51
|
Seidi A, Muellner-Wong LS, Rajendran E, Tjhin ET, Dagley LF, Aw VYT, Faou P, Webb AI, Tonkin CJ, van Dooren GG. Elucidating the mitochondrial proteome of Toxoplasma gondii reveals the presence of a divergent cytochrome c oxidase. eLife 2018; 7:e38131. [PMID: 30204084 PMCID: PMC6156079 DOI: 10.7554/elife.38131] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 09/09/2018] [Indexed: 12/17/2022] Open
Abstract
The mitochondrion of apicomplexan parasites is critical for parasite survival, although the full complement of proteins that localize to this organelle has not been defined. Here we undertake two independent approaches to elucidate the mitochondrial proteome of the apicomplexan Toxoplasma gondii. We identify approximately 400 mitochondrial proteins, many of which lack homologs in the animals that these parasites infect, and most of which are important for parasite growth. We demonstrate that one such protein, termed TgApiCox25, is an important component of the parasite cytochrome c oxidase (COX) complex. We identify numerous other apicomplexan-specific components of COX, and conclude that apicomplexan COX, and apicomplexan mitochondria more generally, differ substantially in their protein composition from the hosts they infect. Our study highlights the diversity that exists in mitochondrial proteomes across the eukaryotic domain of life, and provides a foundation for defining unique aspects of mitochondrial biology in an important phylum of parasites.
Collapse
Affiliation(s)
- Azadeh Seidi
- Research School of BiologyAustralian National UniversityCanberraAustralia
| | | | - Esther Rajendran
- Research School of BiologyAustralian National UniversityCanberraAustralia
| | - Edwin T Tjhin
- Research School of BiologyAustralian National UniversityCanberraAustralia
| | - Laura F Dagley
- The Walter and Eliza Hall Institute of Medical ResearchVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneVictoriaAustralia
| | - Vincent YT Aw
- Research School of BiologyAustralian National UniversityCanberraAustralia
| | - Pierre Faou
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular Science, La Trobe UniversityVictoriaAustralia
| | - Andrew I Webb
- The Walter and Eliza Hall Institute of Medical ResearchVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneVictoriaAustralia
| | - Christopher J Tonkin
- The Walter and Eliza Hall Institute of Medical ResearchVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneVictoriaAustralia
| | - Giel G van Dooren
- Research School of BiologyAustralian National UniversityCanberraAustralia
| |
Collapse
|
52
|
Hortua Triana MA, Márquez-Nogueras KM, Vella SA, Moreno SNJ. Calcium signaling and the lytic cycle of the Apicomplexan parasite Toxoplasma gondii. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1846-1856. [PMID: 30992126 DOI: 10.1016/j.bbamcr.2018.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 01/24/2023]
Abstract
Toxoplasma gondii has a complex life cycle involving different hosts and is dependent on fast responses, as the parasite reacts to changing environmental conditions. T. gondii causes disease by lysing the host cells that it infects and it does this by reiterating its lytic cycle, which consists of host cell invasion, replication inside the host cell, and egress causing host cell lysis. Calcium ion (Ca2+) signaling triggers activation of molecules involved in the stimulation and enhancement of each step of the parasite lytic cycle. Ca2+ signaling is essential for the cellular and developmental changes that support T. gondii parasitism. The characterization of the molecular players and pathways directly activated by Ca2+ signaling in Toxoplasma is sketchy and incomplete. The evolutionary distance between Toxoplasma and other eukaryotic model systems makes the comparison sometimes not informative. The advent of new genomic information and new genetic tools applicable for studying Toxoplasma biology is rapidly changing this scenario. The Toxoplasma genome reveals the presence of many genes potentially involved in Ca2+ signaling, even though the role of most of them is not known. The use of Genetically Encoded Calcium Indicators (GECIs) has allowed studies on the role of novel calcium-related proteins on egress, an essential step for the virulence and dissemination of Toxoplasma. In addition, the discovery of new Ca2+ players is generating novel targets for drugs, vaccines, and diagnostic tools and a better understanding of the biology of these parasites.
