51
|
Groeneweg FL, Trattnig C, Kuhse J, Nawrotzki RA, Kirsch J. Gephyrin: a key regulatory protein of inhibitory synapses and beyond. Histochem Cell Biol 2018; 150:489-508. [DOI: 10.1007/s00418-018-1725-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2018] [Indexed: 12/26/2022]
|
52
|
Kasaragod VB, Schindelin H. Structure-Function Relationships of Glycine and GABA A Receptors and Their Interplay With the Scaffolding Protein Gephyrin. Front Mol Neurosci 2018; 11:317. [PMID: 30258351 PMCID: PMC6143783 DOI: 10.3389/fnmol.2018.00317] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/16/2018] [Indexed: 12/03/2022] Open
Abstract
Glycine and γ-aminobutyric acid (GABA) are the major determinants of inhibition in the central nervous system (CNS). These neurotransmitters target glycine and GABAA receptors, respectively, which both belong to the Cys-loop superfamily of pentameric ligand-gated ion channels (pLGICs). Interactions of the neurotransmitters with the cognate receptors result in receptor opening and a subsequent influx of chloride ions, which, in turn, leads to hyperpolarization of the membrane potential, thus counteracting excitatory stimuli. The majority of glycine receptors and a significant fraction of GABAA receptors (GABAARs) are recruited and anchored to the post-synaptic membrane by the central scaffolding protein gephyrin. This ∼93 kDa moonlighting protein is structurally organized into an N-terminal G-domain (GephG) connected to a C-terminal E-domain (GephE) via a long unstructured linker. Both inhibitory neurotransmitter receptors interact via a short peptide motif located in the large cytoplasmic loop located in between transmembrane helices 3 and 4 (TM3-TM4) of the receptors with a universal receptor-binding epitope residing in GephE. Gephyrin engages in nearly identical interactions with the receptors at the N-terminal end of the peptide motif, and receptor-specific interaction toward the C-terminal region of the peptide. In addition to its receptor-anchoring function, gephyrin also interacts with a rather large collection of macromolecules including different cytoskeletal elements, thus acting as central scaffold at inhibitory post-synaptic specializations. Dysfunctions in receptor-mediated or gephyrin-mediated neurotransmission have been identified in various severe neurodevelopmental disorders. Although biochemical, cellular and electrophysiological studies have helped to understand the physiological and pharmacological roles of the receptors, recent high resolution structures of the receptors have strengthened our understanding of the receptors and their gating mechanisms. Besides that, multiple crystal structures of GephE in complex with receptor-derived peptides have shed light into receptor clustering by gephyrin at inhibitory post-synapses. This review will highlight recent biochemical and structural insights into gephyrin and the GlyRs as well as GABAA receptors, which provide a deeper understanding of the molecular machinery mediating inhibitory neurotransmission.
Collapse
Affiliation(s)
- Vikram B Kasaragod
- Institute of Structural Biology, Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Hermann Schindelin
- Institute of Structural Biology, Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| |
Collapse
|
53
|
Schaefer N, Roemer V, Janzen D, Villmann C. Impaired Glycine Receptor Trafficking in Neurological Diseases. Front Mol Neurosci 2018; 11:291. [PMID: 30186111 PMCID: PMC6110938 DOI: 10.3389/fnmol.2018.00291] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/02/2018] [Indexed: 12/21/2022] Open
Abstract
Ionotropic glycine receptors (GlyRs) enable fast synaptic neurotransmission in the adult spinal cord and brainstem. The inhibitory GlyR is a transmembrane glycine-gated chloride channel. The immature GlyR protein undergoes various processing steps, e.g., folding, assembly, and maturation while traveling from the endoplasmic reticulum to and through the Golgi apparatus, where post-translational modifications, e.g., glycosylation occur. The mature receptors are forward transported via microtubules to the cellular surface and inserted into neuronal membranes followed by synaptic clustering. The normal life cycle of a receptor protein includes further processes like internalization, recycling, and degradation. Defects in GlyR life cycle, e.g., impaired protein maturation and degradation have been demonstrated to underlie pathological mechanisms of various neurological diseases. The neurological disorder startle disease is caused by glycinergic dysfunction mainly due to missense mutations in genes encoding GlyR subunits (GLRA1 and GLRB). In vitro studies have shown that most recessive forms of startle disease are associated with impaired receptor biogenesis. Another neurological disease with a phenotype similar to startle disease is a special form of stiff-person syndrome (SPS), which is most probably due to the development of GlyR autoantibodies. Binding of GlyR autoantibodies leads to enhanced receptor internalization. Here we focus on the normal life cycle of GlyRs concentrating on assembly and maturation, receptor trafficking, post-synaptic integration and clustering, and GlyR internalization/recycling/degradation. Furthermore, this review highlights findings on impairment of these processes under disease conditions such as disturbed neuronal ER-Golgi trafficking as the major pathomechanism for recessive forms of human startle disease. In SPS, enhanced receptor internalization upon autoantibody binding to the GlyR has been shown to underlie the human pathology. In addition, we discuss how the existing mouse models of startle disease increased our current knowledge of GlyR trafficking routes and function. This review further illuminates receptor trafficking of GlyR variants originally identified in startle disease patients and explains changes in the life cycle of GlyRs in patients with SPS with respect to structural and functional consequences at the receptor level.
Collapse
Affiliation(s)
- Natascha Schaefer
- Institute for Clinical Neurobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Vera Roemer
- Institute for Clinical Neurobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Dieter Janzen
- Institute for Clinical Neurobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Carmen Villmann
- Institute for Clinical Neurobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| |
Collapse
|
54
|
Hines RM, Maric HM, Hines DJ, Modgil A, Panzanelli P, Nakamura Y, Nathanson AJ, Cross A, Deeb T, Brandon NJ, Davies P, Fritschy JM, Schindelin H, Moss SJ. Developmental seizures and mortality result from reducing GABA A receptor α2-subunit interaction with collybistin. Nat Commun 2018; 9:3130. [PMID: 30087324 PMCID: PMC6081406 DOI: 10.1038/s41467-018-05481-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 07/05/2018] [Indexed: 01/08/2023] Open
Abstract
Fast inhibitory synaptic transmission is mediated by γ-aminobutyric acid type A receptors (GABAARs) that are enriched at functionally diverse synapses via mechanisms that remain unclear. Using isothermal titration calorimetry and complementary methods we demonstrate an exclusive low micromolar binding of collybistin to the α2-subunit of GABAARs. To explore the biological relevance of collybistin-α2-subunit selectivity, we generate mice with a mutation in the α2-subunit-collybistin binding region (Gabra2-1). The mutation results in loss of a distinct subset of inhibitory synapses and decreased amplitude of inhibitory synaptic currents. Gabra2-1 mice have a striking phenotype characterized by increased susceptibility to seizures and early mortality. Surviving Gabra2-1 mice show anxiety and elevations in electroencephalogram δ power, which are ameliorated by treatment with the α2/α3-selective positive modulator, AZD7325. Taken together, our results demonstrate an α2-subunit selective binding of collybistin, which plays a key role in patterned brain activity, particularly during development.
Collapse
Affiliation(s)
- Rochelle M Hines
- Department of Neuroscience, Tufts University School of Medicine, Boston, 02111, MA, USA.
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, 89154, Ne, USA.
| | - Hans Michael Maric
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, D-97080, Germany
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, D-97080, Germany
| | - Dustin J Hines
- Department of Neuroscience, Tufts University School of Medicine, Boston, 02111, MA, USA
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, 89154, Ne, USA
| | - Amit Modgil
- Department of Neuroscience, Tufts University School of Medicine, Boston, 02111, MA, USA
| | - Patrizia Panzanelli
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, 10126, Italy
| | - Yasuko Nakamura
- Department of Neuroscience, Tufts University School of Medicine, Boston, 02111, MA, USA
| | - Anna J Nathanson
- Department of Neuroscience, Tufts University School of Medicine, Boston, 02111, MA, USA
| | - Alan Cross
- AstraZeneca Neuroscience iMED, Biotech Unit, Boston, 02451, MA, USA
| | - Tarek Deeb
- Department of Neuroscience, Tufts University School of Medicine, Boston, 02111, MA, USA
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, 02111, MA, USA
| | - Nicholas J Brandon
- AstraZeneca Neuroscience iMED, Biotech Unit, Boston, 02451, MA, USA
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, 02111, MA, USA
| | - Paul Davies
- Department of Neuroscience, Tufts University School of Medicine, Boston, 02111, MA, USA
| | - Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, 8057, Switzerland
- Center for Neuroscience Zurich, University of Zurich and ETH Zurich, Zurich, 8057, Switzerland
| | - Hermann Schindelin
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, D-97080, Germany
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, 02111, MA, USA.
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, 02111, MA, USA.
- Department of Neuroscience, Physiology and Pharmacology, University College, London, WC1E 6BT, UK.
| |
Collapse
|
55
|
Zhou R, Jiang G, Tian X, Wang X. Progress in the molecular mechanisms of genetic epilepsies using patient-induced pluripotent stem cells. Epilepsia Open 2018; 3:331-339. [PMID: 30187003 PMCID: PMC6119748 DOI: 10.1002/epi4.12238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2018] [Indexed: 12/29/2022] Open
Abstract
Research findings on the molecular mechanisms of epilepsy almost always originate from animal experiments, and the development of induced pluripotent stem cell (iPSC) technology allows the use of human cells with genetic defects for studying the molecular mechanisms of genetic epilepsy (GE) for the first time. With iPSC technology, terminally differentiated cells collected from GE patients with specific genetic etiologies can be differentiated into many relevant cell subtypes that carry all of the GE patient's genetic information. iPSCs have opened up a new research field involving the pathogenesis of GE. Using this approach, studies have found that gene mutations induce GE by altering the balance between neuronal excitation and inhibition, which is associated. among other factors, with neuronal developmental disturbances, ion channel abnormalities, and synaptic dysfunction. Simultaneously, astrocyte activation, mitochondrial dysfunction, and abnormal signaling pathway activity are also important factors in the molecular mechanisms of GE.
Collapse
Affiliation(s)
- Ruijiao Zhou
- Department of Neurology the First Affiliated Hospital of Chongqing Medical University Chongqing Key Laboratory of Neurology Chongqing China
| | - Guohui Jiang
- Department of Neurology Institute of Neurological Diseases Affiliated Hospital of North Sichuan Medical College Nanchong China
| | - Xin Tian
- Department of Neurology the First Affiliated Hospital of Chongqing Medical University Chongqing Key Laboratory of Neurology Chongqing China
| | - Xuefeng Wang
- Department of Neurology the First Affiliated Hospital of Chongqing Medical University Chongqing Key Laboratory of Neurology Chongqing China
| |
Collapse
|
56
|
Ibaraki K, Mizuno M, Aoki H, Niwa A, Iwamoto I, Hara A, Tabata H, Ito H, Nagata KI. Biochemical and Morphological Characterization of a Guanine Nucleotide Exchange Factor ARHGEF9 in Mouse Tissues. Acta Histochem Cytochem 2018; 51:119-128. [PMID: 30083020 PMCID: PMC6066644 DOI: 10.1267/ahc.18009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/24/2018] [Indexed: 01/01/2023] Open
Abstract
ARHGEF9, also known as Collybistin, a guanine nucleotide exchange factor for Rho family GTPases, is thought to play an essential role in the mammalian brain. In this study, we prepared a specific polyclonal antibody against ARHGEF9, anti-ARHGEF9, and carried out expression analyses with mouse tissues especially brain. Western blotting analyses demonstrated tissue-dependent expression profiles of ARHGEF9 in the young adult mouse, and strongly suggested a role during brain development. Immunohistochemical analyses revealed developmental stage-dependent expression profiles of ARHGEF9 in cerebral cortex, hippocampus and cerebellum. ARHGEF9 exhibited partial localization at dendritic spines in cultured hippocampal neurons. From the obtained results, anti-ARHGEF9 was found to be a useful tool for biochemical and cell biological analyses of ARHGEF9.
Collapse
Affiliation(s)
- Kyoko Ibaraki
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center
| | - Makoto Mizuno
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center
| | - Hitomi Aoki
- Department of Tissue and Organ Development, Gifu University Graduate School of Medicine
| | - Ayumi Niwa
- Department of Tumor Pathology, Gifu University Graduate School of Medicine
| | - Ikuko Iwamoto
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine
| | - Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center
| | - Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center
| | - Koh-ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center
- Department of Neurochemistry, Nagoya University Graduate School of Medicine
| |
Collapse
|
57
|
Gamlin CR, Yu WQ, Wong ROL, Hoon M. Assembly and maintenance of GABAergic and Glycinergic circuits in the mammalian nervous system. Neural Dev 2018; 13:12. [PMID: 29875009 PMCID: PMC5991458 DOI: 10.1186/s13064-018-0109-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/06/2018] [Indexed: 12/19/2022] Open
Abstract
Inhibition in the central nervous systems (CNS) is mediated by two neurotransmitters: gamma-aminobutyric acid (GABA) and glycine. Inhibitory synapses are generally GABAergic or glycinergic, although there are synapses that co-release both neurotransmitter types. Compared to excitatory circuits, much less is known about the cellular and molecular mechanisms that regulate synaptic partner selection and wiring patterns of inhibitory circuits. Recent work, however, has begun to fill this gap in knowledge, providing deeper insight into whether GABAergic and glycinergic circuit assembly and maintenance rely on common or distinct mechanisms. Here we summarize and contrast the developmental mechanisms that regulate the selection of synaptic partners, and that promote the formation, refinement, maturation and maintenance of GABAergic and glycinergic synapses and their respective wiring patterns. We highlight how some parts of the CNS demonstrate developmental changes in the type of inhibitory transmitter or receptor composition at their inhibitory synapses. We also consider how perturbation of the development or maintenance of one type of inhibitory connection affects other inhibitory synapse types in the same circuit. Mechanistic insight into the development and maintenance of GABAergic and glycinergic inputs, and inputs that co-release both these neurotransmitters could help formulate comprehensive therapeutic strategies for treating disorders of synaptic inhibition.
Collapse
Affiliation(s)
- Clare R Gamlin
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Wan-Qing Yu
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Mrinalini Hoon
- Department of Biological Structure, University of Washington, Seattle, WA, USA. .,Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
58
|
Ali Rodriguez R, Joya C, Hines RM. Common Ribs of Inhibitory Synaptic Dysfunction in the Umbrella of Neurodevelopmental Disorders. Front Mol Neurosci 2018; 11:132. [PMID: 29740280 PMCID: PMC5928253 DOI: 10.3389/fnmol.2018.00132] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/03/2018] [Indexed: 01/06/2023] Open
Abstract
The term neurodevelopmental disorder (NDD) is an umbrella term used to group together a heterogeneous class of disorders characterized by disruption in cognition, emotion, and behavior, early in the developmental timescale. These disorders are heterogeneous, yet they share common behavioral symptomatology as well as overlapping genetic contributors, including proteins involved in the formation, specialization, and function of synaptic connections. Advances may arise from bridging the current knowledge on synapse related factors indicated from both human studies in NDD populations, and in animal models. Mounting evidence has shown a link to inhibitory synapse formation, specialization, and function among Autism, Angelman, Rett and Dravet syndromes. Inhibitory signaling is diverse, with numerous subtypes of inhibitory interneurons, phasic and tonic modes of inhibition, and the molecular and subcellular diversity of GABAA receptors. We discuss common ribs of inhibitory synapse dysfunction in the umbrella of NDD, highlighting alterations in the developmental switch to inhibitory GABA, dysregulation of neuronal activity patterns by parvalbumin-positive interneurons, and impaired tonic inhibition. Increasing our basic understanding of inhibitory synapses, and their role in NDDs is likely to produce significant therapeutic advances in behavioral symptom alleviation for interrelated NDDs.
