51
|
Lindert NG, Maxwell MY, Liu SR, Stern HS, Baram TZ, Poggi Davis E, Risbrough VB, Baker DG, Nievergelt CM, Glynn LM. Exposure to unpredictability and mental health: Validation of the brief version of the Questionnaire of Unpredictability in Childhood (QUIC-5) in English and Spanish. Front Psychol 2022; 13:971350. [PMID: 36438371 PMCID: PMC9682115 DOI: 10.3389/fpsyg.2022.971350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
Unpredictability is increasingly recognized as a primary dimension of early life adversity affecting lifespan mental health trajectories; screening for these experiences is therefore vital. The Questionnaire of Unpredictability in Childhood (QUIC) is a 38-item tool that measures unpredictability in childhood in social, emotional and physical domains. The available evidence indicates that exposure to unpredictable experiences measured with the QUIC predicts internalizing symptoms including depression and anxiety. The purpose of the present study was to validate English and Spanish brief versions (QUIC-5) suitable for administration in time-limited settings (e.g., clinical care settings, large-scale epidemiological studies). Five representative items were identified from the QUIC and their psychometric properties examined. The predictive validity of the QUIC-5 was then compared to the QUIC by examining mental health in four cohorts: (1) English-speaking adult women assessed at 6-months postpartum (N = 116), (2) English-speaking male veterans (N = 95), (3) English-speaking male and female adolescents (N = 155), and (4) Spanish-speaking male and female adults (N = 285). The QUIC-5 demonstrated substantial variance in distributions in each of the cohorts and is correlated on average 0.84 (r's = 0.81-0.87) with the full 38-item version. Furthermore, the QUIC-5 predicted internalizing symptoms (anxiety and depression) in all cohorts with similar effect sizes (r's = 0.16-0.39; all p's < 0.05) to the full versions (r's = 0.19-0.42; all p's < 0.05). In sum, the QUIC-5 exhibits good psychometric properties and is a valid alternative to the full QUIC. These findings support the future use of the QUIC-5 in clinical and research settings as a concise way to measure unpredictability, identify risk of psychopathology, and intervene accordingly.
Collapse
Affiliation(s)
| | - Megan Y. Maxwell
- Department of Psychology, Chapman University, Orange, CA, United States
| | - Sabrina R. Liu
- Department of Psychology, Chapman University, Orange, CA, United States
| | - Hal S. Stern
- Department of Statistics, University of California, Irvine, Irvine, CA, United States
| | - Tallie Z. Baram
- Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, United States
- Department of Pediatrics, University of California, Irvine, Irvine, CA, United States
- Department of Neurology, University of California, Irvine, Irvine, CA, United States
| | - Elysia Poggi Davis
- Department of Psychology, University of Denver, Denver, CO, United States
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, United States
| | - Victoria B. Risbrough
- Center of Excellence for Stress and Mental Health, Veterans Affairs, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Dewleen G. Baker
- Center of Excellence for Stress and Mental Health, Veterans Affairs, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Caroline M. Nievergelt
- Center of Excellence for Stress and Mental Health, Veterans Affairs, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Laura M. Glynn
- Department of Psychology, Chapman University, Orange, CA, United States
| |
Collapse
|
52
|
Liu Y, Li S, Zhang X, Wang L, Li Z, Wu W, Qin X, Zhou J, Ma C, Meng W, Kuang X, Yin F, Xia Q, Jiang B, Yang Y. Corticotropin releasing factor neurons in the visual cortex mediate long-term changes in visual function induced by early adversity. Neurobiol Stress 2022; 21:100504. [DOI: 10.1016/j.ynstr.2022.100504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
|
53
|
Alizadeh-Ezdini Z, Vatanparast J. Differential impact of two paradigms of early-life adversity on behavioural responses to social defeat in young adult rats and morphology of CA3 pyramidal neurons. Behav Brain Res 2022; 435:114048. [PMID: 35952779 DOI: 10.1016/j.bbr.2022.114048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/20/2022] [Accepted: 08/06/2022] [Indexed: 01/06/2023]
Abstract
Early life stress (ELS) is an important factor in programing the brain for future response to stress, and resilience or vulnerability to stress-induced emotional disorders. The hippocampal formation, with essential roles in both regulating the stress circuitry and emotionality, contributes to this adaptive programing. Here, we examined the effects of early handling (EH) and maternal deprivation (MD) as mild and intense postnatal stressors, respectively, on the behavioural responses to social defeat stress in young adulthood. We also evaluated the interaction of mild and intense ELS with later social defeat (SD) stress on the morphology and dendritic spine density of Golgi-cox-stained CA3 hippocampal neurons. SD stress in adult rats, as expected, increased anxiety and depressive-like behaviours in the open field, elevated plus-maze and forced swimming test. These effects were associated with reduction of dendritic spines and soma size of CA3 neurons. Both behavioural and structural alterations were significantly ameliorated in socially defeated rats that experienced early handling (EH-SD). Basal dendrites of CA3 neurons in EH-SD rats also showed longer dendrites and more intersections with Sholl circles in the distal portion, compared to both control and SD rats. On the other hand, in socially defeated rats with maternal deprivation experience (MD-SD) the stress-induced behavioural and structural alterations were generally intensified compared to SD rats. In MD-SD rats, apical dendrites of CA3 neurons demonstrated remarkable retraction; an effect that was not detected in SD rats. The reduction of dendritic spines density on the apical dendrites of CA3 neurons was also more pronounced in MD-SD rats compared to SD rats. Dendritic arbors and spines comprise the major neuronal substrate for the circuit connectivity, and cell region-specific alterations of dendrites and spines in CA3 neurons reveal plausible mechanisms that can underlie the impact of different ELSs on risk for affective disorders in response to social stress in adulthood.
Collapse
Affiliation(s)
| | - Jafar Vatanparast
- Department of Biology, School of Science, Shiraz University, Shiraz, Iran.
| |
Collapse
|
54
|
Davis EP, McCormack K, Arora H, Sharpe D, Short AK, Bachevalier J, Glynn LM, Sandman CA, Stern HS, Sanchez M, Baram TZ. Early life exposure to unpredictable parental sensory signals shapes cognitive development across three species. Front Behav Neurosci 2022; 16:960262. [PMID: 36338881 PMCID: PMC9630745 DOI: 10.3389/fnbeh.2022.960262] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/21/2022] [Indexed: 08/23/2023] Open
Abstract
Exposure to early life adversity has long term consequences on cognitive function. Most research has focused on understanding components of early life adversities that contribute to later risk, including poverty, trauma, maltreatment, and neglect. Whereas these factors, in the aggregate, explain a significant proportion of emotional and cognitive problems, there are serious gaps in our ability to identify potential mechanisms by which early life adversities might promote vulnerability or resilience. Here we discuss early life exposure to unpredictable signals from the caretaker as an understudied type of adversity that is amenable to prevention and intervention. We employ a translational approach to discover underlying neurobiological mechanisms by which early life exposure to unpredictable signals sculpts the developing brain. First, we review evidence that exposure to unpredictable signals from the parent during sensitive periods impacts development of neural circuits. Second, we describe a method for characterizing early life patterns of sensory signals across species. Third, we present published and original data illustrating that patterns of maternal care predict memory function in humans, non-human primates, and rodents. Finally, implications are discussed for identifying individuals at risk so that early preventive-intervention can be provided.
Collapse
Affiliation(s)
- Elysia Poggi Davis
- Department of Psychology, University of Denver, Denver, CO, United States
- Department of Pediatrics, University of California, Irvine, Irvine, CA, United States
| | - Kai McCormack
- Department of Psychology, Spelman College, Atlanta, GA, United States
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Hina Arora
- Department of Statistics, University of California, Irvine, Irvine, CA, United States
| | - Desiree Sharpe
- Mary Frances Early College of Education (MFECOE) Torrance Center for Creativity and Talent Development, University of Georgia, Athens, GA, United States
| | - Annabel K. Short
- Department of Pediatrics, University of California, Irvine, Irvine, CA, United States
| | - Jocelyne Bachevalier
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Laura M. Glynn
- Department of Psychology, Chapman University, Orange, CA, United States
| | - Curt A. Sandman
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, United States
| | - Hal S. Stern
- Department of Statistics, University of California, Irvine, Irvine, CA, United States
| | - Mar Sanchez
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA, United States
| | - Tallie Z. Baram
- Department of Pediatrics, University of California, Irvine, Irvine, CA, United States
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States
- Department of Neurology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
55
|
Saleki K, Banazadeh M, Saghazadeh A, Rezaei N. Aging, testosterone, and neuroplasticity: friend or foe? Rev Neurosci 2022; 34:247-273. [PMID: 36017670 DOI: 10.1515/revneuro-2022-0033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/03/2022] [Indexed: 11/15/2022]
Abstract
Neuroplasticity or neural plasticity implicates the adaptive potential of the brain in response to extrinsic and intrinsic stimuli. The concept has been utilized in different contexts such as injury and neurological disease. Neuroplasticity mechanisms have been classified into neuroregenerative and function-restoring processes. In the context of injury, neuroplasticity has been defined in three post-injury epochs. Testosterone plays a key yet double-edged role in the regulation of several neuroplasticity alterations. Research has shown that testosterone levels are affected by numerous factors such as age, stress, surgical procedures on gonads, and pharmacological treatments. There is an ongoing debate for testosterone replacement therapy (TRT) in aging men; however, TRT is more useful in young individuals with testosterone deficit and more specific subgroups with cognitive dysfunction. Therefore, it is important to pay early attention to testosterone profile and precisely uncover its harms and benefits. In the present review, we discuss the influence of environmental factors, aging, and gender on testosterone-associated alterations in neuroplasticity, as well as the two-sided actions of testosterone in the nervous system. Finally, we provide practical insights for further study of pharmacological treatments for hormonal disorders focusing on restoring neuroplasticity.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, 47176 47745 Babol, Iran.,USERN Office, Babol University of Medical Sciences, 47176 47745 Babol, Iran.,Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran
| | - Mohammad Banazadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran.,Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, 76169 13555 Kerman, Iran
| | - Amene Saghazadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, 14197 33151 Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, 14197 33151 Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 14176 13151 Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran
| |
Collapse
|
56
|
Gadberry TM, Goodman J, Packard MG. Chronic corticosterone administration in adolescence enhances dorsolateral striatum-dependent learning in adulthood. Front Behav Neurosci 2022; 16:970304. [PMID: 36035016 PMCID: PMC9413048 DOI: 10.3389/fnbeh.2022.970304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022] Open
Abstract
Previous evidence indicates a link between early life stress (ELS) in humans and a predisposition to psychopathologies that are characterized in part by maladaptive habitual behaviors. Stress and anxiety influence the relative use of mammalian memory systems implicated in these disorders. Specifically, cognitive memory functions of the hippocampus are typically impaired by stress/anxiety, whereas habit memory functions of the dorsolateral striatum (DLS) are enhanced. A stress/anxiety bias toward habit memory has largely been demonstrated in adult rodents and humans, and the effects of ELS on the later use of DLS-dependent habit memory in adult rodents have not been extensively examined. The present study addressed this question by chronically elevating corticosterone (CORT) during adolescence, and investigated the effects of this treatment on DLS-dependent habit learning in adulthood. In experiment 1, adolescent rats received a single daily injection of either CORT (5 mg/kg) or vehicle (cVEH) over 5 days and then matured undisturbed before training as adults in a DLS-dependent water plus-maze task. Rats administered CORT injections during adolescence displayed a strong trend toward enhanced learning during adulthood relative to vehicle-treated rats. Adolescent CORT administration also increased anxiety-like behavior in adulthood in an elevated plus-maze. In experiment 2, adolescent CORT administration enhanced task acquisition in adulthood, and this effect was blocked by concurrent administration of the glucocorticoid antagonist mifepristone (30 mg/kg). Taken together, these findings suggest that chronic elevation of glucocorticoids during adolescence are sufficient to facilitate habit learning in adulthood, and indicate that glucocorticoid function may be a potential underlying mechanism by which ELS influences subsequent habitual behaviors.
