51
|
Sovin K, Kovalenko N, Anpilov V, Ryabushkin O. Radiofrequency impedance spectroscopy of biological tissues under heating by homogeneous laser radiation. Biomed Phys Eng Express 2022; 8. [PMID: 35793652 DOI: 10.1088/2057-1976/ac7eed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/06/2022] [Indexed: 11/12/2022]
Abstract
We have developed an original method to measure the temperature dependence of the biological tissue electrical properties based on its heating by homogeneous optical radiation.The conventional approach in hyperthermia research involves heating due to a thermal conductivity through the surface of the sample. The novel technique is based on the emission of heat sources in the sample volume caused by the absorption of optical radiation.The method was verified using chicken liver and aloe parenchyma samples, which were uniformly irradiated in a special chamber with an optically scattering inner coating. The electrical impedance of the samples was measured using a 4-electrode technique in the frequency range 100 Hz-1 MHz. In order to approximate and analyze the electrical impedance module, an equivalent electrical circuit based on the Cole-Cole function was used and the dependences of the approximation parameters on time and temperature were obtained. Applying the Arrhenius formulation to the kinetics of low-frequency resistance, we obtained the parameters of the kinetics of degradation of the biological tissues (critical temperatureTcrand activation energyEa):Ea=(16±4)·105J·mol-1,Tcr=63±1°C for the aloe parenchyma andEa=(4.5±2)·105J·mol-1,Tcr=83±1°Cfor the chicken liver.
Collapse
Affiliation(s)
- Kirill Sovin
- Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia
| | - Nikita Kovalenko
- Fryazino branch of the Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, 1 Vvedenskogo Sq., Fryazino, Moscow Reg., 141190, Russia
| | - Vladimir Anpilov
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe shosse, Moscow, 115409, Russia
| | - Oleg Ryabushkin
- Fryazino branch of the Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, 1 Vvedenskogo Sq., Fryazino, Moscow Reg., 141190, Russia
| |
Collapse
|
52
|
Slanina T, Nguyen DH, Moll J, Krozer V. Temperature dependence studies of tissue-mimicking phantoms for ultra-wideband microwave breast tumor detection. Biomed Phys Eng Express 2022; 8. [PMID: 35835081 DOI: 10.1088/2057-1976/ac811b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/14/2022] [Indexed: 11/12/2022]
Abstract
Microwave imaging (MWI) systems are being investigated for breast cancer diagnostics as an alternative to conventional X-ray mammography and breast ultrasound. This work aims at a next generation of tissue-mimicking phantoms modelling the temperature-dependent dielectric properties of breast tissue over a large frequency bandwidth. Such phantoms can be used to develop a novel kind of MWI systems that exploit the temperature-dependent permittivity of tissue as a natural contrast agent. Due to the higher water content in tumor tissue, a temperature increase leads to a different change in the complex permittivity compared to surrounding tissue. This will generate a tumor dominated scattering response when the overall tissue temperature increases by a few degrees, e.g. through the use of microwave hyperthermia systems. In that case a differential diagnostic image can be calculated between microwave measurements at reference (around 37◦C) and elevated temperature conditions. This work proposes the design and characterization of agar-oil-glycerin phantoms for fatty, glandular, skin and tumor tissue. The characterization includes measurements with an open-ended coaxial probe and a network analyzer for the frequency range from 50 MHz to 20 GHz in a temperature-controlled environment covering the temperature range from 25◦C to 46◦C. The phantoms show an unique temperature response over the considered frequency bandwidth leading to significant changes in the real and imaginary part of the complex permittivity. Comparative studies with porcine skin and fat tissue show a qualitative agreement.
Collapse
Affiliation(s)
- Teresa Slanina
- Goethe University Frankfurt am Main Physical Institute, Max-von-Laue Straße 1, 60438 Frankfurt am Main, Frankfurt am Main, 60438, GERMANY
| | - Duy Hai Nguyen
- Goethe-Universitat Frankfurt am Main Physikalisches Institut, Max-von-Laue Straße 1, 60438 Frankfurt am Main, Goethe Universität, Frankfurt am Main, Hessen, 60438, GERMANY
| | - Jochen Moll
- Physics, Goethe University Frankfurt, Max von Laue Str. 1, 60438 Frankfurt, Frankfurt am Main, 60438 , GERMANY
| | - Viktor Krozer
- Physikalisches Institut, Johann-Wolfgang-Goethe-Universitat, Max-von-Laue Straße 1, 60438 Frankfurt am Main, Frankfurt am Main, 60438, GERMANY
| |
Collapse
|
53
|
Gentilal N, Abend E, Naveh A, Marciano T, Balin I, Telepinsky Y, Miranda PC. Temperature and Impedance Variations During Tumor Treating Fields (TTFields) Treatment. Front Hum Neurosci 2022; 16:931818. [PMID: 35898934 PMCID: PMC9310567 DOI: 10.3389/fnhum.2022.931818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor Treating Fields (TTFields) is an FDA-approved cancer treatment technique used for glioblastoma multiforme (GBM). It consists in the application of alternating (100–500 kHz) and low-intensity (1–3 V/cm) electric fields (EFs) to interfere with the mitotic process of tumoral cells. In patients, these fields are applied via transducer arrays strategically positioned on the scalp using the NovoTAL™ system. It is recommended that the patient stays under the application of these fields for as long as possible. Inevitably, the temperature of the scalp increases because of the Joule effect, and it will remain above basal values for most part of the day. Furthermore, it is also known that the impedance of the head changes throughout treatment and that it might also play a role in the temperature variations. The goals of this work were to investigate how to realistically account for these increases and to quantify their impact in the choice of optimal arrays positions using a realistic head model with arrays positions obtained through NovoTAL™. We also studied the impedance variations based on the log files of patients who participated in the EF-14 clinical trial. Our computational results indicated that the layouts in which the arrays were very close to each other led to the appearance of a temperature hotspot that limited how much current could be injected which could consequently reduce treatment efficacy. Based on these data, we suggest that the arrays should be placed at least 1 cm apart from each other. The analysis of the impedance showed that the variations seen during treatment could be explained by three main factors: slow and long-term variations, array placement, and circadian rhythm. Our work indicates that both the temperature and impedance variations should be accounted for to improve the accuracy of computational results when investigating TTFields.
Collapse
Affiliation(s)
- Nichal Gentilal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisbon, Portugal
- *Correspondence: Nichal Gentilal
| | | | | | | | | | | | - Pedro Cavaleiro Miranda
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisbon, Portugal
| |
Collapse
|
54
|
Said Camilleri J, Farrugia L, Curto S, Rodrigues DB, Farina L, Caruana Dingli G, Bonello J, Farhat I, Sammut CV. Review of Thermal and Physiological Properties of Human Breast Tissue. SENSORS (BASEL, SWITZERLAND) 2022; 22:3894. [PMID: 35632302 PMCID: PMC9143271 DOI: 10.3390/s22103894] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
Electromagnetic thermal therapies for cancer treatment, such as microwave hyperthermia, aim to heat up a targeted tumour site to temperatures within 40 and 44 °C. Computational simulations used to investigate such heating systems employ the Pennes' bioheat equation to model the heat exchange within the tissue, which accounts for several tissue properties: density, specific heat capacity, thermal conductivity, metabolic heat generation rate, and blood perfusion rate. We present a review of these thermal and physiological properties relevant for hyperthermia treatments of breast including fibroglandular breast, fatty breast, and breast tumours. The data included in this review were obtained from both experimental measurement studies and estimated properties of human breast tissues. The latter were used in computational studies of breast thermal treatments. The measurement methods, where available, are discussed together with the estimations and approximations considered for values where measurements were unavailable. The review concludes that measurement data for the thermal and physiological properties of breast and tumour tissue are limited. Fibroglandular and fatty breast tissue properties are often approximated from those of generic muscle or fat tissue. Tumour tissue properties are mostly obtained from approximating equations or assumed to be the same as those of glandular tissue. We also present a set of reliable data, which can be used for more accurate modelling and simulation studies to better treat breast cancer using thermal therapies.
Collapse
Affiliation(s)
- Jeantide Said Camilleri
- Department of Physics, Faculty of Science, University of Malta, MSD 2080 Msida, Malta; (L.F.); (J.B.); (I.F.); (C.V.S.)
| | - Lourdes Farrugia
- Department of Physics, Faculty of Science, University of Malta, MSD 2080 Msida, Malta; (L.F.); (J.B.); (I.F.); (C.V.S.)
| | - Sergio Curto
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Dario B. Rodrigues
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Laura Farina
- Translational Medical Device Lab, National University of Ireland Galway, H91 TK33 Galway, Ireland;
| | | | - Julian Bonello
- Department of Physics, Faculty of Science, University of Malta, MSD 2080 Msida, Malta; (L.F.); (J.B.); (I.F.); (C.V.S.)
| | - Iman Farhat
- Department of Physics, Faculty of Science, University of Malta, MSD 2080 Msida, Malta; (L.F.); (J.B.); (I.F.); (C.V.S.)
| | - Charles V. Sammut
- Department of Physics, Faculty of Science, University of Malta, MSD 2080 Msida, Malta; (L.F.); (J.B.); (I.F.); (C.V.S.)
| |
Collapse
|
55
|
Kwon H, Park HC, Barrera AC, Rutkove SB, Sanchez B. On the measurement of skeletal muscle anisotropic permittivity property with a single cross-shaped needle insertion. Sci Rep 2022; 12:8494. [PMID: 35589764 PMCID: PMC9120124 DOI: 10.1038/s41598-022-12289-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/09/2022] [Indexed: 11/10/2022] Open
Abstract
Application of minimally invasive methods to enable the measurement of tissue permittivity in the neuromuscular clinic remain elusive. This paper provides a theoretical and modeling study on the measurement of the permittivity of two-dimensional anisotropic tissues such as skeletal muscle with a multi-electrode cross-shaped needle. For this, we design a novel cross-shaped needle with multiple-electrodes and analyse apparent impedance corresponding to the measured impedance. In addition, we propose three methods of estimate anisotropic muscle permittivity. Compared to existing electrical impedance-based needle methods that we have developed, the new needle design and numerical methods associated enable estimating in vivo muscle permittivity values with only a single needle insertion. Being able to measure muscle permittivity directly with a single needle insertion could open up an entirely new area of research with direct clinical application, including using these values to assist in neuromuscular diagnosis and to assess subtle effects of therapeutic intervention on muscle health.
Collapse
Affiliation(s)
- Hyeuknam Kwon
- Division of Software, Yonsei University, Wonju, Republic of Korea.
| | - Hyoung Churl Park
- Department of Mathematics, Yonsei University, Wonju, Republic of Korea
| | - Albert Cheto Barrera
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Benjamin Sanchez
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
56
|
Bao J, Tangney T, Pilitsis JG. Focused Ultrasound for Chronic Pain. Neurosurg Clin N Am 2022; 33:331-338. [DOI: 10.1016/j.nec.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
57
|
Mak NL, Ooi EH, Lau EV, Ooi ET, Pamidi N, Foo JJ, Mohd Ali AF. A computational framework to simulate the thermochemical process during thermochemical ablation of biological tissues. Comput Biol Med 2022; 145:105494. [PMID: 35421791 DOI: 10.1016/j.compbiomed.2022.105494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/20/2022] [Accepted: 04/03/2022] [Indexed: 11/03/2022]
Abstract
Thermochemical ablation (TCA) is a thermal ablation therapy that utilises heat released from acid-base neutralisation reaction to destroy tumours. This procedure is a promising low-cost solution to existing thermal ablation treatments such as radiofrequency ablation (RFA) and microwave ablation (MWA). Studies have demonstrated that TCA can produce thermal damage that is on par with RFA and MWA when employed properly. Nevertheless, TCA remains a concept that is tested only in a few animal trials due to the risks involved as the result of uncontrolled infusion and incomplete acid-base reaction. In this study, a computational framework that simulates the thermochemical process of TCA is developed. The proposed framework consists of three physics, namely chemical flow, neutralisation reaction and heat transfer. An important parameter in the TCA framework is the neutralisation reaction rate constant, which has values in the order of 108 m3/(mol⋅s). The present study will demonstrate that since the rate constant impacts only the rate and direction of the reaction but has little influence on the extent of reaction, it is possible to replicate the thermochemical process of TCA by employing significantly smaller values of rate constant that are numerically tractable. Comparisons of the numerical results against experimental studies from the literature supports this. The aim of this framework is for researchers to advance and develop TCA to gain an in-depth understanding of the fundamental mechanisms of TCA and to develop a safe treatment protocol of TCA in the hope of advancing TCA into clinical trials.