Collapse
Affiliation(s)
| | | | - Stephen A Vella
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Silvia N J Moreno
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA; Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
53
|
Preisner H, Habicht J, Garg SG, Gould SB. Intermediate filament protein evolution and protists. Cytoskeleton (Hoboken) 2018; 75:231-243. [PMID: 29573204 DOI: 10.1002/cm.21443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/02/2018] [Accepted: 03/12/2018] [Indexed: 01/20/2023]
Abstract
Metazoans evolved from a single protist lineage. While all eukaryotes share a conserved actin and tubulin-based cytoskeleton, it is commonly perceived that intermediate filaments (IFs), including lamin, vimentin or keratin among many others, are restricted to metazoans. Actin and tubulin proteins are conserved enough to be detectable across all eukaryotic genomes using standard phylogenetic methods, but IF proteins, in contrast, are notoriously difficult to identify by such means. Since the 1950s, dozens of cytoskeletal proteins in protists have been identified that seemingly do not belong to any of the IF families described for metazoans, yet, from a structural and functional perspective fit criteria that define metazoan IF proteins. Here, we briefly review IF protein discovery in metazoans and the implications this had for the definition of this protein family. We argue that the many cytoskeletal and filament-forming proteins of protists should be incorporated into a more comprehensive picture of IF evolution by aligning it with the recent identification of lamins across the phylogenetic diversity of eukaryotic supergroups. This then brings forth the question of how the diversity of IF proteins has unfolded. The evolution of IF proteins likely represents an example of convergent evolution, which, in combination with the speed with which these cytoskeletal proteins are evolving, generated their current diversity. IF proteins did not first emerge in metazoa, but in protists. Only the emergence of cytosolic IF proteins that appear to stem from a nuclear lamin is unique to animals and coincided with the emergence of true animal multicellularity.
Collapse
Affiliation(s)
- Harald Preisner
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jörn Habicht
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
54
|
A conserved ankyrin repeat-containing protein regulates conoid stability, motility and cell invasion in Toxoplasma gondii. Nat Commun 2017; 8:2236. [PMID: 29269729 PMCID: PMC5740107 DOI: 10.1038/s41467-017-02341-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/22/2017] [Indexed: 11/08/2022] Open
Abstract
Apicomplexan parasites are typified by an apical complex that contains a unique microtubule-organizing center (MTOC) that organizes the cytoskeleton. In apicomplexan parasites such as Toxoplasma gondii, the apical complex includes a spiral cap of tubulin-rich fibers called the conoid. Although described ultrastructurally, the composition and functions of the conoid are largely unknown. Here, we localize 11 previously undescribed apical proteins in T. gondii and identify an essential component named conoid protein hub 1 (CPH1), which is conserved in apicomplexan parasites. CPH1 contains ankyrin repeats that are required for structural integrity of the conoid, parasite motility, and host cell invasion. Proximity labeling and protein interaction network analysis reveal that CPH1 functions as a hub linking key motor and structural proteins that contain intrinsically disordered regions and coiled coil domains. Our findings highlight the importance of essential protein hubs in controlling biological networks of MTOCs in early-branching protozoan parasites. Apicomplexan parasites such as Toxoplasma gondii possess a tubulin-rich structure called the conoid. Here, Long et al. identify a conoid protein that interacts with motor and structural proteins and is required for structural integrity of the conoid, parasite motility, and host cell invasion.
Collapse
|
55
|
Saini E, Zeeshan M, Brady D, Pandey R, Kaiser G, Koreny L, Kumar P, Thakur V, Tatiya S, Katris NJ, Limenitakis RS, Kaur I, Green JL, Bottrill AR, Guttery DS, Waller RF, Heussler V, Holder AA, Mohmmed A, Malhotra P, Tewari R. Photosensitized INA-Labelled protein 1 (PhIL1) is novel component of the inner membrane complex and is required for Plasmodium parasite development. Sci Rep 2017; 7:15577. [PMID: 29138437 PMCID: PMC5686188 DOI: 10.1038/s41598-017-15781-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/01/2017] [Indexed: 11/09/2022] Open
Abstract
Plasmodium parasites, the causative agents of malaria, possess a distinctive membranous structure of flattened alveolar vesicles supported by a proteinaceous network, and referred to as the inner membrane complex (IMC). The IMC has a role in actomyosin-mediated motility and host cell invasion. Here, we examine the location, protein interactome and function of PhIL1, an IMC-associated protein on the motile and invasive stages of both human and rodent parasites. We show that PhIL1 is located in the IMC in all three invasive (merozoite, ookinete-, and sporozoite) stages of development, as well as in the male gametocyte and locates both at the apical and basal ends of ookinete and sporozoite stages. Proteins interacting with PhIL1 were identified, showing that PhIL1 was bound to only some proteins present in the glideosome motor complex (GAP50, GAPM1–3) of both P. falciparum and P. berghei. Analysis of PhIL1 function using gene targeting approaches indicated that the protein is required for both asexual and sexual stages of development. In conclusion, we show that PhIL1 is required for development of all zoite stages of Plasmodium and it is part of a novel protein complex with an overall composition overlapping with but different to that of the glideosome.