Collapse
Affiliation(s)
- Ty M. Gadberry
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Jarid Goodman
- Department of Psychology, Delaware State University, Dover, DE, United States
| | - Mark G. Packard
- Department of Psychological and Brain Sciences, Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
- *Correspondence: Mark G. Packard,
| |
Collapse
|
57
|
Early life adversity shapes neural circuit function during sensitive postnatal developmental periods. Transl Psychiatry 2022; 12:306. [PMID: 35915071 PMCID: PMC9343623 DOI: 10.1038/s41398-022-02092-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Early life adversity (ELA) is a major risk factor for mental illness, but the neurobiological mechanisms by which ELA increases the risk for future psychopathology are still poorly understood. Brain development is particularly malleable during prenatal and early postnatal life, when complex neural circuits are being formed and refined through an interplay of excitatory and inhibitory neural input, synaptogenesis, synaptic pruning, myelination, and neurogenesis. Adversity that influences these processes during sensitive periods of development can thus have long-lasting and pervasive effects on neural circuit maturation. In this review, we will discuss clinical and preclinical evidence for the impact of ELA on neural circuit formation with a focus on the early postnatal period, and how long-lasting impairments in these circuits can affect future behavior. We provide converging evidence from human and animal studies on how ELA alters the functional development of brain regions, neural circuits, and neurotransmitter systems that are crucial for cognition and affective behavior, including the hippocampus, the hypothalamus-pituitary-adrenal (HPA) axis, neural networks of fear responses and cognition, and the serotonin (5-HT) system. We also discuss how gene-by-environment (GxE) interactions can determine individual differences in susceptibility and resilience to ELA, as well as molecular pathways by which ELA regulates neural circuit development, for which we emphasize epigenetic mechanisms. Understanding the molecular and neurobiological mechanisms underlying ELA effects on brain function and psychopathology during early postnatal sensitive periods may have great potential to advance strategies to better treat or prevent psychiatric disorders that have their origin early in life.
Collapse
|
58
|
Featherstone RE, Gifford RL, Crown LM, Amirfathi F, Alaniz JP, Yi J, Tran A, Adomian D, Schwenk A, Melnychenko O, Duval C, Parekh K, Lee DJ, Siegel SJ. Early life social instability stress causes lasting cognitive decrement and elevated hippocampal stress-related gene expression. Exp Neurol 2022; 354:114099. [PMID: 35490720 DOI: 10.1016/j.expneurol.2022.114099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/07/2022] [Accepted: 04/24/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Early life stress may have profound effects on brain health, yielding both short- and long-term cognitive or psychiatric impairment. Early life Social Instability Stress (SIS) in rodents has been used to model the effects of early chronic human stress. While many studies have assessed acute and short-term responses to this stressor, less attention has been paid to the lasting effects of early life stress in rodents. METHODS The current study utilized SIS in young mice to assess the impact of early life adversity over the lifespan. Mice were assessed in adulthood between the ages of 18 to 66 weeks for changes in behaviors associated with anxiety, affect, sociability, aggression, motivation, and recognition memory. Additionally, mice were assessed for changes in glucocorticoid level and hippocampal mRNA expression in a subset of genes that display alterations in humans following exposure to stress (CRHR1, CRHR2, FKBP5, SLC6A4). RESULTS Mice exposed to early SIS showed disrupted memory and increased hippocampal expression of FKBP5, CRHR2 and SLC6A4 mRNA compared to non-stressed mice. Importantly, there was a significant association between increased FKBP5 and CRHR2 with reduced recognition memory. Additionally, mice exposed to SIS showed increased responding on a progressive ratio schedule of reinforcement, indicating that reduction in memory performance was not mediated by decreased effort. CONCLUSIONS Ecologically-relevant social stress in mice causes long-term decrements in recognition memory, possibly mediated by persistent changes in moderators of the stress cascade. Additionally, animals exposed to early life stress showed increased motivation for reward, which may contribute to a host of hedonic seeking behaviors throughout life. These data suggest that SIS can be used to evaluate therapeutic interventions to attenuate or reverse lasting effects of early life adversity.
Collapse
Affiliation(s)
- Robert E Featherstone
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, United States of America
| | - Raymond L Gifford
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, United States of America
| | - Lindsey M Crown
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, United States of America
| | - Felix Amirfathi
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, United States of America
| | - Jon P Alaniz
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, United States of America
| | - Janice Yi
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, United States of America
| | - AiVi Tran
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, United States of America
| | - Derrick Adomian
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, United States of America
| | - Andrew Schwenk
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, United States of America
| | - Olya Melnychenko
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, United States of America
| | - Christina Duval
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, United States of America
| | - Krishna Parekh
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, United States of America
| | - Darrin J Lee
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, United States of America; Department of Neurosurgery, Keck School of Medicine, University of Southern California, 1200 North State St., Suite 3300, Los Angeles, CA 90033, United States of America
| | - Steven J Siegel
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, United States of America.
| |
Collapse
|
59
|
Levis SC, Birnie MT, Bolton JL, Perrone CR, Montesinos JS, Baram TZ, Mahler SV. Enduring disruption of reward and stress circuit activities by early-life adversity in male rats. Transl Psychiatry 2022; 12:251. [PMID: 35705547 PMCID: PMC9200783 DOI: 10.1038/s41398-022-01988-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022] Open
Abstract
In humans, early-life adversity (ELA) such as trauma, poverty, and chaotic environment is linked to increased risk of later-life emotional disorders including depression and substance abuse. These disorders involve underlying disruption of reward circuits and likely vary by sex. Accordingly, we previously found that ELA leads to anhedonia for natural rewards and cocaine in male rodents, whereas in females ELA instead increases vulnerability to addiction-like use of opioid drugs and palatable food. While these findings suggest that ELA-induced disruption of reward circuitry may differ between the sexes, the specific circuit nodes that are influenced by ELA in either sex remain poorly understood. Here, in adult male Sprague-Dawley rats, we ask how ELA impacts opioid addiction-relevant behaviors that we previously tested after ELA in females. We probe potential circuit mechanisms in males by assessing opioid-associated neuronal activation in stress and reward circuit nodes including nucleus accumbens (NAc), amygdala, medial prefrontal cortex (mPFC), and paraventricular thalamus. We find that ELA diminishes opioid-seeking behaviors in males, and alters heroin-induced activation of NAc, PFC, and amygdala, suggesting a potential circuit-based mechanism. These studies demonstrate that ELA leads to behavioral and neurobiological disruptions consistent with anhedonia in male rodents, unlike the increased opioid seeking we previously saw in females. Our findings, taken together with our prior work, suggest that men and women could face qualitatively different mental health consequences of ELA, which may be essential for individually tailoring future intervention strategies.
Collapse
Affiliation(s)
- Sophia C Levis
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA, USA.
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA, USA.
| | - Matthew T Birnie
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA, USA
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Jessica L Bolton
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA, USA
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Christina R Perrone
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA, USA
| | - Johanna S Montesinos
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA, USA
| | - Tallie Z Baram
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA, USA
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Stephen V Mahler
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
60
|
Bagheri F, Goudarzi I, Lashkarbolouki T, Elahdadi Salmani M, Goudarzi A, Morley-Fletcher S. The Combined Effects of Perinatal Ethanol and Early-Life Stress on Cognition and Risk-Taking Behavior through Oxidative Stress in Rats. Neurotox Res 2022; 40:925-940. [PMID: 35507233 DOI: 10.1007/s12640-022-00506-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 11/29/2022]
Abstract
Both prenatal ethanol and early-life stress have been shown to induce reduced risk-taking and explorative behavior as well as cognitive dysfunction in the offspring. In this study, we examined the effect of combined exposure to ethanol and early stress on maternal care, exploratory behavior, memory performances, and oxidative stress in male offspring. Pregnant rats were exposed to ethanol (4 g/kg) from gestational day (GD) 6-to postnatal day (PND) 14 and limited nesting material (LNS) from PND0-PND14 individually or in combination. Maternal behavior was evaluated during diurnal cycle. The level of corticosterone hormone and markers of oxidative stress were evaluated in the pups. Risk-taking and explorative behavior were assessed with the elevated-plus maze (EPM) test and cognitive behavior with the Morris water maze (MWM), novel object recognition (NORT), and object location memory (OLM) tests. In the mothers, perinatal alcohol or LNS either alone or in combination decreased maternal behavior. In the offspring, the combination of the two factors significantly increased the pup's plasma corticosterone concentration in comparison with ethanol and LNS alone. Reduced risk-taking behavior was observed in the ethanol, LNS and ethanol + LNS groups compared with the control group, and this was amplified in the co-exposure of ethanol and LNS groups. The MWM, NORT, and OLM tests revealed spatial and recognition memory impairment in the ethanol and LNS groups. This impairment was more profound in the co-exposure of ethanol and LNS. Also, we observed a significant decrease in superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities and an increase in malondialdehyde (MDA) level in the hippocampus of ethanol and LNS co-exposed animals as compared with individual exposure of ethanol and LNS. While each factor independently produced similar outcomes, the results indicate that the dual exposure paradigm could significantly strengthen the outcomes.
Collapse
Affiliation(s)
| | - Iran Goudarzi
- School of Biology, Damghan University, Damghan, Iran.
| | | | | | - Afsaneh Goudarzi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Morley-Fletcher
- UMR 8576, Univ. Lille, CNRS, UGSF - Unité de Glycobiologie Structurale Et Fonctionnelle, 59000, Lille, France
| |
Collapse
|
61
|
Effects of early life adversities upon memory processes and cognition in rodent models. Neuroscience 2022; 497:282-307. [PMID: 35525496 DOI: 10.1016/j.neuroscience.2022.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 01/14/2023]
Abstract
Exposure to stressors in early postnatal life induces long-lasting modifications in brainfunction.Thisplasticity,an essential characteristic of the brain that enables adaptation to the environment, may also induce impairments in some psychophysiological functions, including learning and memory. Early life stress (ELS) has long-term effects on thehypothalamic-pituitary-adrenal axisresponse to stressors, and has been reported to lead toneuroinflammation,altered levelsof neurotrophic factors, modifications inneurogenesis andsynaptic plasticity,with changes in neurotransmitter systems and network functioning. In this review, we focus on early postnatal stress in animal models and their effects on learning and memory.Many studies have reported ELS-induced impairments in different types of memories, including spatial memory, fear memory, recognition (both for objects and social) memory, working memory and reversal learning. Studies are not always in agreement, however, no effects, or sometimes facilitation, being reported, depending on the nature and intensity of the early intervention, as well as the age when the outcome was evaluated and the sex of the animals. When considering processes occurring after consolidation, related with memory maintenance or modification, there are a very reduced number of reports. Future studies addressing the mechanisms underlying memory changes for ELS should shed some light on the understanding of the different effects induced by stressors of different types and intensities on cognitive functions.