Collapse
Affiliation(s)
- Nguoy L Mak
- Mechanical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Ean H Ooi
- Mechanical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Ee V Lau
- Mechanical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Ean T Ooi
- School of Engineering and Information Technology, Faculty of Science and Technology, Federation University, VIC, 3350, Australia
| | - N Pamidi
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Ji J Foo
- Mechanical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Ahmad F Mohd Ali
- MSU Medical Centre, Management and Science University, University Drive, Off Persiaran Olahraga, 40100, Shah Alam, Selangor, Malaysia
| |
Collapse
|
58
|
Asadi S, Korganbayev S, Xu W, Mapanao AK, Voliani V, Lehto VP, Saccomandi P. Experimental Evaluation of Radiation Response and Thermal Properties of NPs-Loaded Tissues-Mimicking Phantoms. NANOMATERIALS 2022; 12:nano12060945. [PMID: 35335758 PMCID: PMC8950154 DOI: 10.3390/nano12060945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023]
Abstract
Many efforts have recently concentrated on constructing and developing nanoparticles (NPs) as promising thermal agent for optical hyperthermia and photothermal therapy. However, thermal energy transfer in biological tissue is a complex process involving different mechanisms such as conduction, convection, radiation. Therefore, having information about thermal properties of tissue especially when NPs are embedded in is a necessity for predicting the heat transfer during hyperthermia. In this work, the thermal properties of solid phantom based on agar in the presence of three different nanoparticles (BPSi, tNAs, GNRs) and alone were measured and reported as a function of temperature (ranging from 22 to 62 °C). The thermal response of these NPs to an 808 nm laser beam with three different powers were studied in the water comparatively. Agar and tNAs have almost constant thermal properties in the considered range. Among the three NPs, gold has the highest conductivity and diffusivity. At 62 °C BPSi NPs have the similar amount of increase for the diffusivity. The thermal parameters reported in this paper can be useful for the mathematical modeling. Irradiation of the NPs-loaded water phantom displayed the highest radiosensitivity of gold among the three mentioned NPs. However, for the higher power of irradiation, BPSi and tNAs NPs showed the increased absorption of heat during shorter time and the increased temperature gradient slope for the initial 15 s after the irradiation started. The three NPs showed different thermal and irradiation response behavior; however, this comparison study notes the worth of having information about thermal parameters of NPs-loaded tissue for pre-clinical planning.
Collapse
Affiliation(s)
- Somayeh Asadi
- Department of Mechanical Engineering, Politecnico di Milano, 20156 Milan, Italy; (S.K.); (P.S.)
- Correspondence: ; Tel.: +39-022-399-8572
| | - Sanzhar Korganbayev
- Department of Mechanical Engineering, Politecnico di Milano, 20156 Milan, Italy; (S.K.); (P.S.)
| | - Wujun Xu
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland; (W.X.); (V.-P.L.)
| | - Ana Katrina Mapanao
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, 56127 Pisa, Italy; (A.K.M.); (V.V.)
| | - Valerio Voliani
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, 56127 Pisa, Italy; (A.K.M.); (V.V.)
| | - Vesa-Pekka Lehto
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland; (W.X.); (V.-P.L.)
| | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, 20156 Milan, Italy; (S.K.); (P.S.)
| |
Collapse
|
59
|
Bianchi L, Cavarzan F, Ciampitti L, Cremonesi M, Grilli F, Saccomandi P. Thermophysical and mechanical properties of biological tissues as a function of temperature: a systematic literature review. Int J Hyperthermia 2022; 39:297-340. [DOI: 10.1080/02656736.2022.2028908] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Leonardo Bianchi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Fabiana Cavarzan
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Lucia Ciampitti
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Matteo Cremonesi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Francesca Grilli
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
60
|
González-Suárez A, Pérez JJ, Irastorza RM, D'Avila A, Berjano E. Computer modeling of radiofrequency cardiac ablation: 30 years of bioengineering research. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 214:106546. [PMID: 34844766 DOI: 10.1016/j.cmpb.2021.106546] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
This review begins with a rationale of the importance of theoretical, mathematical and computational models for radiofrequency (RF) catheter ablation (RFCA). We then describe the historical context in which each model was developed, its contribution to the knowledge of the physics of RFCA and its implications for clinical practice. Next, we review the computer modeling studies intended to improve our knowledge of the biophysics of RFCA and those intended to explore new technologies. We describe the most important technical details of the implementation of mathematical models, including governing equations, tissue properties, boundary conditions, etc. We discuss the utility of lumped element models, which despite their simplicity are widely used by clinical researchers to provide a physical explanation of how RF power is absorbed in different tissues. Computer model verification and validation are also discussed in the context of RFCA. The article ends with a section on the current limitations, i.e. aspects not yet included in state-of-the-art RFCA computer modeling and on future work aimed at covering the current gaps.
Collapse
Affiliation(s)
- Ana González-Suárez
- Electrical and Electronic Engineering, National University of Ireland Galway, Ireland; Translational Medical Device Lab, National University of Ireland Galway, Ireland
| | - Juan J Pérez
- Department of Electronic Engineering, BioMIT, Universitat Politècnica de València, Valencia, Spain
| | - Ramiro M Irastorza
- Instituto de Física de Líquidos y Sistemas Biológicos (CONICET), La Plata, Argentina; Instituto de Ingeniería y Agronomía, Universidad Nacional Arturo Jauretche, Florencio Varela, Argentina
| | - Andre D'Avila
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Enrique Berjano
- Department of Electronic Engineering, BioMIT, Universitat Politècnica de València, Valencia, Spain.
| |
Collapse
|
61
|
Petras A, Moreno Weidmann Z, Leoni M, Gerardo-Giorda L, Guerra JM. Systematic Characterization of High-Power Short-Duration Ablation: Insight From an Advanced Virtual Model. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:747609. [PMID: 35047958 PMCID: PMC8757782 DOI: 10.3389/fmedt.2021.747609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
Background: High-power short-duration (HPSD) recently emerged as a new approach to radiofrequency (RF) catheter ablation. However, basic and clinical data supporting its effectiveness and safety is still scarce. Objective: We aim to characterize HPSD with an advanced virtual model, able to assess lesion dimensions and complications in multiple conditions and compare it to standard protocols. Methods: We evaluate, on both atrium and ventricle, three HPSD protocols (70 W/8 s, 80 W/6 s, and 90 W/4 s) through a realistic 3D computational model of power-controlled RF ablation, varying catheter tip design (spherical/cylindrical), contact force (CF), blood flow, and saline irrigation. Lesions are defined by the 50°C isotherm contour. Ablations are deemed safe or complicated by pop (tissue temperature >97°C) or charring (blood temperature >80°C). We compared HPSD with standards protocols (30–40 W/30 s). We analyzed the effect of a second HPSD application. Results: We simulated 432 applications. Most (79%) associated a complication, especially in the atrium. The three HPSD protocols performed similarly in the atrium, while 90 W/4 s appeared the safest in the ventricle. Low irrigation rate led frequently to charring (72%). High-power short-duration lesions were 40–60% shallower and smaller in volume compared to standards, although featuring similar width. A second HPSD application increased lesions to a size comparable to standards. Conclusion: High-power short-duration lesions are smaller in volume and more superficial than standards but comparable in width, which can be advantageous in the atrium. A second application can produce lesions similar to standards in a shorter time. Despite its narrow safety margin, HPSD seems a valuable new clinical approach.
Collapse
Affiliation(s)
- Argyrios Petras
- Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Linz, Austria
| | - Zoraida Moreno Weidmann
- Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Centro de Investigación Biomédica en Red Enfermedades Cardiovaculares (CIBERCV), Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Massimiliano Leoni
- Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Linz, Austria
| | - Luca Gerardo-Giorda
- Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Linz, Austria.,Institute for Mathematical Methods in Medicine and Data-Based Modelling, Johannes Kepler University, Linz, Austria
| | - Jose M Guerra
- Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Centro de Investigación Biomédica en Red Enfermedades Cardiovaculares (CIBERCV), Universitat Autónoma de Barcelona, Barcelona, Spain
| |
Collapse
|
62
|
G. K. AV, Gogoi G, Behera B, Rila S, Rangarajan A, Pandya HJ. RapidET: a MEMS-based platform for label-free and rapid demarcation of tumors from normal breast biopsy tissues. MICROSYSTEMS & NANOENGINEERING 2022; 8:1. [PMID: 35087680 PMCID: PMC8761751 DOI: 10.1038/s41378-021-00337-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/07/2021] [Accepted: 11/28/2021] [Indexed: 05/09/2023]
Abstract
The rapid and label-free diagnosis of malignancies in ex vivo breast biopsy tissues has significant utility in pathology laboratories and operating rooms. We report a MEMS-based platform integrated with microchips that performs phenotyping of breast biopsy tissues using electrothermal sensing. The microchip, fabricated on a silicon substrate, incorporates a platinum microheater, interdigitated electrodes (IDEs), and resistance temperature detectors (RTDs) as on-chip sensing elements. The microchips are integrated onto the platform using a slide-fit contact enabling quick replacement for biological measurements. The bulk resistivity (ρ B ), surface resistivity (ρ S ), and thermal conductivity (k) of deparaffinized and formalin-fixed paired tumor and adjacent normal breast biopsy samples from N = 8 patients were measured. For formalin-fixed samples, the mean ρ B for tumors showed a statistically significant fold change of 4.42 (P = 0.014) when the tissue was heated from 25 °C to 37 °C compared to the adjacent normal tissue, which showed a fold change of 3.47. The mean ρ S measurements also showed a similar trend. The mean k of the formalin-fixed tumor tissues was 0.309 ± 0.02 W m-1 K-1 compared to a significantly higher k of 0.563 ± 0.028 W m-1 K-1 for the adjacent normal tissues. A similar trend was observed in ρ B, ρ S, and k for the deparaffinized tissue samples. An analysis of a combination of ρ B , ρ S , and k using Fisher's combined probability test and linear regression suggests the advantage of using all three parameters simultaneously for distinguishing tumors from adjacent normal tissues with higher statistical significance.
Collapse
Affiliation(s)
- Anil Vishnu G. K.
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka India
| | - Gayatri Gogoi
- Department of Pathology, Assam Medical College, Dibrugarh, Assam India
| | - Bhagaban Behera
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, Karnataka India
| | - Saeed Rila
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, Karnataka India
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore, Karnataka India
| | - Hardik J. Pandya
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, Karnataka India
- Centre for Product Design and Manufacturing, Indian Institute of Science, Bangalore, Karnataka India
| |
Collapse
|
63
|
Kok HP, Crezee J. Fast Adaptive Temperature-Based Re-Optimization Strategies for On-Line Hot Spot Suppression during Locoregional Hyperthermia. Cancers (Basel) 2021; 14:cancers14010133. [PMID: 35008300 PMCID: PMC8749938 DOI: 10.3390/cancers14010133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary When treatment limiting hot spots occur during locoregional hyperthermia (i.e., heating tumors to 40–44 °C for ~1 h), system settings are adjusted based on experience. In this study, we developed and evaluated treatment planning with temperature-based re-optimization and compared the predicted effectiveness to clinically applied protocol/experience-based steering. Re-optimization times were typically ~10 s; sufficiently fast for on-line use. Effective hot spot suppression was predicted, while maintaining adequate tumor heating. Inducing new hot spots was avoided. Temperature-based re-optimization to suppress treatment limiting hot spots seemed feasible to match the effectiveness of long-term clinical experience and will be further evaluated in a clinical setting. When numerical algorithms are proven to match long-term experience, the overall treatment quality within hyperthermia centers can significantly improve. Implementing these strategies would then imply that treatments become less dependent on the experience of the center/operator. Abstract Background: Experience-based adjustments in phase-amplitude settings are applied to suppress treatment limiting hot spots that occur during locoregional hyperthermia for pelvic tumors. Treatment planning could help to further optimize treatments. The aim of this research was to develop temperature-based re-optimization strategies and compare the predicted effectiveness with clinically applied protocol/experience-based steering. Methods: This study evaluated 22 hot spot suppressions in 16 cervical cancer patients (mean age 67 ± 13 year). As a first step, all potential hot spot locations were represented by a spherical region, with a user-specified diameter. For fast and robust calculations, the hot spot temperature was represented by a user-specified percentage of the voxels with the largest heating potential (HPP). Re-optimization maximized tumor T90, with constraints to suppress the hot spot and avoid any significant increase in other regions. Potential hot spot region diameter and HPP were varied and objective functions with and without penalty terms to prevent and minimize temperature increase at other potential hot spot locations were evaluated. Predicted effectiveness was compared with clinically applied steering results. Results: All strategies showed effective hot spot suppression, without affecting tumor temperatures, similar to clinical steering. To avoid the risk of inducing new hot spots, HPP should not exceed 10%. Adding a penalty term to the objective function to minimize the temperature increase at other potential hot spot locations was most effective. Re-optimization times were typically ~10 s. Conclusion: Fast on-line re-optimization to suppress treatment limiting hot spots seems feasible to match effectiveness of ~30 years clinical experience and will be further evaluated in a clinical setting.
