51
|
Bai A, Zhao T, Li Y, Zhang F, Wang H, Shah SHA, Gong L, Liu T, Wang Y, Hou X, Li Y. QTL mapping and candidate gene analysis reveal two major loci regulating green leaf color in non-heading Chinese cabbage. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:105. [PMID: 38622387 DOI: 10.1007/s00122-024-04608-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/23/2024] [Indexed: 04/17/2024]
Abstract
KEY MESSAGE Two major-effect QTL GlcA07.1 and GlcA09.1 for green leaf color were fine mapped into 170.25 kb and 191.41 kb intervals on chromosomes A07 and A09, respectively, and were validated by transcriptome analysis. Non-heading Chinese cabbage (NHCC) is a leafy vegetable with a wide range of green colors. Understanding the genetic mechanism behind broad spectrum of green may facilitate the breeding of high-quality NHCC. Here, we used F2 and F7:8 recombination inbred line (RIL) population from a cross between Wutacai (dark-green) and Erqing (lime-green) to undertake the genetic analysis and quantitative trait locus (QTL) mapping in NHCC. The genetic investigation of the F2 population revealed that the variation of green leaf color was controlled by two recessive genes. Six pigments associated with green leaf color, including total chlorophyll, chlorophyll a, chlorophyll b, total carotenoids, lutein, and carotene were quantified and applied for QTL mapping in the RIL population. A total of 7 QTL were detected across the whole genome. Among them, two major-effect QTL were mapped on chromosomes A07 (GlcA07.1) and A09 (GlcA09.1) corresponding to two QTL identified in the F2 population. The QTL GlcA07.1 and GlcA09.1 were further fine mapped into 170.25 kb and 191.41 kb genomic regions, respectively. By comparing gene expression level and gene annotation, BraC07g023810 and BraC07g023970 were proposed as the best candidates for GlcA07.1, while BraC09g052220 and BraC09g052270 were suggested for GlcA09.1. Two InDel molecular markers (GlcA07.1-BcGUN4 and GlcA09.1-BcSG1) associated with BraC07gA023810 and BraC09g052220 were developed and could effectively identify leaf color in natural NHCC accessions, suggesting their potential for marker-assisted leaf color selection in NHCC breeding.
Collapse
Affiliation(s)
- Aimei Bai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Tianzi Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yan Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Feixue Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Huzhou Academy of Agricultural Sciences, Huzhou, 313000, Zhejiang Province, China
| | - Haibin Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Sayyed Hamad Ahmad Shah
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Li Gong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yuhui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Ying Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
52
|
Ito M, Ohashi H, Takemoto M, Muto C, Seiko T, Noda Y, Ogiso-Tanaka E, Nagano AJ, Takahashi Y, Furukawa J, Monden Y, Naito K. Single candidate gene for salt tolerance of Vigna nakashimae (Ohwi) Ohwi & Ohashi identified by QTL mapping, whole genome sequencing and triplicated RNA-seq analyses. BREEDING SCIENCE 2024; 74:93-102. [PMID: 39355622 PMCID: PMC11442111 DOI: 10.1270/jsbbs.23053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/23/2023] [Indexed: 10/03/2024]
Abstract
Salt tolerance has been an important issue as a solution for soil salinization and groundwater depletion. To challenge this issue, genetic diversity of wild plants must be harnessed. Here we report a discovery of a candidate gene for salt tolerance in Vigna nakashimae, one of the coastal species in the genus Vigna. Using intraspecific variation, we performed a forward genetic analysis and identified a strong QTL region harboring ~200 genes. To further narrow down the candidate genes, we performed a comparative transcriptome analysis, using the genome sequence of azuki bean (V. angularis) as a reference. However the detected differentially-expressed genes (DEGs) did not include those related to salt tolerance. As we suspected that the target gene in V. nakashimae is missing in V. angularis, we sequenced the whole genome sequence of V. nakashimae with long-reads. By re-analyzing the transcriptome data with the new reference genome, we successfully identified POCO1 as a candidate gene, which was missing not only in V. angularis but also in the salt-sensitive accession of V. nakashimae. Further comparative analysis revealed that the tolerant genotypes conserved the ancestral form of the locus, while the sensitive genotypes did not. We also emphasize the pitfalls in our study, such as position effect in a growth chamber, missing important genes in the reference genome, and limited reproducibility of RNA-seq experiments.
Collapse
Affiliation(s)
- Miho Ito
- Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Honami Ohashi
- Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Masahiro Takemoto
- Department of Agriculture, Okayama University, 3-1-1 Tsushimanaka, Okayama, Okayama 700-8530, Japan
| | - Chiaki Muto
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Takashi Seiko
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Yusaku Noda
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
- Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology (QST), 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan
| | - Eri Ogiso-Tanaka
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
- Center for Molecular Biodiversity Research, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki 305-0005, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
- Institute of Advanced Biosciences, Keio University, 403-1 Nipponkoku, Daihouji, Tsuruoka, Yamagata 997-0017, Japan
| | - Yu Takahashi
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Jun Furukawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yuki Monden
- Graduate School of Environmental, Life, Natural Sciences and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama, Okayama 700-8530, Japan
| | - Ken Naito
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
53
|
Everman ER, Macdonald SJ. Gene expression variation underlying tissue-specific responses to copper stress in Drosophila melanogaster. G3 (BETHESDA, MD.) 2024; 14:jkae015. [PMID: 38262701 PMCID: PMC11021028 DOI: 10.1093/g3journal/jkae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
Copper is one of a handful of biologically necessary heavy metals that is also a common environmental pollutant. Under normal conditions, copper ions are required for many key physiological processes. However, in excess, copper results in cell and tissue damage ranging in severity from temporary injury to permanent neurological damage. Because of its biological relevance, and because many conserved copper-responsive genes respond to nonessential heavy metal pollutants, copper resistance in Drosophila melanogaster is a useful model system with which to investigate the genetic control of the heavy metal stress response. Because heavy metal toxicity has the potential to differently impact specific tissues, we genetically characterized the control of the gene expression response to copper stress in a tissue-specific manner in this study. We assessed the copper stress response in head and gut tissue of 96 inbred strains from the Drosophila Synthetic Population Resource using a combination of differential expression analysis and expression quantitative trait locus mapping. Differential expression analysis revealed clear patterns of tissue-specific expression. Tissue and treatment specific responses to copper stress were also detected using expression quantitative trait locus mapping. Expression quantitative trait locus associated with MtnA, Mdr49, Mdr50, and Sod3 exhibited both genotype-by-tissue and genotype-by-treatment effects on gene expression under copper stress, illuminating tissue- and treatment-specific patterns of gene expression control. Together, our data build a nuanced description of the roles and interactions between allelic and expression variation in copper-responsive genes, provide valuable insight into the genomic architecture of susceptibility to metal toxicity, and highlight candidate genes for future functional characterization.
Collapse
Affiliation(s)
- Elizabeth R Everman
- School of Biological Sciences, The University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - Stuart J Macdonald
- Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045, USA
| |
Collapse
|
54
|
Höglund A, Henriksen R, Churcher AM, Guerrero-Bosagna CM, Martinez-Barrio A, Johnsson M, Jensen P, Wright D. The regulation of methylation on the Z chromosome and the identification of multiple novel Male Hyper-Methylated regions in the chicken. PLoS Genet 2024; 20:e1010719. [PMID: 38457441 PMCID: PMC10954189 DOI: 10.1371/journal.pgen.1010719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 03/20/2024] [Accepted: 01/31/2024] [Indexed: 03/10/2024] Open
Abstract
DNA methylation is a key regulator of eukaryote genomes, and is of particular relevance in the regulation of gene expression on the sex chromosomes, with a key role in dosage compensation in mammalian XY systems. In the case of birds, dosage compensation is largely absent, with it being restricted to two small Male Hyper-Methylated (MHM) regions on the Z chromosome. To investigate how variation in DNA methylation is regulated on the Z chromosome we utilised a wild x domestic advanced intercross in the chicken, with both hypothalamic methylomes and transcriptomes assayed in 124 individuals. The relatively large numbers of individuals allowed us to identify additional genomic MHM regions on the Z chromosome that were significantly differentially methylated between the sexes. These regions appear to down-regulate local gene expression in males, but not remove it entirely (unlike the lncRNAs identified in the initial MHM regions). These MHM regions were further tested and the most balanced genes appear to show decreased expression in males, whilst methylation appeared to be far more correlated with gene expression in the less balanced, as compared to the most balanced genes. In addition, quantitative trait loci (QTL) that regulate variation in methylation on the Z chromosome, and those loci that regulate methylation on the autosomes that derive from the Z chromosome were mapped. Trans-effect hotspots were also identified that were based on the autosomes but affected the Z, and also one that was based on the Z chromosome but that affected both autosomal and sex chromosome DNA methylation regulation. We show that both cis and trans loci that originate from the Z chromosome never exhibit an interaction with sex, whereas trans loci originating from the autosomes but affecting the Z chromosome always display such an interaction. Our results highlight how additional MHM regions are actually present on the Z chromosome, and they appear to have smaller-scale effects on gene expression in males. Quantitative variation in methylation is also regulated both from the autosomes to the Z chromosome, and from the Z chromosome to the autosomes.
Collapse
Affiliation(s)
- Andrey Höglund
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Rie Henriksen
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| | | | - Carlos M. Guerrero-Bosagna
- Physiology and Environmental Toxicology Program, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | | | - Martin Johnsson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Per Jensen
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| | - Dominic Wright
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| |
Collapse
|
55
|
Newman TE, Jacques S, Grime C, Mobegi FM, Kamphuis FL, Khentry Y, Lee R, Kamphuis LG. Genetic dissection of domestication traits in interspecific chickpea populations. THE PLANT GENOME 2024; 17:e20408. [PMID: 37961823 DOI: 10.1002/tpg2.20408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023]
Abstract
Chickpea (Cicer arietinum) is a pulse crop that provides an integral source of nutrition for human consumption. The close wild relatives Cicer reticulatum and Cicer echinospermum harbor untapped genetic diversity that can be exploited by chickpea breeders to improve domestic varieties. Knowledge of genomic loci that control important chickpea domestication traits will expedite the development of improved chickpea varieties derived from interspecific crosses. Therefore, we set out to identify genomic loci underlying key chickpea domestication traits by both association and quantitative trait locus (QTL) mapping using interspecific F2 populations. Diverse phenotypes were recorded for various agronomic traits. A total of 11 high-confidence markers were detected on chromosomes 1, 3, and 7 by both association and QTL mapping; these were associated with growth habit, flowering time, and seed traits. Furthermore, we identified candidate genes linked to these markers, which advanced our understanding of the genetic basis of domestication traits and validated known genes such as the FLOWERING LOCUS gene cluster that regulates flowering time. Collectively, this study has elucidated the genetic basis of chickpea domestication traits, which can facilitate the development of superior chickpea varieties.
Collapse
Affiliation(s)
- Toby E Newman
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Silke Jacques
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Christy Grime
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Fredrick M Mobegi
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Fiona L Kamphuis
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Yuphin Khentry
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Robert Lee
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Lars G Kamphuis
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia
- CSIRO Agriculture and Food, Floreat, Western Australia, Australia
| |
Collapse
|
56
|
Kurtz SL, Baker RE, Boehm FJ, Lehman CC, Mittereder LR, Khan H, Rossi AP, Gatti DM, Beamer G, Sassetti CM, Elkins KL. Multiple genetic loci influence vaccine-induced protection against Mycobacterium tuberculosis in genetically diverse mice. PLoS Pathog 2024; 20:e1012069. [PMID: 38452145 PMCID: PMC10950258 DOI: 10.1371/journal.ppat.1012069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/19/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
Mycobacterium tuberculosis (M.tb.) infection leads to over 1.5 million deaths annually, despite widespread vaccination with BCG at birth. Causes for the ongoing tuberculosis endemic are complex and include the failure of BCG to protect many against progressive pulmonary disease. Host genetics is one of the known factors implicated in susceptibility to primary tuberculosis, but less is known about the role that host genetics plays in controlling host responses to vaccination against M.tb. Here, we addressed this gap by utilizing Diversity Outbred (DO) mice as a small animal model to query genetic drivers of vaccine-induced protection against M.tb. DO mice are a highly genetically and phenotypically diverse outbred population that is well suited for fine genetic mapping. Similar to outcomes in people, our previous studies demonstrated that DO mice have a wide range of disease outcomes following BCG vaccination and M.tb. challenge. In the current study, we used a large population of BCG-vaccinated/M.tb.-challenged mice to perform quantitative trait loci mapping of complex infection traits; these included lung and spleen M.tb. burdens, as well as lung cytokines measured at necropsy. We found sixteen chromosomal loci associated with complex infection traits and cytokine production. QTL associated with bacterial burdens included a region encoding major histocompatibility antigens that are known to affect susceptibility to tuberculosis, supporting validity of the approach. Most of the other QTL represent novel associations with immune responses to M.tb. and novel pathways of cytokine regulation. Most importantly, we discovered that protection induced by BCG is a multigenic trait, in which genetic loci harboring functionally-distinct candidate genes influence different aspects of immune responses that are crucial collectively for successful protection. These data provide exciting new avenues to explore and exploit in developing new vaccines against M.tb.
Collapse
Affiliation(s)
- Sherry L. Kurtz
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Richard E. Baker
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Frederick J. Boehm
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Chelsea C. Lehman
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Lara R. Mittereder
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Hamda Khan
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Amy P. Rossi
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- College of Medicine, University of Cincinatti, Cincinatti, Ohio, United States of America
| | - Daniel M. Gatti
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Gillian Beamer
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Karen L. Elkins
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| |
Collapse
|
57
|
Gershon Z, Bonito-Oliva A, Kanke M, Terceros A, Rankin G, Fak J, Harada Y, Iannone AF, Gebremedhin M, Fabella B, De Marco Garcia NV, Sethupathy P, Rajasethupathy P. Genetic mapping identifies Homer1 as a developmental modifier of attention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.17.533136. [PMID: 36993710 PMCID: PMC10055164 DOI: 10.1101/2023.03.17.533136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Attention is required for most higher-order cognitive functions. Prior studies have revealed functional roles for the prefrontal cortex and its extended circuits to enabling attention, but the underlying molecular processes and their impacts on cellular and circuit function remain poorly understood. To develop insights, we here took an unbiased forward genetics approach to identify single genes of large effect on attention. We studied 200 genetically diverse mice on measures of pre-attentive processing and through genetic mapping identified a small locus on chromosome 13 (95%CI: 92.22-94.09 Mb) driving substantial variation (19%) in this trait. Further characterization of the locus revealed a causative gene, Homer1, encoding a synaptic protein, where down-regulation of its short isoforms in prefrontal cortex (PFC) during early postnatal development led to improvements in multiple measures of attention in the adult. Subsequent mechanistic studies revealed that prefrontal Homer1 down-regulation is associated with GABAergic receptor up-regulation in those same cells. This enhanced inhibitory influence, together with dynamic neuromodulatory coupling, led to strikingly low PFC activity at baseline periods of the task but targeted elevations at cue onset, predicting short-latency correct choices. Notably high-Homer1, low-attentional performers, exhibited uniformly elevated PFC activity throughout the task. We thus identify a single gene of large effect on attention - Homer1 - and find that it improves prefrontal inhibitory tone and signal-to-noise (SNR) to enhance attentional performance. A therapeutic strategy focused on reducing prefrontal activity and increasing SNR, rather than uniformly elevating PFC activity, may complement the use of stimulants to improve attention.