Collapse
|
62
|
Touchant M, Labonté B. Sex-Specific Brain Transcriptional Signatures in Human MDD and Their Correlates in Mouse Models of Depression. Front Behav Neurosci 2022; 16:845491. [PMID: 35592639 PMCID: PMC9110970 DOI: 10.3389/fnbeh.2022.845491] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/05/2022] [Indexed: 01/13/2023] Open
Abstract
Major depressive disorder (MDD) is amongst the most devastating psychiatric conditions affecting several millions of people worldwide every year. Despite the importance of this disease and its impact on modern societies, still very little is known about the etiological mechanisms. Treatment strategies have stagnated over the last decades and very little progress has been made to improve the efficiency of current therapeutic approaches. In order to better understand the disease, it is necessary for researchers to use appropriate animal models that reproduce specific aspects of the complex clinical manifestations at the behavioral and molecular levels. Here, we review the current literature describing the use of mouse models to reproduce specific aspects of MDD and anxiety in males and females. We first describe some of the most commonly used mouse models and their capacity to display unique but also shared features relevant to MDD. We then transition toward an integral description, combined with genome-wide transcriptional strategies. The use of these models reveals crucial insights into the molecular programs underlying the expression of stress susceptibility and resilience in a sex-specific fashion. These studies performed on human and mouse tissues establish correlates into the mechanisms mediating the impact of stress and the extent to which different mouse models of chronic stress recapitulate the molecular changes observed in depressed humans. The focus of this review is specifically to highlight the sex differences revealed from different stress paradigms and transcriptional analyses both in human and animal models.
Collapse
Affiliation(s)
- Maureen Touchant
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Benoit Labonté
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec, QC, Canada
- *Correspondence: Benoit Labonté
| |
Collapse
|
63
|
Levis SC, Baram TZ, Mahler SV. Neurodevelopmental origins of substance use disorders: Evidence from animal models of early-life adversity and addiction. Eur J Neurosci 2022; 55:2170-2195. [PMID: 33825217 PMCID: PMC8494863 DOI: 10.1111/ejn.15223] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/18/2021] [Accepted: 04/01/2021] [Indexed: 01/06/2023]
Abstract
Addiction is a chronic relapsing disorder with devastating personal, societal, and economic consequences. In humans, early-life adversity (ELA) such as trauma, neglect, and resource scarcity are linked with increased risk of later-life addiction, but the brain mechanisms underlying this link are still poorly understood. Here, we focus on data from rodent models of ELA and addiction, in which causal effects of ELA on later-life responses to drugs and the neurodevelopmental mechanisms by which ELA increases vulnerability to addiction can be determined. We first summarize evidence for a link between ELA and addiction in humans, then describe how ELA is commonly modeled in rodents. Since addiction is a heterogeneous disease with many individually varying behavioral aspects that may be impacted by ELA, we next discuss common rodent assays of addiction-like behaviors. We then summarize the specific addiction-relevant behavioral phenotypes caused by ELA in male and female rodents and discuss some of the underlying changes in brain reward and stress circuits that are likely responsible. By better understanding the behavioral and neural mechanisms by which ELA promotes addiction vulnerability, we hope to facilitate development of new approaches for preventing or treating addiction in those with a history of ELA.
Collapse
Affiliation(s)
- Sophia C. Levis
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA
| | - Tallie Z. Baram
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA
- Department of Pediatrics, University of California Irvine, Irvine, CA
| | - Stephen V. Mahler
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA
| |
Collapse
|
64
|
Disrupted presynaptic nectin1-based neuronal adhesion in the entorhinal-hippocampal circuit contributes to early-life stress-induced memory deficits. Transl Psychiatry 2022; 12:141. [PMID: 35379771 PMCID: PMC8980071 DOI: 10.1038/s41398-022-01908-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 01/06/2023] Open
Abstract
The cell adhesion molecule nectin3 and its presynaptic partner nectin1 have been linked to early-life stress-related cognitive disorders, but how the nectin1-nectin3 system contributes to stress-induced neuronal, circuit, and cognitive abnormalities remains to be studied. Here we show that in neonatally stressed male mice, temporal order and spatial working memories, which require the medial entorhinal cortex (MEC)-CA1 pathway, as well as the structural integrity of CA1 pyramidal neurons were markedly impaired in adulthood. These cognitive and structural abnormalities in stressed mice were associated with decreased nectin levels in entorhinal and hippocampal subregions, especially reduced nectin1 level in the MEC and nectin3 level in the CA1. Postnatal suppression of nectin1 but not nectin3 level in the MEC impaired spatial memory, whereas conditional inactivation of nectin1 from MEC excitatory neurons reproduced the adverse effects of early-life stress on MEC-dependent memories and neuronal plasticity in CA1. Our data suggest that early-life stress disrupts presynaptic nectin1-mediated interneuronal adhesion in the MEC-CA1 pathway, which may in turn contribute to stress-induced synaptic and cognitive deficits.
Collapse
|
65
|
Liu S, Fisher PA. Early experience unpredictability in child development as a model for understanding the impact of the COVID-19 pandemic: A translational neuroscience perspective. Dev Cogn Neurosci 2022; 54:101091. [PMID: 35217299 PMCID: PMC8860470 DOI: 10.1016/j.dcn.2022.101091] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 01/11/2023] Open
Abstract
Extensive evidence links adverse experiences during childhood to a wide range of negative consequences in biological, socioemotional, and cognitive development. Unpredictability is a core element underlying most forms of early adversity; it has been a focus of developmental research for many years and has been receiving increasing attention recently. In this article, we propose a conceptual model to describe how unpredictable and adverse early experiences affect children's neurobiological, behavioral, and psychological development in the context of the COVID-19 pandemic. We first highlight the critical role of unpredictability in child development by reviewing existing conceptual models of early adversity as they relate to subsequent development across the lifespan. Then, we employ a translational neuroscience framework to summarize the current animal- and human-based evidence on the neurobiological alterations induced by early experience unpredictability. We further argue that the COVID-19 pandemic serves as a global "natural experiment" that provides rare insight to the investigation of the negative developmental consequences of widespread, clustered, and unpredictable adverse events among children. We discuss how the pandemic helps advance the science of unpredictable early adverse experiences. As unpredictability research continues to grow, we highlight several directions for future studies and implications for policymaking and intervention practices.
Collapse
Affiliation(s)
- Sihong Liu
- Center for Translational Neuroscience, Department of Psychology, University of Oregon, Eugene, OR, United States.
| | - Philip A Fisher
- Center for Translational Neuroscience, Department of Psychology, University of Oregon, Eugene, OR, United States
| |
Collapse
|
66
|
Early life adversity accelerates epileptogenesis and enhances depression-like behaviors in rats. Exp Neurol 2022; 354:114088. [DOI: 10.1016/j.expneurol.2022.114088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/29/2022] [Accepted: 04/15/2022] [Indexed: 11/24/2022]
|
67
|
Bolton JL, Short AK, Othy S, Kooiker CL, Shao M, Gunn BG, Beck J, Bai X, Law SM, Savage JC, Lambert JJ, Belelli D, Tremblay MÈ, Cahalan MD, Baram TZ. Early stress-induced impaired microglial pruning of excitatory synapses on immature CRH-expressing neurons provokes aberrant adult stress responses. Cell Rep 2022; 38:110600. [PMID: 35354026 PMCID: PMC9014810 DOI: 10.1016/j.celrep.2022.110600] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/10/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Several mental illnesses, characterized by aberrant stress reactivity, often arise after early-life adversity (ELA). However, it is unclear how ELA affects stress-related brain circuit maturation, provoking these enduring vulnerabilities. We find that ELA increases functional excitatory synapses onto stress-sensitive hypothalamic corticotropin-releasing hormone (CRH)-expressing neurons, resulting from disrupted developmental synapse pruning by adjacent microglia. Microglial process dynamics and synaptic element engulfment were attenuated in ELA mice, associated with deficient signaling of the microglial phagocytic receptor MerTK. Accordingly, selective chronic chemogenetic activation of ELA microglia increased microglial process dynamics and reduced excitatory synapse density to control levels. Notably, selective early-life activation of ELA microglia normalized adult acute and chronic stress responses, including stress-induced hormone secretion and behavioral threat responses, as well as chronic adrenal hypertrophy of ELA mice. Thus, microglial actions during development are powerful contributors to mechanisms by which ELA sculpts the connectivity of stress-regulating neurons, promoting vulnerability to stress and stress-related mental illnesses.
Collapse
Affiliation(s)
- Jessica L Bolton
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, USA.
| | - Annabel K Short
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Shivashankar Othy
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Cassandra L Kooiker
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Manlin Shao
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Benjamin G Gunn
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, USA; Division of Neuroscience, Medical Research Institute, Dundee University, Ninewells Hospital and Medical School, Dundee, UK
| | - Jaclyn Beck
- Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Xinglong Bai
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Stephanie M Law
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Julie C Savage
- Département de Médecine Moléculaire, Université Laval, Québec City, QC, Canada; Axe Neurosciences, Centre de recherche du CHU de Québec, Québec City, QC, Canada
| | - Jeremy J Lambert
- Division of Neuroscience, Medical Research Institute, Dundee University, Ninewells Hospital and Medical School, Dundee, UK
| | - Delia Belelli
- Division of Neuroscience, Medical Research Institute, Dundee University, Ninewells Hospital and Medical School, Dundee, UK
| | - Marie-Ève Tremblay
- Département de Médecine Moléculaire, Université Laval, Québec City, QC, Canada; Axe Neurosciences, Centre de recherche du CHU de Québec, Québec City, QC, Canada
| | - Michael D Cahalan
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Tallie Z Baram
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
68
|
Chaudhari PR, Singla A, Vaidya VA. Early Adversity and Accelerated Brain Aging: A Mini-Review. Front Mol Neurosci 2022; 15:822917. [PMID: 35392273 PMCID: PMC8980717 DOI: 10.3389/fnmol.2022.822917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Early adversity is an important risk factor that influences brain aging. Diverse animal models of early adversity, including gestational stress and postnatal paradigms disrupting dam-pup interactions evoke not only persistent neuroendocrine dysfunction and anxio-depressive behaviors, but also perturb the trajectory of healthy brain aging. The process of brain aging is thought to involve hallmark features such as mitochondrial dysfunction and oxidative stress, evoking impairments in neuronal bioenergetics. Furthermore, brain aging is associated with disrupted proteostasis, progressively defective epigenetic and DNA repair mechanisms, the build-up of neuroinflammatory states, thus cumulatively driving cellular senescence, neuronal and cognitive decline. Early adversity is hypothesized to evoke an “allostatic load” via an influence on several of the key physiological processes that define the trajectory of healthy brain aging. In this review we discuss the evidence that animal models of early adversity impinge on fundamental mechanisms of brain aging, setting up a substratum that can accelerate and compromise the time-line and nature of brain aging, and increase risk for aging-associated neuropathologies.
