51
|
Baraban SC, Southwell DG, Estrada RC, Jones DL, Sebe JY, Alfaro-Cervello C, García-Verdugo JM, Rubenstein JLR, Alvarez-Buylla A. Reduction of seizures by transplantation of cortical GABAergic interneuron precursors into Kv1.1 mutant mice. Proc Natl Acad Sci U S A 2009; 106:15472-7. [PMID: 19706400 PMCID: PMC2741275 DOI: 10.1073/pnas.0900141106] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Indexed: 11/18/2022] Open
Abstract
Epilepsy, a disease characterized by abnormal brain activity, is a disabling and potentially life-threatening condition for nearly 1% of the world population. Unfortunately, modulation of brain excitability using available antiepileptic drugs can have serious side effects, especially in the developing brain, and some patients can only be improved by surgical removal of brain regions containing the seizure focus. Here, we show that bilateral transplantation of precursor cells from the embryonic medial ganglionic eminence (MGE) into early postnatal neocortex generates mature GABAergic interneurons in the host brain. In mice receiving MGE cell grafts, GABA-mediated synaptic and extrasynaptic inhibition onto host brain pyramidal neurons is significantly increased. Bilateral MGE cell grafts in epileptic mice lacking a Shaker-like potassium channel (a gene mutated in one form of human epilepsy) resulted in significant reductions in the duration and frequency of spontaneous electrographic seizures. Our findings suggest that MGE-derived interneurons could be used to ameliorate abnormal excitability and possibly act as an effective strategy in the treatment of epilepsy.
Collapse
Affiliation(s)
- Scott C Baraban
- Department of Neurological Surgery and Psychiatry, The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Shetty AK, Hattiangady B, Rao MS. Vulnerability of hippocampal GABA-ergic interneurons to kainate-induced excitotoxic injury during old age. J Cell Mol Med 2009; 13:2408-23. [PMID: 20141618 PMCID: PMC2855767 DOI: 10.1111/j.1582-4934.2009.00675.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 01/06/2009] [Indexed: 01/04/2023] Open
Abstract
Hippocampal inhibitory interneurons expressing glutamate decarboxylase-67 (GAD-67) considerably decline in number during old age. Studies in young adult animals further suggest that hippocampal GAD-67+ interneuron population is highly vulnerable to excitotoxic injury. However, the relative susceptibility of residual GAD-67+ interneurons in the aged hippocampus to excitotoxic injury is unknown. To elucidate this, using both adult and aged F344 rats, we performed stereological counting of GAD-67+ interneurons in different layers of the dentate gyrus and CA1 & CA3 sub-fields, at 3 months post-excitotoxic hippocampal injury inflicted through an intracerebroventricular administration of kainic acid (KA). Substantial reductions of GAD-67+ interneurons were found in all hippocampal layers and sub-fields after KA-induced injury in adult animals. Contrastingly, there was no significant change in GAD-67+ interneuron population in any of the hippocampal layers and sub-fields following similar injury in aged animals. Furthermore, the stability of GAD-67+ interneurons in aged rats after KA was not attributable to milder injury, as the overall extent of KA-induced hippocampal principal neuron loss was comparable between adult and aged rats. Interestingly, because of the age-related disparity in vulnerability of interneurons to injury, the surviving GAD-67+ interneuron population in the injured aged hippocampus remained comparable to that observed in the injured adult hippocampus despite enduring significant reductions in interneuron number with aging. Thus, unlike in the adult hippocampus, an excitotoxic injury to the aged hippocampus does not result in significantly decreased numbers of GAD-67+ interneurons. Persistence of GAD-67+ interneuron population in the injured aged hippocampus likely reflects an age-related change in the response of GAD-67+ interneurons to excitotoxic hippocampal injury. These results have implications towards understanding mechanisms underlying the evolution of initial precipitating injury into temporal lobe epilepsy in the elderly population.
Collapse
Affiliation(s)
- Ashok K Shetty
- Medical Research and Surgery Services, Veterans Affairs Medical Center, Durham, NC, USA.
| | | | | |
Collapse
|
53
|
Jing M, Shingo T, Yasuhara T, Kondo A, Morimoto T, Wang F, Baba T, Yuan WJ, Tajiri N, Uozumi T, Murakami M, Tanabe M, Miyoshi Y, Zhao S, Date I. The combined therapy of intrahippocampal transplantation of adult neural stem cells and intraventricular erythropoietin-infusion ameliorates spontaneous recurrent seizures by suppression of abnormal mossy fiber sprouting. Brain Res 2009; 1295:203-17. [PMID: 19646969 DOI: 10.1016/j.brainres.2009.07.079] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 07/21/2009] [Accepted: 07/22/2009] [Indexed: 11/27/2022]
Abstract
Adult neural stem cells (NSCs) possess the potentials to self-renew and exert neuroprotection. In this study, we examined whether adult NSCs had anti-epileptic effects in rats with status epilepticus (SE) induced by kainic acid (KA) and whether co-administration of erythropoietin (EPO) enhanced anti-epileptic effects or cell survival. Adult NSCs were transplanted into KA-lesioned hippocampus with or without intracerebroventricular EPO infusion. Electronic encephalography (EEG) was recorded for 3 weeks after transplantation. The frequency of abnormal spikes in rats with NSC transplantation decreased significantly compared to those of rats without NSC transplantation. Most of the transplanted NSCs differentiated into GFAP-positive astrocytes. EPO infusion significantly enhanced the survival of NSCs, but not neuronal differentiation or migration. NSC transplantation increased the number of neuropeptide Y (NPY) and glutamic acid decarboxylase 67 (GAD67)-positive interneurons. NSC transplantation also suppressed mossy fiber sprouting into the inner molecular layer with subsequent reduction of hippocampal excitability, which finally prevented the development of spontaneous recurrent seizures in adult rats after KA-induced SE. This study might shed light on the cytoarchitectural mechanisms of temporal lobe epilepsy as well as clarify the effect of adult NSC transplantation with intracerebroventricular EPO infusion for temporal lobe epilepsy.
Collapse
Affiliation(s)
- Meng Jing
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Kriegstein AR, Pitkänen A. Commentary: the prospect of cell-based therapy for epilepsy. Neurotherapeutics 2009; 6:295-9. [PMID: 19332322 PMCID: PMC5084206 DOI: 10.1016/j.nurt.2009.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 01/22/2009] [Indexed: 12/15/2022] Open
Abstract
About 30% of patient with epilepsy do not respond to available antiepileptic drugs. In addition to seizure suppression, novel approaches are needed to prevent or alleviate epileptogenic process after various types of brain injuries. The use of cell transplants as factories to produce endogeneous anticonvulsants or as bricks to repair abnormal ictogenic and epileptogenic neuronal circuits has generated hope that cell-based therapies could become a novel therapeutic category in the treatment arsenal of epilepsy. Herein we summarize the current status and future perspectives of cell-based therapies in the treatment of epilepsy.