Collapse
Affiliation(s)
- Zachary Gershon
- Laboratory of Neural Dynamics & Cognition, Rockefeller University; New York, NY 10065 USA
| | | | - Matt Kanke
- Department of Biomedical Sciences, Cornell University; Ithaca, NY 14853 USA
| | - Andrea Terceros
- Laboratory of Neural Dynamics & Cognition, Rockefeller University; New York, NY 10065 USA
| | - Genelle Rankin
- Laboratory of Neural Dynamics & Cognition, Rockefeller University; New York, NY 10065 USA
| | - John Fak
- Laboratory of Neural Dynamics & Cognition, Rockefeller University; New York, NY 10065 USA
| | - Yujin Harada
- Laboratory of Neural Dynamics & Cognition, Rockefeller University; New York, NY 10065 USA
| | - Andrew F. Iannone
- Feil Family Brain and Mind Research Institute, Weill Cornell; New York, NY 10021, USA
| | - Millennium Gebremedhin
- Laboratory of Neural Dynamics & Cognition, Rockefeller University; New York, NY 10065 USA
| | - Brian Fabella
- Laboratory of Sensory Neuroscience, The Rockefeller University; New York, NY 10065, USA
| | | | - Praveen Sethupathy
- Department of Biomedical Sciences, Cornell University; Ithaca, NY 14853 USA
| | - Priya Rajasethupathy
- Laboratory of Neural Dynamics & Cognition, Rockefeller University; New York, NY 10065 USA
| |
Collapse
|
58
|
Sasani TA, Quinlan AR, Harris K. Epistasis between mutator alleles contributes to germline mutation spectrum variability in laboratory mice. eLife 2024; 12:RP89096. [PMID: 38381482 PMCID: PMC10942616 DOI: 10.7554/elife.89096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Maintaining germline genome integrity is essential and enormously complex. Although many proteins are involved in DNA replication, proofreading, and repair, mutator alleles have largely eluded detection in mammals. DNA replication and repair proteins often recognize sequence motifs or excise lesions at specific nucleotides. Thus, we might expect that the spectrum of de novo mutations - the frequencies of C>T, A>G, etc. - will differ between genomes that harbor either a mutator or wild-type allele. Previously, we used quantitative trait locus mapping to discover candidate mutator alleles in the DNA repair gene Mutyh that increased the C>A germline mutation rate in a family of inbred mice known as the BXDs (Sasani et al., 2022, Ashbrook et al., 2021). In this study we developed a new method to detect alleles associated with mutation spectrum variation and applied it to mutation data from the BXDs. We discovered an additional C>A mutator locus on chromosome 6 that overlaps Ogg1, a DNA glycosylase involved in the same base-excision repair network as Mutyh (David et al., 2007). Its effect depends on the presence of a mutator allele near Mutyh, and BXDs with mutator alleles at both loci have greater numbers of C>A mutations than those with mutator alleles at either locus alone. Our new methods for analyzing mutation spectra reveal evidence of epistasis between germline mutator alleles and may be applicable to mutation data from humans and other model organisms.
Collapse
Affiliation(s)
- Thomas A Sasani
- Department of Human Genetics, University of UtahSalt Lake CityUnited States
| | - Aaron R Quinlan
- Department of Human Genetics, University of UtahSalt Lake CityUnited States
- Department of Biomedical Informatics, University of UtahSalt Lake CityUnited States
| | - Kelley Harris
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Herbold Computational Biology Program, Fred Hutch Cancer CenterSeattleUnited States
| |
Collapse
|
59
|
Santamaria JC, Vuillier S, Galindo-Albarrán AO, Castan S, Detraves C, Joffre OP, Romagnoli P, van Meerwijk JPM. The type 1 diabetes susceptibility locus Idd5 favours robust neonatal development of highly autoreactive regulatory T cells in the NOD mouse. Front Immunol 2024; 15:1358459. [PMID: 38404576 PMCID: PMC10884962 DOI: 10.3389/fimmu.2024.1358459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/18/2024] [Indexed: 02/27/2024] Open
Abstract
Regulatory T lymphocytes expressing the transcription factor Foxp3 (Tregs) play an important role in the prevention of autoimmune diseases and other immunopathologies. Aberrations in Treg-mediated immunosuppression are therefore thought to be involved in the development of autoimmune pathologies, but few have been documented. Recent reports indicated a central role for Tregs developing during the neonatal period in the prevention of autoimmune pathology. We therefore investigated the development of Tregs in neonatal NOD mice, an important animal model for autoimmune type 1 diabetes. Surprisingly, we found that, as compared with seven other commonly studied inbred mouse strains, in neonatal NOD mice, exceptionally large proportions of developing Tregs express high levels of GITR and PD-1. The latter phenotype was previously associated with high Treg autoreactivity in C57BL/6 mice, which we here confirm for NOD animals. The proportions of newly developing GITRhighPD-1+ Tregs rapidly drop during the first week of age. A genome-wide genetic screen indicated the involvement of several diabetes susceptibility loci in this trait. Analysis of a congenic mouse strain confirmed that Idd5 contributes to the genetic control of GITRhighPD-1+ Treg development in neonates. Our data thus demonstrate an intriguing and paradoxical correlation between an idiosyncrasy in Treg development in NOD mice and their susceptibility to type 1 diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Joost P. M. van Meerwijk
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Institut National de la santé et de la recherche médicale (Inserm) UMR1291 – Centre national de la recherche scientifique (CNRS) UMR5051 – University Toulouse III, Toulouse, France
| |
Collapse
|
60
|
Gélinas Bélanger J, Copley TR, Hoyos-Villegas V, O'Donoughue L. Dissection of the E8 locus in two early maturing Canadian soybean populations. FRONTIERS IN PLANT SCIENCE 2024; 15:1329065. [PMID: 38390301 PMCID: PMC10881665 DOI: 10.3389/fpls.2024.1329065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/15/2024] [Indexed: 02/24/2024]
Abstract
Soybean [Glycine max (L.) Merr.] is a short-day crop for which breeders want to expand the cultivation range to more northern agro-environments by introgressing alleles involved in early reproductive traits. To do so, we investigated quantitative trait loci (QTL) and expression quantitative trait loci (eQTL) regions comprised within the E8 locus, a large undeciphered region (~7.0 Mbp to 44.5 Mbp) associated with early maturity located on chromosome GM04. We used a combination of two mapping algorithms, (i) inclusive composite interval mapping (ICIM) and (ii) genome-wide composite interval mapping (GCIM), to identify major and minor regions in two soybean populations (QS15524F2:F3 and QS15544RIL) having fixed E1, E2, E3, and E4 alleles. Using this approach, we identified three main QTL regions with high logarithm of the odds (LODs), phenotypic variation explained (PVE), and additive effects for maturity and pod-filling within the E8 region: GM04:16,974,874-17,152,230 (E8-r1); GM04:35,168,111-37,664,017 (E8-r2); and GM04:41,808,599-42,376,237 (E8-r3). Using a five-step variant analysis pipeline, we identified Protein far-red elongated hypocotyl 3 (Glyma.04G124300; E8-r1), E1-like-a (Glyma.04G156400; E8-r2), Light-harvesting chlorophyll-protein complex I subunit A4 (Glyma.04G167900; E8-r3), and Cycling dof factor 3 (Glyma.04G168300; E8-r3) as the most promising candidate genes for these regions. A combinatorial eQTL mapping approach identified significant regulatory interactions for 13 expression traits (e-traits), including Glyma.04G050200 (Early flowering 3/E6 locus), with the E8-r3 region. Four other important QTL regions close to or encompassing major flowering genes were also detected on chromosomes GM07, GM08, and GM16. In GM07:5,256,305-5,404,971, a missense polymorphism was detected in the candidate gene Glyma.07G058200 (Protein suppressor of PHYA-105). These findings demonstrate that the locus known as E8 is regulated by at least three distinct genomic regions, all of which comprise major flowering genes.
Collapse
Affiliation(s)
- Jérôme Gélinas Bélanger
- Centre de recherche sur les grains (CÉROM) Inc., St-Mathieu-de-Beloeil, QC, Canada
- Department of Plant Science, McGill University, Montréal, QC, Canada
| | - Tanya Rose Copley
- Centre de recherche sur les grains (CÉROM) Inc., St-Mathieu-de-Beloeil, QC, Canada
| | | | - Louise O'Donoughue
- Centre de recherche sur les grains (CÉROM) Inc., St-Mathieu-de-Beloeil, QC, Canada
| |
Collapse
|
61
|
De-la-Cruz IM, Oyama K, Núñez-Farfán J. The chromosome-scale genome and the genetic resistance machinery against insect herbivores of the Mexican toloache, Datura stramonium. G3 (BETHESDA, MD.) 2024; 14:jkad288. [PMID: 38113048 PMCID: PMC10849327 DOI: 10.1093/g3journal/jkad288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/21/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Plant resistance refers to the heritable ability of plants to reduce damage caused by natural enemies, such as herbivores and pathogens, either through constitutive or induced traits like chemical compounds or trichomes. However, the genetic architecture-the number and genome location of genes that affect plant defense and the magnitude of their effects-of plant resistance to arthropod herbivores in natural populations remains poorly understood. In this study, we aimed to unveil the genetic architecture of plant resistance to insect herbivores in the annual herb Datura stramonium (Solanaceae) through quantitative trait loci mapping. We achieved this by assembling the species' genome and constructing a linkage map using an F2 progeny transplanted into natural habitats. Furthermore, we conducted differential gene expression analysis between undamaged and damaged plants caused by the primary folivore, Lema daturaphila larvae. Our genome assembly resulted in 6,109 scaffolds distributed across 12 haploid chromosomes. A single quantitative trait loci region on chromosome 3 was associated with plant resistance, spanning 0 to 5.17 cM. The explained variance by the quantitative trait loci was 8.44%. Our findings imply that the resistance mechanisms of D. stramonium are shaped by the complex interplay of multiple genes with minor effects. Protein-protein interaction networks involving genes within the quantitative trait loci region and overexpressed genes uncovered the key role of receptor-like cytoplasmic kinases in signaling and regulating tropane alkaloids and terpenoids, which serve as powerful chemical defenses against D. stramonium herbivores. The data generated in our study constitute important resources for delving into the evolution and ecology of secondary compounds mediating plant-insect interactions.
Collapse
Affiliation(s)
- Ivan M De-la-Cruz
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma, Alnarp 230 53, Sweden
| | - Ken Oyama
- Escuela Nacional de Estudios Superiores (ENES), Universidad Nacional Autónoma de México (UNAM), Campus Morelia, Morelia, Michoacán 8701, Mexico
| | - Juan Núñez-Farfán
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
62
|
Ball RL, Bogue MA, Liang H, Srivastava A, Ashbrook DG, Lamoureux A, Gerring MW, Hatoum AS, Kim MJ, He H, Emerson J, Berger AK, Walton DO, Sheppard K, El Kassaby B, Castellanos F, Kunde-Ramamoorthy G, Lu L, Bluis J, Desai S, Sundberg BA, Peltz G, Fang Z, Churchill GA, Williams RW, Agrawal A, Bult CJ, Philip VM, Chesler EJ. GenomeMUSter mouse genetic variation service enables multitrait, multipopulation data integration and analysis. Genome Res 2024; 34:145-159. [PMID: 38290977 PMCID: PMC10903950 DOI: 10.1101/gr.278157.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/10/2024] [Indexed: 02/01/2024]
Abstract
Hundreds of inbred mouse strains and intercross populations have been used to characterize the function of genetic variants that contribute to disease. Thousands of disease-relevant traits have been characterized in mice and made publicly available. New strains and populations including consomics, the collaborative cross, expanded BXD, and inbred wild-derived strains add to existing complex disease mouse models, mapping populations, and sensitized backgrounds for engineered mutations. The genome sequences of inbred strains, along with dense genotypes from others, enable integrated analysis of trait-variant associations across populations, but these analyses are hampered by the sparsity of genotypes available. Moreover, the data are not readily interoperable with other resources. To address these limitations, we created a uniformly dense variant resource by harmonizing multiple data sets. Missing genotypes were imputed using the Viterbi algorithm with a data-driven technique that incorporates local phylogenetic information, an approach that is extendable to other model organisms. The result is a web- and programmatically accessible data service called GenomeMUSter, comprising single-nucleotide variants covering 657 strains at 106.8 million segregating sites. Interoperation with phenotype databases, analytic tools, and other resources enable a wealth of applications, including multitrait, multipopulation meta-analysis. We show this in cross-species comparisons of type 2 diabetes and substance use disorder meta-analyses, leveraging mouse data to characterize the likely role of human variant effects in disease. Other applications include refinement of mapped loci and prioritization of strain backgrounds for disease modeling to further unlock extant mouse diversity for genetic and genomic studies in health and disease.
