51
|
Raghunatha P, Vosoughi A, Kauppinen TM, Jackson MF. Microglial NMDA receptors drive pro-inflammatory responses via PARP-1/TRMP2 signaling. Glia 2020; 68:1421-1434. [PMID: 32036619 DOI: 10.1002/glia.23790] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 12/16/2022]
Abstract
Chronic neuroinflammation driven by microglia is a characteristic feature associated with numerous neurodegenerative diseases. While acute inflammation can assist with recovery and repair, prolonged microglial pro-inflammatory responses are known to exacerbate neurodegenerative processes. Yet, detrimental outcomes of extended microglial activation are counterbalanced by beneficial outcomes including phagocytosis and release of trophic factors promoting neuronal viability. Our past work has shown that the nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1) is a key signaling hub driving pro-inflammatory microglia responses, but the signaling pathway maintaining PARP-1 activation remains elusive. While best understood for its role in promoting DNA repair, our group has shown that PARP-1 activity can be stimulated via Ca2+ influx-dependent ERK1/2-mediated phosphorylation. However, to date, the route of Ca2+ entry responsible for stimulating PARP-1 has not been identified. A likely candidate is via Ca2+ -permeable transient receptor potential melastatin 2 (TRPM2) channels activated downstream of PARP-1 in a cascade that involves ADP-ribose (ADPR) production by poly(ADP-ribose) glycohydrolase (PARG). Here we demonstrate that NMDA receptor (NMDAR) stimulation in primary cultured microglia induces their proliferation, morphological activation and release of pro-inflammatory mediators. These responses were contingent on the recruitment of PARP-1, PARG and Ca2+ permeable TRPM2 channels. Furthermore, we show that Ca2+ influx is necessary to activate PARP-1/TRPM2 signaling, in an ERK1/2-dependent, but DNA damage independent, manner. Our findings, showing that PARP-1/TRPM2 mediate the pro-inflammatory effects of NMDAR stimulation, provides a unifying mechanism linking elevated glutamate levels to chronic neuroinflammation.
Collapse
Affiliation(s)
- Prajwal Raghunatha
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.,Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Manitoba, Canada
| | - Amir Vosoughi
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Manitoba, Canada
| | - Tiina M Kauppinen
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.,Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Manitoba, Canada.,The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael F Jackson
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.,Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Manitoba, Canada
| |
Collapse
|
52
|
Hosp JA, Greiner KL, Martinez Arellano L, Roth F, Löffler F, Reis J, Fritsch B. Progressive secondary exo-focal dopaminergic neurodegeneration occurs in not directly connected midbrain nuclei after pure motor-cortical stroke. Exp Neurol 2020; 327:113211. [PMID: 31987834 DOI: 10.1016/j.expneurol.2020.113211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 10/25/2022]
Abstract
Transsynaptic anterograde and retrograde degeneration of neurons and neural fibers are assumed to trigger local excitotoxicity and inflammatory processes. These processes in turn are thought to drive exo-focal neurodegeneration in remote areas connected to the infarcted tissue after ischemic stroke. In the case of middle cerebral artery occlusion (MCAO), in which striato-nigral connections are affected, the hypothesis of inflammation-induced remote neurodegeneration is based on the temporal dynamics of an early appearance of inflammatory markers in midbrain followed by dopaminergic neuronal loss. To test the hypothesis of a direct transsynaptic mediation of secondary exo-focal post-ischemic neurodegeneration, we used a photochemical induction of a stroke (PTS) in Sprague-Dawley rats restricted to motor cortex (MC), thereby sparing the striatal connections to dopaminergic midbrain nuclei. To dissect the temporal dynamics of post-ischemic neurodegeneration, we analyzed brain sections harvested at day 7 and 14 post stroke. Here, an unexpectedly pronounced and widespread loss of dopaminergic neurons occurred 14 days after stroke also affecting dopaminergic nuclei that are not directly coupled to MC. Since the pattern of neurodegeneration in case of a pure motor stroke is similar to a major stroke including the striatum, it is unlikely that direct synaptic coupling is a prerequisite for delayed secondary exo-focal post ischemic neurodegeneration. Furthermore, dopaminergic neurodegeneration was already detected by Fluoro-Jade C staining at day 7, coinciding with a solely slight inflammatory response. Thus, inflammation cannot be assumed to be the primary driver of exo-focal post-ischemic cell death. Moreover, nigral substance P (SP) expression indicated intact striato-nigral innervation after PTS, whereas opposing effects on SP expression after striatal infarcts argue against a critical role of SP in neurodegenerative or inflammatory processes during exo-focal neurodegeneration.
Collapse
Affiliation(s)
- J A Hosp
- Department of Neurology and Neuroscience, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - K L Greiner
- Department of Neurology and Neuroscience, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - L Martinez Arellano
- Department of Neurology and Neuroscience, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - F Roth
- Department of Neurology and Neuroscience, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - F Löffler
- Department of Neurology and Neuroscience, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - J Reis
- Department of Neurology and Neuroscience, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - B Fritsch
- Department of Neurology and Neuroscience, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
53
|
Modulation of the MAPKs pathways affects Aβ-induced cognitive deficits in Alzheimer's disease via activation of α7nAChR. Neurobiol Learn Mem 2020; 168:107154. [PMID: 31904546 DOI: 10.1016/j.nlm.2019.107154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/17/2019] [Accepted: 12/31/2019] [Indexed: 01/21/2023]
Abstract
Cognitive impairment in Alzheimer's disease (AD) is characterized by being deficient at learning and memory. Aβ1-42 oligomers have been shown to impair rodent cognitive function. We previously demonstrated that activation of α7nAChR, inhibition of p38 or JNK could alleviate Aβ-induced memory deficits in Y maze test. In this study, we investigated whether the effects of α7nAChR and MAPKs on Y maze test is reproducible with a hippocampus-dependent spatial memory test such as Morris water maze. We also assessed the possible co-existence of hippocampus-independent recognition memory dysfunction using a novel object recognition test and an alternative and stress free hippocampus-dependent recognition memory test such as the novel place recognition. Besides, previous research from our lab has shown that MAPKs pathways regulate Aβ internalization through mediating α7nAChR. In our study, whether MAPKs pathways exert their functions in cognition by modulating α7nAChR through regulating glutamate receptors and synaptic protein, remain little known. Our results showed that activation of α7nAChR restored spatial memory, novel place recognition memory, and short-term and long-term memory in novel object recognition. Inhibition of p38 restored spatial memory and short-term and long-term memory in novel object recognition. Inhibition of ERK restored short-term memory in novel object recognition and novel place recognition memory. Inhibition of JNK restored spatial memory, short-term memory in novel object recognition and novel place recognition memory. Beside this, the activation of α7nAChR, inhibition of p38 or JNK restored Aβ-induced levels of NMDAR1, NMDAR2A, NMDAR2B, GluR1, GluR2 and PSD95 in Aβ-injected mice without influencing synapsin 1. In addition, these treatments also recovered the expression of acetylcholinesterase (AChE). Finally, we found that the inhibition of p38 or JNK resulted in the upregulation of α7nAChR mRNA levels in the hippocampus. Our results indicated that inhibition of p38 or JNK MAPKs could alleviate Aβ-induced spatial memory deficits through regulating activation of α7nAChR via recovering memory-related proteins. Moreover, p38, ERK and JNK MAPKs exert different functions in spatial and recognition memory.
Collapse
|
54
|
Li M, Cui MM, Kenechukwu NA, Gu YW, Chen YL, Zhong SJ, Gao YT, Cao XY, Wang L, Liu FM, Wen XR. Rosmarinic acid ameliorates hypoxia/ischemia induced cognitive deficits and promotes remyelination. Neural Regen Res 2020; 15:894-902. [PMID: 31719255 PMCID: PMC6990785 DOI: 10.4103/1673-5374.268927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rosmarinic acid, a common ester extracted from Rosemary, Perilla frutescens, and Salvia miltiorrhiza Bunge, has been shown to have protective effects against various diseases. This is an investigation into whether rosmarinic acid can also affect the changes of white matter fibers and cognitive deficits caused by hypoxic injury. The right common carotid artery of 3-day-old rats was ligated for 2 hours. The rats were then prewarmed in a plastic container with holes in the lid, which was placed in 37°C water bath for 30 minutes. Afterwards, the rats were exposed to an atmosphere with 8% O2 and 92% N2 for 30 minutes to establish the perinatal hypoxia/ischemia injury models. The rat models were intraperitoneally injected with rosmarinic acid 20 mg/kg for 5 consecutive days. At 22 days after birth, rosmarinic acid was found to improve motor, anxiety, learning and spatial memory impairments induced by hypoxia/ischemia injury. Furthermore, rosmarinic acid promoted the proliferation of oligodendrocyte progenitor cells in the subventricular zone. After hypoxia/ischemia injury, rosmarinic acid reversed to some extent the downregulation of myelin basic protein and the loss of myelin sheath in the corpus callosum of white matter structure. Rosmarinic acid partially slowed down the expression of oligodendrocyte marker Olig2 and myelin basic protein and the increase of oligodendrocyte apoptosis marker inhibitors of DNA binding 2. These data indicate that rosmarinic acid ameliorated the cognitive dysfunction after perinatal hypoxia/ischemia injury by improving remyelination in corpus callosum. This study was approved by the Animal Experimental Ethics Committee of Xuzhou Medical University, China (approval No. 20161636721) on September 16, 2017.