Collapse
Affiliation(s)
- Arnold R Kriegstein
- Department of Neurology, University of California, San Francisco, California 94143-0525, USA.
| | | |
Collapse
|
55
|
Boison D. Engineered adenosine-releasing cells for epilepsy therapy: human mesenchymal stem cells and human embryonic stem cells. Neurotherapeutics 2009; 6:278-83. [PMID: 19332320 PMCID: PMC2682344 DOI: 10.1016/j.nurt.2008.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 12/01/2008] [Accepted: 12/02/2008] [Indexed: 12/20/2022] Open
Abstract
Adenosine is a modulator of neuronal activity with anticonvulsant and neuroprotective properties. Conversely, focal deficiency in adenosine contributes to ictogenesis. Thus, focal reconstitution of adenosine within an epileptogenic brain region constitutes a rational therapeutic approach, whereas systemic augmentation of adenosine is precluded by side effects. To meet the therapeutic goal of focal adenosine augmentation, genetic disruption of the adenosine metabolizing enzyme, adenosine kinase (ADK) in rodent cells was used as a molecular strategy to induce adenosine release from cellular brain implants, which demonstrated antiepileptic and neuroprotective properties. Currently, the second generation of adenosine-releasing cells is under development based on the rationale to use human stem cell-derived brain implants to avoid xenotransplantation. To effectively engineer human stem cells to release adenosine, a lentiviral vector was constructed to express inhibitory micro-RNA directed against ADK. Lentiviral knockdown of ADK induced therapeutic adenosine release in human mesenchymal stem cells, which reduced acute injury and seizures, as well as chronic seizures, when grafted into the mouse hippocampus. The therapeutic potential of this approach suggests the feasibility to engineer autologous adenosine-releasing stem cells derived from a patient. Human embryonic stem cells (hESCs) have a high proliferative capacity and can be subjected to specific cellular differentiation pathways. hESCs, differentiated in vitro into neuroepithelial cells and grafted into the mouse brain, displayed intrahippocampal location and neuronal morphology. Using the same lentiviral micro-RNA vector, we demonstrated knockdown of ADK in hESCs. New developments and therapeutic challenges in using human mesenchymal stem cells and hESCs for epilepsy therapy will be critically evaluated.
Collapse
Affiliation(s)
- Detlev Boison
- R. S. Dow Neurobiology Laboratories, Legacy Research, Portland, Oregon 97232, USA.
| |
Collapse
|
56
|
Thompson K. Transplantation of GABA-producing cells for seizure control in models of temporal lobe epilepsy. Neurotherapeutics 2009; 6:284-94. [PMID: 19332321 PMCID: PMC5084205 DOI: 10.1016/j.nurt.2009.01.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 01/20/2009] [Accepted: 01/22/2009] [Indexed: 11/27/2022] Open
Abstract
A high percentage of patients with temporal lobe epilepsy (TLE) are refractory to conventional pharmacotherapy. The progressive neurodegenerative processes associated with a lifetime of uncontrolled seizures mandate the development of alternative approaches to treat this disease. Transplantation of inhibitory cells has been suggested as a potential therapeutic strategy to achieve seizure suppression in humans with intractable TLE. Preclinical investigations over 20 years have demonstrated that multiple cell types from several sources can produce anticonvulsant, and antiepileptogenic, effects in animal models of TLE. Transplanting GABA-producing cells, in particular, has been shown to reduce seizures in several well-established models. This review addresses experimentation using different sources of transplantable GABAergic cells, highlighting progress with fetal tissue, neural cell lines, and stem cells. Regardless of the source of the GABAergic cells used in seizure studies, common challenges have emerged. Several variables influence the anticonvulsant potential of GABA-producing cells. For example, tissue availability, graft survival, immunogenicity, tumorigenicity, and varying levels of cell migration, differentiation, and integration into functional circuits and the microenvironment provided by sclerotic tissue all contribute to the efficacy of transplanted cells. The challenge of understanding how all of these variables work in concert, in a disease process that has no well-established etiology, suggests that there is still much basic research to be done before rational cell-based therapies can be developed for TLE.
Collapse
Affiliation(s)
- Kerry Thompson
- Department of Biology, Occidental College, Los Angeles, California 90041, USA.
| |
Collapse
|
57
|
Wu Z, Xu Q, Zhang L, Kong D, Ma R, Wang L. Protective effect of resveratrol against kainate-induced temporal lobe epilepsy in rats. Neurochem Res 2009; 34:1393-400. [PMID: 19219549 DOI: 10.1007/s11064-009-9920-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2009] [Indexed: 02/02/2023]
Abstract
Resveratrol (Res) is a phytoalexin produced naturally by several plants, which has multi functional effects such as neuroprotection, anti-inflammatory, and anti-cancer. The present study was to evaluate a possible anti-epileptic effect of Res against kainate-induced temporal lobe epilepsy (TLE) in rat. We performed behavior monitoring, intracranial electroencepholography (IEEG) recording, histological analysis, and Western blotting to evaluate the anti-epilepsy effect of Res in kainate-induced epileptic rats. Res decreased the frequency of spontaneous seizures and inhibited the epileptiform discharges. Moreover, Res could protect neurons against kainate-induced neuronal cell death in CA1 and CA3a regions and depressed mossy fiber sprouting, which are general histological characteristics both in TLE patients and animal models. Western blot revealed that the expression level of kainate receptors (KARs) in hippocampus was reduced in Res-administrated rats compared to that in epileptic ones. These results suggest that Res is a potent anti-epilepsy agent, which protects against epileptogenesis and progression of the kainate-induced TLE animal.
Collapse
Affiliation(s)
- Zheng Wu
- Department of Physiology, School of Basic Medical Science, Anhui Medical University, 230032 Hefei, China
| | | | | | | | | | | |
Collapse
|
58
|
Jessberger S, Aigner S, Clemenson GD, Toni N, Lie DC, Karalay Ö, Overall R, Kempermann G, Gage FH. Cdk5 regulates accurate maturation of newborn granule cells in the adult hippocampus. PLoS Biol 2009; 6:e272. [PMID: 18998770 PMCID: PMC2581629 DOI: 10.1371/journal.pbio.0060272] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 09/25/2008] [Indexed: 12/14/2022] Open
Abstract
Newborn granule cells become functionally integrated into the synaptic circuitry of the adult dentate gyrus after a morphological and electrophysiological maturation process. The molecular mechanisms by which immature neurons and the neurites extending from them find their appropriate position and target area remain largely unknown. Here we show that single-cell-specific knockdown of cyclin-dependent kinase 5 (cdk5) activity in newborn cells using a retrovirus-based strategy leads to aberrant growth of dendritic processes, which is associated with an altered migration pattern of newborn cells. Even though spine formation and maturation are reduced in cdk5-deficient cells, aberrant dendrites form ectopic synapses onto hilar neurons. These observations identify cdk5 to be critically involved in the maturation and dendrite extension of newborn neurons in the course of adult neurogenesis. The data presented here also suggest a mechanistic dissociation between accurate dendritic targeting and subsequent synapse formation.