Collapse
Affiliation(s)
- Robyn L Ball
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA;
| | - Molly A Bogue
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | - Anuj Srivastava
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
| | - David G Ashbrook
- University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | - Alexander S Hatoum
- Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri 63130, USA
- Artificial Intelligence and the Internet of Things Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Matthew J Kim
- University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Hao He
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | - Jake Emerson
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | | | | | | | | | | | - Lu Lu
- University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - John Bluis
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | - Sejal Desai
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | - Gary Peltz
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Zhuoqing Fang
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | - Robert W Williams
- University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Carol J Bult
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | | |
Collapse
|
63
|
Hasham MG, Sargent JK, Warner MA, Farley SR, Hoffmann BR, Stodola TJ, Brunton CJ, Munger SC. Methods to study xenografted human cancer in genetically diverse mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576906. [PMID: 38328145 PMCID: PMC10849620 DOI: 10.1101/2024.01.23.576906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Xenografting human cancer tissues into mice to test new cures against cancers is critical for understanding and treating the disease. However, only a few inbred strains of mice are used to study cancers, and derivatives of mainly one strain, mostly NOD/ShiLtJ, are used for therapy efficacy studies. As it has been demonstrated when human cancer cell lines or patient-derived tissues (PDX) are xenografted into mice, the neoplastic cells are human but the supporting cells that comprise the tumor (the stroma) are from the mouse. Therefore, results of studies of xenografted tissues are influenced by the host strain. We previously published that when the same neoplastic cells are xenografted into different mouse strains, the pattern of tumor growth, histology of the tumor, number of immune cells infiltrating the tumor, and types of circulating cytokines differ depending on the strain. Therefore, to better comprehend the behavior of cancer in vivo, one must xenograft multiple mouse strains. Here we describe and report a series of methods that we used to reveal the genes and proteins expressed when the same cancer cell line, MDA-MB-231, is xenografted in different hosts. First, using proteomic analysis, we show how to use the same cell line in vivo to reveal the protein changes in the neoplastic cell that help it adapt to its host. Then, we show how different hosts respond molecularly to the same cell line. We also find that using multiple strains can reveal a more suitable host than those traditionally used for a "difficult to xenograft" PDX. In addition, using complex trait genetics, we illustrate a feasible method for uncovering the alleles of the host that support tumor growth. Finally, we demonstrate that Diversity Outbred mice, the epitome of a model of mouse-strain genetic diversity, can be xenografted with human cell lines or PDX using 2-deoxy-D-glucose treatment.
Collapse
|
64
|
Gao AW, Alam GE, Zhu Y, Li W, Katsyuba E, Sulc J, Li TY, Li X, Overmyer KA, Lalou A, Mouchiroud L, Sleiman MB, Cornaglia M, Morel JD, Houtkooper RH, Coon JJ, Auwerx J. High-content phenotypic analysis of a C. elegans recombinant inbred population identifies genetic and molecular regulators of lifespan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575638. [PMID: 38293129 PMCID: PMC10827074 DOI: 10.1101/2024.01.15.575638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Lifespan is influenced by complex interactions between genetic and environmental factors. Studying those factors in model organisms of a single genetic background limits their translational value for humans. Here, we mapped lifespan determinants in 85 genetically diverse C. elegans recombinant intercross advanced inbred lines (RIAILs). We assessed molecular profiles - transcriptome, proteome, and lipidome - and life-history traits, including lifespan, development, growth dynamics, and reproduction. RIAILs exhibited large variations in lifespan, which positively correlated with developmental time. Among the top candidates obtained from multi-omics data integration and QTL mapping, we validated known and novel longevity modulators, including rict-1, gfm-1 and mltn-1. We translated their relevance to humans using UK Biobank data and showed that variants in RICTOR and GFM1 are associated with an elevated risk of age-related heart disease, dementia, diabetes, kidney, and liver diseases. We organized our dataset as a resource (https://lisp-lms.shinyapps.io/RIAILs/) that allows interactive explorations for new longevity targets.
Collapse
Affiliation(s)
- Arwen W. Gao
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Gaby El Alam
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Yunyun Zhu
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA
| | - Weisha Li
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Elena Katsyuba
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Nagi Bioscience SA, EPFL Innovation Park, CH-1025 Saint-Sulpice, Switzerland
| | - Jonathan Sulc
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Terytty Y. Li
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Present address: State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Laboratory of Longevity and Metabolic Adaptations, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Katherine A. Overmyer
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53515, USA
| | - Amelia Lalou
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Laurent Mouchiroud
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Nagi Bioscience SA, EPFL Innovation Park, CH-1025 Saint-Sulpice, Switzerland
| | - Maroun Bou Sleiman
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Matteo Cornaglia
- Nagi Bioscience SA, EPFL Innovation Park, CH-1025 Saint-Sulpice, Switzerland
| | - Jean-David Morel
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Joshua J. Coon
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53515, USA
- Department of Chemistry, University of Wisconsin, Madison, WI 53506, USA
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
65
|
Saul MC, Litkowski EM, Hadad N, Dunn AR, Boas SM, Wilcox JAL, Robbins JE, Wu Y, Philip VM, Merrihew GE, Park J, De Jager PL, Bridges DE, Menon V, Bennett DA, Hohman TJ, MacCoss MJ, Kaczorowski CC. Hippocampus Glutathione S Reductase Potentially Confers Genetic Resilience to Cognitive Decline in the AD-BXD Mouse Population. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574219. [PMID: 38260300 PMCID: PMC10802440 DOI: 10.1101/2024.01.09.574219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Alzheimer's disease (AD) is a prevalent and costly age-related dementia. Heritable factors account for 58-79% of variation in late-onset AD, but substantial variation remains in age-of- onset, disease severity, and whether those with high-risk genotypes acquire AD. To emulate the diversity of human populations, we utilized the AD-BXD mouse panel. This genetically diverse resource combines AD genotypes with multiple BXD strains to discover new genetic drivers of AD resilience. Comparing AD-BXD carriers to noncarrier littermates, we computed a novel quantitative metric for resilience to cognitive decline in the AD-BXDs. Our quantitative AD resilience trait was heritable and genetic mapping identified a locus on chr8 associated with resilience to AD mutations that resulted in amyloid brain pathology. Using a hippocampus proteomics dataset, we nominated the mitochondrial glutathione S reductase protein (GR or GSHR) as a resilience factor, finding that the DBA/2J genotype was associated with substantially higher GR abundance. By mapping protein QTLs (pQTLs), we identified synaptic organization and mitochondrial proteins coregulated in trans with a cis-pQTL for GR. We found four coexpression modules correlated with the quantitative resilience score in aged 5XFAD mice using paracliques, which were related to cell structure, protein folding, and postsynaptic densities. Finally, we found significant positive associations between human GSR transcript abundance in the brain and better outcomes on AD-related cognitive and pathology traits in the Religious Orders Study/Memory and Aging project (ROSMAP). Taken together, these data support a framework for resilience in which neuronal antioxidant pathway activity provides for stability of synapses within the hippocampus.
Collapse
|
66
|
Thakro V, Varshney N, Malik N, Daware A, Srivastava R, Mohanty JK, Basu U, Narnoliya L, Jha UC, Tripathi S, Tyagi AK, Parida SK. Functional allele of a MATE gene selected during domestication modulates seed color in chickpea. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:53-71. [PMID: 37738381 DOI: 10.1111/tpj.16469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 09/24/2023]
Abstract
Seed color is one of the key target traits of domestication and artificial selection in chickpeas due to its implications on consumer preference and market value. The complex seed color trait has been well dissected in several crop species; however, the genetic mechanism underlying seed color variation in chickpea remains poorly understood. Here, we employed an integrated genomics strategy involving QTL mapping, high-density mapping, map-based cloning, association analysis, and molecular haplotyping in an inter-specific RIL mapping population, association panel, wild accessions, and introgression lines (ILs) of Cicer gene pool. This delineated a MATE gene, CaMATE23, encoding a Transparent Testa (TT) and its natural allele (8-bp insertion) and haplotype underlying a major QTL governing seed color on chickpea chromosome 4. Signatures of selective sweep and a strong purifying selection reflected that CaMATE23, especially its 8-bp insertion natural allelic variant, underwent selection during chickpea domestication. Functional investigations revealed that the 8-bp insertion containing the third cis-regulatory RY-motif element in the CaMATE23 promoter is critical for enhanced binding of CaFUSCA3 transcription factor, a key regulator of seed development and flavonoid biosynthesis, thereby affecting CaMATE23 expression and proanthocyanidin (PA) accumulation in the seed coat to impart varied seed color in chickpea. Consequently, overexpression of CaMATE23 in Arabidopsis tt12 mutant partially restored the seed color phenotype to brown pigmentation, ascertaining its functional role in PA accumulation in the seed coat. These findings shed new light on the seed color regulation and evolutionary history, and highlight the transcriptional regulation of CaMATE23 by CaFUSCA3 in modulating seed color in chickpea. The functionally relevant InDel variation, natural allele, and haplotype from CaMATE23 are vital for translational genomic research, including marker-assisted breeding, for developing chickpea cultivars with desirable seed color that appeal to consumers and meet global market demand.
Collapse
Affiliation(s)
- Virevol Thakro
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nidhi Varshney
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Naveen Malik
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, India
| | - Anurag Daware
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rishi Srivastava
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitendra K Mohanty
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Udita Basu
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Laxmi Narnoliya
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Uday Chand Jha
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India
| | - Shailesh Tripathi
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
67
|
Schoemaker DL, Qiu Y, de Leon N, Hirsch CN, Kaeppler SM. Genetic analysis of pericarp pigmentation variation in Corn Belt dent maize. G3 (BETHESDA, MD.) 2023; 14:jkad256. [PMID: 37950891 PMCID: PMC10755172 DOI: 10.1093/g3journal/jkad256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/13/2023]
Abstract
The US standard for maize commercially grown for grain specifies that yellow corn can contain at maximum 5% corn of other colors. Inbred parents of commercial hybrids typically have clear pericarp, but transgressive segregants in breeding populations can display variation in pericarp pigmentation. We identified 10 doubled haploid biparental populations segregating for pigmented pericarp and evaluated qualitative genetic models using chi-square tests of observed and expected frequencies. Pigmentation ranged from light to dark brown color, and pigmentation intensity was quantitatively measured across 1,327 inbred lines using hue calculated from RGB pixel values. Genetic mapping was used to identify loci associated with pigmentation intensity. For 9 populations, pigmentation inheritance best fit a hypothesis of a 2- or 3-gene epistatic model. Significant differences in pigment intensity were observed across populations. W606S-derived inbred lines with the darkest pericarp often had clear glumes, suggesting the presence of a novel P1-rw allele, a hypothesis supported by a significant quantitative trait locus peak at P1. A separate quantitative trait locus region on chromosome 2 between 221.64 and 226.66 Mbp was identified in LH82-derived populations, and the peak near p1 was absent. A genome-wide association study using 416 inbred lines from the Wisconsin Diversity panel with full genome resequencing revealed 4 significant associations including the region near P1. This study supports that pericarp pigmentation among dent maize inbreds can arise by transgressive segregation when pigmentation in the parental generation is absent and is partially explained by functional allelic variation at the P1 locus.
Collapse
Affiliation(s)
- Dylan L Schoemaker
- Department of Plant and Agroecosystem Sciences, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Yinjie Qiu
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Natalia de Leon
- Department of Plant and Agroecosystem Sciences, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Shawn M Kaeppler
- Department of Plant and Agroecosystem Sciences, University of Wisconsin—Madison, Madison, WI 53706, USA
- Wisconsin Crop Innovation Center, University of Wisconsin—Madison, Middleton, WI 53562, USA
| |
Collapse
|
68
|
Gatti DM, Tyler AL, Mahoney JM, Churchill GA, Yener B, Koyuncu D, Gurcan MN, Niazi M, Tavolara T, Gower AC, Dayao D, McGlone E, Ginese ML, Specht A, Alsharaydeh A, Tessier PA, Kurtz SL, Elkins K, Kramnik I, Beamer G. Systems genetics uncover new loci containing functional gene candidates in Mycobacterium tuberculosis-infected Diversity Outbred mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572738. [PMID: 38187647 PMCID: PMC10769337 DOI: 10.1101/2023.12.21.572738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Mycobacterium tuberculosis, the bacillus that causes tuberculosis (TB), infects 2 billion people across the globe, and results in 8-9 million new TB cases and 1-1.5 million deaths each year. Most patients have no known genetic basis that predisposes them to disease. We investigated the complex genetic basis of pulmonary TB by modelling human genetic diversity with the Diversity Outbred mouse population. When infected with M. tuberculosis, one-third develop early onset, rapidly progressive, necrotizing granulomas and succumb within 60 days. The remaining develop non-necrotizing granulomas and survive longer than 60 days. Genetic mapping using clinical indicators of disease, granuloma histopathological features, and immune response traits identified five new loci on mouse chromosomes 1, 2, 4, 16 and three previously identified loci on chromosomes 3 and 17. Quantitative trait loci (QTLs) on chromosomes 1, 16, and 17, associated with multiple correlated traits and had similar patterns of allele effects, suggesting these QTLs contain important genetic regulators of responses to M. tuberculosis. To narrow the list of candidate genes in QTLs, we used a machine learning strategy that integrated gene expression signatures from lungs of M. tuberculosis-infected Diversity Outbred mice with gene interaction networks, generating functional scores. The scores were then used to rank candidates for each mapped trait in each locus, resulting in 11 candidates: Ncf2, Fam20b, S100a8, S100a9, Itgb5, Fstl1, Zbtb20, Ddr1, Ier3, Vegfa, and Zfp318. Importantly, all 11 candidates have roles in infection, inflammation, cell migration, extracellular matrix remodeling, or intracellular signaling. Further, all candidates contain single nucleotide polymorphisms (SNPs), and some but not all SNPs were predicted to have deleterious consequences on protein functions. Multiple methods were used for validation including (i) a statistical method that showed Diversity Outbred mice carrying PWH/PhJ alleles on chromosome 17 QTL have shorter survival; (ii) quantification of S100A8 protein levels, confirming predicted allele effects; and (iii) infection of C57BL/6 mice deficient for the S100a8 gene. Overall, this work demonstrates that systems genetics using Diversity Outbred mice can identify new (and known) QTLs and new functionally relevant gene candidates that may be major regulators of granuloma necrosis and acute inflammation in pulmonary TB.