Collapse
Affiliation(s)
- Man Li
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Miao-Miao Cui
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | | | - Yi-Wei Gu
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yu-Lin Chen
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Si-Jing Zhong
- Xuzhou Medical University Clinical Medical College, Xuzhou, Jiangsu Province, China
| | - Yu-Ting Gao
- Department of Clinical Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xue-Yan Cao
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Li Wang
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fu-Min Liu
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xiang-Ru Wen
- Research Center for Neurobiology and Department of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| |
Collapse
|
55
|
Araki T, Ikegaya Y, Koyama R. Microglia attenuate the kainic acid-induced death of hippocampal neurons in slice cultures. Neuropsychopharmacol Rep 2019; 40:85-91. [PMID: 31794154 PMCID: PMC7292224 DOI: 10.1002/npr2.12086] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/03/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022] Open
Abstract
Background Status epilepticus‐induced hippocampal neuronal death, astrogliosis, and the activation of microglia are common pathological changes in mesial temporal lobe epilepsy (mTLE) with resistance to antiepileptic drugs. Neuronal death in mTLE gradually progresses and is involved in the aggravation of epilepsy and the impairment of hippocampus‐dependent memory. Thus, clarifying the cellular mechanisms by which neurons are protected in mTLE will significantly contribute to the treatment of epilepsy. Here, mainly using hippocampal slice cultures with or without the pharmacological depletion of microglia, we directly examined whether microglia, the resident immune cells of the brain that can act either neurotoxically or in a neuroprotective manner, accelerate or attenuate kainic acid (KA)‐induced neuronal death in vitro. Methods Hippocampal slice cultures were treated with KA to induce neuronal death in vitro. Clodronate‐containing liposomes or PLX3397 was used to deplete microglia in hippocampal slice cultures, and the effect on KA‐induced neuronal death was immunohistochemically assessed. Results The loss of microglia significantly promoted a decrease in neuronal density in KA‐treated hippocampal slice cultures. Conclusion Our results suggest that microglia are neuroprotective against KA‐induced neuronal death in slice cultures. We investigated the role of microglia in kainic acid‐induced neuronal death using hippocampal slice cultures.We found that pharmacological removal of microglia from cultured hippocampal slices enhanced kainic acid‐induced neuronal death. These results suggest that microglia are neuroprotective against kainic acid‐induced neuronal death.![]()
Collapse
Affiliation(s)
- Tasuku Araki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Center for Information and Neural Networks, Suita City, Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
56
|
Beiersdorfer A, Lohr C. AMPA Receptor-Mediated Ca 2+ Transients in Mouse Olfactory Ensheathing Cells. Front Cell Neurosci 2019; 13:451. [PMID: 31636544 PMCID: PMC6788192 DOI: 10.3389/fncel.2019.00451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/20/2019] [Indexed: 11/13/2022] Open
Abstract
Ca2+ signaling in glial cells is primarily triggered by metabotropic pathways and the subsequent Ca2+ release from internal Ca2+ stores. However, there is upcoming evidence that various ion channels might also initiate Ca2+ rises in glial cells by Ca2+ influx. We investigated AMPA receptor-mediated inward currents and Ca2+ transients in olfactory ensheathing cells (OECs), a specialized glial cell population in the olfactory bulb (OB), using whole-cell voltage-clamp recordings and confocal Ca2+ imaging. By immunohistochemistry we showed immunoreactivity to the AMPA receptor subunits GluA1, GluA2 and GluA4 in OECs, suggesting the presence of AMPA receptors in OECs. Kainate-induced inward currents were mediated exclusively by AMPA receptors, as they were sensitive to the specific AMPA receptor antagonist, GYKI53655. Moreover, kainate-induced inward currents were reduced by the selective Ca2+-permeable AMPA receptor inhibitor, NASPM, suggesting the presence of functional Ca2+-permeable AMPA receptors in OECs. Additionally, kainate application evoked Ca2+ transients in OECs which were abolished in the absence of extracellular Ca2+, indicating that Ca2+ influx via Ca2+-permeable AMPA receptors contribute to kainate-induced Ca2+ transients. However, kainate-induced Ca2+ transients were partly reduced upon Ca2+ store depletion, leading to the conclusion that Ca2+ influx via AMPA receptor channels is essential to trigger Ca2+ transients in OECs, whereas Ca2+ release from internal stores contributes in part to the kainate-evoked Ca2+ response. Endogenous glutamate release by OSN axons initiated Ca2+ transients in OECs, equally mediated by metabotropic receptors (glutamatergic and purinergic) and AMPA receptors, suggesting a prominent role for AMPA receptor mediated Ca2+ signaling in axon-OEC communication.
Collapse
Affiliation(s)
| | - Christian Lohr
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
57
|
Sierra A, Paolicelli RC, Kettenmann H. Cien Años de Microglía: Milestones in a Century of Microglial Research. Trends Neurosci 2019; 42:778-792. [PMID: 31635851 DOI: 10.1016/j.tins.2019.09.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022]
Abstract
The year 2019 marks the 100-year anniversary of the discovery of microglia by Pío del Río-Hortega. We will recount the state of neuroscience research at the beginning of the 20th century and the heated scientific dispute regarding microglial identity. We will then walk through some of the milestones of microglial research in the decades since then. In the last 20 years, the field has grown exponentially. Researchers have shown that microglia are unlike any other resident macrophages: they have a unique origin and distinguishing features. Microglia are extraordinarily motile cells and constantly survey their environment, interacting with neurons, astrocytes, oligodendrocytes, neural stem cells, and infiltrating immune cells. We finally highlight some open questions for future research regarding microglia's identity, population dynamics, and dual (beneficial and detrimental) role in pathology.
Collapse
Affiliation(s)
- Amanda Sierra
- Achucarro Basque Center for Neuroscience, Ikerbasque Foundation, University of the Basque Country UPV/EHU, Parque Científico UPV/EHU, Barrio Sarriena s/n, Leioa, Bizkaia, 48940, Spain.
| | - Rosa C Paolicelli
- Department of Physiology, University of Lausanne, Rue du Bugnon 7, 1005 Lausanne, Switzerland.
| | - Helmut Kettenmann
- Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Cellular Neurosciences, Robert Roessle Str 10, 13092 Berlin, Germany.
| |
Collapse
|
58
|
Reiner A, Levitz J. Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert. Neuron 2019; 98:1080-1098. [PMID: 29953871 DOI: 10.1016/j.neuron.2018.05.018] [Citation(s) in RCA: 407] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/19/2018] [Accepted: 05/10/2018] [Indexed: 12/28/2022]
Abstract
Glutamate serves as both the mammalian brain's primary excitatory neurotransmitter and as a key neuromodulator to control synapse and circuit function over a wide range of spatial and temporal scales. This functional diversity is decoded by two receptor families: ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs). The challenges posed by the complexity and physiological importance of each of these subtypes has limited our appreciation and understanding of how these receptors work in concert. In this review, by comparing both receptor families with a focus on their crosstalk, we argue for a more holistic understanding of neural glutamate signaling.
Collapse
Affiliation(s)
- Andreas Reiner
- Department of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
59
|
French T, Düsedau HP, Steffen J, Biswas A, Ahmed N, Hartmann S, Schüler T, Schott BH, Dunay IR. Neuronal impairment following chronic Toxoplasma gondii infection is aggravated by intestinal nematode challenge in an IFN-γ-dependent manner. J Neuroinflammation 2019; 16:159. [PMID: 31352901 PMCID: PMC6661741 DOI: 10.1186/s12974-019-1539-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023] Open
Abstract
Background It has become increasingly evident that the immune and nervous systems are closely intertwined, relying on one another during regular homeostatic conditions. Prolonged states of imbalance between neural and immune homeostasis, such as chronic neuroinflammation, are associated with a higher risk for neural damage. Toxoplasma gondii is a highly successful neurotropic parasite causing persistent subclinical neuroinflammation, which is associated with psychiatric and neurodegenerative disorders. Little is known, however, by what means neuroinflammation and the associated neural impairment can be modulated by peripheral inflammatory processes. Methods Expression of immune and synapse-associated genes was assessed via quantitative real-time PCR to investigate how T. gondii infection-induced chronic neuroinflammation and associated neuronal alterations can be reshaped by a subsequent acute intestinal nematode co-infection. Immune cell subsets were characterized via flow cytometry in the brain of infected mice. Sulfadiazine and interferon-γ-neutralizing antibody were applied to subdue neuroinflammation. Results Neuroinflammation induced by T. gondii infection of mice was associated with increased microglia activation, recruitment of immune cells into the brain exhibiting Th1 effector functions, and enhanced production of Th1 and pro-inflammatory molecules (IFN-γ, iNOS, IL-12, TNF, IL-6, and IL-1β) following co-infection with Heligmosomoides polygyrus. The accelerated cerebral Th1 immune response resulted in enhanced T. gondii removal but exacerbated the inflammation-related decrease of synapse-associated gene expression. Synaptic proteins EAAT2 and GABAAα1, which are involved in the excitation/inhibition balance in the CNS, were affected in particular. These synaptic alterations were partially recovered by reducing neuroinflammation indirectly via antiparasitic treatment and especially by application of IFN-γ-neutralizing antibody. Impaired iNOS expression following IFN-γ neutralization directly affected EAAT2 and GABAAα1 signaling, thus contributing to the microglial regulation of neurons. Besides, reduced CD36, TREM2, and C1qa gene expression points toward inflammation induced synaptic pruning as a fundamental mechanism. Conclusion Our results suggest that neuroimmune responses following chronic T. gondii infection can be modulated by acute enteric nematode co-infection. While consecutive co-infection promotes parasite elimination in the CNS, it also adversely affects gene expression of synaptic proteins, via an IFN-γ-dependent manner. Electronic supplementary material The online version of this article (10.1186/s12974-019-1539-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Timothy French
- Institute of Inflammation and Neurodegeneration, Medizinische Fakultät, Otto-von-Guericke-University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Henning Peter Düsedau
- Institute of Inflammation and Neurodegeneration, Medizinische Fakultät, Otto-von-Guericke-University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Johannes Steffen
- Institute of Inflammation and Neurodegeneration, Medizinische Fakultät, Otto-von-Guericke-University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Aindrila Biswas
- Institute of Inflammation and Neurodegeneration, Medizinische Fakultät, Otto-von-Guericke-University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Norus Ahmed
- Department of Veterinary Medicine, Institute of Immunology, Free University Berlin, Berlin, Germany
| | - Susanne Hartmann
- Department of Veterinary Medicine, Institute of Immunology, Free University Berlin, Berlin, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Björn H Schott
- Leibniz Institute of Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University Medicine Göttingen, Göttingen, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Medizinische Fakultät, Otto-von-Guericke-University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
60
|
Wang W, Zhang LS, Zinsmaier AK, Patterson G, Leptich EJ, Shoemaker SL, Yatskievych TA, Gibboni R, Pace E, Luo H, Zhang J, Yang S, Bao S. Neuroinflammation mediates noise-induced synaptic imbalance and tinnitus in rodent models. PLoS Biol 2019; 17:e3000307. [PMID: 31211773 PMCID: PMC6581239 DOI: 10.1371/journal.pbio.3000307] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/16/2019] [Indexed: 12/20/2022] Open
Abstract
Hearing loss is a major risk factor for tinnitus, hyperacusis, and central auditory processing disorder. Although recent studies indicate that hearing loss causes neuroinflammation in the auditory pathway, the mechanisms underlying hearing loss–related pathologies are still poorly understood. We examined neuroinflammation in the auditory cortex following noise-induced hearing loss (NIHL) and its role in tinnitus in rodent models. Our results indicate that NIHL is associated with elevated expression of proinflammatory cytokines and microglial activation—two defining features of neuroinflammatory responses—in the primary auditory cortex (AI). Genetic knockout of tumor necrosis factor alpha (TNF-α) or pharmacologically blocking TNF-α expression prevented neuroinflammation and ameliorated the behavioral phenotype associated with tinnitus in mice with NIHL. Conversely, infusion of TNF-α into AI resulted in behavioral signs of tinnitus in both wild-type and TNF-α knockout mice with normal hearing. Pharmacological depletion of microglia also prevented tinnitus in mice with NIHL. At the synaptic level, the frequency of miniature excitatory synaptic currents (mEPSCs) increased and that of miniature inhibitory synaptic currents (mIPSCs) decreased in AI pyramidal neurons in animals with NIHL. This excitatory-to-inhibitory synaptic imbalance was completely prevented by pharmacological blockade of TNF-α expression. These results implicate neuroinflammation as a therapeutic target for treating tinnitus and other hearing loss–related disorders. Prolonged exposure to loud noises causes neuronal hyperexcitability and increases the risk of tinnitus. This study reveals that this type of tinnitus is mediated by noise-induced neuroinflammation; blockade of neuroinflammatory responses prevents noise-induced neuronal excitation/inhibition imbalance and tinnitus.