Collapse
Affiliation(s)
- Ekta Saini
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Mohammad Zeeshan
- School of Life Sciences, University of Nottingham, Nottingham, NG72UH, UK
| | - Declan Brady
- School of Life Sciences, University of Nottingham, Nottingham, NG72UH, UK
| | - Rajan Pandey
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Gesine Kaiser
- Institute of Cell Biology, University of Bern, Bern, 3012, Switzerland
| | - Ludek Koreny
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Pradeep Kumar
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Vandana Thakur
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Shreyansh Tatiya
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Nicholas J Katris
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | | | - Inderjeet Kaur
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | | | - Andrew R Bottrill
- Protein and Nucleic Acid Chemistry Laboratory, University of Leicester, Leicester, LE2 7LX, UK
| | - David S Guttery
- Department of Cancer studies, University of Leicester, Leicester, LE2 7LX, UK
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Volker Heussler
- Institute of Cell Biology, University of Bern, Bern, 3012, Switzerland
| | | | - Asif Mohmmed
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Pawan Malhotra
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| | - Rita Tewari
- School of Life Sciences, University of Nottingham, Nottingham, NG72UH, UK.
| |
Collapse
|
56
|
|
57
|
Yurayart N, Kaewthamasorn M, Tiawsirisup S. Vector competence of Aedes albopictus (Skuse) and Aedes aegypti (Linnaeus) for Plasmodium gallinaceum infection and transmission. Vet Parasitol 2017; 241:20-25. [DOI: 10.1016/j.vetpar.2017.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 05/03/2017] [Accepted: 05/06/2017] [Indexed: 10/19/2022]
|
58
|
Calmodulin-like proteins localized to the conoid regulate motility and cell invasion by Toxoplasma gondii. PLoS Pathog 2017; 13:e1006379. [PMID: 28475612 PMCID: PMC5435356 DOI: 10.1371/journal.ppat.1006379] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/17/2017] [Accepted: 04/26/2017] [Indexed: 01/09/2023] Open
Abstract
Toxoplasma gondii contains an expanded number of calmodulin (CaM)-like proteins whose functions are poorly understood. Using a combination of CRISPR/Cas9-mediated gene editing and a plant-like auxin-induced degron (AID) system, we examined the roles of three apically localized CaMs. CaM1 and CaM2 were individually dispensable, but loss of both resulted in a synthetic lethal phenotype. CaM3 was refractory to deletion, suggesting it is essential. Consistent with this prediction auxin-induced degradation of CaM3 blocked growth. Phenotypic analysis revealed that all three CaMs contribute to parasite motility, invasion, and egress from host cells, and that they act downstream of microneme and rhoptry secretion. Super-resolution microscopy localized all three CaMs to the conoid where they overlap with myosin H (MyoH), a motor protein that is required for invasion. Biotinylation using BirA fusions with the CaMs labeled a number of apical proteins including MyoH and its light chain MLC7, suggesting they may interact. Consistent with this hypothesis, disruption of MyoH led to degradation of CaM3, or redistribution of CaM1 and CaM2. Collectively, our findings suggest these CaMs may interact with MyoH to control motility and cell invasion. One of the most common motifs that binds calcium to transduce intracellular signals is called an EF hand- named after the globular domain structure first characterized in ovalbumin. A conserved cluster of four EF hands, each of which that binds one calcium atom, is a conserved feature of calmodulin, centrins, and calmodulin-like proteins, including myosin light chains. Although the presence of EF hands is predictive of calcium binding, it alone does not allow classification of biological function as this set of conserved proteins have very diverse functions. Here we used modified editing procedures based on CRISPR/Cas9 combined with a plant-like degradation system to define the roles of three calmodulin-like proteins in T. gondii. These proteins all localized to a specialized apical structure called the conoid where they overlap with the motor protein called MyoH. Additionally, biochemical and genetic studies suggest they coordinately regulate cell invasion. These new genomic editing tools, combined with an efficient system for protein degradation, expand the functional tool kit for an analysis of essential genes and proteins in T. gondii.
Collapse
|
59
|
Murray JM. An icosahedral virus as a fluorescent calibration standard: a method for counting protein molecules in cells by fluorescence microscopy. J Microsc 2017; 267:193-213. [PMID: 28328099 DOI: 10.1111/jmi.12559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/18/2017] [Accepted: 02/21/2017] [Indexed: 11/29/2022]
Abstract
The ability to replace genes coding for cellular proteins with DNA that codes for fluorescent protein-tagged versions opens the way to counting the number of molecules of each protein component of macromolecular assemblies in vivo by measuring fluorescence microscopically. Converting fluorescence to absolute numbers of molecules requires a fluorescent standard whose molecular composition is known precisely. In this report, the construction, properties and mode of using a set of fluorescence calibration standards are described. The standards are based on an icosahedral virus engineered to contain exactly 240 copies of one of seven different fluorescent proteins. Two applications of the fluorescent standards to counting molecules in the human parasite Toxoplasma gondii are described. Methods for improving the preciseness of the measurements and minimizing potential inaccuracies are emphasized.