Collapse
Affiliation(s)
- D M Gatti
- The Jackson Laboratory, Bar Harbor, ME
| | - A L Tyler
- The Jackson Laboratory, Bar Harbor, ME
| | | | | | - B Yener
- Rensselaer Polytechnic Institute, Troy, NY
| | - D Koyuncu
- Rensselaer Polytechnic Institute, Troy, NY
| | - M N Gurcan
- Wake Forest University School of Medicine, Winston Salem, NC
| | - Mkk Niazi
- Wake Forest University School of Medicine, Winston Salem, NC
| | - T Tavolara
- Wake Forest University School of Medicine, Winston Salem, NC
| | - A C Gower
- Clinical and Translational Science Institute, Boston University, Boston, MA
| | - D Dayao
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - E McGlone
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - M L Ginese
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - A Specht
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - A Alsharaydeh
- Texas Biomedical Research Institute, San Antonio, TX
| | - P A Tessier
- Department of Microbiology and Immunology, Laval University School of Medicine, Quebec, Canada
| | - S L Kurtz
- Center for Biologics, Food and Drug Administration, Bethesda, MD
| | - K Elkins
- Center for Biologics, Food and Drug Administration, Bethesda, MD
| | - I Kramnik
- NIEDL, Boston University, Boston, MA
| | - G Beamer
- Texas Biomedical Research Institute, San Antonio, TX
| |
Collapse
|
69
|
Yu Z, Farage G, Williams RW, Broman KW, Sen Ś. BulkLMM: Real-time genome scans for multiple quantitative traits using linear mixed models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572698. [PMID: 38187625 PMCID: PMC10769382 DOI: 10.1101/2023.12.20.572698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Genetic studies often collect data using high-throughput phenotyping. That has led to the need for fast genomewide scans for large number of traits using linear mixed models (LMMs). Computing the scans one by one on each trait is time consuming. We have developed new algorithms for performing genome scans on a large number of quantitative traits using LMMs, BulkLMM, that speeds up the computation by orders of magnitude compared to one trait at a time scans. On a mouse BXD Liver Proteome data with more than 35,000 traits and 7,000 markers, BulkLMM completed in a few seconds. We use vectorized, multi-threaded operations and regularization to improve optimization, and numerical approximations to speed up the computations. Our software implementation in the Julia programming language also provides permutation testing for LMMs and is available at https://github.com/senresearch/BulkLMM.jl.
Collapse
Affiliation(s)
- Zifan Yu
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Gregory Farage
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Karl W Broman
- Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Śaunak Sen
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
70
|
Johansen M, Saenko S, Schilthuizen M, Blaxter M, Davison A. Fine mapping of the Cepaea nemoralis shell colour and mid-banded loci using a high-density linkage map. Heredity (Edinb) 2023; 131:327-337. [PMID: 37758900 PMCID: PMC10673960 DOI: 10.1038/s41437-023-00648-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Molluscs are a highly speciose phylum that exhibits an astonishing array of colours and patterns, yet relatively little progress has been made in identifying the underlying genes that determine phenotypic variation. One prominent example is the land snail Cepaea nemoralis for which classical genetic studies have shown that around nine loci, several physically linked and inherited together as a 'supergene', control the shell colour and banding polymorphism. As a first step towards identifying the genes involved, we used whole-genome resequencing of individuals from a laboratory cross to construct a high-density linkage map, and then trait mapping to identify 95% confidence intervals for the chromosomal region that contains the supergene, specifically the colour locus (C), and the unlinked mid-banded locus (U). The linkage map is made up of 215,593 markers, ordered into 22 linkage groups, with one large group making up ~27% of the genome. The C locus was mapped to a ~1.3 cM region on linkage group 11, and the U locus was mapped to a ~0.7 cM region on linkage group 15. The linkage map will serve as an important resource for further evolutionary and population genomic studies of C. nemoralis and related species, as well as the identification of candidate genes within the supergene and for the mid-banding phenotype.
Collapse
Affiliation(s)
- Margrethe Johansen
- School of Life Sciences, University Park, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Suzanne Saenko
- Evolutionary Ecology, Naturalis Biodiversity Center, Leiden, 2333CR, The Netherlands
- Animal Sciences, Institute of Biology Leiden, Leiden University, Leiden, 2333BE, The Netherlands
| | - Menno Schilthuizen
- Evolutionary Ecology, Naturalis Biodiversity Center, Leiden, 2333CR, The Netherlands
- Animal Sciences, Institute of Biology Leiden, Leiden University, Leiden, 2333BE, The Netherlands
| | - Mark Blaxter
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Angus Davison
- School of Life Sciences, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
71
|
Sullivan KA, Chapman C, Lu L, Ashbrook DG, Wang Y, Alduraibi FK, Lu C, Sun CW, Liu S, Williams RW, Mountz JD, Hsu HC. Increased development of T-bet +CD11c + B cells predisposes to lupus in females: Analysis in BXD2 mouse and genetic crosses. Clin Immunol 2023; 257:109842. [PMID: 37981105 PMCID: PMC10799694 DOI: 10.1016/j.clim.2023.109842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/05/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Cardinal features of lupus include elevated B cell activation and autoantibody production with a female sex preponderance. We quantified interactions of sex and genetic variation on the development of autoimmune B-cell phenotypes and autoantibodies in the BXD2 murine model of lupus using a cohort of backcrossed progeny (BXD2 x C57BL/6J) x BXD2. Sex was the key factor leading to increased total IgG, IgG2b, and autoantibodies. The percentage of T-bet+CD11c+ IgD+ activated naive B cells (aNAV) was higher in females and was associated with increased T-bet+CD11c+ IgD- age-related B cells, Fas+GL7+ germinal center B cells, Cxcr5-Icos+ peripheral T-helper cells, and Cxcr5+Icos+ follicular T-helper cells. IFN-β was elevated in females. Variation in aNAV cells was mapped to Chr 7 in a locus that shows significant interactions between the female sex and heterozygous B/D variant. Our results suggest that activation of naive B cells forms the basis for the female-predominant development of autoantibodies in lupus-susceptible BXD2 mice.
Collapse
Affiliation(s)
- Kathryn A Sullivan
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Casey Chapman
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - David G Ashbrook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yong Wang
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Fatima K Alduraibi
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA; Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Division of Rheumatology, Department of Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Changming Lu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chao-Wang Sun
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shanrun Liu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - John D Mountz
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA; Research, Birmingham Veterans Affairs Health Care System, Birmingham, AL, USA
| | - Hui-Chen Hsu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA; Research, Birmingham Veterans Affairs Health Care System, Birmingham, AL, USA.
| |
Collapse
|
72
|
Oddy J, Chhetry M, Awal R, Addy J, Wilkinson M, Smith D, King R, Hall C, Testa R, Murray E, Raffan S, Curtis TY, Wingen L, Griffiths S, Berry S, Elmore JS, Cryer N, Moreira de Almeida I, Halford NG. Genetic control of grain amino acid composition in a UK soft wheat mapping population. THE PLANT GENOME 2023; 16:e20335. [PMID: 37138544 DOI: 10.1002/tpg2.20335] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/23/2022] [Accepted: 03/13/2023] [Indexed: 05/05/2023]
Abstract
Wheat (Triticum aestivum L.) is a major source of nutrients for populations across the globe, but the amino acid composition of wheat grain does not provide optimal nutrition. The nutritional value of wheat grain is limited by low concentrations of lysine (the most limiting essential amino acid) and high concentrations of free asparagine (precursor to the processing contaminant acrylamide). There are currently few available solutions for asparagine reduction and lysine biofortification through breeding. In this study, we investigated the genetic architecture controlling grain free amino acid composition and its relationship to other traits in a Robigus × Claire doubled haploid population. Multivariate analysis of amino acids and other traits showed that the two groups are largely independent of one another, with the largest effect on amino acids being from the environment. Linkage analysis of the population allowed identification of quantitative trait loci (QTL) controlling free amino acids and other traits, and this was compared against genomic prediction methods. Following identification of a QTL controlling free lysine content, wheat pangenome resources facilitated analysis of candidate genes in this region of the genome. These findings can be used to select appropriate strategies for lysine biofortification and free asparagine reduction in wheat breeding programs.
Collapse
Affiliation(s)
| | | | - Rajani Awal
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | | | | | | | | | | | | | | | - Luzie Wingen
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | - J Stephen Elmore
- Department of Food & Nutritional Sciences, University of Reading, Reading, UK
| | | | | | | |
Collapse
|
73
|
Mozhui K, Kim H, Villani F, Haghani A, Sen S, Horvath S. Pleiotropic influence of DNA methylation QTLs on physiological and ageing traits. Epigenetics 2023; 18:2252631. [PMID: 37691384 PMCID: PMC10496549 DOI: 10.1080/15592294.2023.2252631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/31/2023] [Accepted: 08/16/2023] [Indexed: 09/12/2023] Open
Abstract
DNA methylation is influenced by genetic and non-genetic factors. Here, we chart quantitative trait loci (QTLs) that modulate levels of methylation at highly conserved CpGs using liver methylome data from mouse strains belonging to the BXD family. A regulatory hotspot on chromosome 5 had the highest density of trans-acting methylation QTLs (trans-meQTLs) associated with multiple distant CpGs. We refer to this locus as meQTL.5a. Trans-modulated CpGs showed age-dependent changes and were enriched in developmental genes, including several members of the MODY pathway (maturity onset diabetes of the young). The joint modulation by genotype and ageing resulted in a more 'aged methylome' for BXD strains that inherited the DBA/2J parental allele at meQTL.5a. Further, several gene expression traits, body weight, and lipid levels mapped to meQTL.5a, and there was a modest linkage with lifespan. DNA binding motif and protein-protein interaction enrichment analyses identified the hepatic nuclear factor, Hnf1a (MODY3 gene in humans), as a strong candidate. The pleiotropic effects of meQTL.5a could contribute to variations in body size and metabolic traits, and influence CpG methylation and epigenetic ageing that could have an impact on lifespan.
Collapse
Affiliation(s)
- Khyobeni Mozhui
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hyeonju Kim
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Flavia Villani
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Saunak Sen
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
74
|
Sasani TA, Quinlan AR, Harris K. Epistasis between mutator alleles contributes to germline mutation spectra variability in laboratory mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.537217. [PMID: 37162999 PMCID: PMC10168256 DOI: 10.1101/2023.04.25.537217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Maintaining germline genome integrity is essential and enormously complex. Although many proteins are involved in DNA replication, proofreading, and repair [1], mutator alleles have largely eluded detection in mammals. DNA replication and repair proteins often recognize sequence motifs or excise lesions at specific nucleotides. Thus, we might expect that the spectrum of de novo mutations - the frequencies of C>T, A>G, etc. - will differ between genomes that harbor either a mutator or wild-type allele. Previously, we used quantitative trait locus mapping to discover candidate mutator alleles in the DNA repair gene Mutyh that increased the C>A germline mutation rate in a family of inbred mice known as the BXDs [2,3]. In this study we developed a new method to detect alleles associated with mutation spectrum variation and applied it to mutation data from the BXDs. We discovered an additional C>A mutator locus on chromosome 6 that overlaps Ogg1, a DNA glycosylase involved in the same base-excision repair network as Mutyh [4]. Its effect depended on the presence of a mutator allele near Mutyh, and BXDs with mutator alleles at both loci had greater numbers of C>A mutations than those with mutator alleles at either locus alone. Our new methods for analyzing mutation spectra reveal evidence of epistasis between germline mutator alleles and may be applicable to mutation data from humans and other model organisms.
Collapse
Affiliation(s)
| | - Aaron R. Quinlan
- Department of Human Genetics, University of Utah; Department of Biomedical Informatics, University of Utah · Funded by NIH/NHGRI R01HG012252
| | - Kelley Harris
- Department of Genome Sciences, University of Washington · Funded by NIH/NIGMS R35GM133428; Burroughs Wellcome Career Award at the Scientific Interface; Searle Scholarship; Pew Scholarship; Sloan Fellowship; Allen Discovery Center for Cell Lineage Tracing
| |
Collapse
|
75
|
Mok S, Yeo T, Hong D, Shears MJ, Ross LS, Ward KE, Dhingra SK, Kanai M, Bridgford JL, Tripathi AK, Mlambo G, Burkhard AY, Ansbro MR, Fairhurst KJ, Gil-Iturbe E, Park H, Rozenberg FD, Kim J, Mancia F, Fairhurst RM, Quick M, Uhlemann AC, Sinnis P, Fidock DA. Mapping the genomic landscape of multidrug resistance in Plasmodium falciparum and its impact on parasite fitness. SCIENCE ADVANCES 2023; 9:eadi2364. [PMID: 37939186 PMCID: PMC10631731 DOI: 10.1126/sciadv.adi2364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
Drug-resistant Plasmodium falciparum parasites have swept across Southeast Asia and now threaten Africa. By implementing a P. falciparum genetic cross using humanized mice, we report the identification of key determinants of resistance to artemisinin (ART) and piperaquine (PPQ) in the dominant Asian KEL1/PLA1 lineage. We mapped k13 as the central mediator of ART resistance in vitro and identified secondary markers. Applying bulk segregant analysis, quantitative trait loci mapping using 34 recombinant haplotypes, and gene editing, our data reveal an epistatic interaction between mutant PfCRT and multicopy plasmepsins 2/3 in mediating high-grade PPQ resistance. Susceptibility and parasite fitness assays implicate PPQ as a driver of selection for KEL1/PLA1 parasites. Mutant PfCRT enhanced susceptibility to lumefantrine, the first-line partner drug in Africa, highlighting a potential benefit of opposing selective pressures with this drug and PPQ. We also identified that the ABCI3 transporter can operate in concert with PfCRT and plasmepsins 2/3 in mediating multigenic resistance to antimalarial agents.
Collapse
Affiliation(s)
- Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Davin Hong
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Melanie J. Shears
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Leila S. Ross
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kurt E. Ward
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Satish K. Dhingra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mariko Kanai
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Jessica L. Bridgford
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Abhai K. Tripathi
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Godfree Mlambo
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Anna Y. Burkhard
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Megan R. Ansbro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Kate J. Fairhurst
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Heekuk Park
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Felix D. Rozenberg
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Jonathan Kim
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Rick M. Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Matthias Quick
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Anne-Catrin Uhlemann
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
76
|
Gutierrez AP, Selly SLC, Pountney SM, Taggart JB, Kokkinias P, Cavrois-Rogacki T, Fernandez EJ, Migaud H, Lein I, Davie A, Bekaert M. Development of genomic markers associated to growth-related traits and sex determination in lumpfish (Cyclopterus lumpus). Genomics 2023; 115:110721. [PMID: 37769819 DOI: 10.1016/j.ygeno.2023.110721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Cleaner fish species have gained great importance in the control of sea lice, among them, lumpfish (Cyclopterus lumpus) has become one of the most popular. Lumpfish life cycle has been closed, and hatchery reproduction is now possible, however, current production is reliant on wild caught broodstock to meet the increasing demand. Selective breeding practices are called to play an important role in the successful breeding of most aquaculture species, including lumpfish. In this study we analysed a lumpfish population for the identification of genomic markers linked to production traits. Sequencing of RAD libraries allowed us to identify, 7193 informative markers within the sampled individuals. Genome wide association analysis for sex, weight, condition factor and standard length was performed. One single major QTL region was identified for sex, while nine QTL regions were detected for weight, and three QTL regions for standard length. A total of 177 SNP markers of interest (from QTL regions) and 399 high Fst SNP markers were combined in a low-density panel, useful to obtain relevant genetic information from lumpfish populations. Moreover, a robust combined subset of 29 SNP markers (10 associated to sex, 14 to weight and 18 to standard length) provided over 90% accuracy in predicting the animal's phenotype by machine learning. Overall, our findings provide significant insights into the genetic control of important traits in lumpfish and deliver important genomic resources that will facilitate the establishment of selective breeding programmes in lumpfish.
