51
|
Wu Z, Lee YF, Yeo XH, Loo SY, Tam WL. Shifting the Gears of Metabolic Plasticity to Drive Cell State Transitions in Cancer. Cancers (Basel) 2021; 13:1316. [PMID: 33804114 PMCID: PMC7999312 DOI: 10.3390/cancers13061316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer metabolism is a hallmark of cancer. Metabolic plasticity defines the ability of cancer cells to reprogram a plethora of metabolic pathways to meet unique energetic needs during the various steps of disease progression. Cell state transitions are phenotypic adaptations which confer distinct advantages that help cancer cells overcome progression hurdles, that include tumor initiation, expansive growth, resistance to therapy, metastasis, colonization, and relapse. It is increasingly appreciated that cancer cells need to appropriately reprogram their cellular metabolism in a timely manner to support the changes associated with new phenotypic cell states. We discuss metabolic alterations that may be adopted by cancer cells in relation to the maintenance of cancer stemness, activation of the epithelial-mesenchymal transition program for facilitating metastasis, and the acquisition of drug resistance. While such metabolic plasticity is harnessed by cancer cells for survival, their dependence and addiction towards certain metabolic pathways also present therapeutic opportunities that may be exploited.
Collapse
Affiliation(s)
- Zhengwei Wu
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore; (Z.W.); (X.H.Y.)
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore;
| | - Yi Fei Lee
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore;
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Xun Hui Yeo
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore; (Z.W.); (X.H.Y.)
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore;
| | - Ser Yue Loo
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore;
| | - Wai Leong Tam
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore; (Z.W.); (X.H.Y.)
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore;
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| |
Collapse
|
52
|
Iqbal MA, Siddiqui S, Ur Rehman A, Siddiqui FA, Singh P, Kumar B, Saluja D. Multiomics integrative analysis reveals antagonistic roles of CBX2 and CBX7 in metabolic reprogramming of breast cancer. Mol Oncol 2021; 15:1450-1465. [PMID: 33400401 PMCID: PMC8096797 DOI: 10.1002/1878-0261.12894] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/07/2020] [Accepted: 12/31/2020] [Indexed: 12/24/2022] Open
Abstract
Striking similarity exists between metabolic changes associated with embryogenesis and tumorigenesis. Chromobox proteins‐CBX2/4/6/7/8, core components of canonical polycomb repressor complex 1, play essential roles in embryonic development and aberrantly expressed in breast cancer. Understanding how altered CBX expression relates to metabolic reprogramming in breast cancer may reveal vulnerabilities of therapeutic pertinence. Using transcriptomic and metabolomic data from breast cancer patients (N > 3000 combined), we performed pathway‐based analysis and identified outstanding roles of CBX2 and CBX7 in positive and negative regulation of glucose metabolism, respectively. Genetic ablation experiments validated the contrasting roles of two isoforms in cancer metabolism and cell growth. Furthermore, we provide evidence for the role of mammalian target of rapamycin complex 1 signaling in mediating contrary effects of CBX2 and CBX7 on breast cancer metabolism. Underpinning the biological significance of metabolic roles, CBX2 and CBX7 were found to be the most up‐ and downregulated isoforms, respectively, in breast tumors compared with normal tissues. Moreover, CBX2 and CBX7 expression (not other isoforms) correlated strongly, but oppositely, with breast tumor subtype aggressiveness and the proliferation markers. Consistently, genomic data also showed higher amplification frequency of CBX2, not CBX7, in breast tumors. Highlighting the clinical significance of findings, disease‐specific survival and drug sensitivity analysis revealed that CBX2 and CBX7 predicted patient outcome and sensitivity to FDA‐approved/investigational drugs. In summary, this work identifies novel cross talk between CBX2/7 and breast tumor metabolism, and the results presented may have implications in strategies targeting breast cancer.