Collapse
Affiliation(s)
- Rachel Ali Rodriguez
- Neuroscience Emphasis, Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Christina Joya
- Neuroscience Emphasis, Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Rochelle M Hines
- Neuroscience Emphasis, Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
59
|
Strobbe D, Robinson AA, Harvey K, Rossi L, Ferraina C, de Biase V, Rodolfo C, Harvey RJ, Campanella M. Distinct Mechanisms of Pathogenic DJ-1 Mutations in Mitochondrial Quality Control. Front Mol Neurosci 2018; 11:68. [PMID: 29599708 PMCID: PMC5862874 DOI: 10.3389/fnmol.2018.00068] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/19/2018] [Indexed: 01/08/2023] Open
Abstract
The deglycase and chaperone protein DJ-1 is pivotal for cellular oxidative stress responses and mitochondrial quality control. Mutations in PARK7, encoding DJ-1, are associated with early-onset familial Parkinson's disease and lead to pathological oxidative stress and/or disrupted protein degradation by the proteasome. The aim of this study was to gain insights into the pathogenic mechanisms of selected DJ-1 missense mutations, by characterizing protein-protein interactions, core parameters of mitochondrial function, quality control regulation via autophagy, and cellular death following dopamine accumulation. We report that the DJ-1M26I mutant influences DJ-1 interactions with SUMO-1, in turn enhancing removal of mitochondria and conferring increased cellular susceptibility to dopamine toxicity. By contrast, the DJ-1D149A mutant does not influence mitophagy, but instead impairs Ca2+ dynamics and free radical homeostasis by disrupting DJ-1 interactions with a mitochondrial accessory protein known as DJ-1-binding protein (DJBP/EFCAB6). Thus, individual DJ-1 mutations have different effects on mitochondrial function and quality control, implying mutation-specific pathomechanisms converging on impaired mitochondrial homeostasis.
Collapse
Affiliation(s)
- Daniela Strobbe
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Regina Elena National Cancer Institute, Rome, Italy
| | - Alexis A. Robinson
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom
| | - Kirsten Harvey
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom
| | - Lara Rossi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Caterina Ferraina
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Regina Elena National Cancer Institute, Rome, Italy
| | - Valerio de Biase
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - Carlo Rodolfo
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Robert J. Harvey
- School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Michelangelo Campanella
- Regina Elena National Cancer Institute, Rome, Italy
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, United Kingdom
- UCL Consortium for Mitochondrial Research, University College London, London, United Kingdom
| |
Collapse
|
60
|
Lorenz-Guertin JM, Jacob TC. GABA type a receptor trafficking and the architecture of synaptic inhibition. Dev Neurobiol 2018; 78:238-270. [PMID: 28901728 PMCID: PMC6589839 DOI: 10.1002/dneu.22536] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 12/21/2022]
Abstract
Ubiquitous expression of GABA type A receptors (GABAA R) in the central nervous system establishes their central role in coordinating most aspects of neural function and development. Dysregulation of GABAergic neurotransmission manifests in a number of human health disorders and conditions that in certain cases can be alleviated by drugs targeting these receptors. Precise changes in the quantity or activity of GABAA Rs localized at the cell surface and at GABAergic postsynaptic sites directly impact the strength of inhibition. The molecular mechanisms constituting receptor trafficking to and from these compartments therefore dictate the efficacy of GABAA R function. Here we review the current understanding of how GABAA Rs traffic through biogenesis, plasma membrane transport, and degradation. Emphasis is placed on discussing novel GABAergic synaptic proteins, receptor and scaffolding post-translational modifications, activity-dependent changes in GABAA R confinement, and neuropeptide and neurosteroid mediated changes. We further highlight modern techniques currently advancing the knowledge of GABAA R trafficking and clinically relevant neurodevelopmental diseases connected to GABAergic dysfunction. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 238-270, 2018.
Collapse
Affiliation(s)
- Joshua M Lorenz-Guertin
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| |
Collapse
|
61
|
TAFA4 Reverses Mechanical Allodynia through Activation of GABAergic Transmission and Microglial Process Retraction. Cell Rep 2018. [DOI: 10.1016/j.celrep.2018.02.068] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
62
|
Wang JY, Zhou P, Wang J, Tang B, Su T, Liu XR, Li BM, Meng H, Shi YW, Yi YH, He N, Liao WP. ARHGEF9 mutations in epileptic encephalopathy/intellectual disability: toward understanding the mechanism underlying phenotypic variation. Neurogenetics 2017; 19:9-16. [PMID: 29130122 DOI: 10.1007/s10048-017-0528-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/25/2017] [Indexed: 01/01/2023]
Abstract
ARHGEF9 resides on Xq11.1 and encodes collybistin, which is crucial in gephyrin clustering and GABAA receptor localization. ARHGEF9 mutations have been identified in patients with heterogeneous phenotypes, including epilepsy of variable severity and intellectual disability. However, the mechanism underlying phenotype variation is unknown. Using next-generation sequencing, we identified a novel mutation, c.868C > T/p.R290C, which co-segregated with epileptic encephalopathy, and validated its association with epileptic encephalopathy. Further analysis revealed that all ARHGEF9 mutations were associated with intellectual disability, suggesting its critical role in psychomotor development. Three missense mutations in the PH domain were not associated with epilepsy, suggesting that the co-occurrence of epilepsy depends on the affected functional domains. Missense mutations with severe molecular alteration in the DH domain, or located in the DH-gephyrin binding region, or adjacent to the SH3-NL2 binding site were associated with severe epilepsy, implying that the clinical severity was potentially determined by alteration of molecular structure and location of mutations. Male patients with ARHGEF9 mutations presented more severe phenotypes than female patients, which suggests a gene-dose effect and supports the pathogenic role of ARHGEF9 mutations. This study highlights the role of molecular alteration in phenotype expression and facilitates evaluation of the pathogenicity of ARHGEF9 mutations in clinical practice.
Collapse
Affiliation(s)
- Jing-Yang Wang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University Please check if the affiliations are presented correctly.The affiliations are presented correctly., Chang-Gang-Dong Road 250, Guangzhou, 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Peng Zhou
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University Please check if the affiliations are presented correctly.The affiliations are presented correctly., Chang-Gang-Dong Road 250, Guangzhou, 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Jie Wang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University Please check if the affiliations are presented correctly.The affiliations are presented correctly., Chang-Gang-Dong Road 250, Guangzhou, 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Bin Tang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University Please check if the affiliations are presented correctly.The affiliations are presented correctly., Chang-Gang-Dong Road 250, Guangzhou, 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Tao Su
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University Please check if the affiliations are presented correctly.The affiliations are presented correctly., Chang-Gang-Dong Road 250, Guangzhou, 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Xiao-Rong Liu
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University Please check if the affiliations are presented correctly.The affiliations are presented correctly., Chang-Gang-Dong Road 250, Guangzhou, 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Bing-Mei Li
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University Please check if the affiliations are presented correctly.The affiliations are presented correctly., Chang-Gang-Dong Road 250, Guangzhou, 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Heng Meng
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangdong, 510630, China
- Clinical Neuroscience Institute of Jinan University, Guangdong, 510630, China
| | - Yi-Wu Shi
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University Please check if the affiliations are presented correctly.The affiliations are presented correctly., Chang-Gang-Dong Road 250, Guangzhou, 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Yong-Hong Yi
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University Please check if the affiliations are presented correctly.The affiliations are presented correctly., Chang-Gang-Dong Road 250, Guangzhou, 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Na He
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University Please check if the affiliations are presented correctly.The affiliations are presented correctly., Chang-Gang-Dong Road 250, Guangzhou, 510260, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China.
| | - Wei-Ping Liao
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University Please check if the affiliations are presented correctly.The affiliations are presented correctly., Chang-Gang-Dong Road 250, Guangzhou, 510260, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China.
| |
Collapse
|
63
|
Yang Z, Sun G, Yao F, Tao D, Zhu B. A novel compound mutation in GLRA1 cause hyperekplexia in a Chinese boy- a case report and review of the literature. BMC MEDICAL GENETICS 2017; 18:110. [PMID: 28985719 PMCID: PMC5631533 DOI: 10.1186/s12881-017-0476-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/03/2017] [Indexed: 11/10/2022]
Abstract
Background The pathogenesis of hereditary hyperekplexia is thought to involve abnormalities in the glycinergic neurotransmission system, the most of mutations reported in GLRA1. This gene encodes the glycine receptor α1 subunit, which has an extracellular domain (ECD) and a transmembrane domain (TMD) with 4 α-helices (TM1–TM4). Case presentation We investigated the genetic cause of hyperekplexia in a Chinese family with one affected member. Whole-exome sequencing of the 5 candidate genes was performed on the proband patient, and direct sequencing was performed to validate and confirm the detected mutation in other family members. We also review and analyse all reported GLRA1 mutations. The proband had a compound heterozygous GLRA1 mutation that comprised 2 novel GLRA1 missense mutations, C.569C > T (p.T190 M) from the mother and C.1270G > A (p.D424N) from the father. SIFT, Polyphen-2 and MutationTaster analysis identified the mutations as disease-causing, but the parents had no signs of hyperekplexia. The p.T190 M mutation is located in the ECD, while p.D424N is located in TM4. Conclusions Our findings contribute to a growing list GLRA1 mutations associated with hyperekplexia and provide new insights into correlations between phenotype and GLRA1 mutations. Some recessive mutations can induce hyperekplexia in combination with other recessive GLRA1 mutations. Mutations in the ECD, TM1, TM1-TM2 loop, TM3, TM3-TM4 loop and TM4 are more often recessive and part of a compound mutation, while those in TM2 and the TM2-TM3 loop are more likely to be dominant hereditary mutations. Electronic supplementary material The online version of this article (10.1186/s12881-017-0476-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhiliang Yang
- Department of Pediatrics, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Guilian Sun
- Department of Pediatrics, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Fang Yao
- Department of Pediatrics, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Dongying Tao
- Department of Pediatrics, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Binlu Zhu
- Department of Pediatrics, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| |
Collapse
|
64
|
Vien TN, Moss SJ, Davies PA. Regulating the Efficacy of Inhibition Through Trafficking of γ-Aminobutyric Acid Type A Receptors. Anesth Analg 2017; 123:1220-1227. [PMID: 27285004 DOI: 10.1213/ane.0000000000001349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Trafficking of anesthetic-sensitive receptors within the plasma membrane, or from one cellular component to another, occurs continuously. Changes in receptor trafficking have implications in altering anesthetic sensitivity. γ-Aminobutyric acid type A receptors (GABAARs) are anion-permeable ion channels and are the major class of receptor in the adult mammalian central nervous system that mediates inhibition. GABAergic signaling allows for precise synchronized firing of action potentials within brain circuits that is critical for cognition, behavior, and consciousness. This precision depends upon tightly controlled trafficking of GABAARs into the membrane. General anesthetics bind to and allosterically enhance GABAARs by prolonging the open state of the receptor and thereby altering neuronal and brain circuit activity. Subunit composition and GABAAR localization strongly influence anesthetic end points; therefore, changes in GABAAR trafficking could have significant consequences to anesthetic sensitivity. GABAARs are not static membrane structures but are in a constant state of flux between extrasynaptic and synaptic locations and are continually endocytosed and recycled from and to the membrane. Neuronal activity, posttranslational modifications, and some naturally occurring and synthetic compounds can influence the expression and trafficking of GABAARs. In this article, we review GABAARs, their trafficking, and how phosphorylation of GABAAR subunits can influence the surface expression and function of the receptor. Ultimately, alterations of GABAAR trafficking could modify anesthetic end points, both unintentionally through pathologic processes but potentially as a therapeutic target to adjust anesthetic-sensitive GABAARs.
Collapse
Affiliation(s)
- Thuy N Vien
- From the *Department of Neuroscience, Tufts University School of Medicine, Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts; and †Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| | | | | |
Collapse
|
65
|
The phenotypic spectrum of ARHGEF9 includes intellectual disability, focal epilepsy and febrile seizures. J Neurol 2017. [DOI: 10.1007/s00415-017-8539-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
66
|
Yang N, Chanda S, Marro S, Ng YH, Janas JA, Haag D, Ang CE, Tang Y, Flores Q, Mall M, Wapinski O, Li M, Ahlenius H, Rubenstein JL, Chang HY, Buylla AA, Südhof TC, Wernig M. Generation of pure GABAergic neurons by transcription factor programming. Nat Methods 2017; 14:621-628. [PMID: 28504679 PMCID: PMC5567689 DOI: 10.1038/nmeth.4291] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/17/2017] [Indexed: 12/18/2022]
Abstract
Approaches to differentiating pluripotent stem cells (PSCs) into neurons currently face two major challenges-(i) generated cells are immature, with limited functional properties; and (ii) cultures exhibit heterogeneous neuronal subtypes and maturation stages. Using lineage-determining transcription factors, we previously developed a single-step method to generate glutamatergic neurons from human PSCs. Here, we show that transient expression of the transcription factors Ascl1 and Dlx2 (AD) induces the generation of exclusively GABAergic neurons from human PSCs with a high degree of synaptic maturation. These AD-induced neuronal (iN) cells represent largely nonoverlapping populations of GABAergic neurons that express various subtype-specific markers. We further used AD-iN cells to establish that human collybistin, the loss of gene function of which causes severe encephalopathy, is required for inhibitory synaptic function. The generation of defined populations of functionally mature human GABAergic neurons represents an important step toward enabling the study of diseases affecting inhibitory synaptic transmission.
