51
|
Garcia-Garcia J, Overå KS, Khan W, Sjøttem E. Generation of the short TRIM32 isoform is regulated by Lys 247 acetylation and a PEST sequence. PLoS One 2021; 16:e0251279. [PMID: 33999923 PMCID: PMC8128265 DOI: 10.1371/journal.pone.0251279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/28/2021] [Indexed: 01/24/2023] Open
Abstract
TRIM32 is an E3 ligase implicated in diverse biological pathways and pathologies such as muscular dystrophy and cancer. TRIM32 are expressed both as full-length proteins, and as a truncated protein. The mechanisms for regulating these isoforms are poorly understood. Here we identify a PEST sequence in TRIM32 located in the unstructured region between the RING-BBox-CoiledCoil domains and the NHL repeats. The PEST sequence directs cleavage of TRIM32, generating a truncated protein similarly to the short isoform. We map three lysine residues that regulate PEST mediated cleavage and auto-ubiquitylation activity of TRIM32. Mimicking acetylation of lysine K247 completely inhibits TRIM32 cleavage, while the lysines K50 and K401 are implicated in auto-ubiquitylation activity. We show that the short isoform of TRIM32 is catalytic inactive, suggesting a dominant negative role. These findings uncover that TRIM32 is regulated by post-translational modifications of three lysine residues, and a conserved PEST sequence.
Collapse
Affiliation(s)
- Juncal Garcia-Garcia
- Department of Medical Biology, Autophagy Research Group, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Katrine Stange Overå
- Department of Medical Biology, Autophagy Research Group, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Waqas Khan
- Department of Medical Biology, Autophagy Research Group, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Eva Sjøttem
- Department of Medical Biology, Autophagy Research Group, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
- * E-mail:
| |
Collapse
|
52
|
Wang Z, Yoo YJ, De La Torre R, Topham C, Hanifin J, Simpson E, Messing RO, Kulesz-Martin M, Liu Y. Inverse Correlation of TRIM32 and Protein Kinase C ζ in T Helper Type 2-Biased Inflammation. J Invest Dermatol 2021; 141:1297-1307.e3. [PMID: 33096083 PMCID: PMC8058116 DOI: 10.1016/j.jid.2020.09.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/21/2020] [Accepted: 09/11/2020] [Indexed: 01/22/2023]
Abstract
Atopic dermatitis (AD) is a T helper (Th)2-biased disease with elevated expression of Th2 cytokines that responds to Th2 signaling blockade. TRIM32 is an E3 ubiquitin ligase with innate antiviral activity. In our previous studies, we showed that Trim32 null mice developed Th2-biased skin inflammation in response to imiquimod and associated a low level of TRIM32 with AD. In this study, we provide evidence that TRIM32 deficiency contributes to enhanced Th2 cell differentiation in vitro. Analysis of TRIM32-associated proteins from public databases identified protein kinase C (PKC)ζ as a TRIM32-associated protein that contributes to the regulation of Th2 signaling. We demonstrated that PKCζ was specifically ubiquitinated by TRIM32 and, further, that PKCζ stability tended to be increased in Th2 cells with a Trim32 null background. Furthermore, Prkcz null mice showed compromised AD-like phenotypes in the MC903 AD model. Consistently, a high PKCζ and low TRIM32 ratio was associated with CD4+ cells in AD human skin compared with those in healthy controls. Taken together, these findings suggest that TRIM32 functions as a regulator of PKCζ that controls the differentiation of Th2 cells important for AD pathogenesis.
Collapse
Affiliation(s)
- Zhiping Wang
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Yeon Jung Yoo
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Rachel De La Torre
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Christina Topham
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Jon Hanifin
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Eric Simpson
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Robert O Messing
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, USA; Department of Neurology, University of Texas at Austin, Austin, Texas, USA
| | - Molly Kulesz-Martin
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA; Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Yuangang Liu
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
53
|
Nenasheva VV, Nikitenko NA, Stepanenko EA, Makarova IV, Andreeva LE, Kovaleva GV, Lysenko AA, Tukhvatulin AI, Logunov DY, Tarantul VZ. Human TRIM14 protects transgenic mice from influenza A viral infection without activation of other innate immunity pathways. Genes Immun 2021; 22:56-63. [PMID: 33864033 DOI: 10.1038/s41435-021-00128-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 02/01/2023]
Abstract
TRIM14 is an important component of innate immunity that defends organism from various viruses. It was shown that TRIM14 restricted influenza A virus (IAV) infection in cell cultures in an interferon-independent manner. However, it remained unclear whether TRIM14 affects IAV reproduction and immune system responses upon IAV infection in vivo. In order to investigate the effects of TRIM14 at the organismal level we generated transgenic mice overexpressing human TRIM14 gene. We found that IAV reproduction was strongly inhibited in lungs of transgenic mice, resulting in the increased survival of transgenic animals. Strikingly, upon IAV infection, the transcription of genes encoding interferons, IL-6, IL-1β, and TNFα was notably weaker in lungs of transgenic animals than that in control mice, thus indicating the absence of significant induction of interferon and inflammatory responses. In spleen of transgenic mice, where TRIM14 was unexpectedly downregulated, upon IAV infection the transcription of genes encoding interferons was oppositely increased. Therefore, we demonstrated the key role of TRIM14 in anti-IAV protection in the model organism that is realized without noticeable activation of other innate immune system pathways.
Collapse
Affiliation(s)
- Valentina V Nenasheva
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia.
| | - Natalia A Nikitenko
- Department of Medical Microbiology, N. F. Gamaleya National Research Centre of Epidemiology and Microbiology, Moscow, Russia
| | - Ekaterina A Stepanenko
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Irina V Makarova
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Lyudmila E Andreeva
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Galina V Kovaleva
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Andrey A Lysenko
- Department of Medical Microbiology, N. F. Gamaleya National Research Centre of Epidemiology and Microbiology, Moscow, Russia
| | - Amir I Tukhvatulin
- Department of Medical Microbiology, N. F. Gamaleya National Research Centre of Epidemiology and Microbiology, Moscow, Russia
| | - Denis Y Logunov
- Department of Medical Microbiology, N. F. Gamaleya National Research Centre of Epidemiology and Microbiology, Moscow, Russia
| | - Vyacheslav Z Tarantul
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia
| |
Collapse
|
54
|
TRIM32 and Malin in Neurological and Neuromuscular Rare Diseases. Cells 2021; 10:cells10040820. [PMID: 33917450 PMCID: PMC8067510 DOI: 10.3390/cells10040820] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 12/27/2022] Open
Abstract
Tripartite motif (TRIM) proteins are RING E3 ubiquitin ligases defined by a shared domain structure. Several of them are implicated in rare genetic diseases, and mutations in TRIM32 and TRIM-like malin are associated with Limb-Girdle Muscular Dystrophy R8 and Lafora disease, respectively. These two proteins are evolutionary related, share a common ancestor, and both display NHL repeats at their C-terminus. Here, we revmniew the function of these two related E3 ubiquitin ligases discussing their intrinsic and possible common pathophysiological pathways.
Collapse
|
55
|
Wei Y, Zeng S, Zou C, Zhang H, Peng O, Xue C, Cao Y. Porcine TRIM21 RING-finger E3 ubiquitin ligase is essential for anti-PRRSV activity. Vet Microbiol 2021; 256:109043. [PMID: 33780804 DOI: 10.1016/j.vetmic.2021.109043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/19/2021] [Indexed: 12/15/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) causes substantial economic losses to the global pig industry. Members of the tripartite motif (TRIM) family are the important effectors of the innate immune response against viral infections. We have previously characterized the entire porcine TRIM (pTRIM) family, and predicted pTRIM5, 14, 21, 25 and 38 as host restriction factors against PRRSV infection. However, little is known about whether and how pTRIMs restrict the infection of PRRSV. In this study, we firstly performed the amino acid alignments of the RING domain of pTRIM5, 21, 25 and 38, and found that pTRIM proteins contained the characteristic consensus C3HC4 type zinc-binding motif which is important for the ubiquitination function. Then we detected the mRNA changes of pTRIMs in porcine alveolar macrophages (PAMs) by transcriptome sequencing after PRRSV infection in piglets. Transcriptional profiles showed that the expression of pTRIM5, 21 and 26 was significantly (P < 0.05) up-regulated, consistent with their expression in vitro. Finally, as the most up-regulated gene after PRRSV infection both in vivo and in vitro, pTRIM21 was investigated for its anti-PRRSV activity in immortalized PAMs (iPAMs) in two aspects: knockdown and overexpression of pTRIM21. Knockdown of endogenic pTRIM21 could significantly promote PRRSV replication at 12 and 24 h post infection in iPAMs. Meanwhile, overexpression of pTRIM21 could significantly suppress PRRSV replication but not affect its attachment and endocytosis. Moreover, pTRIM21 RING-finger E3 ubiquitin ligase was essential for anti-PRRSV activity. Our data enhance our understanding of the pTRIMs against PRRSV infection, which may help us develop novel therapeutic tools to control PRRSV.
Collapse
Affiliation(s)
- Ying Wei
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
| | - Siying Zeng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chuangchao Zou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ouyang Peng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
56
|
McKellar J, Rebendenne A, Wencker M, Moncorgé O, Goujon C. Mammalian and Avian Host Cell Influenza A Restriction Factors. Viruses 2021; 13:522. [PMID: 33810083 PMCID: PMC8005160 DOI: 10.3390/v13030522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/27/2022] Open
Abstract
The threat of a new influenza pandemic is real. With past pandemics claiming millions of lives, finding new ways to combat this virus is essential. Host cells have developed a multi-modular system to detect incoming pathogens, a phenomenon called sensing. The signaling cascade triggered by sensing subsequently induces protection for themselves and their surrounding neighbors, termed interferon (IFN) response. This response induces the upregulation of hundreds of interferon-stimulated genes (ISGs), including antiviral effectors, establishing an antiviral state. As well as the antiviral proteins induced through the IFN system, cells also possess a so-called intrinsic immunity, constituted of antiviral proteins that are constitutively expressed, creating a first barrier preceding the induction of the interferon system. All these combined antiviral effectors inhibit the virus at various stages of the viral lifecycle, using a wide array of mechanisms. Here, we provide a review of mammalian and avian influenza A restriction factors, detailing their mechanism of action and in vivo relevance, when known. Understanding their mode of action might help pave the way for the development of new influenza treatments, which are absolutely required if we want to be prepared to face a new pandemic.
