51
|
Rokhas MK, Rönn JL, Wiklund C, Emmer Å. Analysis of butterfly reproductive proteins using capillary electrophoresis and mass spectrometry. Anal Biochem 2019; 566:23-26. [PMID: 30423321 DOI: 10.1016/j.ab.2018.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 10/18/2018] [Accepted: 11/03/2018] [Indexed: 11/29/2022]
Abstract
A method for analysis of proteins from spermatophores transferred from male to female Pieris napi butterflies during mating has been developed. The proteins were solubilized from the dissected spermatophores using different solubilization agents (water, methanol, acetonitrile and hexafluoroisopropanol). Capillary electrophoresis (CE) analysis was performed using an acidic background electrolyte containing a fluorosurfactant to avoid protein-wall adsorption, and to increase separation performance. The samples were also analyzed with matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS), in a lower m/z range (1000-6000) and a higher m/z range (6000-12000). Solubilization with different solvents and the use of alternative matrices gave partly complementary profiles.
Collapse
Affiliation(s)
- Maria Khihon Rokhas
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Dept. of Chemistry, Div. of Applied Physical Chemistry, Analytical Chemistry, Stockholm, Sweden
| | | | - Christer Wiklund
- Stockholm University, Dept. of Zoology, Ecology, Stockholm, Sweden
| | - Åsa Emmer
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Dept. of Chemistry, Div. of Applied Physical Chemistry, Analytical Chemistry, Stockholm, Sweden.
| |
Collapse
|
52
|
Izquierdo A, Fahrenberger M, Persampieri T, Benedict MQ, Giles T, Catteruccia F, Emes RD, Dottorini T. Evolution of gene expression levels in the male reproductive organs of Anopheles mosquitoes. Life Sci Alliance 2019; 2:e201800191. [PMID: 30623175 PMCID: PMC6315087 DOI: 10.26508/lsa.201800191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022] Open
Abstract
Modifications in gene expression determine many of the phenotypic differentiations between closely related species. This is particularly evident in reproductive tissues, where evolution of genes is more rapid, facilitating the appearance of distinct reproductive characteristics which may lead to species isolation and phenotypic variation. Large-scale, comparative analyses of transcript expression levels have been limited until recently by lack of inter-species data mining solutions. Here, by combining expression normalisation across lineages, multivariate statistical analysis, evolutionary rate, and protein-protein interaction analysis, we investigate ortholog transcripts in the male accessory glands and testes across five closely related species in the Anopheles gambiae complex. We first demonstrate that the differentiation by transcript expression is consistent with the known Anopheles phylogeny. Then, through clustering, we discover groups of transcripts with tissue-dependent expression patterns conserved across lineages, or lineage-dependent patterns conserved across tissues. The strongest associations with reproductive function, transcriptional regulatory networks, protein-protein subnetworks, and evolutionary rate are found for the groups of transcripts featuring large expression differences in lineage or tissue-conserved patterns.
Collapse
Affiliation(s)
- Abril Izquierdo
- School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Leicestershire, UK
| | - Martin Fahrenberger
- School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Leicestershire, UK
| | - Tania Persampieri
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Mark Q Benedict
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Entomology Branch, Atlanta, GA, USA
| | - Tom Giles
- Advanced Data Analysis Centre, Sutton Bonington Campus, University of Nottingham, Leicestershire, UK
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Richard D Emes
- School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Leicestershire, UK.,Advanced Data Analysis Centre, Sutton Bonington Campus, University of Nottingham, Leicestershire, UK
| | - Tania Dottorini
- School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Leicestershire, UK
| |
Collapse
|
53
|
Ghiselli F, Iannello M, Puccio G, Chang PL, Plazzi F, Nuzhdin SV, Passamonti M. Comparative Transcriptomics in Two Bivalve Species Offers Different Perspectives on the Evolution of Sex-Biased Genes. Genome Biol Evol 2018; 10:1389-1402. [PMID: 29897459 PMCID: PMC6007409 DOI: 10.1093/gbe/evy082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2018] [Indexed: 12/13/2022] Open
Abstract
Comparative genomics has become a central tool for evolutionary biology, and a better knowledge of understudied taxa represents the foundation for future work. In this study, we characterized the transcriptome of male and female mature gonads in the European clam Ruditapes decussatus, compared with that in the Manila clam Ruditapes philippinarum providing, for the first time in bivalves, information about transcription dynamics and sequence evolution of sex-biased genes. In both the species, we found a relatively low number of sex-biased genes (1,284, corresponding to 41.3% of the orthologous genes between the two species), probably due to the absence of sexual dimorphism, and the transcriptional bias is maintained in only 33% of the orthologs. The dN/dS is generally low, indicating purifying selection, with genes where the female-biased transcription is maintained between the two species showing a significantly higher dN/dS. Genes involved in embryo development, cell proliferation, and maintenance of genome stability show a faster sequence evolution. Finally, we report a lack of clear correlation between transcription level and evolutionary rate in these species, in contrast with studies that reported a negative correlation. We discuss such discrepancy and call into question some methodological approaches and rationales generally used in this type of comparative studies.
Collapse
Affiliation(s)
- Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Mariangela Iannello
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Guglielmo Puccio
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Peter L Chang
- Program in Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, USA
| | - Federico Plazzi
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Sergey V Nuzhdin
- Program in Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, USA
| | - Marco Passamonti
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| |
Collapse
|
54
|
Rehan SM, Glastad KM, Steffen MA, Fay CR, Hunt BG, Toth AL. Conserved Genes Underlie Phenotypic Plasticity in an Incipiently Social Bee. Genome Biol Evol 2018; 10:2749-2758. [PMID: 30247544 PMCID: PMC6190964 DOI: 10.1093/gbe/evy212] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2018] [Indexed: 11/13/2022] Open
Abstract
Despite a strong history of theoretical work on the mechanisms of social evolution, relatively little is known of the molecular genetic changes that accompany transitions from solitary to eusocial forms. Here, we provide the first genome of an incipiently social bee that shows both solitary and social colony organization in sympatry, the Australian carpenter bee Ceratina australensis. Through comparative analysis, we provide support for the role of conserved genes and cis-regulation of gene expression in the phenotypic plasticity observed in nest-sharing, a rudimentary form of sociality. Additionally, we find that these conserved genes are associated with caste differences in advanced eusocial species, suggesting these types of mechanisms could pave the molecular pathway from solitary to eusocial living. Genes associated with social nesting in this species show signatures of being deeply conserved, in contrast to previous studies in other bees showing novel and faster-evolving genes are associated with derived sociality. Our data provide support for the idea that the earliest social transitions are driven by changes in gene regulation of deeply conserved genes.
Collapse
Affiliation(s)
- Sandra M Rehan
- Department of Biological Sciences, University of New Hampshire
| | - Karl M Glastad
- Department of Cell & Developmental Biology, University of Pennsylvania
| | | | - Cameron R Fay
- Department of Ecology, Evolution and Organismal Biology, Iowa State University
| | | | - Amy L Toth
- Department of Ecology, Evolution and Organismal Biology, Iowa State University
| |
Collapse
|
55
|
Kasimatis KR, Moerdyk-Schauwecker MJ, Timmermeyer N, Phillips PC. Proteomic and evolutionary analyses of sperm activation identify uncharacterized genes in Caenorhabditis nematodes. BMC Genomics 2018; 19:593. [PMID: 30086719 PMCID: PMC6081950 DOI: 10.1186/s12864-018-4980-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Nematode sperm have unique and highly diverged morphology and molecular biology. In particular, nematode sperm contain subcellular vesicles known as membranous organelles that are necessary for male fertility, yet play a still unknown role in overall sperm function. Here we take a novel proteomic approach to characterize the functional protein complement of membranous organelles in two Caenorhabditis species: C. elegans and C. remanei. RESULTS We identify distinct protein compositions between membranous organelles and the activated sperm body. Two particularly interesting and undescribed gene families-the Nematode-Specific Peptide family, group D and the here designated Nematode-Specific Peptide family, group F-localize to the membranous organelle. Both multigene families are nematode-specific and exhibit patterns of conserved evolution specific to the Caenorhabditis clade. These data suggest gene family dynamics may be a more prevalent mode of evolution than sequence divergence within sperm. Using a CRISPR-based knock-out of the NSPF gene family, we find no evidence of a male fertility effect of these genes, despite their high protein abundance within the membranous organelles. CONCLUSIONS Our study identifies key components of this unique subcellular sperm component and establishes a path toward revealing their underlying role in reproduction.
Collapse
Affiliation(s)
- Katja R. Kasimatis
- Institute of Ecology and Evolution, University of Oregon, 5289 University of Oregon, Eugene, OR 97403-5289 USA
| | | | - Nadine Timmermeyer
- Institute of Ecology and Evolution, University of Oregon, 5289 University of Oregon, Eugene, OR 97403-5289 USA
| | - Patrick C. Phillips
- Institute of Ecology and Evolution, University of Oregon, 5289 University of Oregon, Eugene, OR 97403-5289 USA
| |
Collapse
|
56
|
Parker DJ, Wiberg RAW, Trivedi U, Tyukmaeva VI, Gharbi K, Butlin RK, Hoikkala A, Kankare M, Ritchie MG. Inter and Intraspecific Genomic Divergence in Drosophila montana Shows Evidence for Cold Adaptation. Genome Biol Evol 2018; 10:2086-2101. [PMID: 30010752 PMCID: PMC6107330 DOI: 10.1093/gbe/evy147] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2018] [Indexed: 12/25/2022] Open
Abstract
The genomes of species that are ecological specialists will likely contain signatures of genomic adaptation to their niche. However, distinguishing genes related to ecological specialism from other sources of selection and more random changes is a challenge. Here, we describe the genome of Drosophila montana, which is the most extremely cold-adapted Drosophila species known. We use branch tests to identify genes showing accelerated divergence in contrasts between cold- and warm-adapted species and identify about 250 genes that show differences, possibly driven by a lower synonymous substitution rate in cold-adapted species. We also look for evidence of accelerated divergence between D. montana and D. virilis, a previously sequenced relative, but do not find strong evidence for divergent selection on coding sequence variation. Divergent genes are involved in a variety of functions, including cuticular and olfactory processes. Finally, we also resequenced three populations of D. montana from across its ecological and geographic range. Outlier loci were more likely to be found on the X chromosome and there was a greater than expected overlap between population outliers and those genes implicated in cold adaptation between Drosophila species, implying some continuity of selective process at these different evolutionary scales.
