51
|
Graus MS, Wester MJ, Lowman DW, Williams DL, Kruppa MD, Martinez CM, Young JM, Pappas HC, Lidke KA, Neumann AK. Mannan Molecular Substructures Control Nanoscale Glucan Exposure in Candida. Cell Rep 2020; 24:2432-2442.e5. [PMID: 30157435 DOI: 10.1016/j.celrep.2018.07.088] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 07/05/2018] [Accepted: 07/27/2018] [Indexed: 12/26/2022] Open
Abstract
Cell wall mannans of Candida albicans mask β-(1,3)-glucan from recognition by Dectin-1, contributing to innate immune evasion. Glucan exposures are predominantly single receptor-ligand interaction sites of nanoscale dimensions. Candida species vary in basal glucan exposure and molecular complexity of mannans. We used super-resolution fluorescence imaging and a series of protein mannosylation mutants in C. albicans and C. glabrata to investigate the role of specific N-mannan features in regulating the nanoscale geometry of glucan exposure. Decreasing acid labile mannan abundance and α-(1,6)-mannan backbone length correlated most strongly with increased density and nanoscopic size of glucan exposures in C. albicans and C. glabrata, respectively. Additionally, a C. albicans clinical isolate with high glucan exposure produced similarly perturbed N-mannan structures and elevated glucan exposure geometry. Thus, acid labile mannan structure influences the nanoscale features of glucan exposure, impacting the nature of the pathogenic surface that triggers immunoreceptor engagement, aggregation, and signaling.
Collapse
Affiliation(s)
- Matthew S Graus
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Michael J Wester
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM 87131, USA
| | - Douglas W Lowman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37684, USA; AppRidge International, LLC, Telford, TN 37690, USA
| | - David L Williams
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37684, USA; Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37684, USA
| | - Michael D Kruppa
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37684, USA; Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37684, USA
| | - Carmen M Martinez
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jesse M Young
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Harry C Pappas
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Keith A Lidke
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Aaron K Neumann
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
52
|
Abstract
Neutrophils often communicate with each other and coordinate their actions to seal off large sites of injury and infection that individual neutrophils could not cover. The concerted actions of neutrophils are essential for the expeditious protection of healthy tissues from wounds and microbes. These processes, collectively known as swarming, are typically studied in vivo in mice. However, these studies are low throughput and their relevance to human disease is limited. Recently, new tools have been developed for the study of human neutrophil swarming ex vivo. The emergent microscale swarming assays are providing significant insights into the molecular mediators of swarming. By enabling the direct study of human cells, these assays also shed new light on human diseases and host responses against infections. Here, we describe a robust technique for manufacturing microscale swarming arrays with live microbial targets (e.g., clusters of Candida albicans). These arrays allow for the direct, precise, and efficient interrogation of the antimicrobial functions of human swarming against a variety of targets.
Collapse
Affiliation(s)
- Alex Hopke
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospital for Children, Boston, MA, USA
| | - Daniel Irimia
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospital for Children, Boston, MA, USA.
| |
Collapse
|
53
|
Colou J, N'Guyen GQ, Dubreu O, Fontaine K, Kwasiborski A, Bastide F, Manero F, Hamon B, Aligon S, Simoneau P, Guillemette T. Role of membrane compartment occupied by Can1 (MCC) and eisosome subdomains in plant pathogenicity of the necrotrophic fungus Alternaria brassicicola. BMC Microbiol 2019; 19:295. [PMID: 31842747 PMCID: PMC6916069 DOI: 10.1186/s12866-019-1667-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/28/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND MCC/eisosomes are membrane microdomains that have been proposed to participate in the plasma membrane function in particular by regulating the homeostasis of lipids, promoting the recruitment of specific proteins and acting as provider of membrane reservoirs. RESULTS Here we showed that several potential MCC/eisosomal protein encoding genes in the necrotrophic fungus A. brassicicola were overexpressed when germinated spores were exposed to antimicrobial defence compounds, osmotic and hydric stresses, which are major constraints encountered by the fungus during the plant colonization process. Mutants deficient for key MCC/eisosome components did not exhibit any enhanced susceptibility to phytoalexins and to applied stress conditions compared to the reference strain, except for a slight hypersensitivity of the ∆∆abpil1a-abpil1b strain to 2 M sorbitol. Depending on the considered mutants, we showed that the leaf and silique colonization processes were impaired by comparison to the wild-type, and assumed that these defects in aggressiveness were probably caused by a reduced appressorium formation rate. CONCLUSIONS This is the first study on the role of MCC/eisosomes in the pathogenic process of a plant pathogenic fungus. A link between these membrane domains and the fungus ability to form functional penetration structures was shown, providing new potential directions for plant disease control strategies.
Collapse
Affiliation(s)
- Justine Colou
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QuaSaV, 42 rue Georges Morel, 49071 Beaucouzé Cedex, Angers, France
| | - Guillaume Quang N'Guyen
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QuaSaV, 42 rue Georges Morel, 49071 Beaucouzé Cedex, Angers, France.,Institut de Biologie Intégrative et des Systèmes, Département de Biologie, PROTEO, Université Laval, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine, QC, Québec, G1V 0A6, Canada
| | - Ophélie Dubreu
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QuaSaV, 42 rue Georges Morel, 49071 Beaucouzé Cedex, Angers, France
| | - Kévin Fontaine
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QuaSaV, 42 rue Georges Morel, 49071 Beaucouzé Cedex, Angers, France.,ANSES, Laboratoire de la Santé des Végétaux, Unité de Mycologie, Domaine de Pixérécourt, 54220, Malzéville, France
| | - Anthony Kwasiborski
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QuaSaV, 42 rue Georges Morel, 49071 Beaucouzé Cedex, Angers, France
| | - Franck Bastide
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QuaSaV, 42 rue Georges Morel, 49071 Beaucouzé Cedex, Angers, France
| | - Florence Manero
- Plateforme SCIAM, Institut de Biologie en Santé, CHU, Université d'Angers, 4, Rue Larrey, 49933, Angers Cedex, France
| | - Bruno Hamon
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QuaSaV, 42 rue Georges Morel, 49071 Beaucouzé Cedex, Angers, France
| | - Sophie Aligon
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QuaSaV, 42 rue Georges Morel, 49071 Beaucouzé Cedex, Angers, France
| | - Philippe Simoneau
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QuaSaV, 42 rue Georges Morel, 49071 Beaucouzé Cedex, Angers, France
| | - Thomas Guillemette
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QuaSaV, 42 rue Georges Morel, 49071 Beaucouzé Cedex, Angers, France.
| |
Collapse
|
54
|
Degani G, Popolo L. The Glucan-Remodeling Enzyme Phr1p and the Chitin Synthase Chs1p Cooperate to Maintain Proper Nuclear Segregation and Cell Integrity in Candida albicans. Front Cell Infect Microbiol 2019; 9:400. [PMID: 31824871 PMCID: PMC6882867 DOI: 10.3389/fcimb.2019.00400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/07/2019] [Indexed: 11/13/2022] Open
Abstract
GH72 family of β-(1,3)-glucanosyltransferases is unique to fungi and is required for cell wall biogenesis, morphogenesis, virulence, and in some species is essential for life. Candida albicans PHR1 and PHR2 are pH-regulated genes that encode GH72 enzymes highly similar to Gas1p of Saccharomyces cerevisiae. PHR1 is expressed at pH ≥ 5.5 while PHR2 is transcribed at pH ≤ 5.5. Both are essential for C. albicans morphogenesis and virulence. During growth at neutral-alkaline pH, Phr1p-GFP preferentially localizes to sites of active cell wall formation as the incipient bud, the mother-daughter neck, the bud periphery, and concentrates in the septum at cytokinesis. We further investigated this latter localization. In chs3Δ cells, lacking the chitin of the chitin ring and lateral cell wall, Phr1p-GFP still concentrated along the thin line of the primary septum formed by chitin deposited by chitin synthase I (whose catalytic subunit is Chs1p) suggesting that it plays a role during formation of the secondary septa. RO-09-3143, a highly specific inhibitor of Chs1p activity, inhibits septum formation and blocks cell division. However, alternative septa are produced and are crucial for cell survival. Phr1p-GFP is excluded from such aberrant septa. Finally, we determined the effects of RO-09-3143 in cells lacking Phr1p. PHR1 null mutant was more susceptible to the drug than the wild type. The phr1Δ cells were larger, devoid of septa, and underwent endomitosis and cell death. Phr1p and Chs1p cooperate in maintaining cell integrity and in coupling morphogenesis with nuclear division in C. albicans.
Collapse
Affiliation(s)
- Genny Degani
- Department of Biosciences, University of Milan, Milan, Italy
| | - Laura Popolo
- Department of Biosciences, University of Milan, Milan, Italy
| |
Collapse
|
55
|
Remasking of Candida albicans β-Glucan in Response to Environmental pH Is Regulated by Quorum Sensing. mBio 2019; 10:mBio.02347-19. [PMID: 31615961 PMCID: PMC6794483 DOI: 10.1128/mbio.02347-19] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Candida albicans is part of the microbiota of the skin and gastrointestinal and reproductive tracts of humans and has coevolved with us for millennia. During that period, C. albicans has developed strategies to modulate the host’s innate immune responses, by regulating the exposure of key epitopes on the fungal cell surface. Here, we report that exposing C. albicans to an acidic environment, similar to the one of the stomach or vagina, increases the detection of the yeast by macrophages. However, this effect is transitory, as C. albicans is able to remask these epitopes (glucan and chitin). We found that glucan remasking is controlled by the production of farnesol, a molecule secreted by C. albicans in response to high cell densities. However, chitin-remasking mechanisms remain to be identified. By understanding the relationship between environmental sensing and modulation of the host-pathogen interaction, new opportunities for the development of innovative antifungal strategies are possible. Candida albicans is a commensal yeast of the human gut which is tolerated by the immune system but has the potential to become an opportunistic pathogen. One way in which C. albicans achieves this duality is through concealing or exposing cell wall pathogen-associated molecular patterns (PAMPs) in response to host-derived environment cues (pH, hypoxia, and lactate). This cell wall remodeling allows C. albicans to evade or hyperactivate the host’s innate immune responses, leading to disease. Previously, we showed that adaptation of C. albicans to acidic environments, conditions encountered during colonization of the female reproductive tract, induces significant cell wall remodeling resulting in the exposure of two key fungal PAMPs (β-glucan and chitin). Here, we report that this pH-dependent cell wall remodeling is time dependent, with the initial change in pH driving cell wall unmasking, which is then remasked at later time points. Remasking of β-glucan was mediated via the cell density-dependent fungal quorum sensing molecule farnesol, while chitin remasking was mediated via a small, heat-stable, nonproteinaceous secreted molecule(s). Transcript profiling identified a core set of 42 genes significantly regulated by pH over time and identified the transcription factor Efg1 as a regulator of chitin exposure through regulation of CHT2. This dynamic cell wall remodeling influenced innate immune recognition of C. albicans, suggesting that during infection, C. albicans can manipulate the host innate immune responses.