Collapse
Affiliation(s)
- Alejandro P Gutierrez
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Sarah-Louise Counter Selly
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Samuel M Pountney
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK; University of Victoria, Victoria, BC V8P 5C2, Canada
| | - John B Taggart
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Panagiotis Kokkinias
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | | | | | - Herve Migaud
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Ingrid Lein
- Nofima AS, Sjølsengvegen 22, Sunndalsøra 6600, Norway
| | - Andrew Davie
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Michaël Bekaert
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| |
Collapse
|
77
|
Xiong T, Tarikere S, Rosser N, Li X, Yago M, Mallet J. A polygenic explanation for Haldane's rule in butterflies. Proc Natl Acad Sci U S A 2023; 120:e2300959120. [PMID: 37856563 PMCID: PMC10622916 DOI: 10.1073/pnas.2300959120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Two robust rules have been discovered about animal hybrids: Heterogametic hybrids are more unfit (Haldane's rule), and sex chromosomes are disproportionately involved in hybrid incompatibility (the large-X/Z effect). The exact mechanisms causing these rules in female heterogametic taxa such as butterflies are unknown but are suggested by theory to involve dominance on the sex chromosome. We investigate hybrid incompatibilities adhering to both rules in Papilio and Heliconius butterflies and show that dominance theory cannot explain our data. Instead, many defects coincide with unbalanced multilocus introgression between the Z chromosome and all autosomes. Our polygenic explanation predicts both rules because the imbalance is likely greater in heterogametic females, and the proportion of introgressed ancestry is more variable on the Z chromosome. We also show that mapping traits polygenic on a single chromosome in backcrosses can generate spurious large-effect QTLs. This mirage is caused by statistical linkage among polygenes that inflates estimated effect sizes. By controlling for statistical linkage, most incompatibility QTLs in our hybrid crosses are consistent with a polygenic basis. Since the two genera are very distantly related, polygenic hybrid incompatibilities are likely common in butterflies.
Collapse
Affiliation(s)
- Tianzhu Xiong
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
| | - Shreeharsha Tarikere
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
| | - Neil Rosser
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
| | - Xueyan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan650223, China
| | - Masaya Yago
- The University Museum, The University of Tokyo, Bunkyo-ku113-0033, Japan
| | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
| |
Collapse
|
78
|
Jo J, Kim GW, Back S, Jang S, Kim Y, Han K, Choi H, Lee S, Kwon JK, Lee YJ, Kang BC. Exploring horticultural traits and disease resistance in Capsicum baccatum through segmental introgression lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:233. [PMID: 37878062 DOI: 10.1007/s00122-023-04422-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/24/2023] [Indexed: 10/26/2023]
Abstract
KEY MESSAGE Segmental introgression and advanced backcross lines were developed and validated as important tools for improving agronomically important traits in pepper, offering improved sensitivity in detecting quantitative trait loci for breeding. Segmental introgression lines (SILs) and advanced backcross lines (ABs) can accelerate genetics and genomics research and breeding in crop plants. This study presents the development of a complete collection of SILs and ABs in pepper using Capsicum annuum cv. 'CM334' as the recipient parent and Capsicum baccatum 'PBC81', which displays various agronomically important traits including powdery mildew and anthracnose resistance, as donor parent. Using embryo rescue to overcome abortion in interspecific crosses, and marker-assisted selection with genotyping-in-thousands by sequencing (GT-seq) to develop SILs and ABs containing different segments of the C. baccatum genome, we obtained 63 SILs and 44 ABs, covering 94.8% of the C. baccatum genome. We characterized them for traits including powdery mildew resistance, anthracnose resistance, anthocyanin accumulation, trichome density, plant architecture, and fruit morphology. We validated previously known loci for these traits and discovered new sources of variation and quantitative trait loci (QTLs). A total of 15 QTLs were identified, including four for anthracnose resistance with three novel loci, seven for plant architecture, and four for fruit morphology. This is the first complete collection of pepper SILs and ABs validated for agronomic traits and will enhance QTL detection and serve as valuable breeding resources. Further, these SILs and ABs will be useful for comparative genomics and to better understand the genetic mechanisms underlying important agronomic traits in pepper, ultimately leading to improved crop productivity and sustainability.
Collapse
Affiliation(s)
- Jinkwan Jo
- Department of Agriculture, Forestry, and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Geon Woo Kim
- Department of Agriculture, Forestry, and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Seungki Back
- Department of Agriculture, Forestry, and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Siyoung Jang
- Department of Agriculture, Forestry, and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Youngin Kim
- Department of Agriculture, Forestry, and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Koeun Han
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju, Jeonbuk, South Korea
| | - Hayoung Choi
- Department of Agriculture, Forestry, and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Seyoung Lee
- Department of Agriculture, Forestry, and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jin-Kyung Kwon
- Department of Agriculture, Forestry, and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | | | - Byoung-Cheorl Kang
- Department of Agriculture, Forestry, and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
79
|
Bizouerne E, Ly Vu J, Ly Vu B, Diouf I, Bitton F, Causse M, Verdier J, Buitink J, Leprince O. Genetic Variability in Seed Longevity and Germination Traits in a Tomato MAGIC Population in Contrasting Environments. PLANTS (BASEL, SWITZERLAND) 2023; 12:3632. [PMID: 37896095 PMCID: PMC10610530 DOI: 10.3390/plants12203632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
The stable production of high vigorous seeds is pivotal to crop yield. Also, a high longevity is essential to avoid progressive loss of seed vigour during storage. Both seed traits are strongly influenced by the environment during seed development. Here, we investigated the impact of heat stress (HS) during fruit ripening on tomato seed lifespan during storage at moderate relative humidity, speed (t50) and homogeneity of germination, using a MAGIC population that was produced under optimal and HS conditions. A plasticity index was used to assess the extent of the impact of HS for each trait. HS reduced the average longevity and germination homogeneity by 50% within the parents and MAGIC population. However, there was a high genetic variability in the seed response to heat stress. A total of 39 QTLs were identified, including six longevity QTLs for seeds from control (3) and HS (3) conditions, and six plasticity QTLs for longevity, with only one overlapping with a longevity QTL under HS. Four out of the six longevity QTL co-located with t50 QTL, revealing hotspots for seed quality traits. Twenty-one QTLs with intervals below 3 cM were analyzed using previous transcriptome and gene network data to propose candidate genes for seed vigour and longevity traits.
Collapse
Affiliation(s)
- Elise Bizouerne
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| | - Joseph Ly Vu
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| | - Benoît Ly Vu
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| | - Isidore Diouf
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, CS60094, 84143 Avignon, France (F.B.); (M.C.)
| | - Frédérique Bitton
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, CS60094, 84143 Avignon, France (F.B.); (M.C.)
| | - Mathilde Causse
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, CS60094, 84143 Avignon, France (F.B.); (M.C.)
| | - Jérôme Verdier
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| | - Julia Buitink
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| | - Olivier Leprince
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| |
Collapse
|
80
|
Li X, Morel JD, Benegiamo G, Poisson J, Bachmann A, Rapin A, Sulc J, Williams E, Perino A, Schoonjans K, Bou Sleiman M, Auwerx J. Genetic and dietary modulators of the inflammatory response in the gastrointestinal tract of the BXD mouse genetic reference population. eLife 2023; 12:RP87569. [PMID: 37855835 PMCID: PMC10586803 DOI: 10.7554/elife.87569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Inflammatory gut disorders, including inflammatory bowel disease (IBD), can be impacted by dietary, environmental, and genetic factors. While the incidence of IBD is increasing worldwide, we still lack a complete understanding of the gene-by-environment interactions underlying inflammation and IBD. Here, we profiled the colon transcriptome of 52 BXD mouse strains fed with a chow or high-fat diet (HFD) and identified a subset of BXD strains that exhibit an IBD-like transcriptome signature on HFD, indicating that an interplay of genetics and diet can significantly affect intestinal inflammation. Using gene co-expression analyses, we identified modules that are enriched for IBD-dysregulated genes and found that these IBD-related modules share cis-regulatory elements that are responsive to the STAT2, SMAD3, and REL transcription factors. We used module quantitative trait locus analyses to identify genetic loci associated with the expression of these modules. Through a prioritization scheme involving systems genetics in the mouse and integration with external human datasets, we identified Muc4 and Epha6 as the top candidates mediating differences in HFD-driven intestinal inflammation. This work provides insights into the contribution of genetics and diet to IBD risk and identifies two candidate genes, MUC4 and EPHA6, that may mediate IBD susceptibility in humans.
Collapse
Affiliation(s)
- Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Jean-David Morel
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Giorgia Benegiamo
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Johanne Poisson
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Alexis Bachmann
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Alexis Rapin
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Jonathan Sulc
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Evan Williams
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-AlzetteLuxembourg
| | - Alessia Perino
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Maroun Bou Sleiman
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| |
Collapse
|
81
|
Beugnot A, Mary-Huard T, Bauland C, Combes V, Madur D, Lagardère B, Palaffre C, Charcosset A, Moreau L, Fievet JB. Identifying QTLs involved in hybrid performance and heterotic group complementarity: new GWAS models applied to factorial and admixed diallel maize hybrid panels. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:219. [PMID: 37816986 PMCID: PMC10564676 DOI: 10.1007/s00122-023-04431-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/25/2023] [Indexed: 10/12/2023]
Abstract
KEY MESSAGE An original GWAS model integrating the ancestry of alleles was proposed and allowed the detection of background specific additive and dominance QTLs involved in heterotic group complementarity and hybrid performance. Maize genetic diversity is structured into genetic groups selected and improved relative to each other. This process increases group complementarity and differentiation over time and ensures that the hybrids produced from inter-group crosses exhibit high performances and heterosis. To identify loci involved in hybrid performance and heterotic group complementarity, we introduced an original association study model that disentangles allelic effects from the heterotic group origin of the alleles and compared it with a conventional additive/dominance model. This new model was applied on a factorial between Dent and Flint lines and a diallel between Dent-Flint admixed lines with two different layers of analysis: within each environment and in a multiple-environment context. We identified several strong additive QTLs for all traits, including some well-known additive QTLs for flowering time (in the region of Vgt1/2 on chromosome 8). Yield trait displayed significant non-additive effects in the diallel panel. Most of the detected Yield QTLs exhibited overdominance or, more likely, pseudo-overdominance effects. Apparent overdominance at these QTLs contributed to a part of the genetic group complementarity. The comparison between environments revealed a higher stability of additive QTL effects than non-additive ones. Several QTLs showed variations of effects according to the local heterotic group origin. We also revealed large chromosomic regions that display genetic group origin effects. Altogether, our results illustrate how admixed panels combined with dedicated GWAS modeling allow the identification of new QTLs that could not be revealed by a classical hybrid panel analyzed with traditional modeling.
Collapse
Affiliation(s)
- Aurélien Beugnot
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, UMR GQE-Le Moulon, 91272, Gif-Sur-Yvette, France
| | - Tristan Mary-Huard
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, UMR GQE-Le Moulon, 91272, Gif-Sur-Yvette, France
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA Paris-Saclay, 91120, Palaiseau, France
| | - Cyril Bauland
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, UMR GQE-Le Moulon, 91272, Gif-Sur-Yvette, France
| | - Valerie Combes
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, UMR GQE-Le Moulon, 91272, Gif-Sur-Yvette, France
| | - Delphine Madur
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, UMR GQE-Le Moulon, 91272, Gif-Sur-Yvette, France
| | | | | | - Alain Charcosset
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, UMR GQE-Le Moulon, 91272, Gif-Sur-Yvette, France
| | - Laurence Moreau
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, UMR GQE-Le Moulon, 91272, Gif-Sur-Yvette, France
| | - Julie B Fievet
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, UMR GQE-Le Moulon, 91272, Gif-Sur-Yvette, France.
| |
Collapse
|
82
|
Smith ML, Sergi Z, Mignogna KM, Rodriguez NE, Tatom Z, MacLeod L, Choi KB, Philip V, Miles MF. Identification of Genetic and Genomic Influences on Progressive Ethanol Consumption in Diversity Outbred Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.554349. [PMID: 37745421 PMCID: PMC10515943 DOI: 10.1101/2023.09.15.554349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Genetic factors play a significant role in the risk for development of alcohol use disorder (AUD). Using 3-bottle choice intermittent access ethanol (IEA), we have employed the Diversity Outbred (DO) mouse panel as a model of alcohol use disorder in a genetically diverse population. Through use of gene expression network analysis techniques, in combination with expression quantitative trait loci (eQTL) mapping, we have completed an extensive analysis of the influence of genetic background on gene expression changes in the prefrontal cortex (PFC). This approach revealed that, in DO mice, genes whose expression was significantly disrupted by intermittent ethanol in the PFC also tended to be those whose expression correlated to intake. This finding is in contrast to previous studies of both mice and nonhuman primates. Importantly, these analyses identified genes involved in myelination in the PFC as significantly disrupted by IEA, correlated to ethanol intake, and having significant eQTLs. Genes that code for canonical components of the myelin sheath, such as Mbp, also emerged as key drivers of the gene expression response to intermittent ethanol drinking. Several regulators of myelination were also key drivers of gene expression, and had significant QTLs, indicating that genetic background may play an important role in regulation of brain myelination. These findings underscore the importance of disruption of normal myelination in the PFC in response to prolonged ethanol exposure, that genetic variation plays an important role in this response, and that this interaction between genetics and myelin disruption in the presence of ethanol may underlie previously observed behavioral changes under intermittent access ethanol drinking such as escalation of consumption.