Collapse
Affiliation(s)
- Joe McKellar
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Antoine Rebendenne
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Mélanie Wencker
- Centre International de Recherche en Infectiologie, INSERM/CNRS/UCBL1/ENS de Lyon, 69007 Lyon, France;
| | - Olivier Moncorgé
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Caroline Goujon
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| |
Collapse
|
57
|
Shen Z, Wei L, Yu ZB, Yao ZY, Cheng J, Wang YT, Song XT, Li M. The Roles of TRIMs in Antiviral Innate Immune Signaling. Front Cell Infect Microbiol 2021; 11:628275. [PMID: 33791238 PMCID: PMC8005608 DOI: 10.3389/fcimb.2021.628275] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/02/2021] [Indexed: 01/06/2023] Open
Abstract
The Tripartite motif (TRIM) protein family, which contains over 80 members in human sapiens, is the largest subfamily of the RING-type E3 ubiquitin ligase family. It is implicated in regulating various cellular functions, including cell cycle process, autophagy, and immune response. The dysfunction of TRIMs may lead to numerous diseases, such as systemic lupus erythematosus (SLE). Lots of studies in recent years have demonstrated that many TRIM proteins exert antiviral roles. TRIM proteins could affect viral replication by regulating the signaling pathways of antiviral innate immune responses. Besides, TRIM proteins can directly target viral components, which can lead to the degradation or functional inhibition of viral protein through degradative or non-degradative mechanisms and consequently interrupt the viral lifecycle. However, new evidence suggests that some viruses may manipulate TRIM proteins for their replication. Here, we summarize the latest discoveries on the interactions between TRIM protein and virus, especially TRIM proteins’ role in the signaling pathway of antiviral innate immune response and the direct “game” between them.
Collapse
Affiliation(s)
- Zhou Shen
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Center Laboratory, Affiliated Hospital of Hebei University, Baoding, China
| | - Lin Wei
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Zhi-Bo Yu
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Zhi-Yan Yao
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Jing Cheng
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Yu-Tong Wang
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Xiao-Tian Song
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Miao Li
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
58
|
Zeng Y, Xu S, Wei Y, Zhang X, Wang Q, Jia Y, Wang W, Han L, Chen Z, Wang Z, Zhang B, Chen H, Lei CQ, Zhu Q. The PB1 protein of influenza A virus inhibits the innate immune response by targeting MAVS for NBR1-mediated selective autophagic degradation. PLoS Pathog 2021; 17:e1009300. [PMID: 33577621 PMCID: PMC7880438 DOI: 10.1371/journal.ppat.1009300] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/08/2021] [Indexed: 12/28/2022] Open
Abstract
Influenza A virus (IAV) has evolved various strategies to counteract the innate immune response using different viral proteins. However, the mechanism is not fully elucidated. In this study, we identified the PB1 protein of H7N9 virus as a new negative regulator of virus- or poly(I:C)-stimulated IFN induction and specifically interacted with and destabilized MAVS. A subsequent study revealed that PB1 promoted E3 ligase RNF5 to catalyze K27-linked polyubiquitination of MAVS at Lys362 and Lys461. Moreover, we found that PB1 preferentially associated with a selective autophagic receptor neighbor of BRCA1 (NBR1) that recognizes ubiquitinated MAVS and delivers it to autophagosomes for degradation. The degradation cascade mediated by PB1 facilitates H7N9 virus infection by blocking the RIG-I-MAVS-mediated innate signaling pathway. Taken together, these data uncover a negative regulatory mechanism involving the PB1-RNF5-MAVS-NBR1 axis and provide insights into an evasion strategy employed by influenza virus that involves selective autophagy and innate signaling pathways. In 2013, H7N9 influenza viruses appeared in China and other countries resulting in 1, 567 human infections and 615 deaths. Understanding the cross-talk between virus and host is vital for the development of effective vaccines and therapeutics. Here, we identified the PB1 protein of H7N9 virus as a novel negative regulator that enhances the degradation of MAVS, an essential adaptor protein in the innate signaling pathway. Mechanistically, PB1 promoted the E3 ligase RNF5-mediated ubiquitination of MAVS and recruited the selective autophagic receptor NBR1 to associate with and deliver the ubiquitinated MAVS to the autophagosomes for degradation. Thus, the PB1-RNF5-MAVS-NBR1 axis inhibited innate immune antiviral response and facilitated virus replication by mediating MAVS degradation in an autophagosome-dependent manner. Our findings reveal a novel mechanism by which influenza virus negatively regulates the innate immune response.
Collapse
Affiliation(s)
- Yan Zeng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shuai Xu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yanli Wei
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuegang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qian Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yane Jia
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wanbing Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lu Han
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhaoshan Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhengxiang Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bo Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Cao-Qi Lei
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (C-QL); (QZ)
| | - Qiyun Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- * E-mail: (C-QL); (QZ)
| |
Collapse
|
59
|
Wang L, Ning S. TRIMming Type I Interferon-Mediated Innate Immune Response in Antiviral and Antitumor Defense. Viruses 2021; 13:279. [PMID: 33670221 PMCID: PMC7916971 DOI: 10.3390/v13020279] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
The tripartite motif (TRIM) family comprises at least 80 members in humans, with most having ubiquitin or SUMO E3 ligase activity conferred by their N-terminal RING domain. TRIMs regulate a wide range of processes in ubiquitination- or sumoylation-dependent manners in most cases, and fewer as adaptors. Their roles in the regulation of viral infections, autophagy, cell cycle progression, DNA damage and other stress responses, and carcinogenesis are being increasingly appreciated, and their E3 ligase activities are attractive targets for developing specific immunotherapeutic strategies for immune diseases and cancers. Given their importance in antiviral immune response, viruses have evolved sophisticated immune escape strategies to subvert TRIM-mediated mechanisms. In this review, we focus on their regulation of IFN-I-mediated innate immune response, which plays key roles in antiviral and antitumor defense.
Collapse
Affiliation(s)
- Ling Wang
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA;
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Shunbin Ning
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA;
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
60
|
Antiviral Activity of 3D, a Butene Lactone Derivative Against Influenza A Virus In Vitro and In Vivo. Viruses 2021; 13:v13020278. [PMID: 33670217 PMCID: PMC7916974 DOI: 10.3390/v13020278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
Influenza A virus is a highly variable and contagious respiratory pathogen that can cause annual epidemics and it poses an enormous threat to public health. Therefore, there is an urgent need for a new generation of antiviral drugs to combat the emergence of drug-resistant strains of the influenza virus. A novel series of butene lactone derivatives were screened and the compound 3D was selected, as it exhibited in vitro potential antiviral activity against A/Weiss/43 H1N1 virus with low toxicity. In addition, 3D dose-dependently inhibited the viral replication, expression of viral mRNA and viral proteins. 3D exerted a suppressive effect on A/Virginia/ATCC2/2009 H1N1 and A/California/2/2014 H3N2 in vitro. The time-of-addition analysis indicated that 3D suppressed H1N1 in the early stage of its life cycle. A/Weiss/43 H1N1-induced apoptosis in A549 cells was reduced by 3D via the mitochondrial apoptosis pathway. 3D could decrease the production of H1N1-induced pro-inflammatory cytokines that are induced by H1N1 in vitro and in vivo. The administration of 3D reduced lung lesions and virus load in vivo. These results suggest that 3D, which is a butene lactone derivative, is a promising agent for the treatment of influenza A virus infection.
Collapse
|
61
|
Yang E, Li MMH. All About the RNA: Interferon-Stimulated Genes That Interfere With Viral RNA Processes. Front Immunol 2020; 11:605024. [PMID: 33362792 PMCID: PMC7756014 DOI: 10.3389/fimmu.2020.605024] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022] Open
Abstract
Interferon (IFN) signaling induces the expression of a wide array of genes, collectively referred to as IFN-stimulated genes (ISGs) that generally function to inhibit viral replication. RNA viruses are frequently targeted by ISGs through recognition of viral replicative intermediates and molecular features associated with viral genomes, or the lack of molecular features associated with host mRNAs. The ISGs reviewed here primarily inhibit viral replication in an RNA-centric manner, working to sense, degrade, or repress expression of viral RNA. This review focuses on dissecting how these ISGs exhibit multiple antiviral mechanisms, often through use of varied co-factors, highlighting the complexity of the type I IFN response. Specifically, these ISGs can mediate antiviral effects through viral RNA degradation, viral translation inhibition, or both. While the OAS/RNase L pathway globally degrades RNA and arrests translation, ISG20 and ZAP employ targeted RNA degradation and translation inhibition to block viral replication. Meanwhile, SHFL targets translation by inhibiting -1 ribosomal frameshifting, which is required by many RNA viruses. Finally, a number of E3 ligases inhibit viral transcription, an attractive antiviral target during the lifecycle of negative-sense RNA viruses which must transcribe their genome prior to translation. Through this review, we aim to provide an updated perspective on how these ISGs work together to form a complex network of antiviral arsenals targeting viral RNA processes.