Collapse
Affiliation(s)
- Nan Yang
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Soham Chanda
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA
| | - Samuele Marro
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Yi-Han Ng
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Justyna A Janas
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Daniel Haag
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Cheen Euong Ang
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Yunshuo Tang
- Department of Neurological Surgery and the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
| | - Quetzal Flores
- Department of Neurological Surgery and the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
| | - Moritz Mall
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Orly Wapinski
- Program in Epithelial Biology and Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, California, USA
| | - Mavis Li
- Institute for Computational and Mathematical Engineering, Stanford University School of Medicine, Stanford, California, USA
| | - Henrik Ahlenius
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - John L Rubenstein
- Department of Psychiatry, University of California, San Francisco, San Francisco, California, USA
| | - Howard Y Chang
- Program in Epithelial Biology and Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, California, USA
| | - Arturo Alvarez Buylla
- Department of Neurological Surgery and the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
67
|
Alber M, Kalscheuer VM, Marco E, Sherr E, Lesca G, Till M, Gradek G, Wiesener A, Korenke C, Mercier S, Becker F, Yamamoto T, Scherer SW, Marshall CR, Walker S, Dutta UR, Dalal AB, Suckow V, Jamali P, Kahrizi K, Najmabadi H, Minassian BA. ARHGEF9 disease: Phenotype clarification and genotype-phenotype correlation. NEUROLOGY-GENETICS 2017; 3:e148. [PMID: 28589176 PMCID: PMC5446782 DOI: 10.1212/nxg.0000000000000148] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/14/2017] [Indexed: 01/13/2023]
Abstract
OBJECTIVE We aimed to generate a review and description of the phenotypic and genotypic spectra of ARHGEF9 mutations. METHODS Patients with mutations or chromosomal disruptions affecting ARHGEF9 were identified through our clinics and review of the literature. Detailed medical history and examination findings were obtained via a standardized questionnaire, or if this was not possible by reviewing the published phenotypic features. RESULTS A total of 18 patients (including 5 females) were identified. Six had de novo, 5 had maternally inherited mutations, and 7 had chromosomal disruptions. All females had strongly skewed X-inactivation in favor of the abnormal X-chromosome. Symptoms presented in early childhood with delayed motor development alone or in combination with seizures. Intellectual disability was severe in most and moderate in patients with milder mutations. Males with severe intellectual disability had severe, often intractable, epilepsy and exhibited a particular facial dysmorphism. Patients with mutations in exon 9 affecting the protein's PH domain did not develop epilepsy. CONCLUSIONS ARHGEF9 encodes a crucial neuronal synaptic protein; loss of function of which results in severe intellectual disability, epilepsy, and a particular facial dysmorphism. Loss of only the protein's PH domain function is associated with the absence of epilepsy.
Collapse
Affiliation(s)
- Michael Alber
- Department of Paediatrics (Neurology) (M.A., B.A.M.), Program in Genetics and Genome Biology (S.W.S., C.R.M., S.W., B.A.M.), The Hospital for Sick Children and University of Toronto, Canada; Research Group Development and Disease (V.M.K., V.S.), Max Plank Institute for Molecular Genetics, Berlin, Germany; Department of Neurology (E.M., E.S.), University of California, San Francisco; Service de Cytogenetique Constitutionnelle (G.L., M.T.), Hospice Civils de Lyon, France; Center for Medical Genetics and Molecular Medicine (G.G.), Haukeland University Hospital, Bergen, Norway; Humangenetisches Institut (A.W.), Universitaetsklinikum Erlangen, Germany; Zentrum für Kinder- und Jugendmedizin (C.K.), Elisabeth Kinderkrankenhaus, Oldenburg, Germany; Service de Genetique Medicale (S.M.), CHU Hotel Dieu, Nantes, France; Neurologische Universitätsklinik (F.B.), Tübingen, Germany; Institute of Medical Genetics (T.Y.), Tokyo Women's Medical University, Japan; Diagnostics Division (U.R.D., A.B.D.), Center for DNA Fingerprinting and Diagnostics, Telangana, India; Shahrood Welfare Organization (P.J.), Shahrood, Iran; and Genetics Research Center (K.K., H.N.), University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Vera M Kalscheuer
- Department of Paediatrics (Neurology) (M.A., B.A.M.), Program in Genetics and Genome Biology (S.W.S., C.R.M., S.W., B.A.M.), The Hospital for Sick Children and University of Toronto, Canada; Research Group Development and Disease (V.M.K., V.S.), Max Plank Institute for Molecular Genetics, Berlin, Germany; Department of Neurology (E.M., E.S.), University of California, San Francisco; Service de Cytogenetique Constitutionnelle (G.L., M.T.), Hospice Civils de Lyon, France; Center for Medical Genetics and Molecular Medicine (G.G.), Haukeland University Hospital, Bergen, Norway; Humangenetisches Institut (A.W.), Universitaetsklinikum Erlangen, Germany; Zentrum für Kinder- und Jugendmedizin (C.K.), Elisabeth Kinderkrankenhaus, Oldenburg, Germany; Service de Genetique Medicale (S.M.), CHU Hotel Dieu, Nantes, France; Neurologische Universitätsklinik (F.B.), Tübingen, Germany; Institute of Medical Genetics (T.Y.), Tokyo Women's Medical University, Japan; Diagnostics Division (U.R.D., A.B.D.), Center for DNA Fingerprinting and Diagnostics, Telangana, India; Shahrood Welfare Organization (P.J.), Shahrood, Iran; and Genetics Research Center (K.K., H.N.), University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Elysa Marco
- Department of Paediatrics (Neurology) (M.A., B.A.M.), Program in Genetics and Genome Biology (S.W.S., C.R.M., S.W., B.A.M.), The Hospital for Sick Children and University of Toronto, Canada; Research Group Development and Disease (V.M.K., V.S.), Max Plank Institute for Molecular Genetics, Berlin, Germany; Department of Neurology (E.M., E.S.), University of California, San Francisco; Service de Cytogenetique Constitutionnelle (G.L., M.T.), Hospice Civils de Lyon, France; Center for Medical Genetics and Molecular Medicine (G.G.), Haukeland University Hospital, Bergen, Norway; Humangenetisches Institut (A.W.), Universitaetsklinikum Erlangen, Germany; Zentrum für Kinder- und Jugendmedizin (C.K.), Elisabeth Kinderkrankenhaus, Oldenburg, Germany; Service de Genetique Medicale (S.M.), CHU Hotel Dieu, Nantes, France; Neurologische Universitätsklinik (F.B.), Tübingen, Germany; Institute of Medical Genetics (T.Y.), Tokyo Women's Medical University, Japan; Diagnostics Division (U.R.D., A.B.D.), Center for DNA Fingerprinting and Diagnostics, Telangana, India; Shahrood Welfare Organization (P.J.), Shahrood, Iran; and Genetics Research Center (K.K., H.N.), University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Elliott Sherr
- Department of Paediatrics (Neurology) (M.A., B.A.M.), Program in Genetics and Genome Biology (S.W.S., C.R.M., S.W., B.A.M.), The Hospital for Sick Children and University of Toronto, Canada; Research Group Development and Disease (V.M.K., V.S.), Max Plank Institute for Molecular Genetics, Berlin, Germany; Department of Neurology (E.M., E.S.), University of California, San Francisco; Service de Cytogenetique Constitutionnelle (G.L., M.T.), Hospice Civils de Lyon, France; Center for Medical Genetics and Molecular Medicine (G.G.), Haukeland University Hospital, Bergen, Norway; Humangenetisches Institut (A.W.), Universitaetsklinikum Erlangen, Germany; Zentrum für Kinder- und Jugendmedizin (C.K.), Elisabeth Kinderkrankenhaus, Oldenburg, Germany; Service de Genetique Medicale (S.M.), CHU Hotel Dieu, Nantes, France; Neurologische Universitätsklinik (F.B.), Tübingen, Germany; Institute of Medical Genetics (T.Y.), Tokyo Women's Medical University, Japan; Diagnostics Division (U.R.D., A.B.D.), Center for DNA Fingerprinting and Diagnostics, Telangana, India; Shahrood Welfare Organization (P.J.), Shahrood, Iran; and Genetics Research Center (K.K., H.N.), University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Gaetan Lesca
- Department of Paediatrics (Neurology) (M.A., B.A.M.), Program in Genetics and Genome Biology (S.W.S., C.R.M., S.W., B.A.M.), The Hospital for Sick Children and University of Toronto, Canada; Research Group Development and Disease (V.M.K., V.S.), Max Plank Institute for Molecular Genetics, Berlin, Germany; Department of Neurology (E.M., E.S.), University of California, San Francisco; Service de Cytogenetique Constitutionnelle (G.L., M.T.), Hospice Civils de Lyon, France; Center for Medical Genetics and Molecular Medicine (G.G.), Haukeland University Hospital, Bergen, Norway; Humangenetisches Institut (A.W.), Universitaetsklinikum Erlangen, Germany; Zentrum für Kinder- und Jugendmedizin (C.K.), Elisabeth Kinderkrankenhaus, Oldenburg, Germany; Service de Genetique Medicale (S.M.), CHU Hotel Dieu, Nantes, France; Neurologische Universitätsklinik (F.B.), Tübingen, Germany; Institute of Medical Genetics (T.Y.), Tokyo Women's Medical University, Japan; Diagnostics Division (U.R.D., A.B.D.), Center for DNA Fingerprinting and Diagnostics, Telangana, India; Shahrood Welfare Organization (P.J.), Shahrood, Iran; and Genetics Research Center (K.K., H.N.), University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Marianne Till
- Department of Paediatrics (Neurology) (M.A., B.A.M.), Program in Genetics and Genome Biology (S.W.S., C.R.M., S.W., B.A.M.), The Hospital for Sick Children and University of Toronto, Canada; Research Group Development and Disease (V.M.K., V.S.), Max Plank Institute for Molecular Genetics, Berlin, Germany; Department of Neurology (E.M., E.S.), University of California, San Francisco; Service de Cytogenetique Constitutionnelle (G.L., M.T.), Hospice Civils de Lyon, France; Center for Medical Genetics and Molecular Medicine (G.G.), Haukeland University Hospital, Bergen, Norway; Humangenetisches Institut (A.W.), Universitaetsklinikum Erlangen, Germany; Zentrum für Kinder- und Jugendmedizin (C.K.), Elisabeth Kinderkrankenhaus, Oldenburg, Germany; Service de Genetique Medicale (S.M.), CHU Hotel Dieu, Nantes, France; Neurologische Universitätsklinik (F.B.), Tübingen, Germany; Institute of Medical Genetics (T.Y.), Tokyo Women's Medical University, Japan; Diagnostics Division (U.R.D., A.B.D.), Center for DNA Fingerprinting and Diagnostics, Telangana, India; Shahrood Welfare Organization (P.J.), Shahrood, Iran; and Genetics Research Center (K.K., H.N.), University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Gyri Gradek
- Department of Paediatrics (Neurology) (M.A., B.A.M.), Program in Genetics and Genome Biology (S.W.S., C.R.M., S.W., B.A.M.), The Hospital for Sick Children and University of Toronto, Canada; Research Group Development and Disease (V.M.K., V.S.), Max Plank Institute for Molecular Genetics, Berlin, Germany; Department of Neurology (E.M., E.S.), University of California, San Francisco; Service de Cytogenetique Constitutionnelle (G.L., M.T.), Hospice Civils de Lyon, France; Center for Medical Genetics and Molecular Medicine (G.G.), Haukeland University Hospital, Bergen, Norway; Humangenetisches Institut (A.W.), Universitaetsklinikum Erlangen, Germany; Zentrum für Kinder- und Jugendmedizin (C.K.), Elisabeth Kinderkrankenhaus, Oldenburg, Germany; Service de Genetique Medicale (S.M.), CHU Hotel Dieu, Nantes, France; Neurologische Universitätsklinik (F.B.), Tübingen, Germany; Institute of Medical Genetics (T.Y.), Tokyo Women's Medical University, Japan; Diagnostics Division (U.R.D., A.B.D.), Center for DNA Fingerprinting and Diagnostics, Telangana, India; Shahrood Welfare Organization (P.J.), Shahrood, Iran; and Genetics Research Center (K.K., H.N.), University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Antje Wiesener
- Department of Paediatrics (Neurology) (M.A., B.A.M.), Program in Genetics and Genome Biology (S.W.S., C.R.M., S.W., B.A.M.), The Hospital for Sick Children and University of Toronto, Canada; Research Group Development and Disease (V.M.K., V.S.), Max Plank Institute for Molecular Genetics, Berlin, Germany; Department of Neurology (E.M., E.S.), University of California, San Francisco; Service de Cytogenetique Constitutionnelle (G.L., M.T.), Hospice Civils de Lyon, France; Center for Medical Genetics and Molecular Medicine (G.G.), Haukeland University Hospital, Bergen, Norway; Humangenetisches Institut (A.W.), Universitaetsklinikum Erlangen, Germany; Zentrum für Kinder- und Jugendmedizin (C.K.), Elisabeth Kinderkrankenhaus, Oldenburg, Germany; Service de Genetique Medicale (S.M.), CHU Hotel Dieu, Nantes, France; Neurologische Universitätsklinik (F.B.), Tübingen, Germany; Institute of Medical Genetics (T.Y.), Tokyo Women's Medical University, Japan; Diagnostics Division (U.R.D., A.B.D.), Center for DNA Fingerprinting and Diagnostics, Telangana, India; Shahrood Welfare Organization (P.J.), Shahrood, Iran; and Genetics Research Center (K.K., H.N.), University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Christoph Korenke
- Department of Paediatrics (Neurology) (M.A., B.A.M.), Program in Genetics and Genome Biology (S.W.S., C.R.M., S.W., B.A.M.), The Hospital for Sick Children and University of Toronto, Canada; Research Group Development and Disease (V.M.K., V.S.), Max Plank Institute for Molecular Genetics, Berlin, Germany; Department of Neurology (E.M., E.S.), University of California, San Francisco; Service de Cytogenetique Constitutionnelle (G.L., M.T.), Hospice Civils de Lyon, France; Center for Medical Genetics and Molecular Medicine (G.G.), Haukeland University Hospital, Bergen, Norway; Humangenetisches Institut (A.W.), Universitaetsklinikum Erlangen, Germany; Zentrum für Kinder- und Jugendmedizin (C.K.), Elisabeth Kinderkrankenhaus, Oldenburg, Germany; Service de Genetique Medicale (S.M.), CHU Hotel Dieu, Nantes, France; Neurologische Universitätsklinik (F.B.), Tübingen, Germany; Institute of Medical Genetics (T.Y.), Tokyo Women's Medical University, Japan; Diagnostics Division (U.R.D., A.B.D.), Center for DNA Fingerprinting and Diagnostics, Telangana, India; Shahrood Welfare Organization (P.J.), Shahrood, Iran; and Genetics Research Center (K.K., H.N.), University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Sandra Mercier
- Department of Paediatrics (Neurology) (M.A., B.A.M.), Program in Genetics and Genome Biology (S.W.S., C.R.M., S.W., B.A.M.), The Hospital for Sick Children and University of Toronto, Canada; Research Group Development and Disease (V.M.K., V.S.), Max Plank Institute for Molecular Genetics, Berlin, Germany; Department of Neurology (E.M., E.S.), University of California, San Francisco; Service de Cytogenetique Constitutionnelle (G.L., M.T.), Hospice Civils de Lyon, France; Center for Medical Genetics and Molecular Medicine (G.G.), Haukeland University Hospital, Bergen, Norway; Humangenetisches Institut (A.W.), Universitaetsklinikum Erlangen, Germany; Zentrum für Kinder- und Jugendmedizin (C.K.), Elisabeth Kinderkrankenhaus, Oldenburg, Germany; Service de Genetique Medicale (S.M.), CHU Hotel Dieu, Nantes, France; Neurologische Universitätsklinik (F.B.), Tübingen, Germany; Institute of Medical Genetics (T.Y.), Tokyo Women's Medical University, Japan; Diagnostics Division (U.R.D., A.B.D.), Center for DNA Fingerprinting and Diagnostics, Telangana, India; Shahrood Welfare Organization (P.J.), Shahrood, Iran; and Genetics Research Center (K.K., H.N.), University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Felicitas Becker