Collapse
Affiliation(s)
- John M Murray
- Department of Biology, Indiana University, Bloomington, Indiana, U.S.A
| |
Collapse
|
60
|
Leung JM, He Y, Zhang F, Hwang YC, Nagayasu E, Liu J, Murray JM, Hu K. Stability and function of a putative microtubule-organizing center in the human parasite Toxoplasma gondii. Mol Biol Cell 2017; 28:1361-1378. [PMID: 28331073 PMCID: PMC5426850 DOI: 10.1091/mbc.e17-01-0045] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/03/2017] [Accepted: 03/17/2017] [Indexed: 12/17/2022] Open
Abstract
KinesinA and APR1 maintain the stability of the apical polar ring, a putative organizing center for the 22 cortical microtubules of Toxoplasma. Parasites lacking these two proteins are defective in invasion, motility, secretion, and growth but can still make 22 cortical microtubules, suggesting that ring stability is not tightly coupled to templating. The organization of the microtubule cytoskeleton is dictated by microtubule nucleators or organizing centers. Toxoplasma gondii, an important human parasite, has an array of 22 regularly spaced cortical microtubules stemming from a hypothesized organizing center, the apical polar ring. Here we examine the functions of the apical polar ring by characterizing two of its components, KinesinA and APR1, and show that its putative role in templating can be separated from its mechanical stability. Parasites that lack both KinesinA and APR1 (ΔkinesinAΔapr1) are capable of generating 22 cortical microtubules. However, the apical polar ring is fragmented in live ΔkinesinAΔapr1 parasites and is undetectable by electron microscopy after detergent extraction. Disintegration of the apical polar ring results in the detachment of groups of microtubules from the apical end of the parasite. These structural defects are linked to a diminished ability of the parasite to move and invade host cells, as well as decreased secretion of effectors important for these processes. Together the findings demonstrate the importance of the structural integrity of the apical polar ring and the microtubule array in the Toxoplasma lytic cycle, which is responsible for massive tissue destruction in acute toxoplasmosis.
Collapse
Affiliation(s)
| | - Yudou He
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Fangliang Zhang
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | | | - Eiji Nagayasu
- Department of Infectious Diseases, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Jun Liu
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - John M Murray
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Ke Hu
- Department of Biology, Indiana University, Bloomington, IN 47405
| |
Collapse
|
61
|
Rajendran E, Hapuarachchi SV, Miller CM, Fairweather SJ, Cai Y, Smith NC, Cockburn IA, Bröer S, Kirk K, van Dooren GG. Cationic amino acid transporters play key roles in the survival and transmission of apicomplexan parasites. Nat Commun 2017; 8:14455. [PMID: 28205520 PMCID: PMC5316894 DOI: 10.1038/ncomms14455] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/30/2016] [Indexed: 11/09/2022] Open
Abstract
Apicomplexans are obligate intracellular parasites that scavenge essential nutrients from their hosts via transporter proteins on their plasma membrane. The identities of the transporters that mediate amino acid uptake into apicomplexans are unknown. Here we demonstrate that members of an apicomplexan-specific protein family-the Novel Putative Transporters (NPTs)-play key roles in the uptake of cationic amino acids. We show that an NPT from Toxoplasma gondii (TgNPT1) is a selective arginine transporter that is essential for parasite survival and virulence. We also demonstrate that a homologue of TgNPT1 from the malaria parasite Plasmodium berghei (PbNPT1), shown previously to be essential for the sexual gametocyte stage of the parasite, is a cationic amino acid transporter. This reveals a role for cationic amino acid scavenging in gametocyte biology. Our study demonstrates a critical role for amino acid transporters in the survival, virulence and life cycle progression of these parasites.