Collapse
Affiliation(s)
- Mohammad Askandar Iqbal
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Shumaila Siddiqui
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Asad Ur Rehman
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, India
| | - Farid Ahmad Siddiqui
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India.,Turku Centre for Biotechnology, BioCity, University of Turku and Abo Akademi, Finland
| | - Prithvi Singh
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India.,Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Bhupender Kumar
- Department of Biochemistry, Institute of Home Economics, University of Delhi, India
| | - Daman Saluja
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, India
| |
Collapse
|
53
|
Zhu C, He X, Chen K, Huang Z, Yao A, Tian X, You Y, Zeng M. LncRNA NBR2 aggravates hepatoblastoma cell malignancy and promotes cell proliferation under glucose starvation through the miR-22/TCF7 axis. Cell Cycle 2021; 20:575-590. [PMID: 33651649 DOI: 10.1080/15384101.2021.1885236] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hepatoblastoma (HB) is the most commonly seen pediatric liver malignancy. With frequent mutations in CTNNB1 gene that encodes β-catenin, hepatoblastoma has been considered as a Wnt/β-catenin-activated malignant tumor. Altered glucose metabolism upon nutrient deprivation (glucose starvation) might also be a critical event in hepatoblastoma carcinogenesis. The present study provides a lncRNA NBR2/miR-22/TCF7 axis modulating proliferation, invasion, migration, and apoptosis of hepatoblastoma cells upon glucose starvation through Wnt and downstream TCF7 signaling pathways. The expression of NBR2 is significantly increased within hepatoblastoma tissue samples; moreover, under incubation with 0 mM glucose (glucose starvation), NBR2 expression is significantly upregulated. NBR2 silencing not only inhibited hepatoblastoma cell viability, invasion, and migration under normal culture condition but also promoted the cell apoptosis under glucose starvation. NBR2 silencing in hepatoblastoma cells also decreased TCF7 mRNA expression and TCF7 protein levels, as well as the protein levels of the cell cycle, glucose entrapment, and EMT markers. miR-22 is directly bound to both NBR2 and TCF7; lncRNA NBR2 counteracted miR-22-mediated repression on TCF7 via acting as a ceRNA. The effects of NBR2 silencing on TCF7 expression, hepatoblastoma cell phenotype, and cell cycle, glucose entrapment, and EMT markers were all significantly reversed by miR-22 inhibition. In conclusion, lncRNA NBR2 aggravates hepatoblastoma cell malignancy through competing with TCF7 for miR-22 binding, therefore counteracting miR-22-mediated repression on TCF7. LncRNA NBR2 might be a promising target to inhibit hepatoblastoma cell proliferation under glucose starvation.
Collapse
Affiliation(s)
- Chengguang Zhu
- Department of Pediatric Hematology and Oncology, Children's Medical Center of Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Xiangling He
- Department of Pediatric Hematology and Oncology, Children's Medical Center of Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Keke Chen
- Department of Pediatric Hematology and Oncology, Children's Medical Center of Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Zhijun Huang
- Department of Pediatric Hematology and Oncology, Children's Medical Center of Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Anqi Yao
- Department of Pediatric Hematology and Oncology, Children's Medical Center of Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Xin Tian
- Department of Pediatric Hematology and Oncology, Children's Medical Center of Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Yalan You
- Department of Pediatric Hematology and Oncology, Children's Medical Center of Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Minhui Zeng
- Department of Pediatric Hematology and Oncology, Children's Medical Center of Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, China
| |
Collapse
|
54
|