Collapse
Affiliation(s)
- Sebastian Jessberger
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- Institute of Cell Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- * To whom correspondence should be addressed. E-mail: (FHG); (SJ)
| | - Stefan Aigner
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Gregory D Clemenson
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Nicolas Toni
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - D. Chichung Lie
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Özlem Karalay
- Institute of Cell Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Rupert Overall
- Center for Regenerative Therapies (CRTD), Dresden, Germany
| | | | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- * To whom correspondence should be addressed. E-mail: (FHG); (SJ)
| |
Collapse
|
59
|
Castillo CG, Mendoza-Trejo S, Aguilar MB, Freed WJ, Giordano M. Intranigral transplants of a GABAergic cell line produce long-term alleviation of established motor seizures. Behav Brain Res 2008; 193:17-27. [PMID: 18571743 PMCID: PMC2538688 DOI: 10.1016/j.bbr.2008.04.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 04/10/2008] [Accepted: 04/18/2008] [Indexed: 11/26/2022]
Abstract
We have previously shown that intranigral transplants of immortalized GABAergic cells decrease the number of kainic acid-induced seizures [Castillo CG, Mendoza S, Freed WJ, Giordano M. Intranigral transplants of immortalized GABAergic cells decrease the expression of kainic acid-induced seizures in the rat. Behav Brain Res 2006;171:109-15] in an animal model. In the present study, recurrent spontaneous behavioral seizures were established by repeated systemic injections of this excitotoxin into male Sprague-Dawley rats. After the seizures had been established, cells were transplanted into the substantia nigra. Animals with transplants of control cells (without hGAD67 expression) or with sham transplants showed a death rate of more than 40% over the 12 weeks of observation, whereas in animals with M213-2O CL-4 transplants, the death rate was reduced to less than 20%. The M213-2O CL-4 transplants significantly reduced the percentage of animals showing behavioral seizures; animals with these transplants also showed a lower occurrence of stage V seizures than animals in the other groups. In vivo and in vitro analyses provided evidence that the GABAergic cells show sustained expression of both GAD67 and hGAD67 cDNA, as well as increased gamma-aminobutyric acid (GABA) levels in the ventral mesencephalon of transplanted animals. Therefore, transplantation of GABA-producing cells can produce long-term alleviation of behavioral seizures in an animal model.
Collapse
Affiliation(s)
- Claudia G Castillo
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro, Qro. 76230, Mexico.
| | | | | | | | | |
Collapse
|
60
|
Shetty AK, Rao MS, Hattiangady B. Behavior of hippocampal stem/progenitor cells following grafting into the injured aged hippocampus. J Neurosci Res 2008; 86:3062-74. [PMID: 18618674 PMCID: PMC2575032 DOI: 10.1002/jnr.21764] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Multipotent neural stem/progenitor cells (NSCs) from the embryonic hippocampus are potentially useful as donor cells to repopulate the degenerated regions of the aged hippocampus after stroke, epilepsy, or Alzheimer's disease. However, the efficacy of the NSC grafting strategy for repairing the injured aged hippocampus is unknown. To address this issue, we expanded FGF-2-responsive NSCs from the hippocampus of embryonic day 14 green fluorescent protein-expressing transgenic mice as neurospheres in vitro and grafted them into the hippocampus of 24-month-old F344 rats 4 days after CA3 region injury. Engraftment, migration, and neuronal/glial differentiation of cells derived from NSCs were analyzed 1 month after grafting. Differentiation of neurospheres in culture dishes or after placement on organotypic hippocampal slice cultures demonstrated that these cells had the ability to generate considerable numbers of neurons, astrocytes, and oligodendrocytes. Following grafting into the injured aged hippocampus, cells derived from neurospheres survived and dispersed, but exhibited no directed migration into degenerated or intact hippocampal cell layers. Phenotypic analyses of graft-derived cells revealed neuronal differentiation in 3%-5% of cells, astrocytic differentiation in 28% of cells, and oligodendrocytic differentiation in 6%-10% cells. The results demonstrate for the first time that NSCs derived from the fetal hippocampus survive and give rise to all three CNS phenotypes following transplantation into the injured aged hippocampus. However, grafted NSCs do not exhibit directed migration into lesioned areas or widespread neuronal differentiation, suggesting that direct grafting of primitive NSCs is not adequate for repair of the injured aged brain without priming the microenvironment.
Collapse
Affiliation(s)
- Ashok K Shetty
- Department of Surgery (Neurosurgery), Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
61
|
Hattiangady B, Shetty AK. Implications of decreased hippocampal neurogenesis in chronic temporal lobe epilepsy. Epilepsia 2008; 49 Suppl 5:26-41. [PMID: 18522598 DOI: 10.1111/j.1528-1167.2008.01635.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Temporal lobe epilepsy (TLE), characterized by spontaneous recurrent motor seizures (SRMS), learning and memory impairments, and depression, is associated with neurodegeneration, abnormal reorganization of the circuitry, and loss of functional inhibition in the hippocampal and extrahippocampal regions. Over the last decade, abnormal neurogenesis in the dentate gyrus (DG) has emerged as another hallmark of TLE. Increased DG neurogenesis and recruitment of newly born neurons into the epileptogenic hippocampal circuitry is a characteristic phenomenon occurring during the early phase after the initial precipitating injury such as status epilepticus. However, the chronic phase of the disease displays substantially declined DG neurogenesis, which is associated with SRMS, learning and memory impairments, and depression. This review focuses on DG neurogenesis in the chronic phase of TLE and first confers the extent and mechanisms of declined DG neurogenesis in chronic TLE. The available data on production, survival and neuronal fate choice decision of newly born cells, stability of hippocampal stem cell numbers, and changes in the hippocampal microenvironment in chronic TLE are considered. The next section discusses the possible contribution of declined DG neurogenesis to the pathophysiology of chronic TLE, which includes its potential effects on spontaneous recurrent seizures, cognitive dysfunction, and depression. The subsequent section considers strategies that may be useful for augmenting DG neurogenesis in chronic TLE, which encompass stem cell grafting, administration of distinct neurotrophic factors, physical exercise, exposure to enriched environment, and antidepressant therapy. The final section suggests possible ramifications of increasing the DG neurogenesis in chronic epilepsy.
