51
|
Vieira SRL, Morris HR. Neurodegenerative Disease Risk in Carriers of Autosomal Recessive Disease. Front Neurol 2021; 12:679927. [PMID: 34149605 PMCID: PMC8211888 DOI: 10.3389/fneur.2021.679927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/14/2021] [Indexed: 01/19/2023] Open
Abstract
Genetics has driven significant discoveries in the field of neurodegenerative diseases (NDDs). An emerging theme in neurodegeneration warrants an urgent and comprehensive update: that carrier status of early-onset autosomal recessive (AR) disease, typically considered benign, is associated with an increased risk of a spectrum of late-onset NDDs. Glucosylceramidase beta (GBA1) gene mutations, responsible for the AR lysosomal storage disorder Gaucher disease, are a prominent example of this principle, having been identified as an important genetic risk factor for Parkinson disease. Genetic analyses have revealed further examples, notably GRN, TREM2, EIF2AK3, and several other LSD and mitochondria function genes. In this Review, we discuss the evidence supporting the strikingly distinct allele-dependent clinical phenotypes observed in carriers of such gene mutations and its impact on the wider field of neurodegeneration.
Collapse
Affiliation(s)
| | - Huw R. Morris
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
52
|
Kuang L, Hashimoto K, Huang EJ, Gentry MS, Zhu H. Frontotemporal dementia non-sense mutation of progranulin rescued by aminoglycosides. Hum Mol Genet 2021; 29:624-634. [PMID: 31913476 DOI: 10.1093/hmg/ddz280] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/22/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
Frontotemporal dementia (FTD) is an early onset dementia characterized by progressive atrophy of the frontal and/or temporal lobes. FTD is highly heritable with mutations in progranulin accounting for 5-26% of cases in different populations. Progranulin is involved in endocytosis, secretion and lysosomal processes, but its functions under physiological and pathological conditions remains to be defined. Many FTD-causing non-sense progranulin mutations contain a premature termination codon (PTC), thus progranulin haploinsufficiency has been proposed as a major disease mechanism. Currently, there is no effective FTD treatment or therapy. Aminoglycosides are a class of antibiotics that possess a less-known function to induce eukaryotic ribosomal readthrough of PTCs to produce a full-length protein. The aminoglycoside-induced readthrough strategy has been utilized to treat multiple human diseases caused by PTCs. In this study, we tested the only clinically approved readthrough small molecule PTC124 and 11 aminoglycosides in a cell culture system on four PTCs responsible for FTD or a related neurodegenerative disease amyotrophic lateral sclerosis. We found that the aminoglycosides G418 and gentamicin rescued the expression of the progranulin R493X mutation. G418 was more effective than gentamicin (~50% rescue versus <10%), and the effect was dose- and time-dependent. The progranulin readthrough protein displayed similar subcellular localization as the wild-type progranulin protein. These data provide an exciting proof-of-concept that aminoglycosides or other readthrough-promoting compounds are a therapeutic avenue for familial FTD caused by progranulin PTC mutations.
Collapse
Affiliation(s)
- Lisha Kuang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Kei Hashimoto
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Eric J Huang
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA.,Lexington VA Medical Center, Research & Development, Lexington, KY 40502, USA
| |
Collapse
|
53
|
Wang XM, Zeng P, Fang YY, Zhang T, Tian Q. Progranulin in neurodegenerative dementia. J Neurochem 2021; 158:119-137. [PMID: 33930186 DOI: 10.1111/jnc.15378] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/28/2021] [Accepted: 04/16/2021] [Indexed: 01/21/2023]
Abstract
Long-term or severe lack of protective factors is important in the pathogenesis of neurodegenerative dementia. Progranulin (PGRN), a neurotrophic factor expressed mainly in neurons and microglia, has various neuroprotective effects such as anti-inflammatory effects, promoting neuron survival and neurite growth, and participating in normal lysosomal function. Mutations in the PGRN gene (GRN) have been found in several neurodegenerative dementias, including frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD). Herein, PGRN deficiency and PGRN hydrolytic products (GRNs) in the pathological changes related to dementia, including aggregation of tau and TAR DNA-binding protein 43 (TDP-43), amyloid-β (Aβ) overproduction, neuroinflammation, lysosomal dysfunction, neuronal death, and synaptic deficit have been summarized. Furthermore, as some therapeutic strategies targeting PGRN have been developed in various models, we highlighted PGRN as a potential anti-neurodegeneration target in dementia.
Collapse
Affiliation(s)
- Xiao-Ming Wang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zeng
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry, Huazhong University of Science and Technology, Wuhan, China
| | - Ying-Yan Fang
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, China
| | - Teng Zhang
- Department of Neurology, Shanxian Central Hospital, The Affiliated Huxi Hospital of Jining Medical College, Heze, China
| | - Qing Tian
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
54
|
Diagnostic Value of Circulating Progranulin and Its Receptor EphA2 in Predicting the Atheroma Burden in Patients with Coronary Artery Disease. DISEASE MARKERS 2021; 2021:6653501. [PMID: 33968283 PMCID: PMC8084646 DOI: 10.1155/2021/6653501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/27/2021] [Accepted: 04/12/2021] [Indexed: 01/13/2023]
Abstract
Background Progranulin (PGRN) and its potential receptor Eph-receptor tyrosine kinase-type A2 (EphA2) are inflammation-related molecules that present on the atherosclerotic plaques. However, the roles of circulating PGRN and EphA2 in coronary artery disease (CAD) remain unclear. Objective To study the clinical significance of circulating PGRN and EphA2 levels in Chinese patients undergoing coronary angiography. Methods Levels of circulating EphA2 fragments and PGRN were examined in 201 consecutive individuals who underwent coronary angiography for suspected CAD in our center from Jan 2020 to Oct 2020. Demographic characteristics, results of biochemical and auxiliary examinations, and other relevant information were collected. The coronary atheroma burden was quantified by the Gensini score and the existence of chronic total occlusion (CTO). Univariate analysis and multivariate logistic regression analysis were used to analyze the risk factors for acute coronary syndrome (ACS). In patients with ACS and SAP, a receiver operating characteristic (ROC) curve was generated to detect the accuracy and discriminative ability of levels of EphA2 and PGRN, the Gensini score, and cardiac injury biomarkers as surrogate endpoints for CTO. Results Circulating EphA2 levels were significantly higher in patients with ACS than in subjects with stable angina pectoris (SAP) or control subjects (p < 0.001). A positive linear correlation was verified between EphA2 levels and the Gensini score (r = 0.306, p < 0.001), and negative correlation was detected with the left ventricular ejection fraction (LVEF) (r = −0.405, p < 0.001). Both PGRN and EphA2 were positively associated with cardiac injury biomarkers (i.e., NT-proBNP, cTnT, and hs-CRP) (p < 0.05). The area under the ROC curve of PGRN and EphA2 was 0.604 and 0.686, respectively (p < 0.01). Conclusions Higher circulating EphA2 and PGRN levels were detected in patients with ACS than in patients with SAP. Circulating EphA2 and PGRN levels might be diagnostic factors for predicting the atheroma burden in patients with CAD.
Collapse
|
55
|
Frew J, Nygaard HB. Neuropathological and behavioral characterization of aged Grn R493X progranulin-deficient frontotemporal dementia knockin mice. Acta Neuropathol Commun 2021; 9:57. [PMID: 33795008 PMCID: PMC8017751 DOI: 10.1186/s40478-021-01158-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/15/2021] [Indexed: 12/25/2022] Open
Abstract
Frontotemporal lobar degeneration (FTLD) causes a spectrum of clinical presentations of frontotemporal dementia (FTD), including progressive changes in behavior, personality, executive function, and language. Up to 20% of familial FTLD cases are caused by progranulin (GRN) haploinsufficiency (FTD-GRN), with one of the most common causal variant being a nonsense mutation at arginine 493 (R493X). Recently, a genetic knockin FTD-GRN mouse model was generated bearing this GrnR493X mutation, at the analogous arginine in murine Grn. Aged, homozygous GrnR493X mice (GrnR493X/R493X) have been shown to phenotypically replicate several neuropathological hallmarks previously demonstrated in Grn null mice. We conducted a comprehensive neuropathological and behavioral assessment of 18 month old GrnR493X/R493X mice, observing a striking lysosomal dysfunction and thalamic neurodegeneration not previously described in this model, as well as a male-specific increase in generalized anxiety. These findings provide additional phenotypic markers of pathogenesis in aged GrnR493X/R493X mice that will contribute to better defining mechanisms underlying FTD-GRN, and offer relevant outcome measures for preclinical efficacy testing of novel therapeutics that target nonsense mutations leading to this devastating disease.
Collapse
|
56
|
Exploring dementia and neuronal ceroid lipofuscinosis genes in 100 FTD-like patients from 6 towns and rural villages on the Adriatic Sea cost of Apulia. Sci Rep 2021; 11:6353. [PMID: 33737586 PMCID: PMC7973810 DOI: 10.1038/s41598-021-85494-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 03/01/2021] [Indexed: 12/30/2022] Open
Abstract
Frontotemporal dementia (FTD) refers to a complex spectrum of clinically and genetically heterogeneous disorders. Although fully penetrant mutations in several genes have been identified and can explain the pathogenic mechanisms underlying a great portion of the Mendelian forms of the disease, still a significant number of families and sporadic cases remains genetically unsolved. We performed whole exome sequencing in 100 patients with a late-onset and heterogeneous FTD-like clinical phenotype from Apulia and screened mendelian dementia and neuronal ceroid lipofuscinosis genes. We identified a nonsense mutation in SORL1 VPS domain (p.R744X), in 2 siblings displaying AD with severe language problems and primary progressive aphasia and a near splice-site mutation in CLCN6 (p.S116P) segregating with an heterogeneous phenotype, ranging from behavioural FTD to FTD with memory onset and to the logopenic variant of primary progressive aphasia in one family. Moreover 2 sporadic cases with behavioural FTD carried heterozygous mutations in the CSF1R Tyrosin kinase flanking regions (p.E573K and p.R549H). By contrast, only a minority of patients carried pathogenic C9orf72 repeat expansions (1%) and likely moderately pathogenic variants in GRN (p.C105Y, p.C389fs and p.C139R) (3%). In concert with recent studies, our findings support a common pathogenic mechanisms between FTD and neuronal ceroid lipofuscinosis and suggests that neuronal ceroid lipofuscinosis genes should be investigated also in dementia patients with predominant frontal symptoms and language impairments.
Collapse
|
57
|
Human progranulin-expressing mice as a novel tool for the development of progranulin-modulating therapeutics. Neurobiol Dis 2021; 153:105314. [PMID: 33636385 DOI: 10.1016/j.nbd.2021.105314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/24/2021] [Accepted: 02/22/2021] [Indexed: 11/24/2022] Open
Abstract
The granulin protein (also known as, and hereafter referred to as, progranulin) is a secreted glycoprotein that contributes to overall brain health. Heterozygous loss-of-function mutations in the gene encoding the progranulin protein (Granulin Precursor, GRN) are a common cause of familial frontotemporal dementia (FTD). Gene therapy approaches that aim to increase progranulin expression from a single wild-type allele, an area of active investigation for the potential treatment of GRN-dependent FTD, will benefit from the availability of a mouse model that expresses a genomic copy of the human GRN gene. Here we report the development and characterization of a novel mouse model that expresses the entire human GRN gene in its native genomic context as a single copy inserted into a defined locus (Hprt) in the mouse genome. We show that human and mouse progranulin are expressed in a similar tissue-specific pattern, suggesting that the two genes are regulated by similar mechanisms. Human progranulin rescues a phenotype characteristic of progranulin-null mice, the exaggerated and early deposition of the aging pigment lipofuscin in the brain, indicating that the two proteins are functionally similar. Longitudinal behavioural and neuropathological analyses revealed no significant differences between wild-type and human progranulin-overexpressing mice up to 18 months of age, providing evidence that long-term increase of progranulin levels is well tolerated in mice. Finally, we demonstrate that human progranulin expression can be increased in the brain using an antisense oligonucleotide that inhibits a known GRN-regulating micro-RNA, demonstrating that the transgene is responsive to potential gene therapy drugs. Human progranulin-expressing mice represent a novel and valuable tool to expedite the development of progranulin-modulating therapeutics.