Collapse
|
56
|
Chen T, Wagner AS, Tams RN, Eyer JE, Kauffman SJ, Gann ER, Fernandez EJ, Reynolds TB. Lrg1 Regulates β (1,3)-Glucan Masking in Candida albicans through the Cek1 MAP Kinase Pathway. mBio 2019; 10:e01767-19. [PMID: 31530671 PMCID: PMC6751057 DOI: 10.1128/mbio.01767-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/15/2019] [Indexed: 12/28/2022] Open
Abstract
Candida albicans is among the most prevalent opportunistic human fungal pathogens. The ability to mask the immunogenic polysaccharide β (1,3)-glucan from immune detection via a layer of mannosylated proteins is a key virulence factor of C. albicans We previously reported that hyperactivation of the Cek1 mitogen-activated protein (MAP) kinase pathway promotes β (1,3)-glucan exposure. In this communication, we report a novel upstream regulator of Cek1 activation and characterize the impact of Cek1 activity on fungal virulence. Lrg1 encodes a GTPase-activating protein (GAP) that has been suggested to inhibit the GTPase Rho1. We found that disruption of LRG1 causes Cek1 hyperactivation and β (1,3)-glucan unmasking. However, when GTPase activation was measured for a panel of GTPases, the lrg1ΔΔ mutant exhibited increased activation of Cdc42 and Ras1 but not Rho1 or Rac1. Unmasking and Cek1 activation in the lrg1ΔΔ mutant can be blocked by inhibition of the Ste11 MAP kinase kinase kinase (MAPKKK), indicating that the lrg1ΔΔ mutant acts through the canonical Cek1 MAP kinase cascade. In order to determine how Cek1 hyperactivation specifically impacts virulence, a doxycycline-repressible hyperactive STE11ΔN467 allele was expressed in C. albicans In the absence of doxycycline, this allele overexpressed STE11ΔN467 , which induced production of proinflammatory tumor necrosis factor alpha (TNF-α) from murine macrophages. This in vitro phenotype correlates with decreased colonization and virulence in a mouse model of systemic infection. The mechanism by which Ste11ΔN467 causes unmasking was explored with RNA sequencing (RNA-Seq) analysis. Overexpression of Ste11ΔN467 caused upregulation of the Cph1 transcription factor and of a group of cell wall-modifying proteins which are predicted to impact cell wall architecture.IMPORTANCECandida albicans is an important source of systemic infections in humans. The ability to mask the immunogenic cell wall polymer β (1,3)-glucan from host immune surveillance contributes to fungal virulence. We previously reported that the hyperactivation of the Cek1 MAP kinase cascade promotes cell wall unmasking, thus increasing strain immunogenicity. In this study, we identified a novel regulator of the Cek1 pathway called Lrg1. Lrg1 is a predicted GTPase-activating protein (GAP) that represses Cek1 activity by downregulating the GTPase Cdc42 and its downstream MAPKKK, Ste11. Upregulation of Cek1 activity diminished fungal virulence in the mouse model of infection, and this correlates with increased cytokine responses from macrophages. We also analyzed the transcriptional profile determined during β (1,3)-glucan exposure driven by Cek1 hyperactivation. Our report provides a model where Cek1 hyperactivation causes β (1,3)-glucan exposure by upregulation of cell wall proteins and leads to more robust immune detection in vivo, promoting more effective clearance.
Collapse
Affiliation(s)
- Tian Chen
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Andrew S Wagner
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Robert N Tams
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| | - James E Eyer
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Sarah J Kauffman
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Eric R Gann
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Elias J Fernandez
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Todd B Reynolds
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
57
|
Day AM, Quinn J. Stress-Activated Protein Kinases in Human Fungal Pathogens. Front Cell Infect Microbiol 2019; 9:261. [PMID: 31380304 PMCID: PMC6652806 DOI: 10.3389/fcimb.2019.00261] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/04/2019] [Indexed: 11/28/2022] Open
Abstract
The ability of fungal pathogens to survive hostile environments within the host depends on rapid and robust stress responses. Stress-activated protein kinase (SAPK) pathways are conserved MAPK signaling modules that promote stress adaptation in all eukaryotic cells, including pathogenic fungi. Activation of the SAPK occurs via the dual phosphorylation of conserved threonine and tyrosine residues within a TGY motif located in the catalytic domain. This induces the activation and nuclear accumulation of the kinase and the phosphorylation of diverse substrates, thus eliciting appropriate cellular responses. The Hog1 SAPK has been extensively characterized in the model yeast Saccharomyces cerevisiae. Here, we use this a platform from which to compare SAPK signaling mechanisms in three major fungal pathogens of humans, Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans. Despite the conservation of SAPK pathways within these pathogenic fungi, evidence is emerging that their role and regulation has significantly diverged. However, consistent with stress adaptation being a common virulence trait, SAPK pathways are important pathogenicity determinants in all these major human pathogens. Thus, the development of drugs which target fungal SAPKs has the exciting potential to generate broad-acting antifungal treatments.
Collapse
Affiliation(s)
- Alison M Day
- Faculty of Medicine, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Janet Quinn
- Faculty of Medicine, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
58
|
Han Q, Wang N, Pan C, Wang Y, Sang J. Elevation of cell wall chitin via Ca 2+ -calcineurin-mediated PKC signaling pathway maintains the viability of Candida albicans in the absence of β-1,6-glucan synthesis. Mol Microbiol 2019; 112:960-972. [PMID: 31240791 DOI: 10.1111/mmi.14335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2019] [Indexed: 11/29/2022]
Abstract
β-1,6-glucan is an important cell wall component of Candida albicans. Deleted mutants of the two β-1,6-glucan synthase genes KRE6 and SKN1 are viable albeit with a range of defects including slow growth. It remains unclear whether β-1,6-glucan synthesis is not required under culture conditions or compensatory mechanisms exist in C. albicans. Here, we report that depleting β-1,6-glucan synthases leads to a significant increase in cell wall chitin levels through the posttranscriptional regulation of the chitin synthase Chs3 which maintains cell viability. And depleting β-1,6-glucan synthases in chs3Δ/Δ cells results in cell death. The elevation of cell wall chitin is mediated by the activation of the PKC signaling pathway and an unknown pathway(s) involving Ca2+ -calcineurin. Also, kre6Δ/Δ skn1Δ/Δ cells are not more susceptible to caspofungin, the antifungal drug that inhibits β-1,3-glucan synthases, suggesting that β-1,3-glucan has no role in compensating β-1,6-glucan synthesis. Given the vital importance of elevating chitin synthesis in the absence of β-1,6-glucan synthesis in C. albicans, antifungal drugs targeting β-1,6-glucan and chitin synthesis could be used in combination therapies.
Collapse
Affiliation(s)
- Qi Han
- Key Laboratory of Cell Proliferation and Regulation Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Na Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Chaoying Pan
- Key Laboratory of Cell Proliferation and Regulation Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yue Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,Depatment of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jianli Sang
- Key Laboratory of Cell Proliferation and Regulation Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
59
|
Extracellular DNA traps in inflammation, injury and healing. Nat Rev Nephrol 2019; 15:559-575. [PMID: 31213698 DOI: 10.1038/s41581-019-0163-2] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2019] [Indexed: 12/14/2022]
Abstract
Following strong activation signals, several types of immune cells reportedly release chromatin and granular proteins into the extracellular space, forming DNA traps. This process is especially prominent in neutrophils but also occurs in other innate immune cells such as macrophages, eosinophils, basophils and mast cells. Initial reports demonstrated that extracellular traps belong to the bactericidal and anti-fungal armamentarium of leukocytes, but subsequent studies also linked trap formation to a variety of human diseases. These pathological roles of extracellular DNA traps are now the focus of intensive biomedical research. The type of pathology associated with the release of extracellular DNA traps is mainly determined by the site of trap formation and the way in which these traps are further processed. Targeting the formation of aberrant extracellular DNA traps or promoting their efficient clearance are attractive goals for future therapeutic interventions, but the manifold actions of extracellular DNA traps complicate these approaches.
Collapse
|
60
|
Intravital Imaging Reveals Divergent Cytokine and Cellular Immune Responses to Candida albicans and Candida parapsilosis. mBio 2019; 10:mBio.00266-19. [PMID: 31088918 PMCID: PMC6520444 DOI: 10.1128/mbio.00266-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In modern medicine, physicians are frequently forced to balance immune suppression against immune stimulation to treat patients such as those undergoing transplants and chemotherapy. More-targeted therapies designed to preserve immunity and prevent opportunistic fungal infection in these patients could be informed by an understanding of how fungi interact with professional and nonprofessional immune cells in mucosal candidiasis. In this study, we intravitally imaged these host-pathogen dynamics during Candida infection in a transparent vertebrate model host, the zebrafish. Single-cell imaging revealed an unexpected partitioning of the inflammatory response between phagocytes and epithelial cells. Surprisingly, we found that in vivo cytokine profiles more closely match in vitro responses of epithelial cells rather than phagocytes. Furthermore, we identified a disconnect between canonical inflammatory cytokine production and phagocyte recruitment to the site of infection, implicating noncytokine chemoattractants. Our study contributes to a new appreciation for the specialization and cross talk among cell types during mucosal infection. Candida yeasts are common commensals that can cause mucosal disease and life-threatening systemic infections. While many of the components required for defense against Candida albicans infection are well established, questions remain about how various host cells at mucosal sites assess threats and coordinate defenses to prevent normally commensal organisms from becoming pathogenic. Using two Candida species, C. albicans and C. parapsilosis, which differ in their abilities to damage epithelial tissues, we used traditional methods (pathogen CFU, host survival, and host cytokine expression) combined with high-resolution intravital imaging of transparent zebrafish larvae to illuminate host-pathogen interactions at the cellular level in the complex environment of a mucosal infection. In zebrafish, C. albicans grows as both yeast and epithelium-damaging filaments, activates the NF-κB pathway, evokes proinflammatory cytokines, and causes the recruitment of phagocytic immune cells. On the other hand, C. parapsilosis remains in yeast morphology and elicits the recruitment of phagocytes without inducing inflammation. High-resolution mapping of phagocyte-Candida interactions at the infection site revealed that neutrophils and macrophages attack both Candida species, regardless of the cytokine environment. Time-lapse monitoring of single-cell gene expression in transgenic reporter zebrafish revealed a partitioning of the immune response during C. albicans infection: the transcription factor NF-κB is activated largely in cells of the swimbladder epithelium, while the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) is expressed in motile cells, mainly macrophages. Our results point to different host strategies for combatting pathogenic Candida species and separate signaling roles for host cell types.
Collapse
|
61
|
Galocha M, Pais P, Cavalheiro M, Pereira D, Viana R, Teixeira MC. Divergent Approaches to Virulence in C. albicans and C. glabrata: Two Sides of the Same Coin. Int J Mol Sci 2019; 20:E2345. [PMID: 31083555 PMCID: PMC6539081 DOI: 10.3390/ijms20092345] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 12/27/2022] Open
Abstract
Candida albicans and Candida glabrata are the two most prevalent etiologic agents of candidiasis worldwide. Although both are recognized as pathogenic, their choice of virulence traits is highly divergent. Indeed, it appears that these different approaches to fungal virulence may be equally successful in causing human candidiasis. In this review, the virulence mechanisms employed by C. albicans and C. glabrata are analyzed, with emphasis on the differences between the two systems. Pathogenesis features considered in this paper include dimorphic growth, secreted enzymes and signaling molecules, and stress resistance mechanisms. The consequences of these traits in tissue invasion, biofilm formation, immune system evasion, and macrophage escape, in a species dependent manner, are discussed. This review highlights the observation that C. albicans and C. glabrata follow different paths leading to a similar outcome. It also highlights the lack of knowledge on some of the specific mechanisms underlying C. glabrata pathogenesis, which deserve future scrutiny.