Collapse
Affiliation(s)
- Bharathi Hattiangady
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
62
|
Hattiangady B, Rao MS, Shetty AK. Grafting of striatal precursor cells into hippocampus shortly after status epilepticus restrains chronic temporal lobe epilepsy. Exp Neurol 2008; 212:468-81. [PMID: 18579133 PMCID: PMC2750902 DOI: 10.1016/j.expneurol.2008.04.040] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 04/17/2008] [Accepted: 04/25/2008] [Indexed: 01/05/2023]
Abstract
Status epilepticus (SE) typically progresses into temporal lobe epilepsy (TLE) typified by complex partial seizures. Because sizable fraction of patients with TLE exhibit chronic seizures that are resistant to antiepileptic drugs, alternative therapies that are efficient for diminishing SE-induced chronic epilepsy have great significance. We hypothesize that bilateral grafting of appropriately treated striatal precursor cells into hippocampi shortly after SE is efficacious for diminishing SE-induced chronic epilepsy through long-term survival and differentiation into GABA-ergic neurons. We induced SE in adult rats via graded intraperitoneal injections of kainic acid, bilaterally placed grafts of striatal precursors (pre-treated with fibroblast growth factor-2 and caspase inhibitor) into hippocampi at 4 days post-SE, and examined long-term effects of grafting on spontaneous recurrent motor seizures (SRMS). Analyses at 9-12 months post-grafting revealed that, the overall frequency of SRMS was 67-89% less than that observed in SE-rats that underwent sham-grafting surgery and epilepsy-only controls. Graft cell survival was approximately 33% of injected cells and approximately 69% of surviving cells differentiated into GABA-ergic neurons, which comprised subclasses expressing calbindin, parvalbumin, calretinin and neuropeptide Y. Grafting considerably preserved hippocampal calbindin but had no effects on aberrant mossy fiber sprouting. The results provide novel evidence that bilateral grafting of appropriately treated striatal precursor cells into hippocampi shortly after SE is proficient for greatly reducing the frequency of SRMS on a long-term basis in the chronic epilepsy period. Presence of a large number of GABA-ergic neurons in grafts further suggests that strengthening of the inhibitory control in host hippocampi likely underlies the beneficial effects mediated by grafts.
Collapse
Affiliation(s)
- Bharathi Hattiangady
- Department of Surgery (Neurosurgery) Duke University Medical Center, Durham, NC 27710. Medical Research and Surgery Services, Veterans Affairs Medical Center, Durham, NC 27705
| | - Muddanna S. Rao
- Department of Surgery (Neurosurgery) Duke University Medical Center, Durham, NC 27710. Medical Research and Surgery Services, Veterans Affairs Medical Center, Durham, NC 27705
| | - Ashok K. Shetty
- Department of Surgery (Neurosurgery) Duke University Medical Center, Durham, NC 27710. Medical Research and Surgery Services, Veterans Affairs Medical Center, Durham, NC 27705
| |
Collapse
|
63
|
Acharya MM, Hattiangady B, Shetty AK. Progress in neuroprotective strategies for preventing epilepsy. Prog Neurobiol 2008; 84:363-404. [PMID: 18207302 PMCID: PMC2441599 DOI: 10.1016/j.pneurobio.2007.10.010] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 09/09/2007] [Accepted: 10/26/2007] [Indexed: 11/29/2022]
Abstract
Neuroprotection is increasingly considered as a promising therapy for preventing and treating temporal lobe epilepsy (TLE). The development of chronic TLE, also termed as epileptogenesis, is a dynamic process. An initial precipitating injury (IPI) such as the status epilepticus (SE) leads to neurodegeneration, abnormal reorganization of the brain circuitry and a significant loss of functional inhibition. All of these changes likely contribute to the development of chronic epilepsy, characterized by spontaneous recurrent motor seizures (SRMS) and learning and memory deficits. The purpose of this review is to discuss the current state of knowledge pertaining to neuroprotection in epileptic conditions, and to highlight the efficacy of distinct neuroprotective strategies for preventing or treating chronic TLE. Although the administration of certain conventional and new generation anti-epileptic drugs is effective for primary neuroprotection such as reduced neurodegeneration after acute seizures or the SE, their competence for preventing the development of chronic epilepsy after an IPI is either unknown or not promising. On the other hand, alternative strategies such as the ketogenic diet therapy, administration of distinct neurotrophic factors, hormones or antioxidants seem useful for preventing and treating chronic TLE. However, long-term studies on the efficacy of these approaches introduced at different time-points after the SE or an IPI are lacking. Additionally, grafting of fetal hippocampal cells at early time-points after an IPI holds considerable promise for preventing TLE, though issues regarding availability of donor cells, ethical concerns, timing of grafting after SE, and durability of graft-mediated seizure suppression need to be resolved for further advances with this approach. Overall, from the studies performed so far, there is consensus that neuroprotective strategies need to be employed as quickly as possible after the onset of the SE or an IPI for considerable beneficial effects. Nevertheless, ideal strategies that are capable of facilitating repair and functional recovery of the brain after an IPI and preventing the evolution of IPI into chronic epilepsy are still hard to pin down.
Collapse
Affiliation(s)
- Munjal M. Acharya
- Department of Surgery (Neurosurgery) Duke University Medical Center, Durham, NC 27710. Medical Research and Surgery Services, Veterans Affairs Medical Center, Durham, NC 27705
| | - Bharathi Hattiangady
- Department of Surgery (Neurosurgery) Duke University Medical Center, Durham, NC 27710. Medical Research and Surgery Services, Veterans Affairs Medical Center, Durham, NC 27705
| | - Ashok K. Shetty
- Department of Surgery (Neurosurgery) Duke University Medical Center, Durham, NC 27710. Medical Research and Surgery Services, Veterans Affairs Medical Center, Durham, NC 27705
| |
Collapse
|
64
|
Li T, Ren G, Lusardi T, Wilz A, Lan JQ, Iwasato T, Itohara S, Simon RP, Boison D. Adenosine kinase is a target for the prediction and prevention of epileptogenesis in mice. J Clin Invest 2008; 118:571-82. [PMID: 18172552 DOI: 10.1172/jci33737] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 10/31/2007] [Indexed: 11/17/2022] Open
Abstract
Astrogliosis is a pathological hallmark of the epileptic brain. The identification of mechanisms that link astrogliosis to neuronal dysfunction in epilepsy may provide new avenues for therapeutic intervention. Here we show that astrocyte-expressed adenosine kinase (ADK), a key negative regulator of the brain inhibitory molecule adenosine, is a potential predictor and modulator of epileptogenesis. In a mouse model of focal epileptogenesis, in which astrogliosis is restricted to the CA3 region of the hippocampus, we demonstrate that upregulation of ADK and spontaneous focal electroencephalographic seizures were both restricted to the affected CA3. Furthermore, spontaneous seizures in CA3 were mimicked in transgenic mice by overexpression of ADK in this brain region, implying that overexpression of ADK without astrogliosis is sufficient to cause seizures. Conversely, after pharmacological induction of an otherwise epileptogenesis-precipitating acute brain injury, transgenic mice with reduced forebrain ADK were resistant to subsequent epileptogenesis. Likewise, ADK-deficient ES cell-derived brain implants suppressed astrogliosis, upregulation of ADK, and spontaneous seizures in WT mice when implanted after the epileptogenesis-precipitating brain injury. Our findings suggest that astrocyte-based ADK provides a critical link between astrogliosis and neuronal dysfunction in epilepsy.