Collapse
|
69
|
Holmberg E, Kataja EL, Davis EP, Pajulo M, Nolvi S, Hakanen H, Karlsson L, Karlsson H, Korja R. The Connection and Development of Unpredictability and Sensitivity in Maternal Care Across Early Childhood. Front Psychol 2022; 13:803047. [PMID: 35330718 PMCID: PMC8940198 DOI: 10.3389/fpsyg.2022.803047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/14/2022] [Indexed: 01/02/2023] Open
Abstract
Both patterns of maternal sensory signals and sensitive care have shown to be crucial elements shaping child development. However, research concerning these aspects of maternal care has focused mainly on maternal sensitivity with fewer studies evaluating the impact of patterns of maternal behaviors and changes in these indices across infancy and childhood. The aims of this study were to explore how maternal unpredictability of sensory signals and sensitivity develop and associate with each other from infancy to toddlerhood and whether elevated maternal depressive and anxiety symptoms relate to maternal unpredictable signals and sensitivity in toddlerhood. The study population consisted of 356 mother–child dyads assessed at 30 months; a subset of 103 mother–child dyads additionally participated in 8 months assessment. Maternal unpredictability and sensitivity were assessed from video-recorded free-play episodes at 8 and 30 months. Maternal depressive and anxiety symptoms were assessed with questionnaires at gestational weeks 14, 24, 34 and 3, 6, 12, and 24 months. Mean level of mothers’ unpredictability decreased on average whereas sensitivity did not change between infancy and toddlerhood. Both maternal unpredictability and sensitivity showed moderate level of individual stability from infancy to toddlerhood and these two measures were modestly correlated within each age. Elevated maternal depressive and anxiety symptoms were not related to unpredictability but related to lower maternal sensitivity in toddlerhood. These results identify unpredictable sensory signals as a characteristic of parental care that is independent of standard quality measures and suggest that it may be less influenced by maternal depressive and anxiety symptoms.
Collapse
Affiliation(s)
- Eeva Holmberg
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland
- *Correspondence: Eeva Holmberg,
| | - Eeva-Leena Kataja
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Elysia Poggi Davis
- Department of Psychology, University of Denver, Denver, CO, United States
- Department of Pediatrics, University of California, Irvine, Irvine, CA, United States
| | - Marjukka Pajulo
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Child Psychiatry, University of Turku, Turku, Finland
| | - Saara Nolvi
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland
- Department of Psychology and Speech-Language Pathology, Turku Institute for Advanced Studies, University of Turku, Turku, Finland
| | - Hetti Hakanen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
- Department of Psychiatry, University of Turku and Hospital District of Southwest Finland, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
- Department of Psychiatry, University of Turku and Hospital District of Southwest Finland, Turku, Finland
| | - Riikka Korja
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland
| |
Collapse
|
70
|
Xu B, Zhang X, He Y, Liu C, Li L, Liu Q, Huang Y, Chen M, Ren B, Guo Y, Chen Y. The impacts of early-life adversity on striatal and hippocampal memory functions. Neuroscience 2022; 490:11-24. [DOI: 10.1016/j.neuroscience.2022.02.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/02/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022]
|
71
|
Granata LE, Valentine A, Hirsch JL, Brenhouse HC. Infant ultrasonic vocalizations predict adolescent social behavior in rats: Effects of early life adversity. Dev Psychobiol 2022; 64:e22260. [PMID: 35312059 PMCID: PMC9340574 DOI: 10.1002/dev.22260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/16/2022]
Abstract
Early life adversity (ELA) increases risk for psychopathologies that often manifest during adolescence and involve disrupted social functioning. ELA affects development of the prefrontal cortex (PFC), which plays a role in social behavior. PFC oxytocin and vasopressin are important regulators of, first, mother-infant attachment, and, later, social behavior, and are implicated in psychiatric disorders. Here, we tested whether infant social communication is predictive of PFC development and adolescent social behavior. We used the limited bedding (LB) ELA model in rats during postnatal days (P)2-14, and measured isolation-induced ultrasonic vocalizations (USVs) at P10 to characterize differences in an early social response. Rats were tested for dyadic social interaction in adolescence (P34). Adolescent oxytocin receptor (Oxtr) and arginine-vasopressin receptor 1a mRNA were measured in the PFC. Relationships between infant USVs, adolescent behavior, and gene expression were assessed. LB-reared rats exhibited fewer USVs at P10. While social behaviors were not robustly affected by rearing, fewer total and complex-type infant USVs predicted fewer interactions in adolescence. LB increased Oxtr in both sexes but Oxtr was not directly predicted by USVs. Findings support the use of USVs as indicators of differential early life experience in rodents, toward further characterization of early factors associated with vulnerability.
Collapse
Affiliation(s)
| | | | - Jason L. Hirsch
- Department of Psychology Northeastern University Boston MA USA
| | | |
Collapse
|
72
|
Toxic Psychosocial Stress, Resiliency Resources and Time to Dementia Diagnosis in a Nationally Representative Sample of Older Americans in the Health and Retirement Study from 2006-2016. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042419. [PMID: 35206612 PMCID: PMC8875619 DOI: 10.3390/ijerph19042419] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/10/2022]
Abstract
Background: Toxic stress (TS), resiliency-promoting factors (RPFs) and their interactions were investigated in relationship to incident dementia in a nationally representative sample (n = 6516) of American adults ≥50 years enrolled in the Health and Retirement Study between 2006 and 2016. Methods: TS included experiences of everyday discrimination and RPF included personal mastery. Race/ethnicity was self-reported as African American, Caucasian, or Other. Multivariable Cox proportional hazards regression models estimated TS-, RPF- and race-associated hazard ratios (HR) for dementia diagnosis and 95% confidence intervals (CIs) with adjustment for comorbidity, lifestyle, and socio-demographic confounders. Results: Discrimination-associated risk of dementia diagnosis on average increased with education level [discrimination x education, p = 0.032; HR = 1.75 (95% CI: 1.01–3.03) if < high school, HR = 5.67 (95% CI: 2.94–10.94) if high school completed and HR = 2.48 (95% CI: 1.53–4.00) if ≥some college education]. Likewise, African American vs. Caucasian race disparity in new-onset dementia was evident (HR = 2.12, 95% CI: 1.42–3.17) among adults with high-mastery while absent (HR = 1.35, 95% CI: 0.75–2.41) among adults with low mastery (Mastery x Race, p = 0.01). Conclusions: TS is a contextual driver of incident dementia that seemingly operates in a race and RPF-dependent fashion among American adults. Association pattern suggests that TS may overwhelm the cognitive reserve benefit of RPF particularly in status-inconsistent contexts including persons subjected to discrimination despite high education and persons of African American descent despite high mastery. Policies that reduce discrimination and promote equitable treatment by race/ethnicity may support cognitive resiliency and reduce the risk of dementia diagnosis in adult Americans.
Collapse
|
73
|
Kangas BD, Short AK, Luc OT, Stern HS, Baram TZ, Pizzagalli DA. A cross-species assay demonstrates that reward responsiveness is enduringly impacted by adverse, unpredictable early-life experiences. Neuropsychopharmacology 2022; 47:767-775. [PMID: 34921225 PMCID: PMC8682039 DOI: 10.1038/s41386-021-01250-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/29/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022]
Abstract
Exposure to early-life adversity (ELA) is associated with several neuropsychiatric conditions, including major depressive disorder, yet causality is difficult to establish in humans. Recent work in rodents has implicated impaired reward circuit signaling in anhedonic-like behavior after ELA exposure. Anhedonia, the lack of reactivity to previously rewarding stimuli, is a transdiagnostic construct common to mental illnesses associated with ELA. Here, we employed an assay of reward responsiveness validated across species, the Probabilistic Reward Task (PRT). In the PRT, healthy participants reliably develop a response bias toward the more richly rewarded stimulus, whereas participants with anhedonia exhibit a blunted response bias that correlates with current and future anhedonia. In a well-established model of ELA that generates a stressful, chaotic, and unpredictable early-life environment, ELA led to blunted response biases in the PRT in two separate cohorts, recapitulating findings in humans with anhedonia. The same ELA rats had blunted sucrose preference, further supporting their anhedonic-like phenotypes. Probing the aspects of ELA that might provoke these deficits, we quantified the unpredictability of dam/pup interactions using entropy measures and found that the unpredictability of maternal care was significantly higher in the ELA groups in which PRT and sucrose preference reward deficits were present later in life. Taken together, these data position the PRT, established in clinical patient populations, as a potent instrument to assess the impact of ELA on the reward circuit across species. These findings also implicate the unpredictability of maternal signals during early life as an important driver of reward sensitivity deficits.
Collapse
Affiliation(s)
- Brian D Kangas
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Behavioral Biology Program, McLean Hospital, Belmont, MA, USA
| | - Annabel K Short
- Department of Anatomy and Neurobiology, University of California-Irvine, Irvine, CA, USA
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
| | - Oanh T Luc
- Behavioral Biology Program, McLean Hospital, Belmont, MA, USA
| | - Hal S Stern
- Department of Statistics, University of California-Irvine, Irvine, CA, USA
| | - Tallie Z Baram
- Department of Anatomy and Neurobiology, University of California-Irvine, Irvine, CA, USA
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
| | - Diego A Pizzagalli
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
74
|
Birnie MT, Levis SC, Mahler SV, Baram TZ. Developmental Trajectories of Anhedonia in Preclinical Models. Curr Top Behav Neurosci 2022; 58:23-41. [PMID: 35156184 DOI: 10.1007/7854_2021_299] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This chapter discusses how the complex concept of anhedonia can be operationalized and studied in preclinical models. It provides information about the development of anhedonia in the context of early-life adversity, and the power of preclinical models to tease out the diverse molecular, epigenetic, and network mechanisms that are responsible for anhedonia-like behaviors.Specifically, we first discuss the term anhedonia, reviewing the conceptual components underlying reward-related behaviors and distinguish anhedonia pertaining to deficits in motivational versus consummatory behaviors. We then describe the repertoire of experimental approaches employed to study anhedonia-like behaviors in preclinical models, and the progressive refinement over the past decade of both experimental instruments (e.g., chemogenetics, optogenetics) and conceptual constructs (salience, valence, conflict). We follow with an overview of the state of current knowledge of brain circuits, nodes, and projections that execute distinct aspects of hedonic-like behaviors, as well as neurotransmitters, modulators, and receptors involved in the generation of anhedonia-like behaviors. Finally, we discuss the special case of anhedonia that arises following early-life adversity as an eloquent example enabling the study of causality, mechanisms, and sex dependence of anhedonia.Together, this chapter highlights the power, potential, and limitations of using preclinical models to advance our understanding of the origin and mechanisms of anhedonia and to discover potential targets for its prevention and mitigation.
Collapse
Affiliation(s)
- Matthew T Birnie
- Departments of Anatomy/Neurobiology and Pediatrics, University of California-Irvine, Irvine, CA, USA
| | - Sophia C Levis
- Departments of Anatomy/Neurobiology and Neurobiology/Behavior, University of California-Irvine, Irvine, CA, USA
| | - Stephen V Mahler
- Department of Neurobiology and Behavior, University of California-Irvine, Irvine, CA, USA
| | - Tallie Z Baram
- Departments of Anatomy/Neurobiology and Pediatrics, University of California-Irvine, Irvine, CA, USA.
| |
Collapse
|
75
|
Short AK, Thai CW, Chen Y, Kamei N, Pham AL, Birnie MT, Bolton JL, Mortazavi A, Baram TZ. Single-Cell Transcriptional Changes in Hypothalamic Corticotropin-Releasing Factor-Expressing Neurons After Early-Life Adversity Inform Enduring Alterations in Vulnerabilities to Stress. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 3:99-109. [PMID: 36712559 PMCID: PMC9874075 DOI: 10.1016/j.bpsgos.2021.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/11/2021] [Accepted: 12/03/2021] [Indexed: 02/01/2023] Open
Abstract
Background Mental health and vulnerabilities to neuropsychiatric disorders involve the interplay of genes and environment, particularly during sensitive developmental periods. Early-life adversity (ELA) and stress promote vulnerabilities to stress-related affective disorders, yet it is unknown how transient ELA dictates lifelong neuroendocrine and behavioral reactions to stress. The population of hypothalamic corticotropin-releasing factor (CRF)-expressing neurons that regulate stress responses is a promising candidate to mediate the long-lasting influences of ELA on stress-related behavioral and hormonal responses via enduring transcriptional and epigenetic mechanisms. Methods Capitalizing on a well-characterized model of ELA, we examined ELA-induced changes in gene expression profiles of CRF-expressing neurons in the hypothalamic paraventricular nucleus of developing male mice. We used single-cell RNA sequencing on isolated CRF-expressing neurons. We determined the enduring functional consequences of transcriptional changes on stress reactivity in adult ELA mice, including hormonal responses to acute stress, adrenal weights as a measure of chronic stress, and behaviors in the looming shadow threat task. Results Single-cell transcriptomics identified distinct and novel CRF-expressing neuronal populations, characterized by both their gene expression repertoire and their neurotransmitter profiles. ELA-provoked expression changes were selective to specific subpopulations and affected genes involved in neuronal differentiation, synapse formation, energy metabolism, and cellular responses to stress and injury. Importantly, these expression changes were impactful, apparent from adrenal hypertrophy and augmented behavioral responses to stress in adulthood. Conclusions We uncover a novel repertoire of stress-regulating CRF cell types differentially affected by ELA and resulting in augmented stress vulnerability, with relevance to the origins of stress-related affective disorders.