Collapse
Affiliation(s)
- Emily Yang
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Melody M. H. Li
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
62
|
Mo Q, Xu Z, Deng F, Wang H, Ning YJ. Host restriction of emerging high-pathogenic bunyaviruses via MOV10 by targeting viral nucleoprotein and blocking ribonucleoprotein assembly. PLoS Pathog 2020; 16:e1009129. [PMID: 33284835 PMCID: PMC7746268 DOI: 10.1371/journal.ppat.1009129] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 12/17/2020] [Accepted: 11/05/2020] [Indexed: 11/19/2022] Open
Abstract
Bunyavirus ribonucleoprotein (RNP) that is assembled by polymerized nucleoproteins (N) coating a viral RNA and associating with a viral polymerase can be both the RNA synthesis machinery and the structural core of virions. Bunyaviral N and RNP thus could be assailable targets for host antiviral defense; however, it remains unclear which and how host factors target N/RNP to restrict bunyaviral infection. By mass spectrometry and protein-interaction analyses, we here show that host protein MOV10 targets the N proteins encoded by a group of emerging high-pathogenic representatives of bunyaviruses including severe fever with thrombocytopenia syndrome virus (SFTSV), one of the most dangerous pathogens listed by World Health Organization, in RNA-independent manner. MOV10 that was further shown to be induced specifically by SFTSV and related bunyaviruses in turn inhibits the bunyaviral replication in infected cells in series of loss/gain-of-function assays. Moreover, animal infection experiments with MOV10 knockdown corroborated the role of MOV10 in restricting SFTSV infection and pathogenicity in vivo. Minigenome assays and additional functional and mechanistic investigations demonstrate that the anti-bunyavirus activity of MOV10 is likely achieved by direct impact on viral RNP machinery but independent of its helicase activity and the cellular interferon pathway. Indeed, by its N-terminus, MOV10 binds to a protruding N-arm domain of N consisting of only 34 amino acids but proving important for N function and blocks N polymerization, N-RNA binding, and N-polymerase interaction, disabling RNP assembly. This study not only advances the understanding of bunyaviral replication and host restriction mechanisms but also presents novel paradigms for both direct antiviral action of MOV10 and host targeting of viral RNP machinery. Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging high-pathogenic bunyavirus listed by the World Health Organization as a top priority pathogen for research and development. Although SFTSV and related bunyaviruses emerging globally have raised serious public health concerns, specific antivirals or vaccines are currently unavailable and little is known on the virus-host interactions and viral replication mechanism. The nucleoprotein (N) is essential for bunyavirus replication by driving assembly of ribonucleoprotein (RNP), the RNA synthesis machinery and structural core of virions. Here we show that N proteins of SFTSV and related bunyaviruses can be targeted by host factor MOV10 in RNA-independent manner. Further, MOV10 can be induced specifically by the bunyaviruses and in turn restrict the viral replication and pathogenicity in vitro and in vivo. The anti-bunyavirus activity of MOV10 is independent of its helicase region and cellular interferon pathway. Instead, by its N-terminus, MOV10 binds to a protruding N-arm domain of N and blocks N polymerization, N-RNA binding, and N-polymerase interaction, disabling RNP assembly. This study provides a delicate model for host targeting of viral RNP machinery and sheds light on bunyaviral replication and host restriction mechanisms, which may promote specific antiviral therapy development.
Collapse
Affiliation(s)
- Qiong Mo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhao Xu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (HW); (Y-JN)
| | - Yun-Jia Ning
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (HW); (Y-JN)
| |
Collapse
|
63
|
Li Y, Chai W, Min J, Ye Z, Tong X, Qi D, Liu W, Luo E, Li J, Ye X. Neddylation of M1 negatively regulates the replication of influenza A virus. J Gen Virol 2020; 101:1242-1250. [PMID: 33016861 DOI: 10.1099/jgv.0.001503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Post-translational modification plays a critical role in viral replication. Previously we reported that neddylation of PB2 of influenza A virus (IAV) can inhibit viral replication. However, we found that NEDD8 overexpression can still inhibit the replication of PB2 K699R mutant viruses, implying that other viral protein(s) can be neddylated. In this study, we revealed that M1 of IAV can also be modified by NEDD8. We found that the E3 ligase HDM2 significantly promotes M1 neddylation. Furthermore, we identified M1 K187 as the major neddylation site. We generated an IAV M1 K187R mutant (WSN-M1 K187R) and compared the growth of wild-type and mutant viruses in Madin-Darby canine kidney (MDCK) cells. The data showed that the replication of WSN-M1 K187R was more efficient than that of wild-type WSN. More importantly, we observed that overexpression of NEDD8 inhibited the replication of the wild-type WSN more effectively than that of WSN-M1 K187R. In addition, we found that the neddylation-deficient M1 mutant (M1 K187R) had a longer half-life than that of wild-type M1, indicating that the neddylation of M1 reduces stability. Then we performed a viral infection assay and found that WSN-M1 K187R exhibited greater virulence in mice than wild-type WSN, suggesting that the neddylation of M1 reduced IAV replication in vivo. In conclusion, we uncovered that neddylation of M1 by HDM2 negatively regulates the stability of M1, which in turn inhibits viral replication.
Collapse
Affiliation(s)
- Yucen Li
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, PR China
| | - Wenjia Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.,Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, PR China
| | - Jie Min
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zhen Ye
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xiaomei Tong
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Dandan Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wenjun Liu
- Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing 100101, PR China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Enjie Luo
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, PR China
| | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin Ye
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
64
|
Dawson AR, Wilson GM, Coon JJ, Mehle A. Post-Translation Regulation of Influenza Virus Replication. Annu Rev Virol 2020; 7:167-187. [DOI: 10.1146/annurev-virology-010320-070410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Influenza virus exploits cellular factors to complete each step of viral replication. Yet, multiple host proteins actively block replication. Consequently, infection success depends on the relative speed and efficacy at which both the virus and host use their respective effectors. Post-translational modifications (PTMs) afford both the virus and the host means to readily adapt protein function without the need for new protein production. Here we use influenza virus to address concepts common to all viruses, reviewing how PTMs facilitate and thwart each step of the replication cycle. We also discuss advancements in proteomic methods that better characterize PTMs. Although some effectors and PTMs have clear pro- or antiviral functions, PTMs generally play regulatory roles to tune protein functions, levels, and localization. Synthesis of our current understanding reveals complex regulatory schemes where the effects of PTMs are time and context dependent as the virus and host battle to control infection.
Collapse
Affiliation(s)
- Anthony R. Dawson
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Gary M. Wilson
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Andrew Mehle
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
65
|
TRIM Proteins and Their Roles in the Influenza Virus Life Cycle. Microorganisms 2020; 8:microorganisms8091424. [PMID: 32947942 PMCID: PMC7565951 DOI: 10.3390/microorganisms8091424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) has been recognized for regulating fundamental cellular processes, followed by induction of proteasomal degradation of target proteins, and triggers multiple signaling pathways that are crucial for numerous aspects of cellular physiology. Especially tripartite motif (TRIM) proteins, well-known E3 ubiquitin ligases, emerge as having critical roles in several antiviral signaling pathways against varying viral infections. Here we highlight recent advances in the study of antiviral roles of TRIM proteins toward influenza virus infection in terms of the modulation of pathogen recognition receptor (PRR)-mediated innate immune sensing, direct obstruction of influenza viral propagation, and participation in virus-induced autophagy.
Collapse
|
66
|
Hu J, Zhang L, Liu X. Role of Post-translational Modifications in Influenza A Virus Life Cycle and Host Innate Immune Response. Front Microbiol 2020; 11:517461. [PMID: 33013775 PMCID: PMC7498822 DOI: 10.3389/fmicb.2020.517461] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 08/14/2020] [Indexed: 01/01/2023] Open
Abstract
Throughout various stages of its life cycle, influenza A virus relies heavily on host cellular machinery, including the post-translational modifications (PTMs) system. During infection, influenza virus interacts extensively with the cellular PTMs system to aid in its successful infection and dissemination. The complex interplay between viruses and the PTMs system induces global changes in PTMs of the host proteome as well as modifications of specific host or viral proteins. The most common PTMs include phosphorylation, ubiquitination, SUMOylation, acetylation, methylation, NEDDylation, and glycosylation. Many PTMs directly support influenza virus infection, whereas others contribute to modulating antiviral responses. In this review, we describe current knowledge regarding the role of PTMs in different stages of the influenza virus replication cycle. We also discuss the concerted role of PTMs in antagonizing host antiviral responses, with an emphasis on their impact on viral pathogenicity and host range.
Collapse
Affiliation(s)
- Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Lei Zhang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
67
|
Koepke L, Gack MU, Sparrer KM. The antiviral activities of TRIM proteins. Curr Opin Microbiol 2020; 59:50-57. [PMID: 32829025 DOI: 10.1016/j.mib.2020.07.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 01/04/2023]
Abstract
Tripartite motif (TRIM) proteins are a highly versatile family of host-cell factors that play an integral role in the mammalian defense against pathogens. TRIM proteins regulate either transcription-dependent antiviral responses such as pro-inflammatory cytokine induction, or they modulate other important cell-intrinsic defense pathways like autophagy. Additionally, TRIM proteins exert direct antiviral activity whereby they antagonize specific viral components through diverse mechanisms. Here, we summarize the latest discoveries on the molecular mechanisms of antiviral TRIM proteins and also discuss current and future trends in this fast-evolving field.
Collapse
Affiliation(s)
- Lennart Koepke
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Michaela U Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, United States; Department of Microbiology, The University of Chicago, Chicago, IL 60637, United States.
| | | |
Collapse
|
68
|
Xie S, Zhang L, Dong D, Ge R, He Q, Fan C, Xie W, Zhou J, Li D, Liu M. HDAC6 regulates antibody-dependent intracellular neutralization of viruses via deacetylation of TRIM21. J Biol Chem 2020; 295:14343-14351. [PMID: 32796032 DOI: 10.1074/jbc.ra119.011006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 07/26/2020] [Indexed: 01/01/2023] Open
Abstract
Tripartite motif-containing protein 21 (TRIM21) is a cytosolic antibody receptor that targets the internalized virus-antibody complex to the proteasome for degradation. However, the precise mechanism regulating TRIM21 activity is unknown. Here we show that TRIM21 is a substrate of histone deacetylase 6 (HDAC6) and that its function is regulated by acetylation. HDAC6 interacts with TRIM21 through its PRYSPRY motif and deacetylates TRIM21 at lysine 385 and lysine 387, thus promoting its homodimerization. Inhibiting HDAC6 activity increases TRIM21 acetylation, and hyperacetylation blocks TRIM21 dimerization and ubiquitination, preventing its binding to the virus-antibody complex and its degradation via the ubiquitin-proteasome pathway. HDAC6 depletion or inhibition increases virus accumulation in cells, indicative of an impaired capacity for antibody-dependent intracellular neutralization of viruses, whereas TRIM21 acetylation-deficient K385/387R mutant rescues HDAC6 depletion-caused ADIN impairment. These findings provide evidence for HDAC6 as a novel regulator of TRIM21-mediated intracellular innate immunity.