Collapse
Affiliation(s)
- Tianfu Li
- Robert S. Dow Neurobiology Laboratories, Legacy Clinical Research, Portland, Oregon 97232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Guzman R, Choi R, Gera A, De Los Angeles A, Andres RH, Steinberg GK. Intravascular cell replacement therapy for stroke. Neurosurg Focus 2008; 24:E15. [DOI: 10.3171/foc/2008/24/3-4/e14] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
✓ The use of stem cell transplantation to restore neurological function after stroke is being recognized as a potential novel therapy. Before stem cell transplantation can become widely applicable, however, questions remain about the optimal site of delivery and timing of transplantation. In particular, there seems to be increasing evidence that intravascular cell delivery after stroke is a viable alternative to intracerebral transplantation. In this review, the authors focus on the intravascular delivery of stem cells for stroke treatment with an emphasis on timing, transendothelial migration and possible mechanisms leading to neuroprotection, angiogenesis, immunomodulation, and neural plasticity. They also review current concepts of in vivo imaging and tracking of stem cells after stroke.
Collapse
|
66
|
Hattiangady B, Rao MS, Shetty AK. Plasticity of hippocampal stem/progenitor cells to enhance neurogenesis in response to kainate-induced injury is lost by middle age. Aging Cell 2008; 7:207-24. [PMID: 18241325 DOI: 10.1111/j.1474-9726.2007.00363.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A remarkable up-regulation of neurogenesis through increased proliferation of neural stem/progenitor cells (NSCs) is a well-known plasticity displayed by the young dentate gyrus (DG) following brain injury. To ascertain whether this plasticity is preserved during aging, we quantified DG neurogenesis in the young adult, middle-aged and aged F344 rats after kainic acid induced hippocampal injury. Measurement of new cells that are added to the dentate granule cell layer (GCL) between post-injury days 4 and 15 using 5'-bromodeoxyuridine labeling revealed an increased addition of new cells in the young DG but not in the middle-aged and aged DG. Quantification of newly born neurons using doublecortin immunostaining also demonstrated a similar trend. Furthermore, the extent of ectopic migration of new neurons into the dentate hilus was dramatically increased in the young DG but was unaltered in the middle-aged and aged DG. However, there was no change in neuronal fate-choice decision of newly born cells following injury in all age groups. Similarly, comparable fractions of new cells that are added to the GCL after injury exhibited 5-month survival and expressed the mature neuronal marker NeuN, regardless of age or injury at the time of their birth. Thus, hippocampal injury does not adequately stimulate NSCs in the middle-aged and aged DG, resulting in no changes in neurogenesis after injury. Interestingly, rates of both neuronal fate-choice decision and long-term survival of newly born cells remain stable with injury in all age groups. These results underscore that the ability of the DG to increase neurogenesis after injury is lost as early as middle age.
Collapse
|
67
|
Cell and gene therapies in epilepsy – promising avenues or blind alleys? Trends Neurosci 2008; 31:62-73. [DOI: 10.1016/j.tins.2007.11.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 11/28/2007] [Accepted: 11/30/2007] [Indexed: 11/23/2022]
|
68
|
Shetty AK, Hattiangady B. Restoration of calbindin after fetal hippocampal CA3 cell grafting into the injured hippocampus in a rat model of temporal lobe epilepsy. Hippocampus 2008; 17:943-56. [PMID: 17604349 PMCID: PMC3612498 DOI: 10.1002/hipo.20311] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Degeneration of the CA3 pyramidal and dentate hilar neurons in the adult rat hippocampus after an intracerebroventricular kainic acid (KA) administration, a model of temporal lobe epilepsy, leads to permanent loss of the calcium binding protein calbindin in major fractions of dentate granule cells and CA1 pyramidal neurons. We hypothesize that the enduring loss of calbindin in the dentate gyrus and the CA1 subfield after CA3-lesion is due to disruption of the hippocampal circuitry leading to hyperexcitability in these regions; therefore, specific cell grafts that are capable of both reconstructing the disrupted circuitry and suppressing hyperexcitability in the injured hippocampus can restore calbindin. We compared the effects of fetal CA3 or CA1 cell grafting into the injured CA3 region of adult rats at 45 days after KA-induced injury on the hippocampal calbindin. The calbindin immunoreactivity in the dentate granule cells and the CA1 pyramidal neurons of grafted animals was evaluated at 6 months after injury (i.e. at 4.5 months post-grafting). Compared with the intact hippocampus, the calbindin in "lesion-only" hippocampus was dramatically reduced at 6 months post-lesion. However, calbindin expression was restored in the lesioned hippocampus receiving CA3 cell grafts. In contrast, in the lesioned hippocampus receiving CA1 cell grafts, calbindin expression remained less than the intact hippocampus. Thus, specific cell grafting restores the injury-induced loss of calbindin in the adult hippocampus, likely via restitution of the disrupted circuitry. Since loss of calbindin after hippocampal injury is linked to hyperexcitability, re-expression of calbindin in both dentate gyrus and CA1 subfield following CA3 cell grafting may suggest that specific cell grafting is efficacious for ameliorating injury-induced hyperexcitability in the adult hippocampus. However, electrophysiological studies of KA-lesioned hippocampus receiving CA3 cell grafts are required in future to validate this possibility.
Collapse
Affiliation(s)
- Ashok K Shetty
- Department of Surgery (Neurosurgery), Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
69
|
Ostrowski RP, Graupner G, Titova E, Zhang J, Chiu J, Dach N, Corleone D, Tang J, Zhang JH. The hyperbaric oxygen preconditioning-induced brain protection is mediated by a reduction of early apoptosis after transient global cerebral ischemia. Neurobiol Dis 2008; 29:1-13. [PMID: 17822911 PMCID: PMC2190110 DOI: 10.1016/j.nbd.2007.07.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 06/25/2007] [Accepted: 07/17/2007] [Indexed: 01/14/2023] Open
Abstract
We hypothesized that the brain-protective effect of hyperbaric oxygen (HBO) preconditioning in a transient global cerebral ischemia rat model is mediated by the inhibition of early apoptosis. One hundred ten male Sprague-Dawley (SD) rats (300-350 g body weight) were allocated to the sham group and three other groups with 10 min of four-vessel occlusion, untreated or preconditioned with either 3 or 5 hyperbaric oxygenations. HBO preconditioning improved neurobehavioral scores and reduced mortality, decreased ischemic cell change, reduced the number of early apoptotic cells and hampered a conversion of early to late apoptotic alterations. HBO preconditioning reduced the immunoreactivity of phosphorylated p38 in vulnerable neurons and increased the expression of brain derived neurotrophic factor (BDNF) in early stage post-ischemia. However, preconditioning with 3 HBO treatments proved less beneficial than with 5 HBO treatments. We conclude that HBO preconditioning may be neuroprotective by reducing early apoptosis and inhibition of the conversion of early to late apoptosis, possibly through an increase in brain BDNF level and the suppression of p38 activation.
