquatic reservoirs between hosts and its entry into and exit from human hosts.
Collapse
|
89
|
Zhao L, Anderson MT, Wu W, T Mobley HL, Bachman MA. TnseqDiff: identification of conditionally essential genes in transposon sequencing studies. BMC Bioinformatics 2017; 18:326. [PMID: 28683752 PMCID: PMC5500955 DOI: 10.1186/s12859-017-1745-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/26/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Tn-Seq is a high throughput technique for analysis of transposon mutant libraries to determine conditional essentiality of a gene under an experimental condition. A special feature of the Tn-seq data is that multiple mutants in a gene provides independent evidence to prioritize that gene as being essential. The existing methods do not account for this feature or rely on a high-density transposon library. Moreover, these methods are unable to accommodate complex designs. RESULTS The method proposed here is specifically designed for the analysis of Tn-Seq data. It utilizes two steps to estimate the conditional essentiality for each gene in the genome. First, it collects evidence of conditional essentiality for each insertion by comparing read counts of that insertion between conditions. Second, it combines insertion-level evidence for the corresponding gene. It deals with data from both low- and high-density transposon libraries and accommodates complex designs. Moreover, it is very fast to implement. The performance of the proposed method was tested on simulated data and experimental Tn-Seq data from Serratia marcescens transposon mutant library used to identify genes that contribute to fitness in a murine model of infection. CONCLUSION We describe a new, efficient method for identifying conditionally essential genes in Tn-Seq experiments with high detection sensitivity and specificity. It is implemented as TnseqDiff function in R package Tnseq and can be installed from the Comprehensive R Archive Network, CRAN.
Collapse
Affiliation(s)
- Lili Zhao
- Department of Biostatistics, University of Michigan, 1415 Washington Heights, Ann Arbor, USA.
| | - Mark T Anderson
- Department of Microbiology and Immunology, School of medicine, University of Michigan, Ann Arbor, USA
| | - Weisheng Wu
- BRCF Bioinformatics Core, University of Michigan, Ann Arbor, USA
| | - Harry L T Mobley
- Department of Microbiology and Immunology, School of medicine, University of Michigan, Ann Arbor, USA
| | - Michael A Bachman
- Department of Pathology, School of medicine, University of Michigan, Ann Arbor, USA
| |
Collapse
|
90
|
Roberts CA, Al-Tameemi HM, Mashruwala AA, Rosario-Cruz Z, Chauhan U, Sause WE, Torres VJ, Belden WJ, Boyd JM. The Suf Iron-Sulfur Cluster Biosynthetic System Is Essential in Staphylococcus aureus, and Decreased Suf Function Results in Global Metabolic Defects and Reduced Survival in Human Neutrophils. Infect Immun 2017; 85:e00100-17. [PMID: 28320837 PMCID: PMC5442634 DOI: 10.1128/iai.00100-17] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/16/2017] [Indexed: 01/30/2023] Open
Abstract
Staphylococcus aureus remains a causative agent for morbidity and mortality worldwide. This is in part a result of antimicrobial resistance, highlighting the need to uncover novel antibiotic targets and to discover new therapeutic agents. In the present study, we explored the possibility that iron-sulfur (Fe-S) cluster synthesis is a viable antimicrobial target. RNA interference studies established that Suf (sulfur mobilization)-dependent Fe-S cluster synthesis is essential in S. aureus We found that sufCDSUB were cotranscribed and that suf transcription was positively influenced by sigma factor B. We characterized an S. aureus strain that contained a transposon inserted in the intergenic space between sufC and sufD (sufD*), resulting in decreased transcription of sufSUB Consistent with the transcriptional data, the sufD* strain had multiple phenotypes associated with impaired Fe-S protein maturation. They included decreased activities of Fe-S cluster-dependent enzymes, decreased growth in media lacking metabolites that require Fe-S proteins for synthesis, and decreased flux through the tricarboxylic acid (TCA) cycle. Decreased Fe-S cluster synthesis resulted in sensitivity to reactive oxygen and reactive nitrogen species, as well as increased DNA damage and impaired DNA repair. The sufD* strain also exhibited perturbed intracellular nonchelated Fe pools. Importantly, the sufD* strain did not exhibit altered exoprotein production or altered biofilm formation, but it was attenuated for survival upon challenge by human polymorphonuclear leukocytes. The results presented are consistent with the hypothesis that Fe-S cluster synthesis is a viable target for antimicrobial development.
