51
|
Abstract
Recent field trials have demonstrated that dengue incidence can be substantially reduced by introgressing strains of the endosymbiotic bacterium Wolbachia into Aedes aegypti mosquito populations. This strategy relies on Wolbachia reducing the susceptibility of Ae. aegypti to disseminated infection by positive-sense RNA viruses like dengue. However, RNA viruses are well known to adapt to antiviral pressures. Here, we review the viral infection stages where selection for Wolbachia-resistant virus variants could occur. We also consider the genetic constraints imposed on viruses that alternate between vertebrate and invertebrate hosts, and the likely selection pressures to which dengue virus might adapt in order to be effectively transmitted by Ae. aegypti that carry Wolbachia. While there are hurdles to dengue viruses developing resistance to Wolbachia, we suggest that long-term surveillance for resistant viruses should be an integral component of Wolbachia-introgression biocontrol programs.
Collapse
Affiliation(s)
| | - Heather A. Flores
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, Australia
| | - Cameron P. Simmons
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, Australia
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Johanna E. Fraser
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
52
|
Pereira TN, Carvalho FD, Rugani JN, de Carvalho VR, Jarusevicius J, Souza-Neto JA, Moreira LA. Mayaro Virus: The Potential Role of Microbiota and Wolbachia. Pathogens 2021; 10:pathogens10050525. [PMID: 33925275 PMCID: PMC8145793 DOI: 10.3390/pathogens10050525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/08/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
The Mayaro virus (MAYV) is an arbovirus that circulates mainly in tropical forests or rural areas in Latin America and is transmitted mainly by Haemagogus mosquitoes. The objective of this study was to evaluate the vector competence, microbiome, and the presence of Wolbachia in three Aedes albopictus populations infected with MAYV. The vector competence was assessed based on viral infection and transmission by RT-qPCR. In addition, the microbiome was evaluated by amplification of the 16S rRNA V4 region and PCR to detect the presence of Wolbachia (strain wAlbA/wAlbB). Our results show that all three populations were susceptible to MAYV infection. The potential transmission of the MAYV was consistent in all populations of naïve mosquitoes injected (more than 50%). The microbiome analysis revealed 118 OTUs (operational taxonomic unit) from the three populations, 8 phyla, 15 classes, 26 orders, 35 families, 65 genera, and 53 species. All populations had Pseudomonas and Wolbachia as predominant genera. There was no difference between the variables for MAYV and Wolbachia (wAlbA or wAlbB) in the abdomen. However, in the head + thorax samples at 14 dpi, there was a difference between the two populations, indicating a possible correlation between the presence of Wolbachia (wAlbB) and infection. Overall, we show evidence that Ae. albopictus displays significant infection and transmission competence for the MAYV in the laboratory, and its bacterial microbiota play an important role in the host, mainly the strains of Wolbachia. The influence of the intestinal microbiota of Ae. albopictus is poorly known, and a better understanding of these interactions would open new perspectives for disease control through the manipulation of microbial communities. The exact contribution of this mosquito species to the transmission of the MAYV in the field remains to be confirmed.
Collapse
Affiliation(s)
- Thiago Nunes Pereira
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (T.N.P.); (F.D.C.)
| | - Fabiano Duarte Carvalho
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (T.N.P.); (F.D.C.)
| | - Jerônimo Nunes Rugani
- Grupo Taxonomia de Flebotomíneos e Epidemiologia das Leishmanioses, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil;
| | - Vanessa Rafaela de Carvalho
- Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, Brazil; (V.R.d.C.); (J.A.S.-N.)
- School of Agricultural Sciences, Central Multiuser Laboratory, São Paulo State University (UNESP), Botucatu 18610-034, Brazil
| | - Jaqueline Jarusevicius
- Institute of Biotechnology, São Paulo State University (UNESP), Botucatu 18607-440, Brazil;
| | - Jayme A. Souza-Neto
- Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, Brazil; (V.R.d.C.); (J.A.S.-N.)
- School of Agricultural Sciences, Central Multiuser Laboratory, São Paulo State University (UNESP), Botucatu 18610-034, Brazil
| | - Luciano Andrade Moreira
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (T.N.P.); (F.D.C.)
- Correspondence:
| |
Collapse
|
53
|
Jeffries CL, Cansado-Utrilla C, Beavogui AH, Stica C, Lama EK, Kristan M, Irish SR, Walker T. Evidence for natural hybridization and novel Wolbachia strain superinfections in the Anopheles gambiae complex from Guinea. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202032. [PMID: 33868697 PMCID: PMC8025300 DOI: 10.1098/rsos.202032] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/15/2021] [Indexed: 05/05/2023]
Abstract
Wolbachia, a widespread bacterium which can influence mosquito-borne pathogen transmission, has recently been detected within Anopheles (An.) species that are malaria vectors in Sub-Saharan Africa. Although studies have reported Wolbachia strains in the An. gambiae complex, apparent low density and prevalence rates require confirmation. In this study, wild Anopheles mosquitoes collected from two regions of Guinea were investigated. In contrast with previous studies, RNA was extracted from adult females (n = 516) to increase the chances for the detection of actively expressed Wolbachia genes, determine Wolbachia prevalence rates and estimate relative strain densities. Molecular confirmation of mosquito species and Wolbachia multilocus sequence typing (MLST) were carried out to analyse phylogenetic relationships of mosquito hosts and newly discovered Wolbachia strains. Strains were detected in An. melas (prevalence rate of 11.6%-16/138) and hybrids between An. melas and An. gambiae sensu stricto (prevalence rate of 40.0%-6/15) from Senguelen in the Maferinyah region. Furthermore, a novel high-density strain, termed wAnsX, was found in an unclassified Anopheles species. The discovery of novel Wolbachia strains (particularly in members, and hybrids, of the An. gambiae complex) provides further candidate strains that could be used for future Wolbachia-based malaria biocontrol strategies.
Collapse
Affiliation(s)
- Claire L. Jeffries
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Cintia Cansado-Utrilla
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Abdoul H. Beavogui
- Centre National de Formation et de Recherche en Santé Rurale de Mafèrinyah B.P. 2649, Conakry, Guinea
| | - Caleb Stica
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Eugene K. Lama
- Programme National de Lutte contre le Paludisme, Guinée, B.P. 6339 Conakry, Guinea
| | - Mojca Kristan
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Seth R. Irish
- The US President's Malaria Initiative and Entomology Branch, Centers for Disease Control and Prevention, Atlanta, GA 30329-4027, USA
| | - Thomas Walker
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
54
|
Fallon AM. DNA recombination and repair in Wolbachia: RecA and related proteins. Mol Genet Genomics 2021; 296:437-456. [PMID: 33507381 DOI: 10.1007/s00438-020-01760-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022]
Abstract
Wolbachia is an obligate intracellular bacterium that has undergone extensive genomic streamlining in its arthropod and nematode hosts. Because the gene encoding the bacterial DNA recombination/repair protein RecA is not essential in Escherichia coli, abundant expression of this protein in a mosquito cell line persistently infected with Wolbachia strain wStri was unexpected. However, RecA's role in the lytic cycle of bacteriophage lambda provides an explanation for retention of recA in strains known to encode lambda-like WO prophages. To examine DNA recombination/repair capacities in Wolbachia, a systematic examination of RecA and related proteins in complete or nearly complete Wolbachia genomes from supergroups A, B, C, D, E, F, J and S was undertaken. Genes encoding proteins including RecA, RecF, RecO, RecR, RecG and Holliday junction resolvases RuvA, RuvB and RuvC are uniformly absent from Wolbachia in supergroup C and have reduced representation in supergroups D and J, suggesting that recombination and repair activities are compromised in nematode-associated Wolbachia, relative to strains that infect arthropods. An exception is filarial Wolbachia strain wMhie, assigned to supergroup F, which occurs in a nematode host from a poikilothermic lizard. Genes encoding LexA and error-prone polymerases are absent from all Wolbachia genomes, suggesting that the SOS functions induced by RecA-mediated activation of LexA do not occur, despite retention of genes encoding a few proteins that respond to LexA induction in E. coli. Three independent E. coli accessions converge on a single Wolbachia UvrD helicase, which interacts with mismatch repair proteins MutS and MutL, encoded in nearly all Wolbachia genomes. With the exception of MutL, which has been mapped to a eukaryotic association module in Phage WO, proteins involved in recombination/repair are uniformly represented by single protein annotations. Putative phage-encoded MutL proteins are restricted to Wolbachia supergroups A and B and show higher amino acid identity than chromosomally encoded MutL orthologs. This analysis underscores differences between nematode and arthropod-associated Wolbachia and describes aspects of DNA metabolism that potentially impact development of procedures for transformation and genetic manipulation of Wolbachia.
Collapse
Affiliation(s)
- Ann M Fallon
- Department of Entomology, University of Minnesota, 1980 Folwell Ave, St. Paul, MN, 55108, USA.
| |
Collapse
|
55
|
Pimentel AC, Cesar CS, Martins M, Cogni R. The Antiviral Effects of the Symbiont Bacteria Wolbachia in Insects. Front Immunol 2021; 11:626329. [PMID: 33584729 PMCID: PMC7878553 DOI: 10.3389/fimmu.2020.626329] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022] Open
Abstract
Wolbachia is a maternally transmitted bacterium that lives inside arthropod cells. Historically, it was viewed primarily as a parasite that manipulates host reproduction, but more recently it was discovered that Wolbachia can also protect Drosophila species against infection by RNA viruses. Combined with Wolbachia's ability to invade insect populations due to reproductive manipulations, this provides a way to modify mosquito populations to prevent them transmitting viruses like dengue. In this review, we discuss the main advances in the field since Wolbachia's antiviral effect was discovered 12 years ago, identifying current research gaps and potential future developments. We discuss that the antiviral effect works against a broad range of RNA viruses and depends on the Wolbachia lineage. We describe what is known about the mechanisms behind viral protection, and that recent studies suggest two possible mechanisms: activation of host immunity or competition with virus for cellular resources. We also discuss how association with Wolbachia may influence the evolution of virus defense on the insect host genome. Finally, we investigate whether the antiviral effect occurs in wild insect populations and its ecological relevance as a major antiviral component in insects.