Collapse
|
64
|
Crocetti L, Amabile C, Scalise P, Tosoratti N, Bozzi E, Rossi P, Cervelli R, Cassarino S, Cioni R. Predicting the coagulation volume induced by microwave ablation of hepatocellular carcinoma: the role of deposited energy, ex-vivo bovine liver charts and central hyperdense area on post-treatment CT. Int J Hyperthermia 2021; 38:1486-1494. [PMID: 34927518 DOI: 10.1080/02656736.2021.1986642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
PURPOSE To study the correlation between the overall coagulation zone (A) attained in percutaneous microwave ablation (MWA) of hepatocellular carcinomas (HCC) and: (1) the hyperdense zone (C) visible in the central part of zone A on post-treatment unenhanced CT scans; (2) the deposited energy; (3) the coagulation zones observed on ex-vivo bovine liver. MATERIALS AND METHODS The post-procedural computed tomography (CT) scans of HCCs treated with a single energy deployment through the same 2450 MHz MWA system were retrospectively analyzed, retrieving the dimensions of A and C zones and the deposited energy (E). Ex-vivo bovine liver MWA with the same system were performed and analyzed to determine the same quantities by gross-pathologic examination and CT imaging. RESULTS A total of 101 HCC treatments were analyzed. The average coagulation volumes increased linearly with deposited energy (1.11 cc/kJ, R2 = 0.90, 4.2 kJ ≤ E ≤ 48 kJ), similarly to ex-vivo findings (1.38 cc/kJ, R2 =0.97, 7.2 kJ ≤ E ≤ 144 kJ). The long axis (L) and short axis (D) of zones A and C held a fairly constant ratio both in-vivo (LC/LA=0.43 ± 0.13; DC/DA=0.42 ± 0.10) and ex-vivo (LC/LA = 0.49 ± 0.07; DC/DA = 0.28 ± 0.06). CONCLUSIONS The average dimensions of the ablation zone induced by the considered system on HCC increase linearly with the deposited energy and are fairly well predicted by the corresponding ex-vivo dimensions. The ratio between each linear dimension of A and C zones was found to be roughly constant over a large deposited energy span, both ex-vivo and in-vivo.
Collapse
Affiliation(s)
- Laura Crocetti
- Division of Interventional Radiology, University of Pisa, Pisa, Italy
| | | | - Paola Scalise
- Division of Interventional Radiology, University of Pisa, Pisa, Italy
| | | | - Elena Bozzi
- Division of Interventional Radiology, University of Pisa, Pisa, Italy
| | - Piercarlo Rossi
- Division of Interventional Radiology, University of Pisa, Pisa, Italy
| | - Rosa Cervelli
- Division of Interventional Radiology, University of Pisa, Pisa, Italy
| | | | - Roberto Cioni
- Division of Interventional Radiology, University of Pisa, Pisa, Italy
| |
Collapse
|
65
|
Edelblute C, Mangiamele C, Heller R. Moderate Heat-Assisted Gene Electrotransfer as a Potential Delivery Approach for Protein Replacement Therapy through the Skin. Pharmaceutics 2021; 13:pharmaceutics13111908. [PMID: 34834323 PMCID: PMC8624362 DOI: 10.3390/pharmaceutics13111908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/20/2021] [Accepted: 11/06/2021] [Indexed: 11/28/2022] Open
Abstract
Gene-based approaches for protein replacement therapies have the potential to reduce the number of administrations. Our previous work demonstrated that expression could be enhanced and/or the applied voltage reduced by preheating the tissue prior to pulse administration. In the current study, we utilized our 16-pin multi-electrode array (MEA) and incorporated nine optical fibers, connected to an infrared laser, between each set of four electrodes to heat the tissue to 43 °C. For proof of principle, a guinea pig model was used to test delivery of reporter genes. We observed that when the skin was preheated, it was possible to achieve the same expression levels as gene electrotransfer without preheating, but with a 23% reduction of applied voltage or a 50% reduction of pulse number. With respect to expression distribution, preheating allowed for delivery to the deep dermis and muscle. This suggested that this cutaneous delivery approach has the potential to achieve expression in the systemic circulation, thus this protocol was repeated using a plasmid encoding Human Factor IX. Elevated Factor IX serum protein levels were detected by ELISA up to 100 days post gene delivery. Further work will involve optimizing protein levels and scalability in an effort to reduce application frequency.
Collapse
Affiliation(s)
- Chelsea Edelblute
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA 23508, USA; (C.E.); (C.M.)
- Department of Biomedical Sciences, Graduate School, Old Dominion University, Norfolk, VA 23508, USA
| | - Cathryn Mangiamele
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA 23508, USA; (C.E.); (C.M.)
| | - Richard Heller
- Department of Medical Engineering, Colleges of Medicine and Engineering, University of South Florida, Tampa, FL 33612, USA
- Correspondence:
| |
Collapse
|
66
|
Payne JA, Barnes RA, Downey AX, Freeman DA, Johnson LR, Rodriguez RA, Sloan MA, Valdez CM, Voorhees WB, Whitmore JN. Temperature Dynamics in Rat Brains Exposed to Near-Field Waveguide Outputs at 2.8 GHz. Bioelectromagnetics 2021; 43:14-24. [PMID: 34719046 DOI: 10.1002/bem.22377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/29/2021] [Accepted: 10/10/2021] [Indexed: 01/07/2023]
Abstract
Biological effects in the microwave band of the radiofrequency (RF) spectrum are thermally mediated. For acute high-power microwave exposures, these effects will depend on transient time-temperature histories within the tissue. In this article, we summarize the transient temperature response of rats exposed to RF energy emanating from an open-ended rectangular waveguide. These exposures produced specific absorption rates of approximately 36 and 203 W/kg in the whole body and brain, respectively. We then use the experimentally measured thermal data to infer the baseline perfusion rate in the brain and modify a custom thermal modeling tool based upon these findings. Finally, we compare multi-physics simulations of rat brain temperature against empirical measurements in both live and euthanized subjects and find close agreement between model and experimentation. This research revealed that baseline brain perfusion rates in rat subjects could be larger than previously assumed in the RF thermal modeling literature, and plays a significant role in the transient thermal response to high-power microwave exposures. © 2021 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Jason A Payne
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, JBSA Fort Sam Houston, TX
| | - Ronald A Barnes
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, JBSA Fort Sam Houston, TX
| | | | - David A Freeman
- General Dynamics Information Technology, JBSA Fort Sam Houston, TX
| | - Leland R Johnson
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, JBSA Fort Sam Houston, TX
| | | | - Mark A Sloan
- General Dynamics Information Technology, JBSA Fort Sam Houston, TX
| | - Christopher M Valdez
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, JBSA Fort Sam Houston, TX
| | - William B Voorhees
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, JBSA Fort Sam Houston, TX
| | - Jeffrey N Whitmore
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, JBSA Fort Sam Houston, TX
| |
Collapse
|
67
|
Pandeya SR, Nagy JA, Riveros D, Semple C, Taylor RS, Sanchez B, Rutkove SB. Relationships between in vivo surface and ex vivo electrical impedance myography measurements in three different neuromuscular disorder mouse models. PLoS One 2021; 16:e0259071. [PMID: 34714853 PMCID: PMC8555802 DOI: 10.1371/journal.pone.0259071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/11/2021] [Indexed: 11/18/2022] Open
Abstract
Electrical impedance myography (EIM) using surface techniques has shown promise as a means of diagnosing and tracking disorders affecting muscle and assessing treatment efficacy. However, the relationship between such surface-obtained impedance values and pure muscle impedance values has not been established. Here we studied three groups of diseased and wild-type (WT) animals, including a Duchenne muscular dystrophy model (the D2-mdx mouse), an amyotrophic lateral sclerosis (ALS) model (the SOD1 G93A mouse), and a model of fat-related atrophy (the db/db diabetic obese mouse), performing hind limb measurements using a standard surface array and ex vivo measurements on freshly excised gastrocnemius muscle. A total of 101 animals (23 D2-mdx, 43 ALS mice, 12 db/db mice, and corresponding 30 WT mice) were studied with EIM across a frequency range of 8 kHz to 1 MHz. For both D2-mdx and ALS models, moderate strength correlations (Spearman rho values generally ranging from 0.3-0.7, depending on the impedance parameter (i.e., resistance, reactance and phase) were obtained. In these groups of animals, there was an offset in frequency with impedance values obtained at higher surface frequencies correlating more strongly to impedance values obtained at lower ex vivo frequencies. For the db/db model, correlations were comparatively weaker and strongest at very high and very low frequencies. When combining impedance data from all three disease models together, moderate correlations persisted (with maximal Spearman rho values of 0.45). These data support that surface EIM data reflect ex vivo muscle tissue EIM values to a moderate degree across several different diseases, with the highest correlations occurring in the 10-200 kHz frequency range. Understanding these relationships will prove useful for future applications of the technique of EIM in the assessment of neuromuscular disorders.
Collapse
Affiliation(s)
- Sarbesh R. Pandeya
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Janice A. Nagy
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Daniela Riveros
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Carson Semple
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Rebecca S. Taylor
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Benjamin Sanchez
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah, United States of America
| | - Seward B. Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
68
|
Technical advance in silico and in vitro development of a new bipolar radiofrequency ablation device for renal denervation. BMC Cardiovasc Disord 2021; 21:500. [PMID: 34656104 PMCID: PMC8520645 DOI: 10.1186/s12872-021-02305-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 10/04/2021] [Indexed: 11/18/2022] Open
Abstract
Background Renal denervation with radiofrequency ablation has become an accepted treatment for drug-resistant hypertension. However, there is a continuing need to develop new catheters for high-accuracy, targeted ablation. We therefore developed a radiofrequency bipolar electrode for controlled, targeted ablation through Joule heating induction between 60 and 100 °C. The bipolar design can easily be assembled into a basket catheter for deployment inside the renal artery. Methods Finite element modeling was used to determine the optimum catheter design to deliver a minimum ablation zone of 4 mm (W) × 10 mm (L) × 4 mm (H) within 60 s with a 500 kHz, 60 Vp-p signal, and 3 W maximum. The in silico model was validated with in vitro experiments using a thermochromic phantom tissue prepared with polyacrylamide gel and a thermochromic ink additive that permanently changes from pink to magenta when heated over 60 °C. Results The in vitro ablation zone closely matched the size and shape of the simulated area. The new electrode design directs the current density towards the artery walls and tissue, reducing unwanted blood temperature increases by focusing energy on the ablation zone. In contrast, the basket catheter design does not block renal flow during renal denervation. Conclusions This computational model of radiofrequency ablation can be used to estimate renal artery ablation zones for highly targeted renal denervation in patients with resistant hypertension. Furthermore, this innovative catheter has short ablation times and is one of the lowest power requirements of existing designs to perform the ablation.