Collapse
Affiliation(s)
- M L Smith
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Z Sergi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - K M Mignogna
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - N E Rodriguez
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Z Tatom
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - L MacLeod
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - K B Choi
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | - V Philip
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | - M F Miles
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
83
|
Auxier B, Debets AJM, Stanford FA, Rhodes J, Becker FM, Reyes Marquez F, Nijland R, Dyer PS, Fisher MC, van den Heuvel J, Snelders E. The human fungal pathogen Aspergillus fumigatus can produce the highest known number of meiotic crossovers. PLoS Biol 2023; 21:e3002278. [PMID: 37708139 PMCID: PMC10501685 DOI: 10.1371/journal.pbio.3002278] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/27/2023] [Indexed: 09/16/2023] Open
Abstract
Sexual reproduction involving meiosis is essential in most eukaryotes. This produces offspring with novel genotypes, both by segregation of parental chromosomes as well as crossovers between homologous chromosomes. A sexual cycle for the opportunistic human pathogenic fungus Aspergillus fumigatus is known, but the genetic consequences of meiosis have remained unknown. Among other Aspergilli, it is known that A. flavus has a moderately high recombination rate with an average of 4.2 crossovers per chromosome pair, whereas A. nidulans has in contrast a higher rate with 9.3 crossovers per chromosome pair. Here, we show in a cross between A. fumigatus strains that they produce an average of 29.9 crossovers per chromosome pair and large variation in total map length across additional strain crosses. This rate of crossovers per chromosome is more than twice that seen for any known organism, which we discuss in relation to other genetic model systems. We validate this high rate of crossovers through mapping of resistance to the laboratory antifungal acriflavine by using standing variation in an undescribed ABC efflux transporter. We then demonstrate that this rate of crossovers is sufficient to produce one of the common multidrug resistant haplotypes found in the cyp51A gene (TR34/L98H) in crosses among parents harboring either of 2 nearby genetic variants, possibly explaining the early spread of such haplotypes. Our results suggest that genomic studies in this species should reassess common assumptions about linkage between genetic regions. The finding of an unparalleled crossover rate in A. fumigatus provides opportunities to understand why these rates are not generally higher in other eukaryotes.
Collapse
Affiliation(s)
- Ben Auxier
- Laboratory of Genetics, Wageningen University; Wageningen, the Netherlands
| | | | | | - Johanna Rhodes
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
| | - Frank M. Becker
- Laboratory of Genetics, Wageningen University; Wageningen, the Netherlands
| | | | - Reindert Nijland
- Marine Animal Ecology, Wageningen University, Wageningen, the Netherlands
| | - Paul S. Dyer
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Matthew C. Fisher
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
| | | | - Eveline Snelders
- Laboratory of Genetics, Wageningen University; Wageningen, the Netherlands
| |
Collapse
|
84
|
Wessinger CA, Katzer AM, Hime PM, Rausher MD, Kelly JK, Hileman LC. A few essential genetic loci distinguish Penstemon species with flowers adapted to pollination by bees or hummingbirds. PLoS Biol 2023; 21:e3002294. [PMID: 37769035 PMCID: PMC10538765 DOI: 10.1371/journal.pbio.3002294] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/11/2023] [Indexed: 09/30/2023] Open
Abstract
In the formation of species, adaptation by natural selection generates distinct combinations of traits that function well together. The maintenance of adaptive trait combinations in the face of gene flow depends on the strength and nature of selection acting on the underlying genetic loci. Floral pollination syndromes exemplify the evolution of trait combinations adaptive for particular pollinators. The North American wildflower genus Penstemon displays remarkable floral syndrome convergence, with at least 20 separate lineages that have evolved from ancestral bee pollination syndrome (wide blue-purple flowers that present a landing platform for bees and small amounts of nectar) to hummingbird pollination syndrome (bright red narrowly tubular flowers offering copious nectar). Related taxa that differ in floral syndrome offer an attractive opportunity to examine the genomic basis of complex trait divergence. In this study, we characterized genomic divergence among 229 individuals from a Penstemon species complex that includes both bee and hummingbird floral syndromes. Field plants are easily classified into species based on phenotypic differences and hybrids displaying intermediate floral syndromes are rare. Despite unambiguous phenotypic differences, genome-wide differentiation between species is minimal. Hummingbird-adapted populations are more genetically similar to nearby bee-adapted populations than to geographically distant hummingbird-adapted populations, in terms of genome-wide dXY. However, a small number of genetic loci are strongly differentiated between species. These approximately 20 "species-diagnostic loci," which appear to have nearly fixed differences between pollination syndromes, are sprinkled throughout the genome in high recombination regions. Several map closely to previously established floral trait quantitative trait loci (QTLs). The striking difference between the diagnostic loci and the genome as whole suggests strong selection to maintain distinct combinations of traits, but with sufficient gene flow to homogenize the genomic background. A surprisingly small number of alleles confer phenotypic differences that form the basis of species identity in this species complex.
Collapse
Affiliation(s)
- Carolyn A. Wessinger
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Amanda M. Katzer
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Paul M. Hime
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, Kansas, United States of America
| | - Mark D. Rausher
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - John K. Kelly
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Lena C. Hileman
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| |
Collapse
|
85
|
Meade RK, Long JE, Jinich A, Rhee KY, Ashbrook DG, Williams RW, Sassetti CM, Smith CM. Genome-wide screen identifies host loci that modulate Mycobacterium tuberculosis fitness in immunodivergent mice. G3 (BETHESDA, MD.) 2023; 13:jkad147. [PMID: 37405387 PMCID: PMC10468300 DOI: 10.1093/g3journal/jkad147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/05/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023]
Abstract
Genetic differences among mammalian hosts and among strains of Mycobacterium tuberculosis (Mtb) are well-established determinants of tuberculosis (TB) patient outcomes. The advent of recombinant inbred mouse panels and next-generation transposon mutagenesis and sequencing approaches has enabled dissection of complex host-pathogen interactions. To identify host and pathogen genetic determinants of Mtb pathogenesis, we infected members of the highly diverse BXD family of strains with a comprehensive library of Mtb transposon mutants (TnSeq). Members of the BXD family segregate for Mtb-resistant C57BL/6J (B6 or B) and Mtb-susceptible DBA/2J (D2 or D) haplotypes. The survival of each bacterial mutant was quantified within each BXD host, and we identified those bacterial genes that were differentially required for Mtb fitness across BXD genotypes. Mutants that varied in survival among the host family of strains were leveraged as reporters of "endophenotypes," each bacterial fitness profile directly probing specific components of the infection microenvironment. We conducted quantitative trait loci (QTL) mapping of these bacterial fitness endophenotypes and identified 140 host-pathogen QTL (hpQTL). We located a QTL hotspot on chromosome 6 (75.97-88.58 Mb) associated with the genetic requirement of multiple Mtb genes: Rv0127 (mak), Rv0359 (rip2), Rv0955 (perM), and Rv3849 (espR). Together, this screen reinforces the utility of bacterial mutant libraries as precise reporters of the host immunological microenvironment during infection and highlights specific host-pathogen genetic interactions for further investigation. To enable downstream follow-up for both bacterial and mammalian genetic research communities, all bacterial fitness profiles have been deposited into GeneNetwork.org and added into the comprehensive collection of TnSeq libraries in MtbTnDB.
Collapse
Affiliation(s)
- Rachel K Meade
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC 27710, USA
| | - Jarukit E Long
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01655, USA
- Research Animal Diagnostic Services, Charles River Laboratories, Wilmington, MA 01887, USA
| | - Adrian Jinich
- Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10021, USA
| | - Kyu Y Rhee
- Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10021, USA
| | - David G Ashbrook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Clare M Smith
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC 27710, USA
| |
Collapse
|
86
|
Ball RL, Bogue MA, Liang H, Srivastava A, Ashbrook DG, Lamoureux A, Gerring MW, Hatoum AS, Kim M, He H, Emerson J, Berger AK, Walton DO, Sheppard K, Kassaby BE, Castellanos F, Kunde-Ramamoorthy G, Lu L, Bluis J, Desai S, Sundberg BA, Peltz G, Fang Z, Churchill GA, Williams RW, Agrawal A, Bult CJ, Philip VM, Chesler EJ. GenomeMUSter mouse genetic variation service enables multi-trait, multi-population data integration and analyses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552506. [PMID: 37609331 PMCID: PMC10441370 DOI: 10.1101/2023.08.08.552506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Hundreds of inbred laboratory mouse strains and intercross populations have been used to functionalize genetic variants that contribute to disease. Thousands of disease relevant traits have been characterized in mice and made publicly available. New strains and populations including the Collaborative Cross, expanded BXD and inbred wild-derived strains add to set of complex disease mouse models, genetic mapping resources and sensitized backgrounds against which to evaluate engineered mutations. The genome sequences of many inbred strains, along with dense genotypes from others could allow integrated analysis of trait - variant associations across populations, but these analyses are not feasible due to the sparsity of genotypes available. Moreover, the data are not readily interoperable with other resources. To address these limitations, we created a uniformly dense data resource by harmonizing multiple variant datasets. Missing genotypes were imputed using the Viterbi algorithm with a data-driven technique that incorporates local phylogenetic information, an approach that is extensible to other model organism species. The result is a web- and programmatically-accessible data service called GenomeMUSter ( https://muster.jax.org ), comprising allelic data covering 657 strains at 106.8M segregating sites. Interoperation with phenotype databases, analytic tools and other resources enable a wealth of applications including multi-trait, multi-population meta-analysis. We demonstrate this in a cross-species comparison of the meta-analysis of Type 2 Diabetes and of substance use disorders, resulting in the more specific characterization of the role of human variant effects in light of mouse phenotype data. Other applications include refinement of mapped loci and prioritization of strain backgrounds for disease modeling to further unlock extant mouse diversity for genetic and genomic studies in health and disease.
Collapse
|
87
|
Philip VM, He H, Saul MC, Dickson PE, Bubier JA, Chesler EJ. Gene expression genetics of the striatum of Diversity Outbred mice. Sci Data 2023; 10:522. [PMID: 37543624 PMCID: PMC10404230 DOI: 10.1038/s41597-023-02426-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023] Open
Abstract
Brain transcriptional variation is a heritable trait that mediates complex behaviors, including addiction. Expression quantitative trait locus (eQTL) mapping reveals genomic regions harboring genetic variants that influence transcript abundance. In this study, we profiled transcript abundance in the striatum of 386 Diversity Outbred (J:DO) mice of both sexes using RNA-Seq. All mice were characterized using a behavioral battery of widely-used exploratory and risk-taking assays prior to transcriptional profiling. We performed eQTL mapping, incorporated the results into a browser-based eQTL viewer, and deposited co-expression network members in GeneWeaver. The eQTL viewer allows researchers to query specific genes to obtain allelic effect plots, analyze SNP associations, assess gene expression correlations, and apply mediation analysis to evaluate whether the regulatory variant is acting through the expression of another gene. GeneWeaver allows multi-species comparison of gene sets using statistical and combinatorial tools. This data resource allows users to find genetic variants that regulate differentially expressed transcripts and place them in the context of other studies of striatal gene expression and function in addiction-related behavior.
Collapse
Affiliation(s)
- Vivek M Philip
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, 04605, USA
| | - Hao He
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Michael C Saul
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, 04605, USA
| | - Price E Dickson
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine Marshall University, Huntington, WV, 25703, USA
| | - Jason A Bubier
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, 04605, USA
| | - Elissa J Chesler
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, 04605, USA.
| |
Collapse
|
88
|
Masson SWC, Madsen S, Cooke KC, Potter M, Vegas AD, Carroll L, Thillainadesan S, Cutler HB, Walder KR, Cooney GJ, Morahan G, Stöckli J, James DE. Leveraging genetic diversity to identify small molecules that reverse mouse skeletal muscle insulin resistance. eLife 2023; 12:RP86961. [PMID: 37494090 PMCID: PMC10371229 DOI: 10.7554/elife.86961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Abstract
Systems genetics has begun to tackle the complexity of insulin resistance by capitalising on computational advances to study high-diversity populations. 'Diversity Outbred in Australia (DOz)' is a population of genetically unique mice with profound metabolic heterogeneity. We leveraged this variance to explore skeletal muscle's contribution to whole-body insulin action through metabolic phenotyping and skeletal muscle proteomics of 215 DOz mice. Linear modelling identified 553 proteins that associated with whole-body insulin sensitivity (Matsuda Index) including regulators of endocytosis and muscle proteostasis. To enrich for causality, we refined this network by focusing on negatively associated, genetically regulated proteins, resulting in a 76-protein fingerprint of insulin resistance. We sought to perturb this network and restore insulin action with small molecules by integrating the Broad Institute Connectivity Map platform and in vitro assays of insulin action using the Prestwick chemical library. These complementary approaches identified the antibiotic thiostrepton as an insulin resistance reversal agent. Subsequent validation in ex vivo insulin-resistant mouse muscle and palmitate-induced insulin-resistant myotubes demonstrated potent insulin action restoration, potentially via upregulation of glycolysis. This work demonstrates the value of a drug-centric framework to validate systems-level analysis by identifying potential therapeutics for insulin resistance.
Collapse
Affiliation(s)
- Stewart WC Masson
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneyCamperdownAustralia
| | - Søren Madsen
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneyCamperdownAustralia
| | - Kristen C Cooke
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneyCamperdownAustralia
| | - Meg Potter
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneyCamperdownAustralia
| | - Alexis Diaz Vegas
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneyCamperdownAustralia
| | - Luke Carroll
- Australian Proteome Analysis Facility, Macquarie UniversityMacquarie ParkAustralia
| | - Senthil Thillainadesan
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneyCamperdownAustralia
| | - Harry B Cutler
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneyCamperdownAustralia
| | - Ken R Walder
- School of Medicine, Deakin UniversityGeelongAustralia
| | - Gregory J Cooney
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneyCamperdownAustralia
| | - Grant Morahan
- Centre for Diabetes Research, Harry Perkins Institute of Medical ResearchMurdochAustralia
| | - Jacqueline Stöckli
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneyCamperdownAustralia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneyCamperdownAustralia
- School of Medical Sciences University of SydneySydneyAustralia
| |
Collapse
|
89
|
Everman ER, Macdonald SJ. Gene expression variation underlying tissue-specific responses to copper stress in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548746. [PMID: 37503205 PMCID: PMC10370140 DOI: 10.1101/2023.07.12.548746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Copper is one of a handful of biologically necessary heavy metals that is also a common environmental pollutant. Under normal conditions, copper ions are required for many key physiological processes. However, in excess, copper quickly results in cell and tissue damage that can range in severity from temporary injury to permanent neurological damage. Because of its biological relevance, and because many conserved copper-responsive genes also respond to other non-essential heavy metal pollutants, copper resistance in Drosophila melanogaster is a useful model system with which to investigate the genetic control of the response to heavy metal stress. Because heavy metal toxicity has the potential to differently impact specific tissues, we genetically characterized the control of the gene expression response to copper stress in a tissue-specific manner in this study. We assessed the copper stress response in head and gut tissue of 96 inbred strains from the Drosophila Synthetic Population Resource (DSPR) using a combination of differential expression analysis and expression quantitative trait locus (eQTL) mapping. Differential expression analysis revealed clear patterns of tissue-specific expression, primarily driven by a more pronounced gene expression response in gut tissue. eQTL mapping of gene expression under control and copper conditions as well as for the change in gene expression following copper exposure (copper response eQTL) revealed hundreds of genes with tissue-specific local cis-eQTL and many distant trans-eQTL. eQTL associated with MtnA, Mdr49, Mdr50, and Sod3 exhibited genotype by environment effects on gene expression under copper stress, illuminating several tissue- and treatment-specific patterns of gene expression control. Together, our data build a nuanced description of the roles and interactions between allelic and expression variation in copper-responsive genes, provide valuable insight into the genomic architecture of susceptibility to metal toxicity, and highlight many candidate genes for future functional characterization.