- Department of Paediatrics (Neurology) (M.A., B.A.M.), Program in Genetics and Genome Biology (S.W.S., C.R.M., S.W., B.A.M.), The Hospital for Sick Children and University of Toronto, Canada; Research Group Development and Disease (V.M.K., V.S.), Max Plank Institute for Molecular Genetics, Berlin, Germany; Department of Neurology (E.M., E.S.), University of California, San Francisco; Service de Cytogenetique Constitutionnelle (G.L., M.T.), Hospice Civils de Lyon, France; Center for Medical Genetics and Molecular Medicine (G.G.), Haukeland University Hospital, Bergen, Norway; Humangenetisches Institut (A.W.), Universitaetsklinikum Erlangen, Germany; Zentrum für Kinder- und Jugendmedizin (C.K.), Elisabeth Kinderkrankenhaus, Oldenburg, Germany; Service de Genetique Medicale (S.M.), CHU Hotel Dieu, Nantes, France; Neurologische Universitätsklinik (F.B.), Tübingen, Germany; Institute of Medical Genetics (T.Y.), Tokyo Women's Medical University, Japan; Diagnostics Division (U.R.D., A.B.D.), Center for DNA Fingerprinting and Diagnostics, Telangana, India; Shahrood Welfare Organization (P.J.), Shahrood, Iran; and Genetics Research Center (K.K., H.N.), University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Toshiyuki Yamamoto
- Department of Paediatrics (Neurology) (M.A., B.A.M.), Program in Genetics and Genome Biology (S.W.S., C.R.M., S.W., B.A.M.), The Hospital for Sick Children and University of Toronto, Canada; Research Group Development and Disease (V.M.K., V.S.), Max Plank Institute for Molecular Genetics, Berlin, Germany; Department of Neurology (E.M., E.S.), University of California, San Francisco; Service de Cytogenetique Constitutionnelle (G.L., M.T.), Hospice Civils de Lyon, France; Center for Medical Genetics and Molecular Medicine (G.G.), Haukeland University Hospital, Bergen, Norway; Humangenetisches Institut (A.W.), Universitaetsklinikum Erlangen, Germany; Zentrum für Kinder- und Jugendmedizin (C.K.), Elisabeth Kinderkrankenhaus, Oldenburg, Germany; Service de Genetique Medicale (S.M.), CHU Hotel Dieu, Nantes, France; Neurologische Universitätsklinik (F.B.), Tübingen, Germany; Institute of Medical Genetics (T.Y.), Tokyo Women's Medical University, Japan; Diagnostics Division (U.R.D., A.B.D.), Center for DNA Fingerprinting and Diagnostics, Telangana, India; Shahrood Welfare Organization (P.J.), Shahrood, Iran; and Genetics Research Center (K.K., H.N.), University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Stephen W Scherer
- Department of Paediatrics (Neurology) (M.A., B.A.M.), Program in Genetics and Genome Biology (S.W.S., C.R.M., S.W., B.A.M.), The Hospital for Sick Children and University of Toronto, Canada; Research Group Development and Disease (V.M.K., V.S.), Max Plank Institute for Molecular Genetics, Berlin, Germany; Department of Neurology (E.M., E.S.), University of California, San Francisco; Service de Cytogenetique Constitutionnelle (G.L., M.T.), Hospice Civils de Lyon, France; Center for Medical Genetics and Molecular Medicine (G.G.), Haukeland University Hospital, Bergen, Norway; Humangenetisches Institut (A.W.), Universitaetsklinikum Erlangen, Germany; Zentrum für Kinder- und Jugendmedizin (C.K.), Elisabeth Kinderkrankenhaus, Oldenburg, Germany; Service de Genetique Medicale (S.M.), CHU Hotel Dieu, Nantes, France; Neurologische Universitätsklinik (F.B.), Tübingen, Germany; Institute of Medical Genetics (T.Y.), Tokyo Women's Medical University, Japan; Diagnostics Division (U.R.D., A.B.D.), Center for DNA Fingerprinting and Diagnostics, Telangana, India; Shahrood Welfare Organization (P.J.), Shahrood, Iran; and Genetics Research Center (K.K., H.N.), University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Christian R Marshall
- Department of Paediatrics (Neurology) (M.A., B.A.M.), Program in Genetics and Genome Biology (S.W.S., C.R.M., S.W., B.A.M.), The Hospital for Sick Children and University of Toronto, Canada; Research Group Development and Disease (V.M.K., V.S.), Max Plank Institute for Molecular Genetics, Berlin, Germany; Department of Neurology (E.M., E.S.), University of California, San Francisco; Service de Cytogenetique Constitutionnelle (G.L., M.T.), Hospice Civils de Lyon, France; Center for Medical Genetics and Molecular Medicine (G.G.), Haukeland University Hospital, Bergen, Norway; Humangenetisches Institut (A.W.), Universitaetsklinikum Erlangen, Germany; Zentrum für Kinder- und Jugendmedizin (C.K.), Elisabeth Kinderkrankenhaus, Oldenburg, Germany; Service de Genetique Medicale (S.M.), CHU Hotel Dieu, Nantes, France; Neurologische Universitätsklinik (F.B.), Tübingen, Germany; Institute of Medical Genetics (T.Y.), Tokyo Women's Medical University, Japan; Diagnostics Division (U.R.D., A.B.D.), Center for DNA Fingerprinting and Diagnostics, Telangana, India; Shahrood Welfare Organization (P.J.), Shahrood, Iran; and Genetics Research Center (K.K., H.N.), University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Susan Walker
- Department of Paediatrics (Neurology) (M.A., B.A.M.), Program in Genetics and Genome Biology (S.W.S., C.R.M., S.W., B.A.M.), The Hospital for Sick Children and University of Toronto, Canada; Research Group Development and Disease (V.M.K., V.S.), Max Plank Institute for Molecular Genetics, Berlin, Germany; Department of Neurology (E.M., E.S.), University of California, San Francisco; Service de Cytogenetique Constitutionnelle (G.L., M.T.), Hospice Civils de Lyon, France; Center for Medical Genetics and Molecular Medicine (G.G.), Haukeland University Hospital, Bergen, Norway; Humangenetisches Institut (A.W.), Universitaetsklinikum Erlangen, Germany; Zentrum für Kinder- und Jugendmedizin (C.K.), Elisabeth Kinderkrankenhaus, Oldenburg, Germany; Service de Genetique Medicale (S.M.), CHU Hotel Dieu, Nantes, France; Neurologische Universitätsklinik (F.B.), Tübingen, Germany; Institute of Medical Genetics (T.Y.), Tokyo Women's Medical University, Japan; Diagnostics Division (U.R.D., A.B.D.), Center for DNA Fingerprinting and Diagnostics, Telangana, India; Shahrood Welfare Organization (P.J.), Shahrood, Iran; and Genetics Research Center (K.K., H.N.), University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Usha R Dutta
- Department of Paediatrics (Neurology) (M.A., B.A.M.), Program in Genetics and Genome Biology (S.W.S., C.R.M., S.W., B.A.M.), The Hospital for Sick Children and University of Toronto, Canada; Research Group Development and Disease (V.M.K., V.S.), Max Plank Institute for Molecular Genetics, Berlin, Germany; Department of Neurology (E.M., E.S.), University of California, San Francisco; Service de Cytogenetique Constitutionnelle (G.L., M.T.), Hospice Civils de Lyon, France; Center for Medical Genetics and Molecular Medicine (G.G.), Haukeland University Hospital, Bergen, Norway; Humangenetisches Institut (A.W.), Universitaetsklinikum Erlangen, Germany; Zentrum für Kinder- und Jugendmedizin (C.K.), Elisabeth Kinderkrankenhaus, Oldenburg, Germany; Service de Genetique Medicale (S.M.), CHU Hotel Dieu, Nantes, France; Neurologische Universitätsklinik (F.B.), Tübingen, Germany; Institute of Medical Genetics (T.Y.), Tokyo Women's Medical University, Japan; Diagnostics Division (U.R.D., A.B.D.), Center for DNA Fingerprinting and Diagnostics, Telangana, India; Shahrood Welfare Organization (P.J.), Shahrood, Iran; and Genetics Research Center (K.K., H.N.), University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Ashwin B Dalal
- Department of Paediatrics (Neurology) (M.A., B.A.M.), Program in Genetics and Genome Biology (S.W.S., C.R.M., S.W., B.A.M.), The Hospital for Sick Children and University of Toronto, Canada; Research Group Development and Disease (V.M.K., V.S.), Max Plank Institute for Molecular Genetics, Berlin, Germany; Department of Neurology (E.M., E.S.), University of California, San Francisco; Service de Cytogenetique Constitutionnelle (G.L., M.T.), Hospice Civils de Lyon, France; Center for Medical Genetics and Molecular Medicine (G.G.), Haukeland University Hospital, Bergen, Norway; Humangenetisches Institut (A.W.), Universitaetsklinikum Erlangen, Germany; Zentrum für Kinder- und Jugendmedizin (C.K.), Elisabeth Kinderkrankenhaus, Oldenburg, Germany; Service de Genetique Medicale (S.M.), CHU Hotel Dieu, Nantes, France; Neurologische Universitätsklinik (F.B.), Tübingen, Germany; Institute of Medical Genetics (T.Y.), Tokyo Women's Medical University, Japan; Diagnostics Division (U.R.D., A.B.D.), Center for DNA Fingerprinting and Diagnostics, Telangana, India; Shahrood Welfare Organization (P.J.), Shahrood, Iran; and Genetics Research Center (K.K., H.N.), University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Vanessa Suckow
- Department of Paediatrics (Neurology) (M.A., B.A.M.), Program in Genetics and Genome Biology (S.W.S., C.R.M., S.W., B.A.M.), The Hospital for Sick Children and University of Toronto, Canada; Research Group Development and Disease (V.M.K., V.S.), Max Plank Institute for Molecular Genetics, Berlin, Germany; Department of Neurology (E.M., E.S.), University of California, San Francisco; Service de Cytogenetique Constitutionnelle (G.L., M.T.), Hospice Civils de Lyon, France; Center for Medical Genetics and Molecular Medicine (G.G.), Haukeland University Hospital, Bergen, Norway; Humangenetisches Institut (A.W.), Universitaetsklinikum Erlangen, Germany; Zentrum für Kinder- und Jugendmedizin (C.K.), Elisabeth Kinderkrankenhaus, Oldenburg, Germany; Service de Genetique Medicale (S.M.), CHU Hotel Dieu, Nantes, France; Neurologische Universitätsklinik (F.B.), Tübingen, Germany; Institute of Medical Genetics (T.Y.), Tokyo Women's Medical University, Japan; Diagnostics Division (U.R.D., A.B.D.), Center for DNA Fingerprinting and Diagnostics, Telangana, India; Shahrood Welfare Organization (P.J.), Shahrood, Iran; and Genetics Research Center (K.K., H.N.), University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Payman Jamali
- Department of Paediatrics (Neurology) (M.A., B.A.M.), Program in Genetics and Genome Biology (S.W.S., C.R.M., S.W., B.A.M.), The Hospital for Sick Children and University of Toronto, Canada; Research Group Development and Disease (V.M.K., V.S.), Max Plank Institute for Molecular Genetics, Berlin, Germany; Department of Neurology (E.M., E.S.), University of California, San Francisco; Service de Cytogenetique Constitutionnelle (G.L., M.T.), Hospice Civils de Lyon, France; Center for Medical Genetics and Molecular Medicine (G.G.), Haukeland University Hospital, Bergen, Norway; Humangenetisches Institut (A.W.), Universitaetsklinikum Erlangen, Germany; Zentrum für Kinder- und Jugendmedizin (C.K.), Elisabeth Kinderkrankenhaus, Oldenburg, Germany; Service de Genetique Medicale (S.M.), CHU Hotel Dieu, Nantes, France; Neurologische Universitätsklinik (F.B.), Tübingen, Germany; Institute of Medical Genetics (T.Y.), Tokyo Women's Medical University, Japan; Diagnostics Division (U.R.D., A.B.D.), Center for DNA Fingerprinting and Diagnostics, Telangana, India; Shahrood Welfare Organization (P.J.), Shahrood, Iran; and Genetics Research Center (K.K., H.N.), University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Department of Paediatrics (Neurology) (M.A., B.A.M.), Program in Genetics and Genome Biology (S.W.S., C.R.M., S.W., B.A.M.), The Hospital for Sick Children and University of Toronto, Canada; Research Group Development and Disease (V.M.K., V.S.), Max Plank Institute for Molecular Genetics, Berlin, Germany; Department of Neurology (E.M., E.S.), University of California, San Francisco; Service de Cytogenetique Constitutionnelle (G.L., M.T.), Hospice Civils de Lyon, France; Center for Medical Genetics and Molecular Medicine (G.G.), Haukeland University Hospital, Bergen, Norway; Humangenetisches Institut (A.W.), Universitaetsklinikum Erlangen, Germany; Zentrum für Kinder- und Jugendmedizin (C.K.), Elisabeth Kinderkrankenhaus, Oldenburg, Germany; Service de Genetique Medicale (S.M.), CHU Hotel Dieu, Nantes, France; Neurologische Universitätsklinik (F.B.), Tübingen, Germany; Institute of Medical Genetics (T.Y.), Tokyo Women's Medical University, Japan; Diagnostics Division (U.R.D., A.B.D.), Center for DNA Fingerprinting and Diagnostics, Telangana, India; Shahrood Welfare Organization (P.J.), Shahrood, Iran; and Genetics Research Center (K.K., H.N.), University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Department of Paediatrics (Neurology) (M.A., B.A.M.), Program in Genetics and Genome Biology (S.W.S., C.R.M., S.W., B.A.M.), The Hospital for Sick Children and University of Toronto, Canada; Research Group Development and Disease (V.M.K., V.S.), Max Plank Institute for Molecular Genetics, Berlin, Germany; Department of Neurology (E.M., E.S.), University of California, San Francisco; Service de Cytogenetique Constitutionnelle (G.L., M.T.), Hospice Civils de Lyon, France; Center for Medical Genetics and Molecular Medicine (G.G.), Haukeland University Hospital, Bergen, Norway; Humangenetisches Institut (A.W.), Universitaetsklinikum Erlangen, Germany; Zentrum für Kinder- und Jugendmedizin (C.K.), Elisabeth Kinderkrankenhaus, Oldenburg, Germany; Service de Genetique Medicale (S.M.), CHU Hotel Dieu, Nantes, France; Neurologische Universitätsklinik (F.B.), Tübingen, Germany; Institute of Medical Genetics (T.Y.), Tokyo Women's Medical University, Japan; Diagnostics Division (U.R.D., A.B.D.), Center for DNA Fingerprinting and Diagnostics, Telangana, India; Shahrood Welfare Organization (P.J.), Shahrood, Iran; and Genetics Research Center (K.K., H.N.), University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Berge A Minassian
- Department of Paediatrics (Neurology) (M.A., B.A.M.), Program in Genetics and Genome Biology (S.W.S., C.R.M., S.W., B.A.M.), The Hospital for Sick Children and University of Toronto, Canada; Research Group Development and Disease (V.M.K., V.S.), Max Plank Institute for Molecular Genetics, Berlin, Germany; Department of Neurology (E.M., E.S.), University of California, San Francisco; Service de Cytogenetique Constitutionnelle (G.L., M.T.), Hospice Civils de Lyon, France; Center for Medical Genetics and Molecular Medicine (G.G.), Haukeland University Hospital, Bergen, Norway; Humangenetisches Institut (A.W.), Universitaetsklinikum Erlangen, Germany; Zentrum für Kinder- und Jugendmedizin (C.K.), Elisabeth Kinderkrankenhaus, Oldenburg, Germany; Service de Genetique Medicale (S.M.), CHU Hotel Dieu, Nantes, France; Neurologische Universitätsklinik (F.B.), Tübingen, Germany; Institute of Medical Genetics (T.Y.), Tokyo Women's Medical University, Japan; Diagnostics Division (U.R.D., A.B.D.), Center for DNA Fingerprinting and Diagnostics, Telangana, India; Shahrood Welfare Organization (P.J.), Shahrood, Iran; and Genetics Research Center (K.K., H.N.), University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
68
|
Langlhofer G, Villmann C. The role of charged residues in independent glycine receptor folding domains for intermolecular interactions and ion channel function. J Neurochem 2017; 142:41-55. [PMID: 28429370 DOI: 10.1111/jnc.14049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/18/2017] [Accepted: 04/12/2017] [Indexed: 01/03/2023]
Abstract
Glycine receptor (GlyR) truncations in the intracellular TM3-4 loop, documented in patients suffering from hyperekplexia and in the mouse mutant oscillator, lead to non-functionality of GlyRs. The missing part that contains the TM3-4 loop, TM4 and C-terminal sequences is essential for pentameric receptor arrangements. In vitro co-expressions of GlyRα1-truncated N-domains and C-domains were able to restore ion channel function. An ionic interaction between both domains was hypothesized as the underlying mechanism. Here, we analysed the proposed ionic interaction between GlyR N- and C-domains using C-terminal constructs with either positively or negatively charged N-termini. Charged residues at the N-terminus of the C-domain did interfere with receptor surface expression and ion channel function. In particular, presence of negatively charged residues at the N-terminus led to significantly decreased ion channel function. Presence of positive charges resulted in reduced maximal currents possibly as a result of repulsion of both domains. If the C-domain was tagged by a myc-epitope, low maximal current amplitudes were detected. Intrinsic charges of the myc-epitope and charged N-terminal ends of the C-domain most probably induce intramolecular interactions. These interactions might hinder the close proximity of C-domains and N-domains, which is a prerequisite for functional ion channel configurations. The remaining basic subdomains close to TM3 and 4 were sufficient for domain complementation and functional ion channel formation. Thus, these basic subdomains forming α-helical elements or an intracellular portal represent attractants for incoming negatively charged chloride ions and interact with the phospholipids thereby stabilizing the GlyR in a conformation that allows ion channel opening.