Collapse
Affiliation(s)
- Weihua Wang
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
| | - Li. S. Zhang
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Alexander K. Zinsmaier
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
| | - Genevieve Patterson
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
| | - Emily Jean Leptich
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
| | - Savannah L. Shoemaker
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
| | - Tatiana A. Yatskievych
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
| | - Robert Gibboni
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Edward Pace
- Department of Otolaryngology, Wayne State University, Detroit, Michigan, United States of America
| | - Hao Luo
- Department of Otolaryngology, Wayne State University, Detroit, Michigan, United States of America
| | - Jinsheng Zhang
- Department of Otolaryngology, Wayne State University, Detroit, Michigan, United States of America
- Department of Communication Sciences and Disorders, Wayne State University, Detroit, Michigan, United States of America
| | - Sungchil Yang
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
- Department of Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Shaowen Bao
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
61
|
Microglia-neuron crosstalk: Signaling mechanism and control of synaptic transmission. Semin Cell Dev Biol 2019; 94:138-151. [PMID: 31112798 DOI: 10.1016/j.semcdb.2019.05.017] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/17/2019] [Accepted: 05/16/2019] [Indexed: 12/13/2022]
Abstract
The continuous crosstalk between microglia and neurons is required for microglia housekeeping functions and contributes to brain homeostasis. Through these exchanges, microglia take part in crucial brain functions, including development and plasticity. The alteration of neuron-microglia communication contributes to brain disease states with consequences, ranging from synaptic function to neuronal survival. This review focuses on the signaling pathways responsible for neuron-microglia crosstalk, highlighting their physiological roles and their alteration or specific involvement in disease. In particular, we discuss studies, establishing how these signaling allow microglial cells to control relevant physiological functions during brain development, including synaptic formation and circuit refinement. In addition, we highlight how microglia and neurons interact functionally to regulate highly dynamical synaptic functions. Microglia are able to release several signaling molecules involved in the regulation of synaptic activity and plasticity. On the other side, molecules of neuronal origin control microglial processes motility in an activity-dependent manner. Indeed, the continuous crosstalk between microglia and neurons is required for the sensing and housekeeping functions of microglia and contributes to the maintenance of brain homeostasis and, particularly, to the sculpting of neuronal connections during development. These interactions lay on the delicate edge between physiological processes and homeostasis alteration in pathology and are themselves altered during neuroinflammation. The full description of these processes could be fundamental for understanding brain functioning in health and disease.
Collapse
|
62
|
Ceprian M, Fulton D. Glial Cell AMPA Receptors in Nervous System Health, Injury and Disease. Int J Mol Sci 2019; 20:E2450. [PMID: 31108947 PMCID: PMC6566241 DOI: 10.3390/ijms20102450] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/11/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022] Open
Abstract
Glia form a central component of the nervous system whose varied activities sustain an environment that is optimised for healthy development and neuronal function. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole (AMPA)-type glutamate receptors (AMPAR) are a central mediator of glutamatergic excitatory synaptic transmission, yet they are also expressed in a wide range of glial cells where they influence a variety of important cellular functions. AMPAR enable glial cells to sense the activity of neighbouring axons and synapses, and as such many aspects of glial cell development and function are influenced by the activity of neural circuits. However, these AMPAR also render glia sensitive to elevations of the extracellular concentration of glutamate, which are associated with a broad range of pathological conditions. Excessive activation of AMPAR under these conditions may induce excitotoxic injury in glial cells, and trigger pathophysiological responses threatening other neural cells and amplifying ongoing disease processes. The aim of this review is to gather information on AMPAR function from across the broad diversity of glial cells, identify their contribution to pathophysiological processes, and highlight new areas of research whose progress may increase our understanding of nervous system dysfunction and disease.
Collapse
Affiliation(s)
- Maria Ceprian
- Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain.
- Departamento de Bioquímica y Biología Molecular, CIBERNED, IRICYS. Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Daniel Fulton
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
63
|
Akgün E, Lunzer MM, Portoghese PS. Combined Glia Inhibition and Opioid Receptor Agonism Afford Highly Potent Analgesics without Tolerance. ACS Chem Neurosci 2019; 10:2004-2011. [PMID: 30110531 DOI: 10.1021/acschemneuro.8b00323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Commonly prescribed opioid analgesics produce tolerance upon chronic use due in part to induction of hyperalgesia. Given that two reported bivalent ligands (MMG22 and MCC22) produce potent antinociception without tolerance only in inflamed mice, we have investigated the possible cellular and receptor targets of these ligands. The selective microglia inhibitors, minocycline and SB290157, antagonized intrathecal (i.t.) MCC22 antinociception orders of magnitude more potently than MMG22, suggesting that MCC22 selectively targets activated microglia. The astrocyte toxin, l-α-aminoadipic acid antagonized MMG22 antinociception 126-fold without reducing the potency of MCC22, indicating that activated astrocytes are targets of MMG22. MK-801 and Ro25-6981 antagonism of MMG22 antinociception, but not MCC22, is consistent with selective inhibition of activated NMDAR in astrocytes. The antinociception produced by i.t. MMG22 or MCC22 were both antagonized by the selective mu opioid receptor antagonist, β-FNA, implicating interaction of these ligands with MOR in spinal afferent neurons. MCC22 antinociception was potently blocked by kainate or AMPA ion channel antagonists (LY382884; NBQX), in contrast to MMG22. It is concluded that i.t. MMG22 and MCC22 produce exceptional antinociception via potent inhibition of activated spinal glia, thereby leading to desensitization of spinal neurons and enhanced activation of neuronal MOR. Thus, the present study suggests a new approach to treatment of chronic inflammatory pain without tolerance through a single molecular entity that simultaneously inhibits activated glia and stimulates MOR in spinal neurons.
Collapse
Affiliation(s)
- Eyup Akgün
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mary M. Lunzer
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Philip S. Portoghese
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
64
|
NMDA receptor in the hippocampus alters neurobehavioral phenotypes through inflammatory cytokines in rats with sporadic Alzheimer-like disease. Physiol Behav 2019; 202:52-61. [DOI: 10.1016/j.physbeh.2019.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/06/2019] [Accepted: 01/09/2019] [Indexed: 12/28/2022]
|
65
|
Zhou LY, Tian ZR, Yao M, Chen XQ, Song YJ, Ye J, Yi NX, Cui XJ, Wang YJ. Riluzole promotes neurological function recovery and inhibits damage extension in rats following spinal cord injury: a meta-analysis and systematic review. J Neurochem 2019; 150:6-27. [PMID: 30786027 DOI: 10.1111/jnc.14686] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/03/2019] [Accepted: 02/15/2019] [Indexed: 12/24/2022]
Abstract
Spinal cord injury (SCI) is a devastating condition that has few treatment options. Riluzole, a sodium channel blocker used to treat amyotrophic lateral sclerosis, has been initially trialed in human SCI. We performed a systematic review to critically assess the efficacy of riluzole in locomotor recovery and damage extension in SCI rat models, and the potential for clinical translation. PubMed, Embase, Cochrane Library, and Chinese databases were searched from their inception date to March 2018. Two reviewers independently selected animal studies that evaluated neurological recovery and lesion area following riluzole treatment in SCI rat models, extracted data and assessed methodological quality. Pairwise meta-analysis, subgroup analysis, and network meta-analysis were performed to assess the effects of riluzole on SCI. Ten eligible studies were included. Two studies had high methodological quality. Overall, the Basso, Beattie, and Bresnahan scores were increased in riluzole-treated animals versus controls, and effect sizes showed a gradual increase from the 1st (five studies, n = 104, mean difference = 1.24, 95% CI = 0.11 to 2.37, p = 0.03) to 6th week after treatment (five studies, n = 120, mean difference = 2.34, 95% CI = 1.26 to 3.42, p < 0.0001). Riluzole was associated with improved outcomes in the inclined plane test and the tissue preservation area. Subgroup analyses suggested an association of locomotor recovery with riluzole dose. Network meta-analysis showed that 5 mg/kg riluzole exhibited greater protection than 2.5 and 8 mg/kg riluzole. Collectively, this review suggests that riluzole has a protective effect on SCI, with good safety and a clear mechanism of action and may be suitable for future clinical trials or applications. However, animal results should be interpreted with caution given the known limitations in animal experimental design and methodological quality.