Collapse
Affiliation(s)
| | | | - Elena Titova
- Department of Physiology and Pharmacology, Loma Linda University, USA
| | - Jennifer Zhang
- Department of Physiology and Pharmacology, Loma Linda University, USA
| | - Jeffrey Chiu
- Department of Physiology and Pharmacology, Loma Linda University, USA
| | - Neal Dach
- Department of Physiology and Pharmacology, Loma Linda University, USA
| | - Dalia Corleone
- Department of Physiology and Pharmacology, Loma Linda University, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, USA
| | - John H. Zhang
- Department of Physiology and Pharmacology, Loma Linda University, USA
- Department of Neurosurgery, Loma Linda University, USA
- Department of Anesthesiology, Loma Linda University, USA
| |
Collapse
|
70
|
Dhanushkodi A, Shetty AK. Is exposure to enriched environment beneficial for functional post-lesional recovery in temporal lobe epilepsy? Neurosci Biobehav Rev 2007; 32:657-74. [PMID: 18178250 PMCID: PMC2389878 DOI: 10.1016/j.neubiorev.2007.10.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 09/24/2007] [Accepted: 10/29/2007] [Indexed: 01/19/2023]
Abstract
Exposure to enriched environment has been shown to induce robust neuronal plasticity in both intact and injured adult central nervous system, including up-regulation of multiple neurotrophic factors, enhanced neurogenesis in the dentate gyrus of the hippocampus, and improved spatial learning and memory function. Neuronal plasticity, though mostly adaptive and abnormal, also occurs during certain neurodegenerative conditions such as the temporal lobe epilepsy (TLE). The TLE is characterized by hippocampal neurodegeneration, aberrant mossy fiber sprouting, spontaneous recurrent motor seizures, cognitive deficits, and abnormally enhanced neurogenesis during the early phase and dramatically declined neurogenesis during the chronic phase of the disease. As environmental enrichment has been found to be beneficial for treating animal models of Alzheimer's, Parkinson's, and Huntington's diseases, there is considerable interest in determining the efficacy of this strategy for preventing or treating chronic TLE after the initial precipitating brain injury. This review first discusses the proof of principle behind the potential application of the environmental enrichment strategy for preventing or treating TLE after brain injury. The subsequent chapters confer the portrayed beneficial effects of enrichment for functional post-lesional recovery in TLE and the possible complications which may arise from housing epilepsy-prone or epileptic rats in enriched environmental conditions. The final segment discusses studies that are essential for further understanding the efficacy of this approach for preventing or treating TLE.
Collapse
Affiliation(s)
- Anandh Dhanushkodi
- Department of Surgery (Neurosurgery) Duke University Medical Center, Durham, NC 27710. Medical Research and Surgery Services, Veterans Affairs Medical Center, Durham, NC 27705
| | - Ashok K. Shetty
- Department of Surgery (Neurosurgery) Duke University Medical Center, Durham, NC 27710. Medical Research and Surgery Services, Veterans Affairs Medical Center, Durham, NC 27705
| |
Collapse
|
71
|
Ren G, Li T, Lan JQ, Wilz A, Simon RP, Boison D. Lentiviral RNAi-induced downregulation of adenosine kinase in human mesenchymal stem cell grafts: a novel perspective for seizure control. Exp Neurol 2007; 208:26-37. [PMID: 17716659 PMCID: PMC2205528 DOI: 10.1016/j.expneurol.2007.07.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 07/11/2007] [Accepted: 07/20/2007] [Indexed: 12/14/2022]
Abstract
Cell therapies based on focal delivery of the inhibitory neuromodulator adenosine were previously shown to provide potent seizure suppression in animal models of epilepsy. However, hitherto used therapeutic cells were derived from rodents and thus not suitable for clinical applications. Autologous patient-derived adenosine-releasing cell implants would constitute a major therapeutic advance to avoid both xenotransplantation and immunosuppression. Here we describe a novel approach based on lentiviral RNAi mediated downregulation of adenosine kinase (ADK), the major adenosine-removing enzyme, in human mesenchymal stem cells (hMSCs), which would be compatible with autologous cell grafting in patients. Following lentiviral transduction of hMSCs with anti-ADK miRNA expression cassettes we demonstrate up to 80% downregulation of ADK and a concentration of 8.5 ng adenosine per ml of medium after incubating 10(5) cells for 8 h. hMSCs with a knockdown of ADK or cells expressing a scrambled control sequence were transplanted into hippocampi of mice 1 week prior to the intraamygdaloid injection of kainic acid (KA). While mice with control implants expressing a scrambled miRNA sequence or sham treated control animals were characterized by KA-induced status epilepticus and subsequent CA3 neuronal cell loss, animals with therapeutic ADK knockdown implants displayed a 35% reduction in seizure duration and 65% reduction in CA3 neuronal cell loss, when analyzed 24 h after KA-injection. We conclude that lentiviral expression of anti-ADK miRNA constitutes a versatile tool to generate therapeutically effective adenosine releasing hMSCs, thus representing a model system to generate patient identical autologous adult stem cell grafts.