Collapse
|
69
|
Carr IA, Garcia M, Cordray D, Lee A, Shrivastava D, Hariharan P. Depth of thermal dispersion of monopolar radiofrequency heating in the vaginal wall. Biomed Phys Eng Express 2021; 7. [PMID: 34547744 DOI: 10.1088/2057-1976/ac28ac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/21/2021] [Indexed: 11/12/2022]
Abstract
The use of energy-based devices to treat genitourinary syndrome of menopause, termed vaginal thermotherapy (VTT), has gained significant interest in recent years. Among the primary safety concerns of this relatively new procedure is the possibility of unintentionally heating tissues adjacent to the vaginal wall, i.e., heating too deeply. Herein we use numerical simulations to evaluate monopolar radiofrequency-based (RF) VTT specifically focusing on the resultant depth of heating through a range of input parameters. Varying RF power, exposure time, and the simulated rate of blood perfusion, we map the parameter space identifying which combinations of input parameters are likely to heat past the depth of the vaginal wall and affect adjacent tissue. We found that the device parameters commonly used in the literature are likely to heat past the vaginal wall and merit further investigation. In addition, we found that the parameter typically used to describe VTT devices, total energy delivered, does not reliably indicate the resultant depth of heat dispersion.
Collapse
Affiliation(s)
- Ian A Carr
- US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States of America
| | - Monica Garcia
- US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States of America
| | - Diane Cordray
- US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States of America
| | - Angie Lee
- US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States of America
| | - Devashish Shrivastava
- US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States of America
| | - Prasanna Hariharan
- US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States of America
| |
Collapse
|
70
|
Paulides MM, Rodrigues DB, Bellizzi GG, Sumser K, Curto S, Neufeld E, Montanaro H, Kok HP, Dobsicek Trefna H. ESHO benchmarks for computational modeling and optimization in hyperthermia therapy. Int J Hyperthermia 2021; 38:1425-1442. [PMID: 34581246 DOI: 10.1080/02656736.2021.1979254] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The success of cancer hyperthermia (HT) treatments is strongly dependent on the temperatures achieved in the tumor and healthy tissues as it correlates with treatment efficacy and safety, respectively. Hyperthermia treatment planning (HTP) simulations have become pivotal for treatment optimization due to the possibility for pretreatment planning, optimization and decision making, as well as real-time treatment guidance. MATERIALS AND METHODS The same computational methods deployed in HTP are also used for in silico studies. These are of great relevance for the development of new HT devices and treatment approaches. To aid this work, 3 D patient models have been recently developed and made available for the HT community. Unfortunately, there is no consensus regarding tissue properties, simulation settings, and benchmark applicators, which significantly influence the clinical relevance of computational outcomes. RESULTS AND DISCUSSION Herein, we propose a comprehensive set of applicator benchmarks, efficacy and safety optimization algorithms, simulation settings and clinical parameters, to establish benchmarks for method comparison and code verification, to provide guidance, and in view of the 2021 ESHO Grand Challenge (Details on the ESHO grand challenge on HTP will be provided at https://www.esho.info/). CONCLUSION We aim to establish guidelines to promote standardization within the hyperthermia community such that novel approaches can quickly prove their benefit as quickly as possible in clinically relevant simulation scenarios. This paper is primarily focused on radiofrequency and microwave hyperthermia but, since 3 D simulation studies on heating with ultrasound are now a reality, guidance as well as a benchmark for ultrasound-based hyperthermia are also included.
Collapse
Affiliation(s)
- Margarethus M Paulides
- Electromagnetics for Care & Cure Laboratory (EM4C&C), Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Radiotherapy, Erasmus University Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Dario B Rodrigues
- Hyperthermia Therapy Program, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, USA
| | - Gennaro G Bellizzi
- Department of Radiotherapy, Erasmus University Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Kemal Sumser
- Department of Radiotherapy, Erasmus University Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Sergio Curto
- Department of Radiotherapy, Erasmus University Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
| | - Hazael Montanaro
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland.,Laboratory for Acoustics/Noise control, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Dubendorf, Switzerland
| | - H Petra Kok
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Hana Dobsicek Trefna
- Biomedical Electromagnetics Group, Department of Electrical Engineering, Chalmers University of Technology, Göteborg, Sweden
| |
Collapse
|
71
|
Cheong JK, Popov V, Alchera E, Locatelli I, Alfano M, Menichetti L, Armanetti P, Maturi M, Franchini MC, Ooi EH, Chiew YS. A numerical study to investigate the effects of tumour position on the treatment of bladder cancer in mice using gold nanorods assisted photothermal ablation. Comput Biol Med 2021; 138:104881. [PMID: 34583149 DOI: 10.1016/j.compbiomed.2021.104881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/01/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Gold nanorods assisted photothermal therapy (GNR-PTT) is a new cancer treatment technique that has shown promising potential for bladder cancer treatment. The position of the bladder cancer at different locations along the bladder wall lining can potentially affect the treatment efficacy since laser is irradiated externally from the skin surface. The present study investigates the efficacy of GNR-PTT in the treatment of bladder cancer in mice for tumours growing at three different locations on the bladder, i.e., Case 1: closest to skin surface, Case 2: at the bottom half of the bladder, and Case 3: at the side of the bladder. Investigations were carried out numerically using an experimentally validated framework for optical-thermal simulations. An in-silico approach was adopted due to the flexibility in placing the tumour at a desired location along the bladder lining. Results indicate that for the treatment parameters considered (laser power 0.3 W, GNR volume fraction 0.01% v/v), only Case 1 can be used for an effective GNR-PTT. No damage to the tumour was observed in Cases 2 and 3. Analysis of the thermo-physiological responses showed that the effectiveness of GNR-PTT in treating bladder cancer depends not only on the depth of the tumour from the skin surface, but also on the type of tissue that the laser must pass through before reaching the tumour. In addition, the results are reliant on GNRs with a diameter of 10 nm and an aspect ratio of 3.8 - tuned to exhibit peak absorption for the chosen laser wavelength. Results from the present study can be used to highlight the potential for using GNR-PTT for treatment of human bladder cancer. It appears that Cases 2 and 3 suggest that GNR-PTT, where the laser passes through the skin to reach the bladder, may be unfeasible in humans. While this study shows the feasibility of using GNRs for photothermal ablation of bladder cancer, it also identifies the current limitations needed to be overcome for an effective clinical application in the bladder cancer patients.
Collapse
Affiliation(s)
- Jason Kk Cheong
- Ascend Technologies Ltd, Southampton Science Park, 2 Venture Road, SO16 7NP, Southampton, United Kingdom; School of Engineering and Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Viktor Popov
- Ascend Technologies Ltd, Southampton Science Park, 2 Venture Road, SO16 7NP, Southampton, United Kingdom.
| | - Elisa Alchera
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS, Ospedale San Raffaele, Milan, Italy
| | - Irene Locatelli
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS, Ospedale San Raffaele, Milan, Italy
| | - Massimo Alfano
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS, Ospedale San Raffaele, Milan, Italy.
| | - Luca Menichetti
- Istituto di Fisiologia Clinica, Sede Principale, Via G. Moruzzi 1, 56124, Pisa, Italy
| | - Paolo Armanetti
- Istituto di Fisiologia Clinica, Sede Principale, Via G. Moruzzi 1, 56124, Pisa, Italy
| | - Mirko Maturi
- Department of Industrial Chemistry Toso Montanari, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Mauro Comes Franchini
- Department of Industrial Chemistry Toso Montanari, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Ean H Ooi
- Ascend Technologies Ltd, Southampton Science Park, 2 Venture Road, SO16 7NP, Southampton, United Kingdom; School of Engineering and Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Yeong S Chiew
- School of Engineering and Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
72
|
Zanoli M, Trefná HD. Suitability of eigenvalue beam-forming for discrete multi-frequency hyperthermia treatment planning. Med Phys 2021; 48:7410-7426. [PMID: 34529281 DOI: 10.1002/mp.15220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 11/11/2022] Open
Abstract
PURPOSE Thermal dose delivery in microwave hyperthermia for cancer treatment is expected to benefit from the introduction of ultra-wideband (UWB)-phased array applicators. A full exploitation of the combination of different frequencies to improve the deposition pattern is, however, a nontrivial problem. It is unclear whether the cost functions used for hyperthermia treatment planning (HTP) optimization in the single-frequency setting can be meaningfully extended to the UWB case. METHOD We discuss the ability of the eigenvalue (EV) and a novel implementation of iterative-EV (i-EV) beam-forming methods to fully exploit the available frequency spectrum when a discrete set of simultaneous operating frequencies is available for treatment. We show that the quadratic power deposition ratio solved by the methods can be maximized by only one frequency in the set, therefore rendering EV inadequate for UWB treatment planning. We further investigate whether this represents a limitation in two realistic test cases, comparing the thermal distributions resulting from EV and i-EV to those obtained by optimizing for other nonlinear cost functions that allow for multi-frequency. RESULTS The classical EV-based single-frequency HTP yields systematically lower target SAR deposition and temperature values than nonlinear HTP. In a larynx target, the proposed single-frequency i-EV scheme is able to compensate for this and reach temperatures comparable to those given by global nonlinear optimization. In a meninges target, the multi-frequency setting outperforms the single-frequency one, achieving better target coverage and 0 . 5 ∘ C higher T 90 in the tumor than single-frequency-based HTP. CONCLUSIONS Classical EV performs poorly in terms of resulting target temperatures. The proposed single-frequency i-EV scheme can be a viable option depending on the patient and tumor to be treated, as long as the proper operating frequency can be selected across a UWB range. Multi-frequency HTP can bring a considerable benefit in regions typically difficult to treat such as the brain.
Collapse
Affiliation(s)
- Massimiliano Zanoli
- Department of Electrical Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Hana Dobšíček Trefná
- Department of Electrical Engineering, Chalmers University of Technology, Göteborg, Sweden
| |
Collapse
|
73
|
Unidirectional ablation minimizes unwanted thermal damage and promotes better thermal ablation efficacy in time-based switching bipolar radiofrequency ablation. Comput Biol Med 2021; 137:104832. [PMID: 34508975 DOI: 10.1016/j.compbiomed.2021.104832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 11/22/2022]
Abstract
Switching bipolar radiofrequency ablation (bRFA) is a thermal treatment modality used for liver cancer treatment that is capable of producing larger, more confluent and more regular thermal coagulation. When implemented in the no-touch mode, switching bRFA can prevent tumour track seeding; a medical phenomenon defined by the deposition of cancer cells along the insertion track. Nevertheless, the no-touch mode was found to yield significant unwanted thermal damage as a result of the electrodes' position outside the tumour. It is postulated that the unwanted thermal damage can be minimized if ablation can be directed such that it focuses only within the tumour domain. As it turns out, this can be achieved by partially insulating the active tip of the RF electrodes such that electric current flows in and out of the tissue only through the non-insulated section of the electrode. This concept is known as unidirectional ablation and has been shown to produce the desired effect in monopolar RFA. In this paper, computational models based on a well-established mathematical framework for modelling RFA was developed to investigate if unidirectional ablation can minimize unwanted thermal damage during time-based switching bRFA. From the numerical results, unidirectional ablation was shown to produce treatment efficacy of nearly 100%, while at the same time, minimizing the amount of unwanted thermal damage. Nevertheless, this effect was observed only when the switch interval of the time-based protocol was set to 50 s. An extended switch interval negated the benefits of unidirectional ablation.
Collapse
|
74
|
|
75
|
Abstract
Despite cancer nanomedicine celebrates already thirty years since its introduction, together with the achievements and progress in cancer treatment area, it still undergoes serious disadvantages that must be addressed. Since the first observation that macromolecules tend to accumulate in tumor tissue due to fenestrated endothelial of vasculature, considered as the “royal gate” in drug delivery field, more than dozens of nanoformulations have been approved and introduced into the practice for cancer treatment. Lipid, polymeric, and hybrid nanocarriers are biocompatible nano-drug delivery systems (NDDs) having suitable physicochemical properties and modulate payload release in response to specific chemical or physical stimuli. Biopharmaceutical properties of NDDs and their efficacy in animal models and humans can significantly affect their impact and perspective in nanomedicine. One of the future directions could be focusing on personalized cancer treatment, considering the heterogeneity and complexity of each patient tumor tissue and the designing of multifunctional targeted NDDs combining synthetic nanomaterials and biological components, like cellular membranes, circulating proteins, RNAi/DNAi, which enforce the efficacy of NDDs and boost their therapeutic effect.