Collapse
Affiliation(s)
| | | | | | - Rodrigo Cogni
- Department of Ecology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
56
|
Ding H, Yeo H, Puniamoorthy N. Wolbachia infection in wild mosquitoes (Diptera: Culicidae): implications for transmission modes and host-endosymbiont associations in Singapore. Parasit Vectors 2020; 13:612. [PMID: 33298138 PMCID: PMC7724734 DOI: 10.1186/s13071-020-04466-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/05/2020] [Indexed: 12/31/2022] Open
Abstract
Background Wolbachia are intracellular bacterial endosymbionts found in most insect lineages. In mosquitoes, the influence of these endosymbionts on host reproduction and arboviral transmission has spurred numerous studies aimed at using Wolbachia infection as a vector control technique. However, there are several knowledge gaps in the literature and little is known about natural Wolbachia infection across species, their transmission modes, or associations between various Wolbachia lineages and their hosts. This study aims to address these gaps by exploring mosquito-Wolbachia associations and their evolutionary implications. Methods We conducted tissue-specific polymerase chain reaction screening for Wolbachia infection in the leg, gut and reproductive tissues of wild mosquitoes from Singapore using the Wolbachia surface protein gene (wsp) molecular marker. Mosquito-Wolbachia associations were explored using three methods—tanglegram, distance-based, and event-based methods—and by inferred instances of vertical transmission and host shifts. Results Adult mosquitoes (271 specimens) representing 14 genera and 40 species were screened for Wolbachia. Overall, 21 species (51.2%) were found positive for Wolbachia, including five in the genus Aedes and five in the genus Culex. To our knowledge, Wolbachia infections have not been previously reported in seven of these 21 species: Aedes nr. fumidus, Aedes annandalei, Uranotaenia obscura, Uranotaenia trilineata, Verrallina butleri, Verrallina sp. and Zeugnomyia gracilis. Wolbachia were predominantly detected in the reproductive tissues, which is an indication of vertical transmission. However, Wolbachia infection rates varied widely within a mosquito host species. There was no clear signal of cophylogeny between the mosquito hosts and the 12 putative Wolbachia strains observed in this study. Host shift events were also observed. Conclusions Our results suggest that the mosquito-Wolbachia relationship is complex and that combinations of transmission modes and multiple evolutionary events likely explain the observed distribution of Wolbachia diversity across mosquito hosts. These findings have implications for a better understanding of the diversity and ecology of Wolbachia and for their utility as biocontrol agents.
Collapse
Affiliation(s)
- Huicong Ding
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Huiqing Yeo
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Nalini Puniamoorthy
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore.
| |
Collapse
|
57
|
Enhancement of Aedes aegypti susceptibility to dengue by Wolbachia is not supported. Nat Commun 2020; 11:6111. [PMID: 33257651 PMCID: PMC7705685 DOI: 10.1038/s41467-020-19830-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 10/27/2020] [Indexed: 11/08/2022] Open
|
58
|
Torres R, Hernandez E, Flores V, Ramirez JL, Joyce AL. Wolbachia in mosquitoes from the Central Valley of California, USA. Parasit Vectors 2020; 13:558. [PMID: 33168082 PMCID: PMC7653878 DOI: 10.1186/s13071-020-04429-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/24/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Wolbachia bacteria are widely distributed throughout terrestrial arthropod species. These bacteria can manipulate reproduction and influence the vector competence of their hosts. Recently, Wolbachia have been integrated into vector control programmes for mosquito management. A number of supergroups and strains exist for Wolbachia, and they have yet to be characterized for many mosquito species. In this study, we examined Wolbachia prevalence and their phylogenetic relationship to other Wolbachia, using mosquitoes collected in Merced County in the Central Valley of California. METHODS Adult mosquitoes were collected from 85 sites in Merced County, California in 2017 and 2018. Traditional and quantitative PCR were used to investigate the presence or absence and the density of Wolbachia, using Wolbachia-specific 16S rRNA and Wolbachia-surface protein (wsp) genes. The supergroup of Wolbachia was determined, and Multilocus Sequence Typing (MLST) by sequencing five housekeeping genes (coxA, gatB, ftsZ, hcpA and fbpA) was also used to determine Wolbachia supergroup as well as strain. RESULTS Over 7100 mosquitoes of 12 species were collected: Aedes melanimon, Ae. nigromaculis, Ae. vexans, Ae. aegypti, Culex pipiens, Cx. stigmatosoma, Cx. tarsalis, Anopheles franciscanus, An. freeborni, An. punctipennis, Culiseta incidens and Cs. inornata. Eight showed evidence of Wolbachia. To our knowledge, this study is the first to report detection of Wolbachia in five of these species (Ae. melanimon, Cx. stigmatosoma, Cx. tarsalis, Cs. incidens and Cs. inornata). Culex pipiens and Cx. stigmatosoma had a high frequency and density of Wolbachia infection, which grouped into supergroup B; Cs. inornata clustered with supergroup A. MLST comparisons identified Cx. pipiens and Cx. stigmatosoma as wPip strain type 9 supergroup B. Six species had moderate to low (< 14%) frequencies of Wolbachia. Four species were negative, Ae. nigromaculis, An. franciscanus, An. freeborni and Ae. aegypti. CONCLUSIONS New records of Wolbachia detection were found in mosquitoes from Merced County, California. Culex stigmatosoma and Cs. inornata were new records for Wolbachia supergroup B and A, respectively. Other species with Wolbachia occurred with low frequency and low density. Detection of Wolbachia in mosquitoes can be used to inform potential vector control applications. Future study of Wolbachia within Cx. stigmatosoma and Cs. inornata in California and through the range of these species could further explore Wolbachia infection in these two species.
Collapse
Affiliation(s)
- Ryan Torres
- Public Health, University of California, 5200 North Lake Road, Merced, CA 95343 USA
| | - Eunis Hernandez
- Public Health, University of California, 5200 North Lake Road, Merced, CA 95343 USA
| | - Valeria Flores
- Public Health, University of California, 5200 North Lake Road, Merced, CA 95343 USA
| | - Jose Luis Ramirez
- USDA-ARS, NCAUR, Crop Protection Research, 1815 N. University, Peoria, IL 61604 USA
| | - Andrea L. Joyce
- Public Health, University of California, 5200 North Lake Road, Merced, CA 95343 USA
| |
Collapse
|
59
|
Wolbachia's Deleterious Impact on Aedes aegypti Egg Development: The Potential Role of Nutritional Parasitism. INSECTS 2020; 11:insects11110735. [PMID: 33120915 PMCID: PMC7692218 DOI: 10.3390/insects11110735] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 12/18/2022]
Abstract
Simple Summary Mosquito-borne viral diseases such as dengue, Zika and chikungunya cause a significant global health burden and are currently increasing in outbreak frequency and geographical reach. Wolbachia pipientis, an endosymbiotic bacterium, offers a solution to this. When Wolbachia is introduced into the main mosquito vector of these viruses, Aedes aegypti, it alters the mosquito’s reproductive biology, as well as reducing the ability of the mosquitoes to transmit viruses. These traits can be leveraged to reduce virus transmission within a community by mass releasing Wolbachia-infected mosquitoes. However, Wolbachia has some negative effects on Aedes aegypti fitness, particularly egg longevity, and the reason behind this remains ambiguous. Insect fitness is very important for the success for Wolbachia-biocontrol strategies as they rely on the released insects being competitive with the wild mosquito population. This review summarises the fitness effects of Wolbachia on Aedes aegypti and investigates the possible contribution of Wolbachia as a nutritional parasite in lowering host fitness. It proposes the next stages of research that can be conducted to address nutritional parasitism to aid in the expansion of Wolbachia-based disease management programs worldwide. Abstract The artificial introduction of the endosymbiotic bacterium, Wolbachia pipientis, into Aedes (Ae.) aegypti mosquitoes reduces the ability of mosquitoes to transmit human pathogenic viruses and is now being developed as a biocontrol tool. Successful introgression of Wolbachia-carrying Ae. aegypti into native mosquito populations at field sites in Australia, Indonesia and Malaysia has been associated with reduced disease prevalence in the treated community. In separate field programs, Wolbachia is also being used as a mosquito population suppression tool, where the release of male only Wolbachia-infected Ae. aegypti prevents the native mosquito population from producing viable eggs, subsequently suppressing the wild population. While these technologies show great promise, they require mass rearing of mosquitoes for implementation on a scale that has not previously been done. In addition, Wolbachia induces some negative fitness effects on Ae. aegypti. While these fitness effects differ depending on the Wolbachia strain present, one of the most consistent and significant impacts is the shortened longevity and viability of eggs. This review examines the body of evidence behind Wolbachia’s negative effect on eggs, assesses nutritional parasitism as a key cause and considers how these impacts could be overcome to achieve efficient large-scale rearing of these mosquitoes.
Collapse
|
60
|
Stable Introduction of Plant-Virus-Inhibiting Wolbachia into Planthoppers for Rice Protection. Curr Biol 2020; 30:4837-4845.e5. [PMID: 33035486 DOI: 10.1016/j.cub.2020.09.033] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/19/2020] [Accepted: 09/09/2020] [Indexed: 01/15/2023]
Abstract
Progress has been made in developing the maternally inherited endosymbiotic bacterium Wolbachia as a tool for protecting humans from mosquito-borne diseases. In contrast, Wolbachia-based approaches have not yet been developed for the protection of plants from insect pests and their associated diseases, with a major challenge being the establishment of artificial Wolbachia infections expressing desired characteristics in the hemipterans that transmit the majority of plant viruses. Here, we report stable introduction of Wolbachia into the brown planthopper, Nilaparvata lugens, the most destructive rice pest that annually destroys millions of hectares of staple crops. The Wolbachia strain wStri from the small brown planthopper, Laodelphax striatellus, was transferred to this new host, where it showed high levels of cytoplasmic incompatibility, enabling rapid invasion of laboratory populations. Furthermore, wStri inhibited infection and transmission of Rice ragged stunt virus and mitigated virus-induced symptoms in rice plants, opening up the development of Wolbachia-based strategies against major agricultural pests and their transmitted pathogens. VIDEO ABSTRACT.
Collapse
|
61
|
Manokaran G, Flores HA, Dickson CT, Narayana VK, Kanojia K, Dayalan S, Tull D, McConville MJ, Mackenzie JM, Simmons CP. Modulation of acyl-carnitines, the broad mechanism behind Wolbachia-mediated inhibition of medically important flaviviruses in Aedes aegypti. Proc Natl Acad Sci U S A 2020; 117:24475-24483. [PMID: 32913052 PMCID: PMC7533870 DOI: 10.1073/pnas.1914814117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 07/17/2020] [Indexed: 01/05/2023] Open
Abstract
Wolbachia-infected mosquitoes are refractory to flavivirus infections, but the role of lipids in Wolbachia-mediated virus blocking remains to be elucidated. Here, we use liquid chromatography mass spectrometry to provide a comprehensive picture of the lipidome of Aedes aegypti (Aag2) cells infected with Wolbachia only, either dengue or Zika virus only, and Wolbachia-infected Aag2 cells superinfected with either dengue or Zika virus. This approach identifies a class of lipids, acyl-carnitines, as being down-regulated during Wolbachia infection. Furthermore, treatment with an acyl-carnitine inhibitor assigns a crucial role for acyl-carnitines in the replication of dengue and Zika viruses. In contrast, depletion of acyl-carnitines increases Wolbachia density while addition of commercially available acyl-carnitines impairs Wolbachia production. Finally, we show an increase in flavivirus infection of Wolbachia-infected cells with the addition of acyl-carnitines. This study uncovers a previously unknown role for acyl-carnitines in this tripartite interaction that suggests an important and broad mechanism that underpins Wolbachia-mediated pathogen blocking.