Collapse
Affiliation(s)
- Gaoying Ren
- Robert S. Dow Neurobiology Laboratories, Legacy Research, Portland, Oregon 97232, USA
| | - Tianfu Li
- Robert S. Dow Neurobiology Laboratories, Legacy Research, Portland, Oregon 97232, USA
| | - Jiang Quan Lan
- Robert S. Dow Neurobiology Laboratories, Legacy Research, Portland, Oregon 97232, USA
| | - Andrew Wilz
- Robert S. Dow Neurobiology Laboratories, Legacy Research, Portland, Oregon 97232, USA
| | - Roger P. Simon
- Robert S. Dow Neurobiology Laboratories, Legacy Research, Portland, Oregon 97232, USA
| | - Detlev Boison
- Robert S. Dow Neurobiology Laboratories, Legacy Research, Portland, Oregon 97232, USA
| |
Collapse
|
72
|
Abstract
Certain regions of the adult brain have the ability for partial self-repair after injury through production of new neurons via activation of neural stem/progenitor cells (NSCs). Nonetheless, there is no evidence yet for pervasive spontaneous replacement of dead neurons by newly formed neurons leading to functional recovery in the injured brain. Consequently, there is enormous interest for stimulating endogenous NSCs in the brain to produce new neurons or for grafting of NSCs isolated and expanded from different brain regions or embryonic stem cells into the injured brain. Temporal lobe epilepsy (TLE), characterized by hyperexcitability in the hippocampus and spontaneous seizures, is a possible clinical target for stem cell-based therapies. This is because these approaches have the potential to curb epileptogenesis and prevent chronic epilepsy development and learning and memory dysfunction after hippocampal damage related to status epilepticus or head injury. Grafting of NSCs may also be useful for restraining seizures during chronic epilepsy. The aim of this review is to evaluate current knowledge and outlook pertaining to stem cell-based therapies for TLE. The first section discusses the behavior of endogenous hippocampal NSCs in human TLE and animal models of TLE and evaluates the role of hippocampal neurogenesis in the pathophysiology and treatment of TLE. The second segment considers the prospects for preventing or suppressing seizures in TLE using exogenously applied stem cells. The final part analyzes problems that remain to be resolved before initiating clinical application of stem cell-based therapies for TLE. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Ashok K Shetty
- Department of Surgery (Neurosurgery), Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
73
|
Rao MS, Hattiangady B, Rai KS, Shetty AK. Strategies for promoting anti-seizure effects of hippocampal fetal cells grafted into the hippocampus of rats exhibiting chronic temporal lobe epilepsy. Neurobiol Dis 2007; 27:117-32. [PMID: 17618126 PMCID: PMC3612502 DOI: 10.1016/j.nbd.2007.03.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 03/22/2007] [Accepted: 03/27/2007] [Indexed: 01/10/2023] Open
Abstract
Efficacy of hippocampal fetal cell (HFC) grafting for restraining spontaneous recurrent motor seizures (SRMS) in chronic temporal lobe epilepsy (TLE) is unknown. We investigated both survival and anti-seizure effects of 5'-bromodeoxyuridine (BrdU) labeled embryonic day 19 (E19) HFC grafts pretreated with different neurotrophic factors and a caspase inhibitor. Grafts were placed bilaterally into the hippocampi of F344 rats exhibiting kainate (KA) induced chronic TLE, where the frequency of SRMS varied from 3.0 to 3.5 seizures/8-h duration. The first group received standard (untreated) HFC grafts, the second group received HFC grafts pretreated and transplanted with brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and caspase inhibitor Ac-YVAD-cmk (BNC-treated HFC grafts), the third group received HFC grafts pretreated and transplanted with fibroblast growth factor-2 (FGF-2) and caspase inhibitor Ac-YVAD-cmk (FC-treated HFC grafts), and the fourth group served as epilepsy-only controls. Epileptic rats receiving standard HFC grafts exhibited 119% increase in the frequency of SRMS at 2 months post-grafting consistent with 125% increase in seizure frequency observed in epilepsy-only controls during the same period. However, in epileptic rats receiving HFC grafts treated with BNC or FC, the frequency of SRMS was 33-39% less than their pre-transplant scores and 73-76% less than rats receiving standard HFC grafts or epilepsy-only rats. The yield of surviving neurons was equivalent to 30% of injected cells in standard HFC grafts, 57% in HFC grafts treated with BNC and 98% in HFC grafts treated with FC. Thus, standard HFC grafts survive poorly in the chronically epileptic hippocampus and fail to restrain the progression of chronic TLE. In contrast, HFCs treated and grafted with BNC or FC survive robustly in the chronically epileptic hippocampus, considerably reduce the frequency of SRMS and blunt the progression of chronic TLE.
Collapse
Affiliation(s)
| | | | | | - Ashok K. Shetty
- Corresponding author. Division of Neurosurgery, Box 3807, Duke University Medical Center, Durham NC 27710, USA. (A.K. Shetty)
| |
Collapse
|
74
|
Hattiangady B, Shuai B, Cai J, Coksaygan T, Rao MS, Shetty AK. Increased dentate neurogenesis after grafting of glial restricted progenitors or neural stem cells in the aging hippocampus. Stem Cells 2007; 25:2104-17. [PMID: 17510219 DOI: 10.1634/stemcells.2006-0726] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neurogenesis in the dentate gyrus (DG) declines severely by middle age, potentially because of age-related changes in the DG microenvironment. We hypothesize that providing fresh glial restricted progenitors (GRPs) or neural stem cells (NSCs) to the aging hippocampus via grafting enriches the DG microenvironment and thereby stimulates the production of new granule cells from endogenous NSCs. The GRPs isolated from the spinal cords of embryonic day 13.5 transgenic F344 rats expressing human alkaline phosphatase gene and NSCs isolated from embryonic day 9 caudal neural tubes of Sox-2:EGFP transgenic mice were expanded in vitro and grafted into the hippocampi of middle-aged (12 months old) F344 rats. Both types of grafts survived well, and grafted NSCs in addition migrated to all layers of the hippocampus. Phenotypic characterization revealed that both GRPs and NSCs differentiated predominantly into astrocytes and oligodendrocytic progenitors. Neuronal differentiation of graft-derived cells was mostly absent except in the dentate subgranular zone (SGZ), where some of the migrated NSCs but not GRPs differentiated into neurons. Analyses of the numbers of newly born neurons in the DG using 5'-bromodeoxyuridine and/or doublecortin assays, however, demonstrated considerably increased dentate neurogenesis in animals receiving grafts of GRPs or NSCs in comparison with both naïve controls and animals receiving sham-grafting surgery. Thus, both GRPs and NSCs survive well, differentiate predominantly into glia, and stimulate the endogenous NSCs in the SGZ to produce more new dentate granule cells following grafting into the aging hippocampus. Grafting of GRPs or NSCs therefore provides an attractive approach for improving neurogenesis in the aging hippocampus. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
|
75
|
Abstract
No treatment currently exists to restore lost neurological function after stroke. A growing number of studies highlight the potential of stem cell transplantation as a novel therapeutic approach for stroke. In this review we summarize these studies, discuss potential mechanisms of action of the transplanted cells, and emphasize the need to determine parameters that are critical for transplantation success.