Collapse
Affiliation(s)
- Christina A Roberts
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, State University of New Jersey, New Brunswick, New Jersey, USA
| | - Hassan M Al-Tameemi
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, State University of New Jersey, New Brunswick, New Jersey, USA
| | - Ameya A Mashruwala
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, State University of New Jersey, New Brunswick, New Jersey, USA
| | - Zuelay Rosario-Cruz
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, State University of New Jersey, New Brunswick, New Jersey, USA
| | - Unnati Chauhan
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, State University of New Jersey, New Brunswick, New Jersey, USA
| | - William E Sause
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - William J Belden
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, State University of New Jersey, New Brunswick, New Jersey, USA
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
91
|
Eichler J, Koomey M. Sweet New Roles for Protein Glycosylation in Prokaryotes. Trends Microbiol 2017; 25:662-672. [PMID: 28341406 DOI: 10.1016/j.tim.2017.03.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/19/2017] [Accepted: 03/01/2017] [Indexed: 12/29/2022]
Abstract
Long-held to be a post-translational modification unique to Eukarya, it is now clear that both Bacteria and Archaea also perform protein glycosylation, namely the covalent attachment of mono- to polysaccharides to specific protein targets. At the same time, many of the roles assigned to this protein-processing event in eukaryotes, such as guiding protein folding/quality control, intracellular trafficking, dictating cellular recognition events and others, do not apply or are even irrelevant to prokaryotes. As such, protein glycosylation must serve novel functions in Bacteria and Archaea. Recent efforts have begun to elucidate some of these prokaryote-specific roles, which are addressed in this review.
Collapse
Affiliation(s)
- Jerry Eichler
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva 84105, Israel.
| | - Michael Koomey
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
92
|
A cocktail of three virulent bacteriophages prevents Vibrio cholerae infection in animal models. Nat Commun 2017; 8:14187. [PMID: 28146150 PMCID: PMC5296635 DOI: 10.1038/ncomms14187] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/05/2016] [Indexed: 12/22/2022] Open
Abstract
Effective prevention strategies will be essential in reducing disease burden due to bacterial infections. Here we harness the specificity and rapid-acting properties of bacteriophages as a potential prophylaxis therapy for cholera, a severely dehydrating disease caused by Vibrio cholerae. To this end, we test a cocktail of three virulent phages in two animal models of cholera pathogenesis (infant mouse and rabbit models). Oral administration of the phages up to 24 h before V. cholerae challenge reduces colonization of the intestinal tract and prevents cholera-like diarrhea. None of the surviving V. cholerae colonies are resistant to all three phages. Genome sequencing and variant analysis of the surviving colonies indicate that resistance to the phages is largely conferred by mutations in genes required for the production of the phage receptors. For acute infections, such as cholera, phage prophylaxis could provide a strategy to limit the impact of bacterial disease on human health.