Collapse
Affiliation(s)
- Songbo Xie
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Linlin Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Dan Dong
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Ruixin Ge
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Qianqian He
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Cunxian Fan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Wei Xie
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, China.,State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Min Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
69
|
Abstract
Purpose of Review Tripartite motif (TRIM) proteins are a large group of E3 ubiquitin ligases involved in different cellular functions. Of special interest are their roles in innate immunity, inflammation, and virus replication. We discuss novel roles of TRIM proteins during virus infections that lead to increased pathogenicity. Recent Findings TRIM proteins regulate different antiviral and inflammatory signaling pathways, mostly by promoting ubiquitination of important factors including pattern recognition receptors, adaptor proteins, kinases, and transcription factors that are involved in type I interferon and NF-κB pathways. Therefore, viruses have developed mechanisms to target TRIMs for immune evasion. New evidence is emerging indicating that viruses have the ability to directly use TRIMs and the ubiquitination process to enhance the viral replication cycle and cause increased pathogenesis. A new report on TRIM7 also highlights the potential pro-viral role of TRIMs via ubiquitination of viral proteins and suggests a novel mechanism by which ubiquitination of virus envelope protein may provide determinants of tissue and species tropism. Summary TRIM proteins have important functions in promoting host defense against virus infection; however, viruses have adapted to evade TRIM-mediated immune responses and can hijack TRIMs to ultimately increase virus pathogenesis. Only by understanding specific TRIM-virus interactions and by using more in vivo approaches can we learn how to harness TRIM function to develop therapeutic approaches to reduce virus pathogenesis.
Collapse
|
70
|
Li C, Wang T, Zhang Y, Wei F. Evasion mechanisms of the type I interferons responses by influenza A virus. Crit Rev Microbiol 2020; 46:420-432. [PMID: 32715811 DOI: 10.1080/1040841x.2020.1794791] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The type I interferons (IFNs) represent the first line of host defense against influenza virus infection, and the precisely control of the type I IFNs responses is a central event of the immune defense against influenza viral infection. Influenza viruses are one of the leading causes of respiratory tract infections in human and are responsible for seasonal epidemics and occasional pandemics, leading to a serious threat to global human health due to their antigenic variation and interspecies transmission. Although the host cells have evolved sophisticated antiviral mechanisms based on sensing influenza viral products and triggering of signalling cascades resulting in secretion of the type I IFNs (IFN-α/β), influenza viruses have developed many strategies to counteract this mechanism and circumvent the type I IFNs responses, for example, by inducing host shut-off, or by regulating the polyubiquitination of viral and host proteins. This review will summarise the current knowledge of how the host cells recognise influenza viruses to induce the type I IFNs responses and the strategies that influenza viruses exploited to evade the type I IFNs signalling pathways, which will be helpful for the development of antivirals and vaccines.
Collapse
Affiliation(s)
- Chengye Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China.,College of Agriculture, Ningxia University, Yinchuan, China
| | - Tong Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Yuying Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Fanhua Wei
- College of Agriculture, Ningxia University, Yinchuan, China
| |
Collapse
|
71
|
Koepke L, Winter B, Grenzner A, Regensburger K, Engelhart S, van der Merwe JA, Krebs S, Blum H, Kirchhoff F, Sparrer KMJ. An improved method for high-throughput quantification of autophagy in mammalian cells. Sci Rep 2020; 10:12241. [PMID: 32699244 PMCID: PMC7376206 DOI: 10.1038/s41598-020-68607-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a cellular homeostatic pathway with functions ranging from cytoplasmic protein turnover to immune defense. Therapeutic modulation of autophagy has been demonstrated to positively impact the outcome of autophagy-dysregulated diseases such as cancer or microbial infections. However, currently available agents lack specificity, and new candidates for drug development or potential cellular targets need to be identified. Here, we present an improved method to robustly detect changes in autophagy in a high-throughput manner on a single cell level, allowing effective screening. This method quantifies eGFP-LC3B positive vesicles to accurately monitor autophagy. We have significantly streamlined the protocol and optimized it for rapid quantification of large numbers of cells in little time, while retaining accuracy and sensitivity. Z scores up to 0.91 without a loss of sensitivity demonstrate the robustness and aptness of this approach. Three exemplary applications outline the value of our protocols and cell lines: (I) Examining autophagy modulating compounds on four different cell types. (II) Monitoring of autophagy upon infection with e.g. measles or influenza A virus. (III) CRISPR/Cas9 screening for autophagy modulating factors in T cells. In summary, we offer ready-to-use protocols to generate sensitive autophagy reporter cells and quantify autophagy in high-throughput assays.
Collapse
Affiliation(s)
- Lennart Koepke
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Benjamin Winter
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Alexander Grenzner
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Kerstin Regensburger
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Susanne Engelhart
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | | | - Stefan Krebs
- Gene Center and Laboratory for Functional Genome Analysis, Ludwig-Maximilians-University, 81377, Munich, Germany
| | - Helmut Blum
- Gene Center and Laboratory for Functional Genome Analysis, Ludwig-Maximilians-University, 81377, Munich, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | | |
Collapse
|
72
|
Hage A, Rajsbaum R. To TRIM or not to TRIM: the balance of host-virus interactions mediated by the ubiquitin system. J Gen Virol 2020; 100:1641-1662. [PMID: 31661051 DOI: 10.1099/jgv.0.001341] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The innate immune system responds rapidly to protect against viral infections, but an overactive response can cause harmful damage. To avoid this, the response is tightly regulated by post-translational modifications (PTMs). The ubiquitin system represents a powerful PTM machinery that allows for the reversible linkage of ubiquitin to activate and deactivate a target's function. A precise enzymatic cascade of ubiquitin-activating, conjugating and ligating enzymes facilitates ubiquitination. Viruses have evolved to take advantage of the ubiquitin pathway either by targeting factors to dampen the antiviral response or by hijacking the system to enhance their replication. The tripartite motif (TRIM) family of E3 ubiquitin ligases has garnered attention as a major contributor to innate immunity. Many TRIM family members limit viruses either indirectly as components in innate immune signalling, or directly by targeting viral proteins for degradation. In spite of this, TRIMs and other ubiquitin ligases can be appropriated by viruses and repurposed as valuable tools in viral replication. This duality of function suggests a new frontier of research for TRIMs and raises new challenges for discerning the subtleties of these pro-viral mechanisms. Here, we review current findings regarding the involvement of TRIMs in host-virus interactions. We examine ongoing developments in the field, including novel roles for unanchored ubiquitin in innate immunity, the direct involvement of ubiquitin ligases in promoting viral replication, recent controversies on the role of ubiquitin and TRIM25 in activation of the pattern recognition receptor RIG-I, and we discuss the implications these studies have on future research directions.
Collapse
Affiliation(s)
- Adam Hage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
73
|
Campbell LK, Magor KE. Pattern Recognition Receptor Signaling and Innate Responses to Influenza A Viruses in the Mallard Duck, Compared to Humans and Chickens. Front Cell Infect Microbiol 2020; 10:209. [PMID: 32477965 PMCID: PMC7236763 DOI: 10.3389/fcimb.2020.00209] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/16/2020] [Indexed: 12/25/2022] Open
Abstract
Mallard ducks are a natural host and reservoir of avian Influenza A viruses. While most influenza strains can replicate in mallards, the virus typically does not cause substantial disease in this host. Mallards are often resistant to disease caused by highly pathogenic avian influenza viruses, while the same strains can cause severe infection in humans, chickens, and even other species of ducks, resulting in systemic spread of the virus and even death. The differences in influenza detection and antiviral effectors responsible for limiting damage in the mallards are largely unknown. Domestic mallards have an early and robust innate response to infection that seems to limit replication and clear highly pathogenic strains. The regulation and timing of the response to influenza also seems to circumvent damage done by a prolonged or dysregulated immune response. Rapid initiation of innate immune responses depends on viral recognition by pattern recognition receptors (PRRs) expressed in tissues where the virus replicates. RIG-like receptors (RLRs), Toll-like receptors (TLRs), and Nod-like receptors (NLRs) are all important influenza sensors in mammals during infection. Ducks utilize many of the same PRRs to detect influenza, namely RIG-I, TLR7, and TLR3 and their downstream adaptors. Ducks also express many of the same signal transduction proteins including TBK1, TRIF, and TRAF3. Some antiviral effectors expressed downstream of these signaling pathways inhibit influenza replication in ducks. In this review, we summarize the recent advances in our understanding of influenza recognition and response through duck PRRs and their adaptors. We compare basal tissue expression and regulation of these signaling components in birds, to better understand what contributes to influenza resistance in the duck.
Collapse
Affiliation(s)
- Lee K Campbell
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Katharine E Magor
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
74
|
Bhushan R, Rani A, Ali A, Singh VK, Dubey PK. Bioinformatics enrichment analysis of genes and pathways related to maternal type 1 diabetes associated with adverse fetal outcomes. J Diabetes Complications 2020; 34:107556. [PMID: 32046932 DOI: 10.1016/j.jdiacomp.2020.107556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 01/14/2023]
Abstract
Maternal type 1 diabetes mellitus (T1DM) may affect fetal development by altering the gene expression profile of the umbilical cord. The present study aimed to explore the T1DM-induced gene expression changes in the fetal umbilical cord. The raw gene expression profiles (ID: GSE51546) of umbilical cord tissue obtained from six normal mothers (non-diabetic) and six type 1 diabetic mothers were used to identify the differentially expressed genes. Genes that correspond to official gene symbols were selected for protein-protein interaction (PPI) and sub-network construction (combined score > 0.4). Functional annotation for Gene Ontology (GO) and pathway enrichment analysis were performed for genes involved in networking. A total of 110 differentially expressed genes were identified of which 38 were up-regulated while 72 were down-regulated. Only 37 genes were identified to significantly interact with each other. Hub genes including HSPA4, KCTD6, UBE2G1, FBXL19, and EHMT1 were up-regulated while KBTBD7, TRIM32, and NUP were down-regulated. T1DM had a major effect on the expression of genes involved in cellular death and differentiation, cell signaling and communication, protein modification and regulation of GTPase activity. Total 27 pathways were enriched and genes related to Wnt signaling, VEGF signaling, inflammation mediated by chemokine and cytokine signaling pathways, FGF signaling pathways and GnRH receptor pathways were found significantly affected by T1DM. Our results suggest that the T1DM environment seems to alter umbilical cord gene expression involved in the regulation of pathophysiology of the diabetic mother which in turn may lead to long-term consequences in various tissues in infants. This study provides insight into the molecular mechanism underlying the adverse pregnancy outcomes of maternal T1DM.
