51
|
Massanella M, Bender Ignacio RA, Lama JR, Pagliuzza A, Dasgupta S, Alfaro R, Rios J, Ganoza C, Pinto-Santini D, Gilada T, Duerr A, Chomont N. Long-term effects of early antiretroviral initiation on HIV reservoir markers: a longitudinal analysis of the MERLIN clinical study. THE LANCET. MICROBE 2021; 2:e198-e209. [PMID: 35544209 PMCID: PMC8622834 DOI: 10.1016/s2666-5247(21)00010-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/09/2020] [Accepted: 01/14/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Early antiretroviral therapy (ART) initiation (ie, within 3 months of infection) limits establishment of the HIV reservoir. However, the effect of early ART initiation on the long-term dynamics of the pool of infected cells remains unclear. METHODS In this longitudinal analysis, we included cisgender men who have sex with men (MSM) and transgender women (aged 18-54 years) at high risk for HIV infection, enrolled in the ongoing longitudinal MERLIN study in Peru between Oct 28, 2014, and Nov 8, 2018. Participants were eligible if they had been infected with HIV less than 90 days before enrolment, and if they had cryopreserved peripheral blood mononuclear cell (PBMC) samples. Participants were stratified into three groups on the basis of whether they initiated ART at 30 days or less (acute group), at 31-90 days (early group), or more than 24 weeks (deferred group) after the estimated date of detectable infection. PBMC samples were collected before ART initiation and longitudinally for up to 4 years on ART. The main outcomes were to establish the size of the HIV reservoir before ART initiation and to assess the effect of the timing of ART initiation on the decay of the HIV reservoir over 4 years follow-up. We quantified viral load, and isolated CD4 cells to quantify total HIV DNA, integrated HIV DNA and 2-long terminal repeat circles. Longitudinal analysis of active and inducible HIV reservoirs were measured by quantifying the frequency of CD4 cells producing multiply-spliced HIV RNA ex vivo and after in-vitro stimulation with a tat/rev induced limiting dilution assay (TILDA). A mixed-effects model from the time of ART initiation was used to measure longitudinal decays in viral loads and each HIV reservoir measure in each of the three groups. FINDINGS We included 56 participants in this analysis, all of whom were MSM: 15 were in the acute group, 19 were in the early group, and 22 were in the deferred group. Participants in all three groups had similar levels of all HIV reservoir markers before ART initiation. All participants, including those in the acute group, had a pool of transcriptionally silent HIV-infected cells before ART initiation, as indicated by a substantial increase in TILDA measures upon stimulation. Longitudinal analysis over 4 years of ART revealed a biphasic decay of all HIV persistence markers, with a rapid initial decline followed by a slower decay in all participants. During the first-phase decay, the half-lives of both total and integrated HIV DNA and TILDA measures were significantly shorter in the acute group than in the early and deferred groups. During the second-phase decay, HIV reservoir markers continued to decline only in participants in the acute group. INTERPRETATION Participants who initiated ART within 30 days or less of HIV infection showed a steeper and more sustained decay in HIV reservoir measures, suggesting long-term benefit of acute ART initiation on reservoir clearance. FUNDING The US National Institutes of Health and the Canadian Institutes for Health Research.
Collapse
Affiliation(s)
- Marta Massanella
- Centre de Recherche du CHUM, Montreal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | | | - Javier R Lama
- Asociación Civil Impacta Salud y Educación, Lima, Perú
| | - Amélie Pagliuzza
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Sayan Dasgupta
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Jessica Rios
- Asociación Civil Impacta Salud y Educación, Lima, Perú
| | | | | | - Trupti Gilada
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ann Duerr
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA; University of Washington, Seattle, WA, USA
| | - Nicolas Chomont
- Centre de Recherche du CHUM, Montreal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
52
|
Shock-and-kill versus block-and-lock: Targeting the fluctuating and heterogeneous HIV-1 gene expression. Proc Natl Acad Sci U S A 2021; 118:2103692118. [PMID: 33758027 DOI: 10.1073/pnas.2103692118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
53
|
Singh V, Dashti A, Mavigner M, Chahroudi A. Latency Reversal 2.0: Giving the Immune System a Seat at the Table. Curr HIV/AIDS Rep 2021; 18:117-127. [PMID: 33433817 PMCID: PMC7985101 DOI: 10.1007/s11904-020-00540-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW For most people living with HIV (PLWH), treatment with effective antiretroviral therapy (ART) results in suppression of viremia below the limit of detection of clinical assays, immune reconstitution, reduced immune activation, avoidance of opportunistic infections, and progression to AIDS. However, ART alone is not curative, and HIV persists in a non-replicating, latent form. In this review, we provide a historical perspective on non-specific latency reversal approaches (LRA 1.0) and summarize recent advances in latency reversal strategies that target specific signaling pathways within CD4+ T cells or other immune cells to induce expression of latent HIV (immune-based latency reversal, or LRA 2.0). RECENT FINDINGS The HIV reservoir is primarily composed of latently infected CD4+ T cells carrying integrated, replication-competent provirus that can give rise to rebound viremia if ART is stopped. Myeloid lineage cells also contribute to HIV latency in certain tissues; we focus here on CD4+ T cells as a sufficient body of evidence regarding latency reversal in myeloid cells is lacking. The immunomodulatory LRA 2.0 approaches we describe include pattern recognition receptor agonists, immune checkpoint inhibitors, non-canonical NF-kB stimulation, and transient CD8+ lymphocyte depletion, along with promising combination strategies. We highlight recent studies demonstrating robust latency reversal in nonhuman primate models. While significant strides have been made in terms of virus reactivation from latency, initial hopes for latency reversal alone to result in a reduction of infected cells, through viral cytopathic effect or an unboosted immune system, have not been realized and it seems clear that even effective latency reversal strategies will need to be paired with an approach that facilitates immune recognition and clearance of cells containing reactivated virus.
Collapse
Affiliation(s)
- Vidisha Singh
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Amir Dashti
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Maud Mavigner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA.
- Yerkes National Primate Research Center, Emory University Atlanta, Atlanta, GA, USA.
| |
Collapse
|
54
|
Cevaal PM, Ali A, Czuba-Wojnilowicz E, Symons J, Lewin SR, Cortez-Jugo C, Caruso F. In Vivo T Cell-Targeting Nanoparticle Drug Delivery Systems: Considerations for Rational Design. ACS NANO 2021; 15:3736-3753. [PMID: 33600163 DOI: 10.1021/acsnano.0c09514] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
T cells play an important role in immunity and repair and are implicated in diseases, including blood cancers, viral infections, and inflammation, making them attractive targets for the treatment and prevention of diseases. Over recent years, the advent of nanomedicine has shown an increase in studies that use nanoparticles as carriers to deliver therapeutic cargo to T cells for ex vivo and in vivo applications. Nanoparticle-based delivery has several advantages, including the ability to load and protect a variety of drugs, control drug release, improve drug pharmacokinetics and biodistribution, and site- or cell-specific targeting. However, the delivery of nanoparticles to T cells remains a major technological challenge, which is primarily due to the nonphagocytic nature of T cells. In this review, we discuss the physiological barriers to effective T cell targeting and describe the different approaches used to deliver cargo-loaded nanoparticles to T cells for the treatment of disease such as T cell lymphoma and human immunodeficiency virus (HIV). In particular, engineering strategies that aim to improve nanoparticle internalization by T cells, including ligand-based targeting, will be highlighted. These nanoparticle engineering approaches are expected to inspire the development of effective nanomaterials that can target or manipulate the function of T cells for the treatment of T cell-related diseases.
Collapse
Affiliation(s)
| | | | - Ewa Czuba-Wojnilowicz
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Sharon R Lewin
- Victorian Infectious Diseases, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria 3004, Australia
| | - Christina Cortez-Jugo
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
55
|
Lu Y, Bohn-Wippert K, Pazerunas PJ, Moy JM, Singh H, Dar RD. Screening for gene expression fluctuations reveals latency-promoting agents of HIV. Proc Natl Acad Sci U S A 2021; 118:e2012191118. [PMID: 33836565 PMCID: PMC7980449 DOI: 10.1073/pnas.2012191118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Upon treatment removal, spontaneous reactivation of latently infected T cells remains a major barrier toward curing HIV. Therapies that reactivate and clear the latent reservoir are only partially effective, while latency-promoting agents (LPAs) used to suppress reactivation and stabilize latency are understudied and lack diversity in their mechanisms of action. Here, we identify additional LPAs using a screen for gene-expression fluctuations (or "noise") that drive cell-fate specification and control HIV reactivation from latency. Single-cell protein dynamics of a minimal HIV gene circuit were monitored with time-lapse fluorescence microscopy. We screened 1,806 drugs, out of which 279 modulate noise magnitude or half autocorrelation time. Next, we tested the strongest noise modulators in a Jurkat T cell latency model and discovered three LPAs that would be overlooked by quantifying their mean expression levels alone. The LPAs reduced reactivation of latency in both Jurkat and primary cell models when challenged by synergistic and potent combinations of HIV activators. The two strongest LPAs, NSC 401005 and NSC 400938, are structurally and functionally related to inhibitors of thioredoxin reductase, a protein involved in maintaining redox balance in host cells. Experiments with multiple functional analogs revealed two additional LPAs, PX12 and tiopronin, and suggest a potential LPA family, within which some are commercially available and Food and Drug Administration-approved. The LPAs presented here may provide new strategies to complement antiretroviral treatments. Screening for gene expression noise holds the potential for drug discovery in other diseases.
Collapse
Affiliation(s)
- Yiyang Lu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Kathrin Bohn-Wippert
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Patrick J Pazerunas
- Department of Chemical Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Jennifer M Moy
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Harpal Singh
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Roy D Dar
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
56
|
Lu Y, Singh H, Singh A, Dar RD. A transient heritable memory regulates HIV reactivation from latency. iScience 2021; 24:102291. [PMID: 33889814 PMCID: PMC8050369 DOI: 10.1016/j.isci.2021.102291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/04/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
Reactivation of human immunodeficiency virus 1 (HIV-1) from latently infected T cells is a critical barrier to cure patients. It remains unknown whether reactivation of individual latent cells occurs stochastically in response to latency reversal agents (LRAs) or is a deterministic outcome of an underlying cell state. To characterize these single-cell responses, we leverage the classical Luria-Delbrück fluctuation test where single cells are isolated from a clonal population and exposed to LRAs after colony expansion. Data show considerable colony-to-colony fluctuations with the fraction of reactivating cells following a skewed distribution. Modeling systematic measurements of fluctuations over time uncovers a transient heritable memory that regulates HIV-1 reactivation, where single cells are in an LRA-responsive state for a few weeks before switching back to an irresponsive state. These results have enormous implications for designing therapies to purge the latent reservoir and further utilize fluctuation-based assays to uncover hidden transient cellular states underlying phenotypic heterogeneity.
Collapse
Affiliation(s)
- Yiyang Lu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 321 Everitt Laboratory, 1406 West Green Street, Urbana, IL 61801, USA
| | - Harpal Singh
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 321 Everitt Laboratory, 1406 West Green Street, Urbana, IL 61801, USA
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA
- Corresponding author
| | - Roy D. Dar
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 321 Everitt Laboratory, 1406 West Green Street, Urbana, IL 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
- Corresponding author
| |
Collapse
|
57
|
Stevenson EM, Ward AR, Truong R, Thomas AS, Huang SH, Dilling TR, Terry S, Bui JK, Mota TM, Danesh A, Lee GQ, Gramatica A, Khadka P, Alberto WDC, Gandhi RT, McMahon DK, Lalama CM, Bosch RJ, Macatangay B, Cyktor JC, Eron JJ, Mellors JW, Jones RB. HIV-specific T cell responses reflect substantive in vivo interactions with antigen despite long-term therapy. JCI Insight 2021; 6:142640. [PMID: 33400687 PMCID: PMC7934865 DOI: 10.1172/jci.insight.142640] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Antiretroviral therapies (ARTs) abrogate HIV replication; however, infection persists as long-lived reservoirs of infected cells with integrated proviruses, which reseed replication if ART is interrupted. A central tenet of our current understanding of this persistence is that infected cells are shielded from immune recognition and elimination through a lack of antigen expression from proviruses. Efforts to cure HIV infection have therefore focused on reactivating latent proviruses to enable immune-mediated clearance, but these have yet to succeed in reducing viral reservoirs. Here, we revisited the question of whether HIV reservoirs are predominately immunologically silent from a new angle: by querying the dynamics of HIV-specific T cell responses over long-term ART for evidence of ongoing recognition of HIV-infected cells. In longitudinal assessments, we show that the rates of change in persisting HIV Nef-specific responses, but not responses to other HIV gene products, were associated with residual frequencies of infected cells. These Nef-specific responses were highly stable over time and disproportionately exhibited a cytotoxic, effector functional profile, indicative of recent in vivo recognition of HIV antigens. These results indicate substantial visibility of the HIV-infected cells to T cells on stable ART, presenting both opportunities and challenges for the development of therapeutic approaches to curing infection.