Hua YQ, Zhang K, Sheng J, Ning ZY, Li Y, Shi WD, Liu LM. Fam83D promotes tumorigenesis and gemcitabine resistance of pancreatic adenocarcinoma through the Wnt/β-catenin pathway. Life Sci 2021; 287:119205. [PMID: 33571515 DOI: 10.1016/j.lfs.2021.119205] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Elevated expression of family with sequence similarity 83 member D (Fam83D) has been found in various cancers; however, its role in pancreatic adenocarcinoma (PDAC) remains unclear. The current study was designed to elucidate the roles of Fam83D in pancreatic cancer. METHOD The level of Fam83D was detected in PDAC tissues and adjacent no-tumorous tissues. Effects of Fam83D on proliferation, glycolysis and gemcitabine (GEM) sensitivity of pancreatic cancer cells were examined. RESULTS Fam83D was overexpressed in PDAC and associated with clinical stage, metastatic status and survival rates of PDAC patients. Function study showed that Fam83D knockdown (KD) caused inhibited proliferation, suppressed mitochondrial respiration capacity, reduced aerobic glycolysis, and down-regulation of nuclear β-catenin, proto-oncogene C-Myc, and lactate dehydrogenase A (LDHA). Fam83D KD enhanced the sensitivity of PDAC cells to GEM in vitro and in vivo. On the contrary, Fam83D overexpression displayed reverse effects on PDAC cells. Moreover, the Wnt/β-catenin inhibitor abolished the effects of Fam83D overexpression in PDAC cells. CONCLUSIONS the current data suggest that enhanced Fam83D expression contributes to PDAC progression and the development of chemoresistance through the Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Yong-Qiang Hua
- Minimally Invasive Treatment Center, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai 200032, PR China
| | - Ke Zhang
- Minimally Invasive Treatment Center, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai 200032, PR China
| | - Jie Sheng
- Minimally Invasive Treatment Center, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai 200032, PR China
| | - Zhou-Yu Ning
- Minimally Invasive Treatment Center, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai 200032, PR China
| | - Ye Li
- Minimally Invasive Treatment Center, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai 200032, PR China
| | - Wei-Dong Shi
- Minimally Invasive Treatment Center, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai 200032, PR China
| | - Lu-Ming Liu
- Minimally Invasive Treatment Center, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai 200032, PR China.
| |
Collapse
|
55
|
Almaguel FA, Sanchez TW, Ortiz-Hernandez GL, Casiano CA. Alpha-Enolase: Emerging Tumor-Associated Antigen, Cancer Biomarker, and Oncotherapeutic Target. Front Genet 2021; 11:614726. [PMID: 33584813 PMCID: PMC7876367 DOI: 10.3389/fgene.2020.614726] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Alpha-enolase, also known as enolase-1 (ENO1), is a glycolytic enzyme that “moonlights” as a plasminogen receptor in the cell surface, particularly in tumors, contributing to cancer cell proliferation, migration, invasion, and metastasis. ENO1 also promotes other oncogenic events, including protein-protein interactions that regulate glycolysis, activation of signaling pathways, and resistance to chemotherapy. ENO1 overexpression has been established in a broad range of human cancers and is often associated with poor prognosis. This increased expression is usually accompanied by the generation of anti-ENO1 autoantibodies in some cancer patients, making this protein a tumor associated antigen. These autoantibodies are common in patients with cancer associated retinopathy, where they exert pathogenic effects, and may be triggered by immunodominant peptides within the ENO1 sequence or by posttranslational modifications. ENO1 overexpression in multiple cancer types, localization in the tumor cell surface, and demonstrated targetability make this protein a promising cancer biomarker and therapeutic target. This mini-review summarizes our current knowledge of ENO1 functions in cancer and its growing potential as a cancer biomarker and guide for the development of novel anti-tumor treatments.