Collapse
Affiliation(s)
- Esther Rajendran
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Sanduni V Hapuarachchi
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Catherine M Miller
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, Queensland 4878, Australia
| | - Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yeping Cai
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Nicholas C Smith
- Queensland Tropical Health Alliance Research Laboratory, Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Queensland 4878, Australia
| | - Ian A Cockburn
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Stefan Bröer
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Kiaran Kirk
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Giel G van Dooren
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
62
|
Morlon-Guyot J, Francia ME, Dubremetz JF, Daher W. Towards a molecular architecture of the centrosome in Toxoplasma gondii. Cytoskeleton (Hoboken) 2017; 74:55-71. [PMID: 28026138 DOI: 10.1002/cm.21353] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 12/21/2022]
Abstract
Toxoplasma gondii is the causative agent of toxoplasmosis. The pathogenicity of this unicellular parasite is tightly linked to its ability to efficiently proliferate within its host. Tachyzoites, the fast dividing form of the parasite, divide by endodyogeny. This process involves a single round of DNA replication, closed nuclear mitosis, and assembly of two daughter cells within a mother. The successful completion of endodyogeny relies on the temporal and spatial coordination of a plethora of simultaneous events. It has been shown that the Toxoplasma centrosome serves as signaling hub which nucleates spindle microtubules during mitosis and organizes the scaffolding of daughter cells components during cytokinesis. In addition, the centrosome is essential for inheriting both the apicoplast (a chloroplast-like organelle) and the Golgi apparatus. A growing body of evidence supports the notion that the T. gondii centrosome diverges in protein composition, structure and organization from its counterparts in higher eukaryotes making it an attractive source of potentially druggable targets. Here, we summarize the current knowledge on T. gondii centrosomal proteins and extend the putative centrosomal protein repertoire by in silico identification of mammalian centrosomal protein orthologs. We propose a working model for the organization and architecture of the centrosome in Toxoplasma parasites. Experimental validation of our proposed model will uncover how each predicted protein translates into the biology of centrosome, cytokinesis, karyokinesis, and organelle inheritance in Toxoplasma parasites.
Collapse
Affiliation(s)
- Juliette Morlon-Guyot
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université Montpellier, Montpellier, France
| | - Maria E Francia
- Molecular Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay
| | - Jean-François Dubremetz
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université Montpellier, Montpellier, France
| | - Wassim Daher
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université Montpellier, Montpellier, France
| |
Collapse
|
63
|
Preisner H, Karin EL, Poschmann G, Stühler K, Pupko T, Gould SB. The Cytoskeleton of Parabasalian Parasites Comprises Proteins that Share Properties Common to Intermediate Filament Proteins. Protist 2016; 167:526-543. [PMID: 27744090 DOI: 10.1016/j.protis.2016.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 08/25/2016] [Accepted: 09/02/2016] [Indexed: 01/15/2023]
Abstract
Certain protist lineages bear cytoskeletal structures that are germane to them and define their individual group. Trichomonadida are excavate parasites united by a unique cytoskeletal framework, which includes tubulin-based structures such as the pelta and axostyle, but also other filaments such as the striated costa whose protein composition remains unknown. We determined the proteome of the detergent-resistant cytoskeleton of Tetratrichomonas gallinarum. 203 proteins with homology to Trichomonas vaginalis were identified, which contain significantly more long coiled-coil regions than control protein sets. Five candidates were shown to associate with previously described cytoskeletal structures including the costa and the expression of a single T. vaginalis protein in T. gallinarum induced the formation of accumulated, striated filaments. Our data suggests that filament-forming proteins of protists other than actin and tubulin share common structural properties with metazoan intermediate filament proteins, while not being homologous. These filament-forming proteins might have evolved many times independently in eukaryotes, or simultaneously in a common ancestor but with different evolutionary trajectories downstream in different phyla. The broad variety of filament-forming proteins uncovered, and with no homologs outside of the Trichomonadida, once more highlights the diverse nature of eukaryotic proteins with the ability to form unique cytoskeletal filaments.
Collapse
Affiliation(s)
- Harald Preisner
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Eli Levy Karin
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Gereon Poschmann
- Molecular Proteomics Laboratory (MPL), BMFZ, Heinrich-Heine-University, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory (MPL), BMFZ, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tal Pupko
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
64
|
van Dooren GG, Yeoh LM, Striepen B, McFadden GI. The Import of Proteins into the Mitochondrion of Toxoplasma gondii. J Biol Chem 2016; 291:19335-50. [PMID: 27458014 DOI: 10.1074/jbc.m116.725069] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Indexed: 11/06/2022] Open
Abstract
Outside of well characterized model eukaryotes, relatively little is known about the translocons that transport proteins across the two membranes that surround the mitochondrion. Apicomplexans are a phylum of intracellular parasites that cause major diseases in humans and animals and are evolutionarily distant from model eukaryotes such as yeast. Apicomplexans harbor a mitochondrion that is essential for parasite survival and is a validated drug target. Here, we demonstrate that the apicomplexan Toxoplasma gondii harbors homologues of proteins from all the major mitochondrial protein translocons present in yeast, suggesting these arose early in eukaryotic evolution. We demonstrate that a T. gondii homologue of Tom22 (TgTom22), a central component of the translocon of the outer mitochondrial membrane (TOM) complex, is essential for parasite survival, mitochondrial protein import, and assembly of the TOM complex. We also identify and characterize a T. gondii homologue of Tom7 (TgTom7) that is important for parasite survival and mitochondrial protein import. Contrary to the role of Tom7 in yeast, TgTom7 is important for TOM complex stability, suggesting the role of this protein has diverged during eukaryotic evolution. Together, our study identifies conserved and modified features of mitochondrial protein import in apicomplexan parasites.