Collapse
Affiliation(s)
- Annabel K. Short
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California,Department of Pediatrics, University of California Irvine, Irvine, California
| | - Christina W. Thai
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California
| | - Yuncai Chen
- Department of Pediatrics, University of California Irvine, Irvine, California
| | - Noriko Kamei
- Department of Pediatrics, University of California Irvine, Irvine, California
| | - Aidan L. Pham
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California,Department of Pediatrics, University of California Irvine, Irvine, California
| | - Matthew T. Birnie
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California,Department of Pediatrics, University of California Irvine, Irvine, California
| | - Jessica L. Bolton
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California,Department of Pediatrics, University of California Irvine, Irvine, California
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California
| | - Tallie Z. Baram
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California,Department of Pediatrics, University of California Irvine, Irvine, California,Department of Neurology, University of California Irvine, Irvine, California,Address correspondence to Tallie Z. Baram, M.D., Ph.D.
| |
Collapse
|
76
|
Gee DG. Early Adversity and Development: Parsing Heterogeneity and Identifying Pathways of Risk and Resilience. Am J Psychiatry 2021; 178:998-1013. [PMID: 34734741 DOI: 10.1176/appi.ajp.2021.21090944] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adversity early in life is common and is a major risk factor for the onset of psychopathology. Delineating the neurodevelopmental pathways by which early adversity affects mental health is critical for early risk identification and targeted treatment approaches. A rapidly growing cross-species literature has facilitated advances in identifying the mechanisms linking adversity with psychopathology, specific dimensions of adversity and timing-related factors that differentially relate to outcomes, and protective factors that buffer against the effects of adversity. Yet, vast complexity and heterogeneity in early environments and neurodevelopmental trajectories contribute to the challenges of understanding risk and resilience in the context of early adversity. In this overview, the author highlights progress in four major areas-mechanisms, heterogeneity, developmental timing, and protective factors; synthesizes key challenges; and provides recommendations for future research that can facilitate progress in the field. Translation across species and ongoing refinement of conceptual models have strong potential to inform prevention and intervention strategies that can reduce the immense burden of psychopathology associated with early adversity.
Collapse
Affiliation(s)
- Dylan G Gee
- Department of Psychology, Yale University, New Haven, Conn
| |
Collapse
|
77
|
Sturman O, von Ziegler L, Privitera M, Waag R, Duss S, Vermeiren Y, Giovagnoli L, de Deyn P, Bohacek J. Chronic adolescent stress increases exploratory behavior but does not appear to change the acute stress response in adult male C57BL/6 mice. Neurobiol Stress 2021; 15:100388. [PMID: 34527792 PMCID: PMC8430388 DOI: 10.1016/j.ynstr.2021.100388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 11/26/2022] Open
Abstract
Chronic stress exposure in adolescence can lead to a lasting change in stress responsiveness later in life and is associated with increased mental health issues in adulthood. Here we investigate whether the Chronic Social Instability (CSI) paradigm influences the behavioral and molecular responses to novel acute stressors in mice, and whether it alters physiological responses influenced by the noradrenergic system. Using large cohorts of mice, we show that CSI mice display a persistent increase in exploratory behaviors in the open field test alongside small but widespread transcriptional changes in the ventral hippocampus. However, both the transcriptomic and behavioral responses to novel acute stressors are indistinguishable between groups. In addition, the pupillometric response to a tail shock, known to be mediated by the noradrenergic system, remains unaltered in CSI mice. Ultra-high performance liquid chromatography analysis of monoaminergic neurotransmitter levels in the ventral hippocampus also shows no differences between control or CSI mice at baseline or in response to acute stress. We conclude that CSI exposure during adolescence leads to persistent changes in exploratory behavior and gene expression in the hippocampus, but it does not alter the response to acute stress in adulthood and is unlikely to alter the function of the noradrenergic system.
Collapse
Affiliation(s)
- Oliver Sturman
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland
| | - Lukas von Ziegler
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland
| | - Mattia Privitera
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland
| | - Rebecca Waag
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland
| | - Sian Duss
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland
| | - Yannick Vermeiren
- Department of Biomedical Sciences, Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Wilrijk, Antwerp, Belgium
- Division of Human Nutrition and Health, Chair Group of Nutritional Biology, Wageningen University & Research, Wageningen, Netherlands
- Faculty of Medicine & Health Sciences, Translational Neurosciences, University of Antwerp, Antwerp, Belgium
| | - Letizia Giovagnoli
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland
| | - Peter de Deyn
- Department of Biomedical Sciences, Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Wilrijk, Antwerp, Belgium
- Department of Neurology and Alzheimer Center, University of Groningen and University Medical Center Groningen (UMCG), Groningen, Netherlands
- Department of Neurology, Memory Clinic of Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Johannes Bohacek
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland
| |
Collapse
|
78
|
Dearing C, Morano R, Ptaskiewicz E, Mahbod P, Scheimann JR, Franco-Villanueva A, Wulsin L, Myers B. Glucoregulation and coping behavior after chronic stress in rats: Sex differences across the lifespan. Horm Behav 2021; 136:105060. [PMID: 34537487 PMCID: PMC8629951 DOI: 10.1016/j.yhbeh.2021.105060] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/27/2021] [Accepted: 08/24/2021] [Indexed: 01/01/2023]
Abstract
The purpose of the current study was to determine how biological sex shapes behavioral coping and metabolic health across the lifespan after chronic stress. We hypothesized that examining chronic stress-induced behavioral and endocrine outcomes would reveal sex differences in the biological basis of susceptibility. During late adolescence, male and female Sprague-Dawley rats experienced chronic variable stress (CVS). Following completion of CVS, all rats experienced a forced swim test (FST) followed 3 days later by a fasted glucose tolerance test (GTT). The FST was used to determine coping in response to a stressor. Endocrine metabolic function was evaluated in the GTT by measuring glucose and corticosterone, the primary rodent glucocorticoid. Rats then aged to 15 months when the FST and GTT were repeated. In young rats, chronically stressed females exhibited more passive coping and corticosterone release in the FST. Additionally, chronically stressed females had elevated corticosterone and impaired glucose clearance in the GTT. Aging affected all measurements as behavioral and endocrine outcomes were sex specific. Furthermore, regression analysis between hormonal and behavioral responses identified associations depending on sex and stress. Collectively, these data indicate increased female susceptibility to the effects of chronic stress during adolescence. Further, translational investigation of coping style and glucose homeostasis may identify biomarkers for stress-related disorders.
Collapse
Affiliation(s)
- Carley Dearing
- Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Rachel Morano
- Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States of America
| | - Elaine Ptaskiewicz
- Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Parinaz Mahbod
- Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States of America
| | - Jessie R Scheimann
- Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States of America
| | - Ana Franco-Villanueva
- Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States of America
| | - Lawson Wulsin
- Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States of America
| | - Brent Myers
- Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America.
| |
Collapse
|
79
|
FKBP5 and early life stress affect the hippocampus by an age-dependent mechanism. Brain Behav Immun Health 2021; 9:100143. [PMID: 34589890 PMCID: PMC8474669 DOI: 10.1016/j.bbih.2020.100143] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 01/30/2023] Open
Abstract
Early life stress (ELS) adversely affects the brain and is commonly associated with the etiology of mental health disorders, like depression. In addition to the mood-related symptoms, patients with depression show dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, increased peripheral inflammation, and structural brain alterations. Although the underlying causes are unknown, polymorphisms in the FK506-binding protein 5 (FKBP5) gene, a regulator of glucocorticoid receptor (GR) activity, interact with childhood adversities to increase vulnerability to depressive disorders. We hypothesized that high FKBP5 protein levels combined with early life stress (ELS) would alter the HPA axis and brain, promoting depressive-like behaviors. To test this, we exposed males and females of a mouse model overexpressing FKBP5 in the brain (rTgFKBP5 mice), or littermate controls, to maternal separation for 14 days after birth. Then, we evaluated neuroendocrine, behavioral, and brain changes in young adult and aged mice. We observed lower basal corticosterone (CORT) levels in rTgFKBP5 mice, which was exacerbated in females. Aged, but not young, rTgFKBP5 mice showed increased depressive-like behaviors. Moreover, FKBP5 overexpression reduced hippocampal neuron density in aged mice, while promoting markers of microglia expression, but these effects were reversed by ELS. Together, these results demonstrate that high FKBP5 affects basal CORT levels, depressive-like symptoms, and numbers of neurons and microglia in the hippocampus in an age-dependent manner. High FKBP5 reduces basal corticosterone levels in mice, especially in females. ELS prevents FKBP5-induced susceptibility to depressive-like behavior in aged mice. FKBP5 overexpression reduces hippocampal neuron density in aged mice, while increasing microglial markers.
Collapse
|
80
|
Martynyuk AE, Ju LS, Morey TE. The potential role of stress and sex steroids in heritable effects of sevoflurane†. Biol Reprod 2021; 105:735-746. [PMID: 34192761 PMCID: PMC8444702 DOI: 10.1093/biolre/ioab129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/17/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022] Open
Abstract
Most surgical procedures require general anesthesia, which is a reversible deep sedation state lacking all perception. The induction of this state is possible because of complex molecular and neuronal network actions of general anesthetics (GAs) and other pharmacological agents. Laboratory and clinical studies indicate that the effects of GAs may not be completely reversible upon anesthesia withdrawal. The long-term neurocognitive effects of GAs, especially when administered at the extremes of ages, are an increasingly recognized health concern and the subject of extensive laboratory and clinical research. Initial studies in rodents suggest that the adverse effects of GAs, whose actions involve enhancement of GABA type A receptor activity (GABAergic GAs), can also extend to future unexposed offspring. Importantly, experimental findings show that GABAergic GAs may induce heritable effects when administered from the early postnatal period to at least young adulthood, covering nearly all age groups that may have children after exposure to anesthesia. More studies are needed to understand when and how the clinical use of GAs in a large and growing population of patients can result in lower resilience to diseases in the even larger population of their unexposed offspring. This minireview is focused on the authors' published results and data in the literature supporting the notion that GABAergic GAs, in particular sevoflurane, may upregulate systemic levels of stress and sex steroids and alter expressions of genes that are essential for the functioning of these steroid systems. The authors hypothesize that stress and sex steroids are involved in the mediation of sex-specific heritable effects of sevoflurane.