Collapse
Affiliation(s)
- Mónica Galocha
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Pedro Pais
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Mafalda Cavalheiro
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Diana Pereira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Romeu Viana
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Miguel C Teixeira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
62
|
Buchheim JI, Hoskyns S, Moser D, Han B, Deindl E, Hörl M, Biere K, Feuerecker M, Schelling G, Choukèr A. Oxidative burst and Dectin-1-triggered phagocytosis affected by norepinephrine and endocannabinoids: implications for fungal clearance under stress. Int Immunol 2019; 30:79-89. [PMID: 29329391 DOI: 10.1093/intimm/dxy001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 01/06/2018] [Indexed: 12/12/2022] Open
Abstract
A prolonged stress burden is known to hamper the efficiency of both the innate and the adaptive immune systems and to attenuate the stress responses by the catecholaminergic and endocannabinoid (EC) systems. Key mechanisms of innate immunity are the eradication of pathogens through phagocytosis and the respiratory burst. We tested the concentration-dependent, spontaneous and stimulated (via TNFα and N-formylmethionine-leucyl-phenylalanine) release of reactive oxygen species (ROS) by human polymorphonuclear leukocytes (PMNs) in vitro in response to norepinephrine (NE) and AM1241, a pharmacological ligand for the EC receptor CB2. We evaluated phagocytosis of Dectin-1 ligating zymosan particles and tested the cytokine response against Candida antigen in an in vitro cytokine release assay. Increasing concentrations of NE did not affect phagocytosis, yet stimulated ROS release was attenuated gradually reaching maximum suppression at 500 nM. Adrenergic receptor (AR) mechanisms using non-AR-selective (labetalol) as well as specific α-(prazosin) and β-(propranolol) receptor antagonists were tested. Results show that only labetalol and propranolol were able to recuperate cytotoxicity in the presence of NE, evidencing a β-receptor-mediated effect. The CB2 agonist, AM1241, inhibited phagocytosis at 10 µM and spontaneous peroxide release by PMNs. Use of the inverse CB2 receptor agonist SR144528 led to partial recuperation of ROS production, confirming the functional role of CB2. Additionally, AM1241 delayed early activation of monocytes and induced suppression of IL-2 and IL-6 levels in response to Candida via lower activity of mammalian target of rapamycin (mTOR). These findings provide new insights into key mechanisms of innate immunity under stressful conditions where ligands to the sympatho-adrenergic and EC system are released.
Collapse
Affiliation(s)
- Judith-Irina Buchheim
- Laboratory of Translational Research 'Stress and Immunity', Department of Anaesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University, Germany
| | - Spencer Hoskyns
- Laboratory of Translational Research 'Stress and Immunity', Department of Anaesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University, Germany.,Centre of Human and Aerospace Physiological Sciences, Kings College London, UK
| | - Dominique Moser
- Laboratory of Translational Research 'Stress and Immunity', Department of Anaesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University, Germany
| | - Bing Han
- Laboratory of Translational Research 'Stress and Immunity', Department of Anaesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University, Germany
| | | | - Marion Hörl
- Laboratory of Translational Research 'Stress and Immunity', Department of Anaesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University, Germany
| | - Katharina Biere
- Laboratory of Translational Research 'Stress and Immunity', Department of Anaesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University, Germany
| | - Matthias Feuerecker
- Laboratory of Translational Research 'Stress and Immunity', Department of Anaesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University, Germany
| | - Gustav Schelling
- Laboratory of Translational Research 'Stress and Immunity', Department of Anaesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University, Germany
| | - Alexander Choukèr
- Laboratory of Translational Research 'Stress and Immunity', Department of Anaesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University, Germany.,Centre of Human and Aerospace Physiological Sciences, Kings College London, UK
| |
Collapse
|
63
|
Brown AJP, Gow NAR, Warris A, Brown GD. Memory in Fungal Pathogens Promotes Immune Evasion, Colonisation, and Infection. Trends Microbiol 2019; 27:219-230. [PMID: 30509563 DOI: 10.1016/j.tim.2018.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/19/2018] [Accepted: 11/01/2018] [Indexed: 12/20/2022]
Abstract
By analogy with Pavlov's dogs, certain pathogens have evolved anticipatory behaviours that exploit specific signals in the human host to prepare themselves against imminent host challenges. This adaptive prediction, a type of history-dependent microbial behaviour, represents a primitive form of microbial memory. For fungal pathogens, adaptive prediction helps them circumvent nutritional immunity, protects them against phagocytic killing, and activates immune evasion strategies. We describe how these anticipatory responses, and the contrasting lifestyles and evolutionary trajectories of fungal pathogens, have influenced the evolution of such adaptive behaviours, and how these behaviours affect host colonisation and infection.
Collapse
Affiliation(s)
- Alistair J P Brown
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | - Neil A R Gow
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK; Current Address: School of Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Adilia Warris
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Gordon D Brown
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
64
|
Ambati S, Ferarro AR, Kang SE, Lin J, Lin X, Momany M, Lewis ZA, Meagher RB. Dectin-1-Targeted Antifungal Liposomes Exhibit Enhanced Efficacy. mSphere 2019; 4:e00025-19. [PMID: 30760610 PMCID: PMC6374590 DOI: 10.1128/msphere.00025-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 01/25/2019] [Indexed: 11/24/2022] Open
Abstract
Aspergillus species cause pulmonary invasive aspergillosis resulting in nearly 100,000 deaths each year. Patients at the greatest risk of developing life-threatening aspergillosis have weakened immune systems and/or various lung disorders. Patients are treated with antifungals such as amphotericin B (AmB), caspofungin acetate, or triazoles (itraconazole, voriconazole, etc.), but these antifungal agents have serious limitations due to lack of sufficient fungicidal effect and human toxicity. Liposomes with AmB intercalated into the lipid membrane (AmB-LLs; available commercially as AmBisome) have severalfold-reduced toxicity compared to that of detergent-solubilized drug. However, even with the current antifungal therapies, 1-year survival among patients is only 25 to 60%. Hence, there is a critical need for improved antifungal therapeutics. Dectin-1 is a mammalian innate immune receptor in the membrane of some leukocytes that binds as a dimer to beta-glucans found in fungal cell walls, signaling fungal infection. Using a novel protocol, we coated AmB-LLs with Dectin-1's beta-glucan binding domain to make DEC-AmB-LLs. DEC-AmB-LLs bound rapidly, efficiently, and with great strength to Aspergillus fumigatus and to Candida albicans and Cryptococcus neoformans, highly divergent fungal pathogens of global importance. In contrast, untargeted AmB-LLs and bovine serum albumin (BSA)-coated BSA-AmB-LLs showed 200-fold-lower affinity for fungal cells. DEC-AmB-LLs reduced the growth and viability of A. fumigatus an order of magnitude more efficiently than untargeted control liposomes delivering the same concentrations of AmB, in essence decreasing the effective dose of AmB. Future efforts will focus on examining pan-antifungal targeted liposomal drugs in animal models of disease.IMPORTANCE The fungus Aspergillus fumigatus causes pulmonary invasive aspergillosis resulting in nearly 100,000 deaths each year. Patients are often treated with antifungal drugs such as amphotericin B (AmB) loaded into liposomes (AmB-LLs), but all antifungal drugs, including AmB-LLs, have serious limitations due to human toxicity and insufficient fungal cell killing. Even with the best current therapies, 1-year survival among patients with invasive aspergillosis is only 25 to 60%. Hence, there is a critical need for improved antifungal therapeutics. Dectin-1 is a mammalian protein that binds to beta-glucan polysaccharides found in nearly all fungal cell walls. We coated AmB-LLs with Dectin-1 to make DEC-AmB-LLs. DEC-AmB-LLs bound strongly to fungal cells, while AmB-LLs had little affinity. DEC-AmB-LLs killed or inhibited A. fumigatus 10 times more efficiently than untargeted liposomes, decreasing the effective dose of AmB. Dectin-1-coated drug-loaded liposomes targeting fungal pathogens have the potential to greatly enhance antifungal therapeutics.
Collapse
Affiliation(s)
- Suresh Ambati
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Aileen R Ferarro
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - S Earl Kang
- Fungal Biology Group and Department of Plant Biology, University of Georgia, Athens, Georgia, USA
| | - Jianfeng Lin
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Michelle Momany
- Fungal Biology Group and Department of Plant Biology, University of Georgia, Athens, Georgia, USA
| | - Zachary A Lewis
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|
65
|
Chen T, Jackson JW, Tams RN, Davis SE, Sparer TE, Reynolds TB. Exposure of Candida albicans β (1,3)-glucan is promoted by activation of the Cek1 pathway. PLoS Genet 2019; 15:e1007892. [PMID: 30703081 PMCID: PMC6372213 DOI: 10.1371/journal.pgen.1007892] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 02/12/2019] [Accepted: 12/12/2018] [Indexed: 01/08/2023] Open
Abstract
Candida albicans is among the most common causes of human fungal infections and is an important source of mortality. C. albicans is able to diminish its detection by innate immune cells through masking of β (1,3)-glucan in the inner cell wall with an outer layer of heavily glycosylated mannoproteins (mannan). However, mutations or drugs that disrupt the cell wall can lead to exposure of β (1,3)-glucan (unmasking) and enhanced detection by innate immune cells through receptors like Dectin-1, the C-type signaling lectin. Previously, our lab showed that the pathway for synthesizing the phospholipid phosphatidylserine (PS) plays a role in β (1,3)-glucan masking. The homozygous PS synthase knockout mutant, cho1Δ/Δ, exhibits increased exposure of β (1,3)-glucan. Several Mitogen Activated Protein Kinase (MAPK) pathways and their upstream Rho-type small GTPases are important for regulating cell wall biogenesis and remodeling. In the cho1Δ/Δ mutant, both the Cek1 and Mkc1 MAPKs are constitutively activated, and they act downstream of the small GTPases Cdc42 and Rho1, respectively. In addition, Cdc42 activity is up-regulated in cho1Δ/Δ. Thus, it was hypothesized that activation of Cdc42 or Rho1 and their downstream kinases cause unmasking. Disruption of MKC1 does not decrease unmasking in cho1Δ/Δ, and hyperactivation of Rho1 in wild-type cells increases unmasking and activation of both Cek1 and Mkc1. Moreover, independent hyperactivation of the MAP kinase kinase kinase Ste11 in wild-type cells leads to Cek1 activation and increased β (1,3)-glucan exposure. Thus, upregulation of the Cek1 MAPK pathway causes unmasking, and may be responsible for unmasking in cho1Δ/Δ. Candida albicans causes fungal infections in the oral cavities and bloodstreams of patients with weakened immune function, such as AIDS or cancer patients. The immune system detects fungal infections, in part, by detecting the antigenic cell wall polysaccharide β (1,3)-glucan. The ability to mask β (1,3)-glucan from immune detection is a virulence factor of C. albicans and a range of fungal pathogens. If synthesis of the phospholipid phosphatidylserine is disrupted in C. albicans (cho1Δ/Δ mutation), then cho1Δ/Δ exhibits significantly increased exposure of β (1,3)-glucan to immune detection compared to wild-type. Intracellular signaling cascades that regulate cell wall synthesis are upregulated in the cho1Δ/Δ mutant. It was hypothesized that upregulation of these pathways might be responsible for unmasking in this mutant. Genetic approaches were used to activate these pathways independently of the cho1Δ/Δ mutation. It was discovered that activation of one pathway, Cdc42-Cek1, leads to β (1,3)-glucan exposure. Thus, this pathway can cause β(1,3)-glucan exposure, and its upregulation may be the cause of unmasking in the cho1Δ/Δ mutant.
