51
|
Feng M, Fei S, Xia J, Labropoulou V, Swevers L, Sun J. Antimicrobial Peptides as Potential Antiviral Factors in Insect Antiviral Immune Response. Front Immunol 2020; 11:2030. [PMID: 32983149 PMCID: PMC7492552 DOI: 10.3389/fimmu.2020.02030] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial peptides (AMPs) with antiviral activity (antiviral peptides: AVPs) have become a research hotspot and already show immense potential to become pharmaceutically available antiviral drugs. AVPs have exhibited huge potential in inhibiting viruses by targeting various stages of their life cycle. Insects are the most speciose group of animals that inhabit almost all ecosystems and habitats on the land and are a rich source of natural AMPs. However, insect AVP mining, functional research, and drug development are still in their infancy. This review aims to summarize the currently validated insect AVPs, explore potential new insect AVPs and to discuss their possible mechanism of synthesis and action, with a view to providing clues to unravel the mechanisms of insect antiviral immunity and to develop insect AVP-derived antiviral drugs.
Collapse
Affiliation(s)
- Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, Athens, Greece
| | - Shigang Fei
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Junming Xia
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Vassiliki Labropoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, Athens, Greece
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, Athens, Greece
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
52
|
Identification of Immune Regulatory Genes in Apis mellifera through Caffeine Treatment. INSECTS 2020; 11:insects11080516. [PMID: 32785078 PMCID: PMC7469160 DOI: 10.3390/insects11080516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023]
Abstract
Plants and pollinators are mutually beneficial: plants provide nectar as a food source and in return their pollen is disseminated by pollinators such as honeybees. Some plants secrete chemicals to deter herbivores as a protective measure, among which is caffeine, a naturally occurring, bitter tasting, and pharmacologically active secondary compound. It can be found in low concentrations in the nectars of some plants and as such, when pollinators consume nectar, they also take in small amounts of caffeine. Whilst caffeine has been indicated as an antioxidant in both mammals and insects, the effect on insect immunity is unclear. In the present study, honeybees were treated with caffeine and the expression profiles of genes involved in immune responses were measured to evaluate the influence of caffeine on immunity. In addition, honeybees were infected with deformed wing virus (DWV) to study how caffeine affects their response against pathogens. Our results showed that caffeine can increase the expression of genes involved in immunity and reduce virus copy numbers, indicating that it has the potential to help honeybees fight against viral infection. The present study provides a valuable insight into the mechanism by which honeybees react to biotic stress and how caffeine can serve as a positive contributor, thus having a potential application in beekeeping.
Collapse
|
53
|
Deng Y, Zhao H, Yang S, Zhang L, Zhang L, Hou C. Screening and Validation of Reference Genes for RT-qPCR Under Different Honey Bee Viral Infections and dsRNA Treatment. Front Microbiol 2020; 11:1715. [PMID: 32849362 PMCID: PMC7406718 DOI: 10.3389/fmicb.2020.01715] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 06/30/2020] [Indexed: 01/22/2023] Open
Abstract
Honey bee viruses are one of the most important pathogens that have contributed to the decrease in honey bee colony health. To analyze the infection dynamics of honey bee viruses, quantification of viral gene expression by RT-qPCR is necessary. However, suitable reference genes have not been reported from viral and RNAi studies of honey bee. Here, we evaluated the expression of 11 common reference genes (ache2, rps18, β-actin, tbp, tif, rpl32, gadph, ubc, α-tubulin, rpl14, and rpsa) from Apis mellifera (Am) and Apis cerana (Ac) under Israeli acute paralysis virus (IAPV), chronic bee paralysis virus (CBPV), and Chinese sacbrood virus (CSBV) infection as well as dsRNA-PGRP-SA treatment, and we confirmed their validation by evaluating the levels of the defensin 1 and prophenoloxidase (ppo) genes during viral infection. Our results showed that the expression of selected genes varied under different viral infections. ache2, rps18, β-actin, tbp, and tif can be used to normalize expression levels in Apis mellifera under IAPV infection, while the combination of actin and tif is suitable for CBPV-infected experiments. The combination of rpl14, tif, rpsa, ubc, and ache2 as well as more reference genes is suitable for CSBV treatment in Apis cerana. Rpl14, tif, rps18, ubc, and α-tubulin were the most stable reference genes under dsRNA treatment in Apis mellifera. Furthermore, the geNorm and NormFinder algorithms showed that tif was the best suitable reference gene for these four treatments. This study screened and validated suitable reference genes for the quantification of viral levels in honey bee, as well as for RNAi experiments.
Collapse
Affiliation(s)
- Yanchun Deng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangdong Academy of Science, Guangzhou, China
| | - Sa Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Li Zhang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lina Zhang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Chunsheng Hou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
54
|
Lewis SH, Ross L, Bain SA, Pahita E, Smith SA, Cordaux R, Miska EA, Lenhard B, Jiggins FM, Sarkies P. ------Widespread conservation and lineage-specific diversification of genome-wide DNA methylation patterns across arthropods. PLoS Genet 2020; 16:e1008864. [PMID: 32584820 PMCID: PMC7343188 DOI: 10.1371/journal.pgen.1008864] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 07/08/2020] [Accepted: 05/15/2020] [Indexed: 12/23/2022] Open
Abstract
Cytosine methylation is an ancient epigenetic modification yet its function and extent within genomes is highly variable across eukaryotes. In mammals, methylation controls transposable elements and regulates the promoters of genes. In insects, DNA methylation is generally restricted to a small subset of transcribed genes, with both intergenic regions and transposable elements (TEs) depleted of methylation. The evolutionary origin and the function of these methylation patterns are poorly understood. Here we characterise the evolution of DNA methylation across the arthropod phylum. While the common ancestor of the arthropods had low levels of TE methylation and did not methylate promoters, both of these functions have evolved independently in centipedes and mealybugs. In contrast, methylation of the exons of a subset of transcribed genes is ancestral and widely conserved across the phylum, but has been lost in specific lineages. A similar set of genes is methylated in all species that retained exon-enriched methylation. We show that these genes have characteristic patterns of expression correlating to broad transcription initiation sites and well-positioned nucleosomes, providing new insights into potential mechanisms driving methylation patterns over hundreds of millions of years.
Collapse
Affiliation(s)
- Samuel H. Lewis
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Laura Ross
- Institute of Evolutionary Biology, Edinburgh, United Kingdom
| | - Stevie A. Bain
- Institute of Evolutionary Biology, Edinburgh, United Kingdom
| | - Eleni Pahita
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Stephen A. Smith
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions Universite de Poitiers, France
| | - Eric A. Miska
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge, United Kingdom
| | - Boris Lenhard
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Francis M. Jiggins
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Peter Sarkies
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
55
|
Al Naggar Y, Paxton RJ. Mode of Transmission Determines the Virulence of Black Queen Cell Virus in Adult Honey Bees, Posing a Future Threat to Bees and Apiculture. Viruses 2020; 12:E535. [PMID: 32422881 PMCID: PMC7290678 DOI: 10.3390/v12050535] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/03/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
Honey bees (Apis mellifera) can be infected by many viruses, some of which pose a major threat to their health and well-being. A critical step in the dynamics of a viral infection is its mode of transmission. Here, we compared for the first time the effect of mode of horizontal transmission of Black queen cell virus (BQCV), a ubiquitous and highly prevalent virus of A. mellifera, on viral virulence in individual adult honey bees. Hosts were exposed to BQCV either by feeding (representing direct transmission) or by injection into hemolymph (analogous to indirect or vector-mediated transmission) through a controlled laboratory experimental design. Mortality, viral titer and expression of three key innate immune-related genes were then quantified. Injecting BQCV directly into hemolymph in the hemocoel resulted in far higher mortality as well as increased viral titer and significant change in the expression of key components of the RNAi pathway compared to feeding honey bees BQCV. Our results support the hypothesis that mode of horizontal transmission determines BQCV virulence in honey bees. BQCV is currently considered a benign viral pathogen of adult honey bees, possibly because its mode of horizontal transmission is primarily direct, per os. We anticipate adverse health effects on honey bees if BQCV transmission becomes vector-mediated.
Collapse
Affiliation(s)
- Yahya Al Naggar
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany;
- Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Robert J. Paxton
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany;
| |
Collapse
|
56
|
Distinct epigenomic and transcriptomic modifications associated with Wolbachia-mediated asexuality. PLoS Pathog 2020; 16:e1008397. [PMID: 32187233 PMCID: PMC7105135 DOI: 10.1371/journal.ppat.1008397] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/30/2020] [Accepted: 02/11/2020] [Indexed: 11/19/2022] Open
Abstract
Wolbachia are maternally transmitted intracellular bacteria that induce a range of pathogenic and fitness-altering effects on insect and nematode hosts. In parasitoid wasps of the genus Trichogramma, Wolbachia infection induces asexual production of females, thus increasing transmission of Wolbachia. It has been hypothesized that Wolbachia infection accompanies a modification of the host epigenome. However, to date, data on genome-wide epigenomic changes associated with Wolbachia are limited, and are often confounded by background genetic differences. Here, we took sexually reproducing Trichogramma free of Wolbachia and introgressed their genome into a Wolbachia-infected cytoplasm, converting them to Wolbachia-mediated asexuality. Wolbachia was then cured from replicates of these introgressed lines, allowing us to examine the genome-wide effects of wasps newly converted to asexual reproduction while controlling for genetic background. We thus identified gene expression and DNA methylation changes associated with Wolbachia-infection. We found no overlaps between differentially expressed genes and differentially methylated genes, indicating that Wolbachia-infection associated DNA methylation change does not directly modulate levels of gene expression. Furthermore, genes affected by these mechanisms exhibit distinct evolutionary histories. Genes differentially methylated due to the infection tended to be evolutionarily conserved. In contrast, differentially expressed genes were significantly more likely to be unique to the Trichogramma lineage, suggesting host-specific transcriptomic responses to infection. Nevertheless, we identified several novel aspects of Wolbachia-associated DNA methylation changes. Differentially methylated genes included those involved in oocyte development and chromosome segregation. Interestingly, Wolbachia-infection was associated with higher levels of DNA methylation. Additionally, Wolbachia infection reduced overall variability in gene expression, even after accounting for the effect of DNA methylation. We also identified specific cases where alternative exon usage was associated with DNA methylation changes due to Wolbachia infection. These results begin to reveal distinct genes and molecular pathways subject to Wolbachia induced epigenetic modification and/or host responses to Wolbachia-infection. Wolbachia is an extremely common endosymbiotic infection of arthropods and nematodes. One of the reasons why Wolbachia can so successfully infect diverse species is the bacterium’s ability to profoundly alter the reproductive behavior of its host. It has been proposed that Wolbachia may modify host’s epigenetic programs to alter its reproductive behavior. However, it has been difficult to study how epigenetic programs change with Wolbachia infection, due to the confounding effects of genetic backgrounds. Here, we studied host transcriptome and epigenome changes associated with Wolbachia infection in a homogenous genetic background, by carrying out an innovative introgression scheme. By doing so, we show, for the first time, high-resolution molecular consequences of intracellular infection and offer insights into epigenetic and transcriptomic regulation of invertebrates.