Collapse
Affiliation(s)
- Gayathri Manokaran
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3000, Australia;
- Institute for Vector Borne Disease, Monash University, Clayton, Melbourne, VIC 3168, Australia
| | - Heather A Flores
- Institute for Vector Borne Disease, Monash University, Clayton, Melbourne, VIC 3168, Australia
| | - Conor T Dickson
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3000, Australia
| | - Vinod K Narayana
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3000, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Komal Kanojia
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3000, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Saravanan Dayalan
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3000, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Dedreia Tull
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3000, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Malcolm J McConville
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3000, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Jason M Mackenzie
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3000, Australia
| | - Cameron P Simmons
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3000, Australia
- Institute for Vector Borne Disease, Monash University, Clayton, Melbourne, VIC 3168, Australia
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, District 5, Ho Chi Minh City, Vietnam
| |
Collapse
|
62
|
Wong ML, Liew JWK, Wong WK, Pramasivan S, Mohamed Hassan N, Wan Sulaiman WY, Jeyaprakasam NK, Leong CS, Low VL, Vythilingam I. Natural Wolbachia infection in field-collected Anopheles and other mosquito species from Malaysia. Parasit Vectors 2020; 13:414. [PMID: 32787974 PMCID: PMC7425011 DOI: 10.1186/s13071-020-04277-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/03/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The endosymbiont bacterium Wolbachia is maternally inherited and naturally infects some filarial nematodes and a diverse range of arthropods, including mosquito vectors responsible for disease transmission in humans. Previously, it has been found infecting most mosquito species but absent in Anopheles and Aedes aegypti. However, recently these two mosquito species were found to be naturally infected with Wolbachia. We report here the extent of Wolbachia infections in field-collected mosquitoes from Malaysia based on PCR amplification of the Wolbachia wsp and 16S rRNA genes. METHODS The prevalence of Wolbachia in Culicinae mosquitoes was assessed via PCR with wsp primers. For some of the mosquitoes, in which the wsp primers failed to amplify a product, Wolbachia screening was performed using nested PCR targeting the 16S rRNA gene. Wolbachia sequences were aligned using Geneious 9.1.6 software, analyzed with BLAST, and the most similar sequences were downloaded. Phylogenetic analyses were carried out with MEGA 7.0 software. Graphs were drawn with GraphPad Prism 8.0 software. RESULTS A total of 217 adult mosquitoes representing 26 mosquito species were screened. Of these, infections with Wolbachia were detected in 4 and 15 mosquito species using wsp and 16S rRNA primers, respectively. To our knowledge, this is the first time Wolbachia was detected using 16S rRNA gene amplification, in some Anopheles species (some infected with Plasmodium), Culex sinensis, Culex vishnui, Culex pseudovishnui, Mansonia bonneae and Mansonia annulifera. Phylogenetic analysis based on wsp revealed Wolbachia from most of the mosquitoes belonged to Wolbachia Supergroup B. Based on 16S rRNA phylogenetic analysis, the Wolbachia strain from Anopheles mosquitoes were more closely related to Wolbachia infecting Anopheles from Africa than from Myanmar. CONCLUSIONS Wolbachia was found infecting Anopheles and other important disease vectors such as Mansonia. Since Wolbachia can affect its host by reducing the life span and provide resistance to pathogen infection, several studies have suggested it as a potential innovative tool for vector/vector-borne disease control. Therefore, it is important to carry out further studies on natural Wolbachia infection in vector mosquitoes' populations as well as their long-term effects in new hosts and pathogen suppression.
Collapse
Affiliation(s)
- Meng Li Wong
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Jonathan Wee Kent Liew
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Wai Kit Wong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sandthya Pramasivan
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Wan Yusoff Wan Sulaiman
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Cherng Shii Leong
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Van Lun Low
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
63
|
Sucupira PHF, Ferreira ÁGA, Leite THJF, de Mendonça SF, Ferreira FV, Rezende FO, Marques JT, Moreira LA. The RNAi Pathway Is Important to Control Mayaro Virus Infection in Aedes aegypti but not for Wolbachia-Mediated Protection. Viruses 2020; 12:v12080871. [PMID: 32784948 PMCID: PMC7547387 DOI: 10.3390/v12080871] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 01/02/2023] Open
Abstract
Mayaro virus (MAYV), a sylvatic arbovirus belonging to the Togaviridae family and Alphavirus genus, is responsible for an increasing number of outbreaks in several countries of Central and South America. Despite Haemagogus janthinomys being identified as the main vector of MAYV, laboratory studies have already demonstrated the competence of Aedes aegypti to transmit MAYV. It has also been demonstrated that the WolbachiawMel strain is able to impair the replication and transmission of MAYV in Ae. aegypti. In Ae. aegypti, the small interfering RNA (siRNA) pathway is an important antiviral mechanism; however, it remains unclear whether siRNA pathway acts against MAYV infection in Ae. aegypti. The main objective of this study was to determine the contribution of the siRNA pathway in the control of MAYV infection. Thus, we silenced the expression of AGO2, an essential component of the siRNA pathway, by injecting dsRNA-targeting AGO2 (dsAGO2). Our results showed that AGO2 is required to control MAYV replication upon oral infection in Wolbachia-free Ae. aegypti. On the other hand, we found that Wolbachia-induced resistance to MAYV in Ae. aegypti is independent of the siRNA pathway. Our study brought new information regarding the mechanism of viral protection, as well as on Wolbachia mediated interference.
Collapse
Affiliation(s)
- Pedro H. F. Sucupira
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou – Fiocruz, Belo Horizonte, MG 30190-002, Brazil; (P.H.F.S.); (Á.G.A.F.); (S.F.d.M.); (F.O.R.)
| | - Álvaro G. A. Ferreira
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou – Fiocruz, Belo Horizonte, MG 30190-002, Brazil; (P.H.F.S.); (Á.G.A.F.); (S.F.d.M.); (F.O.R.)
| | - Thiago H. J. F. Leite
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627-Pampulha-Belo Horizonte-MG, CEP 30270-901, Brazil; (T.H.J.F.L.); (F.V.F.); (J.T.M.)
| | - Silvana F. de Mendonça
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou – Fiocruz, Belo Horizonte, MG 30190-002, Brazil; (P.H.F.S.); (Á.G.A.F.); (S.F.d.M.); (F.O.R.)
| | - Flávia V. Ferreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627-Pampulha-Belo Horizonte-MG, CEP 30270-901, Brazil; (T.H.J.F.L.); (F.V.F.); (J.T.M.)
| | - Fernanda O. Rezende
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou – Fiocruz, Belo Horizonte, MG 30190-002, Brazil; (P.H.F.S.); (Á.G.A.F.); (S.F.d.M.); (F.O.R.)
| | - João T. Marques
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627-Pampulha-Belo Horizonte-MG, CEP 30270-901, Brazil; (T.H.J.F.L.); (F.V.F.); (J.T.M.)
- Université de Strasbourg, CNRS UPR9022, Inserm U1257, 67084 Strasbourg, France
| | - Luciano A. Moreira
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou – Fiocruz, Belo Horizonte, MG 30190-002, Brazil; (P.H.F.S.); (Á.G.A.F.); (S.F.d.M.); (F.O.R.)
- Correspondence: ; Tel.: +55-31-3349-7776
| |
Collapse
|
64
|
Fraser JE, O’Donnell TB, Duyvestyn JM, O’Neill SL, Simmons CP, Flores HA. Novel phenotype of Wolbachia strain wPip in Aedes aegypti challenges assumptions on mechanisms of Wolbachia-mediated dengue virus inhibition. PLoS Pathog 2020; 16:e1008410. [PMID: 32726353 PMCID: PMC7416964 DOI: 10.1371/journal.ppat.1008410] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/10/2020] [Accepted: 05/29/2020] [Indexed: 12/31/2022] Open
Abstract
The bacterial endosymbiont Wolbachia is a biocontrol tool that inhibits the ability of the Aedes aegypti mosquito to transmit positive-sense RNA viruses such as dengue and Zika. Growing evidence indicates that when Wolbachia strains wMel or wAlbB are introduced into local mosquito populations, human dengue incidence is reduced. Despite the success of this novel intervention, we still do not fully understand how Wolbachia protects mosquitoes from viral infection. Here, we demonstrate that the Wolbachia strain wPip does not inhibit virus infection in Ae. aegypti. We have leveraged this novel finding, and a panel of Ae. aegypti lines carrying virus-inhibitory (wMel and wAlbB) and non-inhibitory (wPip) strains in a common genetic background, to rigorously test a number of hypotheses about the mechanism of Wolbachia-mediated virus inhibition. We demonstrate that, contrary to previous suggestions, there is no association between a strain's ability to inhibit dengue infection in the mosquito and either its typical density in the midgut or salivary glands, or the degree to which it elevates innate immune response pathways in the mosquito. These findings, and the experimental platform provided by this panel of genetically comparable mosquito lines, clear the way for future investigations to define how Wolbachia prevents Ae. aegypti from transmitting viruses.
Collapse
Affiliation(s)
- Johanna E. Fraser
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, Australia
| | - Tanya B. O’Donnell
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, Australia
| | - Johanna M. Duyvestyn
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, Australia
| | - Scott L. O’Neill
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, Australia
| | - Cameron P. Simmons
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, Australia
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Heather A. Flores
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, Australia
| |
Collapse
|
65
|
Wangkeeree J, Tewaruxsa P, Roddee J, Hanboonsong Y. Wolbachia (Rickettsiales: Alphaproteobacteria) Infection in the Leafhopper Vector of Sugarcane White Leaf Disease. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5860036. [PMID: 32559297 PMCID: PMC7304560 DOI: 10.1093/jisesa/ieaa053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Indexed: 06/03/2023]
Abstract
Wolbachia is a maternally inherited bacterium ubiquitous in insects that has attracted interest as a prospective insect pest-control agent. Here, we detected and characterized Wolbachia in the leafhoppers Matsumuratettix hiroglyphicus (Matsumura) (Cicadellidae: Hemiptera) and Yamatotettix flavovittatus Matsumura (Cicadellidae: Hemiptera), insect vectors of the phytoplasma that cause white leaf disease in sugarcane. The 16S rRNA and wsp gene markers revealed that Wolbachia was not present in the M. hiroglyphicus but naturally occurs in Y. flavovittatus. Additionally, the infection rates in adult leafhoppers ranged from 0 to 100% depending on geographic location. Moreover, Wolbachia was detected in the eggs and first- to fifth-instar nymphs of Y. flavovittatus. A phylogenic tree of Wolbachia indicated that it resided in the monophyletic supergroup B clade and clustered in the Ori subgroup. Furthermore, fluorescence in situ hybridization revealed that Wolbachia localized to the egg apices, randomly distributed in the egg cytoplasm, and was concentrated in the nymph and adult bacteriomes, as well as occasional detection in the thorax and abdomen. To the best of our knowledge, the present study is the first to demonstrate the prevalence of Wolbachia in the leafhopper Y. flavovittatus. The obtained results would provide useful information for the future development of Wolbachia as a biological control agent for the leafhopper vectors.