Collapse
|
93
|
Perry BJ, Akter MS, Yost CK. The Use of Transposon Insertion Sequencing to Interrogate the Core Functional Genome of the Legume Symbiont Rhizobium leguminosarum. Front Microbiol 2016; 7:1873. [PMID: 27920770 PMCID: PMC5118466 DOI: 10.3389/fmicb.2016.01873] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/07/2016] [Indexed: 02/04/2023] Open
Abstract
The free-living legume symbiont Rhizobium leguminosarum is of significant economic value because of its ability to provide fixed nitrogen to globally important leguminous food crops, such as peas and lentils. Discovery based research into the genetics and physiology of R. leguminosarum provides the foundational knowledge necessary for understanding the bacterium's complex lifestyle, necessary for augmenting its use in an agricultural setting. Transposon insertion sequencing (INSeq) facilitates high-throughput forward genetic screening at a genomic scale to identify individual genes required for growth in a specific environment. In this study we applied INSeq to screen the genome of R. leguminosarum bv. viciae strain 3841 (RLV3841) for genes required for growth on minimal mannitol containing medium. Results from this study were contrasted with a prior INSeq experiment screened on peptide rich media to identify a common set of functional genes necessary for basic physiology. Contrasting the two growth conditions indicated that approximately 10% of the chromosome was required for growth, under both growth conditions. Specific genes that were essential to singular growth conditions were also identified. Data from INSeq screening on mannitol as a sole carbon source were used to reconstruct a metabolic map summarizing growth impaired phenotypes observed in the Embden-Meyerhof-Parnas pathway, Entner-Doudoroff pathway, pentose phosphate pathway, and tricarboxylic acid cycle. This revealed the presence of mannitol dependent and independent metabolic pathways required for growth, along with identifying metabolic steps with isozymes or possible carbon flux by-passes. Additionally, genes were identified on plasmids pRL11 and pRL12 that are likely to encode functional activities important to the central physiology of RLV3841.
Collapse
Affiliation(s)
| | - Mir S Akter
- Department of Biology, University of Regina Regina, SK, Canada
| | | |
Collapse
|
94
|
Oladokun MO, Okoh IA. Vibrio cholerae: A historical perspective and current trend. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(16)61154-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
95
|
Lourdault K, Matsunaga J, Haake DA. High-Throughput Parallel Sequencing to Measure Fitness of Leptospira interrogans Transposon Insertion Mutants during Acute Infection. PLoS Negl Trop Dis 2016; 10:e0005117. [PMID: 27824878 PMCID: PMC5100919 DOI: 10.1371/journal.pntd.0005117] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/18/2016] [Indexed: 12/19/2022] Open
Abstract
Pathogenic species of Leptospira are the causative agents of leptospirosis, a zoonotic disease that causes mortality and morbidity worldwide. The understanding of the virulence mechanisms of Leptospira spp is still at an early stage due to the limited number of genetic tools available for this microorganism. The development of random transposon mutagenesis in pathogenic strains a decade ago has contributed to the identification of several virulence factors. In this study, we used the transposon sequencing (Tn-Seq) technique, which combines transposon mutagenesis with massive parallel sequencing, to study the in vivo fitness of a pool of Leptospira interrogans mutants. We infected hamsters with a pool of 42 mutants (input pool), which included control mutants with insertions in four genes previously analyzed by virulence testing (loa22, ligB, flaA1, and lic20111) and 23 mutants with disrupted signal transduction genes. We quantified the mutants in different tissues (blood, kidney and liver) at 4 days post-challenge by high-throughput sequencing and compared the frequencies of mutants recovered from tissues to their frequencies in the input pool. Control mutants that were less fit in the Tn-Seq experiment were attenuated for virulence when tested separately in the hamster model of lethal leptospirosis. Control mutants with unaltered fitness were as virulent as the wild-type strain. We identified two mutants with the transposon inserted in the same putative adenylate/guanylate cyclase gene (lic12327) that had reduced in vivo fitness in blood, kidney and liver. Both lic12327 mutants were attenuated for virulence when tested individually in hamsters. Growth of the control mutants and lic12327 mutants in culture medium were similar to that of the wild-type strain. These results demonstrate the feasibility of screening large pools of L. interrogans transposon mutants for those with altered fitness, and potentially attenuated virulence, by transposon sequencing.