Collapse
|
57
|
Amiri E, Strand MK, Tarpy DR, Rueppell O. Honey Bee Queens and Virus Infections. Viruses 2020; 12:E322. [PMID: 32192060 PMCID: PMC7150968 DOI: 10.3390/v12030322] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 01/11/2023] Open
Abstract
The honey bee queen is the central hub of a colony to produce eggs and release pheromones to maintain social cohesion. Among many environmental stresses, viruses are a major concern to compromise the queen's health and reproductive vigor. Viruses have evolved numerous strategies to infect queens either via vertical transmission from the queens' parents or horizontally through the worker and drones with which she is in contact during development, while mating, and in the reproductive period in the colony. Over 30 viruses have been discovered from honey bees but only few studies exist on the pathogenicity and direct impact of viruses on the queen's phenotype. An apparent lack of virus symptoms and practical problems are partly to blame for the lack of studies, and we hope to stimulate new research and methodological approaches. To illustrate the problems, we describe a study on sublethal effects of Israeli Acute Paralysis Virus (IAPV) that led to inconclusive results. We conclude by discussing the most crucial methodological considerations and novel approaches for studying the interactions between honey bee viruses and their interactions with queen health.
Collapse
Affiliation(s)
- Esmaeil Amiri
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA;
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA;
| | - Micheline K. Strand
- Life Sciences Division, U.S. Army Research Office, CCDC-ARL, Research Triangle Park, NC 27709-2211, USA;
| | - David R. Tarpy
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA;
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA;
| |
Collapse
|
58
|
Torri A, Mongelli V, Mondotte JA, Saleh MC. Viral Infection and Stress Affect Protein Levels of Dicer 2 and Argonaute 2 in Drosophila melanogaster. Front Immunol 2020; 11:362. [PMID: 32194567 PMCID: PMC7065269 DOI: 10.3389/fimmu.2020.00362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
The small interfering RNA (siRNA) pathway of Drosophila melanogaster, mainly characterized by the activity of the enzymes Dicer 2 (Dcr-2) and Argonaute 2 (Ago-2), has been described as the major antiviral immune response. Several lines of evidence demonstrated its pivotal role in conferring resistance against viral infections at cellular and systemic level. However, only few studies have addressed the regulation and induction of this system upon infection and knowledge on stability and turnover of the siRNA pathway core components transcripts and proteins remains scarce. In the current work, we explore whether the siRNA pathway is regulated following viral infection in D. melanogaster. After infecting different fly strains with two different viruses and modes of infection, we observed changes in Dcr-2 and Ago-2 protein concentrations that were not related with changes in gene expression. This response was observed either upon viral infection or upon stress-related experimental procedure, indicating a bivalent function of the siRNA system operating as a general gene regulation rather than a specific antiviral system.
Collapse
Affiliation(s)
- Alessandro Torri
- Viruses and RNA Interference Unit, CNRS Unité Mixte de Recherche, Institut Pasteur, Paris, France
| | - Vanesa Mongelli
- Viruses and RNA Interference Unit, CNRS Unité Mixte de Recherche, Institut Pasteur, Paris, France
| | - Juan A Mondotte
- Viruses and RNA Interference Unit, CNRS Unité Mixte de Recherche, Institut Pasteur, Paris, France
| | - Maria-Carla Saleh
- Viruses and RNA Interference Unit, CNRS Unité Mixte de Recherche, Institut Pasteur, Paris, France
| |
Collapse
|
59
|
McMenamin AJ, Daughenbaugh KF, Flenniken ML. The Heat Shock Response in the Western Honey Bee (Apis mellifera) is Antiviral. Viruses 2020; 12:E245. [PMID: 32098425 PMCID: PMC7077298 DOI: 10.3390/v12020245] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/22/2022] Open
Abstract
Honey bees (Apismellifera) are an agriculturally important pollinator species that live in easily managed social groups (i.e., colonies). Unfortunately, annual losses of honey bee colonies in many parts of the world have reached unsustainable levels. Multiple abiotic and biotic stressors, including viruses, are associated with individual honey bee and colony mortality. Honey bees have evolved several antiviral defense mechanisms including conserved immune pathways (e.g., Toll, Imd, JAK/STAT) and dsRNA-triggered responses including RNA interference and a non-sequence specific dsRNA-mediated response. In addition, transcriptome analyses of virus-infected honey bees implicate an antiviral role of stress response pathways, including the heat shock response. Herein, we demonstrate that the heat shock response is antiviral in honey bees. Specifically, heat-shocked honey bees (i.e., 42 °C for 4 h) had reduced levels of the model virus, Sindbis-GFP, compared with bees maintained at a constant temperature. Virus-infection and/or heat shock resulted in differential expression of six heat shock protein encoding genes and three immune genes, many of which are positively correlated. The heat shock protein encoding and immune gene transcriptional responses observed in virus-infected bees were not completely recapitulated by administration of double stranded RNA (dsRNA), a virus-associated molecular pattern, indicating that additional virus-host interactions are involved in triggering antiviral stress response pathways.
Collapse
Affiliation(s)
- Alexander J. McMenamin
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (K.F.D.)
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Katie F. Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (K.F.D.)
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (K.F.D.)
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
60
|
Rittschof CC, Rubin BER, Palmer JH. The transcriptomic signature of low aggression in honey bees resembles a response to infection. BMC Genomics 2019; 20:1029. [PMID: 31888487 PMCID: PMC6937707 DOI: 10.1186/s12864-019-6417-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Behavior reflects an organism's health status. Many organisms display a generalized suite of behaviors that indicate infection or predict infection susceptibility. We apply this concept to honey bee aggression, a behavior that has been associated with positive health outcomes in previous studies. We sequenced the transcriptomes of the brain, fat body, and midgut of adult sibling worker bees who developed as pre-adults in relatively high versus low aggression colonies. Previous studies showed that this pre-adult experience impacts both aggressive behavior and resilience to pesticides. We performed enrichment analyses on differentially expressed genes to determine whether variation in aggression resembles the molecular response to infection. We further assessed whether the transcriptomic signature of aggression in the brain is similar to the neuromolecular response to acute predator threat, exposure to a high-aggression environment as an adult, or adult behavioral maturation. RESULTS Across all three tissues assessed, genes that are differentially expressed as a function of aggression significantly overlap with genes whose expression is modulated by a variety of pathogens and parasitic feeding. In the fat body, and to some degree the midgut, our data specifically support the hypothesis that low aggression resembles a diseased or parasitized state. However, we find little evidence of active infection in individuals from the low aggression group. We also find little evidence that the brain molecular signature of aggression is enriched for genes modulated by social cues that induce aggression in adults. However, we do find evidence that genes associated with adult behavioral maturation are enriched in our brain samples. CONCLUSIONS Results support the hypothesis that low aggression resembles a molecular state of infection. This pattern is most robust in the peripheral fat body, an immune responsive tissue in the honey bee. We find no evidence of acute infection in bees from the low aggression group, suggesting the physiological state characterizing low aggression may instead predispose bees to negative health outcomes when they are exposed to additional stressors. The similarity of molecular signatures associated with the seemingly disparate traits of aggression and disease suggests that these characteristics may, in fact, be intimately tied.
Collapse
Affiliation(s)
- Clare C Rittschof
- University of Kentucky, S-225 Agricultural Science Center North, Lexington, KY, 40546, USA.
| | - Benjamin E R Rubin
- Department of Ecology and Evolutionary Biology; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Joseph H Palmer
- Kentucky State University, 400 E. Main St., Frankfort, KY, 40601, USA
| |
Collapse
|
61
|
Tetreau G, Dhinaut J, Gourbal B, Moret Y. Trans-generational Immune Priming in Invertebrates: Current Knowledge and Future Prospects. Front Immunol 2019; 10:1938. [PMID: 31475001 PMCID: PMC6703094 DOI: 10.3389/fimmu.2019.01938] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/30/2019] [Indexed: 01/15/2023] Open
Abstract
Trans-generational immune priming (TGIP) refers to the transfer of the parental immunological experience to its progeny. This may result in offspring protection from repeated encounters with pathogens that persist across generations. Although extensively studied in vertebrates for over a century, this phenomenon has only been identified 20 years ago in invertebrates. Since then, invertebrate TGIP has been the focus of an increasing interest, with half of studies published during the last few years. TGIP has now been tested in several invertebrate systems using various experimental approaches and measures to study it at both functional and evolutionary levels. However, drawing an overall picture of TGIP from available studies still appears to be a difficult task. Here, we provide a comprehensive review of TGIP in invertebrates with the objective of confronting all the data generated to date to highlight the main features and mechanisms identified in the context of its ecology and evolution. To this purpose, we describe all the articles reporting experimental investigation of TGIP in invertebrates and propose a critical analysis of the experimental procedures performed to study this phenomenon. We then investigate the outcome of TGIP in the offspring and its ecological and evolutionary relevance before reviewing the potential molecular mechanisms identified to date. In the light of this review, we build hypothetical scenarios of the mechanisms through which TGIP might be achieved and propose guidelines for future investigations.