Collapse
Affiliation(s)
- Long-Yun Zhou
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Rehabilitation Medicine College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zi-Rui Tian
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Yao
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Qing Chen
- Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Yong-Jia Song
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ye
- Department of Orthopedics and Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nan-Xing Yi
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue-Jun Cui
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Jun Wang
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
66
|
Abstract
Microglial cells derive from fetal macrophages which immigrate into and disseminate throughout the central nervous system (CNS) in early embryogenesis. After settling in the nerve tissue, microglial progenitors acquire an idiosyncratic morphological phenotype with small cell body and moving thin and highly ramified processes currently defined as "resting or surveillant microglia". Physiology of microglia is manifested by second messenger-mediated cellular excitability, low resting membrane conductance, and expression of receptors to pathogen- or damage-associated molecular patterns (PAMPs and DAMPs), as well as receptors to classical neurotransmitters and neurohormones. This specific physiological profile reflects adaptive changes of myeloid cells to the CNS environment.
Collapse
Affiliation(s)
- Olga Garaschuk
- Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany.
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
67
|
Basic Concept of Microglia Biology and Neuroinflammation in Relation to Psychiatry. Curr Top Behav Neurosci 2019; 44:9-34. [PMID: 30739307 DOI: 10.1007/7854_2018_83] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The hypothesis that the neuroimmune system plays a role in the pathogenesis of different psychiatric disorders, including schizophrenia, depression, and bipolar disease, has attained increasing interest over the past years. Previously thought to have the sole purpose of protecting the central nervous system (CNS) from harmful stimuli, it is now known that the central immune system is critically involved in regulating physiological processes including neurodevelopment, synaptic plasticity, and circuit maintenance. Hence, alterations in microglia - the main immune cell of the CNS - and/or inflammatory factors do not unequivocally connote ongoing neuroinflammation or neuroinflammatory processes per se but rather might signify changes in brain homoeostasis. Despite this, psychiatric research tends to equate functional changes in microglia or alterations in other immune mediators with neuroinflammation. It is the main impetus of this chapter to overcome some of the current misconceptions and possible oversimplifications with respect to neuroinflammation and microglia activity in psychiatry. In order to do so, we will first provide an overview of the basic concepts of neuroinflammation and neuroinflammatory processes. We will then focus on microglia with respect to their ontogeny and immunological and non-immunological functions presenting novel insights on how microglia communicate with other cell types of the central nervous system to ensure proper brain functioning. And lastly, we will delineate the non-immunological functions of inflammatory cytokines in order to address the possible misconception of equating alterations in central cytokine levels with ongoing central inflammation. We hereby hope to help unravel the functional relevance of neuroimmune dysfunctions in psychiatric illnesses and provide future research directions in the field of psychoneuroimmunology.
Collapse
|
68
|
Younger D, Murugan M, Rama Rao KV, Wu LJ, Chandra N. Microglia Receptors in Animal Models of Traumatic Brain Injury. Mol Neurobiol 2018; 56:5202-5228. [PMID: 30554385 DOI: 10.1007/s12035-018-1428-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
|
69
|
Ogawa Y, Furusawa E, Saitoh T, Sugimoto H, Omori T, Shimizu S, Kondo H, Yamazaki M, Sakuraba H, Oishi K. Inhibition of astrocytic adenosine receptor A 2A attenuates microglial activation in a mouse model of Sandhoff disease. Neurobiol Dis 2018; 118:142-154. [DOI: 10.1016/j.nbd.2018.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/02/2018] [Accepted: 07/15/2018] [Indexed: 12/18/2022] Open
|
70
|
Fan Y, Chen Z, Pathak JL, Carneiro AMD, Chung CY. Differential Regulation of Adhesion and Phagocytosis of Resting and Activated Microglia by Dopamine. Front Cell Neurosci 2018; 12:309. [PMID: 30254570 PMCID: PMC6141656 DOI: 10.3389/fncel.2018.00309] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/24/2018] [Indexed: 12/21/2022] Open
Abstract
Microglia, the immune competent cells of the central nervous system (CNS), normally exist in a resting state characterized by a ramified morphology with many processes, and become activated to amoeboid morphology in response to brain injury, infection, and a variety of neuroinflammatory stimuli. Many studies focused on how neurotransmitters affect microglia activation in pathophysiological circumstances. In this study, we tried to gain mechanistic insights on how dopamine (DA) released from neurons modulates cellular functions of resting and activated microglia. DA induced the reduction of the number of cellular processes, the increase of cell adhesion/spreading, and the increase of vimentin filaments in resting primary and BV2 microglia. In contrast to resting cells, DA downregulated the cell spreading and phagocytosis of microglia activated by LPS. DA also significantly downregulated ERK1/2 phosphorylation in activated microglia, but not in resting microglia. Downregulation of ERK1/2 by DA in activated microglia required receptor signaling. In contrast, we found a significant increase of p38MAPK activity by DA treatment in resting, but not in activated microglia. These latter effects required the uptake of DA through the high-affinity transporter but did not require receptor signaling. Activation of p38MAPK resulted in the increase of focal adhesion number via phosphorylation of paxillin at Ser83. These results indicate that DA might have a differential, depending upon the activation stage of microglia, impact on cellular functions such as adhesion and phagocytosis.
Collapse
Affiliation(s)
- Yang Fan
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Zhilu Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Janak L Pathak
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Ana M D Carneiro
- Department of Pharmacology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, United States
| | - Chang Y Chung
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Department of Pharmacology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
71
|
Christensen RK, Delgado-Lezama R, Russo RE, Lind BL, Alcocer EL, Rath MF, Fabbiani G, Schmitt N, Lauritzen M, Petersen AV, Carlsen EM, Perrier JF. Spinal dorsal horn astrocytes release GABA in response to synaptic activation. J Physiol 2018; 596:4983-4994. [PMID: 30079574 DOI: 10.1113/jp276562] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/01/2018] [Indexed: 02/02/2023] Open
Abstract
KEY POINTS GABA is an essential molecule for sensory information processing. It is usually assumed to be released by neurons. Here we show that in the dorsal horn of the spinal cord, astrocytes respond to glutamate by releasing GABA. Our findings suggest a novel role for astrocytes in somatosensory information processing. ABSTRACT Astrocytes participate in neuronal signalling by releasing gliotransmitters in response to neurotransmitters. We investigated if astrocytes from the dorsal horn of the spinal cord of adult red-eared turtles (Trachemys scripta elegans) release GABA in response to glutamatergic receptor activation. For this, we developed a GABA sensor consisting of HEK cells expressing GABAA receptors. By positioning the sensor recorded in the whole-cell patch-clamp configuration within the dorsal horn of a spinal cord slice, we could detect GABA in the extracellular space. Puff application of glutamate induced GABA release events with time courses that exceeded the duration of inhibitory postsynaptic currents by one order of magnitude. Because the events were neither affected by extracellular addition of nickel, cadmium and tetrodotoxin nor by removal of Ca2+ , we concluded that they originated from non-neuronal cells. Immunohistochemical staining allowed the detection of GABA in a fraction of dorsal horn astrocytes. The selective stimulation of A∂ and C fibres in a dorsal root filament induced a Ca2+ increase in astrocytes loaded with Oregon Green BAPTA. Finally, chelating Ca2+ in a single astrocyte was sufficient to prevent the GABA release evoked by glutamate. Our results indicate that glutamate triggers the release of GABA from dorsal horn astrocytes with a time course compatible with the integration of sensory inputs.
Collapse
Affiliation(s)
- Rasmus Kordt Christensen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Rodolfo Delgado-Lezama
- Departamento de Fisiología, Biofísica y Neurociencias Cinvestav-IPN Avenida IPN 2508, Col. Zacatenco México City, CP, 07300, Mexico
| | - Raúl E Russo
- Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay
| | - Barbara Lykke Lind
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Emanuel Loeza Alcocer
- Departamento de Fisiología, Biofísica y Neurociencias Cinvestav-IPN Avenida IPN 2508, Col. Zacatenco México City, CP, 07300, Mexico
| | - Martin Fredensborg Rath
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Gabriela Fabbiani
- Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay
| | - Nicole Schmitt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Martin Lauritzen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Anders Victor Petersen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Eva Meier Carlsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Jean-François Perrier
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| |
Collapse
|
72
|
Cohen EM, Farnham MMJ, Kakall Z, Kim SJ, Nedoboy PE, Pilowsky PM. Glia and central cardiorespiratory pathology. Auton Neurosci 2018; 214:24-34. [PMID: 30172674 DOI: 10.1016/j.autneu.2018.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 01/08/2023]
Abstract
Respiration and blood pressure are primarily controlled by somatic and autonomic motor neurones, respectively. Central cardiorespiratory control is critical in moment-to-moment survival, but it also has a role in the development and maintenance of chronic pathological conditions such as hypertension. The glial cells of the brain are non-neuronal cells with metabolic, immune, and developmental functions. Recent evidence shows that glia play an active role in supporting and regulating the neuronal circuitry which drives the cardiorespiratory system. Here we will review the activities of two key types of glial cell, microglia and astrocytes, in assisting normal central cardiorespiratory control and in pathology.