Collapse
Affiliation(s)
- Elizabeth R Everman
- 1200 Sunnyside Ave, University of Kansas, Molecular Biosciences, Lawrence, KS 66045, USA
- 730 Van Vleet Oval, University of Oklahoma, Biology, Norman, OK 73019, USA
| | - Stuart J Macdonald
- 1200 Sunnyside Ave, University of Kansas, Molecular Biosciences, Lawrence, KS 66045, USA
- 1200 Sunnyside Ave, University of Kansas, Center for Computational Biology, Lawrence, KS 66045, USA
| |
Collapse
|
90
|
Nagarajan A, Scoggin K, Gupta J, Threadgill DW, Andrews-Polymenis HL. Using the collaborative cross to identify the role of host genetics in defining the murine gut microbiome. MICROBIOME 2023; 11:149. [PMID: 37420306 PMCID: PMC10329326 DOI: 10.1186/s40168-023-01552-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/18/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND The human gut microbiota is a complex community comprised of trillions of bacteria and is critical for the digestion and absorption of nutrients. Bacterial communities of the intestinal microbiota influence the development of several conditions and diseases. We studied the effect of host genetics on gut microbial composition using Collaborative Cross (CC) mice. CC mice are a panel of mice that are genetically diverse across strains, but genetically identical within a given strain allowing repetition and deeper analysis than is possible with other collections of genetically diverse mice. RESULTS 16S rRNA from the feces of 167 mice from 28 different CC strains was sequenced and analyzed using the Qiime2 pipeline. We observed a large variance in the bacterial composition across CC strains starting at the phylum level. Using bacterial composition data, we identified 17 significant Quantitative Trait Loci (QTL) linked to 14 genera on 9 different mouse chromosomes. Genes within these intervals were analyzed for significant association with pathways and the previously known human GWAS database using Enrichr analysis and Genecards database. Multiple host genes involved in obesity, glucose homeostasis, immunity, neurological diseases, and many other protein-coding genes located in these regions may play roles in determining the composition of the gut microbiota. A subset of these CC mice was infected with Salmonella Typhimurium. Using infection outcome data, an increase in abundance of genus Lachnospiraceae and decrease in genus Parasutterella correlated with positive health outcomes after infection. Machine learning classifiers accurately predicted the CC strain and the infection outcome using pre-infection bacterial composition data from the feces. CONCLUSION Our study supports the hypothesis that multiple host genes influence the gut microbiome composition and homeostasis, and that certain organisms may influence health outcomes after S. Typhimurium infection. Video Abstract.
Collapse
Affiliation(s)
- Aravindh Nagarajan
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX USA
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, TX USA
| | - Kristin Scoggin
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX USA
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, TX USA
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX USA
| | - Jyotsana Gupta
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, TX USA
| | - David W. Threadgill
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX USA
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX USA
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX USA
- Department of Biochemistry & Biophysics and Department of Nutrition, Texas A&M University, College Station, TX USA
| | - Helene L. Andrews-Polymenis
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX USA
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, TX USA
| |
Collapse
|
91
|
Price TR, Stapleton DS, Schueler KL, Norris MK, Parks BW, Yandell BS, Churchill GA, Holland WL, Keller MP, Attie AD. Lipidomic QTL in Diversity Outbred mice identifies a novel function for α/β hydrolase domain 2 (Abhd2) as an enzyme that metabolizes phosphatidylcholine and cardiolipin. PLoS Genet 2023; 19:e1010713. [PMID: 37523383 PMCID: PMC10414554 DOI: 10.1371/journal.pgen.1010713] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/10/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023] Open
Abstract
We and others have previously shown that genetic association can be used to make causal connections between gene loci and small molecules measured by mass spectrometry in the bloodstream and in tissues. We identified a locus on mouse chromosome 7 where several phospholipids in liver showed strong genetic association to distinct gene loci. In this study, we integrated gene expression data with genetic association data to identify a single gene at the chromosome 7 locus as the driver of the phospholipid phenotypes. The gene encodes α/β-hydrolase domain 2 (Abhd2), one of 23 members of the ABHD gene family. We validated this observation by measuring lipids in a mouse with a whole-body deletion of Abhd2. The Abhd2KO mice had a significant increase in liver levels of phosphatidylcholine and phosphatidylethanolamine. Unexpectedly, we also found a decrease in two key mitochondrial lipids, cardiolipin and phosphatidylglycerol, in male Abhd2KO mice. These data suggest that Abhd2 plays a role in the synthesis, turnover, or remodeling of liver phospholipids.
Collapse
Affiliation(s)
- Tara R. Price
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Donnie S. Stapleton
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kathryn L. Schueler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Marie K. Norris
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States of America
| | - Brian W. Parks
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Brian S. Yandell
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | | | - William L. Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States of America
| | - Mark P. Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
92
|
Zhang X, Ling Y, Yang W, Wei M, Wang Z, Li M, Yang Y, Liu B, Yi H, Guo YD, Kong Q. Fine mapping of a novel QTL DM9.1 conferring downy mildew resistance in melon. FRONTIERS IN PLANT SCIENCE 2023; 14:1202775. [PMID: 37377806 PMCID: PMC10291176 DOI: 10.3389/fpls.2023.1202775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/08/2023] [Indexed: 06/29/2023]
Abstract
Downy mildew (DM) is a major foliar disease globally causing great economic loss in melon production. Utilizing disease-resistant cultivars is the most efficient approach for disease control, while discovery of disease-resistant genes is crucial for the success of DM-resistant breeding. To address this problem, two F2 populations were constructed using the DM-resistant accession PI 442177 in this study, and QTLs conferring DM resistance were mapped using linkage map and QTL-seq analysis, respectively. A high-density genetic map with the length of 1096.7 cM and density of 0.7 cM was generated by using the genotyping-by-sequencing data of a F2 population. A major QTL DM9.1 with the phenotypic variance explained proportion of 24.3-37.7% was consistently detected at the early, middle, and late growth stages using the genetic map. QTL-seq analyses on the two F2 populations also validated the presence of DM9.1. Kompetitive Allele-Specific PCR (KASP) assay was further carried out to fine map DM9.1 into 1.0 Mb interval. A KASP marker co-segregating with DM9.1 was successfully developed. These results not only provided valuable information for DM-resistant gene cloning, but also offered useful markers for melon DM-resistant breeding programs.
Collapse
Affiliation(s)
- Xuejun Zhang
- College of Horticulture, China Agricultural University, Beijing, China
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Hainan Sanya Experimental Center for Crop Breeding, Xinjiang Academy of Agricultural Sciences, Sanya, China
| | - Yueming Ling
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Wenli Yang
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Minghua Wei
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Zhenzhu Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Meihua Li
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yong Yang
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Bin Liu
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Hainan Sanya Experimental Center for Crop Breeding, Xinjiang Academy of Agricultural Sciences, Sanya, China
| | - Hongping Yi
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Hainan Sanya Experimental Center for Crop Breeding, Xinjiang Academy of Agricultural Sciences, Sanya, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing, China
| | - Qiusheng Kong
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Hainan Sanya Experimental Center for Crop Breeding, Xinjiang Academy of Agricultural Sciences, Sanya, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
93
|
Kim M, Huda MN, Evans LW, Que E, Gertz ER, Maeda-Smithies N, Bennett BJ. Integrative analysis of hepatic transcriptional profiles reveals genetic regulation of atherosclerosis in hyperlipidemic Diversity Outbred-F1 mice. Sci Rep 2023; 13:9475. [PMID: 37301941 PMCID: PMC10257719 DOI: 10.1038/s41598-023-35917-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Atherogenesis is an insipidus but precipitating process leading to serious consequences of many cardiovascular diseases (CVD). Numerous genetic loci contributing to atherosclerosis have been identified in human genome-wide association studies, but these studies have limitations in the ability to control environmental factors and to decipher cause/effect relationships. To assess the power of hyperlipidemic Diversity Outbred (DO) mice in facilitating quantitative trait loci (QTL) analysis of complex traits, we generated a high-resolution genetic panel of atherosclerosis susceptible (DO-F1) mouse cohort by crossing 200 DO females with C57BL/6J males carrying two human genes: encoding apolipoprotein E3-Leiden and cholesterol ester transfer protein. We examined atherosclerotic traits including plasma lipids and glucose in the 235 female and 226 male progeny before and after 16 weeks of a high-fat/cholesterol diet, and aortic plaque size at 24 weeks. We also assessed the liver transcriptome using RNA-sequencing. Our QTL mapping for atherosclerotic traits identified one previously reported female-specific QTL on Chr10 with a narrower interval of 22.73 to 30.80 Mb, and one novel male-specific QTL at 31.89 to 40.25 Mb on Chr19. Liver transcription levels of several genes within each QTL were highly correlated with the atherogenic traits. A majority of these candidates have already known atherogenic potential in humans and/or mice, but integrative QTL, eQTL, and correlation analyses further pointed Ptprk as a major candidate of the Chr10 QTL, while Pten and Cyp2c67 of the Chr19 QTL in our DO-F1 cohort. Finally, through additional analyses of RNA-seq data we identified genetic regulation of hepatic transcription factors, including Nr1h3, contributes to atherogenesis in this cohort. Thus, an integrative approach using DO-F1 mice effectively validates the influence of genetic factors on atherosclerosis in DO mice and suggests an opportunity to discover therapeutics in the setting of hyperlipidemia.
Collapse
Affiliation(s)
- Myungsuk Kim
- Department of Nutrition, University of California, Davis, CA, USA
- Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-Do, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - M Nazmul Huda
- Department of Nutrition, University of California, Davis, CA, USA
- Western Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Davis, CA, USA
| | - Levi W Evans
- Western Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Davis, CA, USA
| | - Excel Que
- Western Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Davis, CA, USA
| | - Erik R Gertz
- Western Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Davis, CA, USA
| | - Nobuyo Maeda-Smithies
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brian J Bennett
- Department of Nutrition, University of California, Davis, CA, USA.
- Western Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Davis, CA, USA.
| |
Collapse
|
94
|
Tyler AL, Spruce C, Kursawe R, Haber A, Ball RL, Pitman WA, Fine AD, Raghupathy N, Walker M, Philip VM, Baker CL, Mahoney JM, Churchill GA, Trowbridge JJ, Stitzel ML, Paigen K, Petkov PM, Carter GW. Variation in histone configurations correlates with gene expression across nine inbred strains of mice. Genome Res 2023; 33:857-871. [PMID: 37217254 PMCID: PMC10519406 DOI: 10.1101/gr.277467.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
The Diversity Outbred (DO) mice and their inbred founders are widely used models of human disease. However, although the genetic diversity of these mice has been well documented, their epigenetic diversity has not. Epigenetic modifications, such as histone modifications and DNA methylation, are important regulators of gene expression and, as such, are a critical mechanistic link between genotype and phenotype. Therefore, creating a map of epigenetic modifications in the DO mice and their founders is an important step toward understanding mechanisms of gene regulation and the link to disease in this widely used resource. To this end, we performed a strain survey of epigenetic modifications in hepatocytes of the DO founders. We surveyed four histone modifications (H3K4me1, H3K4me3, H3K27me3, and H3K27ac), as well as DNA methylation. We used ChromHMM to identify 14 chromatin states, each of which represents a distinct combination of the four histone modifications. We found that the epigenetic landscape is highly variable across the DO founders and is associated with variation in gene expression across strains. We found that epigenetic state imputed into a population of DO mice recapitulated the association with gene expression seen in the founders, suggesting that both histone modifications and DNA methylation are highly heritable mechanisms of gene expression regulation. We illustrate how DO gene expression can be aligned with inbred epigenetic states to identify putative cis-regulatory regions. Finally, we provide a data resource that documents strain-specific variation in the chromatin state and DNA methylation in hepatocytes across nine widely used strains of laboratory mice.
Collapse
Affiliation(s)
- Anna L Tyler
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | - Catrina Spruce
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | - Romy Kursawe
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
| | - Annat Haber
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
| | - Robyn L Ball
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | - Wendy A Pitman
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | - Alexander D Fine
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | | | - Michael Walker
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | - Vivek M Philip
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | | | - J Matthew Mahoney
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | - Gary A Churchill
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | | | - Michael L Stitzel
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
| | - Kenneth Paigen
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | - Petko M Petkov
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA;
| | - Gregory W Carter
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| |
Collapse
|
95
|
Chitre AS, Polesskaya O, Munro D, Cheng R, Mohammadi P, Holl K, Gao J, Bimschleger H, Martinez AG, George AM, Gileta AF, Han W, Horvath A, Hughson A, Ishiwari K, King CP, Lamparelli A, Versaggi CL, Martin CD, St. Pierre CL, Tripi JA, Richards JB, Wang T, Chen H, Flagel SB, Meyer P, Robinson TE, Solberg Woods LC, Palmer AA. An exponential increase in QTL detection with an increased sample size. Genetics 2023; 224:iyad054. [PMID: 36974931 PMCID: PMC10213487 DOI: 10.1093/genetics/iyad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Power analyses are often used to determine the number of animals required for a genome-wide association study (GWAS). These analyses are typically intended to estimate the sample size needed for at least 1 locus to exceed a genome-wide significance threshold. A related question that is less commonly considered is the number of significant loci that will be discovered with a given sample size. We used simulations based on a real data set that consisted of 3,173 male and female adult N/NIH heterogeneous stock rats to explore the relationship between sample size and the number of significant loci discovered. Our simulations examined the number of loci identified in subsamples of the full data set. The subsampling analysis was conducted for 4 traits with low (0.15 ± 0.03), medium (0.31 ± 0.03 and 0.36 ± 0.03), and high (0.46 ± 0.03) SNP-based heritabilities. For each trait, we subsampled the data 100 times at different sample sizes (500, 1,000, 1,500, 2,000, and 2,500). We observed an exponential increase in the number of significant loci with larger sample sizes. Our results are consistent with similar observations in human GWAS and imply that future rodent GWAS should use sample sizes that are significantly larger than those needed to obtain a single significant result.