Collapse
Affiliation(s)
- Georg Langlhofer
- Institute for Clinical Neurobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Carmen Villmann
- Institute for Clinical Neurobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| |
Collapse
|
69
|
Ravindran E, Hu H, Yuzwa SA, Hernandez-Miranda LR, Kraemer N, Ninnemann O, Musante L, Boltshauser E, Schindler D, Hübner A, Reinecker HC, Ropers HH, Birchmeier C, Miller FD, Wienker TF, Hübner C, Kaindl AM. Homozygous ARHGEF2 mutation causes intellectual disability and midbrain-hindbrain malformation. PLoS Genet 2017; 13:e1006746. [PMID: 28453519 PMCID: PMC5428974 DOI: 10.1371/journal.pgen.1006746] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 05/12/2017] [Accepted: 04/05/2017] [Indexed: 11/18/2022] Open
Abstract
Mid-hindbrain malformations can occur during embryogenesis through a disturbance of transient and localized gene expression patterns within these distinct brain structures. Rho guanine nucleotide exchange factor (ARHGEF) family members are key for controlling the spatiotemporal activation of Rho GTPase, to modulate cytoskeleton dynamics, cell division, and cell migration. We identified, by means of whole exome sequencing, a homozygous frameshift mutation in the ARHGEF2 as a cause of intellectual disability, a midbrain-hindbrain malformation, and mild microcephaly in a consanguineous pedigree of Kurdish-Turkish descent. We show that loss of ARHGEF2 perturbs progenitor cell differentiation and that this is associated with a shift of mitotic spindle plane orientation, putatively favoring more symmetric divisions. The ARHGEF2 mutation leads to reduction in the activation of the RhoA/ROCK/MLC pathway crucial for cell migration. We demonstrate that the human brain malformation is recapitulated in Arhgef2 mutant mice and identify an aberrant migration of distinct components of the precerebellar system as a pathomechanism underlying the midbrain-hindbrain phenotype. Our results highlight the crucial function of ARHGEF2 in human brain development and identify a mutation in ARHGEF2 as novel cause of a neurodevelopmental disorder.
Collapse
Affiliation(s)
- Ethiraj Ravindran
- Institute of Cell Biology and Neurobiology, Charité University Medicine Berlin, Berlin, Germany
- Department of Pediatric Neurology, Charité University Medicine Berlin, Berlin, Germany
- Sozialpädiatrisches Zentrum (SPZ), Center for Chronic Sick Children, Charité University, Berlin, Germany
| | - Hao Hu
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Scott A. Yuzwa
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada
| | | | - Nadine Kraemer
- Institute of Cell Biology and Neurobiology, Charité University Medicine Berlin, Berlin, Germany
- Department of Pediatric Neurology, Charité University Medicine Berlin, Berlin, Germany
- Sozialpädiatrisches Zentrum (SPZ), Center for Chronic Sick Children, Charité University, Berlin, Germany
| | - Olaf Ninnemann
- Institute of Cell Biology and Neurobiology, Charité University Medicine Berlin, Berlin, Germany
| | - Luciana Musante
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Eugen Boltshauser
- Department of Pediatric Neurology, University Children's Hospital of Zurich, Zurich, Switzerland
| | - Detlev Schindler
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Angela Hübner
- Pediatrics, University Hospital, Technical University Dresden, Dresden, Germany
| | - Hans-Christian Reinecker
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | | | - Freda D. Miller
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada
| | | | - Christoph Hübner
- Department of Pediatric Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Angela M. Kaindl
- Institute of Cell Biology and Neurobiology, Charité University Medicine Berlin, Berlin, Germany
- Department of Pediatric Neurology, Charité University Medicine Berlin, Berlin, Germany
- Sozialpädiatrisches Zentrum (SPZ), Center for Chronic Sick Children, Charité University, Berlin, Germany
- * E-mail:
| |
Collapse
|
70
|
Stuart KE, King AE, Fernandez-Martos CM, Dittmann J, Summers MJ, Vickers JC. Mid-life environmental enrichment increases synaptic density in CA1 in a mouse model of Aβ-associated pathology and positively influences synaptic and cognitive health in healthy ageing. J Comp Neurol 2017; 525:1797-1810. [DOI: 10.1002/cne.24156] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Kimberley E. Stuart
- Faculty of Health; Wicking Dementia Research and Education Centre, University of Tasmania; Tasmania Australia
| | - Anna E. King
- Faculty of Health; Wicking Dementia Research and Education Centre, University of Tasmania; Tasmania Australia
| | - Carmen M. Fernandez-Martos
- Faculty of Health; Wicking Dementia Research and Education Centre, University of Tasmania; Tasmania Australia
| | - Justin Dittmann
- Faculty of Health; Wicking Dementia Research and Education Centre, University of Tasmania; Tasmania Australia
| | - Mathew J. Summers
- Faculty of Health; Wicking Dementia Research and Education Centre, University of Tasmania; Tasmania Australia
- School of Social Sciences; University of the Sunshine Coast; Sippy Downs Queensland Australia
| | - James C. Vickers
- Faculty of Health; Wicking Dementia Research and Education Centre, University of Tasmania; Tasmania Australia
| |
Collapse
|
71
|
Papadopoulos T, Rhee HJ, Subramanian D, Paraskevopoulou F, Mueller R, Schultz C, Brose N, Rhee JS, Betz H. Endosomal Phosphatidylinositol 3-Phosphate Promotes Gephyrin Clustering and GABAergic Neurotransmission at Inhibitory Postsynapses. J Biol Chem 2016; 292:1160-1177. [PMID: 27941024 DOI: 10.1074/jbc.m116.771592] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Indexed: 11/06/2022] Open
Abstract
The formation of neuronal synapses and the dynamic regulation of their efficacy depend on the proper assembly of the postsynaptic neurotransmitter receptor apparatus. Receptor recruitment to inhibitory GABAergic postsynapses requires the scaffold protein gephyrin and the guanine nucleotide exchange factor collybistin (Cb). In vitro, the pleckstrin homology domain of Cb binds phosphoinositides, specifically phosphatidylinositol 3-phosphate (PI3P). However, whether PI3P is required for inhibitory postsynapse formation is currently unknown. Here, we investigated the role of PI3P at developing GABAergic postsynapses by using a membrane-permeant PI3P derivative, time-lapse confocal imaging, electrophysiology, as well as knockdown and overexpression of PI3P-metabolizing enzymes. Our results provide the first in cellula evidence that PI3P located at early/sorting endosomes regulates the postsynaptic clustering of gephyrin and GABAA receptors and the strength of inhibitory, but not excitatory, postsynapses in cultured hippocampal neurons. In human embryonic kidney 293 cells, stimulation of gephyrin cluster formation by PI3P depends on Cb. We therefore conclude that the endosomal pool of PI3P, generated by the class III phosphatidylinositol 3-kinase, is important for the Cb-mediated recruitment of gephyrin and GABAA receptors to developing inhibitory postsynapses and thus the formation of postsynaptic membrane specializations.
Collapse
Affiliation(s)
- Theofilos Papadopoulos
- From the Department of Molecular Biology, Center of Biochemistry and Molecular Cell Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany,
| | - Hong Jun Rhee
- the Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Devaraj Subramanian
- the European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Foteini Paraskevopoulou
- From the Department of Molecular Biology, Center of Biochemistry and Molecular Cell Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Rainer Mueller
- the European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Carsten Schultz
- the European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany.,the Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97239-3098
| | - Nils Brose
- the Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Jeong-Seop Rhee
- the Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Heinrich Betz
- the Department of Neurochemistry, Max Planck Institute for Brain Research, Deutschordenstrasse 46, 60528 Frankfurt am Main, Germany, and.,the Max Planck Institute of Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| |
Collapse
|
72
|
Fekete CD, Goz RU, Dinallo S, Miralles CP, Chiou TT, Bear J, Fiondella CG, LoTurco JJ, De Blas AL. In vivo transgenic expression of collybistin in neurons of the rat cerebral cortex. J Comp Neurol 2016; 525:1291-1311. [PMID: 27804142 DOI: 10.1002/cne.24137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 01/12/2023]
Abstract
Collybistin (CB) is a guanine nucleotide exchange factor selectively localized to γ-aminobutyric acid (GABA)ergic and glycinergic postsynapses. Active CB interacts with gephyrin, inducing the submembranous clustering and the postsynaptic accumulation of gephyrin, which is a scaffold protein that recruits GABAA receptors (GABAA Rs) at the postsynapse. CB is expressed with or without a src homology 3 (SH3) domain. We have previously reported the effects on GABAergic synapses of the acute overexpression of CBSH3- or CBSH3+ in cultured hippocampal (HP) neurons. In the present communication, we are studying the effects on GABAergic synapses after chronic in vivo transgenic expression of CB2SH3- or CB2SH3+ in neurons of the adult rat cerebral cortex. The embryonic precursors of these cortical neurons were in utero electroporated with CBSH3- or CBSH3+ DNAs, migrated to the appropriate cortical layer, and became integrated in cortical circuits. The results show that: 1) the strength of inhibitory synapses in vivo can be enhanced by increasing the expression of CB in neurons; and 2) there are significant differences in the results between in vivo and in culture studies. J. Comp. Neurol. 525:1291-1311, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Christopher D Fekete
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269
| | - Roman U Goz
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269
| | - Sean Dinallo
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269
| | - Celia P Miralles
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269
| | - Tzu-Ting Chiou
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269
| | - John Bear
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269
| | - Christopher G Fiondella
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269
| | - Joseph J LoTurco
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269
| | - Angel L De Blas
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269
| |
Collapse
|
73
|
The astrocytic transporter SLC7A10 (Asc-1) mediates glycinergic inhibition of spinal cord motor neurons. Sci Rep 2016; 6:35592. [PMID: 27759100 PMCID: PMC5069678 DOI: 10.1038/srep35592] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/03/2016] [Indexed: 12/27/2022] Open
Abstract
SLC7A10 (Asc-1) is a sodium-independent amino acid transporter known to facilitate transport of a number of amino acids including glycine, L-serine, L-alanine, and L-cysteine, as well as their D-enantiomers. It has been described as a neuronal transporter with a primary role related to modulation of excitatory glutamatergic neurotransmission. We find that SLC7A10 is substantially enriched in a subset of astrocytes of the caudal brain and spinal cord in a distribution corresponding with high densities of glycinergic inhibitory synapses. Accordingly, we find that spinal cord glycine levels are significantly reduced in Slc7a10-null mice and spontaneous glycinergic postsynaptic currents in motor neurons show substantially diminished amplitudes, demonstrating an essential role for SLC7A10 in glycinergic inhibitory function in the central nervous system. These observations establish the etiology of sustained myoclonus (sudden involuntary muscle movements) and early postnatal lethality characteristic of Slc7a10-null mice, and implicate SLC7A10 as a candidate gene and auto-antibody target in human hyperekplexia and stiff person syndrome, respectively.
Collapse
|
74
|
Lepeta K, Lourenco MV, Schweitzer BC, Martino Adami PV, Banerjee P, Catuara-Solarz S, de La Fuente Revenga M, Guillem AM, Haidar M, Ijomone OM, Nadorp B, Qi L, Perera ND, Refsgaard LK, Reid KM, Sabbar M, Sahoo A, Schaefer N, Sheean RK, Suska A, Verma R, Vicidomini C, Wright D, Zhang XD, Seidenbecher C. Synaptopathies: synaptic dysfunction in neurological disorders - A review from students to students. J Neurochem 2016; 138:785-805. [PMID: 27333343 PMCID: PMC5095804 DOI: 10.1111/jnc.13713] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 12/12/2022]
Abstract
Synapses are essential components of neurons and allow information to travel coordinately throughout the nervous system to adjust behavior to environmental stimuli and to control body functions, memories, and emotions. Thus, optimal synaptic communication is required for proper brain physiology, and slight perturbations of synapse function can lead to brain disorders. In fact, increasing evidence has demonstrated the relevance of synapse dysfunction as a major determinant of many neurological diseases. This notion has led to the concept of synaptopathies as brain diseases with synapse defects as shared pathogenic features. In this review, which was initiated at the 13th International Society for Neurochemistry Advanced School, we discuss basic concepts of synapse structure and function, and provide a critical view of how aberrant synapse physiology may contribute to neurodevelopmental disorders (autism, Down syndrome, startle disease, and epilepsy) as well as neurodegenerative disorders (Alzheimer and Parkinson disease). We finally discuss the appropriateness and potential implications of gathering synapse diseases under a single term. Understanding common causes and intrinsic differences in disease-associated synaptic dysfunction could offer novel clues toward synapse-based therapeutic intervention for neurological and neuropsychiatric disorders. In this Review, which was initiated at the 13th International Society for Neurochemistry (ISN) Advanced School, we discuss basic concepts of synapse structure and function, and provide a critical view of how aberrant synapse physiology may contribute to neurodevelopmental (autism, Down syndrome, startle disease, and epilepsy) as well as neurodegenerative disorders (Alzheimer's and Parkinson's diseases), gathered together under the term of synaptopathies. Read the Editorial Highlight for this article on page 783.