Collapse
Affiliation(s)
- Ravi Bhushan
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Anjali Rani
- Department of Obstetrics and Gynecology, Institute of Medical Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Akhtar Ali
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Vinay Kumar Singh
- Centre for Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Pawan K Dubey
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
75
|
Zhao M, Song K, Hao W, Wang L, Patil G, Li Q, Xu L, Hua F, Fu B, Schwamborn JC, Dorf ME, Li S. Non-proteolytic ubiquitination of OTULIN regulates NF-κB signaling pathway. J Mol Cell Biol 2020; 12:163-175. [PMID: 31504727 PMCID: PMC7181720 DOI: 10.1093/jmcb/mjz081] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/23/2019] [Accepted: 06/12/2019] [Indexed: 12/25/2022] Open
Abstract
NF-κB signaling regulates diverse processes such as cell death, inflammation, immunity, and cancer. The activity of NF-κB is controlled by methionine 1-linked linear polyubiquitin, which is assembled by the linear ubiquitin chain assembly complex (LUBAC) and the ubiquitin-conjugating enzyme UBE2L3. Recent studies found that the deubiquitinase OTULIN breaks the linear ubiquitin chain, thus inhibiting NF-κB signaling. Despite the essential role of OTULIN in NF-κB signaling has been established, the regulatory mechanism for OTULIN is not well elucidated. To discover the potential regulators of OTULIN, we analyzed the OTULIN protein complex by proteomics and revealed several OTULIN-binding proteins, including LUBAC and tripartite motif-containing protein 32 (TRIM32). TRIM32 is known to activate NF-κB signaling, but the mechanism is not clear. Genetic complement experiments found that TRIM32 is upstream of OTULIN and TRIM32-mediated NF-κB activation is dependent on OTULIN. Mutagenesis of the E3 ligase domain showed that the E3 ligase activity is essential for TRIM32-mediated NF-κB activation. Further experiments found that TRIM32 conjugates polyubiquitin onto OTULIN and the polyubiquitin blocks the interaction between HOIP and OTULIN, thereby activating NF-κB signaling. Taken together, we report a novel regulatory mechanism by which TRIM32-mediated non-proteolytic ubiquitination of OTULIN impedes the access of OTULIN to the LUBAC and promotes NF-κB activation.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Kun Song
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Wenzhuo Hao
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Lingyan Wang
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Girish Patil
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Qingmei Li
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Lingling Xu
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Fang Hua
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Bishi Fu
- State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg City, Luxembourg
| | - Martin E Dorf
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Shitao Li
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
76
|
Nonproteolytic K29-Linked Ubiquitination of the PB2 Replication Protein of Influenza A Viruses by Proviral Cullin 4-Based E3 Ligases. mBio 2020; 11:mBio.00305-20. [PMID: 32265326 PMCID: PMC7157767 DOI: 10.1128/mbio.00305-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Successful infection by influenza A virus, a pathogen of major public health importance, involves fine regulation of the multiple functions of the viral proteins, which often relies on post-translational modifications (PTMs). The PB2 protein of influenza A viruses is essential for viral replication and a key determinant of host range. While PTMs of PB2 inducing its degradation have been identified, here we show that PB2 undergoes a regulating PTM signaling detected during infection, based on an atypical K29-linked ubiquitination and mediated by two multicomponent E3 ubiquitin ligases. Recombinant viruses impaired for CRL4-mediated ubiquitination are attenuated, indicating that ubiquitination of PB2 is necessary for an optimal influenza A virus infection. The CRL4 E3 ligases are required for normal viral cycle progression and for maximal virion production. Consequently, they represent potential candidate host factors for antiviral targets. The multifunctional nature of viral proteins is essentially driven by posttranslational modifications (PTMs) and is key for the successful outcome of infection. For influenza A viruses (IAVs), a composite pattern of PTMs regulates the activity of viral proteins. However, almost none are known that target the PB2 replication protein, except for inducing its degradation. We show here that PB2 undergoes a nonproteolytic ubiquitination during infection. We identified E3 ubiquitin ligases catalyzing this ubiquitination as two multicomponent RING-E3 ligases based on cullin 4 (CRL4s), which are both contributing to the levels of ubiquitinated forms of PB2 in infected cells. The CRL4 E3 ligase activity is required for the normal progression of the viral cycle and for maximal virion production, indicating that the CRL4s mediate a ubiquitin signaling that promotes infection. The CRL4s are recruiting PB2 through an unconventional bimodal interaction with both the DDB1 adaptor and DCAF substrate receptors. While able to bind to PB2 when engaged in the viral polymerase complex, the CRL4 factors do not alter transcription and replication of the viral segments during infection. CRL4 ligases catalyze different patterns of lysine ubiquitination on PB2. Recombinant viruses mutated in the targeted lysines showed attenuated viral production, suggesting that CRL4-mediated ubiquitination of PB2 contributes to IAV infection. We identified K29-linked ubiquitin chains as main components of the nonproteolytic PB2 ubiquitination mediated by the CRL4s, providing the first example of the role of this atypical ubiquitin linkage in the regulation of a viral infection.
Collapse
|
77
|
Qin Z, Qu X, Lei L, Xu L, Pan Z. Y-Box-Binding Protein 3 (YBX3) Restricts Influenza A Virus by Interacting with Viral Ribonucleoprotein Complex and Imparing its Function. J Gen Virol 2020; 101:385-398. [DOI: 10.1099/jgv.0.001390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Zhenqiao Qin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Xiao Qu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Lei Lei
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Lulai Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Zishu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| |
Collapse
|
78
|
Host-Virus Interaction: How Host Cells Defend against Influenza A Virus Infection. Viruses 2020; 12:v12040376. [PMID: 32235330 PMCID: PMC7232439 DOI: 10.3390/v12040376] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
Influenza A viruses (IAVs) are highly contagious pathogens infecting human and numerous animals. The viruses cause millions of infection cases and thousands of deaths every year, thus making IAVs a continual threat to global health. Upon IAV infection, host innate immune system is triggered and activated to restrict virus replication and clear pathogens. Subsequently, host adaptive immunity is involved in specific virus clearance. On the other hand, to achieve a successful infection, IAVs also apply multiple strategies to avoid be detected and eliminated by the host immunity. In the current review, we present a general description on recent work regarding different host cells and molecules facilitating antiviral defenses against IAV infection and how IAVs antagonize host immune responses.
Collapse
|
79
|
TRIM32 Drives Pathogenesis in Streptococcal Toxic Shock-Like Syndrome and Streptococcus suis Meningitis by Regulating Innate Immune Responses. Infect Immun 2020; 88:IAI.00957-19. [PMID: 31988176 DOI: 10.1128/iai.00957-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 01/17/2020] [Indexed: 12/13/2022] Open
Abstract
Streptococcus suis is an emerging zoonotic agent that causes streptococcal toxic shock-like syndrome (STSLS) and meningitis in humans, with high mortality and morbidity. The pathogenesis of both STSLS and central nervous system (CNS) infections caused by S. suis is not well understood. TRIM32, a member of the tripartite motif (TRIM) protein family, has been reported to regulate host inflammatory responses. In this study, we showed that TRIM32 deficiency significantly reduced the level of bacteremia and the production of proinflammatory cytokines following severe S. suis infection, protecting infected mice from STSLS. The influence of TRIM32 gene deletion on a range of processes known to be involved in S. suis meningitis was also examined. Both levels of bacterial loads and indications of brain hemorrhage were reduced in infected Trim32- / - mice compared with infected wild-type (WT) controls. We also found that TRIM32 deficiency increased the permeability of the blood-brain barrier (BBB) and the recruitment of inflammatory monocytes during the early course of S. suis infection, potentially limiting the development of S. suis meningitis. Our results suggest that TRIM32 sensitizes S. suis-induced infection via innate immune response regulation.
Collapse
|
80
|
Wu S, Zhang J, Xue Q, Liu J, Huang B, He Z, Huang J, Zu S, Chen Z, Zhao B, Liao M, Jiao P. Duck TRIM32 Functions in IFN-β Signaling Against the Infection of H5N6 Highly Pathogenic Avian Influenza Virus. Front Immunol 2020; 11:377. [PMID: 32184788 PMCID: PMC7058987 DOI: 10.3389/fimmu.2020.00377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
In mammals, tripartite motif 32 (TRIM32) is essential for regulating host innate immune responses to viral infections. However, the antiviral effect of TRIM32 in birds has not been reported. Here, we cloned the full-length duck TRIM32 (duTRIM32) cDNA from total spleen RNA of Peking duck. DuTRIM32 consists of 682 amino acids and has 95.5% similarity in amino acid sequences with chicken TRIM32 and 84.9% similarity with human TRIM32, respectively. DuTRIM32 mRNA was found to be ubiquitously expressed in all tested tissues from healthy ducks. Overexpression of duTRIM32 significantly activated the IFN-β promoter and upregulated the mRNA levels of IFN-β, IRF7, and Mx, which indicates that duTRIM32 is involved in the type I IFN pathway. Furthermore, duTRIM32 was found to directly interact with duck STING (duSTING) and to contribute to the expression of IFN-β mediated by duSTING. The mRNA level of duTRIM32 was significantly upregulated in the lungs and spleens of H5N6 highly pathogenic avian influenza virus (HPAIV) infected ducks 3 days post-infection (DPI). Furthermore, overexpression of duTRIM32 could inhibit the replication of H5N6 HPAIV in duck embryo fibroblasts (DEFs). Therefore, these results indicate that duTRIM32 is involved in the type I IFN pathway and exhibit an antiviral effect against H5N6 HPAIV infection.