Collapse
Affiliation(s)
- Guillaume Tetreau
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Julien Dhinaut
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Benjamin Gourbal
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Yannick Moret
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| |
Collapse
|
62
|
Huh I, Wu X, Park T, Yi SV. Detecting differential DNA methylation from sequencing of bisulfite converted DNA of diverse species. Brief Bioinform 2019; 20:33-46. [PMID: 28981571 PMCID: PMC6357555 DOI: 10.1093/bib/bbx077] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Indexed: 12/26/2022] Open
Abstract
DNA methylation is one of the most extensively studied epigenetic modifications of genomic DNA. In recent years, sequencing of bisulfite-converted DNA, particularly via next-generation sequencing technologies, has become a widely popular method to study DNA methylation. This method can be readily applied to a variety of species, dramatically expanding the scope of DNA methylation studies beyond the traditionally studied human and mouse systems. In parallel to the increasing wealth of genomic methylation profiles, many statistical tools have been developed to detect differentially methylated loci (DMLs) or differentially methylated regions (DMRs) between biological conditions. We discuss and summarize several key properties of currently available tools to detect DMLs and DMRs from sequencing of bisulfite-converted DNA. However, the majority of the statistical tools developed for DML/DMR analyses have been validated using only mammalian data sets, and less priority has been placed on the analyses of invertebrate or plant DNA methylation data. We demonstrate that genomic methylation profiles of non-mammalian species are often highly distinct from those of mammalian species using examples of honey bees and humans. We then discuss how such differences in data properties may affect statistical analyses. Based on these differences, we provide three specific recommendations to improve the power and accuracy of DML and DMR analyses of invertebrate data when using currently available statistical tools. These considerations should facilitate systematic and robust analyses of DNA methylation from diverse species, thus advancing our understanding of DNA methylation.
Collapse
Affiliation(s)
- Iksoo Huh
- School of Biological Sciences, Georgia Institute of Technology
| | - Xin Wu
- School of Biological Sciences, Georgia Institute of Technology
| | - Taesung Park
- Department of Statistics, Seoul National University
| | - Soojin V Yi
- School of Biological Sciences, Georgia Institute of Technology
| |
Collapse
|
63
|
Rutter L, Carrillo-Tripp J, Bonning BC, Cook D, Toth AL, Dolezal AG. Transcriptomic responses to diet quality and viral infection in Apis mellifera. BMC Genomics 2019; 20:412. [PMID: 31117959 PMCID: PMC6532243 DOI: 10.1186/s12864-019-5767-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 05/03/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Parts of Europe and the United States have witnessed dramatic losses in commercially managed honey bees over the past decade to what is considered an unsustainable extent. The large-scale loss of bees has considerable implications for the agricultural economy because bees are one of the leading pollinators of numerous crops. Bee declines have been associated with several interactive factors. Recent studies suggest nutritional and pathogen stress can interactively contribute to bee physiological declines, but the molecular mechanisms underlying interactive effects remain unknown. In this study, we provide insight into this question by using RNA-sequencing to examine how monofloral diets and Israeli acute paralysis virus inoculation influence gene expression patterns in bees. RESULTS We found a considerable nutritional response, with almost 2000 transcripts changing with diet quality. The majority of these genes were over-represented for nutrient signaling (insulin resistance) and immune response (Notch signaling and JaK-STAT pathways). In our experimental conditions, the transcriptomic response to viral infection was fairly limited. We only found 43 transcripts to be differentially expressed, some with known immune functions (argonaute-2), transcriptional regulation, and muscle contraction. We created contrasts to explore whether protective mechanisms of good diet were due to direct effects on immune function (resistance) or indirect effects on energy availability (tolerance). A similar number of resistance and tolerance candidate differentially expressed genes were found, suggesting both processes may play significant roles in dietary buffering from pathogen infection. CONCLUSIONS Through transcriptional contrasts and functional enrichment analysis, we contribute to our understanding of the mechanisms underlying feedbacks between nutrition and disease in bees. We also show that comparing results derived from combined analyses across multiple RNA-seq studies may allow researchers to identify transcriptomic patterns in bees that are concurrently less artificial and less noisy. This work underlines the merits of using data visualization techniques and multiple datasets to interpret RNA-sequencing studies.
Collapse
Affiliation(s)
- Lindsay Rutter
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, 50011 IA USA
| | - Jimena Carrillo-Tripp
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada, Ensenada, 22860 Baja California Mexico
| | - Bryony C. Bonning
- Department of Entomology and Nematology, University of Florida, Gainesville, 32611 FL USA
| | - Dianne Cook
- Econometrics and Business Statistics, Monash University, Clayton, 3800 VIC Australia
| | - Amy L. Toth
- Department of Entomology, Iowa State University, Ames, 50011 IA USA
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, 50011 IA USA
| | - Adam G. Dolezal
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, 61801 IL USA
| |
Collapse
|
64
|
Sackton TB. Comparative genomics and transcriptomics of host-pathogen interactions in insects: evolutionary insights and future directions. CURRENT OPINION IN INSECT SCIENCE 2019; 31:106-113. [PMID: 31109663 DOI: 10.1016/j.cois.2018.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Classical evolutionary studies of protein-coding genes have established that genes in the canonical immune system are often among the most rapidly evolving within and between species. As more genomes and transcriptomes across insects are sequenced, it is becoming clear that duplications and losses of immune genes are also a likely consequence of host-pathogen interactions. Furthermore, particular species respond to diverse pathogenic challenges with a wide range of challenge-specific responses that are still poorly understood. Transcriptional studies, using RNA-seq to characterize the infection-regulated transcriptome of diverse insects, are crucial for additional progress in understanding the ecology and evolution of the full complexity of the host response.
Collapse
Affiliation(s)
- Timothy B Sackton
- Informatics Group, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, United States.
| |
Collapse
|
65
|
Amiri E, Seddon G, Zuluaga Smith W, Strand MK, Tarpy DR, Rueppell O. Israeli Acute Paralysis Virus: Honey Bee Queen⁻Worker Interaction and Potential Virus Transmission Pathways. INSECTS 2019; 10:E9. [PMID: 30626038 PMCID: PMC6359674 DOI: 10.3390/insects10010009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/14/2018] [Accepted: 08/28/2018] [Indexed: 11/23/2022]
Abstract
Queen loss or failure is an important cause of honey bee colony loss. A functional queen is essential to a colony, and the queen is predicted to be well protected by worker bees and other mechanisms of social immunity. Nevertheless, several honey bee pathogens (including viruses) can infect queens. Here, we report a series of experiments to test how virus infection influences queen⁻worker interactions and the consequences for virus transmission. We used Israeli acute paralysis virus (IAPV) as an experimental pathogen because it is relevant to bee health but is not omnipresent. Queens were observed spending 50% of their time with healthy workers, 32% with infected workers, and 18% without interaction. However, the overall bias toward healthy workers was not statistically significant, and there was considerable individual to individual variability. We found that physical contact between infected workers and queens leads to high queen infection in some cases, suggesting that IAPV infections also spread through close bodily contact. Across experiments, queens exhibited lower IAPV titers than surrounding workers. Thus, our results indicate that honey bee queens are better protected by individual and social immunity, but this protection is insufficient to prevent IAPV infections completely.
Collapse
Affiliation(s)
- Esmaeil Amiri
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA.
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA.
| | - Gregory Seddon
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA.
| | - Wendy Zuluaga Smith
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA.
| | - Micheline K Strand
- Life Science Division, U.S. Army Research Office, Research Triangle Park, Durham, NC 27709-2211, USA.
| | - David R Tarpy
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA.
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA.
| |
Collapse
|
66
|
Abstract
Bees-including solitary, social, wild, and managed species-are key pollinators of flowering plant species, including nearly three-quarters of global food crops. Their ecological importance, coupled with increased annual losses of managed honey bees and declines in populations of key wild species, has focused attention on the factors that adversely affect bee health, including viral pathogens. Genomic approaches have dramatically expanded understanding of the diversity of viruses that infect bees, the complexity of their transmission routes-including intergenus transmission-and the diversity of strategies bees have evolved to combat virus infections, with RNA-mediated responses playing a prominent role. Moreover, the impacts of viruses on their hosts are exacerbated by the other major stressors bee populations face, including parasites, poor nutrition, and exposure to chemicals. Unraveling the complex relationships between viruses and their bee hosts will lead to improved understanding of viral ecology and management strategies that support better bee health.
Collapse
Affiliation(s)
- Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Center for Infectious Disease Dynamics, and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA;
| | - Michelle L Flenniken
- Department of Plant Sciences and Plant Pathology and Pollinator Health Center, Montana State University, Bozeman, Montana 59717, USA;
| |
Collapse
|
67
|
Nucleic Acid Sensing in Invertebrate Antiviral Immunity. NUCLEIC ACID SENSING AND IMMUNITY - PART B 2019; 345:287-360. [DOI: 10.1016/bs.ircmb.2018.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
68
|
Jeong H, Wu X, Smith B, Yi SV. Genomic Landscape of Methylation Islands in Hymenopteran Insects. Genome Biol Evol 2018; 10:2766-2776. [PMID: 30239702 PMCID: PMC6195173 DOI: 10.1093/gbe/evy203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2018] [Indexed: 01/31/2023] Open
Abstract
Recent genome-wide DNA methylation analyses of insect genomes accentuate an intriguing contrast compared with those in mammals. In mammals, most CpGs are heavily methylated, with the exceptions of clusters of hypomethylated sites referred to as CpG islands. In contrast, DNA methylation in insects is localized to a small number of CpG sites. Here, we refer to clusters of methylated CpGs as “methylation islands (MIs),” and investigate their characteristics in seven hymenopteran insects with high-quality bisulfite sequencing data. Methylation islands were primarily located within gene bodies. They were significantly overrepresented in exon–intron boundaries, indicating their potential roles in splicing. Methylated CpGs within MIs exhibited stronger evolutionary conservation compared with those outside of MIs. Additionally, genes harboring MIs exhibited higher and more stable levels of gene expression compared with those that do not harbor MIs. The effects of MIs on evolutionary conservation and gene expression are independent and stronger than the effect of DNA methylation alone. These results indicate that MIs may be useful to gain additional insights into understanding the role of DNA methylation in gene expression and evolutionary conservation in invertebrate genomes.