Collapse
Affiliation(s)
- Katarzyna Lepeta
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Barbara C Schweitzer
- Department for Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Magdeburg, Germany
| | - Pamela V Martino Adami
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir-IIBBA-CONICET, Buenos Aires, Argentina
| | - Priyanjalee Banerjee
- Department of Biochemistry, Institute of Post Graduate Medical Education & Research, Kolkata, West Bengal, India
| | - Silvina Catuara-Solarz
- Systems Biology Program, Cellular and Systems Neurobiology, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Mario de La Fuente Revenga
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Alain Marc Guillem
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México D.F. 07000, Mexico
| | - Mouna Haidar
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Omamuyovwi M Ijomone
- Department of Human Anatomy, Cross River University of Technology, Okuku Campus, Cross River, Nigeria
| | - Bettina Nadorp
- The Department of Biological Chemistry, The Edmond and Lily Safra Center for Brain Sciences, The Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, Israel
| | - Lin Qi
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, United States of America
| | - Nirma D Perera
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Louise K Refsgaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Kimberley M Reid
- Department of Pharmacology, UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Mariam Sabbar
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Arghyadip Sahoo
- Department of Biochemistry, Midnapore Medical College, West Bengal University of Health Sciences, West Bengal, India
| | - Natascha Schaefer
- Institute for Clinical Neurobiology, Julius-Maximilians-University of Wuerzburg, Wuerzburg, Germany
| | - Rebecca K Sheean
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Anna Suska
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Rajkumar Verma
- Department of Neurosciences Uconn Health Center, Farmington, CT, United States of America
| | | | - Dean Wright
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Xing-Ding Zhang
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Constanze Seidenbecher
- Department for Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Magdeburg, Germany. .,Center for Behavioral Brain Sciences (CBBS) Magdeburg, Magdeburg, Germany.
| |
Collapse
|
75
|
Alvarez FJ. Gephyrin and the regulation of synaptic strength and dynamics at glycinergic inhibitory synapses. Brain Res Bull 2016; 129:50-65. [PMID: 27612963 DOI: 10.1016/j.brainresbull.2016.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/23/2016] [Accepted: 09/05/2016] [Indexed: 01/23/2023]
Abstract
Glycinergic synapses predominate in brainstem and spinal cord where they modulate motor and sensory processing. Their postsynaptic mechanisms have been considered rather simple because they lack a large variety of glycine receptor isoforms and have relatively simple postsynaptic densities at the ultrastructural level. However, this simplicity is misleading being their postsynaptic regions regulated by a variety of complex mechanisms controlling the efficacy of synaptic inhibition. Early studies suggested that glycinergic inhibitory strength and dynamics depend largely on structural features rather than on molecular complexity. These include regulation of the number of postsynaptic glycine receptors, their localization and the amount of co-localized GABAA receptors and GABA-glycine co-transmission. These properties we now know are under the control of gephyrin. Gephyrin is the first postsynaptic scaffolding protein ever discovered and it was recently found to display a large degree of variation and regulation by splice variants, posttranslational modifications, intracellular trafficking and interactions with the underlying cytoskeleton. Many of these mechanisms are governed by converging excitatory activity and regulate gephyrin oligomerization and receptor binding, the architecture of the postsynaptic density (and by extension the whole synaptic complex), receptor retention and stability. These newly uncovered molecular mechanisms define the size and number of gephyrin postsynaptic regions and the numbers and proportions of glycine and GABAA receptors contained within. All together, they control the emergence of glycinergic synapses of different strength and temporal properties to best match the excitatory drive received by each individual neuron or local dendritic compartment.
Collapse
Affiliation(s)
- Francisco J Alvarez
- Department of Physiology, Emory University, Atlanta, GA 30322-3110, United States.
| |
Collapse
|
76
|
Bhat G, LaGrave D, Millson A, Herriges J, Lamb AN, Matalon R. Xq11.1-11.2 deletion involving ARHGEF9 in a girl with autism spectrum disorder. Eur J Med Genet 2016; 59:470-3. [DOI: 10.1016/j.ejmg.2016.05.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/12/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022]
|
77
|
Regulation of GABAergic synapse development by postsynaptic membrane proteins. Brain Res Bull 2016; 129:30-42. [PMID: 27453545 DOI: 10.1016/j.brainresbull.2016.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/06/2016] [Indexed: 02/07/2023]
Abstract
In the adult mammalian brain, GABAergic neurotransmission provides the majority of synaptic inhibition that balances glutamatergic excitatory drive and thereby controls neuronal output. It is generally accepted that synaptogenesis is initiated through highly specific protein-protein interactions mediated by membrane proteins expressed in developing presynaptic terminals and postsynaptic membranes. Accumulating studies have uncovered a number of membrane proteins that regulate different aspects of GABAergic synapse development. In this review, we summarize recent advances in understanding of GABAergic synapse development with a focus on postsynaptic membrane molecules, including receptors, synaptogenic cell adhesion molecules and immunoglobulin superfamily proteins.
Collapse
|
78
|
Receptor tyrosine kinase EphA7 is required for interneuron connectivity at specific subcellular compartments of granule cells. Sci Rep 2016; 6:29710. [PMID: 27405707 PMCID: PMC4942821 DOI: 10.1038/srep29710] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/21/2016] [Indexed: 01/12/2023] Open
Abstract
Neuronal transmission is regulated by the local circuitry which is composed of principal neurons targeted at different subcellular compartments by a variety of interneurons. However, mechanisms that contribute to the subcellular localisation and maintenance of GABAergic interneuron terminals are poorly understood. Stabilization of GABAergic synapses depends on clustering of the postsynaptic scaffolding protein gephyrin and its interaction with the guanine nucleotide exchange factor collybistin. Lentiviral knockdown experiments in adult rats indicated that the receptor tyrosine kinase EphA7 is required for the stabilisation of basket cell terminals on proximal dendritic and somatic compartments of granular cells of the dentate gyrus. EphA7 deficiency and concomitant destabilisation of GABAergic synapses correlated with impaired long-term potentiation and reduced hippocampal learning. Reduced GABAergic innervation may be explained by an impact of EphA7 on gephyrin clustering. Overexpression or ephrin stimulation of EphA7 induced gephyrin clustering dependent on the mechanistic target of rapamycin (mTOR) which is an interaction partner of gephyrin. Gephyrin interactions with mTOR become released after mTOR activation while enhanced interaction with the guanine nucleotide exchange factor collybistin was observed in parallel. In conclusion, EphA7 regulates gephyrin clustering and the maintenance of inhibitory synaptic connectivity via mTOR signalling.
Collapse
|
79
|
Dejanovic B, Djémié T, Grünewald N, Suls A, Kress V, Hetsch F, Craiu D, Zemel M, Gormley P, Lal D, Myers CT, Mefford HC, Palotie A, Helbig I, Meier JC, De Jonghe P, Weckhuysen S, Schwarz G. Simultaneous impairment of neuronal and metabolic function of mutated gephyrin in a patient with epileptic encephalopathy. EMBO Mol Med 2016; 7:1580-94. [PMID: 26613940 PMCID: PMC4693503 DOI: 10.15252/emmm.201505323] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Synaptic inhibition is essential for shaping the dynamics of neuronal networks, and aberrant inhibition plays an important role in neurological disorders. Gephyrin is a central player at inhibitory postsynapses, directly binds and organizes GABAA and glycine receptors (GABAARs and GlyRs), and is thereby indispensable for normal inhibitory neurotransmission. Additionally, gephyrin catalyzes the synthesis of the molybdenum cofactor (MoCo) in peripheral tissue. We identified a de novo missense mutation (G375D) in the gephyrin gene (GPHN) in a patient with epileptic encephalopathy resembling Dravet syndrome. Although stably expressed and correctly folded, gephyrin‐G375D was non‐synaptically localized in neurons and acted dominant‐negatively on the clustering of wild‐type gephyrin leading to a marked decrease in GABAAR surface expression and GABAergic signaling. We identified a decreased binding affinity between gephyrin‐G375D and the receptors, suggesting that Gly375 is essential for gephyrin–receptor complex formation. Surprisingly, gephyrin‐G375D was also unable to synthesize MoCo and activate MoCo‐dependent enzymes. Thus, we describe a missense mutation that affects both functions of gephyrin and suggest that the identified defect at GABAergic synapses is the mechanism underlying the patient's severe phenotype.
Collapse
Affiliation(s)
- Borislav Dejanovic
- Department of Chemistry, Institute of Biochemistry University of Cologne, Cologne, Germany
| | - Tania Djémié
- Neurogenetics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium Laboratory of Neurogenetics, Institute Born-Bunge University of Antwerp, Antwerp, Belgium
| | - Nora Grünewald
- Department of Chemistry, Institute of Biochemistry University of Cologne, Cologne, Germany
| | - Arvid Suls
- Neurogenetics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium Laboratory of Neurogenetics, Institute Born-Bunge University of Antwerp, Antwerp, Belgium GENOMED, Center for Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Vanessa Kress
- Department of Chemistry, Institute of Biochemistry University of Cologne, Cologne, Germany
| | - Florian Hetsch
- Division Cell Physiology, Zoological Institute Technische Universität Braunschweig, Braunschweig, Germany
| | - Dana Craiu
- Pediatric Neurology Clinic, Al Obregia Hospital, Bucharest, Romania Department of Neurology, Pediatric Neurology, Psychiatry, Child and Adolescent Psychiatry, and Neurosurgery, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Matthew Zemel
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Padhraig Gormley
- Wellcome Trust Sanger Institute Wellcome Trust Genome Campus, Hinxton, UK Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) University of Cologne, Cologne, Germany Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dennis Lal
- Cologne Center for Genomics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) University of Cologne, Cologne, Germany Department of Neuropediatrics, University Medical Faculty Giessen and Marburg, Giessen, Germany
| | | | - Candace T Myers
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Aarno Palotie
- Wellcome Trust Sanger Institute Wellcome Trust Genome Campus, Hinxton, UK Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA The Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Ingo Helbig
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein Christian Albrechts University, Kiel, Germany Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jochen C Meier
- Division Cell Physiology, Zoological Institute Technische Universität Braunschweig, Braunschweig, Germany
| | - Peter De Jonghe
- Neurogenetics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium Laboratory of Neurogenetics, Institute Born-Bunge University of Antwerp, Antwerp, Belgium Division of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Sarah Weckhuysen
- Neurogenetics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium Laboratory of Neurogenetics, Institute Born-Bunge University of Antwerp, Antwerp, Belgium Inserm U 1127 CNRS UMR 7225 Sorbonne Universités UPMC Univ Paris 06 UMR S 1127 Institut du Cerveau et de la Moelle épinière, ICM, Paris, France Centre de reference épilepsies rares, Epilepsy unit, AP-HP Groupe hospitalier Pitié-Salpêtrière, F-75013, Paris, France
| | - Guenter Schwarz
- Department of Chemistry, Institute of Biochemistry University of Cologne, Cologne, Germany Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) University of Cologne, Cologne, Germany
| |
Collapse
|
80
|
Winczewska-Wiktor A, Badura-Stronka M, Monies-Nowicka A, Nowicki MM, Steinborn B, Latos-Bieleńska A, Monies D. A de novo CTNNB1 nonsense mutation associated with syndromic atypical hyperekplexia, microcephaly and intellectual disability: a case report. BMC Neurol 2016; 16:35. [PMID: 26968164 PMCID: PMC4788907 DOI: 10.1186/s12883-016-0554-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/26/2016] [Indexed: 11/23/2022] Open
Abstract
Background In addition to its role in cell adhesion and gene expression in the canonical Wingless/integrated Wnt signaling pathway, β-catenin also regulates genes that underlie the transmission of nerve impulses. Mutations of CTNNB1 (β-catenin) have recently been described in patients with a wide range of neurodevelopmental disorders (intellectual disability, microcephaly and other syndromic features). We for the first time associate CTNNB1 mutation with hyperekplexia identifying it as an additional candidate for consideration in patients with startle syndrome. Case presentation We describe an 11 year old male Polish patient with a de novo nonsense mutation in CTNNB1 who in addition to the major features of CTNNB1-related syndrome including intellectual disability and microcephaly, exhibited hyperekplexia and apraxia of upward gaze. The patient became symptomatic at the age of 20 months exhibiting delayed speech and psychomotor development. Social and emotional development was normal but mild hyperactivity was noted. Episodic falls when startled by noise or touch were observed from the age of 8.5 years, progressively increasing but never with loss of consciousness. Targeted gene panel next generation sequencing (NGS) and patient-parents trio analysis revealed a heterozygous de novo nonsense mutation in exon 3 of CTNNB1 identifying a novel association of β-catenin with hyperekplexia. Conclusion We report for the first time a clear association of mutation in CTNNB1 with an atypical syndromic heperekplexia expanding the phenotype of CTNNB1-related syndrome. Consequently CTNNB1 should be added to the growing list of genes to be considered as a cause of startle disease or syndromic hyperekplexia.
Collapse
Affiliation(s)
- Anna Winczewska-Wiktor
- Chair and Department of Child Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Magdalena Badura-Stronka
- Chair and Department of Medical Genetics, Poznan University of Medical Sciences, ul. Rokietnicka 8, 60-608, Poznań, Poland.
| | | | | | - Barbara Steinborn
- Chair and Department of Child Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Latos-Bieleńska
- Chair and Department of Medical Genetics, Poznan University of Medical Sciences, ul. Rokietnicka 8, 60-608, Poznań, Poland
| | - Dorota Monies
- Department of Genetics, King Faisal Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
81
|
Maleeva GV, Bregestovski PD. [GLYCINE RECEPTOR: MOLECULAR ORGANIZATION AND PATHOLOGY]. ACTA ACUST UNITED AC 2016; 61:107-17. [PMID: 26845851 DOI: 10.15407/fz61.05.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glycine receptor is the anion-selective channel, providing fast synaptic transmission in the central nervous system of vertebrates. Together with the nicotinic acetylcholine, GABA and serotonin (5-HT3R) receptors, it belongs to the superfamily of pentameric cys-loop receptors. In this review we briefly describe main functions of these transmembrane proteins, their distribution and molecular architecture. Special attention is paid to recent studies on the molecular physiology of these receptors, as well as on presenting of molecular domains responsible for their dysfunction.