Collapse
Affiliation(s)
- Eva M. Stevenson
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Adam R. Ward
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine & Health Sciences, and
- PhD Program in Epidemiology, Department of Epidemiology, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Ronald Truong
- Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine & Health Sciences, and
| | - Allison S. Thomas
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Szu-Han Huang
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine & Health Sciences, and
| | - Thomas R. Dilling
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Sandra Terry
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - John K. Bui
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Talia M. Mota
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Ali Danesh
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Guinevere Q. Lee
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Andrea Gramatica
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Pragya Khadka
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Winiffer D. Conce Alberto
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Rajesh T. Gandhi
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Deborah K. McMahon
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Christina M. Lalama
- Center for Biostatistics in AIDS Research, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Ronald J. Bosch
- Center for Biostatistics in AIDS Research, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Bernard Macatangay
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Joshua C. Cyktor
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Joseph J. Eron
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - John W. Mellors
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - R. Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine & Health Sciences, and
| | | |
Collapse
|
58
|
Maina EK, Adan AA, Mureithi H, Muriuki J, Lwembe RM. A Review of Current Strategies Towards the Elimination of Latent HIV-1 and Subsequent HIV-1 Cure. Curr HIV Res 2021; 19:14-26. [PMID: 32819259 PMCID: PMC8573729 DOI: 10.2174/1570162x18999200819172009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/02/2020] [Accepted: 07/17/2020] [Indexed: 11/30/2022]
Abstract
Background During the past 35 years, highly effective ART has saved the lives of millions of people worldwide by suppressing viruses to undetectable levels. However, this does not translate to the absence of viruses in the body as HIV persists in latent reservoirs. Indeed, rebounded HIV has been recently observed in the Mississippi and California infants previously thought to have been cured. Hence, much remains to be learned about HIV latency, and the search for the best strategy to eliminate the reservoir is the direction current research is taking. A systems-level approach that fully recapitulates the dynamics and complexity of HIV-1 latency In vivo and is applicable in human therapy is prudent for HIV eradication to be more feasible. Objectives The main barriers preventing the cure of HIV with antiretroviral therapy have been identified, progress has been made in the understanding of the therapeutic targets to which potentially eradicating drugs could be directed, integrative strategies have been proposed, and clinical trials with various alternatives are underway. The aim of this review is to provide an update on the main advances in HIV eradication, with particular emphasis on the obstacles and the different strategies proposed. The core challenges of each strategy are highlighted and the most promising strategy and new research avenues in HIV eradication strategies are proposed. Methods A systematic literature search of all English-language articles published between 2015 and 2019, was conducted using MEDLINE (PubMed) and Google scholar. Where available, medical subject headings (MeSH) were used as search terms and included: HIV, HIV latency, HIV reservoir, latency reactivation, and HIV cure. Additional search terms consisted of suppression, persistence, establishment, generation, and formation. A total of 250 articles were found using the above search terms. Out of these, 89 relevant articles related to HIV-1 latency establishment and eradication strategies were collected and reviewed, with no limitation of study design. Additional studies (commonly referenced and/or older and more recent articles of significance) were selected from bibliographies and references listed in the primary resources. Results In general, when exploring the literature, there are four main strategies heavily researched that provide promising strategies to the elimination of latent HIV: Haematopoietic Stem-Cell Transplantation, Shock and Kill Strategy, Gene-specific transcriptional activation using RNA-guided CRISPR-Cas9 system, and Block and Lock strategy. Most of the studies of these strategies are applicable in vitro, leaving many questions about the extent to which, or if any, these strategies are applicable to complex picture In vivo. However, the success of these strategies at least shows, in part, that HIV-1 can be cured, though some strategies are too invasive and expensive to become a standard of care for all HIV-infected patients. Conclusion Recent advances hold promise for the ultimate cure of HIV infection. A systems-level approach that fully recapitulates the dynamics and complexity of HIV-1 latency In vivo and applicable in human therapy is prudent for HIV eradication to be more feasible. Future studies aimed at achieving a prolonged HIV remission state are more likely to be successful if they focus on a combination strategy, including the block and kill, and stem cell approaches. These strategies propose a functional cure with minimal toxicity for patients. It is believed that the cure of HIV infection will be attained in the short term if a strategy based on purging the reservoirs is complemented with an aggressive HAART strategy.
Collapse
Affiliation(s)
- Edward K Maina
- Centre for Microbiology Research-Kenya medical Research Institute, P.O Box 54840-00200, Nairobi, Kenya
| | - Asma A Adan
- Centre for Microbiology Research-Kenya medical Research Institute, P.O Box 54840-00200, Nairobi, Kenya
| | - Haddison Mureithi
- Centre for Microbiology Research-Kenya medical Research Institute, P.O Box 54840-00200, Nairobi, Kenya
| | - Joseph Muriuki
- Centre for Virology Research-Kenya medical Research Institute, P.O Box 54840-00200, Nairobi, Kenya
| | - Raphael M Lwembe
- Centre for Virology Research-Kenya medical Research Institute, P.O Box 54840-00200, Nairobi, Kenya
| |
Collapse
|
59
|
Sun S, Yang Q, Sheng Y, Fu Y, Sun C, Deng C. Investigational drugs with dual activity against HBV and HIV (Review). Exp Ther Med 2020; 21:35. [PMID: 33262821 PMCID: PMC7690342 DOI: 10.3892/etm.2020.9467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic hepatitis B (CHB) and acquired immunodeficiency syndrome (AIDS) are global public health problems that pose a significant health burden. Human immunodeficiency virus (HIV) and hepatitis B virus (HBV) coinfection is common, as these viruses have similar transmission routes, such as blood transmission, sexual transmission and mother-to-child transmission. Coinfection frequently leads to accelerated disease progression. For individuals coinfected with HIV/HBV, combination antiretroviral therapy containing dual anti-HBV drugs is recommended. Certain studies have also indicated the benefits of antiretroviral drugs with anti-HBV activity in patients with coinfection. A total of four Food and Drug Administration-approved HIV drugs also have anti-HBV activity; namely, emtricitabine, lamivudine, tenofovir disoproxil fumarate and tenofovir alafenamide, which are all nucleoside reverse transcriptase inhibitors. However, various issues, including drug resistance and side effects, limit their application. Therefore, it is necessary to develop more drugs with dual activity against HBV and HIV. The present review outlines the mechanisms, safety and efficacy of certain drugs that have been investigated for this purpose.
Collapse
Affiliation(s)
- Shiyu Sun
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Infection and Immunity Laboratory, Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qing Yang
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Infection and Immunity Laboratory, Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yunjian Sheng
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Infection and Immunity Laboratory, Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yi Fu
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Changfeng Sun
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Infection and Immunity Laboratory, Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Cunliang Deng
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Infection and Immunity Laboratory, Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
60
|
Abstract
Viruses commonly antagonize the antiviral type I interferon response by targeting signal transducer and activator of transcription 1 (STAT1) and STAT2, key mediators of interferon signaling. Other STAT family members mediate signaling by diverse cytokines important to infection, but their relationship with viruses is more complex. Importantly, virus-STAT interaction can be antagonistic or stimulatory depending on diverse viral and cellular factors. While STAT antagonism can suppress immune pathways, many viruses promote activation of specific STATs to support viral gene expression and/or produce cellular conditions conducive to infection. It is also becoming increasingly clear that viruses can hijack noncanonical STAT functions to benefit infection. For a number of viruses, STAT function is dynamically modulated through infection as requirements for replication change. Given the critical role of STATs in infection by diverse viruses, the virus-STAT interface is an attractive target for the development of antivirals and live-attenuated viral vaccines. Here, we review current understanding of the complex and dynamic virus-STAT interface and discuss how this relationship might be harnessed for medical applications.
Collapse
|
61
|
Pediatric HIV: the Potential of Immune Therapeutics to Achieve Viral Remission and Functional Cure. Curr HIV/AIDS Rep 2020; 17:237-248. [PMID: 32356090 DOI: 10.1007/s11904-020-00495-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW In the absence of antiretroviral therapy (ART), more than 50% of perinatally HIV-infected children die by 2 years of age. Early ART from infancy is therefore a global recommendation and significantly improves immune health, child survival, and disease outcome. However, even early treatment does not prevent or eradicate the latent reservoir necessitating life-long ART. Adherence to life-long ART is challenging for children and longstanding ART during chronic HIV infection led to higher risks of non-AIDS co-morbidities and virologic failure in infected children. Thus, HIV-infected children are an important population for consideration for immune-based interventions to achieve ART-free remission and functional cure. This review summarizes how the uniqueness of the early life immune system can be harnessed for the development of ART-free remission and functional cure, which means complete virus control in absence of ART. In addition, recent advances in therapeutics in the HIV cure field and their potential for the treatment of pediatric HIV infections are discussed. RECENT FINDINGS Preclinical studies and clinical trials demonstrated that immune-based interventions target HIV replication, limit size of virus reservoir, maintain virus suppression, and delay time to virus rebound. However, these studies have been performed so far only in carefully selected HIV-infected adults, highlighting the need to evaluate the efficacy of immune-based therapeutics in HIV-infected children and to design interventions tailored to the early life maturing immune system. Immune-based therapeutics alone or in combination with ART should be actively explored as potential strategies to achieve viral remission and functional cure in HIV-infected pediatric populations.
Collapse
|
62
|
Ventura JD. Human Immunodeficiency Virus 1 (HIV-1): Viral Latency, the Reservoir, and the Cure. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2020; 93:549-560. [PMID: 33005119 PMCID: PMC7513431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
An estimated 37 million people globally suffer from Human Immunodeficiency Virus-1 (HIV-1) infection with 1.7 million newly acquired infections occurring on average each year. Although crucial advances in combined antiretroviral therapy (ART) over the last two decades have transformed an HIV-1 diagnosis into a tolerable and controlled condition, enabling over 20 million people living with HIV-1 to enjoy healthy and productive lives, no cure or vaccine yet exists. Developing a successful cure strategy will require a firm understanding of how viral latency is established and how a persistent and long-lived latent is generated. The latent reservoir remains the primary obstacle for cure development and most putative cure strategies proposed fundamentally address its eradication or permanent suppression.
Collapse
Affiliation(s)
- John D. Ventura
- To whom all correspondence should be addressed:
Dr. John D. Ventura, . ORCID iD:
https://orcid.org/0000-0002-4373-3242.
| |
Collapse
|
63
|
Ward AR, Mota TM, Jones RB. Immunological approaches to HIV cure. Semin Immunol 2020; 51:101412. [PMID: 32981836 DOI: 10.1016/j.smim.2020.101412] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Combination antiretroviral therapy (ART) to treat human immunodeficiency virus (HIV) infection has proven remarkably successful - for those who can access and afford it - yet HIV infection persists indefinitely in a reservoir of cells, despite effective ART and despite host antiviral immune responses. An HIV cure is therefore the next aspirational goal and challenge, though approaches differ in their objectives - with 'functional cures' aiming for durable viral control in the absence of ART, and 'sterilizing cures' aiming for the more difficult to realize objective of complete viral eradication. Mechanisms of HIV persistence, including viral latency, anatomical sequestration, suboptimal immune functioning, reservoir replenishment, target cell-intrinsic immune resistance, and, potentially, target cell distraction of immune effectors, likely need to be overcome in order to achieve a cure. A small fraction of people living with HIV (PLWH) naturally control infection via immune-mediated mechanisms, however, providing both sound rationale and optimism that an immunological approach to cure is possible. Herein we review up to date knowledge and emerging evidence on: the mechanisms contributing to HIV persistence, as well as potential strategies to overcome these barriers; promising immunological approaches to achieve viral control and elimination of reservoir-harboring cells, including harnessing adaptive immune responses to HIV and engineered therapies, as well as enhancers of their functions and of complementary innate immune functioning; and combination strategies that are most likely to succeed. Ultimately, a cure must be safe, effective, durable, and, eventually, scalable in order to be widely acceptable and available.
Collapse
Affiliation(s)
- Adam R Ward
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA; Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA; PhD Program in Epidemiology, The George Washington University, Washington, DC, USA
| | - Talia M Mota
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - R Brad Jones
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA; Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA.
| |
Collapse
|
64
|
López-Huertas MR, Jiménez-Tormo L, Madrid-Elena N, Gutiérrez C, Vivancos MJ, Luna L, Moreno S. Maraviroc reactivates HIV with potency similar to that of other latency reversing drugs without inducing toxicity in CD8 T cells. Biochem Pharmacol 2020; 182:114231. [PMID: 32979351 DOI: 10.1016/j.bcp.2020.114231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/21/2020] [Indexed: 01/12/2023]
Abstract
Human immunodeficiency virus (HIV) remains incurable due to latent reservoirs established in non-activated CD4 T cells. Current efforts to achieve a functional cure rely on immunomodulatory strategies focused on enhancing the functions of cytotoxic cells. Implementation of these actions requires a coordinated activation of the viral transcription in latently infected cells so that the reservoir became visible and accessible to cytotoxic cells. As no latency reversing agent (LRA) has been shown to be completely effective, new combinations are of increasing importance. Recent data have shown that maraviroc is a new LRA. In this work, we have explored how the combination of maraviroc with other LRAs influences on HIV reactivation using in vitro latency models as well as on the cell viability of CD8 T cells from ART-treated patients. Maraviroc reactivated HIV with a potency similar to other LRAs. Triple combinations resulted toxic and were rejected. No dual combination was synergistic. The combination with panobinostat or disulfiram maintained the effect of both drugs without inducing cell proliferation or toxicity. Maraviroc does not alter the viability of CD8 T cells isolated from patients under antiretroviral treatment. This finding enhances the properties of maraviroc as a LRA.