Collapse
Affiliation(s)
- Anatoly E Martynyuk
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ling-Sha Ju
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Timothy E Morey
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
81
|
Cohodes EM, Kribakaran S, Odriozola P, Bakirci S, McCauley S, Hodges HR, Sisk LM, Zacharek SJ, Gee DG. Migration-related trauma and mental health among migrant children emigrating from Mexico and Central America to the United States: Effects on developmental neurobiology and implications for policy. Dev Psychobiol 2021; 63:e22158. [PMID: 34292596 PMCID: PMC8410670 DOI: 10.1002/dev.22158] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/11/2021] [Accepted: 06/20/2021] [Indexed: 12/24/2022]
Abstract
Children make up over half of the world's migrants and refugees and face a multitude of traumatic experiences prior to, during, and following migration. Here, we focus on migrant children emigrating from Mexico and Central America to the United States and review trauma related to migration, as well as its implications for the mental health of migrant and refugee children. We then draw upon the early adversity literature to highlight potential behavioral and neurobiological sequalae of migration-related trauma exposure, focusing on attachment, emotion regulation, and fear learning and extinction as transdiagnostic mechanisms underlying the development of internalizing and externalizing symptomatology following early-life adversity. This review underscores the need for interdisciplinary efforts to both mitigate the effects of trauma faced by migrant and refugee youth emigrating from Mexico and Central America and, of primary importance, to prevent child exposure to trauma in the context of migration. Thus, we conclude by outlining policy recommendations aimed at improving the mental health of migrant and refugee youth.
Collapse
Affiliation(s)
- Emily M Cohodes
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Sahana Kribakaran
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Paola Odriozola
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Sarah Bakirci
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Sarah McCauley
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - H R Hodges
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Lucinda M Sisk
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Sadie J Zacharek
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Dylan G Gee
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
82
|
Kotah JM, Hoeijmakers L, Nutma E, Lucassen PJ, Korosi A. Early-life stress does not alter spatial memory performance, hippocampal neurogenesis, neuroinflammation, or telomere length in 20-month-old male mice. Neurobiol Stress 2021; 15:100379. [PMID: 34430678 PMCID: PMC8369064 DOI: 10.1016/j.ynstr.2021.100379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/03/2023] Open
Abstract
Early-life stress (ES) increases the risk for psychopathology and cognitive decline later in life. Because the neurobiological substrates affected by ES (i.e., cognition, neuroplasticity, and neuroinflammation) are also altered in aging, we set out to investigate if and how ES in the first week of life affects these domains at an advanced age, and how ES modulates the aging trajectory per se. We subjected C57BL/6j mice to an established ES mouse model from postnatal days 2–9. Mice underwent behavioral testing at 19 months of age and were sacrificed at 20 months to investigate their physiology, hippocampal neuroplasticity, neuroinflammation, and telomere length. ES mice, as a group, did not perform differently from controls in the open field or Morris water maze (MWM). Hippocampal neurogenesis and synaptic marker gene expression were not different in ES mice at this age. While we find aging-associated alterations to neuroinflammatory gene expression and telomere length, these were unaffected by ES. When integrating the current data with those from our previously reported 4- and 10-month-old cohorts, we conclude that ES leads to a ‘premature’ shift in the aging trajectory, consisting of early changes that do not further worsen at the advanced age of 20 months. This could be explained e.g. by a ‘floor’ effect in ES-induced impairments, and/or age-induced impairments in control mice. Future studies should help understand how exactly ES affects the overall aging trajectory. Early-life stress (ES) exposure does not worsen water maze learning in aged male mice. ES does not affect brain plasticity markers at 20 months of age. Hippocampal telomere length is reduced by aging but unaffected by ES. ES leads to a premature aging trajectory that does not worsen with aging.
Collapse
Affiliation(s)
- Janssen M Kotah
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands
| | - Lianne Hoeijmakers
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands
| | - Erik Nutma
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands
| | - Paul J Lucassen
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands
| | - Aniko Korosi
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands
| |
Collapse
|
83
|
Parker KN, Donovan MH, Smith K, Noble-Haeusslein LJ. Traumatic Injury to the Developing Brain: Emerging Relationship to Early Life Stress. Front Neurol 2021; 12:708800. [PMID: 34484104 PMCID: PMC8416304 DOI: 10.3389/fneur.2021.708800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/22/2021] [Indexed: 12/01/2022] Open
Abstract
Despite the high incidence of brain injuries in children, we have yet to fully understand the unique vulnerability of a young brain to an injury and key determinants of long-term recovery. Here we consider how early life stress may influence recovery after an early age brain injury. Studies of early life stress alone reveal persistent structural and functional impairments at adulthood. We consider the interacting pathologies imposed by early life stress and subsequent brain injuries during early brain development as well as at adulthood. This review outlines how early life stress primes the immune cells of the brain and periphery to elicit a heightened response to injury. While the focus of this review is on early age traumatic brain injuries, there is also a consideration of preclinical models of neonatal hypoxia and stroke, as each further speaks to the vulnerability of the brain and reinforces those characteristics that are common across each of these injuries. Lastly, we identify a common mechanistic trend; namely, early life stress worsens outcomes independent of its temporal proximity to a brain injury.
Collapse
Affiliation(s)
- Kaila N. Parker
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
- Department of Psychology, Behavioral Neuroscience, College of Liberal Arts, University of Texas at Austin, Austin, TX, United States
| | - Michael H. Donovan
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
- Department of Psychology, Behavioral Neuroscience, College of Liberal Arts, University of Texas at Austin, Austin, TX, United States
| | - Kylee Smith
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
- Department of Psychology, Behavioral Neuroscience, College of Liberal Arts, University of Texas at Austin, Austin, TX, United States
| | - Linda J. Noble-Haeusslein
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
- Department of Psychology, Behavioral Neuroscience, College of Liberal Arts, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
84
|
Bisaz R, Bessières B, Miranda JM, Travaglia A, Alberini CM. Recovery of memory from infantile amnesia is developmentally constrained. ACTA ACUST UNITED AC 2021; 28:300-306. [PMID: 34400531 PMCID: PMC8372561 DOI: 10.1101/lm.052621.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022]
Abstract
Episodic memories formed during infancy are rapidly forgotten, a phenomenon associated with infantile amnesia, the inability of adults to recall early-life memories. In both rats and mice, infantile memories, although not expressed, are actually stored long term in a latent form. These latent memories can be reinstated later in life by certain behavioral reminders or by artificial reactivations of neuronal ensembles activated at training. Whether the recovery of infantile memories is limited by developmental age, maternal presence, or contingency of stimuli presentation remains to be determined. Here, we show that the return of inhibitory avoidance memory in rats following a behavioral reactivation consisting of an exposure to the context (conditioned stimuli [CS]) and footshock (unconditioned stimuli [US]) given in a temporally unpaired fashion, is evident immediately after US and is limited by the developmental age at which the reactivations are presented; however, it is not influenced by maternal presence or the time interval between training and reactivation. We conclude that one limiting factor for infantile memory reinstatement is developmental age, suggesting that a brain maturation process is necessary to allow the recovery of a “lost” infantile memory.
Collapse
Affiliation(s)
- Reto Bisaz
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Benjamin Bessières
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Janelle M Miranda
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Alessio Travaglia
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Cristina M Alberini
- Center for Neural Science, New York University, New York, New York 10003, USA
| |
Collapse
|
85
|
Lambert CT, Guillette LM. The impact of environmental and social factors on learning abilities: a meta-analysis. Biol Rev Camb Philos Soc 2021; 96:2871-2889. [PMID: 34342125 DOI: 10.1111/brv.12783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 12/20/2022]
Abstract
Since the 1950s, researchers have examined how differences in the social and asocial environment affect learning in rats, mice, and, more recently, a variety of other species. Despite this large body of research, little has been done to synthesize these findings and to examine if social and asocial environmental factors have consistent effects on cognitive abilities, and if so, what aspects of these factors have greater or lesser impact. Here, we conducted a systematic review and meta-analysis examining how different external environmental features, including the social environment, impact learning (both speed of acquisition and performance). Using 531 mean-differences from 176 published articles across 27 species (with studies on rats and mice being most prominent) we conducted phylogenetically corrected mixed-effects models that reveal: (i) an average absolute effect size |d| = 0.55 and directional effect size d = 0.34; (ii) interventions manipulating the asocial environment result in larger effects than social interventions alone; and (iii) the length of the intervention is a significant predictor of effect size, with longer interventions resulting in larger effects. Additionally, much of the variation in effect size remained unexplained, possibly suggesting that species differ widely in how they are affected by environmental interventions due to varying ecological and evolutionary histories. Overall our results suggest that social and asocial environmental factors do significantly affect learning, but these effects are highly variable and perhaps not always as predicted. Most notably, the type (social or asocial) and length of interventions are important in determining the strength of the effect.
Collapse
Affiliation(s)
- Connor T Lambert
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, Edmonton, AB, T6G 2R3, Canada
| | - Lauren M Guillette
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, Edmonton, AB, T6G 2R3, Canada
| |
Collapse
|
86
|
Early life adversity promotes resilience to opioid addiction-related phenotypes in male rats and sex-specific transcriptional changes. Proc Natl Acad Sci U S A 2021; 118:2020173118. [PMID: 33593913 DOI: 10.1073/pnas.2020173118] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Experiencing some early life adversity can have an "inoculating" effect that promotes resilience in adulthood. However, the mechanisms underlying stress inoculation are unknown, and animal models are lacking. Here we used the limited bedding and nesting (LBN) model of adversity to evaluate stress inoculation of addiction-related phenotypes. In LBN, pups from postnatal days 2 to 9 and their dams were exposed to a low-resource environment. In adulthood, they were tested for addiction-like phenotypes and compared to rats raised in standard housing conditions. High levels of impulsivity are associated with substance abuse, but in males, LBN reduced impulsive choice compared to controls. LBN males also self-administered less morphine and had a lower breakpoint on a progressive ratio reinforcement schedule than controls. These effects of LBN on addiction-related behaviors were not found in females. Because the nucleus accumbens (NAc) mediates these behaviors, we tested whether LBN altered NAc physiology in drug-naïve and morphine-exposed rats. LBN reduced the frequency of spontaneous excitatory postsynaptic currents in males, but a similar effect was not observed in females. Only in males did LBN prevent a morphine-induced increase in the AMPA/NMDA ratio. RNA sequencing was performed to delineate the molecular signature in the NAc associated with LBN-derived phenotypes. LBN produced sex-specific changes in transcription, including in genes related to glutamate transmission. Collectively, these studies reveal that LBN causes a male-specific stress inoculation effect against addiction-related phenotypes. Identifying factors that promote resilience to addiction may reveal novel treatment options for patients.
Collapse
|
87
|
Strzelewicz AR, Vecchiarelli HA, Rondón-Ortiz AN, Raneri A, Hill MN, Kentner AC. Interactive effects of compounding multidimensional stressors on maternal and male and female rat offspring outcomes. Horm Behav 2021; 134:105013. [PMID: 34171577 PMCID: PMC8403628 DOI: 10.1016/j.yhbeh.2021.105013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Exposure to adverse childhood experiences (ACEs) is a risk factor for the development of psychiatric disorders in addition to cardiovascular associated diseases. This risk is elevated when the cumulative burden of ACEs is increased. Laboratory animals can be used to model the changes (as well as the underlying mechanisms) that result in response to adverse events. In this study, using male and female Sprague Dawley rats, we examined the impact of increasing stress burden, utilizing both two adverse early life experiences (parental/offspring high fat diet + limited bedding exposure) and three adverse early life experiences (parental/offspring high fat diet + limited bedding exposure + neonatal inflammation), on maternal care quality and offspring behavior. Additionally, we measured hormones and hippocampal gene expression related to stress. We found that the adverse perinatal environment led to a compensatory increase in maternal care. Moreover, these dams had reduced maternal expression of oxytocin receptor, compared to standard housed dams, in response to acute stress on postnatal day (P)22. In offspring, the two-hit and three-hit models resulted in a hyperlocomotor phenotype and increased body weights. Plasma leptin and hippocampal gene expression of corticotropin releasing hormone (Chrh)1 and Crhr2 were elevated (males) while expression of oxytocin was reduced (females) following acute stress. On some measures (e.g., hyperlocomotion, leptin), the magnitude of change was lower in the three-hit compared to the two-hit model. This suggests that multiple early adverse events can have interactive, and often unpredictable, impacts, highlighting the importance of modeling complex interactions amongst stressors during development.