Collapse
Affiliation(s)
- Apurva S Chitre
- Department of Psychiatry, University of California San Diego,
La Jolla, CA 92093, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego,
La Jolla, CA 92093, USA
| | - Daniel Munro
- Department of Psychiatry, University of California San Diego,
La Jolla, CA 92093, USA
- Department of Integrative Structural and Computational Biology, The Scripps
Research Institute, La Jolla, CA 92037, USA
| | - Riyan Cheng
- Department of Psychiatry, University of California San Diego,
La Jolla, CA 92093, USA
| | - Pejman Mohammadi
- Department of Integrative Structural and Computational Biology, The Scripps
Research Institute, La Jolla, CA 92037, USA
- Scripps Research Translational Institute, The Scripps Research
Institute, La Jolla, CA 92037, USA
| | - Katie Holl
- Department of Physiology, Medical College of Wisconsin,
Milwaukee, WI 53226, USA
| | - Jianjun Gao
- Department of Psychiatry, University of California San Diego,
La Jolla, CA 92093, USA
| | - Hannah Bimschleger
- Department of Psychiatry, University of California San Diego,
La Jolla, CA 92093, USA
| | - Angel Garcia Martinez
- Department of Pharmacology, University of Tennessee Health Science
Center, Memphis, TN 38163, USA
| | - Anthony M George
- Clinical and Research Institute on Addictions, State University of New York
at Buffalo, Buffalo, NY 14203, USA
| | - Alexander F Gileta
- Department of Psychiatry, University of California San Diego,
La Jolla, CA 92093, USA
- Department of Human Genetics, University of Chicago,
Chicago, IL 60637, USA
| | - Wenyan Han
- Department of Pharmacology, University of Tennessee Health Science
Center, Memphis, TN 38163, USA
| | - Aidan Horvath
- Department of Psychiatry, University of Michigan,
Ann Arbor, MI 48109, USA
| | - Alesa Hughson
- Department of Psychiatry, University of Michigan,
Ann Arbor, MI 48109, USA
| | - Keita Ishiwari
- Clinical and Research Institute on Addictions, State University of New York
at Buffalo, Buffalo, NY 14203, USA
- Department of Pharmacology and Toxicology, State University of New York at
Buffalo, Buffalo, NY 14203, USA
| | - Christopher P King
- Department of Psychology, State University of New York at
Buffalo, Buffalo, NY 14260, USA
| | - Alexander Lamparelli
- Department of Psychology, State University of New York at
Buffalo, Buffalo, NY 14260, USA
| | - Cassandra L Versaggi
- Department of Psychology, State University of New York at
Buffalo, Buffalo, NY 14260, USA
| | - Connor D Martin
- Clinical and Research Institute on Addictions, State University of New York
at Buffalo, Buffalo, NY 14203, USA
- Department of Pharmacology and Toxicology, State University of New York at
Buffalo, Buffalo, NY 14203, USA
| | - Celine L St. Pierre
- Department of Genetics, Washington University in St Louis,
St Louis, MO 63110, USA
| | - Jordan A Tripi
- Department of Psychology, State University of New York at
Buffalo, Buffalo, NY 14260, USA
| | - Jerry B Richards
- Clinical and Research Institute on Addictions, State University of New York
at Buffalo, Buffalo, NY 14203, USA
- Department of Pharmacology and Toxicology, State University of New York at
Buffalo, Buffalo, NY 14203, USA
| | - Tengfei Wang
- Department of Pharmacology, University of Tennessee Health Science
Center, Memphis, TN 38163, USA
| | - Hao Chen
- Department of Pharmacology, University of Tennessee Health Science
Center, Memphis, TN 38163, USA
| | - Shelly B Flagel
- Department of Psychiatry, University of Michigan,
Ann Arbor, MI 48109, USA
- Michigan Neuroscience Institute, University of Michigan,
Ann Arbor, MI 48109, USA
| | - Paul Meyer
- Department of Psychology, State University of New York at
Buffalo, Buffalo, NY 14260, USA
| | - Terry E Robinson
- Department of Psychology, University of Michigan,
Ann Arbor, MI 48109, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, Wake Forest School of
Medicine, Winston-Salem, NC 27101, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego,
La Jolla, CA 92093, USA
- Institute for Genomic Medicine, University of California San
Diego, La Jolla, CA 92093, USA
| |
Collapse
|
96
|
Chen MH, Pinson SRM, Jackson AK, Edwards JD. Genetic loci regulating the concentrations of anthocyanins and proanthocyanidins in the pericarps of purple and red rice. THE PLANT GENOME 2023:e20338. [PMID: 37177874 DOI: 10.1002/tpg2.20338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/16/2022] [Accepted: 03/16/2023] [Indexed: 05/15/2023]
Abstract
The pigmented flavonoids, anthocyanins and proanthocyanidins, have health promoting properties. Previous work determined that the genes Pb and Rc turn on and off the biosynthesis of anthocyanins (purple) and proanthocyanidins (red), respectively. Not yet known is how the concentrations of these pigmented flavonoids are regulated in grain pericarps. Quantitative trait locus (QTL) analysis in a population of rice (Oryza sativa L.) F5 recombinant inbred lines from white pericarp "IR36ae" x red+purple pericarp "242" revealed three QTLs associated with grain concentrations of anthocyanins (TAC) or proanthocyanidins (PA). Both TAC and PA independently mapped to a 1.5 Mb QTL region on chromosome 3 between RM3400 (at 15.8 Mb) and RM15123 (17.3 Mb), named qPR3. Across 2 years, qPR3 explained 36.3% of variance in TAC and 35.8% in PA variance not attributable to Pb or Rc. The qPR3 region encompasses Kala3, a MYB transcription factor previously known to regulate purple grain characteristics. Study of PbPbRcrc progeny showed that TAC of RcRc near isogenic lines (NILs) was 2.1-4.5x that of rcrc. Similarly, study of PbPbRcRc NILs, which had 70% higher PA than pbpbRcRc NILs, revealed a mutual enhancement, not a trade-off between these compounds that share precursors. This suggests that Pb and Rc upregulate genes in a shared pathway as they activate TAC and PA synthesis, respectively. This study provides molecular markers for facilitating marker-assisted selection of qPR3, qPR5, and qPR7 to enhance grain concentrations of pigmented flavonoids and documented that stacking Rc and Pb genes further increases both flavonoid compounds.
Collapse
Affiliation(s)
- Ming-Hsuan Chen
- Dale Bumpers National Rice Research Center, United States Department of Agriculture-Agricultural Research Service, Stuttgart, AR, USA
| | - Shannon R M Pinson
- Dale Bumpers National Rice Research Center, United States Department of Agriculture-Agricultural Research Service, Stuttgart, AR, USA
| | - Aaron K Jackson
- Dale Bumpers National Rice Research Center, United States Department of Agriculture-Agricultural Research Service, Stuttgart, AR, USA
| | - Jeremy D Edwards
- Dale Bumpers National Rice Research Center, United States Department of Agriculture-Agricultural Research Service, Stuttgart, AR, USA
| |
Collapse
|
97
|
Philip VM, He H, Saul MC, Dickson PE, Bubier JA, Chesler EJ. Gene expression genetics of the striatum of Diversity Outbred mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540390. [PMID: 37214980 PMCID: PMC10197688 DOI: 10.1101/2023.05.11.540390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Brain transcriptional variation is a heritable trait that mediates complex behaviors, including addiction. Expression quantitative trait locus (eQTL) mapping reveals genomic regions harboring genetic variants that influence transcript abundance. In this study, we profiled transcript abundance in the striatum of 386 Diversity Outbred (J:DO) mice of both sexes using RNA-Seq. All mice were characterized using a behavioral battery of widely-used exploratory and risk-taking assays prior to transcriptional profiling. We performed eQTL mapping, incorporated the results into a browser-based eQTL viewer, and deposited co-expression network members in GeneWeaver. The eQTL viewer allows researchers to query specific genes to obtain allelic effect plots, analyze SNP associations, assess gene expression correlations, and apply mediation analysis to evaluate whether the regulatory variant is acting through the expression of another gene. GeneWeaver allows multi-species comparison of gene sets using statistical and combinatorial tools. This data resource allows users to find genetic variants that regulate differentially expressed transcripts and place them in the context of other studies of striatal gene expression and function in addiction-related behavior.
Collapse
Affiliation(s)
- Vivek M. Philip
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME 04605
| | - Hao He
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032
| | - Michael C. Saul
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME 04605
| | - Price E. Dickson
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine Marshall University, 1700 3rd Ave. Huntington, WV 25703
| | - Jason A. Bubier
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME 04605
| | | |
Collapse
|
98
|
Poirion OB, Zuo W, Spruce C, Daigle SL, Olson A, Skelly DA, Chesler EJ, Baker CL, White BS. Enhlink infers distal and context-specific enhancer-promoter linkages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540453. [PMID: 37214950 PMCID: PMC10197707 DOI: 10.1101/2023.05.11.540453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Enhancers play a crucial role in regulating gene expression and their functional status can be queried with cell type precision using using single-cell (sc)ATAC-seq. To facilitate analysis of such data, we developed Enhlink, a novel computational approach that leverages single-cell signals to infer linkages between regulatory DNA sequences, such as enhancers and promoters. Enhlink uses an ensemble strategy that integrates cell-level technical covariates to control for batch effects and biological covariates to infer robust condition-specific links and their associated p-values. It can integrate simultaneous gene expression and chromatin accessibility measurements of individual cells profiled by multi-omic experiments for increased specificity. We evaluated Enhlink using simulated and real scATAC-seq data, including those paired with physical enhancer-promoter links enumerated by promoter capture Hi-C and with multi-omic scATAC-/RNA-seq data we generated from the mouse striatum. These examples demonstrated that our method outperforms popular alternative strategies. In conjunction with eQTL analysis, Enhlink revealed a putative super-enhancer regulating key cell type-specific markers of striatal neurons. Taken together, our analyses demonstrate that Enhlink is accurate, powerful, and provides features that can lead to novel biological insights.
Collapse
Affiliation(s)
| | - Wulin Zuo
- The Jackson Laboratory, Bar Harbor, ME, USA
| | | | | | - Ashley Olson
- The Jackson Laboratory, Bar Harbor, ME, USA
- Center for Systems Neurogenetics of Addiction at The Jackson Laboratory, Bar Harbor, ME, USA
| | | | - Elissa J Chesler
- The Jackson Laboratory, Bar Harbor, ME, USA
- Center for Systems Neurogenetics of Addiction at The Jackson Laboratory, Bar Harbor, ME, USA
| | - Christopher L Baker
- The Jackson Laboratory, Bar Harbor, ME, USA
- Center for Systems Neurogenetics of Addiction at The Jackson Laboratory, Bar Harbor, ME, USA
| | | |
Collapse
|
99
|
Glassbrook JE, Hackett JB, Muñiz MC, Bross M, Dyson G, Movahhedin N, Ullrich A, Gibson HM. Host genetic background regulates the capacity for anti-tumor antibody-dependent phagocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540046. [PMID: 37214876 PMCID: PMC10197614 DOI: 10.1101/2023.05.09.540046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Background Antitumor antibody, or targeted immunotherapy, has revolutionized cancer treatment and markedly improved patient outcomes. A prime example is the monoclonal antibody (mAb) trastuzumab, which targets human epidermal growth factor receptor 2 (HER2). However, like many targeted immunotherapies, only a subset of patients benefit from trastuzumab long-term. In addition to tumor-intrinsic factors, we hypothesize that host genetics may influence subsequent immune activation. Methods To model the human population, we produced F1 crosses of genetically heterogeneous Diversity Outbred (DO) mice with BALB/c mice (DOCF1). Distinct DOCF1 mice were orthotopically implanted with the BALB/c-syngeneic TUBO mammary tumor line, which expresses the HER2 ortholog rat neu. Treatment with anti-neu mAb clone 7.16.4 began once tumors reached ∼200 mm 3 . Genetic linkage and quantitative trait locus (QTL) effects analyses in R/qtl2 identified loci associated with tumor growth rates. Locus validation was performed with BALB/c F1 crosses with recombinant-inbred Collaborative Cross (CC) strains selected for therapy-associated driver genetics (CCxCF1). The respective roles of natural killer (NK) cells and macrophages were investigated by selective depletion in vivo. Ex vivo macrophage antibody-dependent phagocytosis (ADCP) assays were evaluated by confocal microscopy using 7.16.4-opsonized E2Crimson-expressing TUBO tumor cells. Results We observed a divergent response to anti-tumor antibody therapy in DOCF1 mice. Genetic linkage analysis detected a locus on chromosome 10 that correlates to a robust response to therapy, which was validated in CCxCF1 models. Single-cell RNA sequencing of tumors from responder and non-responder models identified key differences in tumor immune infiltrate composition, particularly within macrophage (Mφ) subsets. This is further supported by ex vivo analysis showing Mφ ADCP capacity correlates to in vivo treatment outcomes in both DOCF1 and CCxCF1 models. Conclusions Host genetics play a key regulatory role in targeted immunotherapy outcomes, and putative causal genes are identified in murine chromosome 10 which may govern Mφ function during ADCP.
Collapse
|
100
|
Gastonguay MS, Keele GR, Churchill GA. The trouble with triples: Examining the impact of measurement error in mediation analysis. Genetics 2023; 224:iyad045. [PMID: 36932658 PMCID: PMC10158839 DOI: 10.1093/genetics/iyad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/03/2023] [Accepted: 02/11/2023] [Indexed: 03/19/2023] Open
Abstract
Mediation analysis is used in genetic mapping studies to identify candidate gene mediators of quantitative trait loci (QTL). We consider genetic mediation analysis of triplets-sets of three variables consisting of a target trait, the genotype at a QTL for the target trait, and a candidate mediator that is the abundance of a transcript or protein whose coding gene co-locates with the QTL. We show that, in the presence of measurement error, mediation analysis can infer partial mediation even in the absence of a causal relationship between the candidate mediator and the target. We describe a measurement error model and a corresponding latent variable model with estimable parameters that are combinations of the causal effects and measurement errors across all three variables. The relative magnitudes of the latent variable correlations determine whether or not mediation analysis will tend to infer the correct causal relationship in large samples. We examine case studies that illustrate the common failure modes of genetic mediation analysis and demonstrate how to evaluate the effects of measurement error. While genetic mediation analysis is a powerful tool for identifying candidate genes, we recommend caution when interpreting mediation analysis findings.
Collapse
|