Collapse
Affiliation(s)
- Jureemart Wangkeeree
- Department of Agricultural Technology, Faculty of Science and Technology, Thammasat University Rangsit Centre, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Panida Tewaruxsa
- Department of Agricultural Technology, Faculty of Science and Technology, Thammasat University Rangsit Centre, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Jariya Roddee
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Suranaree, Muang, Nakhon Ratchasima, Thailand
| | - Yupa Hanboonsong
- Department of Entomology, Faculty of Agriculture, Khon Kaen University, Nai Muang, Muang, Khon Kaen, Thailand
| |
Collapse
|
66
|
Multiple Wolbachia strains provide comparative levels of protection against dengue virus infection in Aedes aegypti. PLoS Pathog 2020; 16:e1008433. [PMID: 32282862 PMCID: PMC7179939 DOI: 10.1371/journal.ppat.1008433] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/23/2020] [Accepted: 02/25/2020] [Indexed: 01/01/2023] Open
Abstract
The insect bacterium Wolbachia pipientis is being introgressed into Aedes aegypti populations as an intervention against the transmission of medically important arboviruses. Here we compare Ae. aegypti mosquitoes infected with wMelCS or wAlbB to the widely used wMel Wolbachia strain on an Australian nuclear genetic background for their susceptibility to infection by dengue virus (DENV) genotypes spanning all four serotypes. All Wolbachia-infected mosquitoes were more resistant to intrathoracic DENV challenge than their wildtype counterparts. Blocking of DENV replication was greatest by wMelCS. Conversely, wAlbB-infected mosquitoes were more susceptible to whole body infection than wMel and wMelCS. We extended these findings via mosquito oral feeding experiments, using viremic blood from 36 acute, hospitalised dengue cases in Vietnam, additionally including wMel and wildtype mosquitoes on a Vietnamese nuclear genetic background. As above, wAlbB was less effective at blocking DENV replication in the abdomen compared to wMel and wMelCS. The transmission potential of all Wolbachia-infected mosquito lines (measured by the presence/absence of infectious DENV in mosquito saliva) after 14 days, was significantly reduced compared to their wildtype counterparts, and lowest for wMelCS and wAlbB. These data support the use of wAlbB and wMelCS strains for introgression field trials and the biocontrol of DENV transmission. Furthermore, despite observing significant differences in transmission potential between wildtype mosquitoes from Australia and Vietnam, no difference was observed between wMel-infected mosquitoes from each background suggesting that Wolbachia may override any underlying variation in DENV transmission potential. Aedes aegypti transmit a number of medically important arboviruses, including dengue, Zika, chikungunya, Mayaro and yellow fever viruses. Over the past 50 years, the burden of Ae. aegypti-transmitted disease has significantly increased–underscoring how current methods of vector control are unable to cope with this problem. Wolbachia-based biocontrol methods show extreme promise in reducing the global burden of vector-borne disease. The wMel strain, widely being used in field trials around the world, substantially reduces the ability of Ae. aegypti mosquitoes to transmit dengue, Zika, and other viruses. Here we describe a comprehensive comparative study of the viral blocking abilities of wMel to wMelCS and wAlbB which have previously been shown to have stronger viral blocking or an expanded utility in extreme environments, respectively. Using two different methods to measure viral replication and transmission potential, we show that both strains provide improved viral protection over wMel in the lab supporting further examination in field trials. We further compare the transmission potential of wMel in two different genetic backgrounds and find that wMel provides equivalent levels of viral blocking despite differences observed in wildtype mosquitoes, suggesting that viral blocking induced by wMel may override any underlying variation for DENV transmission potential.
Collapse
|
67
|
Alzate D, Cajigas S, Robledo S, Muskus C, Orozco J. Genosensors for differential detection of Zika virus. Talanta 2020; 210:120648. [DOI: 10.1016/j.talanta.2019.120648] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 01/26/2023]
|
68
|
Computational evidence for antitoxins associated with RelE/ParE, RatA, Fic, and AbiEii-family toxins in Wolbachia genomes. Mol Genet Genomics 2020; 295:891-909. [DOI: 10.1007/s00438-020-01662-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
|
69
|
Huang W, Wang S, Jacobs-Lorena M. Use of Microbiota to Fight Mosquito-Borne Disease. Front Genet 2020; 11:196. [PMID: 32211030 PMCID: PMC7076131 DOI: 10.3389/fgene.2020.00196] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 02/19/2020] [Indexed: 11/13/2022] Open
Abstract
Mosquito-borne diseases cause more than 700 million people infected and one million people die (Caraballo and King, 2014). With the limitations of progress toward elimination imposed by insecticide- and drug-resistance, combined with the lack of vaccines, innovative strategies to fight mosquito-borne disease are urgently needed. In recent years, the use of mosquito microbiota has shown great potential for cutting down transmission of mosquito-borne pathogens. Here we review what is known about the mosquito microbiota and how this knowledge is being used to develop new ways to control mosquito-borne disease. We also discuss the challenges for the eventual release of genetically modified (GM) symbionts in the field.
Collapse
Affiliation(s)
- Wei Huang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Sibao Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
70
|
Mancini MV, Herd CS, Ant TH, Murdochy SM, Sinkins SP. Wolbachia strain wAu efficiently blocks arbovirus transmission in Aedes albopictus. PLoS Negl Trop Dis 2020; 14:e0007926. [PMID: 32155143 PMCID: PMC7083328 DOI: 10.1371/journal.pntd.0007926] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/20/2020] [Accepted: 01/17/2020] [Indexed: 12/22/2022] Open
Abstract
The global incidence of arboviral diseases transmitted by Aedes mosquitoes, including dengue, chikungunya, yellow fever, and Zika, has increased dramatically in recent decades. The release of Aedes aegypti carrying the maternally inherited symbiont Wolbachia as an intervention to control arboviruses is being trialled in several countries. However, these efforts are compromised in many endemic regions due to the co-localization of the secondary vector Aedes albopictus, the Asian tiger mosquito. Ae. albopictus has an expanding global distribution following incursions into a number of new territories. To date, only the wMel and wPip strains of Wolbachia have been reported to be transferred into and characterized in this vector. A Wolbachia strain naturally infecting Drosophila simulans, wAu, was selected for transfer into a Malaysian Ae. albopictus line to create a novel triple-strain infection. The newly generated line showed self-compatibility, moderate fitness cost and complete resistance to Zika and dengue infections.
Collapse
Affiliation(s)
| | - Christie S. Herd
- MRC- University of Glasgow- Centre for Virus Research, Glasgow, United Kingdom
| | - Thomas H. Ant
- MRC- University of Glasgow- Centre for Virus Research, Glasgow, United Kingdom
| | - Shivan M. Murdochy
- MRC- University of Glasgow- Centre for Virus Research, Glasgow, United Kingdom
| | - Steven P. Sinkins
- MRC- University of Glasgow- Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
71
|
Chouin‐Carneiro T, Ant TH, Herd C, Louis F, Failloux AB, Sinkins SP. Wolbachia strain wAlbA blocks Zika virus transmission in Aedes aegypti. MEDICAL AND VETERINARY ENTOMOLOGY 2020; 34:116-119. [PMID: 31120156 PMCID: PMC7027442 DOI: 10.1111/mve.12384] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/08/2019] [Accepted: 04/24/2019] [Indexed: 05/30/2023]
Abstract
Transinfections of the maternally transmitted endosymbiont Wolbachia pipientis can reduce RNA virus replication and prevent transmission by Aedes aegypti, and also have the capacity to invade wild-type populations, potentially reaching and maintaining high infection frequencies. Levels of virus transmission blocking are positively correlated with Wolbachia intracellular density. Despite reaching high densities in Ae. aegypti, transinfections of wAlbA, a strain native to Aedes albopictus, showed no blocking of Semliki Forest Virus in previous intrathoracic injection challenges. To further characterize wAlbA blocking in Ae. aegypti, adult females were intrathoracically challenged with Zika (ZIKV) and dengue viruses, and then fed a ZIKV-containing bloodmeal. No blocking was observed with either virus when challenged by intrathoracic injection. However, when ZIKV was delivered orally, wAlbA-infected females showed a significant reduction in viral replication and dissemination compared with uninfected controls, as well as a complete absence of virus in saliva. Although other Wolbachia strains have been shown to cause more robust viral blocking in Ae. aegypti, these findings demonstrate that, in principle, wAlbA could be used to reduce virus transmission in this species. Moreover, the results highlight the potential for underestimation of the strength of virus-blocking when based on intrathoracic injection compared with more natural oral challenges.
Collapse
Affiliation(s)
- T. Chouin‐Carneiro
- Department of Virology, Arboviruses and Insect VectorsInstitut PasteurParisFrance
| | - T. H. Ant
- MRC‐University of Glasgow Centre for Virus ResearchUniversity of GlasgowGlasgowU.K.
- Biomedical and Life SciencesLancaster UniversityLancasterU.K.
| | - C. Herd
- MRC‐University of Glasgow Centre for Virus ResearchUniversity of GlasgowGlasgowU.K.
- Biomedical and Life SciencesLancaster UniversityLancasterU.K.
| | - F. Louis
- Department of Virology, Arboviruses and Insect VectorsInstitut PasteurParisFrance
| | - A. B. Failloux
- Department of Virology, Arboviruses and Insect VectorsInstitut PasteurParisFrance
| | - S. P. Sinkins
- MRC‐University of Glasgow Centre for Virus ResearchUniversity of GlasgowGlasgowU.K.
- Biomedical and Life SciencesLancaster UniversityLancasterU.K.
| |
Collapse
|
72
|
Ant TH, Herd C, Louis F, Failloux AB, Sinkins SP. Wolbachia transinfections in Culex quinquefasciatus generate cytoplasmic incompatibility. INSECT MOLECULAR BIOLOGY 2020; 29:1-8. [PMID: 31194893 PMCID: PMC7027843 DOI: 10.1111/imb.12604] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/13/2019] [Accepted: 05/22/2019] [Indexed: 05/26/2023]
Abstract
Culex quinquefasciatus is an important mosquito vector of a number of viral and protozoan pathogens of humans and animals, and naturally carries the endosymbiont Wolbachia pipientis, strain wPip. Wolbachia are used in two distinct vector control strategies: firstly, population suppression caused by mating incompatibilities between mass-released transinfected males and wild females; and secondly, the spread of pathogen transmission-blocking strains through populations. Using embryonic microinjection, two novel Wolbachia transinfections were generated in C. quinquefasciatus using strains native to the mosquito Aedes albopictus: a wAlbB single infection, and a wPip plus wAlbA superinfection. The wAlbB infection showed full bidirectional cytoplasmic incompatibility (CI) with wild-type C. quinquefasciatus in reciprocal crosses. The wPipwAlbA superinfection showed complete unidirectional CI, and therefore population invasion potential. Whereas the wAlbB strain showed comparatively low overall densities, similar to the native wPip, the wPipwAlbA superinfection reached over 400-fold higher densities in the salivary glands compared to the native wPip, suggesting it may be a candidate for pathogen transmission blocking.