Collapse
Affiliation(s)
- Arielle R Strzelewicz
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, United States
| | - Haley A Vecchiarelli
- Divisions of Medical Sciences, University of Victoria, BC V8P 5C2, Canada; Neuroscience Graduate Program, Hotchkiss Brain Institute, Mathison Centre for Mental Health, Research and Education, Cumming School of Medicine, University of Calgary, AB T2N 1N4, Canada
| | - Alejandro N Rondón-Ortiz
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, United States
| | - Anthony Raneri
- School of Arts & Sciences, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, United States
| | - Matthew N Hill
- Neuroscience Graduate Program, Hotchkiss Brain Institute, Mathison Centre for Mental Health, Research and Education, Cumming School of Medicine, University of Calgary, AB T2N 1N4, Canada
| | - Amanda C Kentner
- School of Arts & Sciences, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, United States.
| |
Collapse
|
88
|
Sierra-Fonseca JA, Hamdan JN, Cohen AA, Cardenas SM, Saucedo S, Lodoza GA, Gosselink KL. Neonatal Maternal Separation Modifies Proteostasis Marker Expression in the Adult Hippocampus. Front Mol Neurosci 2021; 14:661993. [PMID: 34447296 PMCID: PMC8383781 DOI: 10.3389/fnmol.2021.661993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/05/2021] [Indexed: 01/01/2023] Open
Abstract
Exposure to early-life stress (ELS) can persistently modify neuronal circuits and functions, and contribute to the expression of misfolded and aggregated proteins that are hallmarks of several neurodegenerative diseases. The healthy brain is able to clear dysfunctional proteins through the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP). Accumulating evidence indicates that impairment of these pathways contributes to enhanced protein aggregation and neurodegeneration. While stress is a known precipitant of neurological decline, few specific mechanistic links underlying this relationship have been identified. We hypothesized that neonatal maternal separation (MatSep), a well-established model of ELS, has the ability to alter the levels of UPS and ALP components in the brain, and thus has the potential to disrupt proteostasis. The expression of proteostasis-associated protein markers was evaluated by immunoblotting in the hippocampus and cortex of adult Wistar rats that were previously subjected to MatSep. We observed multiple sex- and MatSep-specific changes in the expression of proteins in the ALP, mitophagy, and UPS pathways, particularly in the hippocampus of adult animals. In contrast, MatSep had limited influence on proteostasis marker expression in the cortex of adult animals. Our results indicate that MatSep can selectively modify the intracellular protein degradation machinery in ways that may impact the development and progression of neurodegenerative disease.
Collapse
Affiliation(s)
- Jorge A. Sierra-Fonseca
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Jameel N. Hamdan
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Alexis A. Cohen
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
- Neuroscience Program, Smith College, Northampton, MA, United States
| | - Sonia M. Cardenas
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Sigifredo Saucedo
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Gabriel A. Lodoza
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Kristin L. Gosselink
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
- Department of Physiology and Pathology, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| |
Collapse
|
89
|
Eachus H, Choi MK, Ryu S. The Effects of Early Life Stress on the Brain and Behaviour: Insights From Zebrafish Models. Front Cell Dev Biol 2021; 9:657591. [PMID: 34368117 PMCID: PMC8335398 DOI: 10.3389/fcell.2021.657591] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/20/2021] [Indexed: 01/27/2023] Open
Abstract
The early life period represents a window of increased vulnerability to stress, during which exposure can lead to long-lasting effects on brain structure and function. This stress-induced developmental programming may contribute to the behavioural changes observed in mental illness. In recent decades, rodent studies have significantly advanced our understanding of how early life stress (ELS) affects brain development and behaviour. These studies reveal that ELS has long-term consequences on the brain such as impairment of adult hippocampal neurogenesis, altering learning and memory. Despite such advances, several key questions remain inadequately answered, including a comprehensive overview of brain regions and molecular pathways that are altered by ELS and how ELS-induced molecular changes ultimately lead to behavioural changes in adulthood. The zebrafish represents a novel ELS model, with the potential to contribute to answering some of these questions. The zebrafish offers some important advantages such as the ability to non-invasively modulate stress hormone levels in a whole animal and to visualise whole brain activity in freely behaving animals. This review discusses the current status of the zebrafish ELS field and its potential as a new ELS model.
Collapse
Affiliation(s)
- Helen Eachus
- Living Systems Institute and College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Min-Kyeung Choi
- Living Systems Institute and College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Soojin Ryu
- Living Systems Institute and College of Medicine and Health, University of Exeter, Exeter, United Kingdom.,Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
90
|
The Impact of Crocin and Chronic Isolation Stress on Passive Avoidance Memory and Brain Electrical Activity in Male Rats. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.4.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
91
|
Abstract
Childhood socio-economic status (SES), a measure of the availability of material and social resources, is one of the strongest predictors of lifelong well-being. Here we review evidence that experiences associated with childhood SES affect not only the outcome but also the pace of brain development. We argue that higher childhood SES is associated with protracted structural brain development and a prolonged trajectory of functional network segregation, ultimately leading to more efficient cortical networks in adulthood. We hypothesize that greater exposure to chronic stress accelerates brain maturation, whereas greater access to novel positive experiences decelerates maturation. We discuss the impact of variation in the pace of brain development on plasticity and learning. We provide a generative theoretical framework to catalyse future basic science and translational research on environmental influences on brain development.
Collapse
Affiliation(s)
- Ursula A Tooley
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USA
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Danielle S Bassett
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics & Astronomy, College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - Allyson P Mackey
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
92
|
Shupe EA, Clinton SM. Neonatal resource scarcity alters maternal care and impacts offspring core temperature and growth in rats. Dev Psychobiol 2021; 63:e22144. [PMID: 34053070 DOI: 10.1002/dev.22144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022]
Abstract
Stressful experiences during childhood, including poverty and inconsistent parental care, can enhance vulnerability for worsened physical and mental health outcomes in adulthood. Using Sprague Dawley rats, the present study explored the impact of limited resource availability on maternal behavior and physiological and emotional behavior outcomes in the offspring. Early life adversity was induced by incorporating aspects of the limited bedding and nesting and scarcity models, wherein limited resource availability has previously been shown to provoke unpredictable or adverse maternal care respectively. In our hands, neonatal limited bedding (NLB) stress during postnatal days (P)2-9 altered maternal care, augmenting pup-directed behaviors and reducing self-directed behaviors, and modestly increased the frequency of transitions between discrete behaviors across consecutive timed observations. NLB-exposed pups had lower core body temperatures immediately following the stressful manipulation and exhibited decreased body weight gain across development. However, NLB exposure did not impact adult offspring's social or emotional behavior outcomes in the three-chamber social interaction, novelty-suppressed feeding, splash, or forced swim tests. These findings add to the literature demonstrating that early life adversity impacts maternal care in rodents and can disrupt certain metabolic and thermoregulatory outcomes in the offspring.
Collapse
Affiliation(s)
- Elizabeth A Shupe
- School of Neuroscience, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia, USA
| | - Sarah M Clinton
- School of Neuroscience, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia, USA
| |
Collapse
|
93
|
Solarz A, Majcher-Maślanka I, Kryst J, Chocyk A. A Search for Biomarkers of Early-life Stress-related Psychopathology: Focus on 70-kDa Heat Shock Proteins. Neuroscience 2021; 463:238-253. [PMID: 33662529 DOI: 10.1016/j.neuroscience.2021.02.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/12/2021] [Accepted: 02/21/2021] [Indexed: 12/31/2022]
Abstract
Clinical studies clearly indicate that early-life stress (ELS) may cause physical and mental health problems later in life. Therefore, the identification of universal biomarkers of ELS-related diseases is very important. The 70-kDa heat shock proteins (HSP70s), specifically HSPA5 and HSPA1B, have been recently shown to be potentially associated with occurrence of anxiety, mood disorders, and schizophrenia; thus, we hypothesized that HSP70s are potential candidate biomarkers of ELS-induced psychopathologies. A maternal separation (MS) procedure in rats was used to model ELS, and the expression of HSPA5 and HSPA1B was investigated in the blood, medial prefrontal cortex (mPFC), and hippocampus of juvenile, preadolescent, and adult animals. We also studied the effects of MS on the long-term potentiation (LTP) and behavioral phenotypes of adult rats. We found that MS enhanced the expression of HSPA1B mRNA in the blood and mPFC of juvenile and preadolescent rats. This increase was accompanied by an increase in the HSPA1A/1B protein levels in the mPFC and hippocampus of juvenile rats that persisted in the mPFC until adulthood. MS juvenile and adult rats showed enhanced HSPA5 mRNA expression in the blood and increased HSPA5 protein expression in the mPFC (juveniles) and hippocampus (adults). Concurrently, MS adult rats exhibited aberrations in LTP in the mPFC and hippocampus and a less anxious behavioral phenotype. These results indicate that MS may produce enduring overexpression of HSPA1B and HSPA5 in the brain and blood. Therefore, both HSP70 family members may be potential candidate peripheral and brain biomarkers of ELS-induced changes in brain functioning.
Collapse
Affiliation(s)
- Anna Solarz
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Street 12, 31-343 Kraków, Poland
| | - Iwona Majcher-Maślanka
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Street 12, 31-343 Kraków, Poland
| | - Joanna Kryst
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Street 12, 31-343 Kraków, Poland
| | - Agnieszka Chocyk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Street 12, 31-343 Kraków, Poland.
| |
Collapse
|
94
|
Sanguino‐Gómez J, Buurstede JC, Abiega O, Fitzsimons CP, Lucassen PJ, Eggen BJL, Lesuis SL, Meijer OC, Krugers HJ. An emerging role for microglia in stress‐effects on memory. Eur J Neurosci 2021; 55:2491-2518. [PMID: 33724565 PMCID: PMC9373920 DOI: 10.1111/ejn.15188] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/13/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022]
Abstract
Stressful experiences evoke, among others, a rapid increase in brain (nor)epinephrine (NE) levels and a slower increase in glucocorticoid hormones (GCs) in the brain. Microglia are key regulators of neuronal function and contain receptors for NE and GCs. These brain cells may therefore potentially be involved in modulating stress effects on neuronal function and learning and memory. In this review, we discuss that stress induces (1) an increase in microglial numbers as well as (2) a shift toward a pro‐inflammatory profile. These microglia have (3) impaired crosstalk with neurons and (4) disrupted glutamate signaling. Moreover, microglial immune responses after stress (5) alter the kynurenine pathway through metabolites that impair glutamatergic transmission. All these effects could be involved in the impairments in memory and in synaptic plasticity caused by (prolonged) stress, implicating microglia as a potential novel target in stress‐related memory impairments.