Collapse
Affiliation(s)
- Darren J Parker
- Department of Biological and Environmental Science, University of Jyväskylä, Finland
- Center for Biological Diversity, School of Biology, University of St. Andrews, Fife, United Kingdom
- Department of Ecology and Evolution, University of Lausanne, Biophore, Switzerland
| | - R Axel W Wiberg
- Center for Biological Diversity, School of Biology, University of St. Andrews, Fife, United Kingdom
| | - Urmi Trivedi
- Edinburgh Genomics, School of Biological Sciences, University of Edinburgh, United Kingdom
| | - Venera I Tyukmaeva
- Department of Biological and Environmental Science, University of Jyväskylä, Finland
| | - Karim Gharbi
- Edinburgh Genomics, School of Biological Sciences, University of Edinburgh, United Kingdom
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Roger K Butlin
- Department of Animal and Plant Sciences, The University of Sheffield, UK
- Department of Marine Sciences, University of Gothenburg, Göteborg, Sweden
| | - Anneli Hoikkala
- Department of Biological and Environmental Science, University of Jyväskylä, Finland
| | - Maaria Kankare
- Department of Biological and Environmental Science, University of Jyväskylä, Finland
| | - Michael G Ritchie
- Center for Biological Diversity, School of Biology, University of St. Andrews, Fife, United Kingdom
| |
Collapse
|
57
|
Abstract
As an immediate consequence of sexual reproduction, biphasic life cycles with alternating diploid and haploid phases are a common characteristic of sexually reproducing eukaryotes. Much of our focus in evolutionary biology has been directed toward dynamics in diploid or haploid populations, but we rarely consider selection occurring during both phases when studying evolutionary processes. One of the reasons for this apparent omission is the fact that many flowering plants and metazoans are predominantly diploid with a very short haploid gametic phase. While this gametic phase may be short, it can play a crucial role in fundamental processes including the rate of adaptation, the load of mutation, and the evolution of features such as recombination. In addition, if selection acts in different directions between the two phases, a genetic conflict will occur, impacting the maintenance of genetic variation. Here we provide an overview of theoretical and empirical studies investigating the importance of selection at the haploid gametic phase in predominantly diploid organisms and discuss future directions to improve our understanding of the underlying dynamics and the general implications of haploid selection.
Collapse
|
58
|
Weber M, Wunderer J, Lengerer B, Pjeta R, Rodrigues M, Schärer L, Ladurner P, Ramm SA. A targeted in situ hybridization screen identifies putative seminal fluid proteins in a simultaneously hermaphroditic flatworm. BMC Evol Biol 2018; 18:81. [PMID: 29848299 PMCID: PMC5977470 DOI: 10.1186/s12862-018-1187-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/30/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Along with sperm, in many taxa ejaculates also contain large numbers of seminal fluid proteins (SFPs). SFPs and sperm are transferred to the mating partner, where they are thought to play key roles in mediating post-mating sexual selection. They modulate the partner's behavior and physiology in ways that influence the reproductive success of both partners, thus potentially leading to sexual conflict. Despite the presumed general functional and evolutionary significance of SFPs, their identification and characterization has to date focused on just a few animal groups, predominantly insects and mammals. Moreover, until now seminal fluid profiling has mainly focused on species with separate sexes. Here we report a comprehensive screen for putative SFPs in the simultaneously hermaphroditic flatworm Macrostomum lignano. RESULTS Based on existing transcriptomic data, we selected 150 transcripts known to be (a) predominantly expressed in the tail region of the worms, where the seminal fluid-producing prostate gland cells are located, and (b) differentially expressed in social environments differing in sperm competition level, strongly implying that they represent a phenotypically plastic aspect of male reproductive allocation in this species. For these SFP candidates, we then performed whole-mount in situ hybridization (ISH) experiments to characterize tissue-specific expression. In total, we identified 98 transcripts that exhibited prostate-specific expression, 76 of which we found to be expressed exclusively in the prostate gland cells; additional sites of expression for the remaining 22 included the testis or other gland cells. Bioinformatics analyses of the prostate-limited candidates revealed that at least 64 are predicted to be secretory proteins, making these especially strong candidates to be SFPs that are transferred during copulation. CONCLUSIONS Our study represents a first comprehensive analysis using a combination of transcriptomic and ISH screen data to identify SFPs based on transcript expression in seminal fluid-producing tissues. We thereby extend the range of taxa for which seminal fluid has been characterized to a flatworm species with a sequenced genome and for which several methods such as antibody staining, transgenesis and RNA interference have been established. Our data provide a basis for testing the functional and evolutionary significance of SFPs.
Collapse
Affiliation(s)
- Michael Weber
- Evolutionary Biology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| | - Julia Wunderer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Birgit Lengerer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Robert Pjeta
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Marcelo Rodrigues
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
- Current address: School of Natural and Environmental Sciences, Ridley Building, Newcastle University, Newcastle upon Tyne, England NE1 7RU UK
| | - Lukas Schärer
- Evolutionary Biology, Zoological Institute, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Peter Ladurner
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Steven A. Ramm
- Evolutionary Biology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| |
Collapse
|
59
|
Saarman NP, Kober KM, Simison WB, Pogson GH. Sequence-Based Analysis of Thermal Adaptation and Protein Energy Landscapes in an Invasive Blue Mussel (Mytilus galloprovincialis). Genome Biol Evol 2018; 9:2739-2751. [PMID: 28985307 PMCID: PMC5647807 DOI: 10.1093/gbe/evx190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2017] [Indexed: 12/12/2022] Open
Abstract
Adaptive responses to thermal stress in poikilotherms plays an important role in determining competitive ability and species distributions. Amino acid substitutions that affect protein stability and modify the thermal optima of orthologous proteins may be particularly important in this context. Here, we examine a set of 2,770 protein-coding genes to determine if proteins in a highly invasive heat tolerant blue mussel (Mytilus galloprovincialis) contain signals of adaptive increases in protein stability relative to orthologs in a more cold tolerant M. trossulus. Such thermal adaptations might help to explain, mechanistically, the success with which the invasive marine mussel M. galloprovincialis has displaced native species in contact zones in the eastern (California) and western (Japan) Pacific. We tested for stabilizing amino acid substitutions in warm tolerant M. galloprovincialis relative to cold tolerant M. trossulus with a generalized linear model that compares in silico estimates of recent changes in protein stability among closely related congeners. Fixed substitutions in M. galloprovincialis were 3,180.0 calories per mol per substitution more stabilizing at genes with both elevated dN/dS ratios and transcriptional responses to heat stress, and 705.8 calories per mol per substitution more stabilizing across all 2,770 loci investigated. Amino acid substitutions concentrated in a small number of genes were more stabilizing in M. galloprovincialis compared with cold tolerant M. trossulus. We also tested for, but did not find, enrichment of a priori GO terms in genes with elevated dN/dS ratios in M. galloprovincialis. This might indicate that selection for thermodynamic stability is generic across all lineages, and suggests that the high change in estimated protein stability that we observed in M. galloprovincialis is driven by selection for extra stabilizing substitutions, rather than by higher incidence of selection in a greater number of genes in this lineage. Nonetheless, our finding of more stabilizing amino acid changes in the warm adapted lineage is important because it suggests that adaption for thermal stability has contributed to M. galloprovincialis’ superior tolerance to heat stress, and that pairing tests for positive selection and tests for transcriptional response to heat stress can identify candidates of protein stability adaptation.
Collapse
Affiliation(s)
- Norah P Saarman
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz.,Department of Ecology and Evolutionary Biology, Yale University
| | - Kord M Kober
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz.,Department of Physiological Nursing, University of California, San Francisco.,Institute for Computational Health Sciences, University of California, San Francisco
| | - W Brian Simison
- Center for Comparative Genomics, California Academy of Sciences, San Francisco, California
| | - Grant H Pogson
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz
| |
Collapse
|
60
|
Abstract
All animal oocytes are surrounded by a glycoproteinaceous egg coat, a specialized extracellular matrix that serves both structural and species-specific roles during fertilization. Egg coat glycoproteins polymerize into the extracellular matrix of the egg coat using a conserved protein-protein interaction module-the zona pellucida (ZP) domain-common to both vertebrates and invertebrates, suggesting that the basic structural features of egg coats have been conserved across hundreds of millions of years of evolution. Egg coat proteins, as with other proteins involved in reproduction, are frequently found to be rapidly evolving. Given that gamete compatibility must be maintained for the fitness of sexually reproducing organisms, this finding is somewhat paradoxical and suggests a role for adaptive diversification in reproductive protein evolution. Here we review the structure and function of metazoan egg coat proteins, with an emphasis on the potential role their evolution has played in the creation and maintenance of species boundaries.
Collapse
Affiliation(s)
- Emily E Killingbeck
- Department of Genome Sciences, University of Washington, Seattle, WA, United States.
| | - Willie J Swanson
- Department of Genome Sciences, University of Washington, Seattle, WA, United States.
| |
Collapse
|
61
|
Southern HM, Berger MA, Young PG, Snook RR. Sperm morphology and the evolution of intracellular sperm-egg interactions. Ecol Evol 2018; 8:5047-5058. [PMID: 29876080 PMCID: PMC5980432 DOI: 10.1002/ece3.4027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/16/2018] [Accepted: 02/26/2018] [Indexed: 01/06/2023] Open
Abstract
Sperm morphology is incredibly diverse, even among closely related species, yet the coevolution between males and females of fertilization recognition systems is necessary for successful karyogamy (male and female pronuclear fusion). In most species, the entire sperm enters the egg during fertilization so sperm morphological diversity may impact the intracellular sperm-egg interactions necessary for karyogamy. We quantified morphological variation of sperm inside eggs prior to and following karyogamy in several species of Drosophila to understand whether evolution of sperm morphology could influence intracellular sperm-egg interactions (ISEIs). We measured seven parameters that describe ISEIs among species to determine whether these parameters varied both within a species across development and across species at the same developmental stage. We used heterospecific crosses to test the relative role of male origin, female origin, and interaction between the male and female in determining ISEIs. We found that sperm shape changed within a species as development proceeded and, at particular development stages, species varied in some ISEIs. Parental origin had an effect on some ISEIs, with a general trend for a stronger female effect. Overall, our findings identify conserved and variable ISEIs among species and demonstrate the potential to contribute understanding to gamete evolution and development.
Collapse
Affiliation(s)
- Helen M. Southern
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| | | | - Philippe G. Young
- College of Engineering, Mathematics, and Physical SciencesUniversity of ExeterExeterUK
| | - Rhonda R. Snook
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
- Department of ZoologyStockholm UniversityStockholmSweden
| |
Collapse
|
62
|
Ugwu SI, Shiba K, Inaba K, Morita M. A Unique Seminal Plasma Protein, Zona Pellucida 3-Like Protein, has Ca 2+ -Dependent Sperm Agglutination Activity. Zoolog Sci 2018; 35:161-171. [PMID: 29623792 DOI: 10.2108/zs170150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Identification of seminal proteins provides a means of investigating their roles. Despite their importance in the study of protein function, such as regulation of sperm motility, it is difficult to select candidates from the large number of proteins. Analyzing the rate of molecular evolution is a useful strategy for selecting candidates, and expressing the protein allows the examination of its function. In the present study, we investigated seminal plasma proteins of the cichlid Oreochromis mossambicus, which exhibits a unique mode of fertilization and a rapidly evolving gene that encodes a seminal plasma protein, zona-pellucida 3-like (ZP3-like), which does not belong to the same molecular family as other ZPs. Seminal plasma proteins of O. mossambicus were separated by two-dimensional electrophoresis, and 19 major proteins were identified by mass spectrometry (MALDI-Tof Mass). Because proteins that are under positive selection often impact sperm function, the rates of molecular evolution of these proteins were analyzed in terms of non-synonymous/synonymous substitutions (ω). Among the 19 proteins, positive selection was supported for five genes; functional assays were carried out on four of the proteins encoded by these genes. Of the four positively selected proteins, only ZP3-like protein agglutinated sperm in a dose- and Ca2+ -dependent manner. The other three proteins did not affect sperm motility. Because of the unique fertilization type, in which fertilization occurs in the buccal cavity, the need to retain sperm within the cavity during spawning, and the agglutination of sperm, which may be partly assisted by ZP3-like protein, may contribute to fertilization success. Fertilization in the buccal cavity may be related to its rapid molecular evolution.