Collapse
|
58
|
Microglial Turnover in Ageing-Related Neurodegeneration: Therapeutic Avenue to Intervene in Disease Progression. Cells 2021; 10:cells10010150. [PMID: 33466587 PMCID: PMC7828713 DOI: 10.3390/cells10010150] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Microglia are brain-dwelling macrophages and major parts of the neuroimmune system that broadly contribute to brain development, homeostasis, ageing and injury repair in the central nervous system (CNS). Apart from other brain macrophages, they have the ability to constantly sense changes in the brain’s microenvironment, functioning as housekeepers for neuronal well-being and providing neuroprotection in normal physiology. Microglia use a set of genes for these functions that involve proinflammatory cytokines. In response to specific stimuli, they release these proinflammatory cytokines, which can damage and kill neurons via neuroinflammation. However, alterations in microglial functioning are a common pathophysiology in age-related neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, Huntington’s and prion diseases, as well as amyotrophic lateral sclerosis, frontotemporal dementia and chronic traumatic encephalopathy. When their sentinel or housekeeping functions are severely disrupted, they aggravate neuropathological conditions by overstimulating their defensive function and through neuroinflammation. Several pathways are involved in microglial functioning, including the Trem2, Cx3cr1 and progranulin pathways, which keep the microglial inflammatory response under control and promote clearance of injurious stimuli. Over time, an imbalance in this system leads to protective microglia becoming detrimental, initiating or exacerbating neurodegeneration. Correcting such imbalances might be a potential mode of therapeutic intervention in neurodegenerative diseases.
Collapse
|
59
|
Tian D, Qin Q, Li M, Li X, Xu Q, Lv Q. Homocysteine Impairs Endothelial Cell Barrier Function and Angiogenic Potential via the Progranulin/EphA2 Pathway. Front Pharmacol 2021; 11:614760. [PMID: 33510642 PMCID: PMC7836014 DOI: 10.3389/fphar.2020.614760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/04/2020] [Indexed: 12/26/2022] Open
Abstract
Hyperhomocysteinemia is a well-recognized independent risk factor for cardiovascular disease. To date, the mechanism of pathological plasma homocysteine (Hcy) level elevation remains to be elucidated. We aimed to investigate the levels of progranulin (PGRN), Eph-receptor tyrosine kinase-type A2 (EphA2), vascular cell adhesion molecule-1 (VCAM-1), and Hcy in patients with arteriosclerosis and investigate their functions in Hcy-injured human umbilical vein endothelial cells (HUVECs). EphA2 knockdown was induced in HUVECs by shRNA lentivirus infection with EphA2-RNAi, and bulk RNA-seq assay was performed. Then we investigated the mechanism underlying the effect of recombinant human PGRN (rhPGRN) combined with shRNA interference of EphA2 on cell proliferation, migration, and angiogenesis in Hcy-injured HUVECs. Results showed that serum EphA2, VCAM-1, and Hcy levels in acute coronary syndrome patients were significantly higher than those in chronic coronary syndrome patients (p = 0.000; p = 0.000; p = 0.033, respectively). In vitro, we demonstrated that knockdown of EphA2 significantly impaired cell adhesion and inhibited HUVECs migration and angiogenesis (p < 0.001), which was associated with reduction in VCAM1 and VE-cadherin (p < 0.05). Hcy modulated the expression of PGRN and EphA2 in a time-and dose-dependent manner. However, rhPGRN ameliorated the Hcy-induced reduction in cell viability and migration (p < 0.05). Mechanistically, we found that PGRN/EphA2 and its downstream AKT/NF-κB signaling might be the primary signal transduction pathways underlying Hcy-induced injury. The present study illustrated that PGRN plays a previously unrecognized role in Hcy-induced endothelial injury, which is achieved through its interaction with EphA2 signaling, implying a promising therapeutic target for cardiovascular disease.
Collapse
Affiliation(s)
- Dan Tian
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qing Qin
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Disease, Shanghai, China
| | - Mingfei Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Disease, Shanghai, China
| | - Xiaoyu Li
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qing Xu
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qianzhou Lv
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
60
|
Owens LV, Benedetto A, Dawson N, Gaffney CJ, Parkin ET. Gene therapy-mediated enhancement of protective protein expression for the treatment of Alzheimer's disease. Brain Res 2021; 1753:147264. [PMID: 33422539 DOI: 10.1016/j.brainres.2020.147264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/22/2020] [Accepted: 12/20/2020] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is the leading form of dementia but lacks curative treatments. Current understanding of AD aetiology attributes the development of the disease to the misfolding of two proteins; amyloid-β (Aβ) and hyperphosphorylated tau, with their pathological accumulation leading to concomitant oxidative stress, neuroinflammation, and neuronal death. These processes are regulated at multiple levels to maintain homeostasis and avert disease. However, many of the relevant regulatory proteins appear to be downregulated in the AD-afflicted brain. Enhancement/restoration of these 'protective' proteins, therefore, represents an attractive therapeutic avenue. Gene therapy is a desirable means of achieving this because it is not associated with the side-effects linked to systemic protein administration, and sustained protein expression virtually eliminates compliance issues. The current article represents a focused and succinct review of the better established 'protective' protein targets for gene therapy enhancement/restoration rather than being designed as an exhaustive review incorporating less validated protein subjects. In addition, we will discuss how the risks associated with uncontrolled or irreversible gene expression might be mitigated through combining neuronal-specific promoters, inducible expression systems and localised injections. Whilst many of the gene therapy targets reviewed herein are yet to enter clinical trials, preclinical testing has thus far demonstrated encouraging potential for the gene therapy-based treatment of AD.
Collapse
Affiliation(s)
- Lauren V Owens
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| | - Alexandre Benedetto
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| | - Neil Dawson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| | - Christopher J Gaffney
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| | - Edward T Parkin
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK.
| |
Collapse
|
61
|
Rabiee B, Anwar KN, Shen X, Putra I, Liu M, Jung R, Afsharkhamseh N, Rosenblatt MI, Fishman GA, Liu X, Ghassemi M, Djalilian AR. Gene dosage manipulation alleviates manifestations of hereditary PAX6 haploinsufficiency in mice. Sci Transl Med 2020; 12:eaaz4894. [PMID: 33298563 DOI: 10.1126/scitranslmed.aaz4894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 04/16/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022]
Abstract
In autosomal dominant conditions with haploinsufficiency, a single functional allele cannot maintain sufficient dosage for normal function. We hypothesized that pharmacologic induction of the wild-type allele could lead to gene dosage compensation and mitigation of the disease manifestations. The paired box 6 (PAX6) gene is crucial in tissue development and maintenance particularly in eye, brain, and pancreas. Aniridia is a panocular condition with impaired eye development and limited vision due to PAX6 haploinsufficiency. To test our hypothesis, we performed a chemical screen and found mitogen-activated protein kinase kinase (MEK) inhibitors to induce PAX6 expression in normal and mutant corneal cells. Treatment of newborn Pax6-deficient mice (Pax6Sey-Neu/+ ) with topical or systemic MEK inhibitor PD0325901 led to increased corneal PAX6 expression, improved corneal morphology, reduced corneal opacity, and enhanced ocular function. These results suggest that induction of the wild-type allele by drug repurposing is a potential therapeutic strategy for haploinsufficiencies, which is not limited to specific mutations.
Collapse
Affiliation(s)
- Behnam Rabiee
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Khandaker N Anwar
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xiang Shen
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ilham Putra
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mingna Liu
- Departments of Biology and Psychology, University of Virginia, Charlottesville, VA 22903, USA
| | - Rebecca Jung
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Neda Afsharkhamseh
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Gerald A Fishman
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Pangere Center for Inherited Retinal Diseases, The Chicago Lighthouse, Chicago, IL 60608, USA
| | - Xiaorong Liu
- Departments of Biology and Psychology, University of Virginia, Charlottesville, VA 22903, USA
| | - Mahmood Ghassemi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
62
|
Arrant AE, Davis SE, Vollmer RM, Murchison CF, Mobley JA, Nana AL, Spina S, Grinberg LT, Karydas AM, Miller BL, Seeley WW, Roberson ED. Elevated levels of extracellular vesicles in progranulin-deficient mice and FTD-GRN Patients. Ann Clin Transl Neurol 2020; 7:2433-2449. [PMID: 33197149 PMCID: PMC7732244 DOI: 10.1002/acn3.51242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/22/2020] [Accepted: 10/18/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE The goal of this study was to investigate the effect of progranulin insufficiency on extracellular vesicles (EVs), a heterogeneous population of vesicles that may contribute to progression of neurodegenerative disease. Loss-of-function mutations in progranulin (GRN) are a major cause of frontotemporal dementia (FTD), and brains from GRN carriers with FTD (FTD-GRN) exhibit signs of lysosomal dysfunction. Lysosomal dysfunction may induce compensatory increases in secretion of exosomes, EVs secreted from the endolysosomal system, so we hypothesized that progranulin insufficiency would increase EV levels in the brain. METHODS We analyzed levels and protein contents of brain EVs from Grn-/- mice, which model the lysosomal abnormalities of FTD-GRN patients. We then measured brain EVs in FTD-GRN patients. To assess the relationship of EVs with symptomatic disease, we measured plasma EVs in presymptomatic and symptomatic GRN mutation carriers. RESULTS Grn-/- mice had elevated brain EV levels and altered EV protein contents relative to wild-type mice. These changes were age-dependent, occurring only after the emergence of pathology in Grn-/- mice. FTD-GRN patients (n = 13) had elevated brain EV levels relative to controls (n = 5). Symptomatic (n = 12), but not presymptomatic (n = 7), GRN carriers had elevated plasma EV levels relative to controls (n = 8). INTERPRETATION These data show that symptomatic FTD-GRN patients have elevated levels of brain and plasma EVs, and that this effect is modeled in the brain of Grn-/- mice after the onset of pathology. This increase in EVs could influence FTD disease progression, and provides further support for EVs as potential FTD biomarkers.
Collapse
Affiliation(s)
- Andrew E. Arrant
- Departments of Neurology and NeurobiologyCenter for Neurodegeneration and Experimental TherapeuticsAlzheimer’s Disease CenterEvelyn F. McKnight Brain InstituteUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Skylar E. Davis
- Departments of Neurology and NeurobiologyCenter for Neurodegeneration and Experimental TherapeuticsAlzheimer’s Disease CenterEvelyn F. McKnight Brain InstituteUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Rachael M. Vollmer
- Departments of Neurology and NeurobiologyCenter for Neurodegeneration and Experimental TherapeuticsAlzheimer’s Disease CenterEvelyn F. McKnight Brain InstituteUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Charles F. Murchison
- Departments of Neurology and NeurobiologyCenter for Neurodegeneration and Experimental TherapeuticsAlzheimer’s Disease CenterEvelyn F. McKnight Brain InstituteUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Department of BiostatisticsUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - James A. Mobley
- Department of SurgeryUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Alissa L. Nana
- Department of NeurologyMemory and Aging CenterUCSF Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Salvatore Spina
- Department of NeurologyMemory and Aging CenterUCSF Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Lea T. Grinberg
- Department of NeurologyMemory and Aging CenterUCSF Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of PathologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Anna M. Karydas
- Department of NeurologyMemory and Aging CenterUCSF Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Bruce L. Miller
- Department of NeurologyMemory and Aging CenterUCSF Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - William W. Seeley
- Department of NeurologyMemory and Aging CenterUCSF Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of PathologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Erik D. Roberson
- Departments of Neurology and NeurobiologyCenter for Neurodegeneration and Experimental TherapeuticsAlzheimer’s Disease CenterEvelyn F. McKnight Brain InstituteUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
63
|
Abstract
Neuronal ceroid lipofuscinosis (NCLs) is a group of inherited neurodegenerative lysosomal storage diseases that together represent the most common cause of dementia in children. Phenotypically, patients have visual impairment, cognitive and motor decline, epilepsy, and premature death. A primary challenge is to halt and/or reverse these diseases, towards which developments in potential effective therapies are encouraging. Many treatments, including enzyme replacement therapy (for CLN1 and CLN2 diseases), stem-cell therapy (for CLN1, CLN2, and CLN8 diseases), gene therapy vector (for CLN1, CLN2, CLN3, CLN5, CLN6, CLN7, CLN10, and CLN11 diseases), and pharmacological drugs (for CLN1, CLN2, CLN3, and CLN6 diseases) have been evaluated for safety and efficacy in pre-clinical and clinical studies. Currently, cerliponase alpha for CLN2 disease is the only approved therapy for NCL. Lacking is any study of potential treatments for CLN4, CLN9, CLN12, CLN13 or CLN14 diseases. This review provides an overview of genetics for each CLN disease, and we discuss the current understanding from pre-clinical and clinical study of potential therapeutics. Various therapeutic interventions have been studied in many experimental animal models. Combination of treatments may be useful to slow or even halt disease progression; however, few therapies are unlikely to even partially reverse the disease and a complete reversal is currently improbable. Early diagnosis to allow initiation of therapy, when indicated, during asymptomatic stages is more important than ever.