Collapse
|
76
|
Rossmann C, Motamarry A, Panescu D, Haemmerich D. Computer simulations of an irrigated radiofrequency cardiac ablation catheter and experimental validation by infrared imaging. Int J Hyperthermia 2021; 38:1149-1163. [PMID: 34376106 DOI: 10.1080/02656736.2021.1961027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
PURPOSE To develop and validate a three-dimensional (3-D) computer model based on accurate geometry of an irrigated cardiac radiofrequency (RF) ablation catheter with microwave radiometry capability, and to test catheter performance. METHODS A computer model was developed based on CAD geometry of a RF cardiac ablation catheter prototype to simulate electromagnetic heating, heat transfer, and computational fluid dynamics (blood flow, open irrigation, and natural convection). Parametric studies were performed; blood flow velocity (0-25 cm/s) and irrigation flow (0-40 ml/min) varied, both with perpendicular (PE) and parallel (PA) catheter orientations relative to tissue. Tissue Agar phantom studies were performed under similar conditions, and temperature maps were recorded via infrared camera. Computer model simulations were performed with constant voltage and with voltage adjusted to achieve maximum tissue temperatures of 95-105 °C. RESULTS Model predicted thermal lesion width at 5 W power was 5.8-6.4 mm (PE)/6.5-6.6 mm (PA), and lesion depth was 4.0-4.3 mm (PE)/4.0-4.1 mm (PA). Compared to phantom studies, the mean errors of the computer model were as follows: 6.2 °C(PE)/4.3 °C (PA) for maximum gel temperature, 0.7 mm (10.9%) (PE)/0.1 mm (0.8%) (PA) for lesion width, and 0.3 mm (7.7%)(PE)/0.7 mm (19.1%) (PA) for lesion depth. For temperature-controlled ablation, model predicted thermal lesion width was 7-9.2 mm (PE)/8.6-9.2 mm (PA), and lesion depth was 4.3-5.5 mm (PE)/3.4-5.4 mm (PA). CONCLUSIONS Computer models were able to reproduce device performance and to enable device evaluation under varying conditions. Temperature controlled ablation of irrigated catheters enables optimal tissue temperatures independent of patient-specific conditions such as blood flow.
Collapse
Affiliation(s)
- Christian Rossmann
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA.,AdditiveLab, Leuven, Belgium
| | - Anjan Motamarry
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA.,Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA.,Wellman Center for Photomedicine, Massachusetts General Hospital/Harvard University, Boston, MA, USA
| | | | - Dieter Haemmerich
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA.,Department of Bioengineering, Clemson University, Clemson, SC, USA
| |
Collapse
|
77
|
Sebeke LC, Rademann P, Maul AC, Yeo SY, Castillo Gómez JD, Deenen DA, Schmidt P, de Jager B, Heemels WPMH, Grüll H, Heijman E. Visualization of thermal washout due to spatiotemporally heterogenous perfusion in the application of a model-based control algorithm for MR-HIFU mediated hyperthermia. Int J Hyperthermia 2021; 38:1174-1187. [PMID: 34374624 DOI: 10.1080/02656736.2021.1933616] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE This article will report results from the in-vivo application of a previously published model-predictive control algorithm for MR-HIFU hyperthermia. The purpose of the investigation was to test the controller's in-vivo performance and behavior in the presence of heterogeneous perfusion. MATERIALS AND METHODS Hyperthermia at 42°C was induced and maintained for up to 30 min in a circular section of a thermometry slice in the biceps femoris of German landrace pigs (n=5) using a commercial MR-HIFU system and a recently developed MPC algorithm. The heating power allocation was correlated with heat sink maps and contrast-enhanced MRI images. The temporal change in perfusion was estimated based on the power required to maintain hyperthermia. RESULTS The controller performed well throughout the treatments with an absolute average tracking error of 0.27 ± 0.15 °C and an average difference of 1.25 ± 0.22 °C between T10 and T90. The MPC algorithm allocates additional heating power to sub-volumes with elevated heat sink effects, which are colocalized with blood vessels visible on contrast-enhanced MRI. The perfusion appeared to have increased by at least a factor of ∼1.86 on average. CONCLUSIONS The MPC controller generates temperature distributions with a narrow spectrum of voxel temperatures inside the target ROI despite the presence of spatiotemporally heterogeneous perfusion due to the rapid thermometry feedback available with MR-HIFU and the flexible allocation of heating power. The visualization of spatiotemporally heterogeneous perfusion presents new research opportunities for the investigation of stimulated perfusion in hypoxic tumor regions.
Collapse
Affiliation(s)
- Lukas Christian Sebeke
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, Cologne, Germany.,Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
| | - Pia Rademann
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Experimental Medicine, Cologne, Germany
| | - Alexandra Claudia Maul
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Experimental Medicine, Cologne, Germany
| | - Sin Yuin Yeo
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, Cologne, Germany.,Profound Medical GmbH, Hamburg, Germany
| | - Juan Daniel Castillo Gómez
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, Cologne, Germany
| | - Daniel A Deenen
- Eindhoven University of Technology, Department of Mechanical Engineering, Control Systems Technology, Eindhoven, The Netherlands
| | - Patrick Schmidt
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, Cologne, Germany
| | - Bram de Jager
- Eindhoven University of Technology, Department of Mechanical Engineering, Control Systems Technology, Eindhoven, The Netherlands
| | - W P M H Heemels
- Eindhoven University of Technology, Department of Mechanical Engineering, Control Systems Technology, Eindhoven, The Netherlands
| | - Holger Grüll
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, Cologne, Germany.,Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
| | - Edwin Heijman
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, Cologne, Germany.,Philips Research, Eindhoven, The Netherlands
| |
Collapse
|
78
|
Pal UM, Vishnu Gk A, Varma M, Vaidya JS, Pandya HJ. Thermo-optic measurements and their inter-dependencies for delineating cancerous breast biopsy tissue from adjacent normal. JOURNAL OF BIOPHOTONICS 2021; 14:e202100041. [PMID: 34042303 DOI: 10.1002/jbio.202100041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/17/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
The histopathological diagnosis of cancer is the current gold standard to differentiate normal from cancerous tissues. We propose a portable platform prototype to characterize the tissue's thermal and optical properties, and their inter-dependencies to potentially aid the pathologist in making an informed decision. The measurements were performed on 10 samples from five subjects, where the cancerous and adjacent normal were extracted from the same patient. It was observed that thermal conductivity (k) and reduced-scattering-coefficient (μ's ) for both the cancerous and normal tissues reduced with the rise in tissue temperature. Comparing cancerous and adjacent normal tissue, the difference in k and μ's (at 940 nm) were statistically significant (p = 7.94e-3), while combining k and μ's achieved the highest statistical significance (6.74e-4). These preliminary results promise and support testing on a large number of samples for rapidly differentiating cancerous from adjacent normal tissues.
Collapse
Affiliation(s)
- Uttam M Pal
- Department of Electronic Systems Engineering, The Indian Institute of Science, Bengaluru, India
| | - Anil Vishnu Gk
- Department of Electronic Systems Engineering, The Indian Institute of Science, Bengaluru, India
- Center for BioSystems Science and Engineering, The Indian Institute of Science, Bengaluru, India
| | - Manoj Varma
- Centre for Nano Science and Engineering, The Indian Institute of Science, Bengaluru, India
| | - Jayant S Vaidya
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Hardik J Pandya
- Department of Electronic Systems Engineering, The Indian Institute of Science, Bengaluru, India
| |
Collapse
|
79
|
Hernández-Arenas A, Pimentel-Domínguez R, Rodrigo Vélez-Cordero J, Hernández-Cordero J. Fiber optic probe with functional polymer composites for hyperthermia. BIOMEDICAL OPTICS EXPRESS 2021; 12:4730-4744. [PMID: 34513221 PMCID: PMC8407845 DOI: 10.1364/boe.427585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
We demonstrate a fiber optic probe incorporating functional polymer composites for controlled generation of photothermal effects. The probe combines carbon-based and rare-earth composites on the tip of standard multimode fibers, thus yielding a compact fiber optic photothermal probe (FOPP) whose temperature can be measured simultaneously through fluorescent thermometry. We evaluate the thermal features of the probe through experiments and numerical calculations showing that large thermal gradients are obtained within the vicinity of the heating zone. The temperatures achieved with the FOPP are within the ranges of interest for hyperthermia and can be attained using low optical powers (< 280 mW).
Collapse
Affiliation(s)
- Alexa Hernández-Arenas
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Reinher Pimentel-Domínguez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| | - J. Rodrigo Vélez-Cordero
- Instituto de Física-Cátedras CONACyT, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78290, San Luis Potosí, Mexico
| | - Juan Hernández-Cordero
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| |
Collapse
|
80
|
Radmilović-Radjenović M, Sabo M, Prnova M, Šoltes L, Radjenović B. Finite Element Analysis of the Microwave Ablation Method for Enhanced Lung Cancer Treatment. Cancers (Basel) 2021; 13:cancers13143500. [PMID: 34298714 PMCID: PMC8306858 DOI: 10.3390/cancers13143500] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/28/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Microwave ablation is a promising modality for treating cancerous tumor cells in patients with localized lung cancer who are non-surgical candidates. Microwave ablation requires the control of the elevation of temperature, ensuring the destruction of cancer cells without damaging healthy tissue. Despite the unquestionable benefits, such as enlarged ablation zones and reduced procedure times, the respiratory movement of the lungs may affect the development and evolution of the necrotic tissue. Apart from the experimental methods, computer modeling has proven to be a powerful approach to improving the ablative treatment’s performance. This study aims to provide a step forward in patient safety by delivering optimal conditions necessary for microwave ablation to be as effective as possible for curing lung cancer with minimized invasiveness and collateral damage. The primary goal is to transfer the treatment plan based on simulation outputs into a reliable and safe microwave ablation procedure. Abstract Knowledge of the frequency dependence of the dielectric properties of the lung tissues and temperature profiles are essential characteristics associated with the effective performance of microwave ablation. In microwave ablation, the electromagnetic wave propagates into the biological tissue, resulting in energy absorption and providing the destruction of cancer cells without damaging the healthy tissue. As a consequence of the respiratory movement of the lungs, however, the accurate prediction of the microwave ablation zone has become an exceptionally demanding task. For that purpose, numerical modeling remains a primordial tool for carrying out a parametric study, evaluating the importance of the inherent phenomena, and leading to better optimization of the medical procedure. This paper reports on simulation studies on the effect of the breathing process on power dissipation, temperature distribution, the fraction of damage, and the specific absorption rate during microwave ablation. The simulation results obtained from the relative permittivity and conductivity for inflated and deflated lungs are compared with those obtained regardless of respiration. It is shown that differences in the dielectric properties of inflated and deflated lungs significantly affect the time evolution of the temperature and its maximum value, the time, the fraction of damage, and the specific absorption rate. The fraction of damage determined from the degree of tissue injury reveals that the microwave ablation zone is significantly larger under dynamic physical parameters. At the end of expiration, the ablation lesion area is more concentrated around the tip and slot of the antenna, and the backward heating effect is smaller. The diffuse increase in temperature should reach a certain level to destroy cancer cells without damaging the surrounding tissue. The obtained results can be used as a guideline for determining the optimal conditions to improve the overall success of microwave ablation.