Collapse
Affiliation(s)
- Stanley Ifeanyi Ugwu
- 1 Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa 905-0227, Japan
| | - Kogiku Shiba
- 2 Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda City, Shizuoka 415-0025, Japan
| | - Kazuo Inaba
- 2 Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda City, Shizuoka 415-0025, Japan
| | - Masaya Morita
- 1 Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa 905-0227, Japan
| |
Collapse
|
63
|
Firman RC. Postmating sexual conflict and female control over fertilization during gamete interaction. Ann N Y Acad Sci 2018. [DOI: 10.1111/nyas.13635] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Renée C. Firman
- Centre for Evolutionary Biology University of Western Australia Western Australia Australia
| |
Collapse
|
64
|
Rapid Gene Family Evolution of a Nematode Sperm Protein Despite Sequence Hyper-conservation. G3-GENES GENOMES GENETICS 2018; 8:353-362. [PMID: 29162683 PMCID: PMC5765362 DOI: 10.1534/g3.117.300281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reproductive proteins are often observed to be the most rapidly evolving elements within eukaryotic genomes. The major sperm protein (MSP) is unique to the phylum Nematoda and is required for proper sperm locomotion and fertilization. Here, we annotate the MSP gene family and analyze their molecular evolution in 10 representative species across Nematoda. We show that MSPs are hyper-conserved across the phylum, having maintained an amino acid sequence identity of 83.5–97.7% for over 500 million years. This extremely slow rate of evolution makes MSPs some of the most highly conserved genes yet identified. However, at the gene family level, we show hyper-variability in both gene copy number and genomic position within species, suggesting rapid, lineage-specific gene family evolution. Additionally, we find evidence that extensive gene conversion contributes to the maintenance of sequence identity within chromosome-level clusters of MSP genes. Thus, while not conforming to the standard expectation for the evolution of reproductive proteins, our analysis of the molecular evolution of the MSP gene family is nonetheless consistent with the widely repeatable observation that reproductive proteins evolve rapidly, in this case in terms of the genomic properties of gene structure, copy number, and genomic organization. This unusual evolutionary pattern is likely generated by strong pleiotropic constraints acting on these genes at the sequence level, balanced against expansion at the level of the whole gene family.
Collapse
|
65
|
Genes Integral to the Reproductive Function of Male Reproductive Tissues Drive Heterogeneity in Evolutionary Rates in Japanese Quail. G3-GENES GENOMES GENETICS 2018; 8:39-51. [PMID: 29158338 PMCID: PMC5765365 DOI: 10.1534/g3.117.300095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Early comparative genomics studies originally uncovered a nonintuitive pattern; genes involved in reproduction appeared to evolve more rapidly than other classes of genes. Currently, the emerging consensus is that genes encoding reproductive proteins evolve under variable selective pressures, producing more heterogeneous divergence patterns than previously appreciated. Here, we investigate a facet of that heterogeneity and explore the factors that drive male reproductive tissue-based heterogeneity in evolutionary rates. In Japanese quail (Coturnix japonica), genes with enriched expression in the testes evolve much more rapidly than those enriched in the foam gland (FG), a novel gland that secretes an airy foam that males transfer to females during mating. We compared molecular evolutionary patterns among (1) genes with induced expression in breeding vs. wintering conditions for both tissues and (2) genes that encode foam proteins (FPs) vs. those with varying degrees of expression specificity in the FG. We report two major findings. First, genes upregulated in breeding condition testes evolve exceptionally rapidly, while those induced in breeding condition FGs evolve slowly. These differences hold even after correcting for hormonally-dependent gene expression and chromosomal location. Second, genes encoding FPs are extremely conserved in terms of gene identity and sequence. Together, these finding suggest that genes involved in the reproductive function of each tissue drive the marked rate of heterogeneity.
Collapse
|
66
|
González AM, Prada CA, Ávila V, Medina M. Ecological Speciation in Corals. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_35] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
67
|
Cooper JC, Phadnis N. Parallel Evolution of Sperm Hyper-Activation Ca2+ Channels. Genome Biol Evol 2017; 9:1938-1949. [PMID: 28810709 PMCID: PMC5553355 DOI: 10.1093/gbe/evx131] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2017] [Indexed: 01/06/2023] Open
Abstract
Sperm hyper-activation is a dramatic change in sperm behavior where mature sperm burst into a final sprint in the race to the egg. The mechanism of sperm hyper-activation in many metazoans, including humans, consists of a jolt of Ca2+ into the sperm flagellum via CatSper ion channels. Surprisingly, all nine CatSper genes have been independently lost in several animal lineages. In Drosophila, sperm hyper-activation is performed through the cooption of the polycystic kidney disease 2 (pkd2) Ca2+ channel. The parallels between CatSpers in primates and pkd2 in Drosophila provide a unique opportunity to examine the molecular evolution of the sperm hyper-activation machinery in two independent, nonhomologous calcium channels separated by > 500 million years of divergence. Here, we use a comprehensive phylogenomic approach to investigate the selective pressures on these sperm hyper-activation channels. First, we find that the entire CatSper complex evolves rapidly under recurrent positive selection in primates. Second, we find that pkd2 has parallel patterns of adaptive evolution in Drosophila. Third, we show that this adaptive evolution of pkd2 is driven by its role in sperm hyper-activation. These patterns of selection suggest that the evolution of the sperm hyper-activation machinery is driven by sexual conflict with antagonistic ligands that modulate channel activity. Together, our results add sperm hyper-activation channels to the class of fast evolving reproductive proteins and provide insights into the mechanisms used by the sexes to manipulate sperm behavior.
Collapse
|
68
|
Campbell CL, Dickson LB, Lozano-Fuentes S, Juneja P, Jiggins FM, Black WC. Alternative patterns of sex chromosome differentiation in Aedes aegypti (L). BMC Genomics 2017; 18:943. [PMID: 29202694 PMCID: PMC5716240 DOI: 10.1186/s12864-017-4348-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/23/2017] [Indexed: 12/16/2022] Open
Abstract
Background Some populations of West African Aedes aegypti, the dengue and zika vector, are reproductively incompatible; our earlier study showed that divergence and rearrangements of genes on chromosome 1, which bears the sex locus (M), may be involved. We also previously described a proposed cryptic subspecies SenAae (PK10, Senegal) that had many more high inter-sex FST genes on chromosome 1 than did Ae.aegypti aegypti (Aaa, Pai Lom, Thailand). The current work more thoroughly explores the significance of those findings. Results Intersex standardized variance (FST) of single nucleotide polymorphisms (SNPs) was characterized from genomic exome capture libraries of both sexes in representative natural populations of Aaa and SenAae. Our goal was to identify SNPs that varied in frequency between males and females, and most were expected to occur on chromosome 1. Use of the assembled AaegL4 reference alleviated the previous problem of unmapped genes. Because the M locus gene nix was not captured and not present in AaegL4, the male-determining locus, per se, was not explored. Sex-associated genes were those with FST values ≥ 0.100 and/or with increased expected heterozygosity (Hexp, one-sided T-test, p < 0.05) in males. There were 85 genes common to both collections with high inter-sex FST values; all genes but one were located on chromosome 1. Aaa showed the expected cluster of high inter-sex FST genes proximal to the M locus, whereas SenAae had inter-sex FST genes along the length of chromosome 1. In addition, the Aaa M-locus proximal region showed increased Hexp levels in males, whereas SenAae did not. In SenAae, chromosomal rearrangements and subsequent suppressed recombination may have accelerated X-Y differentiation. Conclusions The evidence presented here is consistent with differential evolution of proto-Y chromosomes in Aaa and SenAae. Electronic supplementary material The online version of this article (doi: 10.1186/s12864-017-4348-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Corey L Campbell
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Delivery 1692, Fort Collins, CO, 80523, USA.
| | - Laura B Dickson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Delivery 1692, Fort Collins, CO, 80523, USA
| | - Saul Lozano-Fuentes
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Delivery 1692, Fort Collins, CO, 80523, USA
| | - Punita Juneja
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Francis M Jiggins
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - William C Black
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Delivery 1692, Fort Collins, CO, 80523, USA
| |
Collapse
|
69
|
Twort VG, Dennis AB, Park D, Lomas KF, Newcomb RD, Buckley TR. Positive selection and comparative molecular evolution of reproductive proteins from New Zealand tree weta (Orthoptera, Hemideina). PLoS One 2017; 12:e0188147. [PMID: 29131842 PMCID: PMC5683631 DOI: 10.1371/journal.pone.0188147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 11/01/2017] [Indexed: 11/18/2022] Open
Abstract
Animal reproductive proteins, especially those in the seminal fluid, have been shown to have higher levels of divergence than non-reproductive proteins and are often evolving adaptively. Seminal fluid proteins have been implicated in the formation of reproductive barriers between diverging lineages, and hence represent interesting candidates underlying speciation. RNA-seq was used to generate the first male reproductive transcriptome for the New Zealand tree weta species Hemideina thoracica and H. crassidens. We identified 865 putative reproductive associated proteins across both species, encompassing a diverse range of functional classes. Candidate gene sequencing of nine genes across three Hemideina, and two Deinacrida species suggests that H. thoracica has the highest levels of intraspecific genetic diversity. Non-monophyly was observed in the majority of sequenced genes indicating that either gene flow may be occurring between the species, or that reciprocal monophyly at these loci has yet to be attained. Evidence for positive selection was found for one lectin-related reproductive protein, with an overall omega of 7.65 and one site in particular being under strong positive selection. This candidate gene represents the first step in the identification of proteins underlying the evolutionary basis of weta reproduction and speciation.