Collapse
Affiliation(s)
- Siyu Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Junsheng Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qian Xue
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jing Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bingzhong Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhuoliang He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianni Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shaopo Zu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zuxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bingbing Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Peirong Jiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
81
|
Patil G, Xu L, Wu Y, Song K, Hao W, Hua F, Wang L, Li S. TRIM41-Mediated Ubiquitination of Nucleoprotein Limits Vesicular Stomatitis Virus Infection. Viruses 2020; 12:v12020131. [PMID: 31979016 PMCID: PMC7077221 DOI: 10.3390/v12020131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/29/2022] Open
Abstract
Vesicular stomatitis virus (VSV) is a zoonotic, negative-stranded RNA virus of the family Rhabdoviridae. The nucleoprotein (N) of VSV protects the viral genomic RNA and plays an essential role in viral transcription and replication, which makes the nucleoprotein an ideal target of host defense. However, whether and how host innate/intrinsic immunity limits VSV infection by targeting the N protein are unknown. In this study, we found that the N protein of VSV (VSV-N) interacted with a ubiquitin E3 ligase, tripartite motif protein 41 (TRIM41). Overexpression of TRIM41 inhibited VSV infection. Conversely, the depletion of TRIM41 increased host susceptibility to VSV. Furthermore, the E3 ligase defective mutant of TRIM41 failed to limit VSV infection, suggesting the requirement of the E3 ligase activity of TRIM41 in viral restriction. Indeed, TRIM41 ubiquitinated VSV-N in cells and in vitro. TRIM41-mediated ubiquitination leads to the degradation of VSV-N through proteasome, thereby limiting VSV infection. Taken together, our study identifies TRIM41 as a new intrinsic immune factor against VSV by targeting the viral nucleoprotein for ubiquitination and subsequent protein degradation.
Collapse
Affiliation(s)
- Girish Patil
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, 156 McElroy Hall, Stillwater, OK 74078, USA; (G.P.); (L.X.)
| | - Lingling Xu
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, 156 McElroy Hall, Stillwater, OK 74078, USA; (G.P.); (L.X.)
| | - Yakun Wu
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA 70112, USA; (Y.W.); (K.S.); (W.H.); (F.H.); (L.W.)
| | - Kun Song
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA 70112, USA; (Y.W.); (K.S.); (W.H.); (F.H.); (L.W.)
| | - Wenzhuo Hao
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA 70112, USA; (Y.W.); (K.S.); (W.H.); (F.H.); (L.W.)
| | - Fang Hua
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA 70112, USA; (Y.W.); (K.S.); (W.H.); (F.H.); (L.W.)
| | - Lingyan Wang
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA 70112, USA; (Y.W.); (K.S.); (W.H.); (F.H.); (L.W.)
| | - Shitao Li
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, 156 McElroy Hall, Stillwater, OK 74078, USA; (G.P.); (L.X.)
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA 70112, USA; (Y.W.); (K.S.); (W.H.); (F.H.); (L.W.)
- Correspondence:
| |
Collapse
|
82
|
Goraya MU, Zaighum F, Sajjad N, Anjum FR, Sakhawat I, Rahman SU. Web of interferon stimulated antiviral factors to control the influenza A viruses replication. Microb Pathog 2019; 139:103919. [PMID: 31830579 DOI: 10.1016/j.micpath.2019.103919] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/25/2019] [Accepted: 12/09/2019] [Indexed: 01/20/2023]
Abstract
Influenza viruses cause mild to severe infections in animals and humans worldwide with significant morbidity and mortality. Infection of eukaryotic cells with influenza A viruses triggers the induction of innate immune system through the interaction between pattern recognition receptors (PRRs) and pathogen associated molecular patterns (PAMPs), which culminate in the induction of interferons (IFNs). Consequently, IFNs bind to their cognate receptors on the cellular membrane and activate the signaling pathway for transcriptional regulation of interferon-stimulated genes (ISGs) through Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. Cumulative actions of these ISGs establish an antiviral state of the host. Several ISGs have been described, which play critical roles to inhibit the infection and replication of influenza A viruses at multiple steps of virus life cycle. In this review, the dynamics and redundancy of these ISGs against influenza A viruses are discussed. Additionally, current understanding and molecular mechanisms that are underlying the roles of ISGs in pathogenesis of influenza virus are critically reviewed.
Collapse
Affiliation(s)
- Mohsan Ullah Goraya
- Institute of Microbiology, University of Agriculture Faisalabad, 38000, Pakistan.
| | | | - Nelam Sajjad
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Faisal Rasheed Anjum
- Institute of Microbiology, University of Agriculture Faisalabad, 38000, Pakistan
| | - Irfan Sakhawat
- School of Science and Technology, Orebro University, SE-70182, Orebro, Sweden
| | - Sajjad Ur Rahman
- Institute of Microbiology, University of Agriculture Faisalabad, 38000, Pakistan.
| |
Collapse
|
83
|
TRIM59 inhibits porcine reproductive and respiratory syndrome virus (PRRSV)-2 replication in vitro. Res Vet Sci 2019; 127:105-112. [PMID: 31683196 DOI: 10.1016/j.rvsc.2019.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/27/2019] [Accepted: 10/06/2019] [Indexed: 12/20/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) caused by PRRS virus (PRRSV), has ranked among the major economically significant pathogen in the global swine industry. The PRRSV nonstructural protein (nsp)11 possesses nidovirus endoribonuclease (NendoU) activity, which is important for virus replication and suppression of the host innate immunity system. Recent proteomic study found that TRIM59 (tripartite motif-containing 59) interacted with the nsp11, albeit the exact role it plays in PRRSV infection remains enigmatic. Herein, we first confirmed the interaction between nsp11 and TRIM59 in co-transfected HEK293T cells and PRRSV-infected pulmonary alveolar macrophages (PAMs). The interacting domains between TRIM59 and nsp11 were further determined to be the N-terminal RING domain in TRIM59 and the C-terminal NendoU domain in nsp11, respectively. Moreover, we reported that overexpression of TRIM59 inhibited PRRSV infection in Marc-145 cells. Conversely, small interfering RNA (siRNA) depletion of TRIM59 resulted in enhanced production of PRRSV in PAMs. Together, these data add TRIM59 as a crucial antiviral component against PRRSV and provide new insights for development of new compounds to reduce PRRSV infection.
Collapse
|
84
|
Wang J, Zhang Y, Li Q, Zhao J, Yi D, Ding J, Zhao F, Hu S, Zhou J, Deng T, Li X, Guo F, Liang C, Cen S. Influenza Virus Exploits an Interferon-Independent lncRNA to Preserve Viral RNA Synthesis through Stabilizing Viral RNA Polymerase PB1. Cell Rep 2019; 27:3295-3304.e4. [PMID: 31189112 DOI: 10.1016/j.celrep.2019.05.036] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/08/2018] [Accepted: 05/09/2019] [Indexed: 12/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) participate in host antiviral defense by modulating immune responses. However, it remains largely unexplored how viruses exploit interferon (IFN)-independent host lncRNAs to facilitate viral replication. Here, we have identified a group of human lncRNAs that modulate influenza A virus (IAV) replication in a loss-of-function screen and found that an IFN-independent lncRNA, called IPAN, is hijacked by IAV to assist IAV replication. IPAN is specifically induced by IAV infection independently of IFN and associates with and stabilizes viral RNA-dependent RNA polymerase PB1, enabling efficient viral RNA synthesis. Silencing IPAN results in PB1 degradation and severely impairs viral infection. Therefore, our data unveil an important role of host lncRNAs in promoting viral replication by modulating viral protein stability. Our findings may open avenues to the development of antiviral therapeutics.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, PR China
| | - Yongxin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, PR China
| | - Quanjie Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, PR China
| | - Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, PR China
| | - Dongrong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, PR China
| | - Jiwei Ding
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, PR China
| | - Fei Zhao
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100730, PR China
| | - Siqi Hu
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100730, PR China
| | - Jinming Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, PR China
| | - Tao Deng
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100730, PR China
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, PR China.
| | - Fei Guo
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100730, PR China
| | - Chen Liang
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, PR China.
| |
Collapse
|
85
|
Li R, Chen C, He J, Zhang L, Zhang L, Guo Y, Zhang W, Tan K, Huang J. E3 ligase ASB8 promotes porcine reproductive and respiratory syndrome virus proliferation by stabilizing the viral Nsp1α protein and degrading host IKKβ kinase. Virology 2019; 532:55-68. [DOI: 10.1016/j.virol.2019.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/30/2019] [Accepted: 04/12/2019] [Indexed: 12/18/2022]
|
86
|
Xie X, Liu PS, Percipalle P. Analysis of Global Transcriptome Change in Mouse Embryonic Fibroblasts After dsDNA and dsRNA Viral Mimic Stimulation. Front Immunol 2019; 10:836. [PMID: 31057555 PMCID: PMC6478819 DOI: 10.3389/fimmu.2019.00836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 04/01/2019] [Indexed: 01/01/2023] Open
Abstract
The activation of innate immunity by viral nucleic acids present in the cytoplasm plays an essential role in controlling viral infection in both immune and non-immune cells. The dsDNA and dsRNA viral mimics can stimulate the cytosolic nucleic acids sensors and activate the antiviral innate immunity. In this study, taking advantage of dsDNA and dsRNA viral mimics, we investigated the global transcriptome changes after the antiviral immunity activation in mouse embryonic fibroblasts. Results from our data identified a positive feedback up-regulation of sensors (e.g., Tlr2, Tlr3, Ddx58, cGAS), transducers (e.g., Traf2, Tbk1) and transcription factors (e.g., Irf7, Jun, Stat1, Stat2) in multiple pathways involved in detecting viral or microbial infections upon viral mimic stimulation. A group of genes involved in DNA damage response and DNA repair such as Parp9, Dtx3l, Rad52 were also up-regulated, implying the involvement of these genes in antiviral immunity. Molecular function analysis further showed that groups of helicase genes (e.g., Dhx58, Helz2), nuclease genes (e.g., Dnase1l3, Rsph10b), methyltransferase genes (e.g., histone methyltransferase Prdm9, Setdb2; RNA methyltransferase Mettl3, Mttl14), and protein ubiquitin-ligase genes (e.g., Trim genes and Rnf genes) were up-regulated upon antiviral immunity activation. In contrast, viral mimic stimulation down-regulated genes involved in a broad range of general biological processes (e.g., cell division, metabolism), cellular components (e.g., mitochondria and ribosome), and molecular functions (e.g., cell-cell adhesion, microtubule binding). In summary, our study provides valuable information about the global transcriptome changes upon antiviral immunity activation. The identification of novel groups of genes up-regulated upon antiviral immunity activation serves as useful resource for mining new antiviral sensors and effectors.