Collapse
|
64
|
Huang M, Modeste E, Dammer E, Merino P, Taylor G, Duong DM, Deng Q, Holler CJ, Gearing M, Dickson D, Seyfried NT, Kukar T. Network analysis of the progranulin-deficient mouse brain proteome reveals pathogenic mechanisms shared in human frontotemporal dementia caused by GRN mutations. Acta Neuropathol Commun 2020; 8:163. [PMID: 33028409 PMCID: PMC7541308 DOI: 10.1186/s40478-020-01037-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 02/08/2023] Open
Abstract
Heterozygous, loss-of-function mutations in the granulin gene (GRN) encoding progranulin (PGRN) are a common cause of frontotemporal dementia (FTD). Homozygous GRN mutations cause neuronal ceroid lipofuscinosis-11 (CLN11), a lysosome storage disease. PGRN is a secreted glycoprotein that can be proteolytically cleaved into seven bioactive 6 kDa granulins. However, it is unclear how deficiency of PGRN and granulins causes neurodegeneration. To gain insight into the mechanisms of FTD pathogenesis, we utilized Tandem Mass Tag isobaric labeling mass spectrometry to perform an unbiased quantitative proteomic analysis of whole-brain tissue from wild type (Grn+/+) and Grn knockout (Grn-/-) mice at 3- and 19-months of age. At 3-months lysosomal proteins (i.e. Gns, Scarb2, Hexb) are selectively increased indicating lysosomal dysfunction is an early consequence of PGRN deficiency. Additionally, proteins involved in lipid metabolism (Acly, Apoc3, Asah1, Gpld1, Ppt1, and Naaa) are decreased; suggesting lysosomal degradation of lipids may be impaired in the Grn-/- brain. Systems biology using weighted correlation network analysis (WGCNA) of the Grn-/- brain proteome identified 26 modules of highly co-expressed proteins. Three modules strongly correlated to Grn deficiency and were enriched with lysosomal proteins (Gpnmb, CtsD, CtsZ, and Tpp1) and inflammatory proteins (Lgals3, GFAP, CD44, S100a, and C1qa). We find that lysosomal dysregulation is exacerbated with age in the Grn-/- mouse brain leading to neuroinflammation, synaptic loss, and decreased markers of oligodendrocytes, myelin, and neurons. In particular, GPNMB and LGALS3 (galectin-3) were upregulated by microglia and elevated in FTD-GRN brain samples, indicating common pathogenic pathways are dysregulated in human FTD cases and Grn-/- mice. GPNMB levels were significantly increased in the cerebrospinal fluid of FTD-GRN patients, but not in MAPT or C9orf72 carriers, suggesting GPNMB could be a biomarker specific to FTD-GRN to monitor disease onset, progression, and drug response. Our findings support the idea that insufficiency of PGRN and granulins in humans causes neurodegeneration through lysosomal dysfunction, defects in autophagy, and neuroinflammation, which could be targeted to develop effective therapies.
Collapse
|
65
|
Johnson TB, White KA, Brudvig JJ, Cain JT, Langin L, Pratt MA, Booth CD, Timm DJ, Davis SS, Meyerink B, Likhite S, Meyer K, Weimer JM. AAV9 Gene Therapy Increases Lifespan and Treats Pathological and Behavioral Abnormalities in a Mouse Model of CLN8-Batten Disease. Mol Ther 2020; 29:162-175. [PMID: 33010819 DOI: 10.1016/j.ymthe.2020.09.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/24/2020] [Accepted: 09/20/2020] [Indexed: 12/26/2022] Open
Abstract
CLN8 disease is a rare form of neuronal ceroid lipofuscinosis caused by biallelic mutations in the CLN8 gene, which encodes a transmembrane endoplasmic reticulum protein involved in trafficking of lysosomal enzymes. CLN8 disease patients present with myoclonus, tonic-clonic seizures, and progressive declines in cognitive and motor function, with many cases resulting in premature death early in life. There are currently no treatments that can cure the disease or substantially slow disease progression. Using a mouse model of CLN8 disease, we tested the safety and efficacy of an intracerebroventricularly (i.c.v.) delivered self-complementary adeno-associated virus serotype 9 (scAAV9) gene therapy vector driving expression of human CLN8. A single neonatal injection was safe and well tolerated, resulting in robust transgene expression throughout the CNS from 4 to 24 months, reducing histopathological and behavioral hallmarks of the disease and restoring lifespan from 10 months in untreated animals to beyond 24 months of age in treated animals. While it is unclear whether some of these behavioral improvements relate to preserved visual function, improvements in learning/memory, or other central or peripheral benefits, these results demonstrate, by far, the most successful degree of rescue reported in an animal model of CLN8 disease, and they support further development of gene therapy for this disorder.
Collapse
Affiliation(s)
- Tyler B Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA; Amicus Therapeutics, Philadelphia, PA, USA
| | - Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Jon J Brudvig
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Jacob T Cain
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA; Amicus Therapeutics, Philadelphia, PA, USA
| | - Logan Langin
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Melissa A Pratt
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Clarissa D Booth
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Derek J Timm
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Samantha S Davis
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Brandon Meyerink
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Shibi Likhite
- The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Kathrin Meyer
- The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA; Amicus Therapeutics, Philadelphia, PA, USA.
| |
Collapse
|
66
|
Hinderer C, Miller R, Dyer C, Johansson J, Bell P, Buza E, Wilson JM. Adeno-associated virus serotype 1-based gene therapy for FTD caused by GRN mutations. Ann Clin Transl Neurol 2020; 7:1843-1853. [PMID: 32937039 PMCID: PMC7545603 DOI: 10.1002/acn3.51165] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/29/2020] [Accepted: 07/31/2020] [Indexed: 11/30/2022] Open
Abstract
Objective Dominant loss‐of‐function mutations in the gene encoding the lysosomal protein, progranulin, cause 5‐10% of frontotemporal dementia cases. As progranulin undergoes secretion and endocytosis, a small number of progranulin‐expressing cells can potentially supply the protein to the entire central nervous system. Thus, gene therapy is a promising treatment approach. Methods We evaluated adeno‐associated viral vector administration into the cerebrospinal fluid as a minimally invasive approach to deliver the granulin gene to the central nervous system in a murine disease model and nonhuman primates. Results In progranulin‐deficient mice, vector delivery into the lateral cerebral ventricles increased progranulin levels in the cerebrospinal fluid and normalized histological and biochemical markers of progranulin deficiency. A single vector injection into the cisterna magna of nonhuman primates achieved CSF progranulin concentrations up to 40‐fold higher than those of normal human subjects and exceeded CSF progranulin levels of successfully treated mice. Animals treated with an adeno‐associated virus serotype 1 vector exhibited progranulin expression fivefold higher than those treated with an AAV5 vector or the AAV9 variant, AAVhu68, apparently due to remarkably efficient transduction of ependymal cells. Progranulin expression mediated by adeno‐associated viral vectors was well tolerated in nonhuman primates with no evidence of dose‐limiting toxicity, even at vector doses that induced supraphysiologic progranulin expression. Interpretation These findings support the development of AAV1‐based gene therapy for frontotemporal dementia caused by progranulin deficiency.
Collapse
Affiliation(s)
- Christian Hinderer
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rod Miller
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cecilia Dyer
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Julia Johansson
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Peter Bell
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth Buza
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James M Wilson
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
67
|
Endosomal Trafficking in Alzheimer's Disease, Parkinson's Disease, and Neuronal Ceroid Lipofuscinosis. Mol Cell Biol 2020; 40:MCB.00262-20. [PMID: 32690545 DOI: 10.1128/mcb.00262-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuronal ceroid lipofuscinosis (NCL) is one of the most prevalent neurodegenerative disorders of early life, Parkinson's disease (PD) is the most common neurodegenerative disorder of midlife, while Alzheimer's disease (AD) is the most common neurodegenerative disorder of late life. While they are phenotypically distinct, recent studies suggest that they share a biological pathway, retromer-dependent endosomal trafficking. A retromer is a multimodular protein assembly critical for sorting and trafficking cargo out of the endosome. As a lysosomal storage disease, all 13 of NCL's causative genes affect endolysosomal function, and at least four have been directly linked to retromer. PD has several known causative genes, with one directly linked to retromer and others causing endolysosomal dysfunction. AD has over 25 causative genes/risk factors, with several of them linked to retromer or endosomal trafficking dysfunction. In this article, we summarize the emerging evidence on the association of genes causing NCL with retromer function and endosomal trafficking, review the recent evidence linking NCL genes to AD, and discuss how NCL, AD, and PD converge on a shared molecular pathway. We also discuss this pathway's role in microglia and neurons, cell populations which are critical to proper brain homeostasis and whose dysfunction plays a key role in neurodegeneration.
Collapse
|
68
|
Chaplot K, Jarvela TS, Lindberg I. Secreted Chaperones in Neurodegeneration. Front Aging Neurosci 2020; 12:268. [PMID: 33192447 PMCID: PMC7481362 DOI: 10.3389/fnagi.2020.00268] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis, or proteostasis, is a combination of cellular processes that govern protein quality control, namely, protein translation, folding, processing, and degradation. Disruptions in these processes can lead to protein misfolding and aggregation. Proteostatic disruption can lead to cellular changes such as endoplasmic reticulum or oxidative stress; organelle dysfunction; and, if continued, to cell death. A majority of neurodegenerative diseases involve the pathologic aggregation of proteins that subverts normal neuronal function. While prior reviews of neuronal proteostasis in neurodegenerative processes have focused on cytoplasmic chaperones, there is increasing evidence that chaperones secreted both by neurons and other brain cells in the extracellular - including transsynaptic - space play important roles in neuronal proteostasis. In this review, we will introduce various secreted chaperones involved in neurodegeneration. We begin with clusterin and discuss its identification in various protein aggregates, and the use of increased cerebrospinal fluid (CSF) clusterin as a potential biomarker and as a potential therapeutic. Our next secreted chaperone is progranulin; polymorphisms in this gene represent a known genetic risk factor for frontotemporal lobar degeneration, and progranulin overexpression has been found to be effective in reducing Alzheimer's- and Parkinson's-like neurodegenerative phenotypes in mouse models. We move on to BRICHOS domain-containing proteins, a family of proteins containing highly potent anti-amyloidogenic activity; we summarize studies describing the biochemical mechanisms by which recombinant BRICHOS protein might serve as a therapeutic agent. The next section of the review is devoted to the secreted chaperones 7B2 and proSAAS, small neuronal proteins which are packaged together with neuropeptides and released during synaptic activity. Since proteins can be secreted by both classical secretory and non-classical mechanisms, we also review the small heat shock proteins (sHsps) that can be secreted from the cytoplasm to the extracellular environment and provide evidence for their involvement in extracellular proteostasis and neuroprotection. Our goal in this review focusing on extracellular chaperones in neurodegenerative disease is to summarize the most recent literature relating to neurodegeneration for each secreted chaperone; to identify any common mechanisms; and to point out areas of similarity as well as differences between the secreted chaperones identified to date.
Collapse
Affiliation(s)
| | | | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| |
Collapse
|
69
|
Solomon DA, Mitchell JC, Salcher-Konrad MT, Vance CA, Mizielinska S. Review: Modelling the pathology and behaviour of frontotemporal dementia. Neuropathol Appl Neurobiol 2020; 45:58-80. [PMID: 30582188 DOI: 10.1111/nan.12536] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/16/2018] [Indexed: 12/11/2022]
Abstract
Frontotemporal dementia (FTD) encompasses a collection of clinically and pathologically diverse neurological disorders. Clinical features of behavioural and language dysfunction are associated with neurodegeneration, predominantly of frontal and temporal cortices. Over the past decade, there have been significant advances in the understanding of the genetic aetiology and neuropathology of FTD which have led to the creation of various disease models to investigate the molecular pathways that contribute to disease pathogenesis. The generation of in vivo models of FTD involves either targeting genes with known disease-causative mutations such as GRN and C9orf72 or genes encoding proteins that form the inclusions that characterize the disease pathologically, such as TDP-43 and FUS. This review provides a comprehensive summary of the different in vivo model systems used to understand pathomechanisms in FTD, with a focus on disease models which reproduce aspects of the wide-ranging behavioural phenotypes seen in people with FTD. We discuss the emerging disease pathways that have emerged from these in vivo models and how this has shaped our understanding of disease mechanisms underpinning FTD. We also discuss the challenges of modelling the complex clinical symptoms shown by people with FTD, the confounding overlap with features of motor neuron disease, and the drive to make models more disease-relevant. In summary, in vivo models can replicate many pathological and behavioural aspects of clinical FTD, but robust and thorough investigations utilizing shared features and variability between disease models will improve the disease-relevance of findings and thus better inform therapeutic development.