Collapse
Affiliation(s)
- Victoria G. Twort
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Landcare Research, Auckland, New Zealand
- * E-mail:
| | | | | | | | - Richard D. Newcomb
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand
| | - Thomas R. Buckley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Landcare Research, Auckland, New Zealand
| |
Collapse
|
70
|
Kasimatis KR, Nelson TC, Phillips PC. Genomic Signatures of Sexual Conflict. J Hered 2017; 108:780-790. [PMID: 29036624 PMCID: PMC5892400 DOI: 10.1093/jhered/esx080] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 09/18/2017] [Indexed: 02/06/2023] Open
Abstract
Sexual conflict is a specific class of intergenomic conflict that describes the reciprocal sex-specific fitness costs generated by antagonistic reproductive interactions. The potential for sexual conflict is an inherent property of having a shared genome between the sexes and, therefore, is an extreme form of an environment-dependent fitness effect. In this way, many of the predictions from environment-dependent selection can be used to formulate expected patterns of genome evolution under sexual conflict. However, the pleiotropic and transmission constraints inherent to having alleles move across sex-specific backgrounds from generation to generation further modulate the anticipated signatures of selection. We outline methods for detecting candidate sexual conflict loci both across and within populations. Additionally, we consider the ability of genome scans to identify sexually antagonistic loci by modeling allele frequency changes within males and females due to a single generation of selection. In particular, we highlight the need to integrate genotype, phenotype, and functional information to truly distinguish sexual conflict from other forms of sexual differentiation.
Collapse
Affiliation(s)
- Katja R Kasimatis
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Thomas C Nelson
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
71
|
Li HX, Gottilla TM, Brewer MT. Organization and evolution of mating-type genes in three Stagonosporopsis species causing gummy stem blight of cucurbits and leaf spot and dry rot of papaya. Fungal Biol 2017; 121:849-857. [PMID: 28889909 DOI: 10.1016/j.funbio.2017.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 11/25/2022]
Abstract
Population divergence and speciation of closely related lineages can result from reproductive differences leading to genetic isolation. An increasing number of fungal diseases of plants and animals have been determined to be caused by morphologically indistinguishable species that are genetically distinct, thereby representing cryptic species. We were interested in identifying if mating systems among three Stagonosporopsis species (S. citrulli, S. cucurbitacearum, and S. caricae) causing gummy stem blight (GSB) of cucurbits or leaf spot and dry rot of papaya differed, possibly underlying species divergence. Additionally, we were interested in identifying evolutionary pressures acting on the genes controlling mating in these fungi. The mating-type loci (MAT1) of three isolates from each of the three species were identified in draft genome sequences. For the three species, MAT1 was structurally identical and contained both mating-type genes necessary for sexual reproduction, which suggests that all three species are homothallic. However, both MAT1-1-1 and MAT1-2-1 were divergent among species showing rapid evolution with a much greater number of amino acid-changing substitutions detected for the reproductive genes compared with genes flanking MAT1. Positive selection was detected in MAT1-2-1, especially in the highly conserved high mobility group (MATA_HMG-box) domain. Thus, the mating-type genes are rapidly evolving in GSB fungi, but a difference in mating systems among the three species does not underlie their divergence.
Collapse
Affiliation(s)
- Hao-Xi Li
- Department of Plant Pathology, University of Georgia, Athens 30602, USA
| | - Thomas M Gottilla
- Department of Plant Pathology, University of Georgia, Athens 30602, USA
| | | |
Collapse
|
72
|
Kober KM, Pogson GH. Genome-wide signals of positive selection in strongylocentrotid sea urchins. BMC Genomics 2017; 18:555. [PMID: 28732465 PMCID: PMC5521101 DOI: 10.1186/s12864-017-3944-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/13/2017] [Indexed: 12/21/2022] Open
Abstract
Background Comparative genomics studies investigating the signals of positive selection among groups of closely related species are still rare and limited in taxonomic breadth. Such studies show great promise in advancing our knowledge about the proportion and the identity of genes experiencing diversifying selection. However, methodological challenges have led to high levels of false positives in past studies. Here, we use the well-annotated genome of the purple sea urchin, Strongylocentrotus purpuratus, as a reference to investigate the signals of positive selection at 6520 single-copy orthologs from nine sea urchin species belonging to the family Strongylocentrotidae paying careful attention to minimizing false positives. Results We identified 1008 (15.5%) candidate positive selection genes (PSGs). Tests for positive selection along the nine terminal branches of the phylogeny identified 824 genes that showed lineage-specific adaptive diversification (1.67% of branch-sites tests performed). Positively selected codons were not enriched at exon borders or near regions containing missing data, suggesting a limited contribution of false positives caused by alignment or annotation errors. Alignments were validated at 10 loci with re-sequencing using Sanger methods. No differences were observed in the rates of synonymous substitution (dS), GC content, and codon bias between the candidate PSGs and those not showing positive selection. However, the candidate PSGs had 68% higher rates of nonsynonymous substitution (dN) and 33% lower levels of heterozygosity, consistent with selective sweeps and opposite to that expected by a relaxation of selective constraint. Although positive selection was identified at reproductive proteins and innate immunity genes, the strongest signals of adaptive diversification were observed at extracellular matrix proteins, cell adhesion molecules, membrane receptors, and ion channels. Many candidate PSGs have been widely implicated as targets of pathogen binding, inactivation, mimicry, or exploitation in other groups (notably mammals). Conclusions Our study confirmed the widespread action of positive selection across sea urchin genomes and allowed us to reject the possibility that annotation and alignment errors (including paralogs) were responsible for creating false signals of adaptive molecular divergence. The candidate PSGs identified in our study represent promising targets for future research into the selective agents responsible for their adaptive diversification and their contribution to speciation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3944-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kord M Kober
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, USA. .,Institute for Computational Health Sciences, University of California, San Francisco, USA. .,Present address: Department of Physiological Nursing, University of California, San Francisco, USA.
| | - Grant H Pogson
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, USA
| |
Collapse
|
73
|
Basu S, Patil S, Mapleson D, Russo MT, Vitale L, Fevola C, Maumus F, Casotti R, Mock T, Caccamo M, Montresor M, Sanges R, Ferrante MI. Finding a partner in the ocean: molecular and evolutionary bases of the response to sexual cues in a planktonic diatom. THE NEW PHYTOLOGIST 2017; 215:140-156. [PMID: 28429538 PMCID: PMC5485032 DOI: 10.1111/nph.14557] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 02/25/2017] [Indexed: 05/03/2023]
Abstract
Microalgae play a major role as primary producers in aquatic ecosystems. Cell signalling regulates their interactions with the environment and other organisms, yet this process in phytoplankton is poorly defined. Using the marine planktonic diatom Pseudo-nitzschia multistriata, we investigated the cell response to cues released during sexual reproduction, an event that demands strong regulatory mechanisms and impacts on population dynamics. We sequenced the genome of P. multistriata and performed phylogenomic and transcriptomic analyses, which allowed the definition of gene gains and losses, horizontal gene transfers, conservation and evolutionary rate of sex-related genes. We also identified a small number of conserved noncoding elements. Sexual reproduction impacted on cell cycle progression and induced an asymmetric response of the opposite mating types. G protein-coupled receptors and cyclic guanosine monophosphate (cGMP) are implicated in the response to sexual cues, which overall entails a modulation of cell cycle, meiosis-related and nutrient transporter genes, suggesting a fine control of nutrient uptake even under nutrient-replete conditions. The controllable life cycle and the genome sequence of P. multistriata allow the reconstruction of changes occurring in diatoms in a key phase of their life cycle, providing hints on the evolution and putative function of their genes and empowering studies on sexual reproduction.
Collapse
Affiliation(s)
- Swaraj Basu
- Integrative Marine EcologyStazione Zoologica Anton DohrnVilla Comunale 1Naples80121Italy
| | - Shrikant Patil
- Integrative Marine EcologyStazione Zoologica Anton DohrnVilla Comunale 1Naples80121Italy
| | | | - Monia Teresa Russo
- Integrative Marine EcologyStazione Zoologica Anton DohrnVilla Comunale 1Naples80121Italy
| | - Laura Vitale
- Integrative Marine EcologyStazione Zoologica Anton DohrnVilla Comunale 1Naples80121Italy
| | - Cristina Fevola
- Integrative Marine EcologyStazione Zoologica Anton DohrnVilla Comunale 1Naples80121Italy
| | | | - Raffaella Casotti
- Integrative Marine EcologyStazione Zoologica Anton DohrnVilla Comunale 1Naples80121Italy
| | - Thomas Mock
- School of Environmental SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Mario Caccamo
- Earlham InstituteNorwich Research ParkNorwichNR4 7UGUK
| | - Marina Montresor
- Integrative Marine EcologyStazione Zoologica Anton DohrnVilla Comunale 1Naples80121Italy
| | - Remo Sanges
- Biology and Evolution of Marine OrganismsStazione Zoologica Anton DohrnVilla Comunale 1Naples80121Italy
| | | |
Collapse
|
74
|
Abstract
Males and females exhibit highly dimorphic phenotypes, particularly in their gonads, which is believed to be driven largely by differential gene expression. Typically, the protein sequences of genes upregulated in males, or male-biased genes, evolve rapidly as compared to female-biased and unbiased genes. To date, the specific study of gonad-biased genes remains uncommon in metazoans. Here, we identified and studied a total of 2927, 2013, and 4449 coding sequences (CDS) with ovary-biased, testis-biased, and unbiased expression, respectively, in the yellow fever mosquito Aedes aegypti The results showed that ovary-biased and unbiased CDS had higher nonsynonymous to synonymous substitution rates (dN/dS) and lower optimal codon usage (those codons that promote efficient translation) than testis-biased genes. Further, we observed higher dN/dS in ovary-biased genes than in testis-biased genes, even for genes coexpressed in nonsexual (embryo) tissues. Ovary-specific genes evolved exceptionally fast, as compared to testis- or embryo-specific genes, and exhibited higher frequency of positive selection. Genes with ovary expression were preferentially involved in olfactory binding and reception. We hypothesize that at least two potential mechanisms could explain rapid evolution of ovary-biased genes in this mosquito: (1) the evolutionary rate of ovary-biased genes may be accelerated by sexual selection (including female-female competition or male-mate choice) affecting olfactory genes during female swarming by males, and/or by adaptive evolution of olfactory signaling within the female reproductive system (e.g., sperm-ovary signaling); and/or (2) testis-biased genes may exhibit decelerated evolutionary rates due to the formation of mating plugs in the female after copulation, which limits male-male sperm competition.