Collapse
Affiliation(s)
- Hyeonsoo Jeong
- School of Biological Sciences, Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Xin Wu
- School of Biological Sciences, Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Brandon Smith
- School of Biological Sciences, Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Soojin V Yi
- School of Biological Sciences, Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
69
|
McMenamin AJ, Daughenbaugh KF, Parekh F, Pizzorno MC, Flenniken ML. Honey Bee and Bumble Bee Antiviral Defense. Viruses 2018; 10:E395. [PMID: 30060518 PMCID: PMC6115922 DOI: 10.3390/v10080395] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022] Open
Abstract
Bees are important plant pollinators in both natural and agricultural ecosystems. Managed and wild bees have experienced high average annual colony losses, population declines, and local extinctions in many geographic regions. Multiple factors, including virus infections, impact bee health and longevity. The majority of bee-infecting viruses are positive-sense single-stranded RNA viruses. Bee-infecting viruses often cause asymptomatic infections but may also cause paralysis, deformity or death. The severity of infection is governed by bee host immune responses and influenced by additional biotic and abiotic factors. Herein, we highlight studies that have contributed to the current understanding of antiviral defense in bees, including the Western honey bee (Apis mellifera), the Eastern honey bee (Apis cerana) and bumble bee species (Bombus spp.). Bee antiviral defense mechanisms include RNA interference (RNAi), endocytosis, melanization, encapsulation, autophagy and conserved immune pathways including Jak/STAT (Janus kinase/signal transducer and activator of transcription), JNK (c-Jun N-terminal kinase), MAPK (mitogen-activated protein kinases) and the NF-κB mediated Toll and Imd (immune deficiency) pathways. Studies in Dipteran insects, including the model organism Drosophila melanogaster and pathogen-transmitting mosquitos, provide the framework for understanding bee antiviral defense. However, there are notable differences such as the more prominent role of a non-sequence specific, dsRNA-triggered, virus limiting response in honey bees and bumble bees. This virus-limiting response in bees is akin to pathways in a range of organisms including other invertebrates (i.e., oysters, shrimp and sand flies), as well as the mammalian interferon response. Current and future research aimed at elucidating bee antiviral defense mechanisms may lead to development of strategies that mitigate bee losses, while expanding our understanding of insect antiviral defense and the potential evolutionary relationship between sociality and immune function.
Collapse
Affiliation(s)
- Alexander J McMenamin
- Department of Plant Sciences and Plant Pathology, Bozeman, MT 59717, USA.
- Department of Microbiology and Immunology, Bozeman, MT 59717, USA.
- Center for Pollinator Health, Montana State University, Bozeman, MT 59717, USA.
| | - Katie F Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Bozeman, MT 59717, USA.
- Center for Pollinator Health, Montana State University, Bozeman, MT 59717, USA.
| | - Fenali Parekh
- Department of Plant Sciences and Plant Pathology, Bozeman, MT 59717, USA.
- Department of Microbiology and Immunology, Bozeman, MT 59717, USA.
- Center for Pollinator Health, Montana State University, Bozeman, MT 59717, USA.
| | - Marie C Pizzorno
- Biology Department, Bucknell University, Lewisburg, PA 17837, USA.
| | - Michelle L Flenniken
- Department of Plant Sciences and Plant Pathology, Bozeman, MT 59717, USA.
- Department of Microbiology and Immunology, Bozeman, MT 59717, USA.
- Center for Pollinator Health, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
70
|
Ferreira FV, Aguiar ERGR, Olmo RP, de Oliveira KPV, Silva EG, Sant'Anna MRV, Gontijo NDF, Kroon EG, Imler JL, Marques JT. The small non-coding RNA response to virus infection in the Leishmania vector Lutzomyia longipalpis. PLoS Negl Trop Dis 2018; 12:e0006569. [PMID: 29864168 PMCID: PMC6002125 DOI: 10.1371/journal.pntd.0006569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 06/14/2018] [Accepted: 05/30/2018] [Indexed: 12/30/2022] Open
Abstract
Sandflies are well known vectors for Leishmania but also transmit a number of arthropod-borne viruses (arboviruses). Few studies have addressed the interaction between sandflies and arboviruses. RNA interference (RNAi) mechanisms utilize small non-coding RNAs to regulate different aspects of host-pathogen interactions. The small interfering RNA (siRNA) pathway is a broad antiviral mechanism in insects. In addition, at least in mosquitoes, another RNAi mechanism mediated by PIWI interacting RNAs (piRNAs) is activated by viral infection. Finally, endogenous microRNAs (miRNA) may also regulate host immune responses. Here, we analyzed the small non-coding RNA response to Vesicular stomatitis virus (VSV) infection in the sandfly Lutzoymia longipalpis. We detected abundant production of virus-derived siRNAs after VSV infection in adult sandflies. However, there was no production of virus-derived piRNAs and only mild changes in the expression of vector miRNAs in response to infection. We also observed abundant production of virus-derived siRNAs against two other viruses in Lutzomyia Lulo cells. Together, our results suggest that the siRNA but not the piRNA pathway mediates an antiviral response in sandflies. In agreement with this hypothesis, pre-treatment of cells with dsRNA against VSV was able to inhibit viral replication while knock-down of the central siRNA component, Argonaute-2, led to increased virus levels. Our work begins to elucidate the role of RNAi mechanisms in the interaction between L. longipalpis and viruses and should also open the way for studies with other sandfly-borne pathogens. Sandflies are important insect vectors that transmit many species of Leishmania, bacteria and viruses. We know very little about how this insect vector responds to viral infection. RNA interference (RNAi) utilizes small non-coding RNAs to regulate different aspects of animal physiology, including immune responses. Small interfering RNAs (siRNAs) mediate a major antiviral response in insects. Virus-derived PIWI-interacting RNAs (piRNAs) can also be generated during infection, at least in some insects. Finally, endogenous microRNAs (miRNA) can regulate the host response to infection. Here we show that virus infection triggers activation of the siRNA pathway but not production of piRNAs in the sandfly Lutzomyia longipalpis. Furthermore, activation or inhibition of the siRNA pathway had a direct effect on viral replication. We also show that virus infection caused mild changes to the expression of endogenous miRNAs. Our work describes for the first time a model to study virus infection in sandflies and highlights the importance of the siRNA pathway for the control of virus infection in L. longipalpis. The framework described here can be used to explore other aspects of the vector-pathogen interactions.
Collapse
Affiliation(s)
- Flávia Viana Ferreira
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eric Roberto Guimarães Rocha Aguiar
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Roenick Proveti Olmo
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karla Pollyanna Vieira de Oliveira
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Emanuele Guimarães Silva
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maurício Roberto Viana Sant'Anna
- Department of Parasitology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nelder de Figueiredo Gontijo
- Department of Parasitology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Erna Geessien Kroon
- Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jean Luc Imler
- Université de Strasbourg, CNRS M3I/UPR9022, Inserm MIR/U1257, Strasbourg, France
| | - João Trindade Marques
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
71
|
Lindsey ARI, Kelkar YD, Wu X, Sun D, Martinson EO, Yan Z, Rugman-Jones PF, Hughes DST, Murali SC, Qu J, Dugan S, Lee SL, Chao H, Dinh H, Han Y, Doddapaneni HV, Worley KC, Muzny DM, Ye G, Gibbs RA, Richards S, Yi SV, Stouthamer R, Werren JH. Comparative genomics of the miniature wasp and pest control agent Trichogramma pretiosum. BMC Biol 2018; 16:54. [PMID: 29776407 PMCID: PMC5960102 DOI: 10.1186/s12915-018-0520-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/20/2018] [Indexed: 12/25/2022] Open
Abstract
Background Trichogrammatids are minute parasitoid wasps that develop within other insect eggs. They are less than half a millimeter long, smaller than some protozoans. The Trichogrammatidae are one of the earliest branching families of Chalcidoidea: a diverse superfamily of approximately half a million species of parasitoid wasps, proposed to have evolved from a miniaturized ancestor. Trichogramma are frequently used in agriculture, released as biological control agents against major moth and butterfly pests. Additionally, Trichogramma are well known for their symbiotic bacteria that induce asexual reproduction in infected females. Knowledge of the genome sequence of Trichogramma is a major step towards further understanding its biology and potential applications in pest control. Results We report the 195-Mb genome sequence of Trichogramma pretiosum and uncover signatures of miniaturization and adaptation in Trichogramma and related parasitoids. Comparative analyses reveal relatively rapid evolution of proteins involved in ribosome biogenesis and function, transcriptional regulation, and ploidy regulation. Chalcids also show loss or especially rapid evolution of 285 gene clusters conserved in other Hymenoptera, including many that are involved in signal transduction and embryonic development. Comparisons between sexual and asexual lineages of Trichogramma pretiosum reveal that there is no strong evidence for genome degradation (e.g., gene loss) in the asexual lineage, although it does contain a lower repeat content than the sexual lineage. Trichogramma shows particularly rapid genome evolution compared to other hymenopterans. We speculate these changes reflect adaptations to miniaturization, and to life as a specialized egg parasitoid. Conclusions The genomes of Trichogramma and related parasitoids are a valuable resource for future studies of these diverse and economically important insects, including explorations of parasitoid biology, symbiosis, asexuality, biological control, and the evolution of miniaturization. Understanding the molecular determinants of parasitism can also inform mass rearing of Trichogramma and other parasitoids for biological control. Electronic supplementary material The online version of this article (10.1186/s12915-018-0520-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amelia R I Lindsey
- Department of Entomology, University of California Riverside, Riverside, California, 92521, USA. .,Present Address: Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA.
| | - Yogeshwar D Kelkar
- Department of Biology, University of Rochester, Rochester, New York, 14627, USA
| | - Xin Wu
- School of Biological Sciences, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Dan Sun
- School of Biological Sciences, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Ellen O Martinson
- Department of Biology, University of Rochester, Rochester, New York, 14627, USA.,Present Address: Department of Entomology, University of Georgia, Athens, Georgia, 30602, USA
| | - Zhichao Yan
- Department of Biology, University of Rochester, Rochester, New York, 14627, USA.,State Key Laboratory of Rice Biology & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Paul F Rugman-Jones
- Department of Entomology, University of California Riverside, Riverside, California, 92521, USA
| | - Daniel S T Hughes
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Shwetha C Murali
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Yi Han
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Harsha Vardhan Doddapaneni
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Soojin V Yi
- School of Biological Sciences, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Richard Stouthamer
- Department of Entomology, University of California Riverside, Riverside, California, 92521, USA.