Collapse
Affiliation(s)
- María Rosa López-Huertas
- Servicio de Enfermedades Infecciosas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain.
| | - Laura Jiménez-Tormo
- Servicio de Enfermedades Infecciosas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Nadia Madrid-Elena
- Servicio de Enfermedades Infecciosas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Carolina Gutiérrez
- Servicio de Enfermedades Infecciosas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - María Jesús Vivancos
- Servicio de Enfermedades Infecciosas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Laura Luna
- Servicio de Enfermedades Infecciosas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Santiago Moreno
- Servicio de Enfermedades Infecciosas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá de Henares, 28871 Alcalá de Henares, Spain
| |
Collapse
|
65
|
Mu W, Carrillo MA, Kitchen SG. Engineering CAR T Cells to Target the HIV Reservoir. Front Cell Infect Microbiol 2020; 10:410. [PMID: 32903563 PMCID: PMC7438537 DOI: 10.3389/fcimb.2020.00410] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022] Open
Abstract
The HIV reservoir remains to be a difficult barrier to overcome in order to achieve a therapeutic cure for HIV. Several strategies have been developed to purge the reservoir, including the “kick and kill” approach, which is based on the notion that reactivating the latent reservoir will allow subsequent elimination by the host anti-HIV immune cells. However, clinical trials testing certain classes of latency reactivating agents (LRAs) have so far revealed the minimal impact on reducing the viral reservoir. A robust immune response to reactivated HIV expressing cells is critical for this strategy to work. A current focus to enhance anti-HIV immunity is through the use of chimeric antigen receptors (CARs). Currently, HIV-specific CARs are being applied to peripheral T cells, NK cells, and stem cells to boost recognition and killing of HIV infected cells. In this review, we summarize current developments in engineering HIV directed CAR-expressing cells to facilitate HIV elimination. We also summarize current LRAs that enhance the “kick” strategy and how new generation and combinations of LRAs with HIV specific CAR T cell therapies could provide an optimal strategy to target the viral reservoir and achieve HIV clearance from the body.
Collapse
Affiliation(s)
- Wenli Mu
- Division of Hematology and Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mayra A Carrillo
- Division of Hematology and Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Scott G Kitchen
- Division of Hematology and Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
66
|
Structure-Activity Relationship Analysis of Benzotriazine Analogues as HIV-1 Latency-Reversing Agents. Antimicrob Agents Chemother 2020; 64:AAC.00888-20. [PMID: 32482680 PMCID: PMC7526807 DOI: 10.1128/aac.00888-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
“Shock and kill” therapeutic strategies toward HIV eradication are based on the transcriptional activation of latent HIV with a latency-reversing agent (LRA) and the consequent killing of the reactivated cell by either the cytopathic effect of HIV or an arm of the immune system. We have recently found several benzotriazole and benzotriazine analogues that have the ability to reactivate latent HIV by inhibiting signal transducer and activator of transcription 5 (STAT5) SUMOylation and promoting STAT5 binding to the HIV long terminal repeat and increasing its transcriptional activity. “Shock and kill” therapeutic strategies toward HIV eradication are based on the transcriptional activation of latent HIV with a latency-reversing agent (LRA) and the consequent killing of the reactivated cell by either the cytopathic effect of HIV or an arm of the immune system. We have recently found several benzotriazole and benzotriazine analogues that have the ability to reactivate latent HIV by inhibiting signal transducer and activator of transcription 5 (STAT5) SUMOylation and promoting STAT5 binding to the HIV long terminal repeat and increasing its transcriptional activity. To understand the essential structural groups required for biological activity of these molecules, we performed a systematic analysis of >40 analogues. First, we characterized the essential motifs within these molecules that are required for their biological activity. Second, we identified three benzotriazine analogues with similar activity. We demonstrated that these three compounds are able to increase STAT5 phosphorylation and transcriptional activity. All active analogues reactivate latent HIV in a primary cell model of latency and enhance the ability of interleukin-15 to reactivate latent HIV in cells isolated from aviremic participants. Third, this family of compounds also promote immune effector functions in vitro in the absence of toxicity or global immune activation. Finally, initial studies in mice suggest lack of acute toxicity in vivo. A better understanding of the biological activity of these compounds will help in the design of improved LRAs that work via inhibition of STAT5 SUMOylation.
Collapse
|
67
|
Lima NS, Takata H, Huang SH, Haregot A, Mitchell J, Blackmore S, Garland A, Sy A, Cartwright P, Routy JP, Michael NL, Appay V, Jones RB, Trautmann L. CTL Clonotypes with Higher TCR Affinity Have Better Ability to Reduce the HIV Latent Reservoir. THE JOURNAL OF IMMUNOLOGY 2020; 205:699-707. [PMID: 32591402 DOI: 10.4049/jimmunol.1900811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 05/23/2020] [Indexed: 01/09/2023]
Abstract
The success of the shock and kill strategy for the HIV cure depends both on the reactivation of the latent reservoir and on the ability of the immune system to eliminate infected cells. As latency reversal alone has not shown any impact in the size of the latent reservoir, ensuring that effector CTLs are able to recognize and kill HIV-infected cells could contribute to reservoir reduction. In this study, we investigated which functional aspects of human CTLs are associated with a better capacity to kill HIV-infected CD4+ T cells. We isolated Gag- and Nef-specific CTL clones with different TCR sequences from the PBMC of donors in acute and chronic infection. High-affinity clonotypes that showed IFN-γ production preserved even when the CD8 coreceptor was blocked, and clones with high Ag sensitivity exhibited higher efficiency at reducing the latent reservoir. Although intrinsic cytotoxic capacity did not differ according to TCR affinity, clonotypes with high TCR affinity showed a better ability to kill HIV-infected CD4+ T cells obtained from in vivo-infected PBMC and subjected to viral reactivation. Strategies aiming to specifically boost and maintain long-living memory CTLs with high TCR affinity in vivo prior to latency-reversing treatment might improve the efficacy of the shock and kill approach to reduce the latent reservoir.
Collapse
Affiliation(s)
- Noemia S Lima
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817.,Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814
| | - Hiroshi Takata
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817.,Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
| | - Szu-Han Huang
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY 10021.,Department of Microbiology, Immunology, and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037
| | - Alexander Haregot
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
| | - Julie Mitchell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817.,Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
| | - Stephen Blackmore
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
| | - Ayanna Garland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
| | - Aaron Sy
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
| | | | - Jean-Pierre Routy
- Division of Hematology and Chronic Viral Illness Service, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Nelson L Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Victor Appay
- Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, INSERM, Paris 75005, France; and.,International Research Center of Medical Sciences, Kumamoto University, Kumamoto 860-8555, Japan
| | - R Brad Jones
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY 10021.,Department of Microbiology, Immunology, and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037
| | - Lydie Trautmann
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910; .,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817.,Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
| |
Collapse
|
68
|
Hashemi P, Sadowski I. Diversity of small molecule HIV-1 latency reversing agents identified in low- and high-throughput small molecule screens. Med Res Rev 2020; 40:881-908. [PMID: 31608481 PMCID: PMC7216841 DOI: 10.1002/med.21638] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/26/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
The latency phenomenon produced by human immunodeficiency virus (HIV-1) prevents viral clearance by current therapies, and consequently development of a cure for HIV-1 disease represents a formidable challenge. Research over the past decade has resulted in identification of small molecules that are capable of exposing HIV-1 latent reservoirs, by reactivation of viral transcription, which is intended to render these infected cells sensitive to elimination by immune defense recognition or apoptosis. Molecules with this capability, known as latency-reversing agents (LRAs) could lead to realization of proposed HIV-1 cure strategies collectively termed "shock and kill," which are intended to eliminate the latently infected population by forced reactivation of virus replication in combination with additional interventions that enhance killing by the immune system or virus-mediated apoptosis. Here, we review efforts to discover novel LRAs via low- and high-throughput small molecule screens, and summarize characteristics and biochemical properties of chemical structures with this activity. We expect this analysis will provide insight toward further research into optimized designs for new classes of more potent LRAs.
Collapse
Affiliation(s)
- Pargol Hashemi
- Biochemistry and Molecular Biology, Molecular Epigenetics, Life Sciences InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Ivan Sadowski
- Biochemistry and Molecular Biology, Molecular Epigenetics, Life Sciences InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
69
|
Mota TM, McCann CD, Danesh A, Huang SH, Magat DB, Ren Y, Leyre L, Bui TD, Rohwetter TM, Kovacs CM, Benko E, MacLaren L, Wimpelberg A, Cannon CM, Hardy WD, Safrit JT, Jones RB. Integrated Assessment of Viral Transcription, Antigen Presentation, and CD8 + T Cell Function Reveals Multiple Limitations of Class I-Selective Histone Deacetylase Inhibitors during HIV-1 Latency Reversal. J Virol 2020; 94:e01845-19. [PMID: 32051267 PMCID: PMC7163115 DOI: 10.1128/jvi.01845-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/04/2020] [Indexed: 12/17/2022] Open
Abstract
Clinical trials investigating histone deacetylase inhibitors (HDACi) to reverse HIV-1 latency aim to expose reservoirs in antiretroviral (ARV)-treated individuals to clearance by immune effectors, yet have not driven measurable reductions in the frequencies of infected cells. We therefore investigated the effects of the class I-selective HDACi nanatinostat and romidepsin on various blocks to latency reversal and elimination, including viral splicing, antigen presentation, and CD8+ T cell function. In ex vivo CD4+ T cells from ARV-suppressed individuals, both HDACi significantly induced viral transcription, but not splicing nor supernatant HIV-1 RNA. In an HIV-1 latency model using autologous CD8+ T cell clones as biosensors of antigen presentation, neither HDACi-treated CD4+ T cell condition induced clone degranulation. Both HDACi also impaired the function of primary CD8+ T cells in viral inhibition assays, with nanatinostat causing less impairment. These findings suggest that spliced or cell-free HIV-1 RNAs are more indicative of antigen expression than unspliced HIV-RNAs and may help to explain the limited abilities of HDACi to generate CD8+ T cell targets in vivoIMPORTANCE Antiretroviral (ARV) drug regimens suppress HIV-1 replication but are unable to cure infection. This leaves people living with HIV-1 burdened by a lifelong commitment to expensive daily medication. Furthermore, it has become clear that ARV therapy does not fully restore health, leaving individuals at elevated risk for cardiovascular disease, certain types of cancers, and neurocognitive disorders, as well as leaving them exposed to stigma. Efforts are therefore under way to develop therapies capable of curing infection. A key focus of these efforts has been on a class of drugs called histone deacetylase inhibitors (HDACi), which have the potential of exposing hidden reservoirs of HIV-1 to elimination by the immune system. Unfortunately, clinical trial results with HDACi have thus far been disappointing. In the current study, we integrate a number of experimental approaches to build a model that provides insights into the limited activity of HDACi in clinical trials and offers direction for future approaches.
Collapse
Affiliation(s)
- Talia M Mota
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Chase D McCann
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
- Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Ali Danesh
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Szu-Han Huang
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Dean B Magat
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Yanqin Ren
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Louise Leyre
- Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Tracy D Bui
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Thomas M Rohwetter
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | | | | | - Lynsay MacLaren
- Research Department, Whitman-Walker Health, Washington, DC, USA
| | | | | | - W David Hardy
- Division of Infectious Disease, Johns Hopkins University School of Medicine, Washington, DC, USA
| | | | - R Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
- Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| |
Collapse
|
70
|
De la Torre-Tarazona HE, Jiménez R, Bueno P, Camarero S, Román L, Fernández-García JL, Beltrán M, Nothias LF, Cachet X, Paolini J, Litaudon M, Alcami J, Bedoya LM. 4-Deoxyphorbol inhibits HIV-1 infection in synergism with antiretroviral drugs and reactivates viral reservoirs through PKC/MEK activation synergizing with vorinostat. Biochem Pharmacol 2020; 177:113937. [PMID: 32224142 DOI: 10.1016/j.bcp.2020.113937] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/24/2020] [Indexed: 01/06/2023]
Abstract
Latent HIV reservoirs are the main obstacle to eradicate HIV infection. One strategy proposes to eliminate these viral reservoirs by pharmacologically reactivating the latently infected T cells. We show here that a 4-deoxyphorbol ester derivative isolated from Euphorbia amygdaloides ssp. semiperfoliata, 4β-dPE A, reactivates HIV-1 from latency and could potentially contribute to decrease the viral reservoir. 4β-dPE A shows two effects in the HIV replication cycle, infection inhibition and HIV transactivation, similarly to other phorboids PKC agonists such PMA and prostratin and to other diterpene esters such SJ23B. Our data suggest 4β-dPE A is non-tumorigenic, unlike the related compound PMA. As the compounds are highly similar, the lack of tumorigenicity by 4β-dPE A could be due to the lack of a long side lipophilic chain that is present in PMA. 4β-dPE activates HIV transcription at nanomolar concentrations, lower than the concentration needed by other latency reversing agents (LRAs) such as prostratin and similar to bryostatin. PKCθ/MEK activation is required for the transcriptional activity, and thus, anti-latency activity of 4β-dPE A. However, CD4, CXCR4 and CCR5 receptors down-regulation effect seems to be independent of PCK/MEK, suggesting the existence of at least two different targets for 4β-dPE A. Furthermore, NF-κb transcription factor is involved in 4β-dPE HIV reactivation, as previously shown for other PKCs agonists. We also studied the effects of 4β-dPE A in combination with other LRAs. When 4β-dPE A was combined with another PKC agonists such as prostratin an antagonic effect was achieved, while, when combined with an HDAC inhibitor such as vorinostat, a strong synergistic effect was obtained. Interestingly, the latency reversing effect of the combination was synergistically diminishing the EC50 value but also increasing the efficacy showed by the drugs alone. In addition, combinations of 4β-dPE A with antiretroviral drugs as CCR5 antagonist, NRTIs, NNRTIs and PIs, showed a consistent synergistic effect, suggesting that the combination would not interefer with antiretroviral therapy (ART). Finally, 4β-dPE A induced latent HIV reactivation in CD4 + T cells of infected patients under ART at similar levels than the tumorigenic phorbol derivative PMA, showing a clear reactivation effect. In summary, we describe here the mechanism of action of a new potent deoxyphorbol derivative as a latency reversing agent candidate to decrease the size of HIV reservoirs.