Collapse
|
75
|
Chi W, Ma X, Niu J, Zou M. Genome-wide identification of genes probably relevant to the adaptation of schizothoracins (Teleostei: Cypriniformes) to the uplift of the Qinghai-Tibet Plateau. BMC Genomics 2017; 18:310. [PMID: 28427344 PMCID: PMC5397779 DOI: 10.1186/s12864-017-3703-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 04/12/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Molecular adaptation to the severe environments present during the uplift of the Qinghai-Tibet Plateau has attracted the attention of researchers. The divergence of the three specialization groups of schizothoracins (Primitive, Specialized and Highly Specialized) may correspond to the three phases of plateau uplift. Based on the transcripts of representative species of the three specialized groups and an outgroup, genes in schizothoracins that may have played important roles during the adaptation to new environments were investigated. RESULTS The contigs of Gymnodiptychus dybowskii and Schizothorax pseudaksaiensis were compared with those of Gymnocypris przewalskii ganzihonensis and the outgroup Sinocyclocheilus angustiporus, and 5,894 ortholog groups with an alignment length longer than 90 nt after deleting gaps were retained. Evolutionary analyses indicated that the average evolutionary rate of the branch leading to the Specialized group was faster than that of the branch leading to the Highly Specialized group. Moreover, the numbers of gene categories in which more than half of the genes evolved faster than the average values of the genome were 117 and 15 along the branches leading to the Specialized and Highly Specialized groups, respectively. A total of 40, 36, and 55 genes were likely subject to positive selection along the branches leading to the Primitive, Specialized and Highly Specialized groups, respectively, and many of these genes are likely relevant to adaptation to the cold temperatures, low oxygen concentrations, and strong ultraviolet radiation that result from elevation. CONCLUSIONS By selecting representative species of the three groups of schizothoracins and applying next-generation sequencing technology, several candidate genes corresponding to adaptation to the three phases of plateau uplift were identified. Some of the genes identified in this report that were likely subject to positive selection are good candidates for subsequent evolutionary and functional analyses of adaptation to high altitude.
Collapse
Affiliation(s)
- Wei Chi
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| | - Xufa Ma
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| | - Jiangong Niu
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Fisheries Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Ming Zou
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| |
Collapse
|
76
|
Swann CA, Cooper SJB, Breed WG. The egg coat zona pellucida 3 glycoprotein - evolution of its putative sperm-binding region in Old World murine rodents (Rodentia: Muridae). Reprod Fertil Dev 2017; 29:2376-2386. [PMID: 28403915 DOI: 10.1071/rd16455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/26/2017] [Indexed: 11/23/2022] Open
Abstract
In eutherian mammals, before fertilisation can occur the spermatozoon has to bind to, and penetrate, the egg coat, the zona pellucida (ZP). In the laboratory mouse there is good evidence that the primary sperm-binding site is a protein region encoded by Exon 7 of the ZP3 gene and it has been proposed that binding is species specific and evolves by sexual selection. In the present study we investigate these hypotheses by comparing Exon 6 and 7 sequences of ZP3 in 28 species of murine rodents of eight different divisions from Asia, Africa and Australasia, in which a diverse array of sperm morphologies occurs. We found considerable nucleotide (and corresponding amino acid) sequence divergence in Exon 7, but not in Exon 6, across these species, with evidence for positive selection at five codon positions. This molecular divergence does not appear to be due to reinforcement to reduce hybridisation, nor does it correlate with divergence in sperm head morphology or tail length, thus it is unlikely to be driven by inter-male sperm competition. Other forms of post-copulatory sexual selection therefore appear to have resulted in the molecular divergence of this region of ZP3 in this highly speciose group of mammals.
Collapse
Affiliation(s)
- Christine A Swann
- Discipline of Anatomy and Pathology, Medical School, and Robinson Research Institute, Faculty of Health Sciences, The University of Adelaide, SA 5005, Australia
| | - Steven J B Cooper
- Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia
| | - William G Breed
- Discipline of Anatomy and Pathology, Medical School, and Robinson Research Institute, Faculty of Health Sciences, The University of Adelaide, SA 5005, Australia
| |
Collapse
|
77
|
Mu H, Sun J, Heras H, Chu KH, Qiu JW. An integrated proteomic and transcriptomic analysis of perivitelline fluid proteins in a freshwater gastropod laying aerial eggs. J Proteomics 2017; 155:22-30. [PMID: 28095328 DOI: 10.1016/j.jprot.2017.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/04/2017] [Accepted: 01/08/2017] [Indexed: 11/27/2022]
Abstract
Proteins of the egg perivitelline fluid (PVF) that surrounds the embryo are critical for embryonic development in many animals, but little is known about their identities. Using an integrated proteomic and transcriptomic approach, we identified 64 proteins from the PVF of Pomacea maculata, a freshwater snail adopting aerial oviposition. Proteins were classified into eight functional groups: major multifunctional perivitellin subunits, immune response, energy metabolism, protein degradation, oxidation-reduction, signaling and binding, transcription and translation, and others. Comparison of gene expression levels between tissues showed that 22 PVF genes were exclusively expressed in albumen gland, the female organ that secretes PVF. Base substitution analysis of PVF and housekeeping genes between P. maculata and its closely related species Pomacea canaliculata showed that the reproductive proteins had a higher mean evolutionary rate. Predicted 3D structures of selected PVF proteins showed that some nonsynonymous substitutions are located at or near the binding regions that may affect protein function. The proteome and sequence divergence analysis revealed a substantial amount of maternal investment in embryonic nutrition and defense, and higher adaptive selective pressure on PVF protein-coding genes when compared with housekeeping genes, providing insight into the adaptations associated with the unusual reproductive strategy in these mollusks. SIGNIFICANCE There has been great interest in studying reproduction-related proteins as such studies may not only answer fundamental questions about speciation and evolution, but also solve practical problems of animal infertility and pest outbreak. Our study has demonstrated the effectiveness of an integrated proteomic and transcriptomic approach in understanding the heavy maternal investment of proteins in the eggs of a non-model snail, and how the reproductive proteins may have evolved during the transition from laying underwater eggs to aerial eggs.
Collapse
Affiliation(s)
- Huawei Mu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Jin Sun
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Horacio Heras
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Universidad Nacional de La Plata (UNLP)-CONICET CCT-La Plata, La Plata, Argentina; Cátedra de Química Biológica, Facultad de Ciencias Naturales y Museo, UNLP, Argentina
| | - Ka Hou Chu
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
78
|
Hussain YH, Sadilek M, Salad S, Zimmer RK, Riffell JA. Individual female differences in chemoattractant production change the scale of sea urchin gamete interactions. Dev Biol 2017; 422:186-197. [PMID: 28088316 DOI: 10.1016/j.ydbio.2017.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/02/2017] [Accepted: 01/10/2017] [Indexed: 01/13/2023]
Abstract
Sperm selection by females is an important process influencing fertilization and, particularly in broadcast-spawning organisms, often occurs before sperm reach the egg. Waterborne sperm chemoattractants are one mechanism by which eggs selectively influence conspecific sperm behavior, but it remains an open question whether the eggs from different females produce different amounts of sperm chemoattractant, and how that might influence sperm behavior. Here, we quantify the differences in attractant production between females of the sea urchin species Lytechinus pictus and use computational models and microfluidic sperm chemotaxis assays to determine how differences in chemoattractant production between females affects their ability to attract sperm. Our study demonstrates that there is significant individual female variation in egg chemoattractant production, and that this variation changes the scope and strength of sperm attraction. These results provide evidence for the importance of individual female variability in differential sperm attraction and fertilization success.
Collapse
Affiliation(s)
- Yasmeen H Hussain
- University of Washington, Department of Biology, Seattle, WA 98195, USA
| | - Martin Sadilek
- University of Washington, Department of Chemistry, Seattle, WA 98195, USA
| | - Shukri Salad
- University of Washington, Department of Biology, Seattle, WA 98195, USA
| | - Richard K Zimmer
- University of California Los Angeles, Department of Ecology and Evolutionary Biology, Los Angeles, CA 90095, USA
| | - Jeffrey A Riffell
- University of Washington, Department of Biology, Seattle, WA 98195, USA
| |
Collapse
|
79
|
Wang L, Clarke LA, Eason RJ, Parker CC, Qi B, Scott RJ, Doughty J. PCP-B class pollen coat proteins are key regulators of the hydration checkpoint in Arabidopsis thaliana pollen-stigma interactions. THE NEW PHYTOLOGIST 2017; 213:764-777. [PMID: 27596924 PMCID: PMC5215366 DOI: 10.1111/nph.14162] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/23/2016] [Indexed: 05/09/2023]
Abstract
The establishment of pollen-pistil compatibility is strictly regulated by factors derived from both male and female reproductive structures. Highly diverse small cysteine-rich proteins (CRPs) have been found to play multiple roles in plant reproduction, including the earliest stages of the pollen-stigma interaction. Secreted CRPs found in the pollen coat of members of the Brassicaceae, the pollen coat proteins (PCPs), are emerging as important signalling molecules that regulate the pollen-stigma interaction. Using a combination of protein characterization, expression and phylogenetic analyses we identified a novel class of Arabidopsis thaliana pollen-borne CRPs, the PCP-Bs (for pollen coat protein B-class) that are related to embryo surrounding factor (ESF1) developmental regulators. Single and multiple PCP-B mutant lines were utilized in bioassays to assess effects on pollen hydration, adhesion and pollen tube growth. Our results revealed that pollen hydration is severely impaired when multiple PCP-Bs are lost from the pollen coat. The hydration defect also resulted in reduced pollen adhesion and delayed pollen tube growth in all mutants studied. These results demonstrate that AtPCP-Bs are key regulators of the hydration 'checkpoint' in establishment of pollen-stigma compatibility. In addition, we propose that interspecies diversity of PCP-Bs may contribute to reproductive barriers in the Brassicaceae.
Collapse
Affiliation(s)
- Ludi Wang
- Department of Biology and BiochemistryUniversity of BathClaverton DownBathBA2 7AYUK
| | - Lisa A. Clarke
- Department of Biology and BiochemistryUniversity of BathClaverton DownBathBA2 7AYUK
| | - Russell J. Eason
- Department of Biology and BiochemistryUniversity of BathClaverton DownBathBA2 7AYUK
| | | | - Baoxiu Qi
- Department of Biology and BiochemistryUniversity of BathClaverton DownBathBA2 7AYUK
| | - Rod J. Scott
- Department of Biology and BiochemistryUniversity of BathClaverton DownBathBA2 7AYUK
| | - James Doughty
- Department of Biology and BiochemistryUniversity of BathClaverton DownBathBA2 7AYUK
| |
Collapse
|
80
|
Al-Wathiqui N, Fallon TR, South A, Weng JK, Lewis SM. Molecular characterization of firefly nuptial gifts: a multi-omics approach sheds light on postcopulatory sexual selection. Sci Rep 2016; 6:38556. [PMID: 28004739 PMCID: PMC5177949 DOI: 10.1038/srep38556] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/09/2016] [Indexed: 11/23/2022] Open
Abstract
Postcopulatory sexual selection is recognized as a key driver of reproductive trait evolution, including the machinery required to produce endogenous nuptial gifts. Despite the importance of such gifts, the molecular composition of the non-gametic components of male ejaculates and their interactions with female reproductive tracts remain poorly understood. During mating, male Photinus fireflies transfer to females a spermatophore gift manufactured by multiple reproductive glands. Here we combined transcriptomics of both male and female reproductive glands with proteomics and metabolomics to better understand the synthesis, composition and fate of the spermatophore in the common Eastern firefly, Photinus pyralis. Our transcriptome of male glands revealed up-regulation of proteases that may enhance male fertilization success and activate female immune response. Using bottom-up proteomics we identified 208 functionally annotated proteins that males transfer to the female in their spermatophore. Targeted metabolomic analysis also provided the first evidence that Photinus nuptial gifts contain lucibufagin, a firefly defensive toxin. The reproductive tracts of female fireflies showed increased gene expression for several proteases that may be involved in egg production. This study offers new insights into the molecular composition of male spermatophores, and extends our understanding of how nuptial gifts may mediate postcopulatory interactions between the sexes.