Collapse
Affiliation(s)
| | - Martin Sabo
- Faculty of Informatics and Information Technologies, Slovak University of Technology in Bratislava, Ilkovicova 2, 84216 Bratislava, Slovakia; (M.S.); (M.P.); (L.Š.)
| | - Marta Prnova
- Faculty of Informatics and Information Technologies, Slovak University of Technology in Bratislava, Ilkovicova 2, 84216 Bratislava, Slovakia; (M.S.); (M.P.); (L.Š.)
| | - Lukaš Šoltes
- Faculty of Informatics and Information Technologies, Slovak University of Technology in Bratislava, Ilkovicova 2, 84216 Bratislava, Slovakia; (M.S.); (M.P.); (L.Š.)
| | - Branislav Radjenović
- Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia;
| |
Collapse
|
81
|
Radosevic A, Prieto D, Burdío F, Berjano E, Prakash P, Trujillo M. Short pulsed microwave ablation: computer modeling and ex vivo experiments. Int J Hyperthermia 2021; 38:409-420. [PMID: 33719808 DOI: 10.1080/02656736.2021.1894358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PURPOSE To study the differences between continuous and short-pulse mode microwave ablation (MWA). METHODS We built a computational model for MWA including a 200 mm long and 14 G antenna from Amica-Gen and solved an electromagnetic-thermal coupled problem using COMSOL Multiphysics. We compared the coagulation zone (CZ) sizes created with pulsed and continuous modes under ex vivo and in vivo conditions. The model was used to compare long vs. short pulses, and 1000 W high-powered short pulses. Ex vivo experiments were conducted to validate the model. RESULTS The computational models predicted the axial diameter of the CZ with an error of 2-3% and overestimated the transverse diameter by 9-11%. For short pulses, the ex vivo computer modeling results showed a trend toward larger CZ when duty cycles decreases. In general, short pulsed mode yielded higher CZ diameters and volumes than continuous mode, but the differences were not significant (<5%), as in terms of CZ sphericity. The same trends were observed in the simulations mimicking in vivo conditions. Both CZ diameter and sphericity were similar with short and long pulses. Short 1000 W pulses produced smaller sphericity and similar CZ sizes under in vivo and ex vivo conditions. CONCLUSIONS The characteristics of the CZ created by continuous and pulsed MWA show no significant differences from ex vivo experiments and computer simulations. The proposed idea of enlarging coagulation zones and improving their sphericity in pulsed mode was not evident in this study.
Collapse
Affiliation(s)
- Aleksandar Radosevic
- Department of Radiology, Hospital del Mar, Universitat Pompeu Fabra, Barcelona, Spain
| | - Diego Prieto
- BioMIT, Department of Applied Mathematics, Universitat Politècnica de València, Valencia, Spain
| | | | - Enrique Berjano
- BioMIT, Department of Electronic Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Punit Prakash
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA
| | - Macarena Trujillo
- BioMIT, Department of Applied Mathematics, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
82
|
Parés C, Berjano E, González-Suárez A. Effect of intracardiac blood flow pulsatility during radiofrequency cardiac ablation: computer modeling study. Int J Hyperthermia 2021; 38:316-325. [PMID: 33627008 DOI: 10.1080/02656736.2021.1890240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
PURPOSE To assess the effect of intracardiac blood flow pulsatility on tissue and blood distributions during radiofrequency (RF) cardiac ablation (RFCA). METHODS A three-dimensional computer model was used to simulate constant power ablations with an irrigated-tip electrode and three possible catheter orientations (perpendicular, parallel and 45°). Continuous flow and three different pulsatile flow profiles were considered, with four average blood velocity values: 3, 5.5, 8.5 and 24.4 cm/s. The 50 °C contour was used to assess thermal lesion size. RESULTS The differences in lesion size between continuous flow and the different pulsatile flow profiles were always less than 1 mm. As regards maximum tissue temperature, the differences between continuous and pulsatile flow were always less than 1 °C, with slightly higher differences in maximum blood temperature, but never over 6 °C. While the progress of maximum tissue temperature was identical for continuous and pulsatile flow, maximum blood temperature with the pulsatile profile showed small amplitude oscillations associated with blood flow pulsatility. CONCLUSIONS The findings show that intracardiac blood pulsatility has a negligible effect on lesion size and a very limited impact on maximum tissue and blood temperatures, which suggests that future experimental studies based on ex vivo or in silico models can ignore pulsatility in intracardiac blood flow.
Collapse
Affiliation(s)
| | - Enrique Berjano
- BioMIT, Department of Electronic Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Ana González-Suárez
- Electrical and Electronic Engineering, National University of Ireland Galway, Galway, Ireland.,Translational Medical Device Lab, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
83
|
Radiobiological Evaluation of Combined Gamma Knife Radiosurgery and Hyperthermia for Pediatric Neuro-Oncology. Cancers (Basel) 2021; 13:cancers13133277. [PMID: 34208909 PMCID: PMC8268088 DOI: 10.3390/cancers13133277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/14/2021] [Accepted: 06/25/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary This study proposes a novel strategy in brain cancer management. Stereotactic radiosurgery delivered by the Gamma Knife was combined with hyperthermia. For the radiobiological modelling of this synergistic treatment modality, we used the linear-quadratic model with temperature-dependent parameters to assess the potential enhancement of the therapeutic outcome. The results indicate that focused intracranial heating can be used to boost the dose to the target. Alternatively, one can conclude that for the same therapeutic effect, hyperthermia can help to minimize the dose undesirably delivered to healthy tissues. This study is also the first to advocate a combination of stereotactic radiosurgery with focused heating and motivates the future development of hyperthermia systems for brain cancer treatment. Abstract Combining radiotherapy (RT) with hyperthermia (HT) has been proven effective in the treatment of a wide range of tumours, but the combination of externally delivered, focused heat and stereotactic radiosurgery has never been investigated. We explore the potential of such treatment enhancement via radiobiological modelling, specifically via the linear-quadratic (LQ) model adapted to thermoradiotherapy through modulating the radiosensitivity of temperature-dependent parameters. We extend this well-established model by incorporating oxygenation effects. To illustrate the methodology, we present a clinically relevant application in pediatric oncology, which is novel in two ways. First, it deals with medulloblastoma, the most common malignant brain tumour in children, a type of brain tumour not previously reported in the literature of thermoradiotherapy studies. Second, it makes use of the Gamma Knife for the radiotherapy part, thereby being the first of its kind in this context. Quantitative metrics like the biologically effective dose (BED) and the tumour control probability (TCP) are used to assess the efficacy of the combined plan.
Collapse
|
84
|
Poni R, Neufeld E, Capstick M, Bodis S, Samaras T, Kuster N. Feasibility of Temperature Control by Electrical Impedance Tomography in Hyperthermia. Cancers (Basel) 2021; 13:3297. [PMID: 34209300 PMCID: PMC8268554 DOI: 10.3390/cancers13133297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
We present a simulation study investigating the feasibility of electrical impedance tomography (EIT) as a low cost, noninvasive technique for hyperthermia (HT) treatment monitoring and adaptation. Temperature rise in tissues leads to perfusion and tissue conductivity changes that can be reconstructed in 3D by EIT to noninvasively map temperature and perfusion. In this study, we developed reconstruction methods and investigated the achievable accuracy of EIT by simulating HT treatmentlike scenarios, using detailed anatomical models with heterogeneous conductivity distributions. The impact of the size and location of the heated region, the voltage measurement signal-to-noise ratio, and the reference model personalization and accuracy were studied. Results showed that by introducing an iterative reconstruction approach, combined with adaptive prior regions and tissue-dependent penalties, planning-based reference models, measurement-based reweighting, and physics-based constraints, it is possible to map conductivity-changes throughout the heated domain, with an accuracy of around 5% and cm-scale spatial resolution. An initial exploration of the use of multifrequency EIT to separate temperature and perfusion effects yielded promising results, indicating that temperature reconstruction accuracy can be in the order of 1 ∘C. Our results suggest that EIT can provide valuable real-time HT monitoring capabilities. Experimental confirmation in real-world conditions is the next step.
Collapse
Affiliation(s)
- Redi Poni
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology (ETH), 8092 Zurich, Switzerland; (R.P.); (N.K.)
- Foundation for Research on Information Technologies in Society (IT’IS), 8004 Zurich, Switzerland; (M.C.); (S.B.)
| | - Esra Neufeld
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology (ETH), 8092 Zurich, Switzerland; (R.P.); (N.K.)
- Foundation for Research on Information Technologies in Society (IT’IS), 8004 Zurich, Switzerland; (M.C.); (S.B.)
| | - Myles Capstick
- Foundation for Research on Information Technologies in Society (IT’IS), 8004 Zurich, Switzerland; (M.C.); (S.B.)
| | - Stephan Bodis
- Foundation for Research on Information Technologies in Society (IT’IS), 8004 Zurich, Switzerland; (M.C.); (S.B.)
- Center of Radiation Oncology KSA-KSB, Kantonsspital Aarau, 5001 Aarau, Switzerland
| | - Theodoros Samaras
- Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Niels Kuster
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology (ETH), 8092 Zurich, Switzerland; (R.P.); (N.K.)
- Foundation for Research on Information Technologies in Society (IT’IS), 8004 Zurich, Switzerland; (M.C.); (S.B.)
| |
Collapse
|
85
|
Mohammadi A, Bianchi L, Korganbayev S, De Landro M, Saccomandi P. Thermomechanical Modeling of Laser Ablation Therapy of Tumors: Sensitivity Analysis and Optimization of Influential Variables. IEEE Trans Biomed Eng 2021; 69:302-313. [PMID: 34181533 DOI: 10.1109/tbme.2021.3092889] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In cancer treatment, laser ablation is a promising technique used to induce localized thermal damage. Different variables influence the temperature distribution in the tissue and the resulting therapy efficacy; thus, the optimal therapy settings are required for obtaining the desired clinical outcome. In this work, thermomechanical modeling of contactless laser ablation was implemented to analyze the sensitivity of independent variables on the optimal treatment conditions. The Finite Element Method was utilized to solve the governing equations, i.e., the bioheat, mechanical deformation, and the Navier-Stokes equations. Validation of the model was evaluated by comparing experimental and simulated temperatures, which indicated high accuracy for estimating temperature. In particular, the results showed that the model is capable of estimating temperature with a good correlation factor (R=0.98) and low Mean Absolute Error (3.9 C). A sensitivity analysis based on laser irradiation time, power, beam distribution, and the blood vessel depth on temperature distribution and fraction of necrotic tissue was performed. Based on the most significant variables i.e., laser irradiation time and power, an optimization process was performed. This resulted into an indication of the optimal therapy settings for achieving maximum procedure efficiency i.e., the required fraction of necrotic tissue within the target volume, constituted by tumor and safety margins around it.
Collapse
|
86
|
Gavazzi S, van Lier ALHMW, Zachiu C, Jansen E, Lagendijk JJW, Stalpers LJA, Crezee H, Kok HP. Advanced patient-specific hyperthermia treatment planning. Int J Hyperthermia 2021; 37:992-1007. [PMID: 32806979 DOI: 10.1080/02656736.2020.1806361] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hyperthermia treatment planning (HTP) is valuable to optimize tumor heating during thermal therapy delivery. Yet, clinical hyperthermia treatment plans lack quantitative accuracy due to uncertainties in tissue properties and modeling, and report tumor absorbed power and temperature distributions which cannot be linked directly to treatment outcome. Over the last decade, considerable progress has been made to address these inaccuracies and therefore improve the reliability of hyperthermia treatment planning. Patient-specific electrical tissue conductivity derived from MR measurements has been introduced to accurately model the power deposition in the patient. Thermodynamic fluid modeling has been developed to account for the convective heat transport in fluids such as urine in the bladder. Moreover, discrete vasculature trees have been included in thermal models to account for the impact of thermally significant large blood vessels. Computationally efficient optimization strategies based on SAR and temperature distributions have been established to calculate the phase-amplitude settings that provide the best tumor thermal dose while avoiding hot spots in normal tissue. Finally, biological modeling has been developed to quantify the hyperthermic radiosensitization effect in terms of equivalent radiation dose of the combined radiotherapy and hyperthermia treatment. In this paper, we review the present status of these developments and illustrate the most relevant advanced elements within a single treatment planning example of a cervical cancer patient. The resulting advanced HTP workflow paves the way for a clinically feasible and more reliable patient-specific hyperthermia treatment planning.