Collapse
Affiliation(s)
- H E De la Torre-Tarazona
- AIDS Immunopathology Department, National Centre of Microbiology, Instituto de Salud Carlos III. Ctra. Pozuelo Km. 2. Majadahonda, 28224 Madrid, Spain
| | - R Jiménez
- AIDS Immunopathology Department, National Centre of Microbiology, Instituto de Salud Carlos III. Ctra. Pozuelo Km. 2. Majadahonda, 28224 Madrid, Spain
| | - P Bueno
- AIDS Immunopathology Department, National Centre of Microbiology, Instituto de Salud Carlos III. Ctra. Pozuelo Km. 2. Majadahonda, 28224 Madrid, Spain
| | - S Camarero
- AIDS Immunopathology Department, National Centre of Microbiology, Instituto de Salud Carlos III. Ctra. Pozuelo Km. 2. Majadahonda, 28224 Madrid, Spain
| | - L Román
- AIDS Immunopathology Department, National Centre of Microbiology, Instituto de Salud Carlos III. Ctra. Pozuelo Km. 2. Majadahonda, 28224 Madrid, Spain
| | - J L Fernández-García
- AIDS Immunopathology Department, National Centre of Microbiology, Instituto de Salud Carlos III. Ctra. Pozuelo Km. 2. Majadahonda, 28224 Madrid, Spain; Pharmacology Department, Pharmacy Faculty, Universidad Complutense de Madrid, Pz. Ramón Y Cajal s/n, 28040 Madrid, Spain
| | - M Beltrán
- AIDS Immunopathology Department, National Centre of Microbiology, Instituto de Salud Carlos III. Ctra. Pozuelo Km. 2. Majadahonda, 28224 Madrid, Spain
| | - L F Nothias
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University of Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - X Cachet
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University of Paris-Saclay, 91198 Gif-sur-Yvette, France; CiTCoM Laboratory, UMR 8038 CNRS-University of Paris, Faculty of Pharmacy, University of Paris, 75006 Paris, France
| | - J Paolini
- Laboratoire de Chimie des Produits Naturels, CNRS, UMR SPE 6134, University of Corsica, 20250 Corte, France
| | - M Litaudon
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University of Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - J Alcami
- AIDS Immunopathology Department, National Centre of Microbiology, Instituto de Salud Carlos III. Ctra. Pozuelo Km. 2. Majadahonda, 28224 Madrid, Spain; Infectious Diseases Unit, IBIDAPS, Hospital Clínic, University of Barcelona, Spain.
| | - L M Bedoya
- AIDS Immunopathology Department, National Centre of Microbiology, Instituto de Salud Carlos III. Ctra. Pozuelo Km. 2. Majadahonda, 28224 Madrid, Spain; Pharmacology Department, Pharmacy Faculty, Universidad Complutense de Madrid, Pz. Ramón Y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
71
|
Jin JH, Huang HH, Zhou MJ, Li J, Hu W, Huang L, Xu Z, Tu B, Yang G, Shi M, Jiao YM, Fan X, Song JW, Zhang JY, Zhang C, Wang FS. Virtual memory CD8+ T cells restrain the viral reservoir in HIV-1-infected patients with antiretroviral therapy through derepressing KIR-mediated inhibition. Cell Mol Immunol 2020; 17:1257-1265. [PMID: 32210395 DOI: 10.1038/s41423-020-0408-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/03/2020] [Indexed: 01/10/2023] Open
Abstract
The viral reservoir is the major hurdle in developing and establishing an HIV cure. Understanding factors affecting the size and decay of this reservoir is crucial for the development of therapeutic strategies. Recent work highlighted that CD8+ T cells are involved in the control of viral replication in ART-treated HIV-1-infected individuals, but how CD8+ T cells sense and restrict the HIV reservoir are not fully understood. Here, we demonstrate that a population of unconventional CD45RA+, PanKIR+, and/or NKG2A+ virtual memory CD8+ T cells (TVM cells), which confer rapid and robust protective immunity against pathogens, plays an important role in restraining the HIV DNA reservoir in HIV-1-infected patients with effective ART. In patients undergoing ART, TVM cells negatively correlate with HIV DNA and positively correlate with circulating IFN-α2 and IL-15. Moreover, TVM cells constitutively express high levels of cytotoxic granule components, including granzyme B, perforin and granulysin, and demonstrate the capability to control HIV replication through both cytolytic and noncytolytic mechanisms. Furthermore, by using an ex vivo system, we showed that HIV reactivation is effectively suppressed by TVM cells through KIR-mediated recognition. This study suggests that TVM cells are a promising target to predict posttreatment virological control and to design immune-based interventions to reduce the reservoir size in ART-treated HIV-1-infected individuals.
Collapse
Affiliation(s)
- Jie-Hua Jin
- Peking University 302 Clinical Medical School, Beijing, China.,Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Hui-Huang Huang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ming-Ju Zhou
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China.,Bengbu Medical University, Bengbu, China
| | - Jing Li
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China.,Bengbu Medical University, Bengbu, China
| | - Wei Hu
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Lei Huang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Zhe Xu
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Bo Tu
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Guang Yang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ming Shi
- Peking University 302 Clinical Medical School, Beijing, China.,Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yan-Mei Jiao
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xing Fan
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Wen Song
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ji-Yuan Zhang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chao Zhang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China. .,National Clinical Research Center for Infectious Diseases, Beijing, China.
| | - Fu-Sheng Wang
- Peking University 302 Clinical Medical School, Beijing, China. .,Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China. .,National Clinical Research Center for Infectious Diseases, Beijing, China.
| |
Collapse
|
72
|
Rosás-Umbert M, Ruiz-Riol M, Fernández MA, Marszalek M, Coll P, Manzardo C, Cedeño S, Miró JM, Clotet B, Hanke T, Moltó J, Mothe B, Brander C. In vivo Effects of Romidepsin on T-Cell Activation, Apoptosis and Function in the BCN02 HIV-1 Kick&Kill Clinical Trial. Front Immunol 2020; 11:418. [PMID: 32265913 PMCID: PMC7100631 DOI: 10.3389/fimmu.2020.00418] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/24/2020] [Indexed: 12/17/2022] Open
Abstract
Romidepsin (RMD) is a well-characterized histone deacetylase inhibitor approved for the treatment of cutaneous T-cell lymphoma. in vitro and in vivo studies have demonstrated that it is able to induce HIV-1 gene expression in latently infected CD4+ T cells from HIV-1+ individuals on suppressive antiretroviral therapy. However, in vitro experiments suggested that RMD could also impair T-cell functionality, particularly of activated T cells. Thus, the usefulness of RMD in HIV-1 kick&kill strategies, that aim to enhance the immune system elimination of infected cells after inducing HIV-1 viral reactivation, may be limited. In order to address whether the in vitro observations are replicated in vivo, we determined the effects of RMD on the total and HIV-1-specific T-cell populations in longitudinal samples from the BCN02 kick&kill clinical trial (NCT02616874). BCN02 was a proof-of-concept study in 15 early treated HIV-1+ individuals that combined MVA.HIVconsv vaccination with three weekly infusions of RMD given as a latency reversing agent. Our results show that RMD induced a transient increase in the frequency of apoptotic T cells and an enhanced activation of vaccine-induced T cells. Although RMD reduced the number of vaccine-elicited T cells secreting multiple cytokines, viral suppressive capacity of CD8+ T cells was preserved over the RMD treatment. These observations have important implications for the design of effective kick&kill strategies for the HIV-1 cure.
Collapse
Affiliation(s)
- Miriam Rosás-Umbert
- IrsiCaixa AIDS Research Institute-HIVACAT, Badalona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | | | - Marco A Fernández
- Flow Cytometry Facility, Health Sciences Research Institute Germans Trias i Pujol, Badalona, Spain
| | | | - Pep Coll
- IrsiCaixa AIDS Research Institute-HIVACAT, Badalona, Spain
| | | | | | - José M Miró
- Hospital Clinic- IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute-HIVACAT, Badalona, Spain.,Fundació Lluita contra la Sida, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Department of Infectious Diseases, Hospital Germans Trias i Pujol, Badalona, Spain.,Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic - Central University of Catalonia (UVic - UCC), Vic, Spain
| | - Tomáš Hanke
- The Jenner Institute, University of Oxford, Oxford, United Kingdom.,Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - José Moltó
- Fundació Lluita contra la Sida, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Department of Infectious Diseases, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Beatriz Mothe
- IrsiCaixa AIDS Research Institute-HIVACAT, Badalona, Spain.,Department of Infectious Diseases, Hospital Germans Trias i Pujol, Badalona, Spain.,Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic - Central University of Catalonia (UVic - UCC), Vic, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute-HIVACAT, Badalona, Spain.,Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic - Central University of Catalonia (UVic - UCC), Vic, Spain.,ICREA, Pg. Lluis Companys, Barcelona, Spain
| | | |
Collapse
|
73
|
Boucau J, Das J, Joshi N, Le Gall S. Latency reversal agents modulate HIV antigen processing and presentation to CD8 T cells. PLoS Pathog 2020; 16:e1008442. [PMID: 32196533 PMCID: PMC7112239 DOI: 10.1371/journal.ppat.1008442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 04/01/2020] [Accepted: 02/28/2020] [Indexed: 01/03/2023] Open
Abstract
Latency reversal agents (LRA) variably induce HIV re-expression in CD4 T cells but reservoirs are not cleared. Whether HIV epitope presentation is similar between latency reversal and initial infection of CD4 T cells is unknown yet crucial to define immune responses able to detect HIV-infected CD4 T cells after latency reversal. HIV peptides displayed by MHC comes from the intracellular degradation of proteins by proteasomes and post-proteasomal peptidases but the impact of LRAs on antigen processing is not known. Here we show that HDAC inhibitors (HDCAi) reduced cytosolic proteolytic activities while PKC agonists (PKCa) increased them to a lesser extent than that induced by TCR activation. During the cytosolic degradation of long HIV peptides in LRA-treated CD4 T cells extracts, HDACi and PKCa modulated degradation patterns of peptides and altered the production of HIV epitopes in often opposite ways. Beyond known HIV epitopes, HDACi narrowed the coverage of HIV antigenic fragments by 8-11aa degradation peptides while PKCa broadened it. LRAs altered HIV infection kinetics and modulated CD8 T cell activation in an epitope- and time-dependent manner. Interestingly the efficiency of endogenous epitope processing and presentation to CD8 T cells was increased by PKCa Ingenol at early time points despite low levels of antigens. LRA-induced modulations of antigen processing should be considered and exploited to enhance and broaden HIV peptide presentation by CD4 T cells and to improve immune recognition after latency reversal. This property of LRAs, if confirmed with other antigens, might be exploited to improve immune detection of diseased cells beyond HIV. Latently HIV-infected CD4 T cells persist and remain invisible to the immune system. Strategies to flush out HIV reservoirs propose to re-express HIV with latency reversal agents (LRAs), leading to CD4 T cell death or clearance by HIV-specific immune responses. LRAs tested so far variably induced HIV re-expression but did not eliminate reservoirs. The activation of HIV-specific immune responses is triggered by HIV peptides displayed by infected cells after HIV intracellular degradation. Whether HIV antigens are similarly degraded and displayed by CD4 T cells after latency reversal or during initial infection is unknown. We showed that LRAs altered the activities of the degradation machinery and changed the degradation patterns of HIV into peptides. LRA-treated HIV-infected CD4 T cells were variably recognized by immune cells in a time- and peptide-dependent manner. Some LRAs increased the efficiency of HIV peptide presentation despite low levels of HIV antigens inside CD4 T cells. The modulation of HIV peptide presentation by current or future LRAs should be accounted for and exploited to improve HIV peptide presentation and enhance immune detection of HIV-infected CD4 T cells after latency reversal.
Collapse
Affiliation(s)
- Julie Boucau
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Jishnu Das
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Neelambari Joshi
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Sylvie Le Gall
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
74
|
Dash PK, Kevadiya BD, Su H, Banoub MG, Gendelman HE. Pathways towards human immunodeficiency virus elimination. EBioMedicine 2020; 53:102667. [PMID: 32114397 PMCID: PMC7047153 DOI: 10.1016/j.ebiom.2020.102667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/17/2022] Open
Abstract
Antiretroviral therapy (ART) suppresses human immunodeficiency virus (HIV) infection. Research seeking to transform viral suppression into elimination has generated novel immune, chemical and molecular antiviral agents. However, none, to date, have excised latent integrated proviral DNA or removed infected cells from infected persons. These efforts included, but are not limited to, broadly neutralizing antibodies, "shock" and "kill" latency-reversing agents, innate immune regulators, and sequential long-acting antiretroviral nanoformulated prodrugs and CRISPR-Cas9 gene editing. While, the latter, enabled the complete excision of latent HIV-1 from the host genome success was so far limited. We contend that improvements in antiretroviral delivery, potency, agent specificity, or combinatorial therapies can provide a pathway towards complete HIV elimination.