Collapse
Affiliation(s)
- D A Solomon
- UK Dementia Research Institute, King's College London, London, Camberwell, UK.,Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| | - J C Mitchell
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| | - M-T Salcher-Konrad
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| | - C A Vance
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| | - S Mizielinska
- UK Dementia Research Institute, King's College London, London, Camberwell, UK.,Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| |
Collapse
|
70
|
Telpoukhovskaia MA, Liu K, Sayed FA, Etchegaray JI, Xie M, Zhan L, Li Y, Zhou Y, Le D, Bahr BA, Bogyo M, Ding S, Gan L. Discovery of small molecules that normalize the transcriptome and enhance cysteine cathepsin activity in progranulin-deficient microglia. Sci Rep 2020; 10:13688. [PMID: 32792571 PMCID: PMC7426857 DOI: 10.1038/s41598-020-70534-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Patients with frontotemporal dementia (FTD) resulting from granulin (GRN) haploinsufficiency have reduced levels of progranulin and exhibit dysregulation in inflammatory and lysosomal networks. Microglia produce high levels of progranulin, and reduction of progranulin in microglia alone is sufficient to recapitulate inflammation, lysosomal dysfunction, and hyperproliferation in a cell-autonomous manner. Therefore, targeting microglial dysfunction caused by progranulin insufficiency represents a potential therapeutic strategy to manage neurodegeneration in FTD. Limitations of current progranulin-enhancing strategies necessitate the discovery of new targets. To identify compounds that can reverse microglial defects in Grn-deficient mouse microglia, we performed a compound screen coupled with high throughput sequencing to assess key transcriptional changes in inflammatory and lysosomal pathways. Positive hits from this initial screen were then further narrowed down based on their ability to rescue cathepsin activity, a critical biochemical readout of lysosomal capacity. The screen identified nor-binaltorphimine dihydrochloride (nor-BNI) and dibutyryl-cAMP, sodium salt (DB-cAMP) as two phenotypic modulators of progranulin deficiency. In addition, nor-BNI and DB-cAMP also rescued cell cycle abnormalities in progranulin-deficient cells. These data highlight the potential of a transcription-based platform for drug screening, and advance two novel lead compounds for FTD.
Collapse
Affiliation(s)
- Maria A Telpoukhovskaia
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA.,Department of Neurology, University of California, San Francisco, CA, 94158, USA
| | - Kai Liu
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, 94158, USA
| | - Faten A Sayed
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA.,Department of Neurology, University of California, San Francisco, CA, 94158, USA.,Neuroscience Graduate Program, University of California, San Francisco, CA, 94158, USA
| | | | - Min Xie
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA.,Gladstone Institute of Cardiovascular Disease, San Francisco, CA, 94158, USA
| | - Lihong Zhan
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA.,Department of Neurology, University of California, San Francisco, CA, 94158, USA
| | - Yaqiao Li
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
| | - Yungui Zhou
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
| | - David Le
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
| | - Ben A Bahr
- Biotechnology Research and Training Center, University of North Carolina At Pembroke, Pembroke, NC, 28372, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | - Sheng Ding
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, 94158, USA
| | - Li Gan
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA. .,Department of Neurology, University of California, San Francisco, CA, 94158, USA. .,Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
71
|
Langin L, Johnson TB, Kovács AD, Pearce DA, Weimer JM. A tailored Cln3 Q352X mouse model for testing therapeutic interventions in CLN3 Batten disease. Sci Rep 2020; 10:10591. [PMID: 32601357 PMCID: PMC7324379 DOI: 10.1038/s41598-020-67478-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022] Open
Abstract
CLN3 Batten disease (CLN3 disease) is a pediatric lysosomal storage disorder that presents with progressive blindness, motor and cognitive decline, seizures, and premature death. CLN3 disease results from mutations in CLN3 with the most prevalent mutation, a 966 bp deletion spanning exons 7-8, affecting ~ 75% of patients. Mouse models with complete Cln3 deletion or Cln3Δex7/8 mutation have been invaluable for learning about both the basic biology of CLN3 and the underlying pathological changes associated with CLN3 disease. These models, however, vary in their disease presentation and are limited in their utility for studying the role of nonsense mediated decay, and as a consequence, in testing nonsense suppression therapies and read-through compounds. In order to develop a model containing a disease-causing nonsense point mutation, here we describe a first-of-its-kind Cln3Q352X mouse model containing a c.1054C > T (p.Gln352Ter) point mutation. Similar to previously characterized Cln3 mutant mouse lines, this novel model shows pathological deficits throughout the CNS including accumulation of lysosomal storage material and glial activation, and has limited perturbation in behavioral measures. Thus, at the molecular and cellular level, this mouse line provides a valuable tool for testing nonsense suppression therapies or read through compounds in CLN3 disease in the future.
Collapse
Affiliation(s)
- Logan Langin
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E. 60th N, Sioux Falls, SD, 57104, USA
| | - Tyler B Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E. 60th N, Sioux Falls, SD, 57104, USA
| | - Attila D Kovács
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E. 60th N, Sioux Falls, SD, 57104, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - David A Pearce
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E. 60th N, Sioux Falls, SD, 57104, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E. 60th N, Sioux Falls, SD, 57104, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| |
Collapse
|
72
|
Liscic RM, Alberici A, Cairns NJ, Romano M, Buratti E. From basic research to the clinic: innovative therapies for ALS and FTD in the pipeline. Mol Neurodegener 2020; 15:31. [PMID: 32487123 PMCID: PMC7268618 DOI: 10.1186/s13024-020-00373-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and Frontotemporal Degeneration (FTD) are neurodegenerative disorders, related by deterioration of motor and cognitive functions and short survival. Aside from cases with an inherited pathogenic mutation, the causes of the disorders are still largely unknown and no effective treatment currently exists. It has been shown that FTD may coexist with ALS and this overlap occurs at clinical, genetic, and molecular levels. In this work, we review the main pathological aspects of these complex diseases and discuss how the integration of the novel pathogenic molecular insights and the analysis of molecular interaction networks among all the genetic players represents a critical step to shed light on discovering novel therapeutic strategies and possibly tailoring personalized medicine approaches to specific ALS and FTD patients.
Collapse
Affiliation(s)
- Rajka Maria Liscic
- Department of Neurology, Johannes Kepler University, Linz, Austria
- School of Medicine, University of Osijek, Osijek, Croatia
| | - Antonella Alberici
- Neurology Unit, Department of Neurological Sciences and Vision, ASST-Spedali Civili-University of Brescia, Brescia, Italy
| | - Nigel John Cairns
- College of Medicine and Health and Living Systems Institute, University of Exeter, Exeter, UK
| | - Maurizio Romano
- Department of Life Sciences, Via Valerio 28, University of Trieste, 34127, Trieste, Italy
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149, Trieste, Italy.
| |
Collapse
|
73
|
Liu W, Kleine-Holthaus SM, Herranz-Martin S, Aristorena M, Mole SE, Smith AJ, Ali RR, Rahim AA. Experimental gene therapies for the NCLs. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165772. [PMID: 32220628 DOI: 10.1016/j.bbadis.2020.165772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
The neuronal ceroid lipofuscinoses (NCLs), also known as Batten disease, are a group of rare monogenic neurodegenerative diseases predominantly affecting children. All NCLs are lethal and incurable and only one has an approved treatment available. To date, 13 NCL subtypes (CLN1-8, CLN10-14) have been identified, based on the particular disease-causing defective gene. The exact functions of NCL proteins and the pathological mechanisms underlying the diseases are still unclear. However, gene therapy has emerged as an attractive therapeutic strategy for this group of conditions. Here we provide a short review discussing updates on the current gene therapy studies for the NCLs.
Collapse
Affiliation(s)
- Wenfei Liu
- UCL School of Pharmacy, University College London, UK
| | | | - Saul Herranz-Martin
- UCL School of Pharmacy, University College London, UK; Centro de Biología Molecular Severo Ochoa (UAM-CSIC) and Departamento de Biología Molecular,Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | | | - Sara E Mole
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London WC1N 1EH, UK
| | | | - Robin R Ali
- UCL Institute of Ophthalmology, University College London, UK; NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UK
| | - Ahad A Rahim
- UCL School of Pharmacy, University College London, UK.
| |
Collapse
|
74
|
Frew J, Baradaran-Heravi A, Balgi AD, Wu X, Yan TD, Arns S, Shidmoossavee FS, Tan J, Jaquith JB, Jansen-West KR, Lynn FC, Gao FB, Petrucelli L, Feldman HH, Mackenzie IR, Roberge M, Nygaard HB. Premature termination codon readthrough upregulates progranulin expression and improves lysosomal function in preclinical models of GRN deficiency. Mol Neurodegener 2020; 15:21. [PMID: 32178712 PMCID: PMC7075020 DOI: 10.1186/s13024-020-00369-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
Background Frontotemporal lobar degeneration (FTLD) is a devastating and progressive disorder, and a common cause of early onset dementia. Progranulin (PGRN) haploinsufficiency due to autosomal dominant mutations in the progranulin gene (GRN) is an important cause of FTLD (FTLD-GRN), and nearly a quarter of these genetic cases are due to a nonsense mutation. Premature termination codons (PTC) can be therapeutically targeted by compounds allowing readthrough, and aminoglycoside antibiotics are known to be potent PTC readthrough drugs. Restoring endogenous PGRN through PTC readthrough has not previously been explored as a therapeutic intervention in FTLD. Methods We studied whether the aminoglycoside G418 could increase PGRN expression in HEK293 and human induced pluripotent stem cell (hiPSC)-derived neurons bearing the heterozygous S116X, R418X, and R493X pathogenic GRN nonsense mutations. We further tested a novel substituted phthalimide PTC readthrough enhancer in combination with G418 in our cellular models. We next generated a homozygous R493X knock-in hiPSC isogenic line (R493X−/− KI), assessing whether combination treatment in hiPSC-derived neurons and astrocytes could increase PGRN and ameliorate lysosomal dysfunction relevant to FTLD-GRN. To provide in vivo proof-of-concept of our approach, we measured brain PGRN after intracerebroventricular administration of G418 in mice expressing the V5-tagged GRN nonsense mutation R493X. Results The R418X and R493X mutant GRN cell lines responded to PTC readthrough with G418, and treatments increased PGRN levels in R493X−/− KI hiPSC-derived neurons and astrocytes. Combining G418 with a PTC readthrough enhancer increased PGRN levels over G418 treatment alone in vitro. PGRN deficiency has been shown to impair lysosomal function, and the mature form of the lysosomal protease cathepsin D is overexpressed in R493X−/− KI neurons. Increasing PGRN through G418-mediated PTC readthrough normalized this abnormal lysosomal phenotype in R493X−/− KI neuronal cultures. A single intracerebroventricular injection of G418 induced GRN PTC readthrough in 6-week-old AAV-GRN-R493X-V5 mice. Conclusions Taken together, our findings suggest that PTC readthrough may be a potential therapeutic strategy for FTLD caused by GRN nonsense mutations.
Collapse
Affiliation(s)
- Jonathan Frew
- Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alireza Baradaran-Heravi
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aruna D Balgi
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiujuan Wu
- Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tyler D Yan
- Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steve Arns
- adMare BioInnovations, Vancouver, British Columbia, Canada
| | | | - Jason Tan
- adMare BioInnovations, Vancouver, British Columbia, Canada
| | | | | | - Francis C Lynn
- Department of Surgery, University of British Columbia, Faculty of Medicine, Vancouver, British Columbia, Canada
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Howard H Feldman
- Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
| | - Ian R Mackenzie
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michel Roberge
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Haakon B Nygaard
- Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
75
|
Bai D, Ma Y, Lv L, Wang Y, Yang W, Ma Y. Progranulin suppresses the age-dependent enhancement of neuronal activity in the hypothalamus. Neurosci Lett 2020; 720:134755. [PMID: 31945450 DOI: 10.1016/j.neulet.2020.134755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 11/17/2022]
Abstract
Our previous investigations revealed that progranulin (PGRN) is a lysosomal protein involved in hippocampal neurogenesis and neuroinflammation. However, the possible involvement of PGRN in regulating inflammatory response and mediating neuronal activity is still not well-defined. Here, we demonstrate that PGRN deficiency enhances the age-dependent increase of neuronal activity in the paraventricular nucleus (PVN) of the hypothalamus. Aging increased neuronal activity in the PVN of the hypothalamus, and PGRN deficiency enhanced the effects of age on hypothalamic neuronal activity. Aging increased the lysosomal biogenesis and inflammatory response in microglia, which was also aggravated in PGRN-knockout mice. Moreover, PGRN deficiency enhanced interleukin-1 beta and lysosomal genes levels. These results suggest that PGRN deficiency may enhance the age-dependent increase of neuronal activity possibly because PGRN facilitates immunological responses through regulating lysosomal function.