Collapse
Affiliation(s)
- T. H. Ant
- MRC‐University of Glasgow Centre for Virus ResearchUniversity of GlasgowGlasgowUK
- Biomedical and Life SciencesLancaster UniversityLancasterUK
| | - C. Herd
- MRC‐University of Glasgow Centre for Virus ResearchUniversity of GlasgowGlasgowUK
- Biomedical and Life SciencesLancaster UniversityLancasterUK
| | - F. Louis
- Department of Virology, Arboviruses and Insect VectorsInstitut PasteurParisFrance
| | - A. B. Failloux
- Department of Virology, Arboviruses and Insect VectorsInstitut PasteurParisFrance
| | - S. P. Sinkins
- MRC‐University of Glasgow Centre for Virus ResearchUniversity of GlasgowGlasgowUK
- Biomedical and Life SciencesLancaster UniversityLancasterUK
| |
Collapse
|
73
|
Nikolouli K, Sassù F, Mouton L, Stauffer C, Bourtzis K. Combining sterile and incompatible insect techniques for the population suppression of Drosophila suzukii. JOURNAL OF PEST SCIENCE 2020; 93:647-661. [PMID: 32132880 PMCID: PMC7028798 DOI: 10.1007/s10340-020-01199-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/28/2019] [Accepted: 01/16/2020] [Indexed: 05/13/2023]
Abstract
The spotted wing Drosophila, Drosophila suzukii, has recently invaded Europe and the Americas, and it is a major threat for a wide variety of commercial soft fruits both in open field and greenhouse production systems. D. suzukii infests a wide range of ripening fruits, leading to substantial yield and revenue losses. As the application of insecticides close to the harvest period poses great concerns, the development of an efficient environment-friendly control approach to fight D. suzukii is necessary. In this study, we exploited the sterile insect technique (SIT) in combination with Wolbachia symbiosis as a population suppression approach that can constitute a potential component of an area-wide integrated pest management program. We aimed to establish a combined SIT/incompatible insect technique (IIT) protocol that would require lower irradiation doses as a complementary tool for D. suzukii management. Two D. suzukii lines trans-infected with the Wolbachia wHa and wTei strains were irradiated at doses four times less than usual (e.g., 45 Gy), and the egg hatching and adult emergence were determined. Our results indicated that wHa and wTei females as well as wHa males were sterile at this low dose. The longevity, adult emergence and flight ability of adults were evaluated, and no major effect caused by irradiation was detected. Our data indicate that a SIT/IIT protocol can be a competent approach for D. suzukii management.
Collapse
Affiliation(s)
- K. Nikolouli
- Department of Forest and Soil Sciences, Boku, University of Natural Resources and Life Sciences, Vienna, Austria
- Insect Pest Control Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagramerstrasse 5, PO Box 100, 1400 Vienna, Austria
| | - F. Sassù
- Department of Forest and Soil Sciences, Boku, University of Natural Resources and Life Sciences, Vienna, Austria
- Insect Pest Control Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagramerstrasse 5, PO Box 100, 1400 Vienna, Austria
| | - L. Mouton
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, Université de Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - C. Stauffer
- Department of Forest and Soil Sciences, Boku, University of Natural Resources and Life Sciences, Vienna, Austria
| | - K. Bourtzis
- Insect Pest Control Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagramerstrasse 5, PO Box 100, 1400 Vienna, Austria
| |
Collapse
|
74
|
Ross PA, Axford JK, Yang Q, Staunton KM, Ritchie SA, Richardson KM, Hoffmann AA. Heatwaves cause fluctuations in wMel Wolbachia densities and frequencies in Aedes aegypti. PLoS Negl Trop Dis 2020; 14:e0007958. [PMID: 31971938 PMCID: PMC6977724 DOI: 10.1371/journal.pntd.0007958] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/27/2019] [Indexed: 11/21/2022] Open
Abstract
Aedes aegypti mosquitoes infected with the wMel strain of Wolbachia are being released into natural mosquito populations in the tropics as a way of reducing dengue transmission. High temperatures adversely affect wMel, reducing Wolbachia density and cytoplasmic incompatibility in some larval habitats that experience large temperature fluctuations. We monitored the impact of a 43.6°C heatwave on the wMel infection in a natural population in Cairns, Australia, where wMel was first released in 2011 and has persisted at a high frequency. Wolbachia infection frequencies in the month following the heatwave were reduced to 83% in larvae sampled directly from field habitats and 88% in eggs collected from ovitraps, but recovered to be near 100% four months later. Effects of the heatwave on wMel appeared to be stage-specific and delayed, with reduced frequencies and densities in field-collected larvae and adults reared from ovitraps but higher frequencies in field-collected adults. Laboratory experiments showed that the effects of heatwaves on cytoplasmic incompatibility and density are life stage-specific, with first instar larvae being the most vulnerable to temperature effects. Our results indicate that heatwaves in wMel-infected populations will have only temporary effects on Wolbachia frequencies and density once the infection has established in the population. Our results are relevant to ongoing releases of wMel-infected Ae. aegypti in several tropical countries. Mosquitoes infected with Wolbachia bacteria are being released in the tropics to replace natural mosquito populations and suppress dengue transmission. Aedes aegypti mosquitoes with the wMel strain of Wolbachia were first released in Cairns, Australia in 2011 and releases were then expanded to the entire city and surrounding suburbs. Today, wMel is at a high frequency within the Ae. aegypti population and local dengue transmission in Cairns has declined to nearly zero. Wolbachia infections are vulnerable to high temperatures and the ability of wMel to persist in populations and block dengue may be constrained by climate. Cairns experienced a record heatwave of 43.6°C in November 2018 and we wanted to see whether this affected the wMel-infected Ae. aegypti population. Our results show that the frequency and density of wMel declined after the heatwave, with effects depending on the mosquito life stage tested. When we monitored the population again in April 2019, wMel had returned to a high frequency. We suggest that heatwaves of the magnitude experienced in Cairns will not have long-term impacts on the wMel infection but may affect invasion during releases or interfere with dengue blockage. Heatwaves may affect interventions with wMel-infected Ae. aegypti that are being deployed in several countries. Effects may depend on the proportion of larval habitats that are protected from extreme temperature fluctuations.
Collapse
Affiliation(s)
- Perran A. Ross
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| | - Jason K. Axford
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Qiong Yang
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Kyran M. Staunton
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, Queensland, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Queensland, Australia
| | - Scott A. Ritchie
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, Queensland, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Queensland, Australia
| | - Kelly M. Richardson
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
75
|
Sicard M, Bonneau M, Weill M. Wolbachia prevalence, diversity, and ability to induce cytoplasmic incompatibility in mosquitoes. CURRENT OPINION IN INSECT SCIENCE 2019; 34:12-20. [PMID: 31247412 DOI: 10.1016/j.cois.2019.02.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
To protect humans and domestic animals from mosquito borne diseases, alternative methods to chemical insecticides have to be found. Pilot studies using the vertically transmitted bacterial endosymbiont Wolbachia were already launched in different parts of the world. Wolbachia can be used either in Incompatible Insect Technique (IIT), to decrease mosquito population, or to decrease the ability of mosquitoes to transmit pathogens. Not all mosquito species are naturally infected with Wolbachia: while in Culex pipiens and Aedes albopictus almost all individuals harbor Wolbachia, putative infections have to be further investigated in Anopheles species and in Aedes aegypti. All Wolbachia-based control methods rely on the ability of Wolbachia to induce cytoplasmic incompatibility (CI) resulting in embryonic death in incompatible crossings. Knowledge on CI diversity in mosquito is required to find the better Wolbachia-mosquito associations to optimize the success of both 'sterile insect' and 'pathogen blocking' Wolbachia-based methods.
Collapse
Affiliation(s)
- Mathieu Sicard
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France.
| | - Manon Bonneau
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Mylène Weill
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France.
| |
Collapse
|
76
|
Infection of Aedes albopictus Mosquito C6/36 Cells with the wMelpop Strain of Wolbachia Modulates Dengue Virus-Induced Host Cellular Transcripts and Induces Critical Sequence Alterations in the Dengue Viral Genome. J Virol 2019; 93:JVI.00581-19. [PMID: 31092581 DOI: 10.1128/jvi.00581-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/06/2019] [Indexed: 12/16/2022] Open
Abstract
Dengue virus (DENV) causes frequent epidemics infecting ∼390 million people annually in over 100 countries. There are no approved vaccines or antiviral drugs for treatment of infected patients. However, there is a novel approach to control DENV transmission by the mosquito vectors, Aedes aegypti and Aedes albopictus, using the Wolbachia symbiont. The wMelPop strain of Wolbachia suppresses DENV transmission and shortens the mosquito life span. However, the underlying mechanism is poorly understood. To clarify this mechanism, either naive A. albopictus (C6/36) or wMelPop-C6/36 cells were infected with DENV serotype 2 (DENV2). Analysis of host transcript profiles by transcriptome sequencing (RNAseq) revealed that the presence of wMelPop dramatically altered the mosquito host cell transcription in response to DENV2 infection. The viral RNA evolved from wMelPop-C6/36 cells contained low-frequency mutations (∼25%) within the coding region of transmembrane domain 1 (TMD1) of E protein. Mutations with >97% frequencies were distributed within other regions of E, the NS5 RNA-dependent RNA polymerase (NS5POL) domain, and the TMDs of NS2A, NS2B, and NS4B. Moreover, while DENV2-infected naive C6/36 cells showed syncytium formation, DENV2-infected wMelPop-C6/36 cells did not. The Wolbachia-induced mutant DENV2 can readily infect and replicate in naive C6/36 cells, whereas in mutant DENV2-infected BHK-21 or Vero cells, virus replication was delayed. In LLC-MK2 cells, the mutant failed to produce plaques. Additionally, in BHK-21 cells, many mutations in the viral genome reverted to the wild type (WT) and compensatory mutations in NS3 gene appeared. Our results indicate that wMelPop impacts significantly the interactions of DENV2 with mosquito and mammalian host cells.IMPORTANCE Mosquito-borne diseases are of global significance causing considerable morbidity and mortality throughout the world. Dengue virus (DENV; serotypes 1 to 4), a member of the Flavivirus genus of the Flaviviridae family, causes millions of infections annually. Development of a safe vaccine is hampered due to absence of cross-protection and increased risk in secondary infections due to antibody-mediated immune enhancement. Infection of vector mosquitoes with Wolbachia bacteria offers a novel countermeasure to suppress DENV transmission, but the mechanisms are poorly understood. In this study, the host transcription profiles and viral RNA sequences were analyzed in naive A. albopictus (C6/36) and wMelPop-C6/36 cells by RNAseq. Our results showed that the wMelPop symbiont caused profound changes in host transcription profiles and morphology of DENV2-infected C6/36 cells. Accumulation of several mutations throughout DENV2 RNA resulted in loss of infectivity of progeny virions. Our findings offer new insights into the mechanism of Wolbachia-mediated suppression of DENV transmission.