Collapse
Affiliation(s)
- Kristel Lourdault
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Departments of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - James Matsunaga
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Departments of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - David A. Haake
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Departments of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Departments of Urology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Departments of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
96
|
Freed NE, Bumann D, Silander OK. Combining Shigella Tn-seq data with gold-standard E. coli gene deletion data suggests rare transitions between essential and non-essential gene functionality. BMC Microbiol 2016; 16:203. [PMID: 27599549 PMCID: PMC5011829 DOI: 10.1186/s12866-016-0818-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/19/2016] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Gene essentiality - whether or not a gene is necessary for cell growth - is a fundamental component of gene function. It is not well established how quickly gene essentiality can change, as few studies have compared empirical measures of essentiality between closely related organisms. RESULTS Here we present the results of a Tn-seq experiment designed to detect essential protein coding genes in the bacterial pathogen Shigella flexneri 2a 2457T on a genome-wide scale. Superficial analysis of this data suggested that 481 protein-coding genes in this Shigella strain are critical for robust cellular growth on rich media. Comparison of this set of genes with a gold-standard data set of essential genes in the closely related Escherichia coli K12 BW25113 revealed that an excessive number of genes appeared essential in Shigella but non-essential in E. coli. Importantly, and in converse to this comparison, we found no genes that were essential in E. coli and non-essential in Shigella, implying that many genes were artefactually inferred as essential in Shigella. Controlling for such artefacts resulted in a much smaller set of discrepant genes. Among these, we identified three sets of functionally related genes, two of which have previously been implicated as critical for Shigella growth, but which are dispensable for E. coli growth. CONCLUSIONS The data presented here highlight the small number of protein coding genes for which we have strong evidence that their essentiality status differs between the closely related bacterial taxa E. coli and Shigella. A set of genes involved in acetate utilization provides a canonical example. These results leave open the possibility of developing strain-specific antibiotic treatments targeting such differentially essential genes, but suggest that such opportunities may be rare in closely related bacteria.
Collapse
Affiliation(s)
- Nikki E Freed
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand.,Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Dirk Bumann
- Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Olin K Silander
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand. .,Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
97
|
Fozo EM, Rucks EA. The Making and Taking of Lipids: The Role of Bacterial Lipid Synthesis and the Harnessing of Host Lipids in Bacterial Pathogenesis. Adv Microb Physiol 2016; 69:51-155. [PMID: 27720012 DOI: 10.1016/bs.ampbs.2016.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In order to survive environmental stressors, including those induced by growth in the human host, bacterial pathogens will adjust their membrane physiology accordingly. These physiological changes also include the use of host-derived lipids to alter their own membranes and feed central metabolic pathways. Within the host, the pathogen is exposed to many stressful stimuli. A resulting adaptation is for pathogens to scavenge the host environment for readily available lipid sources. The pathogen takes advantage of these host-derived lipids to increase or decrease the rigidity of their own membranes, to provide themselves with valuable precursors to feed central metabolic pathways, or to impact host signalling and processes. Within, we review the diverse mechanisms that both extracellular and intracellular pathogens employ to alter their own membranes as well as their use of host-derived lipids in membrane synthesis and modification, in order to increase survival and perpetuate disease within the human host. Furthermore, we discuss how pathogen employed mechanistic utilization of host-derived lipids allows for their persistence, survival and potentiation of disease. A more thorough understanding of all of these mechanisms will have direct consequences for the development of new therapeutics, and specifically, therapeutics that target pathogens, while preserving normal flora.
Collapse
Affiliation(s)
- E M Fozo
- University of Tennessee, Knoxville, TN, United States.
| | - E A Rucks
- Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States.