Collapse
Affiliation(s)
- E Myfanwy Cohen
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Melissa M J Farnham
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zohra Kakall
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Seung Jae Kim
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Polina E Nedoboy
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Paul M Pilowsky
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
73
|
Pál B. Involvement of extrasynaptic glutamate in physiological and pathophysiological changes of neuronal excitability. Cell Mol Life Sci 2018; 75:2917-2949. [PMID: 29766217 PMCID: PMC11105518 DOI: 10.1007/s00018-018-2837-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/27/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
Abstract
Glutamate is the most abundant neurotransmitter of the central nervous system, as the majority of neurons use glutamate as neurotransmitter. It is also well known that this neurotransmitter is not restricted to synaptic clefts, but found in the extrasynaptic regions as ambient glutamate. Extrasynaptic glutamate originates from spillover of synaptic release, as well as from astrocytes and microglia. Its concentration is magnitudes lower than in the synaptic cleft, but receptors responding to it have higher affinity for it. Extrasynaptic glutamate receptors can be found in neuronal somatodendritic location, on astroglia, oligodendrocytes or microglia. Activation of them leads to changes of neuronal excitability with different amplitude and kinetics. Extrasynaptic glutamate is taken up by neurons and astrocytes mostly via EAAT transporters, and astrocytes, in turn metabolize it to glutamine. Extrasynaptic glutamate is involved in several physiological phenomena of the central nervous system. It regulates neuronal excitability and synaptic strength by involving astroglia; contributing to learning and memory formation, neurosecretory and neuromodulatory mechanisms, as well as sleep homeostasis.The extrasynaptic glutamatergic system is affected in several brain pathologies related to excitotoxicity, neurodegeneration or neuroinflammation. Being present in dementias, neurodegenerative and neuropsychiatric diseases or tumor invasion in a seemingly uniform way, the system possibly provides a common component of their pathogenesis. Although parts of the system are extensively discussed by several recent reviews, in this review I attempt to summarize physiological actions of the extrasynaptic glutamate on neuronal excitability and provide a brief insight to its pathology for basic understanding of the topic.
Collapse
Affiliation(s)
- Balázs Pál
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, Debrecen, 4012, Hungary.
| |
Collapse
|
74
|
Osipova ED, Semyachkina-Glushkovskaya OV, Morgun AV, Pisareva NV, Malinovskaya NA, Boitsova EB, Pozhilenkova EA, Belova OA, Salmin VV, Taranushenko TE, Noda M, Salmina AB. Gliotransmitters and cytokines in the control of blood-brain barrier permeability. Rev Neurosci 2018; 29:567-591. [DOI: 10.1515/revneuro-2017-0092] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 11/26/2017] [Indexed: 11/15/2022]
Abstract
AbstractThe contribution of astrocytes and microglia to the regulation of neuroplasticity or neurovascular unit (NVU) is based on the coordinated secretion of gliotransmitters and cytokines and the release and uptake of metabolites. Blood-brain barrier (BBB) integrity and angiogenesis are influenced by perivascular cells contacting with the abluminal side of brain microvessel endothelial cells (pericytes, astrocytes) or by immune cells existing (microglia) or invading the NVU (macrophages) under pathologic conditions. The release of gliotransmitters or cytokines by activated astroglial and microglial cells is provided by distinct mechanisms, affects intercellular communication, and results in the establishment of microenvironment controlling BBB permeability and neuroinflammation. Glial glutamate transporters and connexin and pannexin hemichannels working in the tight functional coupling with the purinergic system serve as promising molecular targets for manipulating the intercellular communications that control BBB permeability in brain pathologies associated with excessive angiogenesis, cerebrovascular remodeling, and BBB-mediated neuroinflammation. Substantial progress in deciphering the molecular mechanisms underlying the (patho)physiology of perivascular glia provides promising approaches to novel clinically relevant therapies for brain disorders. The present review summarizes the current understandings on the secretory machinery expressed in glial cells (glutamate transporters, connexin and pannexin hemichannels, exocytosis mechanisms, membrane-derived microvesicles, and inflammasomes) and the role of secreted gliotransmitters and cytokines in the regulation of NVU and BBB permeability in (patho)physiologic conditions.
Collapse
|
75
|
Abstract
Until a decade ago, epilepsy research had focused mainly on alterations of neuronal activities and excitability. Such neurocentric emphasis has neglected the role of glia and involvement of inflammation in the pathogenesis of epilepsy. It is becoming clear that immune and inflammatory reactions do occur in the brain despite the brain's lack of conventional lymphatic drainage and graft acceptance and the presence of vascular brain barrier that tightly regulates infiltration of blood monocytes and lymphocytes. The critical roles of brain-resident immune mediators and of brain-infiltrating peripheral leukocytes are increasingly recognized. Inflammatory processes, including activation of microglia and astrocytes and production of proinflammatory cytokines and related molecules, occur in human epilepsy as well as in experimental models of epilepsy. Immune mechanism that underlies evolution of drug-resistant epilepsy and epileptic encephalopathy represents a new target and will aid in development of novel immunotherapeutic drugs and therapies against the key constituents in immune pathways.
Collapse
Affiliation(s)
- Sookyong Koh
- 1 Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
76
|
York EM, Bernier LP, MacVicar BA. Microglial modulation of neuronal activity in the healthy brain. Dev Neurobiol 2017; 78:593-603. [PMID: 29271125 DOI: 10.1002/dneu.22571] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 01/06/2023]
Abstract
Investigations on the role of microglia in the brain have traditionally been focused on their contributions to disease states. However, recent observations have now convincingly shown that microglia in the healthy brain are not passive bystanders, but instead play a critical role in both central nervous system development and homeostasis of synaptic circuits in the adult. Here, we review the various mechanisms by which microglia impact neuronal communication in the healthy adult brain, both by sensing nearby synaptic responses and by actively modulating neuronal function. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 593-603, 2018.
Collapse
Affiliation(s)
- Elisa M York
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
| | - Louis-Philippe Bernier
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
| | - Brian A MacVicar
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
| |
Collapse
|
77
|
Gao Y, Vidal-Itriago A, Milanova I, Korpel NL, Kalsbeek MJ, Tom RZ, Kalsbeek A, Hofmann SM, Yi CX. Deficiency of leptin receptor in myeloid cells disrupts hypothalamic metabolic circuits and causes body weight increase. Mol Metab 2017; 7:155-160. [PMID: 29174000 PMCID: PMC5784319 DOI: 10.1016/j.molmet.2017.11.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/28/2017] [Accepted: 11/01/2017] [Indexed: 01/16/2023] Open
Abstract
Objective Leptin is a cytokine produced by adipose tissue that acts mainly on the hypothalamus to regulate appetite and energy homeostasis. Previous studies revealed that the leptin receptor is expressed not only in neurons, but also in glial cells. Microglia are resident immune cells in the brain that play an essential role in immune defense and neural network development. Previously we reported that microglial morphology and cytokine production are changed in the leptin receptor deficient db/db mouse, suggesting that leptin's central effects on metabolic control might involve signaling through microglia. In the current study, we aimed to uncover the role of leptin signaling in microglia in systemic metabolic control. Methods We generated a mouse model with leptin receptor deficiency, specifically in the myeloid cells, to determine the role of microglial leptin signaling in the development of metabolic disease and to investigate microglial functions. Results We discovered that these mice have increased body weight with hyperphagia. In the hypothalamus, pro-opiomelanocortin neuron numbers in the arcuate nucleus (ARC) and α-MSH projections from the ARC to the paraventricular nucleus (PVN) decreased, which was accompanied by the presence of less ramified microglia with impaired phagocytic capacity in the PVN. Conclusions Myeloid cell leptin receptor deficient mice partially replicate the db/db phenotype. Leptin signaling in hypothalamic microglia is important for microglial function and a correct formation of the hypothalamic neuronal circuit regulating metabolism. Microglia express functional leptin receptor. Myeloid cell leptin receptor deficient mice partially replicate the db/db phenotype. Microglial leptin signaling is vital for maintaining hypothalamic neuronal circuits.
Collapse
Affiliation(s)
- Yuanqing Gao
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Andrés Vidal-Itriago
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Irina Milanova
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Nikita L Korpel
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Martin J Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Robby Zachariah Tom
- Institute for Diabetes and Regeneration Research & Helmholtz Diabetes Center, Helmholtz Zentrum München, Germany
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, The Netherlands; Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Susanna M Hofmann
- Institute for Diabetes and Regeneration Research & Helmholtz Diabetes Center, Helmholtz Zentrum München, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Medizinische Klinik und Poliklinik IV, Klinikum der LMU, München, Germany
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, The Netherlands.
| |
Collapse
|
78
|
Kaur C, Rathnasamy G, Ling EA. Biology of Microglia in the Developing Brain. J Neuropathol Exp Neurol 2017; 76:736-753. [PMID: 28859332 DOI: 10.1093/jnen/nlx056] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Microglia exist in different morphological forms in the developing brain. They show a small cell body with scanty cytoplasm with many branching processes in the grey matter of the developing brain. However, in the white matter such as the corpus callosum where the unmyelinated axons are loosely organized, they appear in an amoeboid form having a round cell body endowed with copious cytoplasm rich in organelles. The amoeboid cells eventually transform into ramified microglia in the second postnatal week when the tissue becomes more compact with the onset of myelination. Microglia serve as immunocompetent macrophages that act as neuropathology sensors to detect and respond swiftly to subtle changes in the brain tissues in pathological conditions. Microglial functions are broadly considered as protective in the normal brain development as they phagocytose dead cells and sculpt neuronal connections by pruning excess axons and synapses. They also secrete a number of trophic factors such as insulin-like growth factor-1 and transforming growth factor-β among many others that are involved in neuronal and oligodendrocyte survival. On the other hand, microglial cells when activated produce a plethora of molecules such as proinflammatory cytokines, chemokines, reactive oxygen species, and nitric oxide that are implicated in the pathogenesis of many pathological conditions such as epilepsy, cerebral palsy, autism, and perinatal hypoxic-ischemic brain injury. Although many studies have investigated the origin and functions of the microglia in the developing brain, in-depth in vivo studies along with analysis of their transcriptome and epigenetic changes need to be undertaken to elucidate their full potential be it protective or neurotoxic. This would lead to a better understanding of their roles in the healthy and diseased developing brain and advancement of therapeutic strategies to target microglia-mediated neurotoxicity.