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, New York, 14627, USA.
| |
Collapse
|
72
|
Lindsey ARI, Kelkar YD, Wu X, Sun D, Martinson EO, Yan Z, Rugman-Jones PF, Hughes DST, Murali SC, Qu J, Dugan S, Lee SL, Chao H, Dinh H, Han Y, Doddapaneni HV, Worley KC, Muzny DM, Ye G, Gibbs RA, Richards S, Yi SV, Stouthamer R, Werren JH. Comparative genomics of the miniature wasp and pest control agent Trichogramma pretiosum. BMC Biol 2018. [DOI: 10.1186/s12915-018-0520-9 10.1186/s12915-018-0520-9 [pii]] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
73
|
Gourbal B, Pinaud S, Beckers GJM, Van Der Meer JWM, Conrath U, Netea MG. Innate immune memory: An evolutionary perspective. Immunol Rev 2018; 283:21-40. [DOI: 10.1111/imr.12647] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Benjamin Gourbal
- Interactions Hosts Pathogens Environments UMR 5244; University of Perpignan Via Domitia; CNRS; IFREMER, Univ. Montpellier; Perpignan France
| | - Silvain Pinaud
- Interactions Hosts Pathogens Environments UMR 5244; University of Perpignan Via Domitia; CNRS; IFREMER, Univ. Montpellier; Perpignan France
| | | | - Jos W. M. Van Der Meer
- Department of Internal Medicine and Radboud Center for Infectious Diseases; Radboud University Medical Center; Nijmegen The Netherlands
| | - Uwe Conrath
- Department of Plant Physiology; RWTH Aachen University; Aachen Germany
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases; Radboud University Medical Center; Nijmegen The Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES); University of Bonn; Bonn Germany
| |
Collapse
|
74
|
Wu P, Jie W, Shang Q, Annan E, Jiang X, Hou C, Chen T, Guo X. DNA methylation in silkworm genome may provide insights into epigenetic regulation of response to Bombyx mori cypovirus infection. Sci Rep 2017; 7:16013. [PMID: 29167521 PMCID: PMC5700172 DOI: 10.1038/s41598-017-16357-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/10/2017] [Indexed: 12/27/2022] Open
Abstract
DNA methylation is an important epigenetic modification that regulates a wide range of biological processes including immune response. However, information on the epigenetics-mediated immune mechanisms in insects is limited. Therefore, in this study, we examined transcriptomes and DNA methylomes in the fat body and midgut tissues of silkworm, Bombyx mori with or without B. mori cytoplasmic polyhedrosis virus (BmCPV) infection. The transcriptional profile and the genomic DNA methylation patterns in the midgut and fat body were tissue-specific and dynamically altered after BmCPV challenge. KEGG pathway analysis revealed that differentially methylated genes (DMGs) could be involved in pathways of RNA transport, RNA degradation, nucleotide excision repair, DNA replication, etc. 27 genes were shown to have both differential expression and differential methylation in the midgut and fat body of infected larvae, respectively, indicating that the BmCPV infection-induced expression changes of these genes could be mediated by variations in DNA methylation. BS-PCR validated the hypomethylation of G2/M phase-specific E3 ubiquitin-protein ligase-like gene in the BmCPV infected midgut. These results demonstrated that epigenetic regulation may play roles in host-virus interaction in silkworm and would be potential value for further studies on mechanism of BmCPV epithelial-specific infection and epigenetic regulation in the silkworm.
Collapse
Affiliation(s)
- Ping Wu
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Wencai Jie
- Beijing Genomics Institute (BGI), Shenzhen, Guangdong, China
| | - Qi Shang
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Enoch Annan
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Xiaoxu Jiang
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Chenxiang Hou
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Tao Chen
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Xijie Guo
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China.
| |
Collapse
|
75
|
RNA interference in the Asian Longhorned Beetle:Identification of Key RNAi Genes and Reference Genes for RT-qPCR. Sci Rep 2017; 7:8913. [PMID: 28827780 PMCID: PMC5566337 DOI: 10.1038/s41598-017-08813-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/18/2017] [Indexed: 12/14/2022] Open
Abstract
Asian Longhorned Beetle (ALB) Anoplophora glabripennis is a serious invasive forest pest in several countries including the United States, Canada, and Europe. RNA interference (RNAi) technology is being developed as a novel method for pest management. Here, we identified the ALB core RNAi genes including those coding for Dicer, Argonaute, and double-stranded RNA-binding proteins (dsRBP) as well as for proteins involved in dsRNA transport and the systemic RNAi. We also compared expression of six potential reference genes that could be used to normalize gene expression and selected gapdh and rpl32 as the most reliable genes among different tissues and stages of ALB. Injection of double-stranded RNA (dsRNA) targeting gene coding for inhibitor of apoptosis (IAP) into larvae and adults resulted in a significant knockdown of this gene and caused the death of 90% of the larvae and 100% of adults. No mortality of both larvae and adults injected with dsRNA targeting gene coding for green fluorescence protein (GFP, as a negative control) was observed. These data suggest that functional RNAi machinery exists in ALB and a potential RNAi-based method could be developed for controlling this insect.
Collapse
|
76
|
Brutscher LM, Daughenbaugh KF, Flenniken ML. Virus and dsRNA-triggered transcriptional responses reveal key components of honey bee antiviral defense. Sci Rep 2017; 7:6448. [PMID: 28743868 PMCID: PMC5526946 DOI: 10.1038/s41598-017-06623-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/04/2017] [Indexed: 12/22/2022] Open
Abstract
Recent high annual losses of honey bee colonies are associated with many factors, including RNA virus infections. Honey bee antiviral responses include RNA interference and immune pathway activation, but their relative roles in antiviral defense are not well understood. To better characterize the mechanism(s) of honey bee antiviral defense, bees were infected with a model virus in the presence or absence of dsRNA, a virus associated molecular pattern. Regardless of sequence specificity, dsRNA reduced virus abundance. We utilized next generation sequencing to examine transcriptional responses triggered by virus and dsRNA at three time-points post-infection. Hundreds of genes exhibited differential expression in response to co-treatment of dsRNA and virus. Virus-infected bees had greater expression of genes involved in RNAi, Toll, Imd, and JAK-STAT pathways, but the majority of differentially expressed genes are not well characterized. To confirm the virus limiting role of two genes, including the well-characterized gene, dicer, and a probable uncharacterized cyclin dependent kinase in honey bees, we utilized RNAi to reduce their expression in vivo and determined that virus abundance increased, supporting their involvement in antiviral defense. Together, these results further our understanding of honey bee antiviral defense, particularly the role of a non-sequence specific dsRNA-mediated antiviral pathway.
Collapse
Affiliation(s)
- Laura M Brutscher
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.,Pollinator Health Center, Montana State University, Bozeman, MT, USA
| | - Katie F Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA.,Pollinator Health Center, Montana State University, Bozeman, MT, USA
| | - Michelle L Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA. .,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA. .,Pollinator Health Center, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
77
|
Doublet V, Poeschl Y, Gogol-Döring A, Alaux C, Annoscia D, Aurori C, Barribeau SM, Bedoya-Reina OC, Brown MJF, Bull JC, Flenniken ML, Galbraith DA, Genersch E, Gisder S, Grosse I, Holt HL, Hultmark D, Lattorff HMG, Le Conte Y, Manfredini F, McMahon DP, Moritz RFA, Nazzi F, Niño EL, Nowick K, van Rij RP, Paxton RJ, Grozinger CM. Unity in defence: honeybee workers exhibit conserved molecular responses to diverse pathogens. BMC Genomics 2017; 18:207. [PMID: 28249569 PMCID: PMC5333379 DOI: 10.1186/s12864-017-3597-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/20/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Organisms typically face infection by diverse pathogens, and hosts are thought to have developed specific responses to each type of pathogen they encounter. The advent of transcriptomics now makes it possible to test this hypothesis and compare host gene expression responses to multiple pathogens at a genome-wide scale. Here, we performed a meta-analysis of multiple published and new transcriptomes using a newly developed bioinformatics approach that filters genes based on their expression profile across datasets. Thereby, we identified common and unique molecular responses of a model host species, the honey bee (Apis mellifera), to its major pathogens and parasites: the Microsporidia Nosema apis and Nosema ceranae, RNA viruses, and the ectoparasitic mite Varroa destructor, which transmits viruses. RESULTS We identified a common suite of genes and conserved molecular pathways that respond to all investigated pathogens, a result that suggests a commonality in response mechanisms to diverse pathogens. We found that genes differentially expressed after infection exhibit a higher evolutionary rate than non-differentially expressed genes. Using our new bioinformatics approach, we unveiled additional pathogen-specific responses of honey bees; we found that apoptosis appeared to be an important response following microsporidian infection, while genes from the immune signalling pathways, Toll and Imd, were differentially expressed after Varroa/virus infection. Finally, we applied our bioinformatics approach and generated a gene co-expression network to identify highly connected (hub) genes that may represent important mediators and regulators of anti-pathogen responses. CONCLUSIONS Our meta-analysis generated a comprehensive overview of the host metabolic and other biological processes that mediate interactions between insects and their pathogens. We identified key host genes and pathways that respond to phylogenetically diverse pathogens, representing an important source for future functional studies as well as offering new routes to identify or generate pathogen resilient honey bee stocks. The statistical and bioinformatics approaches that were developed for this study are broadly applicable to synthesize information across transcriptomic datasets. These approaches will likely have utility in addressing a variety of biological questions.