Collapse
Affiliation(s)
- Tian Chen
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
| | - Joseph W. Jackson
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
| | - Robert N. Tams
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
| | - Sarah E. Davis
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
| | - Timothy E. Sparer
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
- * E-mail:
| |
Collapse
|
66
|
Da W, Shao J, Li Q, Shi G, Wang T, Wu D, Wang C. Physical Interaction of Sodium Houttuyfonate With β-1,3-Glucan Evokes Candida albicans Cell Wall Remodeling. Front Microbiol 2019; 10:34. [PMID: 30740095 PMCID: PMC6357593 DOI: 10.3389/fmicb.2019.00034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/10/2019] [Indexed: 12/29/2022] Open
Abstract
Candida albicans is a commonly isolated opportunistic yeast and can endanger immune-compromised human health. As increasingly isolated strains present resistance to currently used antifungals, it is necessary to develop novel antimycotics. In a previous study, sodium houttuyfonate (SH) alone or in combination with fluconazole revealed relatively strong antifungal potential against C. albicans, and the underlying mechanism might be likely to be associated with β-glucan synthesis and transportation (Shao et al., 2017). In the present experiment, we used a standard C. albicans isolate and a phr1 mutant (phr1−/−) to investigate the interaction of SH with β-glucan, one of the critical components in cell wall and biofilm matrix. We showed that lyticase was the most effective enzyme that could significantly increase the antifungal inhibition of SH at 64 μg/mL in C. albicans SC5314 but became futile in phr1−/−. Although the minimum inhibitory concentrations (MICs) of SH were comparable in the two Candida strains used, phr1−/− appeared to be more susceptible to SH compared with C. albicans SC5314 in biofilms (64 versus 512 μg/mL). The peak areas of SH decreased markedly by 71.6, 38.2, and 62.6% in C. albicans SC5314 and by 70% and 53.2% in phr1−/− by ultra-performance liquid chromatography (UPLC) analysis after co-incubation of SH with laminarin, extracellular matrix (EM) and cell wall. The chitin appeared to not interact with SH. We further demonstrated that sub-MIC SH (8 μg/mL) was able to induce cell wall remodeling by unmasking β-1,3-glucan and chitin in both C. albicans SC5314 and phr1−/−. Based on these findings, we propose that β-1,3-glucan can block the entrance of SH through non-specific absorption, and then the fungus senses the interaction of SH with β-1,3-glucan and exposes more β-1,3-glucan that contributes to SH blocking in turn.
Collapse
Affiliation(s)
- Wenyue Da
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Jing Shao
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Qianqian Li
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Gaoxiang Shi
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Tianming Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Daqiang Wu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Changzhong Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
67
|
Klebsiella pneumoniae prevents spore germination and hyphal development of Aspergillus species. Sci Rep 2019; 9:218. [PMID: 30659217 PMCID: PMC6338788 DOI: 10.1038/s41598-018-36524-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/20/2018] [Indexed: 12/29/2022] Open
Abstract
Different bacteria and fungi live as commensal organisms as part of the human microbiota, but shifts to a pathogenic state potentially leading to septic infections commonly occur in immunocompromised individuals. Several studies have reported synergistic or antagonistic interactions between individual bacteria and fungi which might be of clinical relevance. Here, we present first evidence for the interaction between Klebsiella pneumoniae and several Aspergillus species including A. fumigatus, A. terreus, A. niger and A. flavus which cohabit in the lungs and the intestines. Microbiological and molecular methods were employed to investigate the interaction in vitro, and the results indicate that Klebsiella pneumoniae is able to prevent Aspergillus spp. spore germination and hyphal development. The inhibitory effect is reversible, as demonstrated by growth recovery of Aspergillus spp. upon inhibition or elimination of the bacteria, and is apparently dependent on the physical interaction with metabolically active bacteria. Molecular analysis of Klebsiella-Aspergillus interaction has shown upregulation of Aspergillus cell wall-related genes and downregulation of hyphae-related genes, suggesting that Klebsiella induces cell wall stress response mechanisms and suppresses filamentous growth. Characterization of polymicrobial interactions may provide the basis for improved clinical management of mixed infections by setting the stage for appropriate diagnostics and ultimately for optimized treatment strategies.
Collapse
|
68
|
Childers DS, Avelar GM, Bain JM, Larcombe DE, Pradhan A, Budge S, Heaney H, Brown AJP. Impact of the Environment upon the Candida albicans Cell Wall and Resultant Effects upon Immune Surveillance. Curr Top Microbiol Immunol 2019; 425:297-330. [PMID: 31781866 DOI: 10.1007/82_2019_182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fungal cell wall is an essential organelle that maintains cellular morphology and protects the fungus from environmental insults. For fungal pathogens such as Candida albicans, it provides a degree of protection against attack by host immune defences. However, the cell wall also presents key epitopes that trigger host immunity and attractive targets for antifungal drugs. Rather than being a rigid shield, it has become clear that the fungal cell wall is an elastic organelle that permits rapid changes in cell volume and the transit of large liposomal particles such as extracellular vesicles. The fungal cell wall is also flexible in that it adapts to local environmental inputs, thereby enhancing the fitness of the fungus in these microenvironments. Recent evidence indicates that this cell wall adaptation affects host-fungus interactions by altering the exposure of major cell wall epitopes that are recognised by innate immune cells. Therefore, we discuss the impact of environmental adaptation upon fungal cell wall structure, and how this affects immune recognition, focussing on C. albicans and drawing parallels with other fungal pathogens.
Collapse
Affiliation(s)
- Delma S Childers
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Gabriela M Avelar
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Judith M Bain
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Daniel E Larcombe
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Arnab Pradhan
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Susan Budge
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Helen Heaney
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Alistair J P Brown
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
69
|
Day AM, McNiff MM, da Silva Dantas A, Gow NAR, Quinn J. Hog1 Regulates Stress Tolerance and Virulence in the Emerging Fungal Pathogen Candida auris. mSphere 2018; 3:e00506-18. [PMID: 30355673 PMCID: PMC6200985 DOI: 10.1128/msphere.00506-18] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 01/14/2023] Open
Abstract
Candida auris has recently emerged as an important, multidrug-resistant fungal pathogen of humans. Comparative studies indicate that despite high levels of genetic divergence, C. auris is as virulent as the most pathogenic member of the genus, Candida albicans However, key virulence attributes of C. albicans, such as morphogenetic switching, are not utilized by C. auris, indicating that this emerging pathogen employs alternative strategies to infect and colonize the host. An important trait required for the pathogenicity of many fungal pathogens is the ability to adapt to host-imposed stresses encountered during infection. Here, we investigated the relative resistance of C. auris and other pathogenic Candida species to physiologically relevant stresses and explored the role of the evolutionarily conserved Hog1 stress-activated protein kinase (SAPK) in promoting stress resistance and virulence. In comparison to C. albicans, C. auris is relatively resistant to hydrogen peroxide, cationic stress, and cell-wall-damaging agents. However, in contrast to other Candida species examined, C. auris was unable to grow in an anaerobic environment and was acutely sensitive to organic oxidative-stress-inducing agents. An analysis of C. aurishog1Δ cells revealed multiple roles for this SAPK in stress resistance, cell morphology, aggregation, and virulence. These data demonstrate that C. auris has a unique stress resistance profile compared to those of other pathogenic Candida species and that the Hog1 SAPK has pleiotropic roles that promote the virulence of this emerging pathogen.IMPORTANCE The rapid global emergence and resistance of Candidaauris to current antifungal drugs highlight the importance of understanding the virulence traits exploited by this human fungal pathogen to cause disease. Here, we characterize the stress resistance profile of C. auris and the role of the Hog1 stress-activated protein kinase (SAPK) in stress resistance and virulence. Our findings that C. auris is acutely sensitive to certain stresses may facilitate control measures to prevent persistent colonization in hospital settings. Furthermore, our observation that the Hog1 SAPK promotes C. auris virulence akin to that reported for many other pathogenic fungi indicates that antifungals targeting Hog1 signaling would be broad acting and effective, even on emerging drug-resistant pathogens.
Collapse
Affiliation(s)
- Alison M Day
- Institute for Cell and Molecular Biosciences, Faculty of Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Megan M McNiff
- Institute for Cell and Molecular Biosciences, Faculty of Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alessandra da Silva Dantas
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Neil A R Gow
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Janet Quinn
- Institute for Cell and Molecular Biosciences, Faculty of Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
70
|
High-Throughput Screening Identifies Genes Required for Candida albicans Induction of Macrophage Pyroptosis. mBio 2018; 9:mBio.01581-18. [PMID: 30131363 PMCID: PMC6106084 DOI: 10.1128/mbio.01581-18] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The innate immune system is the first line of defense against invasive fungal infections. As a consequence, many successful fungal pathogens have evolved elegant strategies to interact with host immune cells. For example, Candida albicans undergoes a morphogenetic switch coupled to cell wall remodeling upon phagocytosis by macrophages and then induces macrophage pyroptosis, an inflammatory cell death program. To elucidate the genetic circuitry through which C. albicans orchestrates this host response, we performed the first large-scale analysis of C. albicans interactions with mammalian immune cells. We identified 98 C. albicans genes that enable macrophage pyroptosis without influencing fungal cell morphology in the macrophage, including specific determinants of cell wall biogenesis and the Hog1 signaling cascade. Using these mutated genes, we discovered that defects in the activation of pyroptosis affect immune cell recruitment during infection. Examining host circuitry required for pyroptosis in response to C. albicans infection, we discovered that inflammasome priming and activation can be decoupled. Finally, we observed that apoptosis-associated speck-like protein containing a CARD (ASC) oligomerization can occur prior to phagolysosomal rupture by C. albicans hyphae, demonstrating that phagolysosomal rupture is not the inflammasome activating signal. Taking the data together, this work defines genes that enable fungal cell wall remodeling and activation of macrophage pyroptosis independently of effects on morphogenesis and identifies macrophage signaling components that are required for pyroptosis in response to C. albicans infection. Candida albicans is a natural member of the human mucosal microbiota that can also cause superficial infections and life-threatening systemic infections, both of which are characterized by inflammation. Host defense relies mainly on the ingestion and destruction of C. albicans by innate immune cells, such as macrophages and neutrophils. Although some C. albicans cells are killed by macrophages, most undergo a morphological change and escape by inducing macrophage pyroptosis. Here, we investigated the C. albicans genes and host factors that promote macrophage pyroptosis in response to intracellular fungi. This work provides a foundation for understanding how host immune cells interact with C. albicans and may lead to effective strategies to modulate inflammation induced by fungal infections.