Collapse
Affiliation(s)
- Giel G van Dooren
- From the Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia,
| | - Lee M Yeoh
- the School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia, and
| | - Boris Striepen
- the Department of Cellular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602
| | - Geoffrey I McFadden
- the School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia, and
| |
Collapse
|
65
|
SAS6-like protein in Plasmodium indicates that conoid-associated apical complex proteins persist in invasive stages within the mosquito vector. Sci Rep 2016; 6:28604. [PMID: 27339728 PMCID: PMC4919640 DOI: 10.1038/srep28604] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/03/2016] [Indexed: 12/04/2022] Open
Abstract
The SAS6-like (SAS6L) protein, a truncated paralogue of the ubiquitous basal body/centriole protein SAS6, has been characterised recently as a flagellum protein in trypanosomatids, but associated with the conoid in apicomplexan Toxoplasma. The conoid has been suggested to derive from flagella parts, but is thought to have been lost from some apicomplexans including the malaria-causing genus Plasmodium. Presence of SAS6L in Plasmodium, therefore, suggested a possible role in flagella assembly in male gametes, the only flagellated stage. Here, we have studied the expression and role of SAS6L throughout the Plasmodium life cycle using the rodent malaria model P. berghei. Contrary to a hypothesised role in flagella, SAS6L was absent during gamete flagellum formation. Instead, SAS6L was restricted to the apical complex in ookinetes and sporozoites, the extracellular invasive stages that develop within the mosquito vector. In these stages SAS6L forms an apical ring, as we show is also the case in Toxoplasma tachyzoites. The SAS6L ring was not apparent in blood-stage invasive merozoites, indicating that the apical complex is differentiated between the different invasive forms. Overall this study indicates that a conoid-associated apical complex protein and ring structure is persistent in Plasmodium in a stage-specific manner.
Collapse
|
66
|
An evolutionarily conserved SSNA1/DIP13 homologue is a component of both basal and apical complexes of Toxoplasma gondii. Sci Rep 2016; 6:27809. [PMID: 27324377 PMCID: PMC4914967 DOI: 10.1038/srep27809] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/25/2016] [Indexed: 12/19/2022] Open
Abstract
Microtubule-based cytoskeletal structures have fundamental roles in several essential eukaryotic processes, including transport of intracellular constituents as well as ciliary and flagellar mobility. Temporal and spatial organisation of microtubules is determined by microtubule organising centers and a number of appendages and accessory proteins. Members of the SSNA1/DIP13 family are coiled coil proteins that are known to localise to microtubular structures like centrosomes and flagella, but are otherwise poorly characterised. We have identified a homologue of SSNA1/DIP13 in the parasitic protist Toxoplasma gondii and found it localises to parasite-specific cytoskeletal structures: the conoid in the apical complex of mature and dividing cells, and the basal complex in elongating daughter cells during cell division. This protein is dispensable for parasite growth in vitro. However, quite remarkably, this coiled coil protein is able to self-associate into higher order structures both in vitro and in vivo, and its overexpression is impairing parasite division.
Collapse
|
67
|
Swearingen KE, Lindner SE, Shi L, Shears MJ, Harupa A, Hopp CS, Vaughan AM, Springer TA, Moritz RL, Kappe SHI, Sinnis P. Interrogating the Plasmodium Sporozoite Surface: Identification of Surface-Exposed Proteins and Demonstration of Glycosylation on CSP and TRAP by Mass Spectrometry-Based Proteomics. PLoS Pathog 2016; 12:e1005606. [PMID: 27128092 PMCID: PMC4851412 DOI: 10.1371/journal.ppat.1005606] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 04/08/2016] [Indexed: 12/22/2022] Open
Abstract
Malaria parasite infection is initiated by the mosquito-transmitted sporozoite stage, a highly motile invasive cell that targets hepatocytes in the liver for infection. A promising approach to developing a malaria vaccine is the use of proteins located on the sporozoite surface as antigens to elicit humoral immune responses that prevent the establishment of infection. Very little of the P. falciparum genome has been considered as potential vaccine targets, and candidate vaccines have been almost exclusively based on single antigens, generating the need for novel target identification. The most advanced malaria vaccine to date, RTS,S, a subunit vaccine consisting of a portion of the major surface protein circumsporozoite protein (CSP), conferred limited protection in Phase III trials, falling short of community-established vaccine efficacy goals. In striking contrast to the limited protection seen in current vaccine trials, sterilizing immunity can be achieved by immunization with radiation-attenuated sporozoites, suggesting that more potent protection may be achievable with a multivalent protein vaccine. Here, we provide the most comprehensive analysis to date of proteins located on the surface of or secreted by Plasmodium falciparum salivary gland sporozoites. We used chemical labeling to isolate surface-exposed proteins on sporozoites and identified these proteins by mass spectrometry. We validated several of these targets and also provide evidence that components of the inner membrane complex are in fact surface-exposed and accessible to antibodies in live sporozoites. Finally, our mass spectrometry data provide the first direct evidence that the Plasmodium