Collapse
Affiliation(s)
| | - Timothy R Fallon
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Adam South
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sara M Lewis
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
81
|
Pogson GH. Studying the genetic basis of speciation in high gene flow marine invertebrates. Curr Zool 2016; 62:643-653. [PMID: 29491951 PMCID: PMC5804258 DOI: 10.1093/cz/zow093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 08/16/2016] [Indexed: 12/18/2022] Open
Abstract
A growing number of genes responsible for reproductive incompatibilities between species (barrier loci) exhibit the signals of positive selection. However, the possibility that genes experiencing positive selection diverge early in speciation and commonly cause reproductive incompatibilities has not been systematically investigated on a genome-wide scale. Here, I outline a research program for studying the genetic basis of speciation in broadcast spawning marine invertebrates that uses a priori genome-wide information on a large, unbiased sample of genes tested for positive selection. A targeted sequence capture approach is proposed that scores single-nucleotide polymorphisms (SNPs) in widely separated species populations at an early stage of allopatric divergence. The targeted capture of both coding and non-coding sequences enables SNPs to be characterized at known locations across the genome and at genes with known selective or neutral histories. The neutral coding and non-coding SNPs provide robust background distributions for identifying FST-outliers within genes that can, in principle, identify specific mutations experiencing diversifying selection. If natural hybridization occurs between species, the neutral coding and non-coding SNPs can provide a neutral admixture model for genomic clines analyses aimed at finding genes exhibiting strong blocks to introgression. Strongylocentrotid sea urchins are used as a model system to outline the approach but it can be used for any group that has a complete reference genome available.
Collapse
Affiliation(s)
- Grant H. Pogson
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
82
|
Beekman M, Nieuwenhuis B, Ortiz-Barrientos D, Evans JP. Sexual selection in hermaphrodites, sperm and broadcast spawners, plants and fungi. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150541. [PMID: 27619704 PMCID: PMC5031625 DOI: 10.1098/rstb.2015.0541] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2016] [Indexed: 11/12/2022] Open
Abstract
Darwin was the first to recognize that sexual selection is a strong evolutionary force. Exaggerated traits allow same-sex individuals to compete over access to mates and provide a mechanism by which mates are selected. It is relatively easy to appreciate how inter- and intrasexual selection work in organisms with the sensory capabilities to perceive physical or behavioural traits that signal mate quality or mate compatibility, and to assess the relative quality of competitors. It is therefore not surprising that most studies of sexual selection have focused on animals with separate sexes and obvious adaptations that function in the context of reproductive competition. Yet, many sexual organisms are both male and female at the same time, often lack sexual dimorphism and never come into direct contact at mating. How does sexual selection act in such species, and what can we learn from them? Here, we address these questions by exploring the potential for sexual selection in simultaneous hermaphrodites, sperm- and broadcast spawners, plants and fungi. Our review reveals a range of mechanisms of sexual selection, operating primarily after gametes have been released, which are common in many of these groups and also quite possibly in more familiar (internally fertilizing and sexually dimorphic) organisms.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.
Collapse
Affiliation(s)
- Madeleine Beekman
- School of Life and Environmental Sciences, University of Sydney, 2006 New South Wales, Australia
| | - Bart Nieuwenhuis
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | | | - Jonathan P Evans
- Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia, 6009 Western Australia, Australia
| |
Collapse
|
83
|
Plakke MS, Deutsch AB, Meslin C, Clark NL, Morehouse NI. Dynamic digestive physiology of a female reproductive organ in a polyandrous butterfly. ACTA ACUST UNITED AC 2016; 218:1548-55. [PMID: 25994634 DOI: 10.1242/jeb.118323] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reproductive traits experience high levels of selection because of their direct ties to fitness, often resulting in rapid adaptive evolution. Much of the work in this area has focused on male reproductive traits. However, a more comprehensive understanding of female reproductive adaptations and their relationship to male characters is crucial to uncover the relative roles of sexual cooperation and conflict in driving co-evolutionary dynamics between the sexes. We focus on the physiology of a complex female reproductive adaptation in butterflies and moths: a stomach-like organ in the female reproductive tract called the bursa copulatrix that digests the male ejaculate (spermatophore). Little is known about how the bursa digests the spermatophore. We characterized bursa proteolytic capacity in relation to female state in the polyandrous butterfly Pieris rapae. We found that the virgin bursa exhibits extremely high levels of proteolytic activity. Furthermore, in virgin females, bursal proteolytic capacity increases with time since eclosion and ambient temperature, but is not sensitive to the pre-mating social environment. Post copulation, bursal proteolytic activity decreases rapidly before rebounding toward the end of a mating cycle, suggesting active female regulation of proteolysis and/or potential quenching of proteolysis by male ejaculate constituents. Using transcriptomic and proteomic approaches, we report identities for nine proteases actively transcribed by bursal tissue and/or expressed in the bursal lumen that may contribute to observed bursal proteolysis. We discuss how these dynamic physiological characteristics may function as female adaptations resulting from sexual conflict over female remating rate in this polyandrous butterfly.
Collapse
Affiliation(s)
- Melissa S Plakke
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Aaron B Deutsch
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Camille Meslin
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Nathan L Clark
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Nathan I Morehouse
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
84
|
Cross-species proteomics in analysis of mammalian sperm proteins. J Proteomics 2016; 135:38-50. [DOI: 10.1016/j.jprot.2015.12.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 12/21/2022]
|
85
|
Noh S, Marshall JL. Sorted gene genealogies and species-specific nonsynonymous substitutions point to putative postmating prezygotic isolation genes in Allonemobius crickets. PeerJ 2016; 4:e1678. [PMID: 26893965 PMCID: PMC4756749 DOI: 10.7717/peerj.1678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/14/2016] [Indexed: 12/19/2022] Open
Abstract
In the Allonemobius socius complex of crickets, reproductive isolation is primarily accomplished via postmating prezygotic barriers. We tested seven protein-coding genes expressed in the male ejaculate for patterns of evolution consistent with a putative role as postmating prezygotic isolation genes. Our recently diverged species generally lacked sequence variation. As a result, ω-based tests were only mildly successful. Some of our genes showed evidence of elevated ω values on the internal branches of gene trees. In a couple of genes, these internal branches coincided with both species branching events of the species tree, between A. fasciatus and the other two species, and between A. socius and A. sp. nov. Tex. In comparison, more successful approaches were those that took advantage of the varying degrees of lineage sorting and allele sharing among our young species. These approaches were particularly powerful within the contact zone. Among the genes we tested we found genes with genealogies that indicated relatively advanced degrees of lineage sorting across both allopatric and contact zone alleles. Within a contact zone between two members of the species complex, only a subset of genes maintained allelic segregation despite evidence of ongoing gene flow in other genes. The overlap in these analyses was arginine kinase (AK) and apolipoprotein A-1 binding protein (APBP). These genes represent two of the first examples of sperm maturation, capacitation, and motility proteins with fixed non-synonymous substitutions between species-specific alleles that may lead to postmating prezygotic isolation. Both genes express ejaculate proteins transferred to females during copulation and were previously identified through comparative proteomics. We discuss the potential function of these genes in the context of the specific postmating prezygotic isolation phenotype among our species, namely conspecific sperm precedence and the superior ability of conspecific males to induce oviposition in females.
Collapse
Affiliation(s)
- Suegene Noh
- Department of Biology, Washington University in St. Louis , St. Louis, MO , United States
| | - Jeremy L Marshall
- Department of Entomology, Kansas State University , Manhattan, KS , United States
| |
Collapse
|
86
|
Dapper AL, Wade MJ. The evolution of sperm competition genes: The effect of mating system on levels of genetic variation within and between species. Evolution 2016; 70:502-11. [PMID: 26748568 PMCID: PMC4868060 DOI: 10.1111/evo.12848] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 12/30/2015] [Accepted: 12/31/2015] [Indexed: 01/26/2023]
Abstract
It is widely established that proteins involved in reproduction diverge between species more quickly than other proteins. For male sperm proteins, rapid divergence is believed to be caused by postcopulatory sexual selection and/or sexual conflict. Here, we derive the expected levels of gene diversity within populations and divergence between them for male sperm protein genes evolving by postcopulatory, prezygotic fertility competition, i.e. the function imputed for some sperm and seminal fluid genes. We find that, at the mutation-selection equilibrium, both gene diversity within species and divergence between them are elevated relative to genes with similar selection coefficients expressed by both sexes. We show that their expected level of diversity is a function of the harmonic mean number of mates per female, which affects the strength of fertility selection stemming from male-male sperm competition. Our predictions provide a null hypothesis for distinguishing between other selective hypotheses accounting for the rapid evolution of male reproductive genes.
Collapse
Affiliation(s)
- Amy L Dapper
- Laboratory of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, Wisconsin, 53706.
| | - Michael J Wade
- Department of Biology, Indiana University, 1001 E. 3rd St., Bloomington, Indiana, 47405
| |
Collapse
|
87
|
Lipinska AP, Van Damme EJM, De Clerck O. Molecular evolution of candidate male reproductive genes in the brown algal model Ectocarpus. BMC Evol Biol 2016; 16:5. [PMID: 26728038 PMCID: PMC4700764 DOI: 10.1186/s12862-015-0577-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/21/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Evolutionary studies of genes that mediate recognition between sperm and egg contribute to our understanding of reproductive isolation and speciation. Surface receptors involved in fertilization are targets of sexual selection, reinforcement, and other evolutionary forces including positive selection. This observation was made across different lineages of the eukaryotic tree from land plants to mammals, and is particularly evident in free-spawning animals. Here we use the brown algal model species Ectocarpus (Phaeophyceae) to investigate the evolution of candidate gamete recognition proteins in a distant major phylogenetic group of eukaryotes. RESULTS Male gamete specific genes were identified by comparing transcriptome data covering different stages of the Ectocarpus life cycle and screened for characteristics expected from gamete recognition receptors. Selected genes were sequenced in a representative number of strains from distant geographical locations and varying stages of reproductive isolation, to search for signatures of adaptive evolution. One of the genes (Esi0130_0068) showed evidence of selective pressure. Interestingly, that gene displayed domain similarities to the receptor for egg jelly (REJ) protein involved in sperm-egg recognition in sea urchins. CONCLUSIONS We have identified a male gamete specific gene with similarity to known gamete recognition receptors and signatures of adaptation. Altogether, this gene could contribute to gamete interaction during reproduction as well as reproductive isolation in Ectocarpus and is therefore a good candidate for further functional evaluation.