Collapse
|
71
|
Khandagale A, Lazzaretto B, Carlsson G, Sundin M, Shafeeq S, Römling U, Fadeel B. JAGN1 is required for fungal killing in neutrophil extracellular traps: Implications for severe congenital neutropenia. J Leukoc Biol 2018; 104:1199-1213. [DOI: 10.1002/jlb.4a0118-030rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/13/2018] [Accepted: 07/13/2018] [Indexed: 12/21/2022] Open
Affiliation(s)
- Avinash Khandagale
- Division of Molecular ToxicologyInstitute of Environmental MedicineKarolinska Institutet Stockholm Sweden
| | - Beatrice Lazzaretto
- Division of Molecular ToxicologyInstitute of Environmental MedicineKarolinska Institutet Stockholm Sweden
| | - Göran Carlsson
- Department of Women's and Children's HealthKarolinska InstitutetKarolinska University Hospital Stockholm Sweden
| | - Mikael Sundin
- Department of Women's and Children's HealthKarolinska InstitutetKarolinska University Hospital Stockholm Sweden
| | - Sulman Shafeeq
- Department of MicrobiologyTumor and Cell BiologyKarolinska Institutet Stockholm Sweden
| | - Ute Römling
- Department of MicrobiologyTumor and Cell BiologyKarolinska Institutet Stockholm Sweden
| | - Bengt Fadeel
- Division of Molecular ToxicologyInstitute of Environmental MedicineKarolinska Institutet Stockholm Sweden
| |
Collapse
|
72
|
Pericolini E, Perito S, Castagnoli A, Gabrielli E, Mencacci A, Blasi E, Vecchiarelli A, Wheeler RT. Epitope unmasking in vulvovaginal candidiasis is associated with hyphal growth and neutrophilic infiltration. PLoS One 2018; 13:e0201436. [PMID: 30063729 PMCID: PMC6067721 DOI: 10.1371/journal.pone.0201436] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/16/2018] [Indexed: 11/29/2022] Open
Abstract
Vaginal candidiasis is a common disorder in women of childbearing age, caused primarily by the dimorphic fungus Candida albicans. Since C. albicans is a normal commensal of the vaginal mucosa, a long-standing question is how the fungus switches from being a harmless commensal to a virulent pathogen. Work with human subjects and in mouse disease models suggests that host inflammatory processes drive the onset of symptomatic infection. Fungal cell wall molecules can induce inflammation through activation of epithelial and immune receptors that trigger pro-inflammatory cytokines and chemokines, but pathogenic fungi can evade recognition by masking these molecules. Knowledge about which cell wall epitopes are available for immune recognition during human infection could implicate specific ligands and receptors in the symptoms of vaginal candidiasis. To address this important gap, we directly probed the surface of fungi present in fresh vaginal samples obtained both from women with symptomatic Candida vaginitis and from women that are colonized but asymptomatic. We find that the pro-inflammatory cell wall polysaccharide β-glucan is largely masked from immune recognition, especially on yeast. It is only exposed on a small percentage of hyphal cells, where it tends to co-localize with enhanced levels of chitin. Enhanced β-glucan availability is only found in symptomatic patients with strong neutrophil infiltration, implicating neutrophils as a possible driver of these cell wall changes. This is especially interesting because neutrophils were recently shown to be necessary and sufficient to provoke enhanced β-glucan exposure in C. albicans, accompanied by elevated immune responses. Taken together, our data suggest that the architecture of C. albicans cell wall can be altered by environmental stress during vaginal candidiasis.
Collapse
Affiliation(s)
- Eva Pericolini
- Department of Medicine, University of Perugia, Perugia, Italy
- Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Perito
- Department of Medicine, University of Perugia, Perugia, Italy
| | - Anna Castagnoli
- School of Specialization in Microbiology and Virology, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Gabrielli
- Department of Medicine, University of Perugia, Perugia, Italy
| | | | - Elisabetta Blasi
- Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Robert T. Wheeler
- Department of Medicine, University of Perugia, Perugia, Italy
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, United States of America
- * E-mail:
| |
Collapse
|
73
|
Kim JJ, Reátegui E, Hopke A, Jalali F, Roushan M, Doyle PS, Irimia D. Large-scale patterning of living colloids for dynamic studies of neutrophil-microbe interactions. LAB ON A CHIP 2018; 18:1514-1520. [PMID: 29770423 PMCID: PMC5995581 DOI: 10.1039/c8lc00228b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Neutrophils are the first white blood cells to respond to microbes and to limit their invasion of the body. However, the growth of the microbes into colonies often challenges the neutrophils ability to contain them. To study the interactions between neutrophils and microbial colonies, we designed an assay for arranging microbes in clusters of controlled size (i.e. living colloids). The patterned microbes in the living colloid are mechanically trapped inside the wells and fully accessible to neutrophils. Using the assay, we studied the interactions between human neutrophils and Candida albicans and Staphylococcus aureus, two common human pathogens. We also probed the susceptibility of C. albicans colloids to caspofungin, a common antifungal drug.
Collapse
Affiliation(s)
- Jae Jung Kim
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | |
Collapse
|
74
|
Urban CF, Nett JE. Neutrophil extracellular traps in fungal infection. Semin Cell Dev Biol 2018; 89:47-57. [PMID: 29601861 DOI: 10.1016/j.semcdb.2018.03.020] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/26/2018] [Indexed: 12/28/2022]
Abstract
Fungal infections are a continuously increasing problem in modern health care. Understanding the complex biology of the emerging pathogens and unraveling the mechanisms of host defense may form the basis for the development of more efficient diagnostic and therapeutic tools. Neutrophils play a pivotal role in the defense against fungal pathogens. These phagocytic hunters migrate towards invading fungal microorganisms and eradicate them by phagocytosis, oxidative burst and release of neutrophil extracellular traps (NETs). In the last decade, the process of NET formation has received unparalleled attention, with numerous studies revealing the relevance of this neutrophil function for control of various mycoses. Here, we describe NET formation and summarize its role as part of the innate immune defense against fungal pathogens. We highlight factors influencing the formation of these structures and molecular mechanisms employed by fungi to impair the formation of NETs or subvert their antifungal effects.
Collapse
Affiliation(s)
- Constantin F Urban
- Umeå University, Department of Clinical Microbiology, 90185 Umeå, Sweden; Umeå Centre for Microbial Research & Laboratory for Molecular Infection Medicine, Sweden.
| | - Jeniel E Nett
- University of Wisconsin-Madison, Departments of Medicine, Medical Microbiology and Immunology, 5203 Microbial Sciences Building, 1550 Linden Drive, Madison, WI 53706, USA.
| |
Collapse
|
75
|
Hopke A, Brown AJP, Hall RA, Wheeler RT. Dynamic Fungal Cell Wall Architecture in Stress Adaptation and Immune Evasion. Trends Microbiol 2018; 26:284-295. [PMID: 29452950 PMCID: PMC5869159 DOI: 10.1016/j.tim.2018.01.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 12/28/2022]
Abstract
Deadly infections from opportunistic fungi have risen in frequency, largely because of the at-risk immunocompromised population created by advances in modern medicine and the HIV/AIDS pandemic. This review focuses on dynamics of the fungal polysaccharide cell wall, which plays an outsized role in fungal pathogenesis and therapy because it acts as both an environmental barrier and as the major interface with the host immune system. Human fungal pathogens use architectural strategies to mask epitopes from the host and prevent immune surveillance, and recent work elucidates how biotic and abiotic stresses present during infection can either block or enhance masking. The signaling components implicated in regulating fungal immune recognition can teach us how cell wall dynamics are controlled, and represent potential targets for interventions designed to boost or dampen immunity.
Collapse
Affiliation(s)
- Alex Hopke
- Molecular & Biomedical Sciences, University of Maine, Orono, ME, USA; Current address: BioMEMS Resource Center, Division of Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Alistair J P Brown
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Rebecca A Hall
- Institute of Microbiology and Infection, and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Robert T Wheeler
- Molecular & Biomedical Sciences, University of Maine, Orono, ME, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA.
| |
Collapse
|
76
|
Prauße MTE, Lehnert T, Timme S, Hünniger K, Leonhardt I, Kurzai O, Figge MT. Predictive Virtual Infection Modeling of Fungal Immune Evasion in Human Whole Blood. Front Immunol 2018; 9:560. [PMID: 29619027 PMCID: PMC5871695 DOI: 10.3389/fimmu.2018.00560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/06/2018] [Indexed: 12/20/2022] Open
Abstract
Bloodstream infections by the human-pathogenic fungi Candida albicans and Candida glabrata increasingly occur in hospitalized patients and are associated with high mortality rates. The early immune response against these fungi in human blood comprises a concerted action of humoral and cellular components of the innate immune system. Upon entering the blood, the majority of fungal cells will be eliminated by innate immune cells, i.e., neutrophils and monocytes. However, recent studies identified a population of fungal cells that can evade the immune response and thereby may disseminate and cause organ dissemination, which is frequently observed during candidemia. In this study, we investigate the so far unresolved mechanism of fungal immune evasion in human whole blood by testing hypotheses with the help of mathematical modeling. We use a previously established state-based virtual infection model for whole-blood infection with C. albicans to quantify the immune response and identified the fungal immune-evasion mechanism. While this process was assumed to be spontaneous in the previous model, we now hypothesize that the immune-evasion process is mediated by host factors and incorporate such a mechanism in the model. In particular, we propose, based on previous studies that the fungal immune-evasion mechanism could possibly arise through modification of the fungal surface by as of yet unknown proteins that are assumed to be secreted by activated neutrophils. To validate or reject any of the immune-evasion mechanisms, we compared the simulation of both immune-evasion models for different infection scenarios, i.e., infection of whole blood with either C. albicans or C. glabrata under non-neutropenic and neutropenic conditions. We found that under non-neutropenic conditions, both immune-evasion models fit the experimental data from whole-blood infection with C. albicans and C. glabrata. However, differences between the immune-evasion models could be observed for the infection outcome under neutropenic conditions with respect to the distribution of fungal cells across the immune cells. Based on these predictions, we suggested specific experimental studies that might allow for the validation or rejection of the proposed immune-evasion mechanism.
Collapse
Affiliation(s)
- Maria T E Prauße
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Teresa Lehnert
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany.,Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Sandra Timme
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Kerstin Hünniger
- Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany.,Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Ines Leonhardt
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany.,Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Oliver Kurzai
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany.,Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany.,Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.,Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| |
Collapse
|
77
|
Yu XY, Fu F, Kong WN, Xuan QK, Wen DH, Chen XQ, He YM, He LH, Guo J, Zhou AP, Xi YH, Ni LJ, Yao YF, Wu WJ. Streptococcus agalactiae Inhibits Candida albicans Hyphal Development and Diminishes Host Vaginal Mucosal TH17 Response. Front Microbiol 2018. [PMID: 29527193 PMCID: PMC5829043 DOI: 10.3389/fmicb.2018.00198] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Streptococcus agalactiae and Candida albicans often co-colonize the female genital tract, and under certain conditions induce mucosal inflammation. The role of the interaction between the two organisms in candidal vaginitis is not known. In this study, we found that co-infection with S. agalactiae significantly attenuated the hyphal development of C. albicans, and that EFG1-Hwp1 signal pathway of C. albicans was involved in this process. In a mouse model of vulvovaginal candidiasis (VVC), the fungal burden and the levels of pro-inflammatory cytokines, IL-1β, IL-6 and TNF-α showed a increase on co-infection with S. agalactiae, while the level of TH17 T cells and IL-17 in the cervicovaginal lavage fluid were significantly decreased. Our results indicate that S. agalactiae inhibits C. albicans hyphal development by downregulating the expression of EFG1-Hwp1. The interaction between S. agalactiae and C. albicans may attenuate host vaginal mucosal TH17 immunity and contribute to mucosal colonization by C. albicans.