Collapse
Affiliation(s)
- Prasanta K Dash
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Hang Su
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Mary G Banoub
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| |
Collapse
|
75
|
Webb GM, Molden J, Busman-Sahay K, Abdulhaqq S, Wu HL, Weber WC, Bateman KB, Reed JS, Northrup M, Maier N, Tanaka S, Gao L, Davey B, Carpenter BL, Axthelm MK, Stanton JJ, Smedley J, Greene JM, Safrit JT, Estes JD, Skinner PJ, Sacha JB. The human IL-15 superagonist N-803 promotes migration of virus-specific CD8+ T and NK cells to B cell follicles but does not reverse latency in ART-suppressed, SHIV-infected macaques. PLoS Pathog 2020; 16:e1008339. [PMID: 32163523 PMCID: PMC7093032 DOI: 10.1371/journal.ppat.1008339] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/24/2020] [Accepted: 01/20/2020] [Indexed: 12/26/2022] Open
Abstract
Despite the success of antiretroviral therapy (ART) to halt viral replication and slow disease progression, this treatment is not curative and there remains an urgent need to develop approaches to clear the latent HIV reservoir. The human IL-15 superagonist N-803 (formerly ALT-803) is a promising anti-cancer biologic with potent immunostimulatory properties that has been extended into the field of HIV as a potential "shock and kill" therapeutic for HIV cure. However, the ability of N-803 to reactivate latent virus and modulate anti-viral immunity in vivo under the cover of ART remains undefined. Here, we show that in ART-suppressed, simian-human immunodeficiency virus (SHIV)SF162P3-infected rhesus macaques, subcutaneous administration of N-803 activates and mobilizes both NK cells and SHIV-specific CD8+ T cells from the peripheral blood to lymph node B cell follicles, a sanctuary site for latent virus that normally excludes such effector cells. We observed minimal activation of memory CD4+ T cells and no increase in viral RNA content in lymph node resident CD4+ T cells post N-803 administration. Accordingly, we found no difference in the number or magnitude of plasma viremia timepoints between treated and untreated animals during the N-803 administration period, and no difference in the size of the viral DNA cell-associated reservoir post N-803 treatment. These results substantiate N-803 as a potent immunotherapeutic candidate capable of activating and directing effector CD8+ T and NK cells to the B cell follicle during full ART suppression, and suggest N-803 must be paired with a bona fide latency reversing agent in vivo to facilitate immune-mediated modulation of the latent viral reservoir.
Collapse
Affiliation(s)
- Gabriela M. Webb
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Jhomary Molden
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Kathleen Busman-Sahay
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Shaheed Abdulhaqq
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Helen L. Wu
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Whitney C. Weber
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Katherine B. Bateman
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Jason S. Reed
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Mina Northrup
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Nicholas Maier
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Shiho Tanaka
- ImmunityBio, Los Angeles, California, United States of America
| | - Lina Gao
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Brianna Davey
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Benjamin L. Carpenter
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Michael K. Axthelm
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Jeffrey J. Stanton
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Jeremy Smedley
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Justin M. Greene
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | | | - Jacob D. Estes
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Pamela J. Skinner
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Jonah B. Sacha
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| |
Collapse
|
76
|
|
77
|
McBrien JB, Mavigner M, Franchitti L, Smith SA, White E, Tharp GK, Walum H, Busman-Sahay K, Aguilera-Sandoval CR, Thayer WO, Spagnuolo RA, Kovarova M, Wahl A, Cervasi B, Margolis DM, Vanderford TH, Carnathan DG, Paiardini M, Lifson JD, Lee JH, Safrit JT, Bosinger SE, Estes JD, Derdeyn CA, Garcia JV, Kulpa DA, Chahroudi A, Silvestri G. Robust and persistent reactivation of SIV and HIV by N-803 and depletion of CD8 + cells. Nature 2020; 578:154-159. [PMID: 31969705 PMCID: PMC7580846 DOI: 10.1038/s41586-020-1946-0] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 12/12/2019] [Indexed: 11/09/2022]
Abstract
Human immunodeficiency virus (HIV) persists indefinitely in individuals with HIV who receive antiretroviral therapy (ART) owing to a reservoir of latently infected cells that contain replication-competent virus1-4. Here, to better understand the mechanisms responsible for latency persistence and reversal, we used the interleukin-15 superagonist N-803 in conjunction with the depletion of CD8+ lymphocytes in ART-treated macaques infected with simian immunodeficiency virus (SIV). Although N-803 alone did not reactivate virus production, its administration after the depletion of CD8+ lymphocytes in conjunction with ART treatment induced robust and persistent reactivation of the virus in vivo. We found viraemia of more than 60 copies per ml in all macaques (n = 14; 100%) and in 41 out of a total of 56 samples (73.2%) that were collected each week after N-803 administration. Notably, concordant results were obtained in ART-treated HIV-infected humanized mice. In addition, we observed that co-culture with CD8+ T cells blocked the in vitro latency-reversing effect of N-803 on primary human CD4+ T cells that were latently infected with HIV. These results advance our understanding of the mechanisms responsible for latency reversal and lentivirus reactivation during ART-suppressed infection.
Collapse
Affiliation(s)
- Julia Bergild McBrien
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Maud Mavigner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Lavinia Franchitti
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - S Abigail Smith
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Erick White
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Gregory K Tharp
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Hasse Walum
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Christian R Aguilera-Sandoval
- International Center for the Advancement of Translational Science, Division of Infectious Diseases, Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William O Thayer
- International Center for the Advancement of Translational Science, Division of Infectious Diseases, Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rae Ann Spagnuolo
- International Center for the Advancement of Translational Science, Division of Infectious Diseases, Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Martina Kovarova
- International Center for the Advancement of Translational Science, Division of Infectious Diseases, Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Angela Wahl
- International Center for the Advancement of Translational Science, Division of Infectious Diseases, Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Barbara Cervasi
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - David M Margolis
- International Center for the Advancement of Translational Science, Division of Infectious Diseases, Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- University of North Carolina HIV Cure Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas H Vanderford
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Diane G Carnathan
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Mirko Paiardini
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | | | - Steven E Bosinger
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Cynthia A Derdeyn
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - J Victor Garcia
- International Center for the Advancement of Translational Science, Division of Infectious Diseases, Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Deanna A Kulpa
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory + Children's Center for Childhood Infections and Vaccines, Atlanta, GA, USA
| | - Guido Silvestri
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
78
|
Van der Sluis RM, Kumar NA, Pascoe RD, Zerbato JM, Evans VA, Dantanarayana AI, Anderson JL, Sékaly RP, Fromentin R, Chomont N, Cameron PU, Lewin SR. Combination Immune Checkpoint Blockade to Reverse HIV Latency. THE JOURNAL OF IMMUNOLOGY 2020; 204:1242-1254. [PMID: 31988180 DOI: 10.4049/jimmunol.1901191] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022]
Abstract
In people living with HIV on antiretroviral therapy, HIV latency is the major barrier to a cure. HIV persists preferentially in CD4+ T cells expressing multiple immune checkpoint (IC) molecules, including programmed death (PD)-1, T cell Ig and mucin domain-containing protein 3 (TIM-3), lymphocyte associated gene 3 (LAG-3), and T cell immunoreceptor with Ig and ITIM domains (TIGIT). We aimed to determine whether these and other IC molecules have a functional role in maintaining HIV latency and whether blocking IC molecules with Abs reverses HIV latency. Using an in vitro model that establishes latency in both nonproliferating and proliferating human CD4+ T cells, we show that proliferating cells express multiple IC molecules at high levels. Latent infection was enriched in proliferating cells expressing PD-1. In contrast, nonproliferating cells expressed IC molecules at significantly lower levels, but latent infection was enriched in cells expressing PD-1, TIM-3, CTL-associated protein 4 (CTLA-4), or B and T lymphocyte attenuator (BTLA). In the presence of an additional T cell-activating stimulus, staphylococcal enterotoxin B, Abs to CTLA-4 and PD-1 reversed HIV latency in proliferating and nonproliferating CD4+ T cells, respectively. In the absence of staphylococcal enterotoxin B, only the combination of Abs to PD-1, CTLA-4, TIM-3, and TIGIT reversed latency. The potency of latency reversal was significantly higher following combination IC blockade compared with other latency-reversing agents, including vorinostat and bryostatin. Combination IC blockade should be further explored as a strategy to reverse HIV latency.
Collapse
Affiliation(s)
- Renée M Van der Sluis
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia
| | - Nitasha A Kumar
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia
| | - Rachel D Pascoe
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia
| | - Jennifer M Zerbato
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia
| | - Vanessa A Evans
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia
| | - Ashanti I Dantanarayana
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia
| | - Jenny L Anderson
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia
| | | | - Rémi Fromentin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H2X 3E4, Canada
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H2X 3E4, Canada.,Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada; and
| | - Paul U Cameron
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia.,Department of Infectious Diseases, Monash University and the Alfred Hospital, Melbourne, Victoria 3000, Australia
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia; .,Department of Infectious Diseases, Monash University and the Alfred Hospital, Melbourne, Victoria 3000, Australia
| |
Collapse
|
79
|
Ait-Ammar A, Kula A, Darcis G, Verdikt R, De Wit S, Gautier V, Mallon PWG, Marcello A, Rohr O, Van Lint C. Current Status of Latency Reversing Agents Facing the Heterogeneity of HIV-1 Cellular and Tissue Reservoirs. Front Microbiol 2020; 10:3060. [PMID: 32038533 PMCID: PMC6993040 DOI: 10.3389/fmicb.2019.03060] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
One of the most explored therapeutic approaches aimed at eradicating HIV-1 reservoirs is the "shock and kill" strategy which is based on HIV-1 reactivation in latently-infected cells ("shock" phase) while maintaining antiretroviral therapy (ART) in order to prevent spreading of the infection by the neosynthesized virus. This kind of strategy allows for the "kill" phase, during which latently-infected cells die from viral cytopathic effects or from host cytolytic effector mechanisms following viral reactivation. Several latency reversing agents (LRAs) with distinct mechanistic classes have been characterized to reactivate HIV-1 viral gene expression. Some LRAs have been tested in terms of their potential to purge latent HIV-1 in vivo in clinical trials, showing that reversing HIV-1 latency is possible. However, LRAs alone have failed to reduce the size of the viral reservoirs. Together with the inability of the immune system to clear the LRA-activated reservoirs and the lack of specificity of these LRAs, the heterogeneity of the reservoirs largely contributes to the limited success of clinical trials using LRAs. Indeed, HIV-1 latency is established in numerous cell types that are characterized by distinct phenotypes and metabolic properties, and these are influenced by patient history. Hence, the silencing mechanisms of HIV-1 gene expression in these cellular and tissue reservoirs need to be better understood to rationally improve this cure strategy and hopefully reach clinical success.
Collapse
Affiliation(s)
- Amina Ait-Ammar
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Anna Kula
- Malopolska Centre of Biotechnology, Laboratory of Virology, Jagiellonian University, Krakow, Poland
| | - Gilles Darcis
- Infectious Diseases Department, Liège University Hospital, Liège, Belgium
| | - Roxane Verdikt
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Stephane De Wit
- Service des Maladies Infectieuses, CHU Saint-Pierre, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Virginie Gautier
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Patrick W G Mallon
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Olivier Rohr
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| |
Collapse
|
80
|
Abstract
A disease of more than 39.6 million people worldwide, HIV-1 infection has no curative therapy. To date, one man has achieved a sterile cure, with millions more hoping to avoid the potential pitfalls of lifelong antiretroviral therapy and other HIV-related disorders, including neurocognitive decline. Recent developments in immunotherapies and gene therapies provide renewed hope in advancing efforts toward a sterilizing or functional cure. On the horizon is research concentrated in multiple separate but potentially complementary domains: vaccine research, viral transcript editing, T-cell effector response targeting including checkpoint inhibitors, and gene editing. Here, we review the concept of targeting the HIV-1 tissue reservoirs, with an emphasis on the central nervous system, and describe relevant new work in functional cure research and strategies for HIV-1 eradication.