Collapse
|
77
|
Karungu S, Atoni E, Ogalo J, Mwaliko C, Agwanda B, Yuan Z, Hu X. Mosquitoes of Etiological Concern in Kenya and Possible Control Strategies. INSECTS 2019; 10:E173. [PMID: 31208124 PMCID: PMC6627689 DOI: 10.3390/insects10060173] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/21/2022]
Abstract
Kenya is among the most affected tropical countries with pathogen transmitting Culicidae vectors. For decades, insect vectors have contributed to the emergence and distribution of viral and parasitic pathogens. Outbreaks and diseases have a great impact on a country's economy, as resources that would otherwise be used for developmental projects are redirected to curb hospitalization cases and manage outbreaks. Infected invasive mosquito species have been shown to increasingly cross both local and global boarders due to the presence of increased environmental changes, trade, and tourism. In Kenya, there have been several mosquito-borne disease outbreaks such as the recent outbreaks along the coast of Kenya, involving chikungunya and dengue. This certainly calls for the implementation of strategies aimed at strengthening integrated vector management programs. In this review, we look at mosquitoes of public health concern in Kenya, while highlighting the pathogens they have been linked with over the years and across various regions. In addition, the major strategies that have previously been used in mosquito control and what more could be done to reduce or combat the menace caused by these hematophagous vectors are presented.
Collapse
Affiliation(s)
- Samuel Karungu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Evans Atoni
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Joseph Ogalo
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Caroline Mwaliko
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bernard Agwanda
- Mammalogy Section, National Museum of Kenya, P.O. Box 40658, Nairobi 00100, Kenya.
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Xiaomin Hu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
78
|
Farnesi LC, Belinato TA, Gesto JSM, Martins AJ, Bruno RV, Moreira LA. Embryonic development and egg viability of wMel-infected Aedes aegypti. Parasit Vectors 2019; 12:211. [PMID: 31060581 PMCID: PMC6503365 DOI: 10.1186/s13071-019-3474-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 04/30/2019] [Indexed: 01/12/2023] Open
Abstract
Background Aedes aegypti is a major disease vector in urban habitats, involved in the transmission of dengue, chikungunya and Zika. Despite innumerous attempts to contain disease outbreaks, there are neither efficient vaccines nor definite vector control methods nowadays. In recent years, an innovative strategy to control arboviruses, which exploits the endosymbiotic bacterium Wolbachia pipientis, emerged with great expectations. The success of the method depends on many aspects, including Wolbachia’s cytoplasmic incompatibility and pathogen interference phenotypes, as well as its effect on host fitness. In this work, we investigated the influence the Wolbachia strain wMel exerts on embryo development and egg viability and speculate on its field release use. Methods Wild-type (Br or Rockefeller) and Wolbachia-harboring specimens (wMelBr) were blood-fed and submitted to synchronous egg laying for embryo development assays. Samples were analyzed for morphological markers, developmental endpoint and egg resistance to desiccation (ERD). Quiescent egg viability over time was also assessed. Results wMelBr samples completed embryogenesis 2–3 hours later than wild-type. This delay was also observed through the onset of both morphological and physiological markers, respectively by the moments of germband extension and ERD acquisition. Following the end of embryonic development, wMelBr eggs were slightly less resistant to desiccation and showed reduced viability levels, which rapidly decayed after 40 days into quiescence, from approximately 75% to virtually 0% in less than a month. Conclusions Our data revealed that the wMel strain of Wolbachia slightly delays embryogenesis and also affects egg quality, both through reduced viability and desiccation resistance. These findings suggest that, although embryonic fitness is somehow compromised by wMel infection, an efficient host reproductive manipulation through cytoplasmic incompatibility seems sufficient to overcome these effects in nature and promote bacterial invasion, as shown by successful ongoing field implementation.
Collapse
Affiliation(s)
- Luana Cristina Farnesi
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Thiago Affonso Belinato
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil.,Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou, Fiocruz, Belo Horizonte, MG, Brazil
| | - João Silveira Moledo Gesto
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil.,Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou, Fiocruz, Belo Horizonte, MG, Brazil
| | - Ademir Jesus Martins
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Rafaela Vieira Bruno
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM)/CNPq, Rio de Janeiro, Brazil
| | - Luciano Andrade Moreira
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou, Fiocruz, Belo Horizonte, MG, Brazil. .,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM)/CNPq, Rio de Janeiro, Brazil.
| |
Collapse
|
79
|
Ross PA, Ritchie SA, Axford JK, Hoffmann AA. Loss of cytoplasmic incompatibility in Wolbachia-infected Aedes aegypti under field conditions. PLoS Negl Trop Dis 2019; 13:e0007357. [PMID: 31002720 PMCID: PMC6493766 DOI: 10.1371/journal.pntd.0007357] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/01/2019] [Accepted: 04/02/2019] [Indexed: 01/21/2023] Open
Abstract
Wolbachia bacteria are now being introduced into Aedes aegypti mosquito populations for dengue control. When Wolbachia infections are at a high frequency, they influence the local transmission of dengue by direct virus blocking as well as deleterious effects on vector mosquito populations. However, the effectiveness of this strategy could be influenced by environmental temperatures that decrease Wolbachia density, thereby reducing the ability of Wolbachia to invade and persist in the population and block viruses. We reared wMel-infected Ae. aegypti larvae in the field during the wet season in Cairns, North Queensland. Containers placed in the shade produced mosquitoes with a high Wolbachia density and little impact on cytoplasmic incompatibility. However, in 50% shade where temperatures reached 39°C during the day, wMel-infected males partially lost their ability to induce cytoplasmic incompatibility and females had greatly reduced egg hatch when crossed to infected males. In a second experiment under somewhat hotter conditions (>40°C in 50% shade), field-reared wMel-infected females had their egg hatch reduced to 25% when crossed to field-reared wMel-infected males. Wolbachia density was reduced in 50% shade for both sexes in both experiments, with some mosquitoes cleared of their Wolbachia infections entirely. To investigate the critical temperature range for the loss of Wolbachia infections, we held Ae. aegypti eggs in thermocyclers for one week at a range of cyclical temperatures. Adult wMel density declined when eggs were held at 26–36°C or above with complete loss at 30–40°C, while the density of wAlbB remained high until temperatures were lethal. These findings suggest that high temperature effects on Wolbachia are potentially substantial when breeding containers are exposed to partial sunlight but not shade. Heat stress could reduce the ability of Wolbachia infections to invade mosquito populations in some locations and may compromise the ability of Wolbachia to block virus transmission in the field. Temperature effects may also have an ecological impact on mosquito populations given that a proportion of the population becomes self-incompatible. Aedes aegypti mosquitoes infected with Wolbachia symbionts are being deployed in the tropics as a way of reducing disease transmission. Some Wolbachia strains are vulnerable to high temperatures but these effects have not been evaluated outside of a laboratory setting. We reared Ae. aegypti infected with the wMel strain of Wolbachia in the field during the wet season in Cairns, Australia, where the first releases of Wolbachia-infected Ae. aegypti took place. wMel-infected mosquitoes became partially self-incompatible, with reduced egg hatch, when larvae were reared in partial shade where maximum daily temperatures exceeded 39°C. Under these conditions the amount of Wolbachia in adult mosquitoes was reduced to less than 1% of laboratory-reared mosquitoes on average, while some mosquitoes were cleared of Wolbachia entirely. In contrast, wMel was stable when mosquitoes were reared under cooler conditions in full shade. Field trials with the wMel strain are now underway in over 10 countries, but high temperatures in some locales may constrain the ability of Wolbachia to invade natural mosquito populations and block disease transmission.
Collapse
Affiliation(s)
- Perran A. Ross
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| | - Scott A. Ritchie
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, Queensland, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Queensland, Australia
| | - Jason K. Axford
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
80
|
Rocha MN, Duarte MM, Mansur SB, Silva BDME, Pereira TN, Adelino TÉR, Giovanetti M, Alcantara LCJ, Santos FM, Costa VRDM, Teixeira MM, Iani FCDM, Costa VV, Moreira LA. Pluripotency of Wolbachia against Arboviruses: the case of yellow fever. Gates Open Res 2019; 3:161. [PMID: 31259313 PMCID: PMC6561079 DOI: 10.12688/gatesopenres.12903.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Yellow fever outbreaks have re-emerged in Brazil during 2016-18, with mortality rates up to 30%. Although urban transmission has not been reported since 1942, the risk of re-urbanization of yellow fever is significant, as Aedes aegypti is present in most tropical and sub-tropical cities in the World and still remains the main vector of urban YFV. Although the YFV vaccine is safe and effective, it does not always reach populations at greatest risk of infection and there is an acknowledged global shortage of vaccine supply. The introgression of Wolbachia bacteria into Ae. aegypti mosquito populations is being trialed in several countries ( www.worldmosquito.org) as a biocontrol method against dengue, Zika and chikungunya. Here, we studied the ability of Wolbachia to reduce the transmission potential of Ae. aegypti mosquitoes for Yellow fever virus (YFV). Methods: Two recently isolated YFV (primate and human) were used to challenge field-derived wild-type and Wolbachia-infected ( wMel +) Ae. aegypti mosquitoes. The YFV infection status was followed for 7, 14 and 21 days post-oral feeding (dpf). The YFV transmission potential of mosquitoes was evaluated via nano-injection of saliva into uninfected mosquitoes or by inoculation in mice. Results: We found that Wolbachia was able to significantly reduce the prevalence of mosquitoes with YFV infected heads and thoraces for both viral isolates. Furthermore, analyses of mosquito saliva, through indirect injection into naïve mosquitoes or via interferon-deficient mouse model, indicated Wolbachia was associated with profound reduction in the YFV transmission potential of mosquitoes (14dpf). Conclusions: Our results suggest that Wolbachia introgression could be used as a complementary strategy for prevention of urban yellow fever transmission, along with the human vaccination program.