Collapse
Affiliation(s)
- Xiao-Yu Yu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fei Fu
- Department of Obstetrics and Gynecology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen-Na Kong
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qian-Kun Xuan
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dong-Hua Wen
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiao-Qing Chen
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Yong-Ming He
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Li-Hua He
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jian Guo
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ai-Ping Zhou
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yang-Hong Xi
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li-Jun Ni
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu-Feng Yao
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen-Juan Wu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
78
|
Targeting Candida spp. to develop antifungal agents. Drug Discov Today 2018; 23:802-814. [PMID: 29353694 DOI: 10.1016/j.drudis.2018.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/09/2017] [Accepted: 01/04/2018] [Indexed: 01/15/2023]
Abstract
Invasive fungal infections are a complex challenge throughout the world because of their high incidence, mainly in critically ill patients, and high mortality rates. The antifungal agents currently available are limited; thus, there is a need for the rapid development of new drugs. In silico methods are a modern strategy to explore interactions between new compounds and specific fungal targets, but they depend on precise genetic information. Here, we discuss the main Candida spp. target genes, including information about null mutants, virulence, cytolocalization, co-regulatory genes, and compounds that are related to protein expression. These data will provide a basis for the future in silico development of antifungal drugs.
Collapse
|
79
|
Granger BL. Accessibility and contribution to glucan masking of natural and genetically tagged versions of yeast wall protein 1 of Candida albicans. PLoS One 2018; 13:e0191194. [PMID: 29329339 PMCID: PMC5766240 DOI: 10.1371/journal.pone.0191194] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/30/2017] [Indexed: 02/06/2023] Open
Abstract
Yeast wall protein 1 (Ywp1) is an abundant glycoprotein of the cell wall of the yeast form of Candida albicans, the most prevalent fungal pathogen of humans. Antibodies that bind to the polypeptide backbone of isolated Ywp1 show little binding to intact yeast cells, presumably because the Ywp1 epitopes are masked by the polysaccharides of the mannoproteins that form the outer layer of the cell wall. Rare cells do exhibit much greater anti-Ywp1 binding, however, and one of these was isolated and characterized. No differences were seen in its Ywp1, but it exhibited greater adhesiveness, sensitivity to wall perturbing agents, and exposure of its underlying β-1,3-glucan layer to external antibodies. The molecular basis for this greater epitope accessibility has not been determined, but has facilitated exploration of how these properties change as a function of cell growth and morphology. In addition, previously engineered strains with reduced quantities of Ywp1 in their cell walls were also found to have greater β-1,3-glucan exposure, indicating that Ywp1 itself contributes to the masking of wall epitopes, which may be important for understanding the anti-adhesive effect of Ywp1. Ectopic production of Ywp1 by hyphae, which reduces the adhesivity of these filamentous forms of C. albicans, was similarly found to reduce exposure of the β-1,3-glucan in their walls. To monitor Ywp1 in the cell wall irrespective of its accessibility, green fluorescent protein (Gfp) was genetically inserted into wall-anchored Ywp1 using a bifunctional cassette that also allowed production from a single transfection of a soluble, anchor-free version. The wall-anchored Ywp1-Gfp-Ywp1 accumulated in the wall of the yeast forms but not hyphae, and appeared to have properties similar to native Ywp1, including its adhesion-inhibiting effect. Some pseudohyphal walls also detectably accumulated this probe. Strains of C. albicans with tandem hemagglutinin (HA) epitopes inserted into wall-anchored Ywp1 were previously created by others, and were further explored here. As above, rare cells with much greater accessibility of the HA epitopes were isolated, and also found to exhibit greater exposure of Ywp1 and β-1,3-glucan. The placement of the HA cassette inhibited the normal N-glycosylation and propeptide cleavage of Ywp1, but the wall-anchored Ywp1-HA-Ywp1 still accumulated in the cell wall of yeast forms. Bifunctional transformation cassettes were used to additionally tag these molecules with Gfp, generating soluble Ywp1-HA-Gfp and wall-anchored Ywp1-HA-Gfp-Ywp1 molecules. The former revealed unexpected electrophoretic properties caused by the HA insertion, while the latter further highlighted differences between the presence of a tagged Ywp1 molecule (as revealed by Gfp fluorescence) and its accessibility in the cell wall to externally applied antibodies specific for HA, Gfp and Ywp1, with accessibility being greatest in the rapidly expanding walls of budding daughter cells. These strains and results increase our understanding of cell wall properties and how C. albicans masks itself from recognition by the human immune system.
Collapse
Affiliation(s)
- Bruce L. Granger
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, United States of America
- * E-mail:
| |
Collapse
|
80
|
A computational model for regulation of nanoscale glucan exposure in Candida albicans. PLoS One 2017; 12:e0188599. [PMID: 29232689 PMCID: PMC5726713 DOI: 10.1371/journal.pone.0188599] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 11/09/2017] [Indexed: 12/28/2022] Open
Abstract
Candida albicans is a virulent human opportunistic pathogen. It evades innate immune surveillance by masking an immunogenic cell wall polysaccharide, β-glucan, from recognition by the immunoreceptor Dectin-1. Glucan unmasking by the antifungal drug caspofungin leads to changes in the nanostructure of glucan exposure accessible to Dectin-1. The physical mechanism that regulates glucan exposure is poorly understood, but it controls the nanobiology of fungal pathogen recognition. We created computational models to simulate hypothetical physical processes of unmasking glucan in a biologically realistic distribution of cell wall glucan fibrils. We tested the predicted glucan exposure nanostructural features arising from these models against experimentally measured values. A completely spatially random unmasking process, reflective of random environmental damage to the cell wall, cannot account for experimental observations of glucan unmasking. However, the introduction of partially edge biased unmasking processes, consistent with an unmasking contribution from active, local remodeling at glucan exposure sites, produces markedly more accurate predictions of experimentally observed glucan nanoexposures in untreated and caspofungin-treated yeast. These findings suggest a model of glucan unmasking wherein cell wall remodeling processes in the local nanoscale neighborhood of glucan exposure sites are an important contributor to the physical process of drug-induced glucan unmasking in C. albicans.
Collapse
|
81
|
MCC/Eisosomes Regulate Cell Wall Synthesis and Stress Responses in Fungi. J Fungi (Basel) 2017; 3:jof3040061. [PMID: 29371577 PMCID: PMC5753163 DOI: 10.3390/jof3040061] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/26/2017] [Accepted: 10/31/2017] [Indexed: 12/20/2022] Open
Abstract
The fungal plasma membrane is critical for cell wall synthesis and other important processes including nutrient uptake, secretion, endocytosis, morphogenesis, and response to stress. To coordinate these diverse functions, the plasma membrane is organized into specialized compartments that vary in size, stability, and composition. One recently identified domain known as the Membrane Compartment of Can1 (MCC)/eisosome is distinctive in that it corresponds to a furrow-like invagination in the plasma membrane. MCC/eisosomes have been shown to be formed by the Bin/Amphiphysin/Rvs (BAR) domain proteins Lsp1 and Pil1 in a range of fungi. MCC/eisosome domains influence multiple cellular functions; but a very pronounced defect in cell wall synthesis has been observed for mutants with defects in MCC/eisosomes in some yeast species. For example, Candida albicans MCC/eisosome mutants display abnormal spatial regulation of cell wall synthesis, including large invaginations and altered chemical composition of the walls. Recent studies indicate that MCC/eisosomes affect cell wall synthesis in part by regulating the levels of the key regulatory lipid phosphatidylinositol 4,5-bisphosphate (PI4,5P2) in the plasma membrane. One general way MCC/eisosomes function is by acting as protected islands in the plasma membrane, since these domains are very stable. They also act as scaffolds to recruit >20 proteins. Genetic studies aimed at defining the function of the MCC/eisosome proteins have identified important roles in resistance to stress, such as resistance to oxidative stress mediated by the flavodoxin-like proteins Pst1, Pst2, Pst3 and Ycp4. Thus, MCC/eisosomes play multiple roles in plasma membrane organization that protect fungal cells from the environment.
Collapse
|
82
|
Innate Immunity to Mucosal Candida Infections. J Fungi (Basel) 2017; 3:jof3040060. [PMID: 29371576 PMCID: PMC5753162 DOI: 10.3390/jof3040060] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 02/05/2023] Open
Abstract
Mucosal epithelial tissues are exposed to high numbers of microbes, including commensal fungi, and are able to distinguish between those that are avirulent and those that cause disease. Epithelial cells have evolved multiple mechanisms to defend against colonization and invasion by Candida species. The interplay between mucosal epithelial tissues and immune cells is key for control and clearance of fungal infections. Our understanding of the mucosal innate host defense system has expanded recently with new studies bringing to light the importance of epithelial cell responses, innate T cells, neutrophils, and other phagocytes during Candida infections. Epithelial tissues release cytokines, host defense peptides, and alarmins during Candida invasion that act in concert to limit fungal proliferation and recruit immune effector cells. The innate T cell/IL-17 axis and recruitment of neutrophils are of central importance in controlling mucosal fungal infections. Here, we review current knowledge of the innate immunity at sites of mucosal Candida infection, with a focus on infections caused by C. albicans.
Collapse
|
83
|
Day AM, Herrero-de-Dios CM, MacCallum DM, Brown AJP, Quinn J. Stress-induced nuclear accumulation is dispensable for Hog1-dependent gene expression and virulence in a fungal pathogen. Sci Rep 2017; 7:14340. [PMID: 29085028 PMCID: PMC5662626 DOI: 10.1038/s41598-017-14756-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/09/2017] [Indexed: 11/11/2022] Open
Abstract
Stress-activated protein kinase (SAPK) pathways are evolutionarily conserved eukaryotic signalling modules that are essential for the virulence of human pathogenic fungi. The Hog1 SAPK in Candida albicans is robustly phosphorylated in response to a number of host-imposed stresses, and is essential for virulence. The current dogma is that stress-induced phosphorylation activates the SAPK, and promotes its nuclear accumulation that is necessary for the expression of SAPK-dependent stress-protective genes. Here we challenge this dogma. C. albicans strains were constructed in which Hog1 was either tethered to the plasma membrane or constitutively nuclear. Strikingly, tethering Hog1 to the plasma membrane did not abrogate stress resistance or stress-induced gene expression. Furthermore, preventing the nuclear accumulation of Hog1 had no impact on C. albicans virulence in two distinct models of systemic infection. However, tethering Hog1 to the plasma membrane did impact on signal fidelity, and on the magnitude and kinetics of the stress-induced phosphorylation of this SAPK. Taken together, these findings challenge the dogma that nuclear accumulation of SAPKs is a pre-requisite for SAPK-dependent gene expression, and reveal that stress-induced nuclear accumulation of Hog1 is dispensable for the virulence of a major human fungal pathogen.