Collapse
|
81
|
Cadar AG, Feaster TK, Bersell KR, Wang L, Hong T, Balsamo JA, Zhang Z, Chun YW, Nam YJ, Gotthardt M, Knollmann BC, Roden DM, Lim CC, Hong CC. Real-time visualization of titin dynamics reveals extensive reversible photobleaching in human induced pluripotent stem cell-derived cardiomyocytes. Am J Physiol Cell Physiol 2020; 318:C163-C173. [PMID: 31747312 PMCID: PMC6985833 DOI: 10.1152/ajpcell.00107.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022]
Abstract
Fluorescence recovery after photobleaching (FRAP) has been useful in delineating cardiac myofilament biology, and innovations in fluorophore chemistry have expanded the array of microscopic assays used. However, one assumption in FRAP is the irreversible photobleaching of fluorescent proteins after laser excitation. Here we demonstrate reversible photobleaching regarding the photoconvertible fluorescent protein mEos3.2. We used CRISPR/Cas9 genome editing in human induced pluripotent stem cells (hiPSCs) to knock-in mEos3.2 into the COOH terminus of titin to visualize sarcomeric titin incorporation and turnover. Upon cardiac induction, the titin-mEos3.2 fusion protein is expressed and integrated in the sarcomeres of hiPSC-derived cardiomyocytes (CMs). STORM imaging shows M-band clustered regions of bound titin-mEos3.2 with few soluble titin-mEos3.2 molecules. FRAP revealed a baseline titin-mEos3.2 fluorescence recovery of 68% and half-life of ~1.2 h, suggesting a rapid exchange of sarcomeric titin with soluble titin. However, paraformaldehyde-fixed and permeabilized titin-mEos3.2 hiPSC-CMs surprisingly revealed a 55% fluorescence recovery. Whole cell FRAP analysis in paraformaldehyde-fixed, cycloheximide-treated, and untreated titin-mEos3.2 hiPSC-CMs displayed no significant differences in fluorescence recovery. FRAP in fixed HEK 293T expressing cytosolic mEos3.2 demonstrates a 58% fluorescence recovery. These data suggest that titin-mEos3.2 is subject to reversible photobleaching following FRAP. Using a mouse titin-eGFP model, we demonstrate that no reversible photobleaching occurs. Our results reveal that reversible photobleaching accounts for the majority of titin recovery in the titin-mEos3.2 hiPSC-CM model and should warrant as a caution in the extrapolation of reliable FRAP data from specific fluorescent proteins in long-term cell imaging.
Collapse
Affiliation(s)
- Adrian G Cadar
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Tennessee
| | - Tromondae K Feaster
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Kevin R Bersell
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Lili Wang
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - TingTing Hong
- Smidt Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Joseph A Balsamo
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Zhentao Zhang
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Tennessee
| | - Young Wook Chun
- Department of Medicine, Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Young-Jae Nam
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Tennessee
| | - Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Björn C Knollmann
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Dan M Roden
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Chee C Lim
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Tennessee
| | - Charles C Hong
- Department of Medicine, Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
82
|
Role of Dendritic Cells in Exposing Latent HIV-1 for the Kill. Viruses 2019; 12:v12010037. [PMID: 31905690 PMCID: PMC7019604 DOI: 10.3390/v12010037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 12/11/2022] Open
Abstract
The development of effective yet nontoxic strategies to target the latent human immunodeficiency virus-1 (HIV-1) reservoir in antiretroviral therapy (ART)-suppressed individuals poses a critical barrier to a functional cure. The ‘kick and kill’ approach to HIV eradication entails proviral reactivation during ART, coupled with generation of cytotoxic T lymphocytes (CTLs) or other immune effectors equipped to eliminate exposed infected cells. Pharmacological latency reversal agents (LRAs) that have produced modest reductions in the latent reservoir ex vivo have not impacted levels of proviral DNA in HIV-infected individuals. An optimal cure strategy incorporates methods that facilitate sufficient antigen exposure on reactivated cells following the induction of proviral gene expression, as well as the elimination of infected targets by either polyfunctional HIV-specific CTLs or other immune-based strategies. Although conventional dendritic cells (DCs) have been used extensively for the purpose of inducing antigen-specific CTL responses in HIV-1 clinical trials, their immunotherapeutic potential as cellular LRAs has been largely ignored. In this review, we discuss the challenges associated with current HIV-1 eradication strategies, as well as the unharnessed potential of ex vivo-programmed DCs for both the ‘kick and kill’ of latent HIV-1.
Collapse
|
83
|
Dhummakupt A, Siems LV, Singh D, Chen YH, Anderson T, Collinson-Streng A, Zhang H, Patel P, Agwu A, Persaud D. The Latent Human Immunodeficiency Virus (HIV) Reservoir Resides Primarily in CD32-CD4+ T Cells in Perinatally HIV-Infected Adolescents With Long-Term Virologic Suppression. J Infect Dis 2019; 219:80-88. [PMID: 30053296 DOI: 10.1093/infdis/jiy461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 07/20/2018] [Indexed: 11/13/2022] Open
Abstract
Background High-level expression of the Fcγ receptor, CD32hi, on CD4+ T cells was associated with enhanced human immunodeficiency virus (HIV) infection of the latent reservoir in a study of adults receiving antiretroviral therapy. We tested the hypothesis that CD32 was the preferential marker of the latent HIV reservoir in virally suppressed, perinatally HIV-infected adolescents. Methods The frequency of CD32hiCD4+ T cells was determined by flow cytometry (N = 5) and the inducible HIV reservoir in both CD32hi and CD32-CD4+ T cells was quantified (N = 4) with a quantitative viral outgrowth assay. Viral outgrowth was measured by the standard p24 enzyme-linked immunosorbent assay and an ultrasensitive p24 assay (Simoa; Quanterix) with lower limits of quantitation. Results We found a 59.55-fold enrichment in the absolute number of infectious cells in the CD32- population compared with CD32hi cells. Exponential HIV replication occurred exclusively in CD32-CD4+ T cells (mean change, 17.46 pg/mL; P = .04). Induced provirus in CD32hiCD4+ T cells replicated to substantially lower levels, which did not increase significantly over time (mean change, 0.026 pg/mL; P = .23) and were detected only with the Simoa assay. Conclusions Our data suggests that the latent HIV reservoir resides mainly in CD32-CD4+ T cells in virally suppressed, perinatally HIV-infected adolescents, which has implications for reservoir elimination strategies.
Collapse
Affiliation(s)
- Adit Dhummakupt
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lilly V Siems
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dolly Singh
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ya Hui Chen
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thuy Anderson
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Aleisha Collinson-Streng
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hao Zhang
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | - Allison Agwu
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Deborah Persaud
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
84
|
Macedo AB, Novis CL, Bosque A. Targeting Cellular and Tissue HIV Reservoirs With Toll-Like Receptor Agonists. Front Immunol 2019; 10:2450. [PMID: 31681325 PMCID: PMC6804373 DOI: 10.3389/fimmu.2019.02450] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 10/01/2019] [Indexed: 01/04/2023] Open
Abstract
The elimination of both cellular and tissue latent reservoirs is a challenge toward a successful HIV cure. "Shock and Kill" are among the therapeutic strategies that have been more extensively studied to target these reservoirs. These strategies are aimed toward the reactivation of the latent reservoir using a latency-reversal agent (LRA) with the subsequent killing of the reactivated cell either by the cytotoxic arm of the immune system, including NK and CD8 T cells, or by viral cytopathic mechanisms. Numerous LRAs are currently being investigated in vitro, ex vivo as well as in vivo for their ability to reactivate and reduce latent reservoirs. Among those, several toll-like receptor (TLR) agonists have been shown to reactivate latent HIV. In humans, there are 10 TLRs that recognize different pathogen-associated molecular patterns. TLRs are present in several cell types, including CD4 T cells, the cell compartment that harbors the majority of the latent reservoir. Besides their ability to reactivate latent HIV, TLR agonists also increase immune activation and promote an antiviral response. These combined properties make TLR agonists unique among the different LRAs characterized to date. Additionally, some of these agonists have shown promise toward finding an HIV cure in animal models. When in combination with broadly neutralizing antibodies, TLR-7 agonists have shown to impact the SIV latent reservoir and delay viral rebound. Moreover, there are FDA-approved TLR agonists that are currently being investigated for cancer therapy and other diseases. All these has prompted clinical trials using TLR agonists either alone or in combination toward HIV eradication approaches. In this review, we provide an extensive characterization of the state-of-the-art of the use of TLR agonists toward HIV eradication strategies and the mechanism behind how TLR agonists target both cellular and tissue HIV reservoirs.
Collapse
Affiliation(s)
- Amanda B. Macedo
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, United States
| | - Camille L. Novis
- Department of Pathology, Division of Microbiology and Immunology, The University of Utah, Salt Lake City, UT, United States
| | - Alberto Bosque
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, United States
| |
Collapse
|
85
|
Wonderlich ER, Subramanian K, Cox B, Wiegand A, Lackman-Smith C, Bale MJ, Stone M, Hoh R, Kearney MF, Maldarelli F, Deeks SG, Busch MP, Ptak RG, Kulpa DA. Effector memory differentiation increases detection of replication-competent HIV-l in resting CD4+ T cells from virally suppressed individuals. PLoS Pathog 2019; 15:e1008074. [PMID: 31609991 PMCID: PMC6812841 DOI: 10.1371/journal.ppat.1008074] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/24/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022] Open
Abstract
Studies have demonstrated that intensive ART alone is not capable of eradicating HIV-1, as the virus rebounds within a few weeks upon treatment interruption. Viral rebound may be induced from several cellular subsets; however, the majority of proviral DNA has been found in antigen experienced resting CD4+ T cells. To achieve a cure for HIV-1, eradication strategies depend upon both understanding mechanisms that drive HIV-1 persistence as well as sensitive assays to measure the frequency of infected cells after therapeutic interventions. Assays such as the quantitative viral outgrowth assay (QVOA) measure HIV-1 persistence during ART by ex vivo activation of resting CD4+ T cells to induce latency reversal; however, recent studies have shown that only a fraction of replication-competent viruses are inducible by primary mitogen stimulation. Previous studies have shown a correlation between the acquisition of effector memory phenotype and HIV-1 latency reversal in quiescent CD4+ T cell subsets that harbor the reservoir. Here, we apply our mechanistic understanding that differentiation into effector memory CD4+ T cells more effectively promotes HIV-1 latency reversal to significantly improve proviral measurements in the QVOA, termed differentiation QVOA (dQVOA), which reveals a significantly higher frequency of the inducible HIV-1 replication-competent reservoir in resting CD4+ T cells.
Collapse
Affiliation(s)
| | | | - Bryan Cox
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
| | - Ann Wiegand
- HIV DRP, NCI at Frederick, NIH, Frederick, Maryland, United States of America
| | | | - Michael J Bale
- HIV DRP, NCI at Frederick, NIH, Frederick, Maryland, United States of America
| | - Mars Stone
- Vitalant Research Institute, San Francisco, California, United States of America.,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Rebecca Hoh
- University of California, San Francisco (UCSF), San Francisco, California, United States of America
| | - Mary F Kearney
- HIV DRP, NCI at Frederick, NIH, Frederick, Maryland, United States of America
| | - Frank Maldarelli
- HIV DRP, NCI at Frederick, NIH, Frederick, Maryland, United States of America
| | - Steven G Deeks
- University of California, San Francisco (UCSF), San Francisco, California, United States of America
| | - Michael P Busch
- Vitalant Research Institute, San Francisco, California, United States of America.,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Roger G Ptak
- Southern Research, Frederick, Maryland, United States of America
| | - Deanna A Kulpa
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
86
|
Abstract
Chimeric antigen receptors (CARs) have shown remarkable ability to re-direct T cells to target CD19-expressing tumours, resulting in remission rates of up to 90% in individuals with paediatric acute lymphoblastic lymphoma. Lessons learned from these clinical trials of adoptive T cell therapy for cancer, as well as investments made in manufacturing T cells at commercial scale, have inspired researchers to develop CARs for additional applications. Here, we explore the challenges and opportunities of using this technology to target infectious diseases such as with HIV and undesired immune responses such as autoimmunity and transplant rejection. Despite substantial obstacles, the potential of CAR T cells to enable cures for a wide array of disease settings could be transformational for the medical field.
Collapse
|
87
|
Sadowski I, Hashemi FB. Strategies to eradicate HIV from infected patients: elimination of latent provirus reservoirs. Cell Mol Life Sci 2019; 76:3583-3600. [PMID: 31129856 PMCID: PMC6697715 DOI: 10.1007/s00018-019-03156-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/29/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023]
Abstract
35 years since identification of HIV as the causative agent of AIDS, and 35 million deaths associated with this disease, significant effort is now directed towards the development of potential cures. Current anti-retroviral (ART) therapies for HIV/AIDS can suppress virus replication to undetectable levels, and infected individuals can live symptom free so long as treatment is maintained. However, removal of therapy allows rapid re-emergence of virus from a highly stable reservoir of latently infected cells that exist as a barrier to elimination of the infection with current ART. Prospects of a cure for HIV infection are significantly encouraged by two serendipitous cases where individuals have entered remission following stem cell transplantation from compatible HIV-resistant donors. However, development of a routine cure that could become available to millions of infected individuals will require a means of specifically purging cells harboring latent HIV, preventing replication of latent provirus, or destruction of provirus genomes by gene editing. Elimination of latently infected cells will require a means of exposing this population, which may involve identification of a natural specific biomarker or therapeutic intervention to force their exposure by reactivation of virus expression. Accordingly, the proposed "Shock and Kill" strategy involves treatment with latency-reversing agents (LRA) to induce HIV provirus expression thus exposing these cells to killing by cellular immunity or apoptosis. Current efforts to enable this strategy are directed at developing improved combinations of LRA to produce broad and robust induction of HIV provirus and enhancing the elimination of cells where replication has been reactivated by targeted immune modulation. Alternative strategies may involve preventing re-emergence virus from latently infected cells by "Lock and Block" intervention, where transcription of provirus is inhibited to prevent virus spread or disruption of the HIV provirus genome by genome editing.