Collapse
Affiliation(s)
- Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Gurugirijha Rathnasamy
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
79
|
McAllister BB, Dyck RH. Zinc transporter 3 (ZnT3) and vesicular zinc in central nervous system function. Neurosci Biobehav Rev 2017. [DOI: 10.1016/j.neubiorev.2017.06.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
80
|
Aono H, Choudhury ME, Higaki H, Miyanishi K, Kigami Y, Fujita K, Akiyama JI, Takahashi H, Yano H, Kubo M, Nishikawa N, Nomoto M, Tanaka J. Microglia may compensate for dopaminergic neuron loss in experimental Parkinsonism through selective elimination of glutamatergic synapses from the subthalamic nucleus. Glia 2017; 65:1833-1847. [PMID: 28836295 DOI: 10.1002/glia.23199] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/19/2017] [Accepted: 07/23/2017] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) symptoms do not become apparent until most dopaminergic neurons in the substantia nigra pars compacta (SNc) degenerate, suggesting that compensatory mechanisms play a role. Here, we investigated the compensatory involvement of activated microglia in the SN pars reticulata (SNr) and the globus pallidus (GP) in a 6-hydroxydopamine-induced rat hemiparkinsonism model. Activated microglia accumulated more markedly in the SNr than in the SNc in the model. The cells had enlarged somata and expressed phagocytic markers CD68 and NG2 proteoglycan in a limited region of the SNr, where synapsin I- and postsynaptic density 95-immunoreactivities were reduced. The activated microglia engulfed pre- and post-synaptic elements, including NMDA receptors into their phagosomes. Cells in the SNr and GP engulfed red fluorescent DiI that was injected into the subthalamic nucleus (STN) as an anterograde tracer. Rat primary microglia increased their phagocytic activities in response to glutamate, with increased expression of mRNA encoding phagocytosis-related factors. The synthetic glucocorticoid dexamethasone overcame the stimulating effect of glutamate. Subcutaneous single administration of dexamethasone to the PD model rats suppressed microglial activation in the SNr, resulting in aggravated motor dysfunctions, while expression of mRNA encoding glutamatergic, but not GABAergic, synaptic elements increased. These findings suggest that microglia in the SNr and GP become activated and selectively eliminate glutamatergic synapses from the STN in response to increased glutamatergic activity. Thus, microglia may be involved in a negative feedback loop in the indirect pathway of the basal ganglia to compensate for the loss of dopaminergic neurons in PD brains.
Collapse
Affiliation(s)
- Hitomi Aono
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | | | - Hiromi Higaki
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Kazuya Miyanishi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Yuka Kigami
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Kohdai Fujita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Jun-Ichi Akiyama
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Hisaaki Takahashi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan.,Division of Pathophysiology, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Ishikawa, Japan
| | - Hajime Yano
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Madoka Kubo
- Department of Therapeutic Medicine, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Noriko Nishikawa
- Department of Therapeutic Medicine, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Masahiro Nomoto
- Department of Therapeutic Medicine, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| |
Collapse
|
81
|
Madhusudanan P, Reade S, Shankarappa SA. Neuroglia as targets for drug delivery systems: A review. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:667-679. [DOI: 10.1016/j.nano.2016.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/01/2016] [Accepted: 08/04/2016] [Indexed: 12/13/2022]
|
82
|
Noda M, Kobayashi AI. Nicotine inhibits activation of microglial proton currents via interactions with α7 acetylcholine receptors. J Physiol Sci 2017; 67:235-245. [PMID: 27256075 PMCID: PMC5910455 DOI: 10.1007/s12576-016-0460-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/12/2016] [Indexed: 01/03/2023]
Abstract
Alpha 7 subunits of nicotinic acetylcholine receptors (nAChRs) are expressed in microglia and are involved in the suppression of neuroinflammation. Over the past decade, many reports show beneficial effects of nicotine, though little is known about the mechanism. Here we show that nicotine inhibits lipopolysaccharide (LPS)-induced proton (H+) currents and morphological change by using primary cultured microglia. The H+ channel currents were measured by whole-cell patch clamp method under voltage-clamp condition. Increased H+ current in activated microglia was attenuated by blocking NADPH oxidase. The inhibitory effect of nicotine was due to the activation of α7 nAChR, not a direct action on the H+ channels, because the effects of nicotine was cancelled by α7 nAChR antagonists. Neurotoxic effect of LPS-activated microglia due to inflammatory cytokines was also attenuated by pre-treatment of microglia with nicotine. These results suggest that α7 nAChRs in microglia may be a therapeutic target in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - A I Kobayashi
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
83
|
Haroon E, Miller AH, Sanacora G. Inflammation, Glutamate, and Glia: A Trio of Trouble in Mood Disorders. Neuropsychopharmacology 2017; 42:193-215. [PMID: 27629368 PMCID: PMC5143501 DOI: 10.1038/npp.2016.199] [Citation(s) in RCA: 373] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/05/2016] [Accepted: 09/08/2016] [Indexed: 02/07/2023]
Abstract
Increasing data indicate that inflammation and alterations in glutamate neurotransmission are two novel pathways to pathophysiology in mood disorders. The primary goal of this review is to illustrate how these two pathways may converge at the level of the glia to contribute to neuropsychiatric disease. We propose that a combination of failed clearance and exaggerated release of glutamate by glial cells during immune activation leads to glutamate increases and promotes aberrant extrasynaptic signaling through ionotropic and metabotropic glutamate receptors, ultimately resulting in synaptic dysfunction and loss. Furthermore, glutamate diffusion outside the synapse can lead to the loss of synaptic fidelity and specificity of neurotransmission, contributing to circuit dysfunction and behavioral pathology. This review examines the fundamental role of glia in the regulation of glutamate, followed by a description of the impact of inflammation on glial glutamate regulation at the cellular, molecular, and metabolic level. In addition, the role of these effects of inflammation on glia and glutamate in mood disorders will be discussed along with their translational implications.
Collapse
Affiliation(s)
- Ebrahim Haroon
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Andrew H Miller
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
84
|
Carta AR, Mulas G, Bortolanza M, Duarte T, Pillai E, Fisone G, Vozari RR, Del-Bel E. l-DOPA-induced dyskinesia and neuroinflammation: do microglia and astrocytes play a role? Eur J Neurosci 2016; 45:73-91. [DOI: 10.1111/ejn.13482] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Anna R. Carta
- Department of Biomedical Sciences; University of Cagliari, Cittadella Universitaria di Monserrato; S.P. N. 8 09042 Monserrato Cagliari Italy
| | - Giovanna Mulas
- Department of Biomedical Sciences; University of Cagliari, Cittadella Universitaria di Monserrato; S.P. N. 8 09042 Monserrato Cagliari Italy
| | - Mariza Bortolanza
- School of Odontology of Ribeirão Preto; Department of Morphology, Physiology and Basic Pathology; University of São Paulo (USP); Av. Café S/N 14040-904 Ribeirão Preto SP Brazil
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA); São Paulo Brazil
| | - Terence Duarte
- School of Odontology of Ribeirão Preto; Department of Morphology, Physiology and Basic Pathology; University of São Paulo (USP); Av. Café S/N 14040-904 Ribeirão Preto SP Brazil
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA); São Paulo Brazil
| | - Elisabetta Pillai
- Department of Biomedical Sciences; University of Cagliari, Cittadella Universitaria di Monserrato; S.P. N. 8 09042 Monserrato Cagliari Italy
| | - Gilberto Fisone
- Department of Neuroscience; Karolinska Institutet; Retzius väg 8 17177 Stockholm Sweden
| | - Rita Raisman Vozari
- INSERM U 1127; CNRS UMR 7225; UPMC Univ Paris 06; UMR S 1127; Institut Du Cerveau et de La Moelle Epiniére; ICM; Paris France
| | - Elaine Del-Bel
- School of Odontology of Ribeirão Preto; Department of Morphology, Physiology and Basic Pathology; University of São Paulo (USP); Av. Café S/N 14040-904 Ribeirão Preto SP Brazil
| |
Collapse
|
85
|
Hadzic M, Jack A, Wahle P. Ionotropic glutamate receptors: Which ones, when, and where in the mammalian neocortex. J Comp Neurol 2016; 525:976-1033. [PMID: 27560295 DOI: 10.1002/cne.24103] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 12/14/2022]
Abstract
A multitude of 18 iGluR receptor subunits, many of which are diversified by splicing and RNA editing, localize to >20 excitatory and inhibitory neocortical neuron types defined by physiology, morphology, and transcriptome in addition to various types of glial, endothelial, and blood cells. Here we have compiled the published expression of iGluR subunits in the areas and cell types of developing and adult cortex of rat, mouse, carnivore, bovine, monkey, and human as determined with antibody- and mRNA-based techniques. iGluRs are differentially expressed in the cortical areas and in the species, and all have a unique developmental pattern. Differences are quantitative rather than a mere absence/presence of expression. iGluR are too ubiquitously expressed and of limited use as markers for areas or layers. A focus has been the iGluR profile of cortical interneuron types. For instance, GluK1 and GluN3A are enriched in, but not specific for, interneurons; moreover, the interneurons expressing these subunits belong to different types. Adressing the types is still a major hurdle because type-specific markers are lacking, and the frequently used neuropeptide/CaBP signatures are subject to regulation by age and activity and vary as well between species and areas. RNA-seq reveals almost all subunits in the two morphofunctionally characterized interneuron types of adult cortical layer I, suggesting a fairly broad expression at the RNA level. It remains to be determined whether all proteins are synthesized, to which pre- or postsynaptic subdomains in a given neuron type they localize, and whether all are involved in synaptic transmission. J. Comp. Neurol. 525:976-1033, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Minela Hadzic
- Developmental Neurobiology, Faculty for Biology and Biotechnology ND 6/72, Ruhr University Bochum, 44801, Bochum, Germany
| | - Alexander Jack
- Developmental Neurobiology, Faculty for Biology and Biotechnology ND 6/72, Ruhr University Bochum, 44801, Bochum, Germany
| | - Petra Wahle
- Developmental Neurobiology, Faculty for Biology and Biotechnology ND 6/72, Ruhr University Bochum, 44801, Bochum, Germany
| |
Collapse
|
86
|
Abstract
Inflammatory activation of microglia is a hallmark of several disorders of the central nervous system. In addition to protecting the brain against inflammatory insults, microglia are neuroprotective and play a significant role in maintaining neuronal connectivity, but the prolongation of an inflammatory status may limit the beneficial functions of these immune cells. The finding that estrogen receptors are present in monocyte-derived cells and that estrogens prevent and control the inflammatory response raise the question of the role that this sex steroid plays in the manifestation and progression of pathologies that have a clear sex difference in prevalence, such as multiple sclerosis, Parkinson's disease, and Alzheimer's disease. The present review aims to provide a critical review of the current literature on the actions of estrogen in microglia and on the involvement of estrogen receptors in the manifestation of selected neurological disorders. This current understanding highlights a research area that should be expanded to identify appropriate replacement therapies to slow the progression of such diseases.