Collapse
Affiliation(s)
- Soraya Gavazzi
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Cornel Zachiu
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eric Jansen
- Amsterdam UMC, Department of Radiation Oncology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan J W Lagendijk
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lukas J A Stalpers
- Amsterdam UMC, Department of Radiation Oncology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans Crezee
- Amsterdam UMC, Department of Radiation Oncology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - H Petra Kok
- Amsterdam UMC, Department of Radiation Oncology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
87
|
Mohammadi A, Bianchi L, Asadi S, Saccomandi P. Measurement of Ex Vivo Liver, Brain and Pancreas Thermal Properties as Function of Temperature. SENSORS (BASEL, SWITZERLAND) 2021; 21:4236. [PMID: 34205567 PMCID: PMC8235733 DOI: 10.3390/s21124236] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/04/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022]
Abstract
The ability to predict heat transfer during hyperthermal and ablative techniques for cancer treatment relies on understanding the thermal properties of biological tissue. In this work, the thermal properties of ex vivo liver, pancreas and brain tissues are reported as a function of temperature. The thermal diffusivity, thermal conductivity and volumetric heat capacity of these tissues were measured in the temperature range from 22 to around 97 °C. Concerning the pancreas, a phase change occurred around 45 °C; therefore, its thermal properties were investigated only until this temperature. Results indicate that the thermal properties of the liver and brain have a non-linear relationship with temperature in the investigated range. In these tissues, the thermal properties were almost constant until 60 to 70 °C and then gradually changed until 92 °C. In particular, the thermal conductivity increased by 100% for the brain and 60% for the liver up to 92 °C, while thermal diffusivity increased by 90% and 40%, respectively. However, the heat capacity did not significantly change in this temperature range. The thermal conductivity and thermal diffusivity were dramatically increased from 92 to 97 °C, which seems to be due to water vaporization and state transition in the tissues. Moreover, the measurement uncertainty, determined at each temperature, increased after 92 °C. In the temperature range of 22 to 45 °C, the thermal properties of pancreatic tissue did not change significantly, in accordance with the results for the brain and liver. For the three tissues, the best fit curves are provided with regression analysis based on measured data to predict the tissue thermal behavior. These curves describe the temperature dependency of tissue thermal properties in a temperature range relevant for hyperthermia and ablation treatments and may help in constructing more accurate models of bioheat transfer for optimization and pre-planning of thermal procedures.
Collapse
Affiliation(s)
| | | | | | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, 20156 Milan, Italy; (A.M.); (L.B.); (S.A.)
| |
Collapse
|
88
|
Wilson AJ, Rahman M, Kosmas P, Thanou M. Nanomaterials responding to microwaves: an emerging field for imaging and therapy. NANOSCALE ADVANCES 2021; 3:3417-3429. [PMID: 34527861 PMCID: PMC8388194 DOI: 10.1039/d0na00840k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/12/2021] [Indexed: 05/05/2023]
Abstract
In recent years, new microwave-based imaging, sensing and hyperthermia applications have emerged in the field of diagnostics and therapy. For diagnosis, this technology involves the application of low power microwaves, utilising contrast between the relative permittivity of tissues to identify pathologies. This contrast can be further enhanced through the implementation of nanomaterials. For therapy, this technology can be applied in tissues either through hyperthermia, which can help anti-cancer drug tumour penetration or as ablation to destroy malignant tissues. Nanomaterials can absorb electromagnetic radiation and can enhance the microwave hyperthermic effect. In this review we aim to introduce this area of renewed interest and provide insights into current developments in its technologies and companion nanoparticles, as well as presenting an overview of applications for diagnosis and therapy.
Collapse
Affiliation(s)
- Annah J Wilson
- School of Cancer & Pharmaceutical Sciences, King's College London, Institute of Pharmaceutical Science Franklin Wilkins Building, 150 Stamford Street London SE1 9NH UK
- Department of Engineering, King's College London UK
| | - Mohammed Rahman
- School of Cancer & Pharmaceutical Sciences, King's College London, Institute of Pharmaceutical Science Franklin Wilkins Building, 150 Stamford Street London SE1 9NH UK
- Department of Engineering, King's College London UK
| | | | - Maya Thanou
- School of Cancer & Pharmaceutical Sciences, King's College London, Institute of Pharmaceutical Science Franklin Wilkins Building, 150 Stamford Street London SE1 9NH UK
| |
Collapse
|
89
|
Comparisons between impedance-based and time-based switching bipolar radiofrequency ablation for the treatment of liver cancer. Comput Biol Med 2021; 134:104488. [PMID: 34020132 DOI: 10.1016/j.compbiomed.2021.104488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/19/2023]
Abstract
Switching bipolar radiofrequency ablation (bRFA) is a cancer treatment technique that activates multiple pairs of electrodes alternately based on a predefined criterion. Various criteria can be used to trigger the switch, such as time (ablation duration) and tissue impedance. In a recent study on time-based switching bRFA, it was determined that a shorter switch interval could produce better treatment outcome than when a longer switch interval was used, which reduces tissue charring and roll-off induced cooling. In this study, it was hypothesized that a more efficacious bRFA treatment can be attained by employing impedance-based switching. This is because ablation per pair can be maximized since there will be no interruption to RF energy delivery until roll-off occurs. This was investigated using a two-compartment 3D computational model. Results showed that impedance-based switching bRFA outperformed time-based switching when the switch interval of the latter is 100 s or higher. When compared to the time-based switching with switch interval of 50 s, the impedance-based model is inferior. It remains to be investigated whether the impedance-based protocol is better than the time-based protocol for a switch interval of 50 s due to the inverse relationship between ablation and treatment efficacies. It was suggested that the choice of impedance-based or time-based switching could ultimately be patient-dependent.
Collapse
|
90
|
Prokhorova A, Ley S, Helbig M. Quantitative Interpretation of UWB Radar Images for Non-Invasive Tissue Temperature Estimation during Hyperthermia. Diagnostics (Basel) 2021; 11:diagnostics11050818. [PMID: 33946581 PMCID: PMC8147219 DOI: 10.3390/diagnostics11050818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/16/2021] [Accepted: 04/28/2021] [Indexed: 12/26/2022] Open
Abstract
The knowledge of temperature distribution inside the tissue to be treated is essential for patient safety, workflow and clinical outcomes of thermal therapies. Microwave imaging represents a promising approach for non-invasive tissue temperature monitoring during hyperthermia treatment. In the present paper, a methodology for quantitative non-invasive tissue temperature estimation based on ultra-wideband (UWB) radar imaging in the microwave frequency range is described. The capabilities of the proposed method are demonstrated by experiments with liquid phantoms and three-dimensional (3D) Delay-and-Sum beamforming algorithms. The results of our investigation show that the methodology can be applied for detection and estimation of the temperature induced dielectric properties change.
Collapse
|
91
|
Ištuk N, Porter E, O’Loughlin D, McDermott B, Santorelli A, Abedi S, Joachimowicz N, Roussel H, O’Halloran M. Dielectric Properties of Ovine Heart at Microwave Frequencies. Diagnostics (Basel) 2021; 11:531. [PMID: 33809672 PMCID: PMC8002248 DOI: 10.3390/diagnostics11030531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Accurate knowledge of the dielectric properties of biological tissues is important in dosimetry studies and for medical diagnostic, monitoring and therapeutic technologies. In particular, the dielectric properties of the heart are used in numerical simulations of radiofrequency and microwave heart ablation. In one recent study, it was demonstrated that the dielectric properties of different components of the heart can vary considerably, contrary to previous literature that treated the heart as a homogeneous organ with measurements that ignored the anatomical location. Therefore, in this study, we record and report the dielectric properties of the heart as a heterogeneous organ. We measured the dielectric properties at different locations inside and outside of the heart over the 500 MHz to 20 GHz frequency range. Different parts of the heart were identified based on the anatomy of the heart and their function; they include the epicardium, endocardium, myocardium, exterior and interior surfaces of atrial appendage, and the luminal surface of the great vessels. The measured dielectric properties for each part of the heart are reported at both a single frequency (2.4 GHz), which is of interest in microwave medical applications, and as parameters of a broadband Debye model. The results show that in terms of dielectric properties, different parts of the heart should not be considered the same, with more than 25% difference in dielectric properties between some parts. The specific Debye models and single frequency dielectric properties from this study can be used to develop more detailed models of the heart to be used in electromagnetic modeling.
Collapse
Affiliation(s)
- Niko Ištuk
- Translational Medical Device Laboratory, National University of Ireland Galway, Costello Road, H91 TK33 Galway, Ireland; (B.M.); (M.O.)
| | - Emily Porter
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712, USA; (E.P.); (A.S.)
| | - Declan O’Loughlin
- Department of Electronic and Electrical Engineering, Trinity College Dublin, College Green, D02 PN40 Dublin 2, Ireland;
| | - Barry McDermott
- Translational Medical Device Laboratory, National University of Ireland Galway, Costello Road, H91 TK33 Galway, Ireland; (B.M.); (M.O.)
| | - Adam Santorelli
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712, USA; (E.P.); (A.S.)
| | - Soroush Abedi
- Sorbonne Université, CNRS, Laboratoire de Génie Electrique et Electronique de Paris, 75252 Paris, France; (S.A.); (N.J.); (H.R.)
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire de Génie Electrique et Electronique de Paris, 91192 Gif-sur-Yvette, France
| | - Nadine Joachimowicz
- Sorbonne Université, CNRS, Laboratoire de Génie Electrique et Electronique de Paris, 75252 Paris, France; (S.A.); (N.J.); (H.R.)
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire de Génie Electrique et Electronique de Paris, 91192 Gif-sur-Yvette, France
| | - Hélène Roussel
- Sorbonne Université, CNRS, Laboratoire de Génie Electrique et Electronique de Paris, 75252 Paris, France; (S.A.); (N.J.); (H.R.)
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire de Génie Electrique et Electronique de Paris, 91192 Gif-sur-Yvette, France
| | - Martin O’Halloran
- Translational Medical Device Laboratory, National University of Ireland Galway, Costello Road, H91 TK33 Galway, Ireland; (B.M.); (M.O.)
| |
Collapse
|
92
|
Chan CY, Li H, Wu MF, Liu CH, Lu HW, Lin ZQ, Li J. A Dose-Finding Trial for Hyperthermic Intraperitoneal Cisplatin in Gynecological Cancer Patients Receiving Hyperthermic Intraperitoneal Chemotherapy. Front Oncol 2021; 11:616264. [PMID: 33777754 PMCID: PMC7991782 DOI: 10.3389/fonc.2021.616264] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/18/2021] [Indexed: 12/11/2022] Open
Abstract
Background: To identify the maximum tolerated dose (MTD) of hyperthermic intraperitoneal cisplatin at 43°C among gynecological cancer patients. Methods: In this Phase I dose-finding trial, Bayesian optimal interval (BOIN) design was used. We sought to explore the MTD with a target dose-limiting toxicity (DLT) rate of 20%, 4 prespecified doses (70 mg/m2, 75 mg/m2, 80 mg/m2 and 85 mg/m2), and 30 patients. Results: Between 2019 and 2020, 30 gynecologic cancer patients were enrolled. No patients received bevacizumab in subsequent treatment. The most common adverse events related to cisplatin were nausea and vomiting (100%), followed by tinnitus (26.7%) and kidney injury (23.3%). Of the seven patients with kidney injury, four had persistent renal impairment, and finally progressed into chronic kidney injury. DLTs were noted only in the dose level 4 group (85 mg/m2) and included acute kidney injury, pulmonary embolism, anemia, and neutropenia. When cisplatin was given at dose level four (85 mg/m2), the isotonic estimate of the DLT rate (22%) was closest to the target DLT rate of 20%. Therefore, 85 mg/m2 was selected as the MTD, with a 51% probability that the toxicity probability was greater than the target DLT rate. Conclusions: For gynecological cancer patients who received HIPEC for peritoneal metastases, the MTD of cisplatin in HIPEC at 43°C was 85 mg/m2. Our findings apply to patients who do not receive bevacizumab (ChiCTR1900021555).