Collapse
MESH Headings
- Acetylcholine/metabolism
- Central Nervous System/metabolism
- Central Nervous System/physiopathology
- Gene Expression
- Humans
- Ion Transport
- Mutation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, GABA/chemistry
- Receptors, GABA/genetics
- Receptors, GABA/metabolism
- Receptors, Glycine/chemistry
- Receptors, Glycine/genetics
- Receptors, Glycine/metabolism
- Receptors, Nicotinic/chemistry
- Receptors, Nicotinic/genetics
- Receptors, Nicotinic/metabolism
- Receptors, Serotonin, 5-HT3/chemistry
- Receptors, Serotonin, 5-HT3/genetics
- Receptors, Serotonin, 5-HT3/metabolism
- Reflex, Startle/genetics
- Serotonin/metabolism
- Synaptic Transmission
Collapse
|
82
|
Long P, May MM, James VM, Grannò S, Johnson JP, Tarpey P, Stevenson RE, Harvey K, Schwartz CE, Harvey RJ. Missense Mutation R338W in ARHGEF9 in a Family with X-linked Intellectual Disability with Variable Macrocephaly and Macro-Orchidism. Front Mol Neurosci 2016; 8:83. [PMID: 26834553 PMCID: PMC4719118 DOI: 10.3389/fnmol.2015.00083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/14/2015] [Indexed: 11/13/2022] Open
Abstract
Non-syndromal X-linked intellectual disability (NS-XLID) represents a broad group of clinical disorders in which ID is the only clinically consistent manifestation. Although in many cases either chromosomal linkage data or knowledge of the >100 existing XLID genes has assisted mutation discovery, the underlying cause of disease remains unresolved in many families. We report the resolution of a large family (K8010) with NS-XLID, with variable macrocephaly and macro-orchidism. Although a previous linkage study had mapped the locus to Xq12-q21, this region contained too many candidate genes to be analyzed using conventional approaches. However, X-chromosome exome sequencing, bioinformatics analysis and segregation analysis revealed a novel missense mutation (c.1012C>T; p.R338W) in ARHGEF9. This gene encodes collybistin (CB), a neuronal GDP-GTP exchange factor previously implicated in several cases of XLID, as well as clustering of gephyrin and GABAA receptors at inhibitory synapses. Molecular modeling of the CB R338W substitution revealed that this change results in the substitution of a long electropositive side-chain with a large non-charged hydrophobic side-chain. The R338W change is predicted to result in clashes with adjacent amino acids (K363 and N335) and disruption of electrostatic potential and local folding of the PH domain, which is known to bind phosphatidylinositol-3-phosphate (PI3P/PtdIns-3-P). Consistent with this finding, functional assays revealed that recombinant CB CB2SH3- (R338W) was deficient in PI3P binding and was not able to translocate EGFP-gephyrin to submembrane microaggregates in an in vitro clustering assay. Taken together, these results suggest that the R338W mutation in ARHGEF9 is the underlying cause of NS-XLID in this family.
Collapse
Affiliation(s)
- Philip Long
- Department of Pharmacology, UCL School of Pharmacy London, UK
| | - Melanie M May
- JC Self Research Institute, Greenwood Genetic Center Greenwood, SC, USA
| | | | - Simone Grannò
- Department of Pharmacology, UCL School of Pharmacy London, UK
| | - John P Johnson
- Department of Medical Genetics, Shodair Children's Hospital Helena, MT, USA
| | - Patrick Tarpey
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus Hinxton, UK
| | - Roger E Stevenson
- JC Self Research Institute, Greenwood Genetic Center Greenwood, SC, USA
| | - Kirsten Harvey
- Department of Pharmacology, UCL School of Pharmacy London, UK
| | | | - Robert J Harvey
- Department of Pharmacology, UCL School of Pharmacy London, UK
| |
Collapse
|
83
|
Ludolphs M, Schneeberger D, Soykan T, Schäfer J, Papadopoulos T, Brose N, Schindelin H, Steinem C. Specificity of Collybistin-Phosphoinositide Interactions: IMPACT OF THE INDIVIDUAL PROTEIN DOMAINS. J Biol Chem 2015; 291:244-54. [PMID: 26546675 DOI: 10.1074/jbc.m115.673400] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Indexed: 01/01/2023] Open
Abstract
The regulatory protein collybistin (CB) recruits the receptor-scaffolding protein gephyrin to mammalian inhibitory glycinergic and GABAergic postsynaptic membranes in nerve cells. CB is tethered to the membrane via phosphoinositides. We developed an in vitro assay based on solid-supported 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine membranes doped with different phosphoinositides on silicon/silicon dioxide substrates to quantify the binding of various CB2 constructs using reflectometric interference spectroscopy. Based on adsorption isotherms, we obtained dissociation constants and binding capacities of the membranes. Our results show that full-length CB2 harboring the N-terminal Src homology 3 (SH3) domain (CB2SH3+) adopts a closed and autoinhibited conformation that largely prevents membrane binding. This autoinhibition is relieved upon introduction of the W24A/E262A mutation, which conformationally "opens" CB2SH3+ and allows the pleckstrin homology domain to properly bind lipids depending on the phosphoinositide species with a preference for phosphatidylinositol 3-monophosphate and phosphatidylinositol 4-monophosphate. This type of membrane tethering under the control of the release of the SH3 domain of CB is essential for regulating gephyrin clustering.
Collapse
Affiliation(s)
- Michaela Ludolphs
- From the Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Daniela Schneeberger
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Tolga Soykan
- Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany, and
| | - Jonas Schäfer
- From the Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Theofilos Papadopoulos
- Universitätsmedizin Göttingen, Department of Molecular Biology, Humboldtallee 23, 37073 Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany, and
| | - Hermann Schindelin
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Claudia Steinem
- From the Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany,
| |
Collapse
|
84
|
Mastrangelo M. Novel Genes of Early-Onset Epileptic Encephalopathies: From Genotype to Phenotypes. Pediatr Neurol 2015; 53:119-29. [PMID: 26073591 DOI: 10.1016/j.pediatrneurol.2015.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 03/30/2015] [Accepted: 04/01/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Early-onset epileptic encephalopathies are severe disorders in which seizure recurrence impairs motor, cognitive, and sensory development. In recent years, next-generation sequencing technologies have led to the detection of several pathogenic new genes. METHODS AND RESULTS A PubMed search was carried out using the entries "early onset epileptic encephalopathies," "early infantile epileptic encephalopathies," and "next generation sequencing." The most relevant articles written on this subject between 2000 and 2015 were selected. Here we summarize the related contents concerning the pathogenic role and the phenotypic features of 20 novel gene-related syndromes involved in the pathogenesis of early-onset epileptic encephalopathy variants. CONCLUSIONS Despite the increasing number of single early-onset epileptic encephalopathy genes, the clinical presentations of these disorders frequently overlap, making it difficult to picture a systematic diagnostic evaluation. In any case, a progressive approach should guide the choice of molecular genetic investigations. It is suggested that clinicians pay particular attention to mutated genes causing potentially treatable conditions in order to take advantage of expert counseling.
Collapse
Affiliation(s)
- Mario Mastrangelo
- Pediatric Neurology Division, Department of Pediatrics, Child Neurology and Psychiatry, "Sapienza-University of Rome", Rome, Italy.
| |
Collapse
|
85
|
Abstract
A fundamental physical interaction exists across the synapse. It is mediated by synaptic adhesion molecules, and is among the earliest and most indispensable of molecular events occurring during synaptogenesis. The regulation of adhesion molecules and their interactions with other synaptic proteins likely affect not only on synapse formation but also on ongoing synaptic function. We review research on one major family of postsynaptic adhesion molecules, neuroligins, which bind to their presynaptic partner neurexin across the synaptic cleft. We move from a structural overview to the broad cellular and synaptic context of neuroligins, intermolecular interactions, and molecular modifications that occur within a synapse. Finally, we examine evidence concerning the physiological functions of neuroligin in a cell and highlight areas requiring further investigation.
Collapse
Affiliation(s)
- Michael A Bemben
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD 20892, USA; Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Seth L Shipman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Roger A Nicoll
- Departments of Cellular and Molecular Pharmacology and Physiology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Katherine W Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
86
|
Lesca G, Depienne C. Epilepsy genetics: the ongoing revolution. Rev Neurol (Paris) 2015; 171:539-557. [PMID: 26003806 DOI: 10.1016/j.neurol.2015.01.569] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/24/2014] [Accepted: 01/20/2015] [Indexed: 01/04/2023]
Abstract
Epilepsies have long remained refractory to gene identification due to several obstacles, including a highly variable inter- and intrafamilial expressivity of the phenotypes, a high frequency of phenocopies, and a huge genetic heterogeneity. Recent technological breakthroughs, such as array comparative genomic hybridization and next generation sequencing, have been leading, in the past few years, to the identification of an increasing number of genomic regions and genes in which mutations or copy-number variations cause various epileptic disorders, revealing an enormous diversity of pathophysiological mechanisms. The field that has undergone the most striking revolution is that of epileptic encephalopathies, for which most of causing genes have been discovered since the year 2012. Some examples are the continuous spike-and-waves during slow-wave sleep and Landau-Kleffner syndromes for which the recent discovery of the role of GRIN2A mutations has finally confirmed the genetic bases. These new technologies begin to be used for diagnostic applications, and the main challenge now resides in the interpretation of the huge mass of variants detected by these methods. The identification of causative mutations in epilepsies provides definitive confirmation of the clinical diagnosis, allows accurate genetic counselling, and sometimes permits the development of new appropriate and specific antiepileptic therapies. Future challenges include the identification of the genetic or environmental factors that modify the epileptic phenotypes caused by mutations in a given gene and the understanding of the role of somatic mutations in sporadic epilepsies.
Collapse
Affiliation(s)
- G Lesca
- Service de génétique, groupement hospitalier Est, hospices civils de Lyon, 59, boulevard Pinel, 69677 Bron, France; Université Claude-Bernard Lyon 1, 43, boulevard du 11-Novembre-1918, 69100 Villeurbanne, France; CRNL, CNRS UMR 5292, Inserm U1028, bâtiment IMBL, 11, avenue Jean-Capelle, 69621 Villeurbanne cedex, France.
| | - C Depienne
- Département de génétique et cytogénétique, hôpital Pitié-Salpêtrière, AP-HP, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France; Sorbonne universités, UPMC université Paris 06, 4, place Jussieu, 75005 Paris, France; ICM, CNRS UMR 7225, Inserm U1127, 47, boulevard de l'Hôpital, 75651 Paris cedex 13, France
| |
Collapse
|
87
|
Collybistin binds and inhibits mTORC1 signaling: a potential novel mechanism contributing to intellectual disability and autism. Eur J Hum Genet 2015; 24:59-65. [PMID: 25898924 DOI: 10.1038/ejhg.2015.69] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 01/27/2015] [Accepted: 03/10/2015] [Indexed: 12/19/2022] Open
Abstract
Protein synthesis regulation via mammalian target of rapamycin complex 1 (mTORC1) signaling pathway has key roles in neural development and function, and its dysregulation is involved in neurodevelopmental disorders associated with autism and intellectual disability. mTOR regulates assembly of the translation initiation machinery by interacting with the eukaryotic initiation factor eIF3 complex and by controlling phosphorylation of key translational regulators. Collybistin (CB), a neuron-specific Rho-GEF responsible for X-linked intellectual disability with epilepsy, also interacts with eIF3, and its binding partner gephyrin associates with mTOR. Therefore, we hypothesized that CB also binds mTOR and affects mTORC1 signaling activity in neuronal cells. Here, by using induced pluripotent stem cell-derived neural progenitor cells from a male patient with a deletion of entire CB gene and from control individuals, as well as a heterologous expression system, we describe that CB physically interacts with mTOR and inhibits mTORC1 signaling pathway and protein synthesis. These findings suggest that disinhibited mTORC1 signaling may also contribute to the pathological process in patients with loss-of-function variants in CB.
Collapse
|
88
|
Choii G, Ko J. Gephyrin: a central GABAergic synapse organizer. Exp Mol Med 2015; 47:e158. [PMID: 25882190 DOI: 10.1038/emm.2015.5] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 12/18/2014] [Indexed: 01/22/2023] Open
Abstract
Gephyrin is a central element that anchors, clusters and stabilizes glycine and γ-aminobutyric acid type A receptors at inhibitory synapses of the mammalian brain. It self-assembles into a hexagonal lattice and interacts with various inhibitory synaptic proteins. Intriguingly, the clustering of gephyrin, which is regulated by multiple posttranslational modifications, is critical for inhibitory synapse formation and function. In this review, we summarize the basic properties of gephyrin and describe recent findings regarding its roles in inhibitory synapse formation, function and plasticity. We will also discuss the implications for the pathophysiology of brain disorders and raise the remaining open questions in this field.
Collapse
Affiliation(s)
- Gayoung Choii
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Jaewon Ko
- 1] Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea [2] Department of Psychiatry, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
89
|
Cdc42 mediates Bmp-induced sprouting angiogenesis through Fmnl3-driven assembly of endothelial filopodia in zebrafish. Dev Cell 2015; 32:109-22. [PMID: 25584797 DOI: 10.1016/j.devcel.2014.11.024] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 07/05/2014] [Accepted: 11/13/2014] [Indexed: 02/07/2023]
Abstract
During angiogenesis in vivo, endothelial cells (ECs) at the tips of vascular sprouts actively extend filopodia that are filled with bundles of linear actin filaments. To date, signaling pathways involved in the formation of endothelial filopodia have been studied using in-vitro-cultured ECs that behave differently from those in vivo. Herein, we have delineated a signaling pathway that governs the assembly of endothelial filopodia during angiogenic sprouting of the caudal vein plexus (CVP) in zebrafish. During CVP formation, bone morphogenetic protein induces the extension of endothelial filopodia and their migration via Arhgef9b-mediated activation of Cdc42. Active Cdc42 binds to and stimulates Formin-like 3, an actin-regulatory protein of the formin family, which, in turn, promotes the extension of endothelial filopodia to facilitate angiogenic sprouting of the CVP. Thus, this study has elucidated molecular mechanisms underlying the formation of endothelial filopodia and their role in angiogenesis in vivo.