Collapse
Affiliation(s)
- Dongying Bai
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, PR China
| | - Yihong Ma
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Leyuan Lv
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, PR China
| | - Yun Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture, South China Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Wanqing Yang
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yanbo Ma
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, PR China.
| |
Collapse
|
76
|
Elia LP, Reisine T, Alijagic A, Finkbeiner S. Approaches to develop therapeutics to treat frontotemporal dementia. Neuropharmacology 2020; 166:107948. [PMID: 31962288 DOI: 10.1016/j.neuropharm.2020.107948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/16/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022]
Abstract
Frontotemporal degeneration (FTD) is a complex disease presenting as a spectrum of clinical disorders with progressive degeneration of frontal and temporal brain cortices and extensive neuroinflammation that result in personality and behavior changes, and eventually, death. There are currently no effective therapies for FTD. While 60-70% of FTD patients are sporadic cases, the other 30-40% are heritable (familial) cases linked to mutations in several known genes. We focus here on FTD caused by mutations in the GRN gene, which encodes a secreted protein, progranulin (PGRN), that has diverse roles in regulating cell survival, immune responses, and autophagy and lysosome function in the brain. FTD-linked mutations in GRN reduce brain PGRN levels that lead to autophagy and lysosome dysfunction, TDP43 accumulation, excessive microglial activation, astrogliosis, and neuron death through still poorly understood mechanisms. PGRN insufficiency has also been linked to Alzheimer's disease (AD), and so the development of therapeutics for GRN-linked FTD that restore PGRN levels and function may have broader application for other neurodegenerative diseases. This review focuses on a strategy to increase PGRN to functional, healthy levels in the brain by identifying novel genetic and chemical modulators of neuronal PGRN levels. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- Lisa P Elia
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA.
| | - Terry Reisine
- Independent Scientific Consultant, Santa Cruz, CA, USA
| | - Amela Alijagic
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Steven Finkbeiner
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA; Departments of Neurology and Physiology, UCSF, San Francisco, CA, USA.
| |
Collapse
|
77
|
Boxer AL, Gold M, Feldman H, Boeve BF, Dickinson SLJ, Fillit H, Ho C, Paul R, Pearlman R, Sutherland M, Verma A, Arneric SP, Alexander BM, Dickerson BC, Dorsey ER, Grossman M, Huey ED, Irizarry MC, Marks WJ, Masellis M, McFarland F, Niehoff D, Onyike CU, Paganoni S, Panzara MA, Rockwood K, Rohrer JD, Rosen H, Schuck RN, Soares HD, Tatton N. New directions in clinical trials for frontotemporal lobar degeneration: Methods and outcome measures. Alzheimers Dement 2020; 16:131-143. [PMID: 31668596 PMCID: PMC6949386 DOI: 10.1016/j.jalz.2019.06.4956] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Frontotemporal lobar degeneration (FTLD) is the most common form of dementia for those under 60 years of age. Increasing numbers of therapeutics targeting FTLD syndromes are being developed. METHODS In March 2018, the Association for Frontotemporal Degeneration convened the Frontotemporal Degeneration Study Group meeting in Washington, DC, to discuss advances in the clinical science of FTLD. RESULTS Challenges exist for conducting clinical trials in FTLD. Two of the greatest challenges are (1) the heterogeneity of FTLD syndromes leading to difficulties in efficiently measuring treatment effects and (2) the rarity of FTLD disorders leading to recruitment challenges. DISCUSSION New personalized endpoints that are clinically meaningful to individuals and their families should be developed. Personalized approaches to analyzing MRI data, development of new fluid biomarkers and wearable technologies will help to improve the power to detect treatment effects in FTLD clinical trials and enable new, clinical trial designs, possibly leveraged from the experience of oncology trials. A computational visualization and analysis platform that can support novel analyses of combined clinical, genetic, imaging, biomarker data with other novel modalities will be critical to the success of these endeavors.
Collapse
Affiliation(s)
- Adam L. Boxer
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA
| | | | - Howard Feldman
- Department of Neurosciences, University of California San Diego, San Diego, CA
| | | | | | | | - Carole Ho
- Denali Therapeutics, San Francisco, CA
| | | | | | | | | | | | | | | | - Earl Ray Dorsey
- Center for Health and Technology, University of Rochester, Rochester, NY
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania, Philadelphia, PA
| | - Edward D. Huey
- Departments of Psychiatry and Neurology, Columbia University, NY
| | | | - William J. Marks
- Clinical Neurology, Verily Life Sciences, South San Francisco, CA
| | - Mario Masellis
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, ON, Canada; Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, ON, Canada
| | | | - Debra Niehoff
- Association for Frontotemporal Degeneration, Radnor, PA
| | - Chiadi U. Onyike
- Department Geriatric Psychiatry and Neuropsychiatry, Johns Hopkins University, Baltimore, MD
| | - Sabrina Paganoni
- Healey Center for ALS, Massachusetts General Hospital, Boston, MA
| | | | - Kenneth Rockwood
- Division of Geriatric Medicine, Dalhousie University, Halifax, NS
| | - Jonathan D. Rohrer
- Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - Howard Rosen
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA
| | - Robert N. Schuck
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, FDA, Silver Spring, MD
| | | | - Nadine Tatton
- Association for Frontotemporal Degeneration, Radnor, PA
| |
Collapse
|
78
|
Arrant AE, Roth JR, Boyle NR, Kashyap SN, Hoffmann MQ, Murchison CF, Ramos EM, Nana AL, Spina S, Grinberg LT, Miller BL, Seeley WW, Roberson ED. Impaired β-glucocerebrosidase activity and processing in frontotemporal dementia due to progranulin mutations. Acta Neuropathol Commun 2019; 7:218. [PMID: 31870439 PMCID: PMC6929503 DOI: 10.1186/s40478-019-0872-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/17/2019] [Indexed: 01/29/2023] Open
Abstract
Loss-of-function mutations in progranulin (GRN) are a major autosomal dominant cause of frontotemporal dementia. Most pathogenic GRN mutations result in progranulin haploinsufficiency, which is thought to cause frontotemporal dementia in GRN mutation carriers. Progranulin haploinsufficiency may drive frontotemporal dementia pathogenesis by disrupting lysosomal function, as patients with GRN mutations on both alleles develop the lysosomal storage disorder neuronal ceroid lipofuscinosis, and frontotemporal dementia patients with GRN mutations (FTD-GRN) also accumulate lipofuscin. The specific lysosomal deficits caused by progranulin insufficiency remain unclear, but emerging data indicate that progranulin insufficiency may impair lysosomal sphingolipid-metabolizing enzymes. We investigated the effects of progranulin insufficiency on sphingolipid-metabolizing enzymes in the inferior frontal gyrus of FTD-GRN patients using fluorogenic activity assays, biochemical profiling of enzyme levels and posttranslational modifications, and quantitative neuropathology. Of the enzymes studied, only β-glucocerebrosidase exhibited impairment in FTD-GRN patients. Brains from FTD-GRN patients had lower activity than controls, which was associated with lower levels of mature β-glucocerebrosidase protein and accumulation of insoluble, incompletely glycosylated β-glucocerebrosidase. Immunostaining revealed loss of neuronal β-glucocerebrosidase in FTD-GRN patients. To investigate the effects of progranulin insufficiency on β-glucocerebrosidase outside of the context of neurodegeneration, we investigated β-glucocerebrosidase activity in progranulin-insufficient mice. Brains from Grn-/- mice had lower β-glucocerebrosidase activity than wild-type littermates, which was corrected by AAV-progranulin gene therapy. These data show that progranulin insufficiency impairs β-glucocerebrosidase activity in the brain. This effect is strongest in neurons and may be caused by impaired β-glucocerebrosidase processing.
Collapse
Affiliation(s)
- Andrew E Arrant
- Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA.
- , 1825 University Blvd., SHEL 1106, Birmingham, AL, 35294, USA.
| | - Jonathan R Roth
- Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nicholas R Boyle
- Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shreya N Kashyap
- Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Madelyn Q Hoffmann
- Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Charles F Murchison
- Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eliana Marisa Ramos
- Department of Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Alissa L Nana
- Department of Neurology, Memory & Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Salvatore Spina
- Department of Neurology, Memory & Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Lea T Grinberg
- Department of Neurology, Memory & Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce L Miller
- Department of Neurology, Memory & Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - William W Seeley
- Department of Neurology, Memory & Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Erik D Roberson
- Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA.
- , 1825 University Blvd., SHEL 1110, Birmingham, AL, 35294, USA.
| |
Collapse
|
79
|
Nelvagal HR, Cooper JD. An update on the progress of preclinical models for guiding therapeutic management of neuronal ceroid lipofuscinosis. Expert Opin Orphan Drugs 2019. [DOI: 10.1080/21678707.2019.1703672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hemanth Ramesh Nelvagal
- Department of Pediatrics, Division of genetics and genomics, Washington University School of Medicine in St. Louis, St Louis, MO, USA
| | - Jonathan D Cooper
- Department of Pediatrics, Division of genetics and genomics, Washington University School of Medicine in St. Louis, St Louis, MO, USA
| |
Collapse
|
80
|
Mendsaikhan A, Tooyama I, Bellier JP, Serrano GE, Sue LI, Lue LF, Beach TG, Walker DG. Characterization of lysosomal proteins Progranulin and Prosaposin and their interactions in Alzheimer's disease and aged brains: increased levels correlate with neuropathology. Acta Neuropathol Commun 2019; 7:215. [PMID: 31864418 PMCID: PMC6925443 DOI: 10.1186/s40478-019-0862-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022] Open
Abstract
Progranulin (PGRN) is a protein encoded by the GRN gene with multiple identified functions including as a neurotrophic factor, tumorigenic growth factor, anti-inflammatory cytokine and regulator of lysosomal function. A single mutation in the human GRN gene resulting in reduced PGRN expression causes types of frontotemporal lobar degeneration resulting in frontotemporal dementia. Prosaposin (PSAP) is also a multifunctional neuroprotective secreted protein and regulator of lysosomal function. Interactions of PGRN and PSAP affect their functional properties. Their roles in Alzheimer's disease (AD), the leading cause of dementia, have not been defined. In this report, we examined in detail the cellular expression of PGRN in middle temporal gyrus samples of a series of human brain cases (n = 45) staged for increasing plaque pathology. Immunohistochemistry showed PGRN expression in cortical neurons, microglia, cerebral vessels and amyloid beta (Aβ) plaques, while PSAP expression was mainly detected in neurons and Aβ plaques, and to a limited extent in astrocytes. We showed that there were increased levels of PGRN protein in AD cases and corresponding increased levels of PSAP. Levels of PGRN and PSAP protein positively correlated with amyloid beta (Aβ), with PGRN levels correlating with phosphorylated tau (serine 205) levels in these samples. Although PGRN colocalized with lysosomal-associated membrane protein-1 in neurons, most PGRN associated with Aβ plaques did not. Aβ plaques with PGRN and PSAP deposits were identified in the low plaque non-demented cases suggesting this was an early event in plaque formation. We did not observe PGRN-positive neurofibrillary tangles. Co-immunoprecipitation studies of PGRN from brain samples identified only PSAP associated with PGRN, not sortilin or other known PGRN-binding proteins, under conditions used. Most PGRN associated with Aβ plaques were immunoreactive for PSAP showing a high degree of colocalization of these proteins that did not change between disease groups. As PGRN supplementation has been considered as a therapeutic approach for AD, the possible involvement of PGRN and PSAP interactions in AD pathology needs to be further considered.