Collapse
Affiliation(s)
- Alessandro Villa
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Elisabetta Vegeto
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Angelo Poletti
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Adriana Maggi
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
87
|
Abstract
Microglia constitute the powerhouse of the innate immune system in the brain. It is now widely accepted that they are monocytic-derived cells that infiltrate the developing brain at the early embryonic stages, and acquire a resting phenotype characterized by the presence of dense branching processes, called ramifications. Microglia use these dynamic ramifications as sentinels to sense and detect any occurring alteration in brain homeostasis. Once a danger signal is detected, such as molecular factors associated to brain damage or infection, they get activated by acquiring a less ramified phenotype, and mount adequate responses that range from phagocyting cell debris to secreting inflammatory and trophic factors. Here, we review the origin of microglia and we summarize the main molecular signals involved in controlling their function under physiological conditions. In addition, their implication in the pathogenesis of multiple sclerosis and stress is discussed.
Collapse
Affiliation(s)
- Ayman ElAli
- Neuroscience Laboratory, CHU de Québec Research Center (CHUL), Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University Quebec, CA, Canada
| | - Serge Rivest
- Neuroscience Laboratory, CHU de Québec Research Center (CHUL), Department of Molecular Medicine, Faculty of Medicine, Laval University Quebec, CA, Canada
| |
Collapse
|
88
|
Liu H, Leak RK, Hu X. Neurotransmitter receptors on microglia. Stroke Vasc Neurol 2016; 1:52-58. [PMID: 28959464 PMCID: PMC5435193 DOI: 10.1136/svn-2016-000012] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 04/29/2016] [Accepted: 04/30/2016] [Indexed: 12/21/2022] Open
Abstract
As the resident immune cells in the central nervous system, microglia have long been hypothesised to promote neuroinflammation and exacerbate neurotoxicity. However, this traditional view has undergone recent revision as evidence has accumulated that microglia exert beneficial and detrimental effects depending on activation status, polarisation phenotype and cellular context. A variety of neurotransmitter receptors are expressed on microglia and help mediate the bidirectional communication between neurons and microglia. Here we review data supporting the importance of neurotransmitter receptors on microglia, with a special emphasis on glutamate, γ-aminobutyric acid (GABA), norepinephrine, cannabinoid and acetylcholine receptors. We summarise evidence favouring a significant role for neurotransmitter receptors in modulating microglial activation, phagocytic clearance and phenotypic polarisation. Elucidating the effects of neurotransmitter receptors on microglia and dissecting the underlying mechanisms may help accelerate the discovery of novel drugs that tap the therapeutic potential of microglia.
Collapse
Affiliation(s)
- Huan Liu
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Xiaoming Hu
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
89
|
Wogram E, Wendt S, Matyash M, Pivneva T, Draguhn A, Kettenmann H. Satellite microglia show spontaneous electrical activity that is uncorrelated with activity of the attached neuron. Eur J Neurosci 2016; 43:1523-34. [DOI: 10.1111/ejn.13256] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 03/15/2016] [Accepted: 04/05/2016] [Indexed: 01/25/2023]
Affiliation(s)
- Emile Wogram
- Cellular Neurosciences; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society; Robert-Rössle-Str. 10 13125 Berlin Germany
- Institute of Physiology and Pathophysiology; University of Heidelberg; Heidelberg Germany
| | - Stefan Wendt
- Cellular Neurosciences; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society; Robert-Rössle-Str. 10 13125 Berlin Germany
| | - Marina Matyash
- Cellular Neurosciences; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society; Robert-Rössle-Str. 10 13125 Berlin Germany
| | - Tatyana Pivneva
- General Physiology of Nervous System Department; Bogomoletz Institute of Physiology; Kiev Ukraine
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology; University of Heidelberg; Heidelberg Germany
| | - Helmut Kettenmann
- Cellular Neurosciences; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society; Robert-Rössle-Str. 10 13125 Berlin Germany
| |
Collapse
|
90
|
Libbey JE, Hanak TJ, Doty DJ, Wilcox KS, Fujinami RS. NBQX, a highly selective competitive antagonist of AMPA and KA ionotropic glutamate receptors, increases seizures and mortality following picornavirus infection. Exp Neurol 2016; 280:89-96. [PMID: 27072529 DOI: 10.1016/j.expneurol.2016.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/25/2016] [Accepted: 04/08/2016] [Indexed: 12/15/2022]
Abstract
Seizures occur due to an imbalance between excitation and inhibition, with the balance tipping towards excitation, and glutamate is the predominant excitatory neurotransmitter in the central nervous system of mammals. Since upregulation of expression and/or function of glutamate receptors can contribute to seizures we determined the effects of three antagonists, NBQX, GYKI-52466 and MK 801, of the various ionotropic glutamate receptors, AMPA, NMDA and KA, on acute seizure development in the Theiler's murine encephalomyelitis virus (TMEV)-induced seizure model. We found that only NBQX had an effect on acute seizure development, resulting in a significantly higher number of mice experiencing seizures, an increase in the number of seizures per mouse, a greater cumulative seizure score per mouse and a significantly higher mortality rate among the mice. Although NBQX has previously been shown to be a potent anticonvulsant in animal seizure models, seizures induced by electrical stimulation, drug administration or as a result of genetic predisposition may differ greatly in terms of mechanism of seizure development from our virus-induced seizure model, which could explain the opposite, proconvulsant effect of NBQX observed in the TMEV-induced seizure model.
Collapse
Affiliation(s)
- Jane E Libbey
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - Tyler J Hanak
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - Daniel J Doty
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - Karen S Wilcox
- Department of Pharmacology & Toxicology, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, USA
| | - Robert S Fujinami
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA.
| |
Collapse
|
91
|
Stebbing MJ, Cottee JM, Rana I. The Role of Ion Channels in Microglial Activation and Proliferation - A Complex Interplay between Ligand-Gated Ion Channels, K(+) Channels, and Intracellular Ca(2.). Front Immunol 2015; 6:497. [PMID: 26557116 PMCID: PMC4617059 DOI: 10.3389/fimmu.2015.00497] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/14/2015] [Indexed: 12/17/2022] Open
Abstract
Microglia are often referred to as the immune cells of the brain. They are most definitely involved in immune responses to invading pathogens and inflammatory responses to tissue damage. However, recent results suggest microglia are vital for normal functioning of the brain. Neuroinflammation, as well as more subtle changes, in microglial function has been implicated in the pathogenesis of many brain diseases and disorders. Upon sensing alterations in their local environment, microglia change their shape and release factors that can modify the excitability of surrounding neurons. During neuroinflammation, microglia proliferate and release NO, reactive oxygen species, cytokines and chemokines. If inflammation resolves then their numbers normalize again via apoptosis. Microglia express a wide array of ion channels and different types are implicated in all of the cellular processes listed above. Modulation of microglial ion channels has shown great promise as a therapeutic strategy in several brain disorders. In this review, we discuss recent advances in our knowledge of microglial ion channels and their roles in responses of microglia to changes in the extracellular milieu.
Collapse
Affiliation(s)
- Martin James Stebbing
- Health Innovations Research Institute and School of Medical Sciences, RMIT University , Bundoora, VIC , Australia
| | - Jennifer Marie Cottee
- Health Innovations Research Institute and School of Medical Sciences, RMIT University , Bundoora, VIC , Australia
| | - Indrajeetsinh Rana
- Health Innovations Research Institute and School of Medical Sciences, RMIT University , Bundoora, VIC , Australia ; School of Health Sciences, Federation University Australia , Ballarat, VIC , Australia
| |
Collapse
|
92
|
Abstract
Neuroglia, the "glue" that fills the space between neurons in the central nervous system, takes active part in nerve cell signaling. Neuroglial cells, astroglia, oligodendroglia, and microglia, are together about as numerous as neurons in the brain as a whole, and in the cerebral cortex grey matter, but the proportion varies widely among brain regions. Glial volume, however, is less than one-fifth of the tissue volume in grey matter. When stimulated by neurons or other cells, neuroglial cells release gliotransmitters by exocytosis, similar to neurotransmitter release from nerve endings, or by carrier-mediated transport or channel flux through the plasma membrane. Gliotransmitters include the common neurotransmitters glutamate and GABA, the nonstandard amino acid d-serine, the high-energy phosphate ATP, and l-lactate. The latter molecule is a "buffer" between glycolytic and oxidative metabolism as well as a signaling substance recently shown to act on specific lactate receptors in the brain. Complementing neurotransmission at a synapse, neuroglial transmission often implies diffusion of the transmitter over a longer distance and concurs with the concept of volume transmission. Transmission from glia modulates synaptic neurotransmission based on energetic and other local conditions in a volume of tissue surrounding the individual synapse. Neuroglial transmission appears to contribute significantly to brain functions such as memory, as well as to prevalent neuropathologies.
Collapse
Affiliation(s)
- Vidar Gundersen
- SN-Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, and CMBN/SERTA/Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; and Brain and Muscle Energy Group, Department of Oral Biology and Division of Anatomy, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Jon Storm-Mathisen
- SN-Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, and CMBN/SERTA/Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; and Brain and Muscle Energy Group, Department of Oral Biology and Division of Anatomy, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Linda Hildegard Bergersen
- SN-Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, and CMBN/SERTA/Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; and Brain and Muscle Energy Group, Department of Oral Biology and Division of Anatomy, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
93
|
Glutamatergic Transmission: A Matter of Three. Neural Plast 2015; 2015:787396. [PMID: 26345375 PMCID: PMC4539489 DOI: 10.1155/2015/787396] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/18/2015] [Indexed: 12/11/2022] Open
Abstract
Glutamatergic transmission in the vertebrate brain requires the involvement of glia cells, in a continuous molecular dialogue. Glial glutamate receptors and transporters are key molecules that sense synaptic activity and by these means modify their physiology in the short and long term. Posttranslational modifications that regulate protein-protein interactions and modulate transmitter removal are triggered in glial cells by neuronal released glutamate. Moreover, glutamate signaling cascades in these cells are linked to transcriptional and translational control and are critically involved in the control of the so-called glutamate/glutamine shuttle and by these means in glutamatergic neurotransmission. In this contribution, we summarize our current understanding of the biochemical consequences of glutamate synaptic activity in their surrounding partners and dissect the molecular mechanisms that allow neurons to take control of glia physiology to ensure proper glutamate-mediated neuronal communication.