Collapse
Affiliation(s)
- Chui-Ying Chan
- Department of Gynecologic Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Li
- Department of Gynecologic Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Miao-Fang Wu
- Department of Gynecologic Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chang-Hao Liu
- Department of Gynecologic Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huai-Wu Lu
- Department of Gynecologic Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhong-Qiu Lin
- Department of Gynecologic Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Li
- Department of Gynecologic Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
93
|
Yap S, Ooi EH, Foo JJ, Ooi ET. Bipolar radiofrequency ablation treatment of liver cancer employing monopolar needles: A comprehensive investigation on the efficacy of time-based switching. Comput Biol Med 2021; 131:104273. [PMID: 33631495 DOI: 10.1016/j.compbiomed.2021.104273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022]
Abstract
Radiofrequency ablation (RFA) is a thermal ablative treatment method that is commonly used to treat liver cancer. However, the thermal coagulation zone generated using the conventional RFA system can only successfully treat tumours up to 3 cm in diameter. Switching bipolar RFA has been proposed as a way to increase the thermal coagulation zone. Presently, the understanding of the underlying thermal processes that takes place during switching bipolar RFA remains limited. Hence, the objective of this study is to provide a comprehensive understanding on the thermal ablative effects of time-based switching bipolar RFA on liver tissue. Five switch intervals, namely 50, 100, 150, 200 and 300 s were investigated using a two-compartment 3D finite element model. The study was performed using two pairs of RF electrodes in a four-probe configuration, where the electrodes were alternated based on their respective switch interval. The physics employed in the present study were verified against experimental data from the literature. Results obtained show that using a shorter switch interval can improve the homogeneity of temperature distribution within the tissue and increase the rate of temperature rise by delaying the occurrence of roll-off. The coagulation volume obtained was the largest using switch interval of 50 s, followed by 100, 150, 200 and 300 s. The present study demonstrated that the transient thermal response of switching bipolar RFA can be improved by using shorter switch intervals.
Collapse
Affiliation(s)
- Shelley Yap
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ean H Ooi
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| | - Ji J Foo
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ean T Ooi
- School of Engineering and Information Technology, Faculty of Science and Technology, Federation University, VIC, 3350, Australia
| |
Collapse
|
94
|
Wang WY, Wu MF, Wu DB, Wang LJ, Li H, Lin ZQ, Li J. Calculating the dose of cisplatin that is actually utilized in hyperthermic intraperitoneal chemotherapy among ovarian cancer patients. J Ovarian Res 2021; 14:9. [PMID: 33419462 PMCID: PMC7796576 DOI: 10.1186/s13048-021-00764-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/01/2021] [Indexed: 12/11/2022] Open
Abstract
Background Hyperthermic intraperitoneal chemotherapy (HIPEC) is an important treatment for ovarian cancer. A certain portion of cisplatin exits the body via the perfusate at the end of HIPEC, so full-dose utilization cannot be achieved. Herein, we sought to explore how much cisplatin is actually utilized and its prognostic influence. Methods Cisplatin (70 mg/m2) was given at 43 °C for 90 min. The actually utilized dose (AD) of cisplatin was calculated using the following formula: AD (mg) = total dose (TD) (mg)-losing dose (LD) (mg); LD = volume (ml) of the perfusate (VPretained) that was retained in the HIPEC treatment system at the end of HIPEC * concentration of cisplatin in the perfusate (mg/ml). Result Sixty-two ovarian cancer patients were included. The median TD, median LD and median AD were 95 mg, 20.7 mg and 75.8 mg, respectively. The utility rate of cisplatin (AD/TD ratio) was 79.2%. On simple linear regression analysis, the TD and VPretained were found to significantly predict the AD. Based on these two factors, multiple linear regression analysis was conducted, and a significant regression equation was formulated [F (2, 59) = 71.419, P < 0.0001]: predicted AD (mg) = 30.079 + 0.667 TD (mg) – 0.010 VPretained (ml) (adjusted R2 = 0.698). In Cox regression analysis, AD was not noted to be associated with progression free survival or overall survival. Conclusion For ovarian cancer patients who receive cisplatin for HIPEC at 43 °C, the AD of cisplatin can be predicted using a regression equation and it has no prognostic impact. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-021-00764-6.
Collapse
Affiliation(s)
- Wu-Yun Wang
- Department of Gynecologic Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.,Department of Obstetrics and Gynecology, Kiang Wu Hospital, 85-87 R. de Coelho do Amaral, Macau, 96000, People's Republic of China
| | - Miao-Fang Wu
- Department of Gynecologic Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China
| | - Dong-Bing Wu
- Department of Gynecologic Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China
| | - Li-Juan Wang
- Department of Gynecologic Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China
| | - Hui Li
- Department of Gynecologic Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China
| | - Zhong-Qiu Lin
- Department of Gynecologic Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.
| | - Jing Li
- Department of Gynecologic Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.
| |
Collapse
|
95
|
Safety aspects of the PiCCO thermodilution-cardiac output catheter during magnetic resonance imaging at 3 Tesla. J Clin Monit Comput 2021; 36:141-145. [PMID: 33398546 PMCID: PMC8894192 DOI: 10.1007/s10877-020-00630-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 12/09/2020] [Indexed: 11/24/2022]
Abstract
Thermodilution cardiac output monitoring, using a thermistor-tipped intravascular catheter, is used in critically ill patients to guide hemodynamic therapy. Often, these patients also need magnetic resonance imaging (MRI) for diagnostic or prognostic reasons. As thermodilution catheters contain metal, they are considered MRI-unsafe and advised to be removed prior to investigation. However, removal and replacement of the catheter carries risks of bleeding, perforation and infection. This research is an in vitro safety assessment of the PiCCO™ thermodilution catheter during 3 T Magnetic Resonance Imaging (3T-MRI). In a 3T-MRI environment, three different PiCCO™ catheter sizes were investigated in an agarose-gel, tissue mimicking phantom. Two temperature probes measured radiofrequency-induced heating; one at the catheter tip and one at a reference point. Magnetically induced catheter dislocation was assessed by visual observation as well as by analysis of the tomographic images. For all tested catheters, the highest measured temperature increase was 0.2 °C at the center of the bore and 0.3 °C under “worst-case” setting for the tested MRI pulse sequences. No magnetically induced catheter displacements were observed. Under the tested circumstances, no heating or dislocation of the PiCCO™ catheter was observed in a tissue mimicking phantom during 3T-MRI. Leaving the catheter in the critically ill patient during MRI investigation might pose a lower risk of complications than catheter removal and replacement.
Collapse
|
96
|
Conventional Nanosized Drug Delivery Systems for Cancer Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:3-27. [PMID: 33543453 DOI: 10.1007/978-3-030-58174-9_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clinical responses and tolerability of conventional nanocarriers (NCs) are sometimes different from those expected in anticancer therapy. Thus, new smart drug delivery systems (DDSs) with stimuli-responsive properties and novel materials have been developed. Several clinical trials demonstrated that these DDSs have better clinical therapeutic efficacy in the treatment of many cancers than free drugs. Composition of DDSs and their surface properties increase the specific targeting of therapeutics versus cancer cells, without affecting healthy tissues, and thus limiting their toxicity versus unspecific tissues. Herein, an extensive revision of literature on NCs used as DDSs for cancer applications has been performed using the available bibliographic databases.
Collapse
|
97
|
Sano MB, DeWitt MR. Thermochromic Tissue Phantoms for Evaluating Temperature Distribution in Simulated Clinical Applications of Pulsed Electric Field Therapies. Bioelectricity 2020; 2:362-371. [PMID: 34476365 PMCID: PMC8370349 DOI: 10.1089/bioe.2020.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Irreversible electroporation (IRE) induces cell death through nonthermal mechanisms, however, in extreme cases, the treatments can induce deleterious thermal transients. This study utilizes a thermochromic tissue phantom to enable visualization of regions exposed to temperatures above 60°C. Materials and Methods: Poly(vinyl alcohol) hydrogels supplemented with thermochromic ink were characterized and processed to match the electrical properties of liver tissue. Three thousand volt high-frequency IRE protocols were administered with delivery rates of 100 and 200 μs/s. The effect of supplemental internal applicator cooling was then characterized. Results: Baseline treatments resulted thermal areas of 0.73 cm2, which decreased to 0.05 cm2 with electrode cooling. Increased delivery rates (200 μs/s) resulted in thermal areas of 1.5 and 0.6 cm2 without and with cooling, respectively. Conclusions: Thermochromic tissue phantoms enable rapid characterization of thermal effects associated with pulsed electric field treatments. Active cooling of applicators can significantly reduce the quantity of tissue exposed to deleterious temperatures.
Collapse
Affiliation(s)
- Michael B. Sano
- UNC/NCSU Joint Department of Biomedical Engineering, Raleigh, North Carolina, USA
| | | |
Collapse
|
98
|
Gentilal N, Miranda PC. Heat transfer during TTFields treatment: Influence of the uncertainty of the electric and thermal parameters on the predicted temperature distribution. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 196:105706. [PMID: 32818721 DOI: 10.1016/j.cmpb.2020.105706] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVES Tumor Treating Fields (TTFields) is a technique currently used in the treatment of glioblastoma. It consists in applying an electric field (EF) with a frequency of 200 kHz using two pairs of transducer arrays placed on the head. Current should be injected at least 18 h/day and induce a minimum EF intensity of 1 V/cm at the tumor bed for the treatment to be effective. To avoid scalp burns, Optune, the device used to apply this technique in patients, monitors the temperature of the transducers and keeps them below 41 °C by reducing the injected current. The goal of this study was to quantify the impact of the uncertainty associated with the electric and thermal parameters on the predicted temperature of the transducers and of each tissue when TTFields were applied. METHODS We used a realistic head model, added the two pairs of transducers arrays on the scalp and a virtual lesion, mimicking a glioblastoma tumor in the right hemisphere. Minimum, standard and maximum values for the electric and thermal properties of each tissue were taken from the literature after an extensive review. We used finite element methods (COMSOL Multiphysics) to solve Laplace's equation for the electric potential and Pennes' equation for the temperature distribution. RESULTS We observed that the electric conductivity of the scalp and skull, as well as scalp's blood perfusion and thermal conductivity were the parameters to which tissue and transducers temperature were most sensitive to. Considering all simulations, scalp's maximum temperature was around 43.5 °C, skull's 42 °C, CSF's 41.2 °C and brain's 39.3 °C. According to the literature, for this temperature range, some physiological changes are predicted only for the brain. The average temperature of the transducers varied between 38.1 °C and 41.6 °C which suggests that modelling TTFields current injection is very sensitive to the parameters chosen. CONCLUSIONS Better knowledge of the physical properties of tissues and materials and how they change with the temperature is needed to improve the accuracy of these predictions. This information would likely decrease the predicted temperature maxima in the brain and thus help ascertaining TTFields safety from a thermal point of view.
Collapse
Affiliation(s)
- Nichal Gentilal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Pedro Cavaleiro Miranda
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
99
|
Youssef HM, Alghamdi NA. The exact analytical solution of the dual-phase-lag two-temperature bioheat transfer of a skin tissue subjected to constant heat flux. Sci Rep 2020; 10:15946. [PMID: 32994496 PMCID: PMC7524741 DOI: 10.1038/s41598-020-73086-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/09/2020] [Indexed: 11/09/2022] Open
Abstract
This work is dealing with the temperature reaction and response of skin tissue due to constant surface heat flux. The exact analytical solution has been obtained for the two-temperature dual-phase-lag (TTDPL) of bioheat transfer. We assumed that the skin tissue is subjected to a constant heat flux on the bounding plane of the skin surface. The separation of variables for the governing equations as a finite domain is employed. The transition temperature responses have been obtained and discussed. The results represent that the dual-phase-lag time parameter, heat flux value, and two-temperature parameter have significant effects on the dynamical and conductive temperature increment of the skin tissue. The Two-temperature dual-phase-lag (TTDPL) bioheat transfer model is a successful model to describe the behavior of the thermal wave through the skin tissue.
Collapse
Affiliation(s)
- Hamdy M Youssef
- Mechanical Engineering Department, College of Engineering and Islamic Architecture, Umm Al-Qura University, Mecca, Saudi Arabia.
| | - Najat A Alghamdi
- Department of Mathematics, Faculty of Applied Science, Umm Al-Qura University, Mecca, Saudi Arabia
| |
Collapse
|
100
|
Etoz S, Brace CL. Computed Tomography-Based Modeling of Water Vapor-Induced Changes in Permittivity During Microwave Ablation. IEEE Trans Biomed Eng 2020; 67:2427-2433. [DOI: 10.1109/tbme.2019.2962363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|