surface proteins CSP and TRAP are glycosylated in sporozoites, a finding that could impact the selection of vaccine antigens. Malaria remains one of the most important infectious diseases in the world, responsible for an estimated 500 million new cases and 600,000 deaths annually. The etiologic agents of the disease are protozoan parasites of the genus Plasmodium that have a complex cycle between mosquito and mammalian hosts. Though all clinical symptoms are attributable to the blood stages, it is only by attacking the transmission stages that we can make an impact on the economic and health burdens of malaria. Infection is initiated when mosquitoes inoculate sporozoites into the skin as they probe for blood. Sporozoites must locate blood vessels and enter the circulation to reach the liver where they invade and grow in hepatocytes. The inoculum is low and these early stages of infection are asymptomatic. Though the small amounts of material available for study has made large scale -omics studies difficult, killing the parasite at this stage would prevent infection and block downstream transmission to mosquitoes, thus preventing spread of disease. Here we use state-of-the-art biochemistry tools to identify the proteins on the sporozoite surface and find that two of the most studied proteins, CSP and TRAP, have post-translational modifications. These studies will aid investigations into the novel biology of sporozoites and importantly, significantly expand the pool of potential vaccine candidates.
Collapse
Affiliation(s)
| | - Scott E. Lindner
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Lirong Shi
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Melanie J. Shears
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Anke Harupa
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Christine S. Hopp
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ashley M. Vaughan
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | | | - Robert L. Moritz
- Institute for Systems Biology, Seattle, Washington, United States of America
- * E-mail: (RLM); (SHIK); (PS)
| | - Stefan H. I. Kappe
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- * E-mail: (RLM); (SHIK); (PS)
| | - Photini Sinnis
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail: (RLM); (SHIK); (PS)
| |
Collapse
|
68
|
Graindorge A, Frénal K, Jacot D, Salamun J, Marq JB, Soldati-Favre D. The Conoid Associated Motor MyoH Is Indispensable for Toxoplasma gondii Entry and Exit from Host Cells. PLoS Pathog 2016; 12:e1005388. [PMID: 26760042 PMCID: PMC4711953 DOI: 10.1371/journal.ppat.1005388] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/17/2015] [Indexed: 11/23/2022] Open
Abstract
Many members of the phylum of Apicomplexa have adopted an obligate intracellular life style and critically depend on active invasion and egress from the infected cells to complete their lytic cycle. Toxoplasma gondii belongs to the coccidian subgroup of the Apicomplexa, and as such, the invasive tachyzoite contains an organelle termed the conoid at its extreme apex. This motile organelle consists of a unique polymer of tubulin fibres and protrudes in both gliding and invading parasites. The class XIV myosin A, which is conserved across the Apicomplexa phylum, is known to critically contribute to motility, invasion and egress from infected cells. The MyoA-glideosome is anchored to the inner membrane complex (IMC) and is assumed to translocate the components of the circular junction secreted by the micronemes and rhoptries, to the rear of the parasite. Here we comprehensively characterise the class XIV myosin H (MyoH) and its associated light chains. We show that the 3 alpha-tubulin suppressor domains, located in MyoH tail, are necessary to anchor this motor to the conoid. Despite the presence of an intact MyoA-glideosome, conditional disruption of TgMyoH severely compromises parasite motility, invasion and egress from infected cells. We demonstrate that MyoH is necessary for the translocation of the circular junction from the tip of the parasite, where secretory organelles exocytosis occurs, to the apical position where the IMC starts. This study attributes for the first time a direct function of the conoid in motility and invasion, and establishes the indispensable role of MyoH in initiating the first step of motility along this unique organelle, which is subsequently relayed by MyoA to enact effective gliding and invasion. The Apicomplexa phylum groups important pathogens that infect humans and animals. Host cell invasion and egress from infected cells are key events in the lytic cycle of these obligate intracellular parasites. Host cell entry is powered by gliding motility and initiated by the discharge of apical secretory organelles at the site of contact with the host cell. Anchored to the parasite pellicle, the glideosome composed of myosin A and the gliding associated proteins is the molecular machine which translocates the secreted adhesins from the apical to the posterior pole of the parasite and hence propels the parasite into the host cell. Toxoplasma gondii exhibits a helical form of gliding motility and as member of the coccidian-subgroup of Apicomplexa possesses an apical organelle called the conoid, which protrudes during invasion and egress and consists in helically organized polymer of tubulin fibers. We have deciphered here the function of a novel myosin associated to the microtubules composing the conoid. Myosin H is essential and prerequisite for motility, invasion and egress from infected cells. This unusual motor links actin- and tubulin-based cytoskeletons and uncovers a direct role of the conoid in motility and invasion.