Collapse
|
81
|
Rosenberg JB, Chen A, Kaminsky SM, Crystal RG, Sondhi D. Advances in the Treatment of Neuronal Ceroid Lipofuscinosis. Expert Opin Orphan Drugs 2019; 7:473-500. [PMID: 33365208 PMCID: PMC7755158 DOI: 10.1080/21678707.2019.1684258] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/21/2019] [Indexed: 12/27/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCL) represent a class of neurodegenerative disorders involving defective lysosomal processing enzymes or receptors, leading to lysosomal storage disorders, typically characterized by observation of cognitive and visual impairments, epileptic seizures, ataxia, and deterioration of motor skills. Recent success of a biologic (Brineura®) for the treatment of neurologic manifestations of the central nervous system (CNS) has led to renewed interest in therapeutics for NCL, with the goal of ablating or reversing the impact of these devastating disorders. Despite complex challenges associated with CNS therapy, many treatment modalities have been evaluated, including enzyme replacement therapy, gene therapy, stem cell therapy, and small molecule pharmacotherapy. Because the clinical endpoints for the evaluation of candidate therapies are complex and often reliant on subjective clinical scales, the development of quantitative biomarkers for NCLs has become an apparent necessity for the validation of potential treatments. We will discuss the latest findings in the search for relevant biomarkers for assessing disease progression. For this review, we will focus primarily on recent pre-clinical and clinical developments for treatments to halt or cure these NCL diseases. Continued development of current therapies and discovery of newer modalities will be essential for successful therapeutics for NCL. AREAS COVERED The reader will be introduced to the NCL subtypes, natural histories, experimental animal models, and biomarkers for NCL progression; challenges and different therapeutic approaches, and the latest pre-clinical and clinical research for therapeutic development for the various NCLs. This review corresponds to the literatures covering the years from 1968 to mid-2019, but primarily addresses pre-clinical and clinical developments for the treatment of NCL disease in the last decade and as a follow-up to our 2013 review of the same topic in this journal. EXPERT OPINION Much progress has been made in the treatment of neurologic diseases, such as the NCLs, including better animal models and improved therapeutics with better survival outcomes. Encouraging results are being reported at symposiums and in the literature, with multiple therapeutics reaching the clinical trial stage for the NCLs. The potential for a cure could be at hand after many years of trial and error in the preclinical studies. The clinical development of enzyme replacement therapy (Brineura® for CLN2), immunosuppression (CellCept® for CLN3), and gene therapy vectors (for CLN1, CLN2, CLN3, and CLN6) are providing encouragement to families that have a child afflicted with NCL. We believe that successful therapies in the future may involve the combination of two or more therapeutic modalities to provide therapeutic benefit especially as the patients grow older.
Collapse
Affiliation(s)
- Jonathan B Rosenberg
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Alvin Chen
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Stephen M Kaminsky
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
82
|
Huber RJ, Hughes SM, Liu W, Morgan A, Tuxworth RI, Russell C. The contribution of multicellular model organisms to neuronal ceroid lipofuscinosis research. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165614. [PMID: 31783156 DOI: 10.1016/j.bbadis.2019.165614] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
The NCLs (neuronal ceroid lipofuscinosis) are forms of neurodegenerative disease that affect people of all ages and ethnicities but are most prevalent in children. Commonly known as Batten disease, this debilitating neurological disorder is comprised of 13 different subtypes that are categorized based on the particular gene that is mutated (CLN1-8, CLN10-14). The pathological mechanisms underlying the NCLs are not well understood due to our poor understanding of the functions of NCL proteins. Only one specific treatment (enzyme replacement therapy) is approved, which is for the treating the brain in CLN2 disease. Hence there remains a desperate need for further research into disease-modifying treatments. In this review, we present and evaluate the genes, proteins and studies performed in the social amoeba, nematode, fruit fly, zebrafish, mouse and large animals pertinent to NCL. In particular, we highlight the use of multicellular model organisms to study NCL protein function, pathology and pathomechanisms. Their use in testing novel therapeutic approaches is also presented. With this information, we highlight how future research in these systems may be able to provide new insight into NCL protein functions in human cells and aid in the development of new therapies.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Stephanie M Hughes
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre and Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Wenfei Liu
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Richard I Tuxworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Claire Russell
- Dept. Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| |
Collapse
|
83
|
Schneider SA, Tahirovic S, Hardy J, Strupp M, Bremova-Ertl T. Do heterozygous mutations of Niemann-Pick type C predispose to late-onset neurodegeneration: a review of the literature. J Neurol 2019; 268:2055-2064. [PMID: 31701332 DOI: 10.1007/s00415-019-09621-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/30/2019] [Accepted: 11/02/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND/METHODS Monogenic diseases are important models for the study of neurodegenerative diseases, such as Parkinson's disease (PD) and dementia. Notably, for some disorders, homozygosity is associated with a complex metabolic disease, while heterozygosity predisposes to late-onset neurodegeneration. For instance, biallelic glucocerebrosidase gene mutations cause Gaucher's disease, while heterozygous mutations are a common genetic risk factor for late-onset PD. Little is known about similar risks of related diseases, such as Niemann-Pick type C (NPC). Given that both conditions map into related, i.e., lysosomal, pathways, we hypothesize a similar risk of single-NPC gene mutations. Indeed, there is increasing evidence based on clinical observations in humans and animal studies. Here we review the current knowledge of NPC heterozygosity. RESULTS Family history studies suggest a high proportion of late-onset neurodegenerative diseases in NPC families. We identified 19 cases with heterozygous NPC mutations in the literature who presented with a neurodegenerative disease, including levodopa-responsive PD, atypical parkinsonism (PSP, CBD), dystonia or dementia with a mean age at onset of about 57 years (range 8-87). Consistent splenomegaly and mildly abnormal filipin staining results have also been reported in heterozygous gene mutation carriers. Imaging and pathological data support this notion. DISCUSSION/CONCLUSION This finding has wider implications in so far as NPC-related forms of Parkinsonian syndromes, dementia, motor neuron disease and other neurodegenerative disorders may benefit from NPC-mechanistic therapies, in particular related to lysosomal dysfunction. Further research is warranted to generate systematic data of heterozygous mutation carriers, including longitudinal data.
Collapse
Affiliation(s)
- Susanne A Schneider
- Department of Neurology, Ludwig-Maximilians-University, Marchioninistr 15, 81377, Munich, Germany.
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE) Within the Helmholtz Association, Feodor-Lynen-Strasse 17, Munich, Germany
| | - John Hardy
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Michael Strupp
- Department of Neurology, Ludwig-Maximilians-University, Marchioninistr 15, 81377, Munich, Germany
| | - Tatiana Bremova-Ertl
- Department of Neurology, Ludwig-Maximilians-University, Marchioninistr 15, 81377, Munich, Germany.,Department of Neurology, Inselspital, University Hospital Bern, Bern, Switzerland
| |
Collapse
|
84
|
Wallings RL, Humble SW, Ward ME, Wade-Martins R. Lysosomal Dysfunction at the Centre of Parkinson's Disease and Frontotemporal Dementia/Amyotrophic Lateral Sclerosis. Trends Neurosci 2019; 42:899-912. [PMID: 31704179 DOI: 10.1016/j.tins.2019.10.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/25/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) and frontotemporal dementia/amyotrophic lateral sclerosis (FTD/ALS) are insidious and incurable neurodegenerative diseases that represent a significant burden to affected individuals, caregivers, and an ageing population. Both PD and FTD/ALS are defined at post mortem by the presence of protein aggregates and the loss of specific subsets of neurons. We examine here the crucial role of lysosome dysfunction in these diseases and discuss recent evidence for converging mechanisms. This review draws upon multiple lines of evidence from genetic studies, human tissue, induced pluripotent stem cells (iPSCs), and animal models to argue that lysosomal failure is a primary mechanism of disease, rather than merely reflecting association with protein aggregate end-points. This review provides compelling rationale for targeting lysosomes in future therapeutics for both PD and FTD/ALS.
Collapse
Affiliation(s)
- Rebecca L Wallings
- Department of Physiology, Emory University, Decatur, GA, USA; Current address: Department of Neuroscience, Center for Translational Research and Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Stewart W Humble
- Oxford Parkinson's Disease Centre, Department of Physiology Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK; National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Michael E Ward
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre, Department of Physiology Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.
| |
Collapse
|
85
|
Moreno-Yruela C, Fass DM, Cheng C, Herz J, Olsen CA, Haggarty SJ. Kinetic Tuning of HDAC Inhibitors Affords Potent Inducers of Progranulin Expression. ACS Chem Neurosci 2019; 10:3769-3777. [PMID: 31330099 DOI: 10.1021/acschemneuro.9b00281] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Histone deacetylases (HDACs) are enzymes involved in the epigenetic control of gene expression. A handful of HDAC inhibitors have been approved for the treatment of cancer, and HDAC inhibition has also been proposed as a novel therapeutic strategy for neurodegenerative disorders. These disorders include progranulin (PGRN)-deficient forms of frontotemporal dementia caused by mutations in the GRN gene that lead to haploinsufficiency. Hydroxamic-acid-based inhibitors of HDACs 1-3, reported to have fast-on/fast-off binding kinetics, induce increased expression of PGRN in human neuronal models, while the benzamide class of slow-binding HDAC inhibitors does not produce this effect. These observations indicate that the kinetics of HDAC inhibitor binding can be tuned for optimal induction of human PGRN expression in neurons. Here, we further expand on these findings using human cortical-like, glutamatergic neurons. We provide evidence that two prototypical, potent hydroxamic acid HDAC inhibitors that induce PGRN (panobinostat and trichostatin A) exhibit an initial fast-binding step followed by a second, slower step, referred to as mechanism B of slow binding, rather than simpler fast-on/fast-off binding kinetics. In addition, we show that trapoxin A, a macrocyclic, epoxyketone-containing class I HDAC inhibitor, exhibits slow binding with high, picomolar potency and also induces PGRN expression in human neurons. Finally, we demonstrate induction of PGRN expression by fast-on/fast-off, highly potent, macrocyclic HDAC inhibitors with ethyl ketone or ethyl ester Zn2+ binding groups. Taken together, these data expand our understanding of HDAC1-3 inhibitor binding kinetics, and further delineate the specific combinations of structural and kinetic features of HDAC inhibitors that are optimal for upregulating PGRN expression in human neurons and thus may have translational relevance in neurodegenerative disease.
Collapse
Affiliation(s)
- Carlos Moreno-Yruela
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology & Psychiatry, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Daniel M. Fass
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology & Psychiatry, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Chialin Cheng
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology & Psychiatry, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Joachim Herz
- Departments of Molecular Genetics, Neuroscience, Neurology and Neurotherapeutics, Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9046, United States
| | - Christian A. Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology & Psychiatry, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| |
Collapse
|
86
|
Bright F, Werry EL, Dobson-Stone C, Piguet O, Ittner LM, Halliday GM, Hodges JR, Kiernan MC, Loy CT, Kassiou M, Kril JJ. Neuroinflammation in frontotemporal dementia. Nat Rev Neurol 2019; 15:540-555. [PMID: 31324897 DOI: 10.1038/s41582-019-0231-z] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia (FTD) refers to a group of progressive neurodegenerative disorders with different pathological signatures, genetic variability and complex disease mechanisms, for which no effective treatments exist. Despite advances in understanding the underlying pathology of FTD, sensitive and specific fluid biomarkers for this disease are lacking. As in other types of dementia, mounting evidence suggests that neuroinflammation is involved in the progression of FTD, including cortical inflammation, microglial activation, astrogliosis and differential expression of inflammation-related proteins in the periphery. Furthermore, an overlap between FTD and autoimmune disease has been identified. The most substantial evidence, however, comes from genetic studies, and several FTD-related genes are also implicated in neuroinflammation. This Review discusses specific evidence of neuroinflammatory mechanisms in FTD and describes how advances in our understanding of these mechanisms, in FTD as well as in other neurodegenerative diseases, might facilitate the development and implementation of diagnostic tools and disease-modifying treatments for FTD.
Collapse
Affiliation(s)
- Fiona Bright
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Eryn L Werry
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Carol Dobson-Stone
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Olivier Piguet
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia.,Centre of Excellence in Cognition and its Disorders, Australian Research Council, Sydney, NSW, Australia
| | - Lars M Ittner
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Glenda M Halliday
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - John R Hodges
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Centre of Excellence in Cognition and its Disorders, Australian Research Council, Sydney, NSW, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Clement T Loy
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Michael Kassiou
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Jillian J Kril
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
87
|
Peng W, Minakaki G, Nguyen M, Krainc D. Preserving Lysosomal Function in the Aging Brain: Insights from Neurodegeneration. Neurotherapeutics 2019; 16:611-634. [PMID: 31183763 PMCID: PMC6694346 DOI: 10.1007/s13311-019-00742-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lysosomes are acidic, membrane-bound organelles that serve as the primary catabolic compartment of the cell. They are crucial to a variety of cellular processes from nutrient storage to autophagy. Given the diversity of lysosomal functions, it is unsurprising that lysosomes are also emerging as important players in aging. Lysosomal dysfunction is implicated in several aging-related neurodegenerative diseases including Alzheimer's, Parkinson's, amyotrophic lateral sclerosis/frontotemporal dementia, and Huntington's. Although the precise role of lysosomes in the aging brain is not well-elucidated, some insight into their function has been gained from our understanding of the pathophysiology of age-dependent neurodegenerative diseases. Therapeutic strategies targeting lysosomes and autophagic machinery have already been tested in several of these diseases with promising results, suggesting that improving lysosomal function could be similarly beneficial in preserving function in the aging brain.