Collapse
|
94
|
Affiliation(s)
- Tetsuya Mizuno
- Department of Neuroimmunology; Research Institute of Environmental Medicine; Nagoya University; Nagoya Japan
| |
Collapse
|
95
|
Choi J, Stradmann-Bellinghausen B, Yakubov E, Savaskan NE, Régnier-Vigouroux A. Glioblastoma cells induce differential glutamatergic gene expressions in human tumor-associated microglia/macrophages and monocyte-derived macrophages. Cancer Biol Ther 2015; 16:1205-13. [PMID: 26047211 PMCID: PMC4623498 DOI: 10.1080/15384047.2015.1056406] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Glioblastoma cells produce and release high amounts of glutamate into the extracellular milieu and subsequently can trigger seizure in patients. Tumor-associated microglia/macrophages (TAMs), consisting of both parenchymal microglia and monocytes-derived macrophages (MDMs) recruited from the blood, are known to populate up to 1/3 of the glioblastoma tumor environment and exhibit an alternative, tumor-promoting and supporting phenotype. However, it is unknown how TAMs respond to the excess extracellular glutamate in the glioblastoma microenvironment. We investigated the expressions of genes related to glutamate transport and metabolism in human TAMs freshly isolated from glioblastoma resections. Quantitative real-time PCR analysis showed (i) significant increases in the expressions of GRIA2 (GluA2 or AMPA receptor 2), SLC1A2 (EAAT2), SLC1A3 (EAAT1), (ii) a near-significant decrease in the expression of SLC7A11 (cystine-glutamate antiporter xCT) and (iii) a remarkable increase in GLUL expression (glutamine synthetase) in these cells compared to adult primary human microglia. TAMs co-cultured with glioblastoma cells also exhibited a similar glutamatergic profile as freshly isolated TAMs except for a slight increase in SLC7A11 expression. We next analyzed these genes expressions in cultured human MDMs derived from peripheral blood monocytes for comparison. In contrast, MDMs co-cultured with glioblastoma cells compared to MDMs co-cultured with normal astrocytes exhibited decreased expressions in the tested genes except for GLUL. This is the first study to demonstrate transcriptional changes in glutamatergic signaling of TAMs in a glioblastoma microenvironment, and the findings here suggest that TAMs and MDMs might potentially elicit different cellular responses in the presence of excess extracellular glutamate.
Collapse
Key Words
- GS, glutamine synthetase
- HBSS, Hanks' Balance Salts Solution
- IL-10, interleukin-10
- MACS, magnetic-activated cell sorting
- MDMs, monocytes-derived macrophages
- MRC1, mannose receptor
- NHA, normal human astrocytes
- TAMs, Tumor-associated microglia/macrophages
- VEGF, vascular endothelial growth factor
- glioblastoma
- glutamate
- monocyte-derived macrophages
- qRT-PCR, quantitative real-time PCR
- tumor-associated microglia/macrophages
Collapse
Affiliation(s)
- Judy Choi
- a Johannes Gutenberg University of Mainz; Mainz, Germany
| | | | | | | | | |
Collapse
|
96
|
Regulation of the Neurodegenerative Process Associated to Parkinson's Disease by CD4+ T-cells. J Neuroimmune Pharmacol 2015; 10:561-75. [PMID: 26018603 DOI: 10.1007/s11481-015-9618-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/19/2015] [Indexed: 01/09/2023]
Abstract
Neuroinflammation constitutes a fundamental process involved in the physiopathology of Parkinson's disease (PD). Microglial cells play a central role in the outcome of neuroinflammation and consequent neurodegeneration of dopaminergic neurons in the substantia nigra. Current evidence indicates that CD4+ T-cells infiltrate the central nervous system (CNS) in PD, where they play a critical role determining the functional phenotype of microglia, thus regulating the progression of the neurodegenerative process. Here, we first analysed the pathogenic role of inflammatory phenotypes and the beneficial role of anti-inflammatory phenotypes of encephalitogenic CD4+ T-cells involved in the physiopathology of PD. Next, we discussed how alterations of neurotransmitter levels observed in the basal ganglia throughout the time course of PD progression could be strongly affecting the behaviour of encephalitogenic CD4+ T-cells and thereby the outcome of the neuroinflammatory process and the consequent neurodegeneration of dopaminergic neurons. Afterward, we integrated the evidence indicating the involvement of an antigen-specific immune response mediated by T-cells and B-cells against CNS-derived self-constituents in PD. Consistent with the involvement of a relevant autoimmune component in PD, we also reviewed the polymorphisms of both, class I and class II major histocompatibility complexes, associated to the risk of PD. Overall, this study gives an overview of how an autoimmune component involved in PD plays a fundamental role in the progression of the neurodegenerative process.
Collapse
|
97
|
Madry C, Attwell D. Receptors, ion channels, and signaling mechanisms underlying microglial dynamics. J Biol Chem 2015; 290:12443-50. [PMID: 25855789 DOI: 10.1074/jbc.r115.637157] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microglia, the innate immune cells of the CNS, play a pivotal role in brain injury and disease. Microglia are extremely motile; their highly ramified processes constantly survey the brain parenchyma, and they respond promptly to brain damage with targeted process movement toward the injury site. Microglia play a key role in brain development and function by pruning synapses during development, phagocytosing apoptotic newborn neurons, and regulating neuronal activity by direct microglia-neuron or indirect microglia-astrocyte-neuron interactions, which all depend on their process motility. This review highlights recent discoveries about microglial dynamics, focusing on the receptors, ion channels, and signaling pathways involved.
Collapse
Affiliation(s)
- Christian Madry
- From the Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - David Attwell
- From the Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
98
|
González H, Elgueta D, Montoya A, Pacheco R. Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. J Neuroimmunol 2014; 274:1-13. [PMID: 25091432 DOI: 10.1016/j.jneuroim.2014.07.012] [Citation(s) in RCA: 252] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/27/2014] [Accepted: 07/16/2014] [Indexed: 11/18/2022]
Abstract
Neuroinflammation constitutes a fundamental process involved in the progression of several neurodegenerative disorders, such as Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis and multiple sclerosis. Microglial cells play a central role in neuroinflammation, promoting neuroprotective or neurotoxic microenvironments, thus controlling neuronal fate. Acquisition of different microglial functions is regulated by intercellular interactions with neurons, astrocytes, the blood-brain barrier, and T-cells infiltrating the central nervous system. In this study, an overview of the regulation of microglial function mediated by different intercellular communications is summarised and discussed. Afterward, we focus in T-cell-mediated regulation of neuroinflammation involved in neurodegenerative disorders.
Collapse
Affiliation(s)
- Hugo González
- Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Ñuñoa 7780272, Santiago, Chile
| | - Daniela Elgueta
- Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Ñuñoa 7780272, Santiago, Chile; Facultad de Ciencias Biológicas, Universidad Andrés Bello, 8370146 Santiago, Chile
| | - Andro Montoya
- Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Ñuñoa 7780272, Santiago, Chile
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Ñuñoa 7780272, Santiago, Chile; Programa de Biomedicina, Universidad San Sebastián, Ñuñoa 7780272, Santiago, Chile.
| |
Collapse
|
99
|
Microglia toxicity in preterm brain injury. Reprod Toxicol 2014; 48:106-12. [PMID: 24768662 PMCID: PMC4155935 DOI: 10.1016/j.reprotox.2014.04.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/01/2014] [Accepted: 04/14/2014] [Indexed: 01/07/2023]
Abstract
Microglia responses in the preterm human brain in association with injury. Microglia responses in animal models of preterm brain injury. Mechanisms of microglia toxicity from in vitro primary microglia cell culture experiments.
Microglia are the resident phagocytic cells of the central nervous system. During brain development they are also imperative for apoptosis of excessive neurons, synaptic pruning, phagocytosis of debris and maintaining brain homeostasis. Brain damage results in a fast and dynamic microglia reaction, which can influence the extent and distribution of subsequent neuronal dysfunction. As a consequence, microglia responses can promote tissue protection and repair following brain injury, or become detrimental for the tissue integrity and functionality. In this review, we will describe microglia responses in the human developing brain in association with injury, with particular focus on the preterm infant. We also explore microglia responses and mechanisms of microglia toxicity in animal models of preterm white matter injury and in vitro primary microglia cell culture experiments.
Collapse
|
100
|
Mifsud G, Zammit C, Muscat R, Di Giovanni G, Valentino M. Oligodendrocyte pathophysiology and treatment strategies in cerebral ischemia. CNS Neurosci Ther 2014; 20:603-12. [PMID: 24703424 DOI: 10.1111/cns.12263] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/06/2014] [Accepted: 03/07/2014] [Indexed: 12/19/2022] Open
Abstract
Oligodendrocytes (OLs), the myelin-forming cells of the central nervous system, form a functional unit with axons and play a crucial role in axonal integrity. An episode of hypoxia-ischemia causes rapid and severe damage to these particularly vulnerable cells via multiple pathways such as overactivation of glutamate and ATP receptors, oxidative stress, and disruption of mitochondrial function. The cardinal effect of OL pathology is demyelination and dysmyelination, and this has profound effects on axonal function, transport, structure, metabolism, and survival. The OL is a primary target of ischemia in adult-onset stroke and especially in periventricular leukomalacia and should be considered as a primary therapeutic target in these conditions. More emphasis is needed on therapeutic strategies that target OLs, myelin, and their receptors, as these have the potential to significantly attenuate white matter injury and to establish functional recovery of white matter after stroke. In this review, we will summarize recent progress on the role of OLs in white matter ischemic injury and the current and emerging principles that form the basis for protective strategies against OL death.
Collapse
Affiliation(s)
- Gabriella Mifsud
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | | | | | | | | |
Collapse
|