Collapse
Affiliation(s)
- Ivan Sadowski
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Farhad B Hashemi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
88
|
Zerbato JM, Purves HV, Lewin SR, Rasmussen TA. Between a shock and a hard place: challenges and developments in HIV latency reversal. Curr Opin Virol 2019; 38:1-9. [PMID: 31048093 DOI: 10.1016/j.coviro.2019.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 02/07/2023]
Abstract
Latently infected cells that persist in HIV-infected individuals on antiretroviral therapy (ART) are a major barrier to cure. One strategy to eliminate latency is by activating viral transcription, commonly called latency reversal. Several small non-randomised clinical trials of latency reversing agents (LRAs) in HIV-infected individuals on ART increased viral production, but disappointingly did not reduce the number of latently infected cells or delay time to viral rebound following cessation of ART. More recent approaches aimed at reversing latency include compounds that both activate virus and also modulate immunity to enhance clearance of infected cells. These immunomodulatory LRAs include toll-like receptor agonists, immune checkpoint inhibitors and some cytokines. Here, we provide a brief review of the rationale for transcription-activating and immunomodulatory LRAs, discuss recent clinical trials and some suggestions for combination approaches and research priorities for the future.
Collapse
Affiliation(s)
- Jennifer M Zerbato
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and the Royal Melbourne Hospital, Melbourne, Australia
| | - Harrison V Purves
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and the Royal Melbourne Hospital, Melbourne, Australia
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and the Royal Melbourne Hospital, Melbourne, Australia; Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia.
| | - Thomas A Rasmussen
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and the Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
89
|
Yamamoto T, Kanuma T, Takahama S, Okamura T, Moriishi E, Ishii KJ, Terahara K, Yasutomi Y. STING agonists activate latently infected cells and enhance SIV-specific responses ex vivo in naturally SIV controlled cynomolgus macaques. Sci Rep 2019; 9:5917. [PMID: 30976083 PMCID: PMC6459902 DOI: 10.1038/s41598-019-42253-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/20/2019] [Indexed: 02/06/2023] Open
Abstract
To achieve a functional cure for HIV, treatment regimens that eradicate latently HIV-infected cells must be established. For this, many groups have attempted to reactivate latently-infected cells to induce cytopathic effects and/or elicit cytotoxic T lymphocyte (CTL)/NK cell-mediated immune responses to kill these cells. We believe that not only the reactivation of latently-infected cells, but also the induction of strong CTL responses, would be required for this. Here, we used typical immune activators that target pattern recognition receptors (PRRs). For our experimental model, we identified eight SIV-infected cynomolgus monkeys that became natural controllers of viremia. Although plasma viral loads were undetectable, we could measure SIV-DNA by qPCR in peripheral blood mononuclear cells (PBMCs). Using these PBMCs, we screened 10 distinct PRR ligands to measure IFN-α and IFN-γ production. Among these, STING ligands, cGAMP and c-di-AMP, and the TLR7/8 agonist R848 markedly increased cytokine levels. Both R848 and STING ligands could reactivate latently-infected cells in both cynomolgus monkeys and human PBMCs in vitro. Furthermore, c-di-AMP increased the frequency of SIV Gag-specific CD8+ T cells including polyfunctional CD8+ T cells, as compared to that in untreated control or R848-treated cells. Together, STING ligands might be candidates for HIV treatment.
Collapse
Affiliation(s)
- Takuya Yamamoto
- Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan. .,Center for AIDS Research, Kumamoto University, Kumamoto, 860-0811, Japan.
| | - Tomohiro Kanuma
- Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.,Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, 305-0843, Japan
| | - Shokichi Takahama
- Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.,Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, 305-0843, Japan
| | - Tomotaka Okamura
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, 305-0843, Japan
| | - Eiko Moriishi
- Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.,Laboratory of Vaccine Science, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan
| | - Kazutaka Terahara
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Yasuhiro Yasutomi
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, 305-0843, Japan
| |
Collapse
|
90
|
Saxena M, Sabado RL, La Mar M, Mohri H, Salazar AM, Dong H, Correa Da Rosa J, Markowitz M, Bhardwaj N, Miller E. Poly-ICLC, a TLR3 Agonist, Induces Transient Innate Immune Responses in Patients With Treated HIV-Infection: A Randomized Double-Blinded Placebo Controlled Trial. Front Immunol 2019; 10:725. [PMID: 31024557 PMCID: PMC6467168 DOI: 10.3389/fimmu.2019.00725] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/18/2019] [Indexed: 01/31/2023] Open
Abstract
Objective: Toll-like receptor-3 agonist Poly-ICLC has been known to activate immune cells and induce HIV replication in pre-clinical experiments. In this study we investigated if Poly-ICLC could be used for disrupting HIV latency while simultaneously enhancing innate immune responses. Design: This was a randomized, placebo-controlled, double-blinded trial in aviremic, cART-treated HIV-infected subjects. Participants (n = 15) were randomized 3:1 to receive two consecutive daily doses of Poly-ICLC (1.4 mg subcutaneously) vs. placebo. Subjects were observed for adverse events, immune activation, and viral replication. Methods: Besides primary outcomes of safety and tolerability, several longitudinal immune parameters were evaluated including immune cell phenotype and function via flowcytometry, ELISA, and transcriptional profiling. PCR assays for plasma HIV-1 RNA, CD4+ T cell-associated HIV-1 RNA, and proviral DNA were performed to measure HIV reservoirs and latency. Results: Poly-ICLC was overall safe and well-tolerated. Poly-ICLC-related adverse events were Grade 1/2, with the exception of one Grade 3 neutropenia which was short-lived. Mild Injection site reactions were observed in nearly all participants in the Poly-ICLC arm. Transcriptional analyses revealed upregulation of innate immune pathways in PBMCs following Poly-ICLC treatment, including strong interferon signaling accompanied by transient increases in circulating IP-10 (CXCL10) levels. These responses generally peaked by 24–48 h after the first injection and returned to baseline by day 8. CD4+ T cell number and phenotype were unchanged, plasma viral control was maintained and no significant effect on HIV reservoirs was observed. Conclusions: These finding suggest that Poly-ICLC could be safely used for inducing transient innate immune responses in treated HIV+ subjects indicating promise as an adjuvant for HIV therapeutic vaccines. Trial Registration:www.ClinicalTrials.gov, identifier: NCT02071095.
Collapse
Affiliation(s)
- Mansi Saxena
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rachel L Sabado
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Melissa La Mar
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, NY, United States
| | - Hiroshi Mohri
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, NY, United States
| | | | - Hanqing Dong
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Joel Correa Da Rosa
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, United States
| | - Martin Markowitz
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, NY, United States
| | - Nina Bhardwaj
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Elizabeth Miller
- Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, United States
| |
Collapse
|
91
|
Kristoff J, Palma ML, Garcia-Bates TM, Shen C, Sluis-Cremer N, Gupta P, Rinaldo CR, Mailliard RB. Type 1-programmed dendritic cells drive antigen-specific latency reversal and immune elimination of persistent HIV-1. EBioMedicine 2019; 43:295-306. [PMID: 30952614 PMCID: PMC6557749 DOI: 10.1016/j.ebiom.2019.03.077] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/22/2022] Open
Abstract
Background Despite the success of antiretroviral therapy (ART), latent HIV-1 continues to persist in a long-lived population of resting memory CD4+ T cells within those who are infected. Finding a safe and effective means to induce latency reversal (LR) during ART to specifically expose this latent HIV-1 cellular reservoir for immune elimination has been a major barrier to a functional cure. Methods In this study, we test the use of antigen-presenting type 1-polarized, monocyte-derived dendritic cells (MDC1) generated from chronic HIV-1-infected individuals on ART as a means to induce HIV-1 latency reversal in autologous CD4+ T cells harboring replication-competent provirus. We use the same MDC1 for ex-vivo generation of autologous HIV-1 antigen-specific CD8+ cytotoxic T cells (CTL) and test their effector responses against the MDC1-exposed HIV-1- infected CD4+ T cell targets. Findings MDC1 presentation of either HIV-1 or cytomegalovirus (CMV) antigens to CD4+ T cells facilitated HIV-1 LR. This antigen-driven MDC1-mediated LR was sharply diminished with blockade of the CD40L/CD40 ‘helper’ signaling pathway. Importantly, these antigen-presenting MDC1 also activated the expansion of CTL capable of killing the exposed HIV-1-infected targets. Interpretation Inclusion of virus-associated MHC class II ‘helper’ antigens in MDC1-based HIV-1 immunotherapies could serve both as a targeted means to safely unmask antigen-specific CD4+ T cells harboring HIV-1, and to support CTL responses that can effectively target the MDC1-exposed HIV-1 cellular reservoir as a functional cure strategy. Fund This study was supported by the NIH-NAID grants R21-AI131763, U01-AI35041, UM1-AI126603, and T32-AI065380.
Collapse
Affiliation(s)
- Jan Kristoff
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Mariana L Palma
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Tatiana M Garcia-Bates
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Chengli Shen
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Nicolas Sluis-Cremer
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Phalguni Gupta
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Charles R Rinaldo
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Robbie B Mailliard
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America.
| |
Collapse
|
92
|
Abner E, Jordan A. HIV "shock and kill" therapy: In need of revision. Antiviral Res 2019; 166:19-34. [PMID: 30914265 DOI: 10.1016/j.antiviral.2019.03.008] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/08/2019] [Accepted: 03/17/2019] [Indexed: 01/05/2023]
Abstract
The implementation of antiretroviral therapy 23 years ago has rendered HIV infection clinically manageable. However, the disease remains incurable, since it establishes latent proviral reservoirs, which in turn can stochastically begin reproducing viral particles throughout the patient's lifetime. Viral latency itself depends in large part on the silencing environment of the infected host cell, which can be chemically manipulated. "Shock and kill" therapy intends to reverse proviral quiescence by inducing transcription with pharmaceuticals and allowing a combination of antiretroviral therapy, host immune clearance and HIV-cytolysis to remove latently infected cells, leading to a complete cure. Over 160 compounds functioning as latency-reversing agents (LRAs) have been identified to date, but none of the candidates has yet led to a promising functional cure. Furthermore, fundamental bioinformatic and clinical research from the past decade has highlighted the complexity and highly heterogeneous nature of the proviral reservoirs, shedding doubt on the "shock and kill" concept. Alternative therapies such as the HIV transcription-inhibiting "block and lock" strategy are therefore being considered. In this review we describe the variety of existing classes of LRAs, discuss their current drawbacks and highlight the potential for combinatorial "shocktail" therapies for potent proviral reactivation. We also suggest investigating LRAs with lesser-known mechanisms of action, and examine the feasibility of "block and lock" therapy.
Collapse
Affiliation(s)
- Erik Abner
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Albert Jordan
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain.
| |
Collapse
|
93
|
Giuliani E, Desimio MG, Doria M. Hexamethylene bisacetamide impairs NK cell-mediated clearance of acute T lymphoblastic leukemia cells and HIV-1-infected T cells that exit viral latency. Sci Rep 2019; 9:4373. [PMID: 30867508 PMCID: PMC6416400 DOI: 10.1038/s41598-019-40760-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/19/2019] [Indexed: 12/27/2022] Open
Abstract
The hexamethylene bisacetamide (HMBA) anticancer drug was dismissed due to limited efficacy in leukemic patients but it may re-enter into the clinics in HIV-1 eradication strategies because of its recently disclosed capacity to reactivate latent virus. Here, we investigated the impact of HMBA on the cytotoxicity of natural killer (NK) cells against acute T lymphoblastic leukemia (T-ALL) cells or HIV-1-infected T cells that exit from latency. We show that in T-ALL cells HMBA upmodulated MICB and ULBP2 ligands for the NKG2D activating receptor. In a primary CD4+ T cell-based latency model, HMBA did not reactivate HIV-1, yet enhanced ULBP2 expression on cells harboring virus reactivated by prostratin (PRO). However, HMBA reduced the expression of NKG2D and its DAP10 adaptor in NK cells, hence impairing NKG2D-mediated cytotoxicity and DAP10-dependent response to IL-15 stimulation. Alongside, HMBA dampened killing of T-ALL targets by IL-15-activated NK cells and impaired NK cell-mediated clearance of PRO-reactivated HIV-1+ cells. Overall, our results demonstrate a dominant detrimental effect of HMBA on the NKG2D pathway that crucially controls NK cell-mediated killing of tumors and virus-infected cells, providing one possible explanation for poor clinical outcome in HMBA-treated cancer patients and raising concerns for future therapeutic application of this drug.
Collapse
Affiliation(s)
- Erica Giuliani
- Laboratory of Immunoinfectivology, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Maria Giovanna Desimio
- Laboratory of Immunoinfectivology, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Margherita Doria
- Laboratory of Immunoinfectivology, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy.
| |
Collapse
|
94
|
Nucleic acid testing and molecular characterization of HIV infections. Eur J Clin Microbiol Infect Dis 2019; 38:829-842. [PMID: 30798399 DOI: 10.1007/s10096-019-03515-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/14/2019] [Indexed: 01/21/2023]
Abstract
Significant advances have been made in the molecular assays used for the detection of human immunodeficiency virus (HIV), which are crucial in preventing HIV transmission and monitoring disease progression. Molecular assays for HIV diagnosis have now reached a high degree of specificity, sensitivity and reproducibility, and have less operator involvement to minimize risk of contamination. Furthermore, analyses have been developed for the characterization of host gene polymorphisms and host responses to better identify and monitor HIV-1 infections in the clinic. Currently, molecular technologies including HIV quantitative and qualitative assays are mainly based on the polymerase chain reaction (PCR), transcription-mediated amplification (TMA), nucleic acid sequence-based amplification (NASBA), and branched chain (b) DNA methods and widely used for HIV detection and characterization, such as blood screening, point-of-care testing (POCT), pediatric diagnosis, acute HIV infection (AHI), HIV drug resistance testing, antiretroviral (AR) susceptibility testing, host genome polymorphism testing, and host response analysis. This review summarizes the development and the potential utility of molecular assays used to detect and characterize HIV infections.