Collapse
Affiliation(s)
- Alison M Day
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Carmen M Herrero-de-Dios
- MRC Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Aberdeen, AB25 2ZD, UK
| | - Donna M MacCallum
- MRC Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Aberdeen, AB25 2ZD, UK
| | - Alistair J P Brown
- MRC Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Aberdeen, AB25 2ZD, UK
| | - Janet Quinn
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
84
|
The PHR Family: The Role of Extracellular Transglycosylases in Shaping Candida albicans Cells. J Fungi (Basel) 2017; 3:jof3040059. [PMID: 29371575 PMCID: PMC5753161 DOI: 10.3390/jof3040059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/19/2017] [Accepted: 10/24/2017] [Indexed: 01/25/2023] Open
Abstract
Candida albicans is an opportunistic microorganism that can become a pathogen causing mild superficial mycosis or more severe invasive infections that can be life-threatening for debilitated patients. In the etiology of invasive infections, key factors are the adaptability of C. albicans to the different niches of the human body and the transition from a yeast form to hypha. Hyphal morphology confers high adhesiveness to the host cells, as well as the ability to penetrate into organs. The cell wall plays a crucial role in the morphological changes C. albicans undergoes in response to specific environmental cues. Among the different categories of enzymes involved in the formation of the fungal cell wall, the GH72 family of transglycosylases plays an important assembly role. These enzymes cut and religate β-(1,3)-glucan, the major determinant of cell shape. In C. albicans, the PHR family encodes GH72 enzymes, some of which work in specific environmental conditions. In this review, we will summarize the work from the initial discovery of PHR genes to the study of the pH-dependent expression of PHR1 and PHR2, from the characterization of the gene products to the recent findings concerning the stress response generated by the lack of GH72 activity in C. albicans hyphae.
Collapse
|
85
|
Zawrotniak M, Bochenska O, Karkowska-Kuleta J, Seweryn-Ozog K, Aoki W, Ueda M, Kozik A, Rapala-Kozik M. Aspartic Proteases and Major Cell Wall Components in Candida albicans Trigger the Release of Neutrophil Extracellular Traps. Front Cell Infect Microbiol 2017; 7:414. [PMID: 28983472 PMCID: PMC5613151 DOI: 10.3389/fcimb.2017.00414] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/06/2017] [Indexed: 12/11/2022] Open
Abstract
Neutrophils use different mechanisms to cope with pathogens that invade the host organism. The most intriguing of these responses is a release of neutrophil extracellular traps (NETs) composed of decondensed chromatin and granular proteins with antimicrobial activity. An important potential target of NETs is Candida albicans-an opportunistic fungal pathogen that employs morphological and phenotype switches and biofilm formation during contact with neutrophils, accompanied by changes in epitope exposition that mask the pathogen from host recognition. These processes differ depending on infection conditions and are thus influenced by the surrounding environment. In the current study, we compared the NET release by neutrophils upon contact with purified main candidal cell surface components. We show here for the first time that in addition to the main cell wall-building polysaccharides (mannans and β-glucans), secreted aspartic proteases (Saps) trigger NETs with variable intensities. The most efficient NET-releasing response is with Sap4 and Sap6, which are known to be secreted by fungal hyphae. This involves mixed, ROS-dependent and ROS-independent signaling pathways, mainly through interactions with the CD11b receptor. In comparison, upon contact with the cell wall-bound Sap9 and Sap10, neutrophils responded via a ROS-dependent mechanism using CD16 and CD18 receptors for protease recognition. In addition to the Saps tested, the actuation of selected mediating kinases (Src, Syk, PI3K, and ERK) was also investigated. β-Glucans were found to trigger a ROS-dependent process of NET production with engagement of Dectin-1 as well as CD11b and CD18 receptors. Mannans were observed to be recognized by TLRs, CD14, and Dectin-1 receptors and triggered NET release mainly via a ROS-independent pathway. Our results thus strongly suggest that neutrophils activate NET production in response to different candidal components that are presented locally at low concentrations at the initial stages of infection. However, NET release seemed to be blocked by increasing numbers of fungal cells.
Collapse
Affiliation(s)
- Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Oliwia Bochenska
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Karolina Seweryn-Ozog
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Wataru Aoki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto UniversityKyoto, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto UniversityKyoto, Japan
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| |
Collapse
|
86
|
Abstract
Candida albicans biofilms are difficult to eradicate due to their resistance to host defenses and antifungal drugs. Although neutrophils are the primary responder to C. albicans during invasive candidiasis, biofilms resist killing by neutrophils. Prior investigation, with the commonly used laboratory strain SC5314, linked this phenotype to the impaired release of neutrophil extracellular traps (NETs), which are structures of DNA, histones, and antimicrobial proteins involved in extracellular microbial killing. Considering the diversity of C. albicans biofilms, we examined the neutrophil response to a subset of clinical isolates forming biofilms with varying depths and architectures. Using fluorescent staining of DNA and scanning electron microscopy, we found that inhibition of NET release was conserved across the clinical isolates. However, the dampening of the production of reactive oxygen species (ROS) by neutrophils was strain-dependent, suggesting an uncoupling of ROS and NET inhibition. Our findings show that biofilms formed by clinical C. albicans isolates uniformly impair the release of NETs. Further investigation of this pathway may reveal novel approaches to augment immunity to C. albicans biofilm infections.
Collapse
|
87
|
Control of Mucosal Candidiasis in the Zebrafish Swim Bladder Depends on Neutrophils That Block Filament Invasion and Drive Extracellular-Trap Production. Infect Immun 2017; 85:IAI.00276-17. [PMID: 28607100 DOI: 10.1128/iai.00276-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/05/2017] [Indexed: 12/20/2022] Open
Abstract
Candida albicans is a ubiquitous mucosal commensal that is normally prevented from causing acute or chronic invasive disease. Neutrophils contribute to protection in oral infection but exacerbate vulvovaginal candidiasis. To dissect the role of neutrophils during mucosal candidiasis, we took advantage of a new, transparent zebrafish swim bladder infection model. Intravital microscopic tracking of individual animals revealed that the blocking of neutrophil recruitment leads to rapid mortality in this model through faster disease progression. Conversely, artificial recruitment of neutrophils during early infection reduces disease pressure. Noninvasive longitudinal tracking showed that mortality is a consequence of C. albicans breaching the epithelial barrier and invading surrounding tissues. Accordingly, we found that a hyperfilamentous C. albicans strain breaches the epithelial barrier more frequently and causes mortality in immunocompetent zebrafish. A lack of neutrophils at the infection site is associated with less fungus-associated extracellular DNA and less damage to fungal filaments, suggesting that neutrophil extracellular traps help to protect the epithelial barrier from C. albicans breach. We propose a homeostatic model where C. albicans disease pressure is balanced by neutrophil-mediated damage of fungi, maintaining this organism as a commensal while minimizing the risk of damage to host tissue. The unequaled ability to dissect infection dynamics at a high spatiotemporal resolution makes this zebrafish model a unique tool for understanding mucosal host-pathogen interactions.
Collapse
|
88
|
O'Meara TR, Robbins N, Cowen LE. The Hsp90 Chaperone Network Modulates Candida Virulence Traits. Trends Microbiol 2017; 25:809-819. [PMID: 28549824 DOI: 10.1016/j.tim.2017.05.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 11/30/2022]
Abstract
Hsp90 is a conserved molecular chaperone that facilitates the folding and function of client proteins. Hsp90 function is dynamically regulated by interactions with co-chaperones and by post-translational modifications. In the fungal pathogen Candida albicans, Hsp90 enables drug resistance and virulence by stabilizing diverse signal transducers. Here, we review studies that have unveiled regulators of Hsp90 function, as well as downstream effectors that govern the key virulence traits of morphogenesis and drug resistance. We highlight recent work mapping the Hsp90 genetic network in C. albicans under diverse environmental conditions, and how these interactions provide insight into circuitry important for drug resistance, morphogenesis, and virulence. Ultimately, elucidating the Hsp90 chaperone network will aid in the development of therapeutics to treat fungal disease.
Collapse
Affiliation(s)
- Teresa R O'Meara
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada.
| |
Collapse
|
89
|
Adaptation of Candida albicans to environmental pH induces cell wall remodelling and enhances innate immune recognition. PLoS Pathog 2017; 13:e1006403. [PMID: 28542528 PMCID: PMC5456412 DOI: 10.1371/journal.ppat.1006403] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/02/2017] [Accepted: 05/06/2017] [Indexed: 01/13/2023] Open
Abstract
Candida albicans is able to proliferate in environments that vary dramatically in ambient pH, a trait required for colonising niches such as the stomach, vaginal mucosal and the GI tract. Here we show that growth in acidic environments involves cell wall remodelling which results in enhanced chitin and β-glucan exposure at the cell wall periphery. Unmasking of the underlying immuno-stimulatory β-glucan in acidic environments enhanced innate immune recognition of C. albicans by macrophages and neutrophils, and induced a stronger proinflammatory cytokine response, driven through the C-type lectin-like receptor, Dectin-1. This enhanced inflammatory response resulted in significant recruitment of neutrophils in an intraperitoneal model of infection, a hallmark of symptomatic vaginal colonisation. Enhanced chitin exposure resulted from reduced expression of the cell wall chitinase Cht2, via a Bcr1-Rim101 dependent signalling cascade, while increased β-glucan exposure was regulated via a non-canonical signalling pathway. We propose that this "unmasking" of the cell wall may induce non-protective hyper activation of the immune system during growth in acidic niches, and may attribute to symptomatic vaginal infection.
Collapse
|
90
|
Hoppenbrouwers T, Autar ASA, Sultan AR, Abraham TE, van Cappellen WA, Houtsmuller AB, van Wamel WJB, van Beusekom HMM, van Neck JW, de Maat MPM. In vitro induction of NETosis: Comprehensive live imaging comparison and systematic review. PLoS One 2017; 12:e0176472. [PMID: 28486563 PMCID: PMC5423591 DOI: 10.1371/journal.pone.0176472] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/11/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Multiple inducers of in vitro Neutrophil Extracellular Trap (NET) formation (NETosis) have been described. Since there is much variation in study design and results, our aim was to create a systematic review of NETosis inducers and perform a standardized in vitro study of NETosis inducers important in (cardiac) wound healing. METHODS In vitro NETosis was studied by incubating neutrophils with PMA, living and dead bacteria (S. aureus and E. coli), LPS, (activated) platelets (supernatant), glucose and calcium ionophore Ionomycin using 3-hour periods of time-lapse confocal imaging. RESULTS PMA is a consistent and potent inducer of NETosis. Ionomycin also consistently resulted in extrusion of DNA, albeit with a process that differs from the NETosis process induced by PMA. In our standardized experiments, living bacteria were also potent inducers of NETosis, but dead bacteria, LPS, (activated) platelets (supernatant) and glucose did not induce NETosis. CONCLUSION Our systematic review confirms that there is much variation in study design and results of NETosis induction. Our experimental results confirm that under standardized conditions, PMA, living bacteria and Ionomycin all strongly induce NETosis, but real-time confocal imaging reveal different courses of events.