Collapse
Affiliation(s)
- Agnieszka P Lipinska
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Krijgslaan 281, Building S8, 9000, Ghent, Belgium.
| | - Els J M Van Damme
- Department of Molecular Biotechnology, Laboratory of Biochemistry and Glycobiology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Olivier De Clerck
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Krijgslaan 281, Building S8, 9000, Ghent, Belgium.
| |
Collapse
|
88
|
Goenaga J, Yamane T, Rönn J, Arnqvist G. Within-species divergence in the seminal fluid proteome and its effect on male and female reproduction in a beetle. BMC Evol Biol 2015; 15:266. [PMID: 26627998 PMCID: PMC4667481 DOI: 10.1186/s12862-015-0547-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/20/2015] [Indexed: 11/30/2022] Open
Abstract
Background Male seminal fluid proteins (SFPs), transferred to females during mating, are important reproductive proteins that have multifarious effects on female reproductive physiology and that often show remarkably rapid and divergent evolution. Inferences regarding natural selection on SFPs are based primarily on interspecific comparative studies, and our understanding of natural within-species variation in SFPs and whether this relates to reproductive phenotypes is very limited. Here, we introduce an empirical strategy to study intraspecific variation in and selection upon the seminal fluid proteome. We then apply this in a study of 15 distinct populations of the seed beetle Callosobruchus maculatus. Results Phenotypic assays of these populations showed significant differences in reproductive phenotypes (male success in sperm competition and male ability to stimulate female fecundity). A quantitative proteomic study of replicated samples of male accessory glands revealed a large number of potential SFPs, of which ≥127 were found to be transferred to females at mating. Moreover, population divergence in relative SFP abundance across populations was large and remarkably multidimensional. Most importantly, variation in male SFP abundance across populations was associated with male sperm competition success and male ability to stimulate female egg production. Conclusions Our study provides the first direct evidence for postmating sexual selection on standing intraspecific variation in SFP abundance and the pattern of divergence across populations in the seminal fluid proteome match the pattern predicted by the postmating sexual selection paradigm for SFP evolution. Our findings provide novel support for the hypothesis that sexual selection on SFPs is an important engine of incipient speciation. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0547-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julieta Goenaga
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden. .,Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, 11 8000, Aarhus C, Denmark.
| | - Takashi Yamane
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden.
| | - Johanna Rönn
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden.
| | - Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden.
| |
Collapse
|
89
|
Mangels R, Young B, Keeble S, Ardekani R, Meslin C, Ferreira Z, Clark NL, Good JM, Dean MD. Genetic and phenotypic influences on copulatory plug survival in mice. Heredity (Edinb) 2015; 115:496-502. [PMID: 26103947 PMCID: PMC4806896 DOI: 10.1038/hdy.2015.50] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 04/23/2015] [Accepted: 04/27/2015] [Indexed: 02/07/2023] Open
Abstract
Across a diversity of animals, male seminal fluid coagulates upon ejaculation to form a hardened structure known as a copulatory plug. Previous studies suggest that copulatory plugs evolved as a mechanism for males to impede remating by females, but detailed investigations into the time course over which plugs survive in the female's reproductive tract are lacking. Here, we cross males from eight inbred strains to females from two inbred strains of house mice (Mus musculus domesticus). Plug survival was significantly affected by male genotype. Against intuition, plug survival time was negatively correlated with plug size: long-lasting plugs were small and relatively more susceptible to proteolysis. Plug size was associated with divergence in major protein composition of seminal vesicle fluid, suggesting that changes in gene expression may play an important role in plug dynamics. In contrast, we found no correlation to genetic variation in the protein-coding regions of five genes thought to be important in copulatory plug formation (Tgm4, Svs1, Svs2, Svs4 and Svs5). Our study demonstrates a complex relationship between copulatory plug characteristics and survival. We discuss several models to explain unexpected variation in plug phenotypes.
Collapse
Affiliation(s)
- R Mangels
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - B Young
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - S Keeble
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - R Ardekani
- Translational Imaging Center, University of Southern California, Los Angeles, CA, USA
| | - C Meslin
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Z Ferreira
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - N L Clark
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - J M Good
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - M D Dean
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
90
|
Sherman CDH, Ab Rahim ES, Olsson M, Careau V. The more pieces, the better the puzzle: sperm concentration increases gametic compatibility. Ecol Evol 2015; 5:4354-64. [PMID: 26664684 PMCID: PMC4667825 DOI: 10.1002/ece3.1684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 12/24/2022] Open
Abstract
The genetic benefits individuals receive from mate choice have been the focus of numerous studies, with several showing support for both intrinsic genetic benefits and compatibility effects on fertilization success and offspring viability. However, the robustness of these effects have rarely been tested across an ecologically relevant environmental gradient. In particular, sperm environment is a crucial factor determining fertilization success in many species, especially those with external fertilization. Here, we test the importance of sperm environment in mediating compatibility‐based selection on fertilization using a factorial breeding design. We detected a significant intrinsic male effect on fertilization success at only one of four sperm concentrations. Compatibility effects were significant at the two highest sperm concentrations and, interestingly, the magnitude of the compatibility effect consistently increased with sperm concentration. This suggests that females are able to modify the probability of sperm–egg fusion as the amount of sperm available increases.
Collapse
Affiliation(s)
- Craig D H Sherman
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds Victoria 3216 Australia
| | - Emi S Ab Rahim
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds Victoria 3216 Australia ; School of Biological Sciences Universiti Sains Malaysia 11800 Minden Penang Malaysia
| | - Mats Olsson
- School of Biological Sciences The University of Sydney Sydney New South Wales 2006 Australia
| | - Vincent Careau
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds Victoria 3216 Australia
| |
Collapse
|
91
|
Flores HA, Bubnell JE, Aquadro CF, Barbash DA. The Drosophila bag of marbles Gene Interacts Genetically with Wolbachia and Shows Female-Specific Effects of Divergence. PLoS Genet 2015; 11:e1005453. [PMID: 26291077 PMCID: PMC4546362 DOI: 10.1371/journal.pgen.1005453] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/20/2015] [Indexed: 01/09/2023] Open
Abstract
Many reproductive proteins from diverse taxa evolve rapidly and adaptively. These proteins are typically involved in late stages of reproduction such as sperm development and fertilization, and are more often functional in males than females. Surprisingly, many germline stem cell (GSC) regulatory genes, which are essential for the earliest stages of reproduction, also evolve adaptively in Drosophila. One example is the bag of marbles (bam) gene, which is required for GSC differentiation and germline cyst development in females and for regulating mitotic divisions and entry to spermatocyte differentiation in males. Here we show that the extensive divergence of bam between Drosophila melanogaster and D. simulans affects bam function in females but has no apparent effect in males. We further find that infection with Wolbachia pipientis, an endosymbiotic bacterium that can affect host reproduction through various mechanisms, partially suppresses female sterility caused by bam mutations in D. melanogaster and interacts differentially with bam orthologs from D. melanogaster and D. simulans. We propose that the adaptive evolution of bam has been driven at least in part by the long-term interactions between Drosophila species and Wolbachia. More generally, we suggest that microbial infections of the germline may explain the unexpected pattern of evolution of several GSC regulatory genes.
Collapse
Affiliation(s)
- Heather A. Flores
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Jaclyn E. Bubnell
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Charles F. Aquadro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Daniel A. Barbash
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
92
|
Some assembly required: evolutionary and systems perspectives on the mammalian reproductive system. Cell Tissue Res 2015; 363:267-278. [DOI: 10.1007/s00441-015-2257-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/05/2015] [Indexed: 12/30/2022]
|
93
|
Brockhurst MA, Chapman T, King KC, Mank JE, Paterson S, Hurst GDD. Running with the Red Queen: the role of biotic conflicts in evolution. Proc Biol Sci 2015; 281:rspb.2014.1382. [PMID: 25355473 PMCID: PMC4240979 DOI: 10.1098/rspb.2014.1382] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
What are the causes of natural selection? Over 40 years ago, Van Valen proposed the Red Queen hypothesis, which emphasized the primacy of biotic conflict over abiotic forces in driving selection. Species must continually evolve to survive in the face of their evolving enemies, yet on average their fitness remains unchanged. We define three modes of Red Queen coevolution to unify both fluctuating and directional selection within the Red Queen framework. Empirical evidence from natural interspecific antagonisms provides support for each of these modes of coevolution and suggests that they often operate simultaneously. We argue that understanding the evolutionary forces associated with interspecific interactions requires incorporation of a community framework, in which new interactions occur frequently. During their early phases, these newly established interactions are likely to drive fast evolution of both parties. We further argue that a more complete synthesis of Red Queen forces requires incorporation of the evolutionary conflicts within species that arise from sexual reproduction. Reciprocally, taking the Red Queen's perspective advances our understanding of the evolution of these intraspecific conflicts.
Collapse
Affiliation(s)
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Kayla C King
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Judith E Mank
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Gregory D D Hurst
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
94
|
Wilburn DB, Swanson WJ. From molecules to mating: Rapid evolution and biochemical studies of reproductive proteins. J Proteomics 2015; 135:12-25. [PMID: 26074353 DOI: 10.1016/j.jprot.2015.06.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 01/10/2023]
Abstract
UNLABELLED Sexual reproduction and the exchange of genetic information are essential biological processes for species across all branches of the tree of life. Over the last four decades, biochemists have continued to identify many of the factors that facilitate reproduction, but the molecular mechanisms that mediate this process continue to elude us. However, a recurring observation in this research has been the rapid evolution of reproductive proteins. In animals, the competing interests of males and females often result in arms race dynamics between pairs of interacting proteins. This phenomenon has been observed in all stages of reproduction, including pheromones, seminal fluid components, and gamete recognition proteins. In this article, we review how the integration of evolutionary theory with biochemical experiments can be used to study interacting reproductive proteins. Examples are included from both model and non-model organisms, and recent studies are highlighted for their use of state-of-the-art genomic and proteomic techniques. SIGNIFICANCE Despite decades of research, our understanding of the molecular mechanisms that mediate fertilization remain poorly characterized. To date, molecular evolutionary studies on both model and non-model organisms have provided some of the best inferences to elucidating the molecular underpinnings of animal reproduction. This review article details how biochemical and evolutionary experiments have jointly enhanced the field for 40 years, and how recent work using high-throughput genomic and proteomic techniques have shed additional insights into this crucial biological process.