| |
Collapse
|
98
|
Abstract
UNLABELLED Transposon insertion sequencing (TIS; also known as TnSeq) is a potent approach commonly used to comprehensively define the genetic loci that contribute to bacterial fitness in diverse environments. A key presumption underlying analyses of TIS datasets is that loci with a low frequency of transposon insertions contribute to fitness. However, it is not known whether factors such as nucleoid binding proteins can alter the frequency of transposon insertion and thus whether TIS output may systematically reflect factors that are independent of the role of the loci in fitness. Here, we investigated whether the histone-like nucleoid structuring (H-NS) protein, which preferentially associates with AT-rich sequences, modulates the frequency of Mariner transposon insertion in the Vibrio cholerae genome, using comparative analysis of TIS results from wild-type (wt) and Δhns V. cholerae strains. These analyses were overlaid on gene classification based on GC content as well as on extant genome-wide identification of H-NS binding loci. Our analyses revealed a significant dearth of insertions within AT-rich loci in wt V. cholerae that was not apparent in the Δhns insertion library. Additionally, we observed a striking correlation between genetic loci that are overrepresented in the Δhns insertion library relative to their insertion frequency in wt V. cholerae and loci previously found to physically interact with H-NS. Collectively, our findings reveal that factors other than genetic fitness can systematically modulate the frequency of transposon insertions in TIS studies and add a cautionary note to interpretation of TIS data, particularly for AT-rich sequences. IMPORTANCE Transposon insertion sequencing (TIS) is often used to assess the relative frequency with which genetic loci can be disrupted, which is taken as an indicator of their importance for bacterial fitness. Here, we report that biological factors other than the relative levels of fitness of insertion mutants can influence TIS output. We found that the presence of the DNA binding protein H-NS, which preferentially recognizes AT-rich sequences, is linked to significant underrepresentation of mutations within AT-rich loci in transposon insertion libraries. Furthermore, there is a marked correspondence between loci bound by H-NS and loci with an increased frequency of disruption in a Δhns insertion library relative to a wt library. Our data suggest that factors other than genetic fitness (e.g., DNA binding proteins such as H-NS) can systematically modulate the frequency of transposon insertions in TIS studies and add a note of caution for interpretation of TIS data.
Collapse
|
99
|
Chao MC, Abel S, Davis BM, Waldor MK. The design and analysis of transposon insertion sequencing experiments. Nat Rev Microbiol 2016; 14:119-28. [PMID: 26775926 DOI: 10.1038/nrmicro.2015.7] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Transposon insertion sequencing (TIS) is a powerful approach that can be extensively applied to the genome-wide definition of loci that are required for bacterial growth under diverse conditions. However, experimental design choices and stochastic biological processes can heavily influence the results of TIS experiments and affect downstream statistical analysis. In this Opinion article, we discuss TIS experimental parameters and how these factors relate to the benefits and limitations of the various statistical frameworks that can be applied to the computational analysis of TIS data.
Collapse
Affiliation(s)
- Michael C Chao
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, USA; the Division of Infectious Disease, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA; and the Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | - Sören Abel
- Department of Pharmacy, University of Tromsø, The Arctic University of Norway, 9019 Tromsø, Norway
| | - Brigid M Davis
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, USA; the Division of Infectious Disease, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA; and the Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | - Matthew K Waldor
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, USA; the Division of Infectious Disease, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA; and the Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
100
|
Abstract
Vibrio parahaemolyticus is the most common cause of seafood-borne gastroenteritis worldwide and a blight on global aquaculture. This organism requires a horizontally acquired type III secretion system (T3SS2) to infect the small intestine, but knowledge of additional factors that underlie V. parahaemolyticus pathogenicity is limited. We used transposon-insertion sequencing to screen for genes that contribute to viability of V. parahaemolyticus in vitro and in the mammalian intestine. Our analysis enumerated and controlled for the host infection bottleneck, enabling robust assessment of genetic contributions to in vivo fitness. We identified genes that contribute to V. parahaemolyticus colonization of the intestine independent of known virulence mechanisms in addition to uncharacterized components of T3SS2. Our study revealed that toxR, an ancestral locus in Vibrio species, is required for V. parahaemolyticus fitness in vivo and for induction of T3SS2 gene expression. The regulatory mechanism by which V. parahaemolyticus ToxR activates expression of T3SS2 resembles Vibrio cholerae ToxR regulation of distinct virulence elements acquired via lateral gene transfer. Thus, disparate horizontally acquired virulence systems have been placed under the control of this ancestral transcription factor across independently evolved human pathogens.
Collapse
|