Collapse
Affiliation(s)
- Xin Xie
- Biology Program, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
| | - Pu-Ste Liu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Piergiorgio Percipalle
- Biology Program, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
87
|
Marques M, Ramos B, Soares AR, Ribeiro D. Cellular Proteostasis During Influenza A Virus Infection-Friend or Foe? Cells 2019; 8:cells8030228. [PMID: 30857287 PMCID: PMC6468813 DOI: 10.3390/cells8030228] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/02/2019] [Accepted: 03/05/2019] [Indexed: 12/16/2022] Open
Abstract
In order to efficiently replicate, viruses require precise interactions with host components and often hijack the host cellular machinery for their own benefit. Several mechanisms involved in protein synthesis and processing are strongly affected and manipulated by viral infections. A better understanding of the interplay between viruses and their host-cell machinery will likely contribute to the development of novel antiviral strategies. Here, we discuss the current knowledge on the interactions between influenza A virus (IAV), the causative agent for most of the annual respiratory epidemics in humans, and the host cellular proteostasis machinery during infection. We focus on the manipulative capacity of this virus to usurp the cellular protein processing mechanisms and further review the protein quality control mechanisms in the cytosol and in the endoplasmic reticulum that are affected by this virus.
Collapse
Affiliation(s)
- Mariana Marques
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Bruno Ramos
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana Raquel Soares
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
88
|
Abstract
Tripartite motif (TRIM) proteins have been found in a variety of physiological processes; however, the role of TRIM proteins in host defense to viral infection is emerging in recent years. TRIM proteins have been shown to restrict viruses at various stages of viral life cycle through common and distinct mechanisms. TRIM proteins restrict viral infection by directly interacting with viral proteins. Furthermore, TRIM proteins regulate innate immunity and adaptive immunity to impede viral infection. To subvert host defense, viruses also evolve a new evasion strategy by targeting TRIM proteins. In this review, we highlight recent advances which deepen our understanding of the role of TRIM proteins in host defense and the diverse antiviral mechanisms of TRIM proteins.
Collapse
Affiliation(s)
- Girish Patil
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Shitao Li
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| |
Collapse
|
89
|
Ubiquitination Is Essential for Avibirnavirus Replication by Supporting VP1 Polymerase Activity. J Virol 2019; 93:JVI.01899-18. [PMID: 30429342 PMCID: PMC6340032 DOI: 10.1128/jvi.01899-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 10/28/2018] [Indexed: 11/20/2022] Open
Abstract
Avibirnavirus protein VP1, the RNA-dependent RNA polymerase, is responsible for IBDV genome replication, gene expression, and assembly. However, little is known about its chemical modification relating to its polymerase activity. In this study, we revealed the molecular mechanism of ubiquitin modification of VP1 via a K63-linked ubiquitin chain during infection. Lysine (K) residue 751 at the C terminus of VP1 is the target site for ubiquitin, and its ubiquitination is independent of VP1’s interaction with VP3 and eukaryotic initiation factor 4A II. The K751 ubiquitination promotes the polymerase activity of VP1 and unubiquitinated VP1 mutant IBDV significantly impairs virus replication. We conclude that VP1 is the ubiquitin-modified protein and reveal the mechanism by which VP1 promotes avibirnavirus replication. Ubiquitination is critical for several cellular physical processes. However, ubiquitin modification in virus replication is poorly understood. Therefore, the present study aimed to determine the presence and effect of ubiquitination on polymerase activity of viral protein 1 (VP1) of avibirnavirus. We report that the replication of avibirnavirus is regulated by ubiquitination of its VP1 protein, the RNA-dependent RNA polymerase of infectious bursal disease virus (IBDV). In vivo detection revealed the ubiquitination of VP1 protein in IBDV-infected target organs and different cells but not in purified IBDV particles. Further analysis of ubiquitination confirms that VP1 is modified by K63-linked ubiquitin chain. Point mutation screening showed that the ubiquitination site of VP1 was at the K751 residue in the C terminus. The K751 ubiquitination is independent of VP1’s interaction with VP3 and eukaryotic initiation factor 4A II. Polymerase activity assays indicated that the K751 ubiquitination at the C terminus of VP1 enhanced its polymerase activity. The K751-to-R mutation of VP1 protein did not block the rescue of IBDV but decreased the replication ability of IBDV. Our data demonstrate that the ubiquitination of VP1 is crucial to regulate its polymerase activity and IBDV replication. IMPORTANCE Avibirnavirus protein VP1, the RNA-dependent RNA polymerase, is responsible for IBDV genome replication, gene expression, and assembly. However, little is known about its chemical modification relating to its polymerase activity. In this study, we revealed the molecular mechanism of ubiquitin modification of VP1 via a K63-linked ubiquitin chain during infection. Lysine (K) residue 751 at the C terminus of VP1 is the target site for ubiquitin, and its ubiquitination is independent of VP1’s interaction with VP3 and eukaryotic initiation factor 4A II. The K751 ubiquitination promotes the polymerase activity of VP1 and unubiquitinated VP1 mutant IBDV significantly impairs virus replication. We conclude that VP1 is the ubiquitin-modified protein and reveal the mechanism by which VP1 promotes avibirnavirus replication.
Collapse
|
90
|
Grail attenuates influenza A virus infection and pathogenesis by inhibiting viral nucleoprotein. Sci Rep 2018; 8:17242. [PMID: 30467324 PMCID: PMC6250720 DOI: 10.1038/s41598-018-35722-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/07/2018] [Indexed: 01/08/2023] Open
Abstract
Grail is a well-characterized mediator of metabolic disease, tumour progression, and immune response. However, its role in influenza A virus (IAV) infection remains poorly understood. In this study, we demonstrated that Grail knockdown potentiates IAV infection, whereas Grail overexpression blocks IAV replication. The intranasal administration of IAV to Grail KO mice led to a lower survival rate than in similarly infected wild-type mice. Additionally, IAV-infected Grail KO mice had higher viral titres, greater immune cell infiltration, and increased expression of inflammatory cytokines in the lungs. Mechanistically, we showed that Grail interacts with viral nucleoprotein (NP), targeting it for degradation and inhibiting IAV replication. NP expression was increased in Grail knockdown cells and reduced in cells overexpressing Grail. Collectively, our results demonstrate that Grail acts as a negative regulator of IAV infection and replication by degrading viral NP. These data increase our understanding of the host antiviral response to infection with IAV.
Collapse
|
91
|
From APOBEC to ZAP: Diverse mechanisms used by cellular restriction factors to inhibit virus infections. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:382-394. [PMID: 30290238 PMCID: PMC6334645 DOI: 10.1016/j.bbamcr.2018.09.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/28/2018] [Accepted: 09/23/2018] [Indexed: 12/30/2022]
Abstract
Antiviral restriction factors are cellular proteins that inhibit the entry, replication, or spread of viruses. These proteins are critical components of the innate immune system and function to limit the severity and host range of virus infections. Here we review the current knowledge on the mechanisms of action of several restriction factors that affect multiple viruses at distinct stages of their life cycles. For example, APOBEC3G deaminates cytosines to hypermutate reverse transcribed viral DNA; IFITM3 alters membranes to inhibit virus membrane fusion; MXA/B oligomerize on viral protein complexes to inhibit virus replication; SAMHD1 decreases dNTP intracellular concentrations to prevent reverse transcription of retrovirus genomes; tetherin prevents release of budding virions from cells; Viperin catalyzes formation of a nucleoside analogue that inhibits viral RNA polymerases; and ZAP binds virus RNAs to target them for degradation. We also discuss countermeasures employed by specific viruses against these restriction factors, and mention secondary functions of several of these factors in modulating immune responses. These important examples highlight the diverse strategies cells have evolved to combat virus infections.
Collapse
|
92
|
Dawson AR, Mehle A. Flu's cues: Exploiting host post-translational modifications to direct the influenza virus replication cycle. PLoS Pathog 2018; 14:e1007205. [PMID: 30235357 PMCID: PMC6147566 DOI: 10.1371/journal.ppat.1007205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Anthony R. Dawson
- Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, Wisconsin, United States of America
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Andrew Mehle
- Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
93
|
TRIM41-Mediated Ubiquitination of Nucleoprotein Limits Influenza A Virus Infection. J Virol 2018; 92:JVI.00905-18. [PMID: 29899090 DOI: 10.1128/jvi.00905-18] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/02/2018] [Indexed: 01/08/2023] Open
Abstract
Influenza A virus (IAV) is a highly transmissible respiratory pathogen and a major cause of morbidity and mortality around the world. Nucleoprotein (NP) is an abundant IAV protein essential for multiple steps of the viral life cycle. Our recent proteomic study of the IAV-host interaction network found that TRIM41 (tripartite motif-containing 41), a ubiquitin E3 ligase, interacted with NP. However, the role of TRIM41 in IAV infection is unknown. Here, we report that TRIM41 interacts with NP through its SPRY domain. Furthermore, TRIM41 is constitutively expressed in lung epithelial cells, and overexpression of TRIM41 inhibits IAV infection. Conversely, RNA interference (RNAi) and knockout of TRIM41 increase host susceptibility to IAV infection. As a ubiquitin E3 ligase, TRIM41 ubiquitinates NP in vitro and in cells. The TRIM41 mutant lacking E3 ligase activity fails to inhibit IAV infection, suggesting that the E3 ligase activity is indispensable for TRIM41 antiviral function. Mechanistic analysis further revealed that the polyubiquitination leads to NP protein degradation and viral inhibition. Taking these observations together, TRIM41 is a constitutively expressed intrinsic IAV restriction factor that targets NP for ubiquitination and protein degradation.IMPORTANCE Influenza control strategies rely on annual immunization and require frequent updates of the vaccine, which is not always a foolproof process. Furthermore, the current antivirals are also losing effectiveness as new viral strains are often refractory to conventional treatments. Thus, there is an urgent need to find new antiviral mechanisms and develop therapeutic drugs based on these mechanisms. Targeting the virus-host interface is an emerging new strategy because host factors controlling viral replication activity will be ideal candidates, and cellular proteins are less likely to mutate under drug-mediated selective pressure. Here, we show that the ubiquitin E3 ligase TRIM41 is an intrinsic host restriction factor to IAV. TRIM41 directly binds the viral nucleoprotein and targets it for ubiquitination and proteasomal degradation, thereby limiting viral infection. Exploitation of this natural defense pathway may open new avenues to develop antiviral drugs targeting the influenza virus.