Collapse
Affiliation(s)
- Vincent Doublet
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK.
| | - Yvonne Poeschl
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andreas Gogol-Döring
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Technische Hochschule Mittelhessen, Gießen, Germany
| | - Cédric Alaux
- INRA, UR 406 Abeilles et Environnement, Avignon, France
| | - Desiderato Annoscia
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| | - Christian Aurori
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Seth M Barribeau
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Oscar C Bedoya-Reina
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, State College, PA, USA
- Present address: MRC IGMM, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Present address: MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK
| | - Mark J F Brown
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - James C Bull
- Department of Biosciences, Swansea University, Swansea, UK
| | - Michelle L Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - David A Galbraith
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, State College, PA, USA
| | - Elke Genersch
- Department of Molecular Microbiology and Bee Diseases, Institute for Bee Research, Hohen Neuendorf, Germany
- Department of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Gisder
- Department of Molecular Microbiology and Bee Diseases, Institute for Bee Research, Hohen Neuendorf, Germany
| | - Ivo Grosse
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Holly L Holt
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, State College, PA, USA
- Department of Fisheries, Wildlife, and Conservation Biology, The Monarch Joint Venture, University of Minnesota, St. Paul, MN, USA
| | - Dan Hultmark
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - H Michael G Lattorff
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Present address: International Centre of Insect Physiology and Ecology (icipe), Environmental Health Theme, Nairobi, Kenya
| | - Yves Le Conte
- INRA, UR 406 Abeilles et Environnement, Avignon, France
| | - Fabio Manfredini
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - Dino P McMahon
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Robin F A Moritz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Francesco Nazzi
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| | - Elina L Niño
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, State College, PA, USA
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Katja Nowick
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, TFome Research Group, Bioinformatics Group, Interdisciplinary Center of Bioinformatics, University of Leipzig, Leipzig, Germany
- Paul-Flechsig-Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robert J Paxton
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, State College, PA, USA
| |
Collapse
|
78
|
Trapp J, McAfee A, Foster LJ. Genomics, transcriptomics and proteomics: enabling insights into social evolution and disease challenges for managed and wild bees. Mol Ecol 2017; 26:718-739. [DOI: 10.1111/mec.13986] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Judith Trapp
- Department of Biochemistry & Molecular Biology; Michael Smith Laboratories; University of British Columbia; 2125 East Mall Vancouver BC V6T 1Z4 Canada
| | - Alison McAfee
- Department of Biochemistry & Molecular Biology; Michael Smith Laboratories; University of British Columbia; 2125 East Mall Vancouver BC V6T 1Z4 Canada
| | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology; Michael Smith Laboratories; University of British Columbia; 2125 East Mall Vancouver BC V6T 1Z4 Canada
| |
Collapse
|
79
|
Toth AL, Rehan SM. Molecular Evolution of Insect Sociality: An Eco-Evo-Devo Perspective. ANNUAL REVIEW OF ENTOMOLOGY 2017; 62:419-442. [PMID: 27912247 DOI: 10.1146/annurev-ento-031616-035601] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The evolution of eusociality is a perennial issue in evolutionary biology, and genomic advances have fueled steadily growing interest in the genetic changes underlying social evolution. Along with a recent flurry of research on comparative and evolutionary genomics in different eusocial insect groups (bees, ants, wasps, and termites), several mechanistic explanations have emerged to describe the molecular evolution of eusociality from solitary behavior. These include solitary physiological ground plans, genetic toolkits of deeply conserved genes, evolutionary changes in protein-coding genes, cis regulation, and the structure of gene networks, epigenetics, and novel genes. Despite this proliferation of ideas, there has been little synthesis, even though these ideas are not mutually exclusive and may in fact be complementary. We review available data on molecular evolution of insect sociality and highlight key biotic and abiotic factors influencing social insect genomes. We then suggest both phylogenetic and ecological evolutionary developmental biology (eco-evo-devo) perspectives for a more synthetic view of molecular evolution in insect societies.
Collapse
Affiliation(s)
- Amy L Toth
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011;
- Department of Entomology, Iowa State University, Ames, Iowa 50011
| | - Sandra M Rehan
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire 03824;
| |
Collapse
|
80
|
Fine JD, Cox-Foster DL, Mullin CA. An Inert Pesticide Adjuvant Synergizes Viral Pathogenicity and Mortality in Honey Bee Larvae. Sci Rep 2017; 7:40499. [PMID: 28091574 PMCID: PMC5238421 DOI: 10.1038/srep40499] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/07/2016] [Indexed: 11/09/2022] Open
Abstract
Honey bees are highly valued for their pollination services in agricultural settings, and recent declines in managed populations have caused concern. Colony losses following a major pollination event in the United States, almond pollination, have been characterized by brood mortality with specific symptoms, followed by eventual colony loss weeks later. In this study, we demonstrate that these symptoms can be produced by chronically exposing brood to both an organosilicone surfactant adjuvant (OSS) commonly used on many agricultural crops including wine grapes, tree nuts and tree fruits and exogenous viral pathogens by simulating a horizontal transmission event. Observed synergistic mortality occurred during the larval-pupal molt. Using q-PCR techniques to measure gene expression and viral levels in larvae taken prior to observed mortality at metamorphosis, we found that exposure to OSS and exogenous virus resulted in significantly heightened Black Queen Cell Virus (BQCV) titers and lower expression of a Toll 7-like-receptor associated with autophagic viral defense (Am18w). These results demonstrate that organosilicone spray adjuvants that are considered biologically inert potentiate viral pathogenicity in honey bee larvae, and guidelines for OSS use may be warranted.
Collapse
Affiliation(s)
- Julia D Fine
- Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA 16802, USA
| | - Diana L Cox-Foster
- Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA 16802, USA.,USDA-ARS-PWA Pollinating Insect Research Unit, Logan, UT 84322, USA
| | - Christopher A Mullin
- Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
81
|
Qiu HL, Zhao CY, He YR. On the Molecular Basis of Division of Labor in Solenopsis invicta (Hymenoptera: Formicidae) Workers: RNA-seq Analysis. JOURNAL OF INSECT SCIENCE (ONLINE) 2017; 17:3093133. [PMID: 28365770 PMCID: PMC5469383 DOI: 10.1093/jisesa/iex002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Indexed: 06/07/2023]
Abstract
The fire ant Solenopsis invicta Buren is an important invasive pest. Among S. invicta workers behavioral changes depend on age where younger ants are nurses and older ants foragers. To identify potential genes associated with this division of labor, we compared gene expression between foragers and nurses by high-throughput sequencing. In total, we identified 1,618 genes significantly differently expressed between nurses and foragers, of which 542 were upregulated in foragers and 1,076 were upregulated in nurses. Several pathways related to metabolism were significantly enriched, such as lipid storage and fatty acid biosynthesis, which might contribute to the division of labor in S. invicta. Several genes involved in DNA methylation, transcription, and olfactory responses as well as resistance to stress were differentially expressed between nurses and foragers workers. Finally, a comparison between previously published microarray data and our RNA-seq data in S. invicta shows 116 genes overlap, and the GO term myofibril assembly (GO: 0030239) were simultaneously significantly enriched. These results advance knowledge of potentially important genes and molecular pathways associated with worker division of labor in S. invicta. We hope our dataset will provide . candidate target genes to disrupt organization in S. invicta as a control strategy against this invasive pest.
Collapse
Affiliation(s)
- Hua-Long Qiu
- Department of Entomology College of Agriculture, South China Agricultural University, Guangdong, Guangzhou 510642, China
| | - Cheng-Yin Zhao
- Department of Life Science Luoyang Normal University, Henan, Luoyang 471000, China
| | - Yu-Rong He
- Department of Entomology College of Agriculture, South China Agricultural University, Guangdong, Guangzhou 510642, China
| |
Collapse
|
82
|
Rondon R, Grunau C, Fallet M, Charlemagne N, Sussarellu R, Chaparro C, Montagnani C, Mitta G, Bachère E, Akcha F, Cosseau C. Effects of a parental exposure to diuron on Pacific oyster spat methylome. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx004. [PMID: 29492306 PMCID: PMC5804544 DOI: 10.1093/eep/dvx004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/14/2017] [Accepted: 03/07/2017] [Indexed: 05/18/2023]
Abstract
Environmental epigenetic is an emerging field that studies the cause-effect relationship between environmental factors and heritable trait via an alteration in epigenetic marks. This field has received much attentions since the impact of environmental factors on different epigenetic marks have been shown to be associated with a broad range of phenotypic disorders in natural ecosystems. Chemical pollutants have been shown to affect immediate epigenetic information carriers of several aquatic species but the heritability of the chromatin marks and the consequences for long term adaptation remain open questions. In this work, we investigated the impact of the diuron herbicide on the DNA methylation pattern of spat from exposed Crassotrea gigas genitors. This oyster is one of the most important mollusk species produced worldwide and a key coastal economic resource in France. The whole genome bisulfite sequencing (WGBS, BS-Seq) was applied to obtain a methylome at single nucleotide resolution on DNA extracted from spat issued from diuron exposed genitors comparatively to control spat. We showed that the parental diuron exposure has an impact on the DNA methylation pattern of its progeny. Most of the differentially methylated regions occurred within coding sequences and we showed that this change in methylation level correlates with RNA level only in a very small group of genes. Although the DNA methylation profile is variable between individuals, we showed conserved DNA methylation patterns in response to parental diuron exposure. This relevant result opens perspectives for the setting of new markers based on epimutations as early indicators of marine pollutions.
Collapse
Affiliation(s)
- Rodolfo Rondon
- Ifremer, IHPE UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095 Montpellier, France
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Christoph Grunau
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Manon Fallet
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Nicolas Charlemagne
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l’ile d’Yeu, BP 21105, 44311 Nantes Cedex 03, France
| | - Rossana Sussarellu
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l’ile d’Yeu, BP 21105, 44311 Nantes Cedex 03, France
| | - Cristian Chaparro
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Caroline Montagnani
- Ifremer, IHPE UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095 Montpellier, France
| | - Guillaume Mitta
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Evelyne Bachère
- Ifremer, IHPE UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095 Montpellier, France
| | - Farida Akcha
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l’ile d’Yeu, BP 21105, 44311 Nantes Cedex 03, France
| | - Céline Cosseau
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| |
Collapse
|
83
|
Cappelle K, Smagghe G, Dhaenens M, Meeus I. Israeli Acute Paralysis Virus Infection Leads to an Enhanced RNA Interference Response and Not Its Suppression in the Bumblebee Bombus terrestris. Viruses 2016; 8:v8120334. [PMID: 27999371 PMCID: PMC5192395 DOI: 10.3390/v8120334] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/08/2016] [Accepted: 12/13/2016] [Indexed: 02/07/2023] Open
Abstract
RNA interference (RNAi) is the primary antiviral defense system in insects and its importance for pollinator health is indisputable. In this work, we examined the effect of Israeli acute paralysis virus (IAPV) infection on the RNAi process in the bumblebee, Bombus terrestris, and whether the presence of possible functional viral suppressors could alter the potency of the host's immune response. For this, a two-fold approach was used. Through a functional RNAi assay, we observed an enhancement of the RNAi system after IAPV infection instead of its suppression, despite only minimal upregulation of the genes involved in RNAi. Besides, the presence of the proposed suppressor 1A and the predicted OrfX protein in IAPV could not be confirmed using high definition mass spectrometry. In parallel, when bumblebees were infected with cricket paralysis virus (CrPV), known to encode a suppressor of RNAi, no increase in RNAi efficiency was seen. For both viruses, pre-infection with the one virus lead to a decreased replication of the other virus, indicating a major effect of competition. These results are compelling in the context of Dicistroviridae in multi-virus/multi-host networks as the effect of a viral infection on the RNAi machinery may influence subsequent virus infections.