Collapse
Affiliation(s)
| | - Jacobus C. Buurstede
- Department of Medicine Division of Endocrinology Leiden University Medical Center Leiden The Netherlands
| | - Oihane Abiega
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| | - Carlos P. Fitzsimons
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| | - Paul J. Lucassen
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| | - Bart J. L. Eggen
- Department of Biomedical Sciences of Cells & Systems Section Molecular Neurobiology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Sylvie L. Lesuis
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
- Program in Neurosciences and Mental Health Hospital for Sick Children Toronto ON Canada
| | - Onno C. Meijer
- Department of Medicine Division of Endocrinology Leiden University Medical Center Leiden The Netherlands
| | - Harm J. Krugers
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
95
|
Pang TY, Yaeger JDW, Summers CH, Mitra R. Cardinal role of the environment in stress induced changes across life stages and generations. Neurosci Biobehav Rev 2021; 124:137-150. [PMID: 33549740 PMCID: PMC9286069 DOI: 10.1016/j.neubiorev.2021.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 11/20/2020] [Accepted: 01/08/2021] [Indexed: 12/21/2022]
Abstract
The stress response in rodents and humans is exquisitely dependent on the environmental context. The interactive element of the environment is typically studied by creating laboratory models of stress-induced plasticity manifested in behavior or the underlying neuroendocrine mediators of the behavior. Here, we discuss three representative sets of studies where the role of the environment in mediating stress sensitivity or stress resilience is considered across varying windows of time. Collectively, these studies testify that environmental variation at an earlier time point modifies the relationship between stressor and stress response at a later stage. The metaplastic effects of the environment on the stress response remain possible across various endpoints, including behavior, neuroendocrine regulation, region-specific neural plasticity, and regulation of receptors. The timescale of such variation spans adulthood, across stages of life history and generational boundaries. Thus, environmental variables are powerful determinants of the observed diversity in stress response. The predominant role of the environment suggests that it is possible to promote stress resilience through purposeful modification of the environment.
Collapse
Affiliation(s)
- Terence Y Pang
- Florey Institute of Neuroscience and Mental Health, Parkville, 3052, VIC, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, 3010, VIC, Australia
| | - Jazmine D W Yaeger
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA
| | - Rupshi Mitra
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
96
|
Green PG, Alvarez P, Levine JD. Sexual dimorphic role of the glucocorticoid receptor in chronic muscle pain produced by early-life stress. Mol Pain 2021; 17:17448069211011313. [PMID: 33882732 PMCID: PMC8072835 DOI: 10.1177/17448069211011313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fibromyalgia and other chronic musculoskeletal pain syndromes are associated with stressful early life events, which can produce a persistent dysregulation in the hypothalamic-pituitary adrenal (HPA) stress axis function, associated with elevated plasm levels of corticosterone in adults. To determine the contribution of the HPA axis to persistent muscle hyperalgesia in adult rats that had experienced neonatal limited bedding (NLB), a form of early-life stress, we evaluated the role of glucocorticoid receptors on muscle nociceptors in adult NLB rats. In adult male and female NLB rats, mechanical nociceptive threshold in skeletal muscle was significantly lower than in adult control (neonatal standard bedding) rats. Furthermore, adult males and females that received exogenous corticosterone (via dams’ milk) during postnatal days 2–9, displayed a similar lowered mechanical nociceptive threshold. To test the hypothesis that persistent glucocorticoid receptor signaling in the adult contributes to muscle hyperalgesia in NLB rats, nociceptor expression of glucocorticoid receptor (GR) was attenuated by spinal intrathecal administration of an oligodeoxynucleotide (ODN) antisense to GR mRNA. In adult NLB rats, GR antisense markedly attenuated muscle hyperalgesia in males, but not in females. These findings indicate that increased corticosterone levels during a critical developmental period (postnatal days 2–9) produced by NLB stress induces chronic mechanical hyperalgesia in male and female rats that persists in adulthood, and that this chronic muscle hyperalgesia is mediated, at least in part, by persistent stimulation of glucocorticoid receptors on sensory neurons, in the adult male, but not female rat.
Collapse
Affiliation(s)
- Paul G Green
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco, San Francisco, CA, USA.,UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, USA.,Department of Preventative and Restorative Dental Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Pedro Alvarez
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco, San Francisco, CA, USA.,UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jon D Levine
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco, San Francisco, CA, USA.,UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, USA.,Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
97
|
Deficits in hippocampal-dependent memory across different rodent models of early life stress: systematic review and meta-analysis. Transl Psychiatry 2021; 11:231. [PMID: 33879774 PMCID: PMC8058062 DOI: 10.1038/s41398-021-01352-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 03/20/2021] [Accepted: 04/01/2021] [Indexed: 02/02/2023] Open
Abstract
Exposure to early life stress (ELS) causes abnormal hippocampal development and functional deficits in rodents and humans, but no meta-analysis has been used yet to quantify the effects of different rodent models of ELS on hippocampal-dependent memory. We searched PubMed and Web of Science for publications that assessed the effects of handling, maternal separation (MS), and limited bedding and nesting (LBN) on performance in the Morris water maze (MWM), novel object recognition (NOR), and contextual fear conditioning (CFC). Forty-five studies met inclusion criteria (n = 451-763 rodents per test) and were used to calculate standardized mean differences (Hedge's g) and to assess heterogeneity, publication bias, and the moderating effects of sex and species (rats vs. mice). We found significantly lower heterogeneity in LBN compared to handling and MS with no consistent effects of sex or species across the three paradigms. LBN and MS caused similar cognitive deficits in tasks that rely heavily on the dorsal hippocampus, such as MWM and NOR, and were significantly different compared to the improved performance seen in rodents exposed to handling. In the CFC task, which relies more on the ventral hippocampus, all three paradigms showed reduced freezing with moderate effect sizes that were not statistically different. These findings demonstrate the utility of using meta-analysis to quantify outcomes in a large number of inconsistent preclinical studies and highlight the need to further investigate the possibility that handling causes different alterations in the dorsal hippocampus but similar outcomes in the ventral hippocampus when compared to MS and LBN.
Collapse
|
98
|
Čater M, Majdič G. How early maternal deprivation changes the brain and behavior? Eur J Neurosci 2021; 55:2058-2075. [PMID: 33870558 DOI: 10.1111/ejn.15238] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 01/30/2023]
Abstract
Early life stress can adversely influence brain development and reprogram brain function and consequently behavior in adult life. Adequate maternal care in early childhood is therefore particularly important for the normal brain development, and adverse early life experiences can lead to altered emotional, behavioral, and neuroendocrine stress responses in the adulthood. As a form of neonatal stress, maternal deprivation/separation is often used in behavioral studies to examine the effects of early life stress and for modeling the development of certain psychiatric disorders and brain pathologies in animal models. The temporary loss of maternal care during the critical postpartum periods remodels the offspring's brain and provokes long-term effects on learning and cognition, the development of mental disorders, aggression, and an increased tendency for the drug abuse. Early life stress through maternal deprivation affects neuroendocrine responses to stress in adolescence and adulthood by dysregulating the hypothalamic-pituitary-adrenal axis and permanently disrupts stress resilience. In this review, we focused on how improper maternal care during early postnatal life affects brain development resulting in modified behavior later in life.
Collapse
Affiliation(s)
- Maša Čater
- Veterinary Faculty, Laboratory for Animal Genomics, Institute for Preclinical Studies, University of Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Gregor Majdič
- Veterinary Faculty, Laboratory for Animal Genomics, Institute for Preclinical Studies, University of Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| |
Collapse
|
99
|
Impact of prenatal maternal cytokine exposure on sex differences in brain circuitry regulating stress in offspring 45 years later. Proc Natl Acad Sci U S A 2021; 118:2014464118. [PMID: 33876747 DOI: 10.1073/pnas.2014464118] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Stress is associated with numerous chronic diseases, beginning in fetal development with in utero exposures (prenatal stress) impacting offspring's risk for disorders later in life. In previous studies, we demonstrated adverse maternal in utero immune activity on sex differences in offspring neurodevelopment at age seven and adult risk for major depression and psychoses. Here, we hypothesized that in utero exposure to maternal proinflammatory cytokines has sex-dependent effects on specific brain circuitry regulating stress and immune function in the offspring that are retained across the lifespan. Using a unique prenatal cohort, we tested this hypothesis in 80 adult offspring, equally divided by sex, followed from in utero development to midlife. Functional MRI results showed that exposure to proinflammatory cytokines in utero was significantly associated with sex differences in brain activity and connectivity during response to negative stressful stimuli 45 y later. Lower maternal TNF-α levels were significantly associated with higher hypothalamic activity in both sexes and higher functional connectivity between hypothalamus and anterior cingulate only in men. Higher prenatal levels of IL-6 were significantly associated with higher hippocampal activity in women alone. When examined in relation to the anti-inflammatory effects of IL-10, the ratio TNF-α:IL-10 was associated with sex-dependent effects on hippocampal activity and functional connectivity with the hypothalamus. Collectively, results suggested that adverse levels of maternal in utero proinflammatory cytokines and the balance of pro- to anti-inflammatory cytokines impact brain development of offspring in a sexually dimorphic manner that persists across the lifespan.
Collapse
|
100
|
Holman PJ, Raineki C, Chao A, Grewal R, Haghighat S, Fung C, Morgan E, Ellis L, Yu W, Weinberg J. Altered social recognition memory and hypothalamic neuropeptide expression in adolescent male and female rats following prenatal alcohol exposure and/or early-life adversity. Psychoneuroendocrinology 2021; 126:105146. [PMID: 33517167 PMCID: PMC7969453 DOI: 10.1016/j.psyneuen.2021.105146] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/17/2020] [Accepted: 01/18/2021] [Indexed: 02/04/2023]
Abstract
Prenatal alcohol exposure (PAE) and early-life adversity (ELA) both negatively impact social neurobehavioral development, including social recognition memory. Importantly, while individuals with PAE are more likely to experience ELA, relatively few studies have assessed the interaction of these two early insults on adolescent social behavior development. Here, we combine animal models of PAE and ELA to investigate both their unique and interactive effects on social neurobehavioral function in early and late adolescent male and female rats. Behavioral testing was followed by assessment of hypothalamic expression of oxytocin (OT) and vasopressin (AVP), key neuropeptides in the regulation of social behavior. Our results indicate that PAE and ELA have unique sex- and age-specific effects on social recognition memory and OT/AVP expression, with more pronounced neurobehavioral changes observed in males than in females in both early and late adolescence. Specifically, ELA impaired social recognition in early adolescent females regardless of prenatal treatment, while males showed deficits in both early and late adolescence in response to unique and interactive effects of PAE and ELA. Neurobiological data suggest that these perinatal insults differentially impact the OT and AVP systems in a sexually dimorphic manner, such that the OT system appears to be particularly sensitive to PAE in males while the AVP system appears to be more vulnerable to ELA in females. Taken together, our data provide novel insight into how the early postnatal environment may mediate outcomes of PAE as well as the power of animal models to interrogate the relationship between these pre- and postnatal insults.
Collapse
Affiliation(s)
- Parker J. Holman
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, Canada,Corresponding author: Parker J. Holman, M.S.Ed., Ph.D., Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada, , Phone: +1 (604) 822-4554, FAX: +1 (604) 822-2316
| | - Charlis Raineki
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, Canada,Department of Psychology, Brock University, St. Catharines, Canada
| | - Amanda Chao
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Riley Grewal
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Sepehr Haghighat
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Cecilia Fung
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Erin Morgan
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Linda Ellis
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Wayne Yu
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Joanne Weinberg
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|