Collapse
Affiliation(s)
| | - Myrian Morato Duarte
- Serviço de Virologia e Riquetsioses, Fundação Ezequiel Dias-LACEN, Belo Horizonte, MG, Brazil
| | | | | | | | | | - Marta Giovanetti
- Laboratório de Flavivírus, IOC, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
- Laboratório de Genética Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luis Carlos Junior Alcantara
- Laboratório de Flavivírus, IOC, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
- Laboratório de Genética Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Franciele Martins Santos
- Centro de Pesquisa e Desenvolvimento de Fármacos, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Research Group in Arboviral Diseases, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Victor Rodrigues de Melo Costa
- Centro de Pesquisa e Desenvolvimento de Fármacos, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Research Group in Arboviral Diseases, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro Martins Teixeira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Immunopharmacology Lab, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Felipe Campos de Melo Iani
- Serviço de Virologia e Riquetsioses, Fundação Ezequiel Dias-LACEN, Belo Horizonte, MG, Brazil
- Laboratório de Genética Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vivian Vasconcelos Costa
- Centro de Pesquisa e Desenvolvimento de Fármacos, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Research Group in Arboviral Diseases, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
81
|
Monteiro VVS, Navegantes-Lima KC, de Lemos AB, da Silva GL, de Souza Gomes R, Reis JF, Rodrigues Junior LC, da Silva OS, Romão PRT, Monteiro MC. Aedes-Chikungunya Virus Interaction: Key Role of Vector Midguts Microbiota and Its Saliva in the Host Infection. Front Microbiol 2019; 10:492. [PMID: 31024463 PMCID: PMC6467098 DOI: 10.3389/fmicb.2019.00492] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/26/2019] [Indexed: 01/02/2023] Open
Abstract
Aedes mosquitoes are important vectors for emerging diseases caused by arboviruses, such as chikungunya (CHIKV). These viruses’ main transmitting species are Aedes aegypti and Ae. albopictus, which are present in tropical and temperate climatic areas all over the globe. Knowledge of vector characteristics is fundamentally important to the understanding of virus transmission. Only female mosquitoes are able to transmit CHIKV to the vertebrate host since they are hematophagous. In addition, mosquito microbiota is fundamentally important to virus infection in the mosquito. Microorganisms are able to modulate viral transmission in the mosquito, such as bacteria of the Wolbachia genus, which are capable of preventing viral infection, or protozoans of the Ascogregarina species, which are capable of facilitating virus transmission between mosquitoes and larvae. The competence of the mosquito is also important in the transmission of the virus to the vertebrate host, since their saliva has several substances with biological effects, such as immunomodulators and anticoagulants, which are able to modulate the host’s response to the virus, interfering in its pathogenicity and virulence. Understanding the Aedes vector-chikungunya interaction is fundamentally important since it can enable the search for new methods of combating the virus’ transmission.
Collapse
Affiliation(s)
- Valter Vinícius Silva Monteiro
- Laboratory of Inflammation and Pain, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kely Campos Navegantes-Lima
- Graduate Program in Neuroscience and Cellular Biology, Biology Science Institute, Federal University of Pará, Belém, Brazil
| | | | | | - Rafaelli de Souza Gomes
- Graduate Program in Pharmaceutical Science, Health Science Institute, Federal University of Pará, Belém, Brazil
| | - Jordano Ferreira Reis
- School of Pharmacy, Health Science Institute, Federal University of Pará, Belém, Brazil
| | - Luiz Carlos Rodrigues Junior
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Onilda Santos da Silva
- Department of Microbiology, Immunology and Parasitology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Pedro Roosevelt Torres Romão
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Marta Chagas Monteiro
- Graduate Program in Neuroscience and Cellular Biology, Biology Science Institute, Federal University of Pará, Belém, Brazil.,Graduate Program in Pharmaceutical Science, Health Science Institute, Federal University of Pará, Belém, Brazil
| |
Collapse
|
82
|
Abstract
The Wolbachia endosymbionts encompass a large group of intracellular bacteria of biomedical and veterinary relevance, closely related to Anaplasma, Ehrlichia, and Rickettsia. This genus of Gram-negative members of the Alphaproteobacteria does not infect vertebrates but is instead restricted to ecdysozoan species, including terrestrial arthropods and a family of parasitic filarial nematodes, the Onchocercidae. The Wolbachia profoundly impact not only the ecology and evolution but also the reproductive biology of their hosts, through a wide range of symbiotic interactions. Because they are essential to the survival and reproduction of their filarial nematode hosts, they represent an attractive target to fight filariasis. Their abilities to spread through insect populations and to affect vector competence through pathogen protection have made Wolbachia a staple for controlling vector-borne diseases. Estimated to be present in up to 66% of insect species, the Wolbachia are probably the most abundant endosymbionts on earth. Their success resides in their unique capacity to infect and manipulate the host germ line to favor their vertical transmission through the maternal lineage. Because the Wolbachia resist genetic manipulation and growth in axenic culture, our understanding of their biology is still in its infancy. Despite these limitations, the "-omics" revolution combined with the use of well-established and emerging experimental host models is accelerating our comprehension of the host phenotypes caused by Wolbachia, and the identification of Wolbachia effectors is ongoing.
Collapse
|
83
|
Suesdek L. Microevolution of medically important mosquitoes - A review. Acta Trop 2019; 191:162-171. [PMID: 30529448 DOI: 10.1016/j.actatropica.2018.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/08/2018] [Accepted: 12/06/2018] [Indexed: 12/25/2022]
Abstract
This review intends to discuss central issues regarding the microevolution of mosquito (Culicidae) vectors of several pathogens and how this process impacts vector biology, disease transmission, and vector control attempts. On the microevolutionary context, it comparatively discusses the current knowledge on the population genetics of representatives of the genera Aedes, Anopheles and Culex, and comments on insecticide resistance of culicids. It also discusses other biological aspects of culicids that are not usually addressed in microevolutionary studies, such as vectorial competence, endosymbiosis, and wing morphology. One conclusion is that mosquitoes are highly genetically variable, adaptable, fast evolving, and have versatile vectorial competence. Unveiling microevolutionary patterns is fundamental for the design and maintenance of all control programs. Sampling methods for assessing microevolution must be standardized and must follow meaningful guidelines, such as those of "landscape genetics". A good understanding of microevolution requires more than a collection of case studies on population genetics and resistance. Future research could deal not only with the microevolution sensu stricto, but also with evolutionarily meaningful issues, such as inheritable characters, epigenetics, physiological cost-free plasticity, vector immunity, symbiosis, pathogen-mosquito co-evolution and environmental variables. A genotyping panel for seeking adaptive phenotypes as part of the standardization of population genetics methods is proposed. The investigative paradigm should not only be retrospective but also prospective, despite the unpredictability of evolution. If we integrate all suggestions to tackle mosquito evolution, a global revolution to counter vector-borne diseases can be provoked.
Collapse
|
84
|
Rocha MN, Duarte MM, Mansur SB, Silva BDME, Pereira TN, Adelino TÉR, Giovanetti M, Alcantara LCJ, Santos FM, Costa VRDM, Teixeira MM, Iani FCDM, Costa VV, Moreira LA. Pluripotency of Wolbachia against Arbovirus: the case of yellow fever. Gates Open Res 2019. [DOI: 10.12688/gatesopenres.12903.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Yellow fever outbreaks have re-emerged in Brazil during 2016-18, with mortality rates up to 30%. Although urban transmission has not been reported since 1942, the risk of re-urbanization of yellow fever is significant, as Aedes aegypti is present in most tropical and sub-tropical cities in the World and used to be the main vector in the past. The introgression of Wolbachia bacteria into Ae. aegypti mosquito populations is being trialed in several countries (www.worldmosquito.org)as a biocontrol method against dengue, Zika and chikungunya. Here, we studied the ability of Wolbachia to reduce the transmission potential of Ae. aegypti mosquitoes for yellow fever virus (YFV). Methods: Two recently isolated YFV (primate and human) were used to challenge field-derived wild-type and Wolbachia-infected (wMel +) Ae. aegypti mosquitoes. The YFV infection status was followed for 7, 14 and 21 days post-oral feeding (dpf). The YFV transmission potential of mosquitoes was evaluated via nano-injection of saliva into uninfected mosquitoes or by inoculation in mice. Results: We found that Wolbachia was able to significantly reduce the prevalence of mosquitoes with YFV infected heads and thoraces for both viral isolates. Furthermore, analyses of mosquito saliva, through indirect injection into naïve mosquitoes or via interferon-deficient mouse model, indicated Wolbachia was associated with profound reduction in the YFV transmission potential of mosquitoes (14dpf). Conclusions: Our results suggest that Wolbachia introgression could be used as a complementary strategy for prevention of urban yellow fever transmission, along with the human vaccination program.
Collapse
|
85
|
Jeffries CL, Tantely LM, Raharimalala FN, Hurn E, Boyer S, Walker T. Diverse novel resident Wolbachia strains in Culicine mosquitoes from Madagascar. Sci Rep 2018; 8:17456. [PMID: 30498246 PMCID: PMC6265278 DOI: 10.1038/s41598-018-35658-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/09/2018] [Indexed: 12/19/2022] Open
Abstract
Wolbachia endosymbiotic bacteria are widespread throughout insect species and Wolbachia transinfected in Aedes mosquito species has formed the basis for biocontrol programs as Wolbachia strains inhibit arboviral replication and can spread through populations. Resident strains in wild Culicine mosquito populations (the vectors of most arboviruses) requires further investigation given resident strains can also affect arboviral transmission. As Madagascar has a large diversity of both Culicine species and has had recent arboviral outbreaks, an entomology survey was undertaken, in five ecologically diverse sites, to determine the Wolbachia prevalence. We detected diverse novel resident Wolbachia strains within the Aedeomyia, Culex, Ficalbia, Mansonia and Uranotaenia genera. Wolbachia prevalence rates and strain characterisation through Sanger sequencing with multilocus sequence typing (MLST) and phylogenetic analysis revealed significant diversity and we detected co-infections with the environmentally acquired bacteria Asaia. Mosquitoes were screened for major arboviruses to investigate if any evidence could be provided for their potential role in transmission and we report the presence of Rift Valley fever virus in three Culex species: Culex tritaeniorhynchus, Culex antennatus and Culex decens. The implications of the presence of resident Wolbachia strains are discussed and how the discovery of novel strains can be utilized for applications in the development of biocontrol strategies.
Collapse
Affiliation(s)
- Claire L Jeffries
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Luciano M Tantely
- Institut Pasteur de Madagascar, Unité d'Entomologie Médicale, Ambatofotsikely, 101-Antananarivo, Madagascar
| | - Fara N Raharimalala
- Institut Pasteur de Madagascar, Unité d'Entomologie Médicale, Ambatofotsikely, 101-Antananarivo, Madagascar
| | - Eliot Hurn
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Sébastien Boyer
- Institut Pasteur de Madagascar, Unité d'Entomologie Médicale, Ambatofotsikely, 101-Antananarivo, Madagascar
- Medical Entomology Platform, Institut Pasteur of Cambodge, 5 Bd Monivong, PO Box 983, Phnom Penh, Cambodia
| | - Thomas Walker
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
86
|
Abstract
Aedes mosquito-transmitted diseases, such as dengue, Zika and chikungunya, are becoming major global health emergencies while old threats, such as yellow fever, are re-emerging. Traditional control methods, which have focused on reducing mosquito populations through the application of insecticides or preventing breeding through removal of larval habitat, are largely ineffective, as evidenced by the increasing global disease burden. Here, we review novel mosquito population reduction and population modification approaches with a focus on control methods based on the release of mosquitoes, including the release of Wolbachia-infected mosquitoes and strategies to genetically modify the vector, that are currently under development and have the potential to contribute to a reversal of the current alarming disease trends.