Collapse
Affiliation(s)
- Wesley Peng
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, 60611, USA
| | - Georgia Minakaki
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, 60611, USA
| | - Maria Nguyen
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, 60611, USA
| | - Dimitri Krainc
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, 60611, USA.
| |
Collapse
|
88
|
Kamate M, Detroja M, Hattiholi V. Neuronal ceroid lipofuscinosis type-11 in an adolescent. Brain Dev 2019; 41:542-545. [PMID: 30922528 DOI: 10.1016/j.braindev.2019.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/24/2019] [Accepted: 03/06/2019] [Indexed: 11/16/2022]
Abstract
Neuronal ceroid lipofuscinosis (NCL) is a group of progressive neurodegenerative disorders characterized by intracellular accumulation of ceroid lipopigments. Based on gene defect of NCL-associated proteins, 14 types of NCL have been described till date. NCL type 11 was first described in 2014 in two siblings as adult-onset NCL and was found to be due to a homozygous progranulin gene mutation. These siblings had progressive retinopathy, recurrent generalized seizures, moderate ataxia and subtle cognitive dysfunction. Palinopsia was present and MRI showed selective and severe cerebellar atrophy which was progressive with age. There have been no further reports of NCL 11 in literature. We here present a 14-year old girl born to second degree consanguineous couple who presented with gradually increasing frequency of seizures for the past 1 year without any signs of visual abnormalities and dementia. She had an elder sister who had progressive seizures and dementia from 8 years of age and died after few years. Her electroencephalogram showed frequent generalized epileptiform discharges and magnetic resonance imaging (MRI) showed pure cerebellar atrophy mainly affecting the vermis. MRI findings suggested a neurodegenerative disorder like NCL and prompted us to go for whole exome screen which revealed NCL type 11 due to homozygous mutation c.912G>A (p.Trp304Ter) in exon 9 of GRN gene (OMIM#614706). To the best of our knowledge this is the third case of NCL 11 and the first from Asia.
Collapse
Affiliation(s)
- Mahesh Kamate
- Division of Pediatric Neurology, Department of Pediatrics, KAHER University's J N Medical College, Belgaum, India.
| | - Mayank Detroja
- Division of Pediatric Neurology, Department of Pediatrics, KAHER University's J N Medical College, Belgaum, India
| | - Virupaxi Hattiholi
- Department of Radiology, KAHER University's J N Medical College, Belgaum, India
| |
Collapse
|
89
|
Butler VJ, Cortopassi WA, Gururaj S, Wang AL, Pierce OM, Jacobson MP, Kao AW. Multi-Granulin Domain Peptides Bind to Pro-Cathepsin D and Stimulate Its Enzymatic Activity More Effectively Than Progranulin in Vitro. Biochemistry 2019; 58:2670-2674. [PMID: 31099551 DOI: 10.1021/acs.biochem.9b00275] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Progranulin (PGRN) is an evolutionarily conserved glycoprotein associated with several disease states, including neurodegeneration, cancer, and autoimmune disorders. This protein has recently been implicated in the regulation of lysosome function, whereby PGRN may bind to and promote the maturation and activity of the aspartyl protease cathepsin D (proCTSD, inactive precursor; matCTSD, mature, enzymatically active form). As the full-length PGRN protein can be cleaved into smaller peptides, called granulins, we assessed the function of these granulin peptides in binding to proCTSD and stimulating matCTSD enzyme activity in vitro. Here, we report that full-length PGRN and multi-granulin domain peptides bound to proCTSD with low to submicromolar binding affinities. This binding promoted proCTSD destabilization, the magnitude of which was greater for multi-granulin domain peptides than for full-length PGRN. Such destabilization correlated with enhanced matCTSD activity at acidic pH. The presence and function of multi-granulin domain peptides have typically been overlooked in previous studies. This work provides the first in vitro quantification of their binding and activity on proCTSD. Our study highlights the significance of multi-granulin domain peptides in the regulation of proCTSD maturation and enzymatic activity and suggests that attention to PGRN processing will be essential for the future understanding of the molecular mechanisms leading to neurodegenerative disease states with loss-of-function mutations in PGRN.
Collapse
Affiliation(s)
- Victoria J Butler
- Department of Neurology , University of California , San Francisco , California 94143 , United States
| | - Wilian A Cortopassi
- Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94143 , United States
| | - Sushmitha Gururaj
- Department of Neurology , University of California , San Francisco , California 94143 , United States
| | - Austin L Wang
- Department of Neurology , University of California , San Francisco , California 94143 , United States
| | - Olivia M Pierce
- Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94143 , United States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94143 , United States
| | - Aimee W Kao
- Department of Neurology , University of California , San Francisco , California 94143 , United States
| |
Collapse
|
90
|
An update on genetic frontotemporal dementia. J Neurol 2019; 266:2075-2086. [PMID: 31119452 PMCID: PMC6647117 DOI: 10.1007/s00415-019-09363-4] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia (FTD) is a highly heritable group of neurodegenerative disorders, with around 30% of patients having a strong family history. The majority of that heritability is accounted for by autosomal dominant mutations in the chromosome 9 open reading frame 72 (C9orf72), progranulin (GRN), and microtubule-associated protein tau (MAPT) genes, with mutations more rarely seen in a number of other genes. This review will discuss the recent updates in the field of genetic FTD. Age at symptom onset in genetic FTD is variable with recently identified genetic modifiers including TMEM106B (in GRN carriers particularly) and a polymorphism at a locus containing two overlapping genes LOC101929163 and C6orf10 (in C9orf72 carriers). Behavioural variant FTD (bvFTD) is the most common diagnosis in each of the genetic groups, although in C9orf72 carriers amyotrophic lateral sclerosis either alone, or with bvFTD, is also common. An atypical neuropsychiatric presentation is also seen in C9orf72 carriers and family members of carriers are at greater risk of psychiatric disorders including schizophrenia and autistic spectrum disorders. Large natural history studies of presymptomatic genetic FTD are now underway both in Europe/Canada (GENFI—the Genetic FTD Initiative) and in the US (ARTFL/LEFFTDS study), collaborating together under the banner of the FTD Prevention Initiative (FPI). These studies are taking forward the validation of cognitive, imaging and fluid biomarkers that aim to robustly measure disease onset, staging and progression in genetic FTD. Grey matter changes on MRI and hypometabolism on FDG-PET are seen at least 10 years before symptom onset with white matter abnormalities seen earlier, but the pattern and exact timing of changes differ between different genetic groups. In contrast, tau PET has yet to show promise in genetic FTD. Three key fluid biomarkers have been identified so far that are likely to be helpful in clinical trials—CSF or blood neurofilament light chain levels (in all groups), CSF or blood progranulin levels (in GRN carriers) and CSF poly(GP) dipeptide repeat protein levels (in C9orf72 carriers). Increased knowledge about genetic FTD has led to more clinical presymptomatic genetic testing but this has not yet been mirrored in the development of either an accepted FTD-specific testing protocol or provision of appropriate psychological support mechanisms for those living through the at-risk phase. This will become even more relevant as disease-modifying therapy trials start in each of the genetic groups over the next few years.
Collapse
|
91
|
Microglial Progranulin: Involvement in Alzheimer's Disease and Neurodegenerative Diseases. Cells 2019; 8:cells8030230. [PMID: 30862089 PMCID: PMC6468562 DOI: 10.3390/cells8030230] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases such as Alzheimer’s disease have proven resistant to new treatments. The complexity of neurodegenerative disease mechanisms can be highlighted by accumulating evidence for a role for a growth factor, progranulin (PGRN). PGRN is a glycoprotein encoded by the GRN/Grn gene with multiple cellular functions, including neurotrophic, anti-inflammatory and lysosome regulatory properties. Mutations in the GRN gene can lead to frontotemporal lobar degeneration (FTLD), a cause of dementia, and neuronal ceroid lipofuscinosis (NCL), a lysosomal storage disease. Both diseases are associated with loss of PGRN function resulting, amongst other features, in enhanced microglial neuroinflammation and lysosomal dysfunction. PGRN has also been implicated in Alzheimer’s disease (AD). Unlike FTLD, increased expression of PGRN occurs in brains of human AD cases and AD model mice, particularly in activated microglia. How microglial PGRN might be involved in AD and other neurodegenerative diseases will be discussed. A unifying feature of PGRN in diseases might be its modulation of lysosomal function in neurons and microglia. Many experimental models have focused on consequences of PGRN gene deletion: however, possible outcomes of increasing PGRN on microglial inflammation and neurodegeneration will be discussed. We will also suggest directions for future studies on PGRN and microglia in relation to neurodegenerative diseases.
Collapse
|
92
|
Huber RJ, Mathavarajah S. Comparative transcriptomics reveals mechanisms underlying cln3-deficiency phenotypes in Dictyostelium. Cell Signal 2019; 58:79-90. [PMID: 30771446 DOI: 10.1016/j.cellsig.2019.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/29/2019] [Accepted: 02/09/2019] [Indexed: 12/28/2022]
Abstract
Mutations in CLN3 cause a juvenile form of neuronal ceroid lipofuscinosis (NCL). This devastating neurological disorder, commonly known as Batten disease, is currently untreatable due to a lack of understanding of the physiological role of the protein. Recently, work in the social amoeba Dictyostelium discoideum has provided valuable new insight into the function of CLN3 in the cell. More specifically, research has linked the Dictyostelium homolog (gene: cln3, protein: Cln3) to protein secretion, adhesion, and aggregation during starvation, which initiates multicellular development. In this study, we used comparative transcriptomics to explore the mechanisms underlying the aberrant response of cln3- cells to starvation. During starvation, 1153 genes were differentially expressed in cln3- cells compared to WT. Among the differentially expressed genes were homologs of other human NCL genes including TPP1/CLN2, CLN5, CTSD/CLN10, PGRN/CLN11, and CTSF/CLN13. STRING and GO term analyses revealed an enrichment of genes linked to metabolic, biosynthetic, and catalytic processes. We then coupled the findings from the RNA-seq analysis to biochemical assays, specifically showing that loss of cln3 affects the expression and activity of lysosomal enzymes, increases endo-lysosomal pH, and alters nitric oxide homeostasis. Finally, we show that cln3- cells accumulate autofluorescent storage bodies during starvation and provide evidence linking the function of Cln3 to Tpp1 and CtsD activity. In total, this study enhances our knowledge of the molecular mechanisms underlying Cln3 function in Dictyostelium.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario, Canada.
| | | |
Collapse
|
93
|
Emerging Role of microRNAs in Dementia. J Mol Biol 2019; 431:1743-1762. [PMID: 30738891 DOI: 10.1016/j.jmb.2019.01.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/30/2018] [Accepted: 01/29/2019] [Indexed: 12/14/2022]
Abstract
MicroRNAs are small non-coding RNAs regulating mRNA translation. They play a crucial role in regulating homeostasis in neurons, especially in regulating local and stimulation dependent protein synthesis. Since activity-mediated protein synthesis in neurons is critical for memory and cognition, microRNAs have become key players in modulating these processes. Dementia is a broad term used for symptoms involving decline of memory and cognition. Several studies have implicated the dysregulation of microRNAs in many brain diseases like neurodegenerative diseases, neurodevelopmental disorders, brain injuries and dementia. In this review, we give an overview of microRNA-mediated regulation of proteins and cellular processes affected in dementia pathology, hence illustrating the importance of microRNAs in normal functioning. We also focus on a relatively less explored area in dementia pathology-the importance of activity-mediated protein synthesis at the synapse and the role of microRNAs in modulating this. Overall, this review will be helpful in looking at the significance of microRNAs in dementia from the perspective of defective regulation of protein synthesis and synaptic dysfunction.
Collapse
|
94
|
Amado DA, Rieders JM, Diatta F, Hernandez-Con P, Singer A, Mak JT, Zhang J, Lancaster E, Davidson BL, Chen-Plotkin AS. AAV-Mediated Progranulin Delivery to a Mouse Model of Progranulin Deficiency Causes T Cell-Mediated Toxicity. Mol Ther 2019; 27:465-478. [PMID: 30559071 PMCID: PMC6369714 DOI: 10.1016/j.ymthe.2018.11.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/01/2018] [Accepted: 11/11/2018] [Indexed: 11/16/2022] Open
Abstract
Adeno-associated virus-mediated gene replacement is emerging as a safe and effective means of correcting single-gene mutations affecting the CNS. AAV-mediated progranulin gene (GRN) delivery has been proposed as a treatment for GRN-deficient frontotemporal dementia and neuronal ceroid lipofuscinosis, and recent studies using intraparenchymal AAV-Grn delivery to brain have shown moderate success in histopathologic and behavioral rescue in mouse models. Here, we used AAV9 to deliver GRN to the lateral ventricle to achieve widespread expression in the Grn null mouse brain. We found that, despite a global increase in progranulin, overexpression resulted in dramatic and selective hippocampal toxicity and degeneration affecting neurons and glia. Hippocampal degeneration was preceded by T cell infiltration and perivascular cuffing. GRN delivery with an ependymal-targeting AAV for selective secretion of progranulin into the cerebrospinal fluid similarly resulted in T cell infiltration, as well as ependymal hypertrophy. Interestingly, overexpression of GRN in wild-type animals also provoked T cell infiltration. These results call into question the safety of GRN overexpression in the CNS, with evidence for both a region-selective immune response and cellular proliferative response. Our results highlight the importance of careful consideration of target gene biology and cellular response to overexpression prior to progressing to the clinic.