Collapse
Affiliation(s)
- Arnault Graindorge
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karine Frénal
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Damien Jacot
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Julien Salamun
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jean Baptiste Marq
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
69
|
Dogga SK, Bartošová-Sojková P, Lukeš J, Soldati-Favre D. Phylogeny, Morphology, and Metabolic and Invasive Capabilities of Epicellular Fish Coccidium Goussia janae. Protist 2015; 166:659-76. [PMID: 26599727 DOI: 10.1016/j.protis.2015.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/13/2015] [Accepted: 09/15/2015] [Indexed: 01/08/2023]
Abstract
To fill the knowledge gap on the biology of the fish coccidian Goussia janae, RNA extracted from exogenously sporulated oocysts was sequenced. Analysis by Trinity and Trinotate pipelines showed that 84.6% of assembled transcripts share the highest similarity with Toxoplasma gondii and Neospora caninum. Phylogenetic and interpretive analyses from RNA-seq data provide novel insight into the metabolic capabilities, composition of the invasive machinery and the phylogenetic relationships of this parasite of cold-blooded vertebrates with other coccidians. This allows re-evaluation of the phylogenetic position of G. janae and sheds light on the emergence of the highly successful obligatory intracellularity of apicomplexan parasites. G. janae possesses a partial glideosome and along with it, the metabolic capabilities and adaptions of G. janae might provide cues as to how apicomplexans adjusted to extra- or intra-cytoplasmic niches and also to become obligate intracellular parasites. Unlike the similarly localized epicellular Cryptosporidium spp., G. janae lacks the feeder organelle necessary for directly scavenging nutrients from the host. Transcriptome analysis indicates that G. janae possesses metabolic capabilities comparable to T. gondii. Additionally, this enteric coccidium might also access host cell nutrients given the presence of a recently identified gene encoding the molecular sieve at the parasitophorous vacuole membrane.
Collapse
Affiliation(s)
- Sunil Kumar Dogga
- Department of Microbiology and Molecular Medicine, University of Geneva. CMU, 1 Rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Pavla Bartošová-Sojková
- Institute of Parasitology, Biology Centre, Branišovská 31, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Branišovská 31, České Budějovice (Budweis), Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1645/31A, České Budějovice (Budweis), Czech Republic; Canadian Institute for Advanced Research, 180 Dundas St W, Toronto, ON M5G 1Z8, Canada
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva. CMU, 1 Rue Michel-Servet, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
70
|
Abstract
Toxoplasmosis is the clinical and pathological consequence of acute infection with the obligate intracellular apicomplexan parasite Toxoplasma gondii. Symptoms result from tissue destruction that accompanies lytic parasite growth. This review updates current understanding of the host cell invasion, parasite replication, and eventual egress that constitute the lytic cycle, as well as the ways T. gondii manipulates host cells to ensure its survival. Since the publication of a previous iteration of this review 15 years ago, important advances have been made in our molecular understanding of parasite growth and mechanisms of host cell egress, and knowledge of the parasite's manipulation of the host has rapidly progressed. Here we cover molecular advances and current conceptual frameworks that include each of these topics, with an eye to what may be known 15 years from now.
Collapse
Affiliation(s)
- Ira J Blader
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York 14127;
| | - Bradley I Coleman
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467; , ,
| | - Chun-Ti Chen
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467; , ,
| | - Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467; , ,
| |
Collapse
|
71
|
Targeting Toxoplasma tubules: tubulin, microtubules, and associated proteins in a human pathogen. EUKARYOTIC CELL 2014; 14:2-12. [PMID: 25380753 DOI: 10.1128/ec.00225-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite that causes serious opportunistic infections, birth defects, and blindness in humans. Microtubules are critically important components of diverse structures that are used throughout the Toxoplasma life cycle. As in other eukaryotes, spindle microtubules are required for chromosome segregation during replication. Additionally, a set of membrane-associated microtubules is essential for the elongated shape of invasive "zoites," and motility follows a spiral trajectory that reflects the path of these microtubules. Toxoplasma zoites also construct an intricate, tubulin-based apical structure, termed the conoid, which is important for host cell invasion and associates with proteins typically found in the flagellar apparatus. Last, microgametes specifically construct a microtubule-containing flagellar axoneme in order to fertilize macrogametes, permitting genetic recombination. The specialized roles of these microtubule populations are mediated by distinct sets of associated proteins. This review summarizes our current understanding of the role of tubulin, microtubule populations, and associated proteins in Toxoplasma; these components are used for both novel and broadly conserved processes that are essential for parasite survival.
Collapse
|