Collapse
|
90
|
Protein kinase C-dependent growth-associated protein 43 phosphorylation regulates gephyrin aggregation at developing GABAergic synapses. Mol Cell Biol 2015; 35:1712-26. [PMID: 25755278 DOI: 10.1128/mcb.01332-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/24/2015] [Indexed: 11/20/2022] Open
Abstract
Growth-associated protein 43 (GAP43) is known to regulate axon growth, but whether it also plays a role in synaptogenesis remains unclear. Here, we found that GAP43 regulates the aggregation of gephyrin, a pivotal protein for clustering postsynaptic GABA(A) receptors (GABA(A)Rs), in developing cortical neurons. Pharmacological blockade of either protein kinase C (PKC) or neuronal activity increased both GAP43-gephyrin association and gephyrin misfolding-induced aggregation, suggesting the importance of PKC-dependent regulation of GABAergic synapses. Furthermore, we found that PKC phosphorylation-resistant GAP43(S41A), but not PKC phosphorylation-mimicking GAP43(S41D), interacted with cytosolic gephyrin to trigger gephyrin misfolding and its sequestration into aggresomes. In contrast, GAP43(S41D), but not GAP43(S41A), inhibited the physiological aggregation/clustering of gephyrin, reduced surface GABA(A)Rs under physiological conditions, and attenuated gephyrin misfolding under transient oxygen-glucose deprivation (tOGD) that mimics pathological neonatal hypoxia. Calcineurin-mediated GAP43 dephosphorylation that accompanied tOGD also led to GAP43-gephyrin association and gephyrin misfolding. Thus, PKC-dependent phosphorylation of GAP43 plays a critical role in regulating postsynaptic gephyrin aggregation in developing GABAergic synapses.
Collapse
|
91
|
Papadopoulos T, Schemm R, Grubmüller H, Brose N. Lipid binding defects and perturbed synaptogenic activity of a Collybistin R290H mutant that causes epilepsy and intellectual disability. J Biol Chem 2015; 290:8256-70. [PMID: 25678704 DOI: 10.1074/jbc.m114.633024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Signaling at nerve cell synapses is a key determinant of proper brain function, and synaptic defects--or synaptopathies--are at the basis of many neurological and psychiatric disorders. In key areas of the mammalian brain, such as the hippocampus or the basolateral amygdala, the clustering of the scaffolding protein Gephyrin and of γ-aminobutyric acid type A receptors at inhibitory neuronal synapses is critically dependent upon the brain-specific guanine nucleotide exchange factor Collybistin (Cb). Accordingly, it was discovered recently that an R290H missense mutation in the diffuse B-cell lymphoma homology domain of Cb, which carries the guanine nucleotide exchange factor activity, leads to epilepsy and intellectual disability in human patients. In the present study, we determined the mechanism by which the Cb(R290H) mutation perturbs inhibitory synapse formation and causes brain dysfunction. Based on a combination of biochemical, cell biological, and molecular dynamics simulation approaches, we demonstrate that the R290H mutation alters the strength of intramolecular interactions between the diffuse B-cell lymphoma homology domain and the pleckstrin homology domain of Cb. This defect reduces the phosphatidylinositol 3-phosphate binding affinity of Cb, which limits its normal synaptogenic activity. Our data indicate that impairment of the membrane lipid binding activity of Cb and a consequent defect in inhibitory synapse maturation represent a likely molecular pathomechanism of epilepsy and mental retardation in humans.
Collapse
Affiliation(s)
- Theofilos Papadopoulos
- From the Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany, and
| | - Rudolf Schemm
- the Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Helmut Grubmüller
- the Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Nils Brose
- From the Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany, and
| |
Collapse
|
92
|
Fritschy JM. Significance of GABAA Receptor Heterogeneity. DIVERSITY AND FUNCTIONS OF GABA RECEPTORS: A TRIBUTE TO HANNS MÖHLER, PART B 2015; 73:13-39. [DOI: 10.1016/bs.apha.2014.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
93
|
Abstract
Hyperekplexia is a rare disorder caused by autosomal dominant or recessive modes of inheritance and characterized by episodes of exaggerated startle. Five causative genes have been identified to date. The syndrome has been recognized for decades and due to its rarity, the literature contains mostly descriptive reports, many early studies lacking molecular genetic diagnoses. A spectrum of clinical severity exists. Severe cases can lead to neonatal cardiac arrest and death during an episode, an outcome prevented by early diagnosis and clinical vigilance. Large treatment studies are not feasible, so therapeutic measures continue to be empiric. A marked response to clonazepam is often reported but refractory cases exist. Herein we report the clinical course and treatment response of a severely affected infant homozygous for an SLC6A5 nonsense mutation and review the literature summarizing the history and genetic understanding of the disease as well as the described comorbidities and treatment options.
Collapse
|
94
|
Shoubridge C, Walikonis RS, Gécz J, Harvey RJ. Subtle functional defects in the Arf-specific guanine nucleotide exchange factor IQSEC2 cause non-syndromic X-linked intellectual disability. Small GTPases 2014; 1:98-103. [PMID: 21686261 DOI: 10.4161/sgtp.1.2.13285] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 07/28/2010] [Accepted: 08/01/2010] [Indexed: 11/19/2022] Open
Abstract
Mutations in IQSEC2, a guanine nucleotide exchange factor for the ADP-ribosylation factor (Arf) family of small GTPases have recently been shown to cause non-syndromic X-linked intellectual disability (ID), characterised by substantial limitations in intellectual functioning and adaptive behaviour. This discovery was revealed by a combination of large-scale resequencing of the X chromosome, and key functional assays that revealed a reduction, but not elimination, of IQSEC2 GEF activity for mutations affecting conserved amino acids in the IQ-like and Sec7 domains. Compromised GTP binding activity of IQSEC2 leading to reduced activation of selected Arf substrates (Arf1, Arf6) is expected to impact on cytoskeletal organization, dendritic spine morphology and synaptic organisation. This study highlights the need for further investigation of the IQSEC gene family and Arf GTPases in neuronal morphology and synaptic function, and suggests that the genes encoding the ArfGEFs IQSEC1 and IQSEC3 should be considered as candidates for screening in autosomal ID.
Collapse
Affiliation(s)
- Cheryl Shoubridge
- Genetics and Molecular Pathology; SA Pathology; The University of Adelaide; Adelaide, Australia
| | | | | | | |
Collapse
|
95
|
Flores CE, Méndez P. Shaping inhibition: activity dependent structural plasticity of GABAergic synapses. Front Cell Neurosci 2014; 8:327. [PMID: 25386117 PMCID: PMC4209871 DOI: 10.3389/fncel.2014.00327] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/28/2014] [Indexed: 11/22/2022] Open
Abstract
Inhibitory transmission through the neurotransmitter γ-aminobutyric acid (GABA) shapes network activity in the mammalian cerebral cortex by filtering synaptic incoming information and dictating the activity of principal cells. The incredibly diverse population of cortical neurons that use GABA as neurotransmitter shows an equally diverse range of mechanisms that regulate changes in the strength of GABAergic synaptic transmission and allow them to dynamically follow and command the activity of neuronal ensembles. Similarly to glutamatergic synaptic transmission, activity-dependent functional changes in inhibitory neurotransmission are accompanied by alterations in GABAergic synapse structure that range from morphological reorganization of postsynaptic density to de novo formation and elimination of inhibitory contacts. Here we review several aspects of structural plasticity of inhibitory synapses, including its induction by different forms of neuronal activity, behavioral and sensory experience and the molecular mechanisms and signaling pathways involved. We discuss the functional consequences of GABAergic synapse structural plasticity for information processing and memory formation in view of the heterogenous nature of the structural plasticity phenomena affecting inhibitory synapses impinging on somatic and dendritic compartments of cortical and hippocampal neurons.
Collapse
Affiliation(s)
- Carmen E Flores
- Department of Basic Neuroscience, Geneva Medical Center, University of Geneva Geneva, Switzerland
| | - Pablo Méndez
- Department of Basic Neuroscience, Geneva Medical Center, University of Geneva Geneva, Switzerland
| |
Collapse
|
96
|
Kalbouneh H, Schlicksupp A, Kirsch J, Kuhse J. Cyclin-dependent kinase 5 is involved in the phosphorylation of gephyrin and clustering of GABAA receptors at inhibitory synapses of hippocampal neurons. PLoS One 2014; 9:e104256. [PMID: 25093719 PMCID: PMC4122414 DOI: 10.1371/journal.pone.0104256] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 07/10/2014] [Indexed: 11/19/2022] Open
Abstract
CDK5 has been implicated in neural functions including growth, neuronal migration, synaptic transmission and plasticity of excitatory chemical synapses. Here we report robust effects of CDK5 on phosphorylation of the postsynaptic scaffold protein gephyrin and clustering of inhibitory GABAA receptors in hippocampal neurons. shRNA-mediated knockdown of CDK5 and pharmacological inhibition of cyclin-dependent kinases reduced phosphorylated gephyrin clusters and postsynaptic γ2-containing GABAA receptors. Phosphorylation of S270 is antagonized by PP1/PP2a phosphatase and site-directed mutagenesis and in vitro phosphorylation experiments indicate that S270 is a putative CDK5 phosphorylation site of gephyrin. Our data suggest that CDK5 plays an essential role for the stability of gephyrin-dependent GABAA receptor clusters in hippocampal neurons.
Collapse
Affiliation(s)
- Heba Kalbouneh
- Department of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Andrea Schlicksupp
- Department of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Joachim Kirsch
- Department of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Jochen Kuhse
- Department of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
97
|
Soykan T, Schneeberger D, Tria G, Buechner C, Bader N, Svergun D, Tessmer I, Poulopoulos A, Papadopoulos T, Varoqueaux F, Schindelin H, Brose N. A conformational switch in collybistin determines the differentiation of inhibitory postsynapses. EMBO J 2014; 33:2113-33. [PMID: 25082542 DOI: 10.15252/embj.201488143] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The formation of neuronal synapses and the dynamic regulation of their efficacy depend on the assembly of the postsynaptic neurotransmitter receptor apparatus. Receptor recruitment to inhibitory GABAergic and glycinergic synapses is controlled by the scaffold protein gephyrin and the adaptor protein collybistin. We derived new insights into the structure of collybistin and used these to design biochemical, cell biological, and genetic analyses of collybistin function. Our data define a collybistin-based protein interaction network that controls the gephyrin content of inhibitory postsynapses. Within this network, collybistin can adopt open/active and closed/inactive conformations to act as a switchable adaptor that links gephyrin to plasma membrane phosphoinositides. This function of collybistin is regulated by binding of the adhesion protein neuroligin-2, which stabilizes the open/active conformation of collybistin at the postsynaptic plasma membrane by competing with an intramolecular interaction in collybistin that favors the closed/inactive conformation. By linking trans-synaptic neuroligin-dependent adhesion and phosphoinositide signaling with gephyrin recruitment, the collybistin-based regulatory switch mechanism represents an integrating regulatory node in the formation and function of inhibitory postsynapses.
Collapse
Affiliation(s)
- Tolga Soykan
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Daniela Schneeberger
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Giancarlo Tria
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany Centre for Bioinformatics, University of Hamburg, Hamburg, Germany
| | - Claudia Buechner
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Nicole Bader
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Dmitri Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| | - Ingrid Tessmer
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Alexandros Poulopoulos
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Theofilos Papadopoulos
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Frédérique Varoqueaux
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Hermann Schindelin
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
98
|
Identification of a novel missense GLRA1 gene mutation in hyperekplexia: a case report. J Med Case Rep 2014; 8:233. [PMID: 24969041 PMCID: PMC4096538 DOI: 10.1186/1752-1947-8-233] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/21/2014] [Indexed: 11/10/2022] Open
Abstract
Introduction Hereditary hyperekplexia is a neurological disorder characterized by excessive startle responses with violent jerking to noise or touch, stiffening of the trunk and limbs, clenching of the fists and attacks of a high-frequency trembling. Hyperekplexia has a heterogeneous genetic background with several identified causative genes and demonstrates both dominant and recessive inheritance. Mutations in the glycine receptor alpha 1 subunit gene occur in about 30 percent of hyperekplexia cases. Case presentation In this study, we report the case of a Hungarian boy whose abnormal movements, muscle stiffness and convulsions were first noted when he was 4 days old. Neurological and electrophysiological investigation suggested the clinical diagnosis of hyperekplexia. Conclusions Direct sequencing of the coding regions and the flanking introns of the glycine receptor alpha 1 subunit gene revealed a novel heterozygous missense mutation (c.211A/T, p.Ile71Phe). Genetic screening of our patient’s family revealed that the clinically unaffected parents and sister do not carry the mutation, suggesting that the identified sequence change is a de novo mutation. Since hyperekplexia can have severe consequences, including sudden infant death due to laryngospasm and cardiorespiratory failure, identification of the causative genetic alteration(s) of the disease is high priority. Such knowledge is necessary for prenatal diagnosis, which would allow informed family planning and greater parental sensitivity to hyperekplexia 1-associated risks.
Collapse
|
99
|
Abstract
The neurotransmitters GABA and glycine mediate fast synaptic inhibition by activating ligand-gated chloride channels--namely, type A GABA (GABA(A)) and glycine receptors. Both types of receptors are anchored postsynaptically by gephyrin, which self-assembles into a scaffold and interacts with the cytoskeleton. Current research indicates that postsynaptic gephyrin clusters are dynamic assemblies that are held together and regulated by multiple protein-protein interactions. Moreover, post-translational modifications of gephyrin regulate the formation and plasticity of GABAergic synapses by altering the clustering properties of postsynaptic scaffolds and thereby the availability and function of receptors and other signalling molecules. Here, we discuss the formation and regulation of the gephyrin scaffold, its role in GABAergic and glycinergic synaptic function and the implications for the pathophysiology of brain disorders caused by abnormal inhibitory neurotransmission.
Collapse
|
100
|
Zacchi P, Antonelli R, Cherubini E. Gephyrin phosphorylation in the functional organization and plasticity of GABAergic synapses. Front Cell Neurosci 2014; 8:103. [PMID: 24782709 PMCID: PMC3988358 DOI: 10.3389/fncel.2014.00103] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/22/2014] [Indexed: 11/13/2022] Open
Abstract
Gephyrin is a multifunctional scaffold protein essential for accumulation of inhibitory glycine and GABAA receptors at post-synaptic sites. The molecular events involved in gephyrin-dependent GABAA receptor clustering are still unclear. Evidence has been recently provided that gephyrin phosphorylation plays a key role in these processes. Gephyrin post-translational modifications have been shown to influence the structural remodeling of GABAergic synapses and synaptic plasticity by acting on post-synaptic scaffolding properties as well as stability. In addition, gephyrin phosphorylation and the subsequent phosphorylation-dependent recruitment of the chaperone molecule Pin1 provide a mechanism for the regulation of GABAergic signaling. Extensively characterized as pivotal enzyme controlling cell proliferation and differentiation, the prolyl-isomerase activity of Pin1 has been shown to regulate protein synthesis necessary to sustain the late phase of long-term potentiation at excitatory synapses, which suggests its involvement at synaptic sites. In this review we summarize the current state of knowledge of the signaling pathways responsible for gephyrin post-translational modifications. We will also outline future lines of research that might contribute to a better understanding of molecular mechanisms by which gephyrin regulates synaptic plasticity at GABAergic synapses.
Collapse
Affiliation(s)
- Paola Zacchi
- Department of Neurosciences, Scuola Internazionale Superiore di Studi Avanzati Trieste, Italy
| | - Roberta Antonelli
- Department of Neurosciences, Scuola Internazionale Superiore di Studi Avanzati Trieste, Italy
| | - Enrico Cherubini
- Department of Neurosciences, Scuola Internazionale Superiore di Studi Avanzati Trieste, Italy ; European Brain Research Institute Roma, Italy
| |
Collapse
|