Collapse
Affiliation(s)
- Damien B Wilburn
- Department of Genome Sciences, University of Washington, United States.
| | - Willie J Swanson
- Department of Genome Sciences, University of Washington, United States
| |
Collapse
|
95
|
Rodríguez-García MJ, Machado V, Galián J. Identification and characterisation of putative seminal fluid proteins from male reproductive tissue EST libraries in tiger beetles. BMC Genomics 2015; 16:391. [PMID: 25981911 PMCID: PMC4434525 DOI: 10.1186/s12864-015-1619-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 05/05/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The study of proteins transferred through semen can provide important information for biological questions such as adaptive evolution, the origin of new species and species richness. The objective of this study was to identify seminal fluid proteins (SFPs) that may contribute to the study of the reproductive system of tiger beetles (cicindelids), a group of more than 2,500 species distributed worldwide that occupy a great diversity of habitats. RESULTS Two cDNA libraries were constructed from the male gonads of Calomera littoralis and Cephalota litorea. Expressed sequence tags (ESTs) were analysed by bioinformatics approaches and 14 unigenes were selected as candidate SFPs, which were submitted to Reverse Transcription Polymerase Chain Reaction (RT-PCR) to identify patterns of tissue-specific expression. We have identified four novel putative SFPs of cicindelids, of which similarity searches did not show homologues with known function. However, two of the protein classes (immune response and hormone) predicted by Protfun are similar to SFPs reported in other insects. Searches for homology in other cicindelids showed one lineage specific SFPs (rapidly evolving proteins), only present in the closely related species C. littoralis and Lophyra flexuosa and two conserved SFP present in other tiger beetles species tested. CONCLUSIONS This work represents the first characterisation of putative SFPs in Adephagan species of the order Coleoptera. The results will serve as a foundation for further studies aimed to understand gene (and protein) functions and their evolutionary implications in this group of ecologically relevant beetles.
Collapse
Affiliation(s)
- María Juliana Rodríguez-García
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum, E-30100, Murcia, Spain.
| | - Vilmar Machado
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum, E-30100, Murcia, Spain.
| | - José Galián
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum, E-30100, Murcia, Spain.
| |
Collapse
|
96
|
Meslin C, Plakke MS, Deutsch AB, Small BS, Morehouse NI, Clark NL. Digestive organ in the female reproductive tract borrows genes from multiple organ systems to adopt critical functions. Mol Biol Evol 2015; 32:1567-80. [PMID: 25725432 PMCID: PMC4572785 DOI: 10.1093/molbev/msv048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Persistent adaptive challenges are often met with the evolution of novel physiological traits. Although there are specific examples of single genes providing new physiological functions, studies on the origin of complex organ functions are lacking. One such derived set of complex functions is found in the Lepidopteran bursa copulatrix, an organ within the female reproductive tract that digests nutrients from the male ejaculate or spermatophore. Here, we characterized bursa physiology and the evolutionary mechanisms by which it was equipped with digestive and absorptive functionality. By studying the transcriptome of the bursa and eight other tissues, we revealed a suite of highly expressed and secreted gene products providing the bursa with a combination of stomach-like traits for mechanical and enzymatic digestion of the male spermatophore. By subsequently placing these bursa genes in an evolutionary framework, we found that the vast majority of their novel digestive functions were co-opted by borrowing genes that continue to be expressed in nonreproductive tissues. However, a number of bursa-specific genes have also arisen, some of which represent unique gene families restricted to Lepidoptera and may provide novel bursa-specific functions. This pattern of promiscuous gene borrowing and relatively infrequent evolution of tissue-specific duplicates stands in contrast to studies of the evolution of novelty via single gene co-option. Our results suggest that the evolution of complex organ-level phenotypes may often be enabled (and subsequently constrained) by changes in tissue specificity that allow expression of existing genes in novel contexts, such as reproduction. The extent to which the selective pressures encountered in these novel roles require resolution via duplication and sub/neofunctionalization is likely to be determined by the need for specialized reproductive functionality. Thus, complex physiological phenotypes such as that found in the bursa offer important opportunities for understanding the relative role of pleiotropy and specialization in adaptive evolution.
Collapse
Affiliation(s)
- Camille Meslin
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh
| | - Melissa S Plakke
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh
| | - Aaron B Deutsch
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh
| | - Brandon S Small
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh
| | | | - Nathan L Clark
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh
| |
Collapse
|
97
|
Sieminska EA, Andres JA, Todd CD, Erlandson MA. Characterization of Melanoplus sanguinipes oviposition stimulating protein expression and re-examination of its potential role in stimulating oviposition. JOURNAL OF INSECT PHYSIOLOGY 2015; 73:37-46. [PMID: 25617688 DOI: 10.1016/j.jinsphys.2015.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 01/07/2015] [Accepted: 01/12/2015] [Indexed: 06/04/2023]
Abstract
Melanoplussanguinipes oviposition stimulating protein (MsOSP) was characterized and its role in stimulating oviposition in virgin females was examined. A 967nt MsOSP mRNA sequence with homology to previously characterized N-terminal amino acid sequence data for MsOSP was identified in a RNAseq library generated from an mRNA pool from the long hyaline tubule (LHT) of the male accessory gland complex. This transcript contained a predicted 729nt open reading frame encoding the 242aa putative MsOSP protein and had the second highest read abundance in the library. The MsOSP transcript was detected exclusively in the LHT tissue of adult males and its abundance increased with time until 7 days post-eclosion. Western blot analysis using an anti-MsOSP antibody showed high levels of MsOSP protein in the LHT luminal secretions of virgin males and to a lesser degree was associated with the aedeagus and ejaculatory duct. MsOSP was shown to be a major protein component of the spermatophore packet transferred from the male to female during copulation. However, only minor amounts of MsOSP could be detected in the female bursa, spermatheca and oviduct. Intrahemocoelic injection of LHT luminal protein into mature virgin females stimulated oviposition in ∼ 65% of females. A similar but non-significant trend was observed upon injection of purified recombinant MsOSP protein, and immunoprecipitation of LHT protein with anti-MsOSP antibody led to abrogation of oviposition stimulation upon injection of mature virgin females. Despite the demonstration of stimulation of oviposition upon intrahemocoelic injection of LHT-derived-MsOSP into mature virgin females, the potential mode of action of MsOSP in this process remains to be determined. MsOSP cannot be detected in the tissues other than the bursa, spermatheca and oviduct of female grasshoppers and relatively large quantities of MsOSP are required to stimulate oviposition upon injection.
Collapse
Affiliation(s)
- E A Sieminska
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan, Canada
| | - J A Andres
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - C D Todd
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - M A Erlandson
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
98
|
Stapper AP, Beerli P, Levitan DR. Assortative mating drives linkage disequilibrium between sperm and egg recognition protein loci in the sea urchin Strongylocentrotus purpuratus. Mol Biol Evol 2015; 32:859-70. [PMID: 25618458 DOI: 10.1093/molbev/msv010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sperm and eggs have interacting proteins on their surfaces that influence their compatibility during fertilization. These proteins are often polymorphic within species, producing variation in gamete affinities. We first demonstrate the fitness consequences of various sperm bindin protein (Bindin) variants in the sea urchin Strongylocentrotus purpuratus, and assortative mating between males and females based on their sperm Bindin genotype. This empirical finding of assortative mating based on sperm Bindin genotype could arise by linkage disequilibrium (LD) between interacting sperm and egg recognition loci. We then examine sequence variation in eight exons of the sea urchin egg receptor for sperm Bindin (EBR1). We find little evidence of LD among the eight exons of EBR1, yet strong evidence for LD between sperm Bindin and EBR1 overall, and varying degrees of LD between sperm Bindin among the eight exons. We reject the alternate hypotheses of LD driven by shared evolutionary histories, population structure, or close physical linkage between these interacting loci on the genome. The most parsimonious explanation for this pattern of LD is that it represents selection driven by assortative mating based on interactions among these sperm and egg loci. These findings indicate the importance of ongoing sexual selection in the maintenance of protein polymorphisms and LD, and more generally highlight how LD can be used as an indication of current mate choice, as opposed to historic selection.
Collapse
Affiliation(s)
| | - Peter Beerli
- Department of Scientific Computing, Florida State University
| | - Don R Levitan
- Department of Biological Science, Florida State University
| |
Collapse
|
99
|
Hodgins KA, Bock DG, Hahn MA, Heredia SM, Turner KG, Rieseberg LH. Comparative genomics in the Asteraceae reveals little evidence for parallel evolutionary change in invasive taxa. Mol Ecol 2015; 24:2226-40. [PMID: 25439241 DOI: 10.1111/mec.13026] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/23/2014] [Accepted: 11/26/2014] [Indexed: 01/12/2023]
Abstract
Asteraceae, the largest family of flowering plants, has given rise to many notorious invasive species. Using publicly available transcriptome assemblies from 35 Asteraceae, including six major invasive species, we examined evidence for micro- and macro-evolutionary genomic changes associated with invasion. To detect episodes of positive selection repeated across multiple introductions, we conducted comparisons between native and introduced genotypes from six focal species and identified genes with elevated rates of amino acid change (dN/dS). We then looked for evidence of positive selection at a broader phylogenetic scale across all taxa. As invasive species may experience founder events during colonization and spread, we also looked for evidence of increased genetic load in introduced genotypes. We rarely found evidence for parallel changes in orthologous genes in the intraspecific comparisons, but in some cases we identified changes in members of the same gene family. Using among-species comparisons, we detected positive selection in 0.003-0.69% and 2.4-7.8% of the genes using site and stochastic branch-site models, respectively. These genes had diverse putative functions, including defence response, stress response and herbicide resistance, although there was no clear pattern in the GO terms. There was no indication that introduced genotypes have a higher proportion of deleterious alleles than native genotypes in the six focal species, suggesting multiple introductions and admixture mitigated the impact of drift. Our findings provide little evidence for common genomic responses in invasive taxa of the Asteraceae and hence suggest that multiple evolutionary pathways may lead to adaptation during introduction and spread in these species.
Collapse
Affiliation(s)
- Kathryn A Hodgins
- School of Biological Sciences, Monash University, Clayton, Vic., 3800, Australia
| | | | | | | | | | | |
Collapse
|
100
|
Sirot LK, Wong A, Chapman T, Wolfner MF. Sexual conflict and seminal fluid proteins: a dynamic landscape of sexual interactions. Cold Spring Harb Perspect Biol 2014; 7:a017533. [PMID: 25502515 DOI: 10.1101/cshperspect.a017533] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sexual reproduction requires coordinated contributions from both sexes to proceed efficiently. However, the reproductive strategies that the sexes adopt often have the potential to give rise to sexual conflict because they can result in divergent, sex-specific costs and benefits. These conflicts can occur at many levels, from molecular to behavioral. Here, we consider sexual conflict mediated through the actions of seminal fluid proteins. These proteins provide many excellent examples in which to trace the operation of sexual conflict from molecules through to behavior. Seminal fluid proteins are made by males and provided to females during mating. As agents that can modulate egg production at several steps, as well as reproductive behavior, sperm "management," and female feeding, activity, and longevity, the actions of seminal proteins are prime targets for sexual conflict. We review these actions in the context of sexual conflict. We discuss genomic signatures in seminal protein (and related) genes that are consistent with current or previous sexual conflict. Finally, we note promising areas for future study and highlight real-world practical situations that will benefit from understanding the nature of sexual conflicts mediated by seminal proteins.
Collapse
Affiliation(s)
- Laura K Sirot
- Department of Biology, College of Wooster, Wooster, Ohio 44691
| | - Alex Wong
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| |
Collapse
|