Collapse
Affiliation(s)
- Defne A Amado
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julianne M Rieders
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Children's Hospital of Philadelphia, 3501 Civic Center Boulevard, 5060 CTRB, Philadelphia, PA 19104, USA
| | - Fortunay Diatta
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pilar Hernandez-Con
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adina Singer
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jordan T Mak
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Junxian Zhang
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric Lancaster
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beverly L Davidson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Children's Hospital of Philadelphia, 3501 Civic Center Boulevard, 5060 CTRB, Philadelphia, PA 19104, USA.
| | - Alice S Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
95
|
Cui Y, Hettinghouse A, Liu CJ. Progranulin: A conductor of receptors orchestra, a chaperone of lysosomal enzymes and a therapeutic target for multiple diseases. Cytokine Growth Factor Rev 2019; 45:53-64. [PMID: 30733059 DOI: 10.1016/j.cytogfr.2019.01.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/29/2019] [Indexed: 12/14/2022]
Abstract
Progranulin (PGRN), a widely expressed glycoprotein with pleiotropic function, has been linked to a host of physiological processes and diverse pathological states. A series of contemporary preclinical disease models and clinical trials have evaluated various therapeutic strategies targeting PGRN, highlighting PGRN as a promising therapeutic target. Herein we summarize available knowledge of PGRN targeting in various kinds of diseases, including common neurological diseases, inflammatory autoimmune diseases, cancer, tissue repair, and rare lysosomal storage diseases, with a focus on the functional domain-oriented drug development strategies. In particular, we emphasize the role of extracellular PGRN as a non-conventional, extracellular matrix bound, growth factor-like conductor orchestrating multiple membrane receptors and intracellular PGRN as a chaperone/co-chaperone that mediates the folding and traffic of its various binding partners.
Collapse
Affiliation(s)
- Yazhou Cui
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003, USA; Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003, USA
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003, USA; Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
96
|
Talbot H, Saada S, Naves T, Gallet PF, Fauchais AL, Jauberteau MO. Regulatory Roles of Sortilin and SorLA in Immune-Related Processes. Front Pharmacol 2019; 9:1507. [PMID: 30666202 PMCID: PMC6330335 DOI: 10.3389/fphar.2018.01507] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/10/2018] [Indexed: 12/25/2022] Open
Abstract
Sortilin, also known as Neurotensin Receptor-3, and the sorting-related receptor with type-A repeats (SorLA) are both members of the Vps10p domain receptor family. Initially identified in CNS cells, they are expressed in various other cell types where they exert multiple functions. Although mostly studied for its involvement in Alzheimer’s disease, SorLA has recently been shown to be implicated in immune response by regulating IL-6-mediated signaling, as well as driving monocyte migration. Sortilin has been shown to act as a receptor, as a co-receptor and as an intra- and extracellular trafficking regulator. In the last two decades, deregulation of sortilin has been demonstrated to be involved in many human pathophysiologies, including neurodegenerative disorders (Alzheimer and Parkinson diseases), type 2 diabetes and obesity, cancer, and cardiovascular pathologies such as atherosclerosis. Several studies highlighted different functions of sortilin in the immune system, notably in microglia, pro-inflammatory cytokine regulation, phagosome fusion and pathogen clearance. In this review, we will analyze the multiple roles of sortilin and SorLA in the human immune system and how their deregulation may be involved in disease development.
Collapse
Affiliation(s)
- Hugo Talbot
- Faculty of Medicine, University of Limoges, Limoges, France
| | - Sofiane Saada
- Faculty of Medicine, University of Limoges, Limoges, France
| | - Thomas Naves
- Faculty of Medicine, University of Limoges, Limoges, France
| | | | - Anne-Laure Fauchais
- Faculty of Medicine, University of Limoges, Limoges, France.,Department of Internal Medicine, University Hospital Limoges Dupuytren Hospital, Limoges, France
| | - Marie-Odile Jauberteau
- Faculty of Medicine, University of Limoges, Limoges, France.,Department of Immunology, University Hospital Limoges Dupuytren Hospital, Limoges, France
| |
Collapse
|
97
|
Abstract
Microglia are the brain's resident immune cells. Under physiological conditions, they participate in a myriad of processes mainly involved in housekeeping functions that promote tissue homeostasis. However, the triggering of an immune response is a common feature in neurodegenerative disorders. This shift in microglia cells toward a chronically activated phenotype contributing to neuronal dysfunction and cell death is of great interest nowadays. In this chapter, we review the implications of microglia activation in different neurodegenerative disorders.
Collapse
Affiliation(s)
- Darío Tejera
- Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Michael T Heneka
- Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany. .,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany.
| |
Collapse
|
98
|
Kohlschütter A, Schulz A, Bartsch U, Storch S. Current and Emerging Treatment Strategies for Neuronal Ceroid Lipofuscinoses. CNS Drugs 2019; 33:315-325. [PMID: 30877620 PMCID: PMC6440934 DOI: 10.1007/s40263-019-00620-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The neuronal ceroid lipofuscinoses comprise a group of neurodegenerative lysosomal storage disorders caused by mutations in at least 13 different genes and primarily affect the brain and the retina of children or young adults. The disorders are characterized by progressive neurological deterioration with dementia, epilepsy, loss of vision, motor disturbances, and early death. While various therapeutic strategies are currently being explored as treatment options for these fatal disorders, there is presently only one clinically approved drug that has been shown to effectively attenuate the progression of a specific form of neuronal ceroid lipofuscinosis, CLN2 disease (cerliponase alfa, a lysosomal enzyme infused into the brain ventricles of patients with CLN2 disease). Therapeutic approaches for the treatment of other forms of neuronal ceroid lipofuscinosis include the administration of immunosuppressive agents to antagonize neuroinflammation associated with neurodegeneration, the use of various small molecules, stem cell therapy, and gene therapy. An important aspect of future work aimed at developing therapies for neuronal ceroid lipofuscinoses is the need for treatments that effectively attenuate neurodegeneration in both the brain and the retina.
Collapse
Affiliation(s)
- Alfried Kohlschütter
- Department of Pediatrics, University Medical Center Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Angela Schulz
- 0000 0001 2180 3484grid.13648.38Department of Pediatrics, University Medical Center Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Udo Bartsch
- 0000 0001 2180 3484grid.13648.38Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Stephan Storch
- 0000 0001 2180 3484grid.13648.38Department of Pediatrics, Section Biochemistry, University Medical Center Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
99
|
Götzl JK, Colombo AV, Fellerer K, Reifschneider A, Werner G, Tahirovic S, Haass C, Capell A. Early lysosomal maturation deficits in microglia triggers enhanced lysosomal activity in other brain cells of progranulin knockout mice. Mol Neurodegener 2018; 13:48. [PMID: 30180904 PMCID: PMC6123925 DOI: 10.1186/s13024-018-0281-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/27/2018] [Indexed: 12/13/2022] Open
Abstract
Background Heterozygous loss-of-function mutations in the progranulin gene (GRN) lead to frontotemporal lobar degeneration (FTLD) while the complete loss of progranulin (PGRN) function results in neuronal ceroid lipofuscinosis (NCL), a lysosomal storage disease. Thus the growth factor-like protein PGRN may play an important role in lysosomal degradation. In line with a potential lysosomal function, PGRN is partially localized and processed in lysosomes. In the central nervous system (CNS), PGRN is like other lysosomal proteins highly expressed in microglia, further supporting an important role in protein degradation. We have previously reported that cathepsin (Cat) D is elevated in GRN-associated FTLD patients and Grn knockout mice. However, the primary mechanism that causes impaired protein degradation and elevated CatD levels upon PGRN deficiency in NCL and FTLD remains unclear. Methods mRNA expression analysis of selected lysosomal hydrolases, lysosomal membrane proteins and autophagy-related genes was performed by NanoString nCounter panel. Protein expression, maturation and in vitro activity of Cat D, B and L in mouse embryonic fibroblasts (MEF) and brains of Grn knockout mice were investigated. To selectively characterize microglial and non-microglial brain cells, an acutely isolated microglia fraction using MACS microbeads (Miltenyi Biotec) conjugated with CD11b antibody and a microglia-depleted fraction were analyzed for protein expression and maturation of selected cathepsins. Results We demonstrate that loss of PGRN results in enhanced expression, maturation and in vitro activity of Cat D, B and L in mouse embryonic fibroblasts and brain extracts of aged Grn knockout mice. Consistent with an overall enhanced expression and activity of lysosomal proteases in brain of Grn knockout mice, we observed an age-dependent transcriptional upregulation of certain lysosomal proteases. Thus, lysosomal dysfunction is not reflected by transcriptional downregulation of lysosomal proteases but rather by the upregulation of certain lysosomal proteases in an age-dependent manner. Surprisingly, cell specific analyses identified early lysosomal deficits in microglia before enhanced cathepsin levels could be detected in other brain cells, suggesting different functional consequences on lysosomal homeostasis in microglia and other brain cells upon lack of PGRN. Conclusions The present study uncovers early and selective lysosomal dysfunctions in Grn knockout microglia/macrophages. Dysregulated lysosomal homeostasis in microglia might trigger compensatory lysosomal changes in other brain cells. Electronic supplementary material The online version of this article (10.1186/s13024-018-0281-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia K Götzl
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | | | - Katrin Fellerer
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Anika Reifschneider
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Georg Werner
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377, Munich, Germany
| | - Christian Haass
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, 81377, Munich, Germany. .,German Center for Neurodegenerative Diseases (DZNE) Munich, 81377, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany.
| | - Anja Capell
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, 81377, Munich, Germany.
| |
Collapse
|
100
|
Boland B, Yu WH, Corti O, Mollereau B, Henriques A, Bezard E, Pastores GM, Rubinsztein DC, Nixon RA, Duchen MR, Mallucci GR, Kroemer G, Levine B, Eskelinen EL, Mochel F, Spedding M, Louis C, Martin OR, Millan MJ. Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat Rev Drug Discov 2018; 17:660-688. [PMID: 30116051 DOI: 10.1038/nrd.2018.109] [Citation(s) in RCA: 361] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurodegenerative disorders of ageing (NDAs) such as Alzheimer disease, Parkinson disease, frontotemporal dementia, Huntington disease and amyotrophic lateral sclerosis represent a major socio-economic challenge in view of their high prevalence yet poor treatment. They are often called 'proteinopathies' owing to the presence of misfolded and aggregated proteins that lose their physiological roles and acquire neurotoxic properties. One reason underlying the accumulation and spread of oligomeric forms of neurotoxic proteins is insufficient clearance by the autophagic-lysosomal network. Several other clearance pathways are also compromised in NDAs: chaperone-mediated autophagy, the ubiquitin-proteasome system, extracellular clearance by proteases and extrusion into the circulation via the blood-brain barrier and glymphatic system. This article focuses on emerging mechanisms for promoting the clearance of neurotoxic proteins, a strategy that may curtail the onset and slow the progression of NDAs.
Collapse
Affiliation(s)
- Barry Boland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Wai Haung Yu
- Department of Pathology and Cell Biology, Taub Institute for Alzheimer's Disease Research, Columbia University, New York, NY, USA
| | - Olga Corti
- ICM Institute for Brain and Spinal Cord, Paris, France
| | | | | | - Erwan Bezard
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Greg M Pastores
- Department of Metabolic Diseases, Mater Misericordiae University Hospital, Dublin, Ireland
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge and UK Dementia Research Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA.,Departments of Psychiatry and Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Michael R Duchen
- UCL Consortium for Mitochondrial Research and Department of Cell and Developmental Biology, University College London, London, UK
| | - Giovanna R Mallucci
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou (AP-HP), Paris, France
| | - Beth Levine
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Howard Hughes Medical Institute, Dallas, TX, USA
| | | | - Fanny Mochel
- INSERM U 1127, Brain and Spine Institute, Paris, France
| | | | - Caroline Louis
- Centre for Therapeutic Innovation in Neuropsychiatry, IDR Servier, 78290 Croissy sur Seine, France
| | - Olivier R Martin
- Université d'Orléans & CNRS, Institut de Chimie Organique et Analytique (ICOA), Orléans, France
| | - Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, IDR Servier, 78290 Croissy sur Seine, France
| |
Collapse
|