Collapse
|
94
|
Abstract
Tripartite motif (TRIM) proteins are a versatile family of ubiquitin E3 ligases involved in a multitude of cellular processes. Studies in recent years have demonstrated that many TRIM proteins play central roles in the host defense against viral infection. While some TRIM proteins directly antagonize distinct steps in the viral life cycle, others regulate signal transduction pathways induced by innate immune sensors, thereby modulating antiviral cytokine responses. Furthermore, TRIM proteins have been implicated in virus-induced autophagy and autophagy-mediated viral clearance. Given the important role of TRIM proteins in antiviral restriction, it is not surprising that several viruses have evolved effective maneuvers to neutralize the antiviral action of specific TRIM proteins. Here, we describe the major antiviral mechanisms of TRIM proteins as well as viral strategies to escape TRIM-mediated host immunity.
Collapse
Affiliation(s)
- Michiel van Gent
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA; , ,
| | - Konstantin M J Sparrer
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA; , ,
| | - Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA; , ,
| |
Collapse
|
95
|
Tang Q, Wu P, Chen H, Li G. Pleiotropic roles of the ubiquitin-proteasome system during viral propagation. Life Sci 2018; 207:350-354. [PMID: 29913185 PMCID: PMC7094228 DOI: 10.1016/j.lfs.2018.06.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 11/09/2022]
Abstract
Protein ubiquitination is a highly conserved post-translational modification affecting various biological processes including viral propagation. Ubiquitination has multiple effects on viral propagation, including viral genome uncoating, viral replication, and immune evasion. Ubiquitination of viral proteins is triggered by the ubiquitin-proteasome system (UPS). This involves the covalent attachment of the highly conserved 76 amino acid residue ubiquitin protein to target proteins by the consecutive actions of E1, E2 and E3 enzymes, and the 26S proteasome that together form a multiprotein complex that degrades target proteins. The UPS is the primary cytosolic proteolytic machinery for the selective degradation of various forms of proteins including viral proteins, thereby limiting viral growth in host cells. To combat this host anti-viral machinery, viruses have evolved the ability to employ or subvert the UPS to inactivate or degrade cellular proteins to favour viral propagation. This review highlights our current knowledge on the different roles of the UPS during viral propagation.
Collapse
Affiliation(s)
- Qi Tang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Peng Wu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Huiqing Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Guohui Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China; School of Public Health, University of California, Berkeley, CA, USA.
| |
Collapse
|
96
|
Biquand É, Demeret C. Interactions avec le système ubiquitine : un prérequis de l’adaptation des virus influenza à l’homme ? Med Sci (Paris) 2018; 34:509-511. [DOI: 10.1051/medsci/20183406005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
97
|
Chen X, Liu S, Goraya MU, Maarouf M, Huang S, Chen JL. Host Immune Response to Influenza A Virus Infection. Front Immunol 2018; 9:320. [PMID: 29556226 PMCID: PMC5845129 DOI: 10.3389/fimmu.2018.00320] [Citation(s) in RCA: 309] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/05/2018] [Indexed: 12/25/2022] Open
Abstract
Influenza A viruses (IAVs) are contagious pathogens responsible for severe respiratory infection in humans and animals worldwide. Upon detection of IAV infection, host immune system aims to defend against and clear the viral infection. Innate immune system is comprised of physical barriers (mucus and collectins), various phagocytic cells, group of cytokines, interferons (IFNs), and IFN-stimulated genes, which provide first line of defense against IAV infection. The adaptive immunity is mediated by B cells and T cells, characterized with antigen-specific memory cells, capturing and neutralizing the pathogen. The humoral immune response functions through hemagglutinin-specific circulating antibodies to neutralize IAV. In addition, antibodies can bind to the surface of infected cells and induce antibody-dependent cell-mediated cytotoxicity or complement activation. Although there are neutralizing antibodies against the virus, cellular immunity also plays a crucial role in the fight against IAVs. On the other hand, IAVs have developed multiple strategies to escape from host immune surveillance for successful replication. In this review, we discuss how immune system, especially innate immune system and critical molecules are involved in the antiviral defense against IAVs. In addition, we highlight how IAVs antagonize different immune responses to achieve a successful infection.
Collapse
Affiliation(s)
- Xiaoyong Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shasha Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mohsan Ullah Goraya
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohamed Maarouf
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
98
|
Abstract
Innate immunity is traditionally thought of as the first line of defense against pathogens that enter the body. It is typically characterized as a rather weak defense mechanism, designed to restrict pathogen replication until the adaptive immune response generates a tailored response and eliminates the infectious agent. However, intensive research in recent years has resulted in better understanding of innate immunity as well as the discovery of many effector proteins, revealing its numerous powerful mechanisms to defend the host. Furthermore, this research has demonstrated that it is simplistic to strictly separate adaptive and innate immune functions since these two systems often work synergistically rather than sequentially. Here, we provide a broad overview of innate pattern recognition receptors in antiviral defense, with a focus on the TRIM family, and discuss their signaling pathways and mechanisms of action with special emphasis on the intracellular antibody receptor TRIM21.
Collapse
Affiliation(s)
| | - Leo C James
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.
| |
Collapse
|
99
|
Villalón-Letelier F, Brooks AG, Saunders PM, Londrigan SL, Reading PC. Host Cell Restriction Factors that Limit Influenza A Infection. Viruses 2017; 9:v9120376. [PMID: 29215570 PMCID: PMC5744151 DOI: 10.3390/v9120376] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022] Open
Abstract
Viral infection of different cell types induces a unique spectrum of host defence genes, including interferon-stimulated genes (ISGs) and genes encoding other proteins with antiviral potential. Although hundreds of ISGs have been described, the vast majority have not been functionally characterised. Cellular proteins with putative antiviral activity (hereafter referred to as “restriction factors”) can target various steps in the virus life-cycle. In the context of influenza virus infection, restriction factors have been described that target virus entry, genomic replication, translation and virus release. Genome wide analyses, in combination with ectopic overexpression and/or gene silencing studies, have accelerated the identification of restriction factors that are active against influenza and other viruses, as well as providing important insights regarding mechanisms of antiviral activity. Herein, we review current knowledge regarding restriction factors that mediate anti-influenza virus activity and consider the viral countermeasures that are known to limit their impact. Moreover, we consider the strengths and limitations of experimental approaches to study restriction factors, discrepancies between in vitro and in vivo studies, and the potential to exploit restriction factors to limit disease caused by influenza and other respiratory viruses.
Collapse
Affiliation(s)
- Fernando Villalón-Letelier
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Andrew G Brooks
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Philippa M Saunders
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Sarah L Londrigan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Patrick C Reading
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| |
Collapse
|
100
|
Comparative Profiling of Ubiquitin Proteasome System Interplay with Influenza A Virus PB2 Polymerase Protein Recapitulating Virus Evolution in Humans. mSphere 2017; 2:mSphere00330-17. [PMID: 29202037 PMCID: PMC5700371 DOI: 10.1128/msphere.00330-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023] Open
Abstract
Influenza A viruses (IAVs) are responsible for mild-to-severe seasonal respiratory illness of public health concern worldwide, and the risk of avian strain outbreaks in humans is a constant threat. Elucidating the requisites of IAV adaptation to humans is thus of prime importance. In this study, we explored how PB2 replication proteins of IAV strains with different levels of virulence in humans hijack a major protein modification pathway of the human host cell, the ubiquitin proteasome system (UPS). We found that the PB2 protein engages in an extended interplay with the UPS that evolved along with the virus’s adaptation to humans. This suggests that UPS hijacking underlies the efficient infection of humans and can be used as an indicator for evaluation of the potential of avian IAVs to infect humans. Several UPS factors were found to be necessary for infection with circulating IAV strains, pointing to potential targets for therapeutic approaches. The optimized exploitation of cell resources is one cornerstone of a successful infection. Differential mapping of host-pathogen protein-protein interactions (PPIs) on the basis of comparative interactomics of multiple strains is an effective strategy to highlight correlations between host proteome hijacking and biological or pathogenic traits. Here, we developed an interactomic pipeline to deliver high-confidence comparative maps of PPIs between a given pathogen and the human ubiquitin proteasome system (UPS). This subarray of the human proteome represents a range of essential cellular functions and promiscuous targets for many viruses. The screening pipeline was applied to the influenza A virus (IAV) PB2 polymerase proteins of five strains representing different levels of virulence in humans. An extensive PB2-UPS interplay has been detected that recapitulates the evolution of IAVs in humans. Functional validation with several IAV strains, including the seasonal H1N1pdm09 and H3N2 viruses, confirmed the biological relevance of most identified UPS factors and revealed strain-independent and strain-specific effects of UPS factor invalidation on IAV infection. This strategy is applicable to proteins from any other virus or pathogen, providing a valuable resource with which to explore the UPS-pathogen interplay and its relationship with pathogenicity. IMPORTANCE Influenza A viruses (IAVs) are responsible for mild-to-severe seasonal respiratory illness of public health concern worldwide, and the risk of avian strain outbreaks in humans is a constant threat. Elucidating the requisites of IAV adaptation to humans is thus of prime importance. In this study, we explored how PB2 replication proteins of IAV strains with different levels of virulence in humans hijack a major protein modification pathway of the human host cell, the ubiquitin proteasome system (UPS). We found that the PB2 protein engages in an extended interplay with the UPS that evolved along with the virus’s adaptation to humans. This suggests that UPS hijacking underlies the efficient infection of humans and can be used as an indicator for evaluation of the potential of avian IAVs to infect humans. Several UPS factors were found to be necessary for infection with circulating IAV strains, pointing to potential targets for therapeutic approaches.
Collapse
|