Collapse
Affiliation(s)
- Kaat Cappelle
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Maarten Dhaenens
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Ivan Meeus
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
84
|
Galbraith DA, Yi SV, Grozinger CM. Evaluation of Possible Proximate Mechanisms Underlying the Kinship Theory of Intragenomic Conflict in Social Insects. Integr Comp Biol 2016; 56:1206-1214. [DOI: 10.1093/icb/icw111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
85
|
Doublet V, Paxton RJ, McDonnell CM, Dubois E, Nidelet S, Moritz RF, Alaux C, Le Conte Y. Brain transcriptomes of honey bees ( Apis mellifera) experimentally infected by two pathogens: Black queen cell virus and Nosema ceranae. GENOMICS DATA 2016; 10:79-82. [PMID: 27747157 PMCID: PMC5054260 DOI: 10.1016/j.gdata.2016.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/26/2016] [Indexed: 01/25/2023]
Abstract
Regulation of gene expression in the brain plays an important role in behavioral plasticity and decision making in response to external stimuli. However, both can be severely affected by environmental factors, such as parasites and pathogens. In honey bees, the emergence and re-emergence of pathogens and potential for pathogen co-infection and interaction have been suggested as major components that significantly impaired social behavior and survival. To understand how the honey bee is affected and responds to interacting pathogens, we co-infected workers with two prevalent pathogens of different nature, the positive single strand RNA virus Black queen cell virus (BQCV), and the Microsporidia Nosema ceranae, and explored gene expression changes in brains upon single infections and co-infections. Our data provide an important resource for research on honey bee diseases, and more generally on insect host-pathogen and pathogen-pathogen interactions. Raw and processed data are publicly available in the NCBI/GEO database: (http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE81664.
Collapse
Affiliation(s)
- Vincent Doublet
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Salle), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn TR11 9FE, UK
| | - Robert J. Paxton
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Salle), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | | | - Emeric Dubois
- MGX-Montpellier GenomiX, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094 Cedex 5 Montpellier, France
| | - Sabine Nidelet
- MGX-Montpellier GenomiX, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094 Cedex 5 Montpellier, France
| | - Robin F.A. Moritz
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Salle), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Cédric Alaux
- INRA, UR 406 Abeilles et Environnement, 84914 Avignon Cedex 09, France
| | - Yves Le Conte
- INRA, UR 406 Abeilles et Environnement, 84914 Avignon Cedex 09, France
| |
Collapse
|
86
|
|
87
|
Niu J, Meeus I, Smagghe G. Differential expression pattern of Vago in bumblebee (Bombus terrestris), induced by virulent and avirulent virus infections. Sci Rep 2016; 6:34200. [PMID: 27680717 PMCID: PMC5040954 DOI: 10.1038/srep34200] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 09/06/2016] [Indexed: 01/20/2023] Open
Abstract
Viruses are one of the main drivers of the decline of domesticated and wild bees but the mechanisms of antiviral immunity in pollinators are poorly understood. Recent work has suggested that next to the small interfering RNA (siRNA) pathway other immune-related pathways play a role in the defense of the bee hosts against viral infection. In addition, Vago plays a role in the cross-talk between the innate immune pathways in Culex mosquito cells. Here we describe the Vago orthologue in bumblebees of Bombus terrestris, and investigated its role upon the infection of two different bee viruses, the virulent Israeli acute paralysis virus (IAPV) and the avirulent slow bee paralysis virus (SBPV). Our results showed that BtVago was downregulated upon the infection of IAPV that killed all bumblebees, but not with SBPV where the workers survived the virus infection. Thus, for the first time, Vago/Vago-like expression appears to be associated with the virulence of virus and may act as a modulator of antiviral immunity.
Collapse
Affiliation(s)
- Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China.,Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Ivan Meeus
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China.,Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
88
|
Affiliation(s)
- Laura M. Brutscher
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, United States of America
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, United States of America
| | - Alexander J. McMenamin
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, United States of America
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, United States of America
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, United States of America
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, United States of America
| |
Collapse
|
89
|
Wang H, Meeus I, Smagghe G. Israeli acute paralysis virus associated paralysis symptoms, viral tissue distribution and Dicer-2 induction in bumblebee workers (Bombus terrestris). J Gen Virol 2016; 97:1981-1989. [PMID: 27230225 DOI: 10.1099/jgv.0.000516] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although it is known that Israeli acute paralysis virus (IAPV) can cause bee mortality, the symptoms of paralysis and the distribution of the virus in different body tissues and their potential to respond with an increase of the siRNA antiviral immune system have not been studied. In this project we worked with Bombus terrestris, which is one of the most numerous bumblebee species in Europe and an important pollinator for wild flowers and many crops in agriculture. Besides the classic symptoms of paralysis and trembling prior to death, we report a new IAPV-related symptom, crippled/immobilized forelegs. Reverse-transcriptase quantitative PCR showed that IAPV accumulates in different body tissues (midgut, fat body, brain and ovary). The highest levels of IAPV were observed in the fat body. With fluorescence in situ hybridization (FISH) we detected IAPV in the Kenyon cells of mushroom bodies and neuropils from both antennal and optic lobes of the brain in IAPV-infected workers. Finally, we observed an induction of Dicer-2, a core gene of the RNAi antiviral immune response, in the IAPV-infected tissues of B. terrestris workers. According to our results, tissue tropism and the induction strength of Dicer-2 could not be correlated with virus-related paralysis symptoms.
Collapse
Affiliation(s)
- Haidong Wang
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Ivan Meeus
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
90
|
Niu J, Smagghe G, De Coninck DIM, Van Nieuwerburgh F, Deforce D, Meeus I. In vivo study of Dicer-2-mediated immune response of the small interfering RNA pathway upon systemic infections of virulent and avirulent viruses in Bombus terrestris. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 70:127-137. [PMID: 26711439 DOI: 10.1016/j.ibmb.2015.12.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/15/2015] [Accepted: 12/15/2015] [Indexed: 06/05/2023]
Abstract
Recent studies suggest a potent role of the small interfering RNA (siRNA) pathway in the control of bee viruses and its usefulness to tackle these viral diseases. However, the involvement of the siRNA pathway in the defense against different bee viruses is still poorly understood. Therefore, in this report, we comprehensively analyzed the response of the siRNA pathway in bumblebees of Bombus terrestris to systemic infections of the virulent Israeli acute paralysis virus (IAPV) and the avirulent slow bee paralysis virus (SBPV). Our results showed that IAPV and SBPV infections induced the expression of Dicer-2. IAPV infections also triggered the production of predominantly 22 nt-long virus-derived siRNAs (vsiRNAs). Intriguingly, these 22 nt-long vsiRNAs showed a high proportion of antigenomic IAPV sequences. Conversely, these predominantly 22 nt-long vsiRNAs of SBPV were not detected in SBPV infected bees. Furthermore, an "RNAi-of-RNAi" experiment on Dicer-2 did not result in altered genome copy numbers of IAPV (n = 17-18) and also not of SBPV (n = 11-12). Based on these results, we can speculate about the importance of the siRNA pathway in bumblebees for the antiviral response. During infection of IAPV, this pathway is probably recruited but it might be insufficient to control viral infection in our experimental setup. The host can control SBPV infection, but aside from the induction of Dicer-2 expression, no further evidence of the antiviral activity of the siRNA pathway was observed. This report may also enhance the current understanding of the siRNA pathway in the innate immunity of non-model insects upon different viral infections.
Collapse
Affiliation(s)
- Jinzhi Niu
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Dieter I M De Coninck
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Dieter Deforce
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Ivan Meeus
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
91
|
Carrillo-Tripp J, Dolezal AG, Goblirsch MJ, Miller WA, Toth AL, Bonning BC. In vivo and in vitro infection dynamics of honey bee viruses. Sci Rep 2016; 6:22265. [PMID: 26923109 PMCID: PMC4770293 DOI: 10.1038/srep22265] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/10/2016] [Indexed: 12/20/2022] Open
Abstract
The honey bee (Apis mellifera) is commonly infected by multiple viruses. We developed an experimental system for the study of such mixed viral infections in newly emerged honey bees and in the cell line AmE-711, derived from honey bee embryos. When inoculating a mixture of iflavirids [sacbrood bee virus (SBV), deformed wing virus (DWV)] and dicistrovirids [Israeli acute paralysis virus (IAPV), black queen cell virus (BQCV)] in both live bee and cell culture assays, IAPV replicated to higher levels than other viruses despite the fact that SBV was the major component of the inoculum mixture. When a different virus mix composed mainly of the dicistrovirid Kashmir bee virus (KBV) was tested in cell culture, the outcome was a rapid increase in KBV but not IAPV. We also sequenced the complete genome of an isolate of DWV that covertly infects the AmE-711 cell line, and found that this virus does not prevent IAPV and KBV from accumulating to high levels and causing cytopathic effects. These results indicate that different mechanisms of virus-host interaction affect virus dynamics, including complex virus-virus interactions, superinfections, specific virus saturation limits in cells and virus specialization for different cell types.