Collapse
|
95
|
Ruiz A, Blanch-Lombarte O, Jimenez-Moyano E, Ouchi D, Mothe B, Peña R, Galvez C, Genescà M, Martinez-Picado J, Goulder P, Barnard R, Howell B, Clotet B, Prado JG. Antigen Production After Latency Reversal and Expression of Inhibitory Receptors in CD8+ T Cells Limit the Killing of HIV-1 Reactivated Cells. Front Immunol 2019; 9:3162. [PMID: 30723480 PMCID: PMC6349966 DOI: 10.3389/fimmu.2018.03162] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022] Open
Abstract
The so-called shock and kill therapies aim to combine HIV-1 reactivation by latency-reversing agents (LRA) with immune clearance to purge the HIV-1 reservoir. The clinical use of LRA has demonstrated detectable perturbations in the HIV-1 reservoir without measurable reductions to date. Consequently, fundamental questions concerning the limitations of the recognition and killing of LRA-reactivated cells by effector cells such as CD8+ T cells remain to be answered. Here, we developed a novel experimental framework where we combine the use of cytotoxic CD8+ T-cell lines and ex vivo CD8+ T cells from HIV-1-infected individuals with functional assays of LRA-inducible reactivation to delineate immune barriers to clear the reservoir. Our results demonstrate the potential for early recognition and killing of reactivated cells by CD8+ T cells. However, the potency of LRAs when crossing the barrier for antigen presentation in target cells, together with the lack of expression of inhibitory receptors in CD8+ T cells, are critical events to maximize the speed of recognition and the magnitude of the killing of LRA-inducible provirus. Taken together, our findings highlight direct limitations in LRA potency and CD8+ T cell functional status to succeed in the cure of HIV-1 infection.
Collapse
Affiliation(s)
- Alba Ruiz
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,Germans Trias i Pujol Research Institute (IGTP), Universitat Autonoma de Barcelona, Badalona, Spain
| | - Oscar Blanch-Lombarte
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,Germans Trias i Pujol Research Institute (IGTP), Universitat Autonoma de Barcelona, Badalona, Spain
| | | | - Dan Ouchi
- IrsiCaixa AIDS Research Institute, Badalona, Spain
| | - Beatriz Mothe
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,Faculty of Medicine, University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Ruth Peña
- IrsiCaixa AIDS Research Institute, Badalona, Spain
| | - Cristina Galvez
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,Germans Trias i Pujol Research Institute (IGTP), Universitat Autonoma de Barcelona, Badalona, Spain
| | - Meritxell Genescà
- Department of Infectious Diseases, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,Faculty of Medicine, University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Philip Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Richard Barnard
- Department of Infectious Disease, Merck & Co. Inc. Kenilworth, NJ, United States
| | - Bonnie Howell
- Department of Infectious Disease, Merck & Co. Inc. Kenilworth, NJ, United States
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,Faculty of Medicine, University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Julia G Prado
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,Germans Trias i Pujol Research Institute (IGTP), Universitat Autonoma de Barcelona, Badalona, Spain
| |
Collapse
|
96
|
Broad Recognition of Circulating HIV-1 by HIV-1-Specific Cytotoxic T-Lymphocytes with Strong Ability to Suppress HIV-1 Replication. J Virol 2018; 93:JVI.01480-18. [PMID: 30333175 DOI: 10.1128/jvi.01480-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/10/2018] [Indexed: 11/20/2022] Open
Abstract
HIV-1-specific cytotoxic T-lymphocytes (CTLs) with strong abilities to suppress HIV-1 replication and recognize most circulating HIV-1 strains are candidates for effector T cells for cure treatment and prophylactic AIDS vaccine. Previous studies demonstrated that the existence of CTLs specific for 11 epitopes was significantly associated with good clinical outcomes in Japan, although CTLs specific for one of these epitopes select for escape mutations. However, it remains unknown whether the CTLs specific for the remaining 10 epitopes suppress HIV-1 replication in vitro and recognize circulating HIV-1. Here, we investigated the abilities of these CTLs to suppress HIV-1 replication and to recognize variants in circulating HIV-1. CTL clones specific for 10 epitopes had strong abilities to suppress HIV-1 replication in vitro The ex vivo and in vitro analyses of T-cell responses to variant epitope peptides showed that the T cells specific for 10 epitopes recognized mutant peptides which are detected in 84.1% to 98.8% of the circulating HIV-1 strains found in HIV-1-infected Japanese individuals. In addition, the T cells specific for 5 epitopes well recognized target cells infected with 7 mutant viruses that had been detected in >5% of tested individuals. Taken together, these results suggest that CTLs specific for the 10 epitopes effectively suppress HIV-1 replication and broadly recognize the circulating HIV-1 strains in the HIV-1-infected individuals. This study suggests the use of these T cells in clinical trials.IMPORTANCE In recent T-cell AIDS vaccine trials, the vaccines did not prevent HIV-1 infection, although HIV-1-specific T cells were induced in the vaccinated individuals, suggesting that the T cells have a weak ability to suppress HIV-1 replication and fail to recognize circulating HIV-1. We previously demonstrated that the T-cell responses to 10 epitopes were significantly associated with good clinical outcome. However, there is no direct evidence that these T cells have strong abilities to suppress HIV-1 replication and recognize circulating HIV-1. Here, we demonstrated that the T cells specific for the 10 epitopes had strong abilities to suppress HIV-1 replication in vitro Moreover, the T cells cross-recognized most of the circulating HIV-1 in HIV-1-infected individuals. This study suggests the use of T cells specific for these 10 epitopes in clinical trials of T-cell vaccines as a cure treatment.
Collapse
|
97
|
Brunet-Ratnasingham E, Dubé M, Kaufmann DE. Targeting Mitochondria to Revive Dysfunctional Regulatory T Cells. Trends Mol Med 2018; 25:1-3. [PMID: 30473188 DOI: 10.1016/j.molmed.2018.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 10/27/2022]
Abstract
Immunometabolism is important to T cell dysfunction in chronic infections. A recent publication in The Journal of Clinical Investigation (2018;128:5083-5094) [1] shows reduced mitochondrial fitness in regulatory CD4+ T cells (Tregs) of patients with HIV and failed immune restoration on antiretroviral therapy (ART). This defect can be reversed by IL-15, revealing a new immunotherapy target for regulatory T cell restoration.
Collapse
Affiliation(s)
- Elsa Brunet-Ratnasingham
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC, Canada
| | - Mathieu Dubé
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Daniel E Kaufmann
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; Department of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
98
|
Dampier W, Sullivan NT, Mell JC, Pirrone V, Ehrlich GD, Chung CH, Allen AG, DeSimone M, Zhong W, Kercher K, Passic S, Williams JW, Szep Z, Khalili K, Jacobson JM, Nonnemacher MR, Wigdahl B. Broad-Spectrum and Personalized Guide RNAs for CRISPR/Cas9 HIV-1 Therapeutics. AIDS Res Hum Retroviruses 2018; 34:950-960. [PMID: 29968495 PMCID: PMC6238604 DOI: 10.1089/aid.2017.0274] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas9 system has been used to excise the HIV-1 proviral genome from latently infected cells, potentially offering a cure for HIV-infected patients. Recent studies have shown that most published HIV-1 guide RNAs (gRNAs) do not account for the diverse viral quasispecies within or among patients, which continue to diversify with time even in long-term antiretroviral therapy (ART)-suppressed patients. Given this observation, proviral genomes were deep sequenced from 23 HIV-1-infected patients in the Drexel Medicine CNS AIDS Research and Eradication Study cohort at two different visits. Based on the spectrum of integrated proviral DNA polymorphisms observed, three gRNA design strategies were explored: based on the patient's own HIV-1 sequences (personalized), based on consensus sequences from a large sample of patients [broad-spectrum (BS)], or a combination of both approaches. Using a bioinformatic algorithm, the personalized gRNA design was predicted to cut 46 of 48 patient samples at 90% efficiency, whereas the top 4 BS gRNAs (BS4) were predicted to excise provirus from 44 of 48 patient samples with 90% efficiency. Using a mixed design with the top three BS gRNAs plus one personalized gRNA (BS3 + PS1) resulted in predicted excision of provirus from 45 of 48 patient samples with 90% efficiency. In summary, these studies used an algorithmic design strategy to identify potential BS gRNAs to target a spectrum of HIV-1 long teriminal repeat (LTR) quasispecies for use with a small HIV-1-infected population. This approach should advance CRISPR/Cas9 excision technology taking into account the extensive molecular heterogeneity of HIV-1 that persists in situ after prolonged ART.
Collapse
Affiliation(s)
- Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Neil T. Sullivan
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Joshua Chang Mell
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Vanessa Pirrone
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Garth D. Ehrlich
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
- Department of Otolaryngology—Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Cheng-Han Chung
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Alexander G. Allen
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Mathew DeSimone
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Wen Zhong
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Katherine Kercher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Shendra Passic
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Jean W. Williams
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Zsofia Szep
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Clinical and Translational Medicine, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Center for Translational AIDS Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Jeffrey M. Jacobson
- Department of Neuroscience, Center for Neurovirology, and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Center for Translational AIDS Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Section of Infectious Disease, Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
- Center for Clinical and Translational Medicine, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
99
|
Ke R, Conway JM, Margolis DM, Perelson AS. Determinants of the efficacy of HIV latency-reversing agents and implications for drug and treatment design. JCI Insight 2018; 3:123052. [PMID: 30333308 DOI: 10.1172/jci.insight.123052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/30/2018] [Indexed: 11/17/2022] Open
Abstract
HIV eradication studies have focused on developing latency-reversing agents (LRAs). However, it is not understood how the rate of latent reservoir reduction is affected by different steps in the process of latency reversal. Furthermore, as current LRAs are host-directed, LRA treatment is likely to be intermittent to avoid host toxicities. Few careful studies of the serial effects of pulsatile LRA treatment have yet been done. This lack of clarity makes it difficult to evaluate the efficacy of candidate LRAs or predict long-term treatment outcomes. We constructed a mathematical model that describes the dynamics of latently infected cells under LRA treatment. Model analysis showed that, in addition to increasing the immune recognition and clearance of infected cells, the duration of HIV antigen expression (i.e., the period of vulnerability) plays an important role in determining the efficacy of LRAs, especially if effective clearance is achieved. Patients may benefit from pulsatile LRA exposures compared with continuous LRA exposures if the period of vulnerability is long and the clearance rate is high, both in the presence and absence of an LRA. Overall, the model framework serves as a useful tool to evaluate the efficacy and the rational design of LRAs and combination strategies.
Collapse
Affiliation(s)
- Ruian Ke
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina, USA.,Theoretical Biology and Biophysics Group, MS-K710, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Jessica M Conway
- Department of Mathematics and Center for Infectious Disease Dynamics, Pennsylvania State University, State College, Pennsylvania, USA
| | - David M Margolis
- University of North Carolina (UNC) HIV Cure Center, UNC Institute of Global Health and Infectious Diseases.,Departments of Medicine, Microbiology and Immunology, UNC Chapel Hill School of Medicine, and.,Department of Epidemiology, UNC Chapel Hill School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics Group, MS-K710, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| |
Collapse
|
100
|
Mylvaganam GH, Chea LS, Tharp GK, Hicks S, Velu V, Iyer SS, Deleage C, Estes JD, Bosinger SE, Freeman GJ, Ahmed R, Amara RR. Combination anti-PD-1 and antiretroviral therapy provides therapeutic benefit against SIV. JCI Insight 2018; 3:122940. [PMID: 30232277 PMCID: PMC6237231 DOI: 10.1172/jci.insight.122940] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/17/2018] [Indexed: 01/12/2023] Open
Abstract
Therapeutic strategies that augment antiviral immunity and reduce the viral reservoir are critical to achieving durable remission of HIV. The coinhibitory receptor programmed death-1 (PD-1) regulates CD8+ T cell dysfunction during chronic HIV and SIV infections. We previously demonstrated that in vivo blockade of PD-1 during chronic SIV infection improves the function of antiviral CD8+ T cells and B cells. Here, we tested the immunological and virological effects of PD-1 blockade combined with antiretroviral therapy (ART) in rhesus macaques. Administration of anti-PD-1 antibody 10 days prior to ART initiation rapidly enhanced antiviral CD8+ T cell function and diminished IFN-stimulated genes. This resulted in faster viral suppression in plasma and better Th17 cell reconstitution in the rectal mucosa following ART initiation. PD-1 blockade during ART resulted in lower levels of cell-associated replication-competent virus. Following ART interruption, PD-1 antibody-treated animals showed markedly higher expansion of proliferating CXCR5+perforin+granzyme B+ effector CD8+ T cells and lower regulatory T cells that resulted in better control of viremia. Our results show that PD-1 blockade can be administered safely with ART to augment antiviral CD8+ T cell function and reduce the viral reservoir, leading to improved control of viral rebound after ART interruption.
Collapse
Affiliation(s)
- Geetha H. Mylvaganam
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Lynette S. Chea
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Gregory K. Tharp
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Sakeenah Hicks
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Vijayakumar Velu
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Smita S. Iyer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Jacob D. Estes
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Steven E. Bosinger
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Gordon J. Freeman
- Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Rafi Ahmed
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Rama R. Amara
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|