Collapse
Affiliation(s)
- Tamara Hoppenbrouwers
- Department of Plastic and Reconstructive Surgery, Erasmus MC, Rotterdam, The Netherlands
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
| | - Anouchska S. A. Autar
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Andi R. Sultan
- Department of Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Tsion E. Abraham
- Optical Imaging Center, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Willem J. B. van Wamel
- Department of Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | | | - Johan W. van Neck
- Department of Plastic and Reconstructive Surgery, Erasmus MC, Rotterdam, The Netherlands
| | | |
Collapse
|
91
|
Candida albicans Chitin Increases Arginase-1 Activity in Human Macrophages, with an Impact on Macrophage Antimicrobial Functions. mBio 2017; 8:mBio.01820-16. [PMID: 28119468 PMCID: PMC5263244 DOI: 10.1128/mbio.01820-16] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The opportunistic human fungal pathogen Candida albicans can cause a variety of diseases, ranging from superficial mucosal infections to life-threatening systemic infections. Phagocytic cells of the innate immune response, such as neutrophils and macrophages, are important first-line responders to an infection and generate reactive oxygen and nitrogen species as part of their protective antimicrobial response. During an infection, host cells generate nitric oxide through the enzyme inducible nitric oxide synthase (iNOS) to kill the invading pathogen. Inside the phagocyte, iNOS competes with the enzyme arginase-1 for a common substrate, the amino acid l-arginine. Several pathogenic species, including bacteria and parasitic protozoans, actively modulate the production of nitric oxide by inducing their own arginases or the host’s arginase activity to prevent the conversion of l-arginine to nitric oxide. We report here that C. albicans blocks nitric oxide production in human-monocyte-derived macrophages by induction of host arginase activity. We further determined that purified chitin (a fungal cell wall polysaccharide) and increased chitin exposure at the fungal cell wall surface induces this host arginase activity. Blocking the C. albicans-induced arginase activity with the arginase-specific substrate inhibitor Nω-hydroxy-nor-arginine (nor-NOHA) or the chitinase inhibitor bisdionin F restored nitric oxide production and increased the efficiency of fungal killing. Moreover, we determined that C. albicans influences macrophage polarization from a classically activated phenotype toward an alternatively activated phenotype, thereby reducing antimicrobial functions and mediating fungal survival. Therefore, C. albicans modulates l-arginine metabolism in macrophages during an infection, potentiating its own survival. The availability and metabolism of amino acids are increasingly recognized as crucial regulators of immune functions. In acute infections, the conversion of the “conditionally essential” amino acid l-arginine by the inducible nitric oxide synthase to nitric oxide is a resistance factor that is produced by the host to fight pathogens. Manipulation of these host defense mechanisms by the pathogen can be key to successful host invasion. We show here that the human opportunistic fungal pathogen Candida albicans influences l-arginine availability for nitric oxide production by induction of the substrate-competing host enzyme arginase-1. This led to a reduced production of nitric oxide and, moreover, reduced eradication of the fungus by human macrophages. We demonstrate that blocking of host arginase-1 activity restored nitric oxide production and increased the killing potential of macrophages. These results highlight the therapeutic potential of l-arginine metabolism in fungal diseases.
Collapse
|
92
|
Ellett F, Jorgensen J, Frydman GH, Jones CN, Irimia D. Neutrophil Interactions Stimulate Evasive Hyphal Branching by Aspergillus fumigatus. PLoS Pathog 2017; 13:e1006154. [PMID: 28076396 PMCID: PMC5261818 DOI: 10.1371/journal.ppat.1006154] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/24/2017] [Accepted: 12/28/2016] [Indexed: 12/23/2022] Open
Abstract
Invasive aspergillosis (IA), primarily caused by Aspergillus fumigatus, is an opportunistic fungal infection predominantly affecting immunocompromised and neutropenic patients that is difficult to treat and results in high mortality. Investigations of neutrophil-hypha interaction in vitro and in animal models of IA are limited by lack of temporal and spatial control over interactions. This study presents a new approach for studying neutrophil-hypha interaction at single cell resolution over time, which revealed an evasive fungal behavior triggered by interaction with neutrophils: Interacting hyphae performed de novo tip formation to generate new hyphal branches, allowing the fungi to avoid the interaction point and continue invasive growth. Induction of this mechanism was independent of neutrophil NADPH oxidase activity and neutrophil extracellular trap (NET) formation, but could be phenocopied by iron chelation and mechanical or physiological stalling of hyphal tip extension. The consequence of branch induction upon interaction outcome depends on the number and activity of neutrophils available: In the presence of sufficient neutrophils branching makes hyphae more vulnerable to destruction, while in the presence of limited neutrophils the interaction increases the number of hyphal tips, potentially making the infection more aggressive. This has direct implications for infections in neutrophil-deficient patients and opens new avenues for treatments targeting fungal branching.
Collapse
Affiliation(s)
- Felix Ellett
- BioMEMS Resource Center, Division of Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, Massachusetts, United States of America
| | - Julianne Jorgensen
- BioMEMS Resource Center, Division of Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, Massachusetts, United States of America
| | - Galit H Frydman
- BioMEMS Resource Center, Division of Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, Massachusetts, United States of America
- Division of Comparative Medicine, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Caroline N Jones
- BioMEMS Resource Center, Division of Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, Massachusetts, United States of America
| | - Daniel Irimia
- BioMEMS Resource Center, Division of Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, Massachusetts, United States of America
| |
Collapse
|
93
|
Hopke A, Wheeler RT. In vitro Detection of Neutrophil Traps and Post-attack Cell Wall Changes in Candida Hyphae. Bio Protoc 2017; 7:e2213. [PMID: 28670603 DOI: 10.21769/bioprotoc.2213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In this protocol we describe how to visualize neutrophil extracellular traps (NETs) and fungal cell wall changes in the context of the coculture of mouse neutrophils with fungal hyphae of Candida albicans. These protocols are easily adjusted to test a wide array of hypotheses related to the impact of immune cells on fungi and the cell wall, making them promising tools for exploring host-pathogen interactions during fungal infection.
Collapse
Affiliation(s)
- Alex Hopke
- Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Robert T Wheeler
- Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| |
Collapse
|
94
|
Ballou ER, Avelar GM, Childers DS, Mackie J, Bain JM, Wagener J, Kastora SL, Panea MD, Hardison SE, Walker LA, Erwig LP, Munro CA, Gow NAR, Brown GD, MacCallum DM, Brown AJP. Lactate signalling regulates fungal β-glucan masking and immune evasion. Nat Microbiol 2016; 2:16238. [PMID: 27941860 DOI: 10.1038/nmicrobiol.2016.238] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/21/2016] [Indexed: 02/06/2023]
Abstract
As they proliferate, fungi expose antigens at their cell surface that are potent stimulators of the innate immune response, and yet the commensal fungus Candida albicans is able to colonize immuno competent individuals. We show that C. albicans may evade immune detection by presenting a moving immunological target. We report that the exposure of β-glucan, a key pathogen-associated molecular pattern (PAMP) located at the cell surface of C. albicans and other pathogenic Candida species, is modulated in response to changes in the carbon source. Exposure to lactate induces β-glucan masking in C. albicans via a signalling pathway that has recruited an evolutionarily conserved receptor (Gpr1) and transcriptional factor (Crz1) from other well-characterized pathways. In response to lactate, these regulators control the expression of cell-wall-related genes that contribute to β-glucan masking. This represents the first description of active PAMP masking by a Candida species, a process that reduces the visibility of the fungus to the immune system.
Collapse
Affiliation(s)
- Elizabeth R Ballou
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Gabriela M Avelar
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Delma S Childers
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Joanna Mackie
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Judith M Bain
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Jeanette Wagener
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Stavroula L Kastora
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Mirela D Panea
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Sarah E Hardison
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Louise A Walker
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Lars P Erwig
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Carol A Munro
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Neil A R Gow
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Gordon D Brown
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Donna M MacCallum
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Alistair J P Brown
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
95
|
Hebecker B, Vlaic S, Conrad T, Bauer M, Brunke S, Kapitan M, Linde J, Hube B, Jacobsen ID. Dual-species transcriptional profiling during systemic candidiasis reveals organ-specific host-pathogen interactions. Sci Rep 2016; 6:36055. [PMID: 27808111 PMCID: PMC5093689 DOI: 10.1038/srep36055] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/11/2016] [Indexed: 11/15/2022] Open
Abstract
Candida albicans is a common cause of life-threatening fungal bloodstream infections. In the murine model of systemic candidiasis, the kidney is the primary target organ while the fungal load declines over time in liver and spleen. To better understand these organ-specific differences in host-pathogen interaction, we performed gene expression profiling of murine kidney, liver and spleen and determined the fungal transcriptome in liver and kidney. We observed a delayed transcriptional immune response accompanied by late induction of fungal stress response genes in the kidneys. In contrast, early upregulation of the proinflammatory response in the liver was associated with a fungal transcriptome resembling response to phagocytosis, suggesting that phagocytes contribute significantly to fungal control in the liver. Notably, C. albicans hypha-associated genes were upregulated in the absence of visible filamentation in the liver, indicating an uncoupling of gene expression and morphology and a morphology-independent effect by hypha-associated genes in this organ. Consistently, integration of host and pathogen transcriptional data in an inter-species gene regulatory network indicated connections of C. albicans cell wall remodelling and metabolism to the organ-specific immune responses.
Collapse
Affiliation(s)
- Betty Hebecker
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Sebastian Vlaic
- Department of General, Visceral and Vascular Surgery, Experimental Transplantation Surgery, Jena University Hospital, Jena, Germany.,Research Group Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany.,Department of Bioinformatics, Friedrich-Schiller-University Jena, Germany
| | - Theresia Conrad
- Research Group Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany
| | - Michael Bauer
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Department of Anaesthesiology and Intensive Care Therapy, Jena University Hospital, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany
| | - Mario Kapitan
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany
| | - Jörg Linde
- Research Group Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany
| | - Bernhard Hube
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany.,Friedrich-Schiller-University, Jena, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
96
|
The Extracellular Matrix of Candida albicans Biofilms Impairs Formation of Neutrophil Extracellular Traps. PLoS Pathog 2016; 12:e1005884. [PMID: 27622514 PMCID: PMC5021349 DOI: 10.1371/journal.ppat.1005884] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/21/2016] [Indexed: 12/31/2022] Open
Abstract
Neutrophils release extracellular traps (NETs) in response to planktonic C. albicans. These complexes composed of DNA, histones, and proteins inhibit Candida growth and dissemination. Considering the resilience of Candida biofilms to host defenses, we examined the neutrophil response to C. albicans during biofilm growth. In contrast to planktonic C. albicans, biofilms triggered negligible release of NETs. Time lapse imaging confirmed the impairment in NET release and revealed neutrophils adhering to hyphae and migrating on the biofilm. NET inhibition depended on an intact extracellular biofilm matrix as physical or genetic disruption of this component resulted in NET release. Biofilm inhibition of NETosis could not be overcome by protein kinase C activation via phorbol myristate acetate (PMA) and was associated with suppression of neutrophil reactive oxygen species (ROS) production. The degree of impaired NET release correlated with resistance to neutrophil attack. The clinical relevance of the role for extracellular matrix in diminishing NET production was corroborated in vivo using a rat catheter model. The C. albicans pmr1Δ/Δ, defective in production of matrix mannan, appeared to elicit a greater abundance of NETs by scanning electron microscopy imaging, which correlated with a decreased fungal burden. Together, these findings show that C. albicans biofilms impair neutrophil response through an inhibitory pathway induced by the extracellular matrix.
Collapse
|