Collapse
Affiliation(s)
- Jimena Carrillo-Tripp
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Adam G. Dolezal
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | | | - W. Allen Miller
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Amy L. Toth
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
| | - Bryony C. Bonning
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
92
|
Testing the kinship theory of intragenomic conflict in honey bees (Apis mellifera). Proc Natl Acad Sci U S A 2016; 113:1020-5. [PMID: 26755583 DOI: 10.1073/pnas.1516636113] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Sexual reproduction brings genes from two parents (matrigenes and patrigenes) together into one individual. These genes, despite being unrelated, should show nearly perfect cooperation because each gains equally through the production of offspring. However, an individual's matrigenes and patrigenes can have different probabilities of being present in other relatives, so kin selection could act on them differently. Such intragenomic conflict could be implemented by partial or complete silencing (imprinting) of an allele by one of the parents. Evidence supporting this theory is seen in offspring-mother interactions, with patrigenes favoring acquisition of more of the mother's resources if some of the costs fall on half-siblings who do not share the patrigene. The kinship theory of intragenomic conflict is little tested in other contexts, but it predicts that matrigene-patrigene conflict may be rife in social insects. We tested the hypothesis that honey bee worker reproduction is promoted more by patrigenes than matrigenes by comparing across nine reciprocal crosses of two distinct genetic stocks. As predicted, hybrid workers show reproductive trait characteristics of their paternal stock, (indicating enhanced activity of the patrigenes on these traits), greater patrigenic than matrigenic expression, and significantly increased patrigenic-biased expression in reproductive workers. These results support both the general prediction that matrigene-patrigene conflict occurs in social insects and the specific prediction that honey bee worker reproduction is driven more by patrigenes. The success of these predictions suggests that intragenomic conflict may occur in many contexts where matrigenes and patrigenes have different relatednesses to affected kin.
Collapse
|
93
|
Manfredini F, Shoemaker D, Grozinger CM. Dynamic changes in host-virus interactions associated with colony founding and social environment in fire ant queens (Solenopsis invicta). Ecol Evol 2016; 6:233-44. [PMID: 26811788 PMCID: PMC4716520 DOI: 10.1002/ece3.1843] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 11/10/2022] Open
Abstract
The dynamics of host-parasite interactions can change dramatically over the course of a chronic infection as the internal (physiological) and external (environmental) conditions of the host change. When queens of social insects found a colony, they experience changes in both their physiological state (they develop their ovaries and begin laying eggs) and the social environment (they suddenly stop interacting with the other members of the mother colony), making this an excellent model system for examining how these factors interact with chronic infections. We investigated the dynamics of host-viral interactions in queens of Solenopsis invicta (fire ant) as they transition from mating to colony founding/brood rearing to the emergence of the first workers. We examined these dynamics in naturally infected queens in two different social environments, where queens either founded colonies as individuals or as pairs. We hypothesized that stress associated with colony founding plays an important role in the dynamics of host-parasite interactions. We also hypothesized that different viruses have different modalities of interaction with the host that can be quantified by physiological measures and genomic analysis of gene expression in the host. We found that the two most prevalent viruses, SINV-1 and SINV-2, are associated with different fitness costs that are mirrored by different patterns of gene expression in the host. In fact SINV-2, the virus that imposes the significant reduction of a queen's reproductive output is also associated with larger changes of global gene expression in the host. These results show the complexity of interactions between S. invicta and two viral parasites. Our findings also show that chronic infections by viral parasites in insects are dynamic processes that may pose different challenges in the host, laying the groundwork for interesting ecological and evolutionary considerations.
Collapse
Affiliation(s)
- Fabio Manfredini
- School of Biological SciencesRoyal Holloway University of LondonEghamUK
- Department of Entomology and Center for Pollinator ResearchThe Pennsylvania State UniversityUniversity ParkPennsylvania
| | | | - Christina M. Grozinger
- Department of Entomology and Center for Pollinator ResearchThe Pennsylvania State UniversityUniversity ParkPennsylvania
| |
Collapse
|
94
|
Keller TE, Han P, Yi SV. Evolutionary Transition of Promoter and Gene Body DNA Methylation across Invertebrate-Vertebrate Boundary. Mol Biol Evol 2015; 33:1019-28. [PMID: 26715626 PMCID: PMC4776710 DOI: 10.1093/molbev/msv345] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genomes of invertebrates and vertebrates exhibit highly divergent patterns of DNA methylation. Invertebrate genomes tend to be sparsely methylated, and DNA methylation is mostly targeted to a subset of transcription units (gene bodies). In a drastic contrast, vertebrate genomes are generally globally and heavily methylated, punctuated by the limited local hypo-methylation of putative regulatory regions such as promoters. These genomic differences also translate into functional differences in DNA methylation and gene regulation. Although promoter DNA methylation is an important regulatory component of vertebrate gene expression, its role in invertebrate gene regulation has been little explored. Instead, gene body DNA methylation is associated with expression of invertebrate genes. However, the evolutionary steps leading to the differentiation of invertebrate and vertebrate genomic DNA methylation remain unresolved. Here we analyzed experimentally determined DNA methylation maps of several species across the invertebrate–vertebrate boundary, to elucidate how vertebrate gene methylation has evolved. We show that, in contrast to the prevailing idea, a substantial number of promoters in an invertebrate basal chordate Ciona intestinalis are methylated. Moreover, gene expression data indicate significant, epigenomic context-dependent associations between promoter methylation and expression in C. intestinalis. However, there is no evidence that promoter methylation in invertebrate chordate has been evolutionarily maintained across the invertebrate–vertebrate boundary. Rather, body-methylated invertebrate genes preferentially obtain hypo-methylated promoters among vertebrates. Conversely, promoter methylation is preferentially found in lineage- and tissue-specific vertebrate genes. These results provide important insights into the evolutionary origin of epigenetic regulation of vertebrate gene expression.
Collapse
Affiliation(s)
| | | | - Soojin V Yi
- School of Biology, Georgia Institute of Technology
| |
Collapse
|
95
|
Brutscher LM, Flenniken ML. RNAi and Antiviral Defense in the Honey Bee. J Immunol Res 2015; 2015:941897. [PMID: 26798663 PMCID: PMC4698999 DOI: 10.1155/2015/941897] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/25/2015] [Accepted: 11/29/2015] [Indexed: 01/08/2023] Open
Abstract
Honey bees play an important agricultural and ecological role as pollinators of numerous agricultural crops and other plant species. Therefore, investigating the factors associated with high annual losses of honey bee colonies in the US is an important and active area of research. Pathogen incidence and abundance correlate with Colony Collapse Disorder- (CCD-) affected colonies in the US and colony losses in the US and in some European countries. Honey bees are readily infected by single-stranded positive sense RNA viruses. Largely dependent on the host immune response, virus infections can either remain asymptomatic or result in deformities, paralysis, or death of adults or larvae. RNA interference (RNAi) is an important antiviral defense mechanism in insects, including honey bees. Herein, we review the role of RNAi in honey bee antiviral defense and highlight some parallels between insect and mammalian immune systems. A more thorough understanding of the role of pathogens on honey bee health and the immune mechanisms bees utilize to combat infectious agents may lead to the development of strategies that enhance honey bee health and result in the discovery of additional mechanisms of immunity in metazoans.
Collapse
Affiliation(s)
- Laura M. Brutscher
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717-3150, USA
- Institute on Ecosystems, Montana State University, Bozeman, MT 59717-3490, USA
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717-3460, USA
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717-3150, USA
- Institute on Ecosystems, Montana State University, Bozeman, MT 59717-3490, USA
| |
Collapse
|
96
|
Grozinger CM, Robinson GE. The power and promise of applying genomics to honey bee health. CURRENT OPINION IN INSECT SCIENCE 2015; 10:124-132. [PMID: 26273565 PMCID: PMC4528376 DOI: 10.1016/j.cois.2015.03.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
New genomic tools and resources are now being used to both understand honey bee health and develop tools to better manage it. Here, we describe the use of genomic approaches to identify and characterize bee parasites and pathogens, examine interactions among these parasites and pathogens, between them and their bee hosts, and to identify genetic markers for improved breeding of more resilient bee stocks. We also discuss several new genomic techniques that can be used to more efficiently study, monitor and improve bee health. In the case of using RNAi-based technologies to mitigate diseases in bee populations, we highlight advantages, disadvantages and strategies to reduce risk. The increased use of genomic analytical tools and manipulative technologies has already led to significant advances, and holds great promise for improvements in the health of honey bees and other critical pollinator species.
Collapse
Affiliation(s)
- Christina M. Grozinger
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, University Park, PA 16803
| | - Gene E. Robinson
- Department of Entomology, Neuroscience Program, Institute for Genomic Biology, University of Illinois, Urbana-Champaign, 61801
| |
Collapse
|
97
|
DeGrandi-Hoffman G, Chen Y. Nutrition, immunity and viral infections in honey bees. CURRENT OPINION IN INSECT SCIENCE 2015; 10:170-176. [PMID: 29588005 DOI: 10.1016/j.cois.2015.05.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 05/11/2023]
Abstract
Viruses and other pathogens can spread rapidly in social insect colonies from close contacts among nestmates, food sharing and periods of confinement. Here we discuss how honey bees decrease the risk of disease outbreaks by a combination of behaviors (social immunity) and individual immune function. There is a relationship between the effectiveness of social and individual immunity and the nutritional state of the colony. Parasitic Varroa mites undermine the relationship because they reduce nutrient levels, suppress individual immune function and transmit viruses. Future research directions to better understand the dynamics of the nutrition-immunity relationship based on levels of stress, time of year and colony demographics are discussed.
Collapse
Affiliation(s)
- Gloria DeGrandi-Hoffman
- Carl Hayden Bee Research Center, USDA-ARS, 2000 East Allen Road, Tucson, AZ 85719, United States.
| | - Yanping Chen
- Bee Research Laboratory, USDA-ARS, Beltsville, MD 20705, United States
| |
Collapse
|
98
|
Brutscher LM, Daughenbaugh KF, Flenniken ML. Antiviral Defense Mechanisms in Honey Bees. CURRENT OPINION IN INSECT SCIENCE 2015; 10:71-82. [PMID: 26273564 PMCID: PMC4530548 DOI: 10.1016/j.cois.2015.04.016] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Honey bees are significant pollinators of agricultural crops and other important plant species. High annual losses of honey bee colonies in North America and in some parts of Europe have profound ecological and economic implications. Colony losses have been attributed to multiple factors including RNA viruses, thus understanding bee antiviral defense mechanisms may result in the development of strategies that mitigate colony losses. Honey bee antiviral defense mechanisms include RNA-interference, pathogen-associated molecular pattern (PAMP) triggered signal transduction cascades, and reactive oxygen species generation. However, the relative importance of these and other pathways is largely uncharacterized. Herein we review the current understanding of honey bee antiviral defense mechanisms and suggest important avenues for future investigation.
Collapse
Affiliation(s)
- Laura M Brutscher
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA ; Institute on Ecosystems, Montana State University, Bozeman, MT, USA ; Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Katie F Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Michelle L Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA ; Institute on Ecosystems, Montana State University, Bozeman, MT, USA ; Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|