Collapse
Affiliation(s)
- Tonya Bliss
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
76
|
Bernard PB, Macdonald DS, Gill DA, Ryan CL, Tasker RA. Hippocampal mossy fiber sprouting and elevated trkB receptor expression following systemic administration of low dose domoic acid during neonatal development. Hippocampus 2007; 17:1121-33. [PMID: 17636548 DOI: 10.1002/hipo.20342] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We have previously reported that serial systemic injections of low-dose (subconvulsive) domoic acid (DOM) during early postnatal development produces changes in both behavior and hippocampal cytoarchitecture in aged rats (17 months) that are similar to those seen in existing animal models of temporal lobe epilepsy. Herein we report further hippocampal changes, consisting of mossy fiber sprouting and associated changes in the trkB receptor population in young adult (3 months) rats, and further, report that these changes show regional variation throughout the septo-temporal axis of the hippocampus. Groups of Sprague Dawley rat pups were injected daily from postnatal day 8-14 with either saline (n = 23) or 20 microg/kg DOM (n = 25), tested for key indicators of neonatal neurobehavioral development, and then left undisturbed until approximately 90 days of age, at which time brain tissue was removed, hippocampi were dissected, fixed and processed using either Timm's stain to visualize hippocampal mossy fiber sprouting (MFS) or trkB immunohistochemistry to visualize full length trkB receptors. Multiple sections from dorsal, mid, and ventral hippocampus were analyzed separately and all measures were conducted using image analysis software. The results indicate significant increases in MFS in the inner molecular layer in treated animals with corresponding changes in trkB receptor density. Further we identified significant increases in trkB receptor density in the hilus of the dentate gyrus and area CA3 and report increased mossy fiber terminal density in the stratum lucidum in treated rats. The magnitude of these changes differed between sections from dorsal, mid, and ventral hippocampus. We conclude that low dose neonatal DOM produces cytoarchitectural changes indicative of abnormal development and/or synaptic plasticity that are progressive with age and show regional variation within the hippocampal formation.
Collapse
Affiliation(s)
- Paul B Bernard
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | | | | | | | | |
Collapse
|
77
|
Rao MS, Hattiangady B, Reddy DS, Shetty AK. Hippocampal neurodegeneration, spontaneous seizures, and mossy fiber sprouting in the F344 rat model of temporal lobe epilepsy. J Neurosci Res 2006; 83:1088-105. [PMID: 16493685 DOI: 10.1002/jnr.20802] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The links among the extent of hippocampal neurodegeneration, the frequency of spontaneous recurrent motor seizures (SRMS), and the degree of aberrant mossy fiber sprouting (MFS) in temporal lobe epilepsy (TLE) are a subject of contention because of variable findings in different animal models and human studies. To understand these issues further, we quantified these parameters at 3-5 months after graded injections of low doses of kainic acid (KA) in adult F344 rats. KA was administered every 1 hr for 4 hr, for a cumulative dose of 10.5 mg/kg bw, to induce continuous stages III-V motor seizures for >3 hr. At 4 days post-KA, the majority of rats (77%) exhibited moderate bilateral neurodegeneration in different regions of the hippocampus; however, 23% of rats exhibited massive neurodegeneration in all hippocampal regions. All KA-treated rats displayed robust SRMS at 3 months post-KA, and the severity of SRMS increased over time. Analyses of surviving neurons at 5 months post-KA revealed two subgroups of rats, one with moderate hippocampal injury (HI; 55% of rats) and another with widespread HI (45%). Rats with widespread HI exhibited greater loss of CA3 pyramidal neurons and robust aberrant MFS than rats with moderate HI. However, the frequency of SRMS (approximately 3/hr) was comparable between rats with moderate and widespread HI. Thus, in comparison with TLE model using Sprague-Dawley rats (Hellier et al. [1998] Epilepsy Res. 31:73-84), a much lower cumulative dose of KA leads to robust chronic epilepsy in F344 rats. Furthermore, the occurrence of SRMS in this model is always associated with considerable bilateral hippocampal neurodegeneration and aberrant MFS. However, more extensive hippocampal CA3 cell loss and aberrant MFS do not appear to increase the frequency of SRMS. Because most of the features are consistent with mesial TLE in humans, the F344 model appears ideal for testing the efficacy of potential treatment strategies for mesial TLE.
Collapse
Affiliation(s)
- Muddanna S Rao
- Department of Surgery (Neurosurgery), Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
78
|
Hattiangady B, Rao MS, Zaman V, Shetty AK. Incorporation of embryonic CA3 cell grafts into the adult hippocampus at 4-months after injury: effects of combined neurotrophic supplementation and caspase inhibition. Neuroscience 2006; 139:1369-83. [PMID: 16580143 DOI: 10.1016/j.neuroscience.2006.01.058] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 01/17/2006] [Accepted: 01/26/2006] [Indexed: 10/24/2022]
Abstract
As receptivity of the injured hippocampus to cell grafts decreases with time after injury, strategies that improve graft integration are necessary for graft-mediated treatment of chronic neurodegenerative conditions such as temporal lobe epilepsy. We ascertained the efficacy of two distinct graft-augmentation strategies for improving the survival of embryonic day 19 hippocampal CA3 cell grafts placed into the adult hippocampus at 4-months after kainic acid induced injury. The donor cells were labeled with 5'-bromodeoxyuridine, and pre-treated and grafted with either brain-derived neurotrophic factor, neurotrophin-3 and a caspase inhibitor or fibroblast growth factor and caspase inhibitor. The yield of surviving grafted cells and neurons were quantified at 2-months post-grafting. The yield of surviving cells was substantially greater in grafts treated with brain-derived neurotrophic factor, neurotrophin-3 and caspase inhibitor (84%) or fibroblast growth factor and caspase inhibitor (99% of injected cells) than standard cell grafts (26%). Because approximately 85% of surviving grafted cells were neurons, increased yield in augmented groups reflects enhanced survival of grafted neurons. Evaluation of the mossy fiber synaptic re-organization in additional kainic acid-lesioned rats receiving grafts enriched with brain-derived neurotrophic factor, neurotrophin-3 and caspase inhibitor at 3-months post-grafting revealed reduced aberrant dentate mossy fiber sprouting in the dentate supragranular layer than "lesion-only" rats at 4 months post-kainic acid, suggesting that some of the aberrantly sprouted mossy fibers in the dentate supragranular layer withdraw when apt target cells (i.e. grafted neurons) become available in their vicinity. Thus, the yield of surviving neurons from CA3 cell grafts placed into the adult hippocampus at an extended time-point after injury could be enhanced through apt neurotrophic supplementation and caspase inhibition. Apt grafting is also efficacious for reversing some of the abnormal synaptic reorganization prevalent in the hippocampus at later time-points after injury.
Collapse
Affiliation(s)
- B Hattiangady
- Department of Surgery (Neurosurgery), Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
79
|
Kozorovitskiy Y. Not every graft has what it takes to attract a mossy fiber. J Neurosci 2005; 25:10337-8. [PMID: 16280567 PMCID: PMC6725826 DOI: 10.1523/jneurosci.4114-05.2005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Yevgenia Kozorovitskiy
- Department of Psychology and Program in Neuroscience, Princeton University, Princeton, New Jersey 08544, USA.
| |
Collapse
|