Collapse
Affiliation(s)
- Heather A Flores
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, Australia
| | - Scott L O'Neill
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
87
|
Shi M, White VL, Schlub T, Eden JS, Hoffmann AA, Holmes EC. No detectable effect of Wolbachia wMel on the prevalence and abundance of the RNA virome of Drosophila melanogaster. Proc Biol Sci 2018; 285:20181165. [PMID: 30051873 PMCID: PMC6083246 DOI: 10.1098/rspb.2018.1165] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/02/2018] [Indexed: 12/11/2022] Open
Abstract
Wolbachia is an endosymbiotic bacterium that can block viral infections in arthropods, generating interest in its potential to control the spread of mosquito-borne disease. Drosophila melanogaster is model organism for Wolbachia infection, and the wMel strain of Wolbachia can improve host survival following viral infection. However, it is unclear whether wMel induces anti-viral blocking against the broader native virome of D. melanogaster, or whether the major effect of Wolbachia is a reduction in viral abundance rather than viral clearance. We examined the effect of Wolbachia on viral abundance by comparing the total transcriptome of wMel-positive and wMel-negative D. melanogaster populations sampled from six locations in Australia. In addition, we examined the impact of wMel on individual flies by obtaining transcriptome data from 20 wMel-positive and 20 wMel-negative D. melanogaster from the location (Melbourne) with highest density of wMel. These data revealed high viral abundance in both Wolbachia-positive and -negative populations and individuals. Notably, none of the viral species identified, representing RNA viruses from at least nine families/floating genera, showed evidence of protection by wMel. Although the viral loads of picorna-like viruses are reduced by wMel under experimental conditions, we observed no such effect here. These data show that D. melanogaster can harbour abundant RNA viruses regardless of its Wolbachia status and imply that the interaction between Wolbachia and viruses in nature is more complex than simple blocking.
Collapse
Affiliation(s)
- Mang Shi
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Vanessa L White
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Timothy Schlub
- Sydney School of Public Health, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - John-Sebastian Eden
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
- The Westmead Institute for Medical Research, Centre for Virus Research, Sydney, New South Wales 2145, Australia
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
88
|
Ross PA, Hoffmann AA. Continued Susceptibility of the wMel Wolbachia Infection in Aedes aegypti to Heat Stress Following Field Deployment and Selection. INSECTS 2018; 9:E78. [PMID: 29966368 PMCID: PMC6165456 DOI: 10.3390/insects9030078] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 11/16/2022]
Abstract
Aedes aegypti mosquitoes infected with the wMel strain of Wolbachia are being deployed to control the spread of arboviruses around the world through blockage of viral transmission. Blockage by Wolbachia in some scenarios may be affected by the susceptibility of wMel to cyclical heat stress during mosquito larval development. We therefore evaluated the potential to generate a heat-resistant strain of wMel in Ae. aegypti through artificial laboratory selection and through exposure to field temperatures across multiple generations. To generate an artificially selected strain, wMel-infected females reared under cyclical heat stress were crossed to wMel-infected males reared at 26 °C. The low proportion of larvae that hatched founded the next generation, and this process was repeated for eight generations. The wMel heat-selected strain (wMel-HS) was similar to wMel (unselected) in its ability to induce cytoplasmic incompatibility and restore compatibility when larvae were reared under cyclical heat stress, but wMel-HS adults exhibited reduced Wolbachia densities at 26 °C. To investigate the effects of field exposure, we compared the response of wMel-infected Ae. aegypti collected from Cairns, Australia where the infection has been established for seven years, to a wMel-infected population maintained in the laboratory for approximately 60 generations. Field and laboratory strains of wMel did not differ in their response to cyclical heat stress or in their phenotypic effects at 26 °C. The capacity for the wMel infection in Ae. aegypti to adapt to high temperatures therefore appears limited, and alternative strains may need to be considered for deployment in environments where high temperatures are regularly experienced in mosquito breeding sites.
Collapse
Affiliation(s)
- Perran A Ross
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Victoria 3010, Australia.
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
89
|
Wang X, Liu T, Wu Y, Zhong D, Zhou G, Su X, Xu J, Sotero CF, Sadruddin AA, Wu K, Chen XG, Yan G. Bacterial microbiota assemblage in Aedes albopictus mosquitoes and its impacts on larval development. Mol Ecol 2018; 27:2972-2985. [PMID: 29845688 DOI: 10.1111/mec.14732] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022]
Abstract
Interactions between bacterial microbiota and mosquitoes play an important role in mosquitoes' capacity to transmit pathogens. However, microbiota assemblages within mosquitoes and the impact of microbiota in environments on mosquito development and survival remain unclear. This study examined microbiota assemblages and the effects of aquatic environment microbiota on the larval development of the Aedes albopictus mosquito, an important dengue virus vector. Life table studies have found that reducing bacterial load in natural aquatic habitats through water filtering and treatment with antibiotics significantly reduced the larva-to-adult emergence rate. This finding was consistent in two types of larval habitats examined-discarded tires and flowerpots, suggesting that bacteria play a crucial role in larval development. Pyrosequencing of the bacterial 16S rRNA gene was used to determine the diversity of bacterial communities in larval habitats and the resulting numbers of mosquitoes under both laboratory and field conditions. The microbiota profiling identified common shared bacteria among samples from different years; further studies are needed to determine whether these bacteria represent a core microbiota. The highest microbiota diversity was found in aquatic habitats, followed by mosquito larvae, and the lowest in adult mosquitoes. Mosquito larvae ingested their bacterial microbiota and nutrients from aquatic habitats of high microbiota diversity. Taken together, the results support the observation that Ae. albopictus larvae are able to utilize diverse bacteria from aquatic habitats and that live bacteria from aquatic habitats play an important role in larval mosquito development and survival. These findings provide new insights into bacteria's role in mosquito larval ecology.
Collapse
Affiliation(s)
- Xiaoming Wang
- School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.,Program in Public Health, University of California, Irvine, California
| | - Tong Liu
- School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yang Wu
- School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Daibin Zhong
- Program in Public Health, University of California, Irvine, California
| | - Guofa Zhou
- Program in Public Health, University of California, Irvine, California
| | - Xinghua Su
- School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiabao Xu
- School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Charity F Sotero
- Program in Public Health, University of California, Irvine, California
| | - Adnan A Sadruddin
- Program in Public Health, University of California, Irvine, California
| | - Kun Wu
- School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao-Guang Chen
- School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Guiyun Yan
- School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.,Program in Public Health, University of California, Irvine, California
| |
Collapse
|
90
|
Abstract
Wolbachia is one of the most widespread intracellular bacteria on earth, estimated to infect between 40 and 66% of arthropod species in most ecosystems that have been surveyed. Their significance rests not only in their vast distribution, but also in their ability to modify the reproductive biology of their hosts, which can ultimately affect genetic diversity and speciation of infected populations. Wolbachia has yet to be formally identified in the fauna of New Zealand which has high levels of endemic biodiversity and this represents a gap in our understanding of the global biology of Wolbachia. Using High Throughput Sequencing (HTS) of host DNA in conjunction with traditional molecular techniques we identified six endemic Orthoptera species that were positive for Wolbachia infection. In addition, short-sequence amplification with Wolbachia specific primers applied to New Zealand and introduced invertebrates detected a further 153 individuals positive for Wolbachia. From these short-range DNA amplification products sequence data was obtained for the ftsZ gene region from 86 individuals representing 10 host species. Phylogenetic analysis using the sequences obtained in this study reveals that there are two distinct Wolbachia bacteria lineages in New Zealand hosts belonging to recognised Wolbachia supergroups (A and B). These represent the first described instances of Wolbachia in the New Zealand native fauna, including detection in putative parasitoids of infected Orthoptera suggesting a possible transmission path. Our detection of Wolbachia infections of New Zealand species provides the opportunity to study local transmission of Wolbachia and explore their role in the evolution of New Zealand invertebrates.
Collapse
|
91
|
Conflict in the Intracellular Lives of Endosymbionts and Viruses: A Mechanistic Look at Wolbachia-Mediated Pathogen-blocking. Viruses 2018; 10:v10040141. [PMID: 29561780 PMCID: PMC5923435 DOI: 10.3390/v10040141] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/14/2018] [Accepted: 03/20/2018] [Indexed: 12/16/2022] Open
Abstract
At the forefront of vector control efforts are strategies that leverage host-microbe associations to reduce vectorial capacity. The most promising of these efforts employs Wolbachia, a maternally transmitted endosymbiotic bacterium naturally found in 40% of insects. Wolbachia can spread through a population of insects while simultaneously inhibiting the replication of viruses within its host. Despite successes in using Wolbachia-transfected mosquitoes to limit dengue, Zika, and chikungunya transmission, the mechanisms behind pathogen-blocking have not been fully characterized. Firstly, we discuss how Wolbachia and viruses both require specific host-derived structures, compounds, and processes to initiate and maintain infection. There is significant overlap in these requirements, and infection with either microbe often manifests as cellular stress, which may be a key component of Wolbachia’s anti-viral effect. Secondly, we discuss the current understanding of pathogen-blocking through this lens of cellular stress and develop a comprehensive view of how the lives of Wolbachia and viruses are fundamentally in conflict with each other. A thorough understanding of the genetic and cellular determinants of pathogen-blocking will significantly enhance the ability of vector control programs to deploy and maintain effective Wolbachia-mediated control measures.
Collapse
|
92
|
Chang CH, Liu YT, Weng SC, Chen IY, Tsao PN, Shiao SH. The non-canonical Notch signaling is essential for the control of fertility in Aedes aegypti. PLoS Negl Trop Dis 2018; 12:e0006307. [PMID: 29505577 PMCID: PMC5854436 DOI: 10.1371/journal.pntd.0006307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 03/15/2018] [Accepted: 02/08/2018] [Indexed: 01/03/2023] Open
Abstract
The Notch signaling pathway is a highly evolutionarily-conserved cell-cell signaling pathway that regulates many events during development. It plays a pivotal role in the regulation of fundamental cellular processes, such as cell proliferation, stem cell maintenance, and differentiation during embryonic and adult development. However, functions of Notch signaling in Aedes aegypti, the major mosquito vector for dengue, are largely unknown. In this study, we identified a unique feature of A. aegypti Notch (AaNotch) in the control of the sterile-like phenotype in female mosquitoes. Silencing AaNotch with a reverse genetic approach significantly reduced the fecundity and fertility of the mosquito. Silencing AaNotch also resulted in the prevention of micropyle formation, which led to impaired fertilization. In addition, JNK phosphorylation (a signaling molecule in the non-canonical Notch signaling pathway) was inhibited in the absence of AaNotch. Furthermore, treatment with a JNK inhibitor in the mosquito resulted in impaired fecundity and fertility. Taken together, our results demonstrate that non-canonical Notch signaling is essential for controlling fertility in the A. aegypti mosquito.
Collapse
Affiliation(s)
- Chia-Hao Chang
- Department of Parasitology, National Taiwan University, Taipei, Taiwan
| | - Yu-Ting Liu
- Department of Parasitology, National Taiwan University, Taipei, Taiwan
| | - Shih-Che Weng
- Department of Parasitology, National Taiwan University, Taipei, Taiwan
| | - I-Yi Chen
- Department of Parasitology, National Taiwan University, Taipei, Taiwan
| | - Po-Nien Tsao
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
- Research Center for Developmental Biology & Regeneration Medicine, National Taiwan University, Taipei, Taiwan
| | - Shin-Hong Shiao
- Department of Parasitology, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|