Collapse
Affiliation(s)
- Frankis A Almaguel
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| | - Tino W Sanchez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Greisha L Ortiz-Hernandez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Carlos A Casiano
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Medicine, Division of Rheumatology, Loma Linda University Health, Loma Linda, CA, United States
| |
Collapse
|
56
|
Marcucci F, Rumio C. Glycolysis-induced drug resistance in tumors-A response to danger signals? Neoplasia 2021; 23:234-245. [PMID: 33418276 PMCID: PMC7804361 DOI: 10.1016/j.neo.2020.12.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
Tumor cells often switch from mitochondrial oxidative metabolism to glycolytic metabolism even under aerobic conditions. Tumor cell glycolysis is accompanied by several nonenzymatic activities among which induction of drug resistance has important therapeutic implications. In this article, we review the main aspects of glycolysis-induced drug resistance. We discuss the classes of antitumor drugs that are affected and the components of the glycolytic pathway (transporters, enzymes, metabolites) that are involved in the induction of drug resistance. Glycolysis-associated drug resistance occurs in response to stimuli, either cell-autonomous (e.g., oncoproteins) or deriving from the tumor microenvironment (e.g., hypoxia or pseudohypoxia, mechanical cues, etc.). Several mechanisms mediate the induction of drug resistance in response to glycolytic metabolism: inhibition of apoptosis, induction of epithelial-mesenchymal transition, induction of autophagy, inhibition of drug influx and increase of drug efflux. We suggest that drug resistance in response to glycolysis comes into play in presence of qualitative (e.g., expression of embryonic enzyme isoforms, post-translational enzyme modifications) or quantitative (e.g., overexpression of enzymes or overproduction of metabolites) alterations of glycolytic metabolism. We also discern similarities between changes occurring in tumor cells in response to stimuli inducing glycolysis-associated drug resistance and those occurring in cells of the innate immune system in response to danger signals and that have been referred to as danger-associated metabolic modifications. Eventually, we briefly address that also mitochondrial oxidative metabolism may induce drug resistance and discuss the therapeutic implications deriving from the fact that the main energy-generating metabolic pathways may be both at the origin of antitumor drug resistance.
Collapse
Affiliation(s)
- Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| |
Collapse
|
57
|
Hoang AT, Vizio B, Chiusa L, Cimino A, Solerio D, Do NH, Pileci S, Camandona M, Bellone G. Impact of Tissue Enolase 1 Protein Overexpression in Esophageal Cancer Progression. Int J Med Sci 2021; 18:1406-1414. [PMID: 33628097 PMCID: PMC7893569 DOI: 10.7150/ijms.52688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022] Open
Abstract
Enolase (ENO) 1 is a key glycolytic enzyme and important player in tumorigenesis. ENO1 overexpression has been correlated with tumor progression and/or worse prognosis in several solid malignancies. However, data concerning the impact of ENO1 in cancer conflict. The study correlated local and circulating ENO1 protein levels in esophageal cancer (EC) with clinicopathological data, to assess its potential clinical value. ENO1 expression was analyzed by immunohistochemistry in paired tumor and non-tumor tissue samples from 40 EC cases and mucosal biopsies from 45 Barrett's esophagus (BE) cases, plus in plasma from these patients and 25 matched healthy controls. ENO1 was abnormally elevated in cancer-cell cytoplasm in both EC types, in esophageal squamous cell carcinoma and in adenocarcinoma (EAC), increasing significantly with tumor stage progression and the transition from BE to EAC. EAC patients exhibited significantly lower ENO1 plasma concentrations than normal subjects. Neither local nor systemic ENO1 expression levels were significantly associated with overall survival. These results indicate ENO1 as potential biomarker, delineating a population of patients with Barrett's esophagus at high risk of cancer, and as new therapeutic opportunity in EC patient management. However, further confirmation might be necessary.
Collapse
Affiliation(s)
- Anh Tuan Hoang
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Barbara Vizio
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Luigi Chiusa
- Pathology Unit, AOU City of Health and Science of Turin, 10126 Turin, Italy
| | - Antonio Cimino
- Pathology Unit, AOU City of Health and Science of Turin, 10126 Turin, Italy
| | - Dino Solerio
- Department of Surgical Sciences, University of Turin, Unit of Digestive and Oncological Surgery 1U, AOU City of Health and Science of Turin, 10126 Turin, Italy
| | - Nhu Hon Do
- Vietnam National Institute of Ophthalmology, Hanoi, Vietnam
| | - Stefano Pileci
- Department of Surgical Sciences, University of Turin, Unit of Digestive and Oncological Surgery 1U, AOU City of Health and Science of Turin, 10126 Turin, Italy
| | - Michele Camandona
- Department of Surgical Sciences, University of Turin, Unit of Digestive and Oncological Surgery 1U, AOU City of Health and Science of Turin, 10126 Turin, Italy
| | - Graziella Bellone
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| |
Collapse
|
58
|
Sheng KL, Kang L, Pridham KJ, Dunkenberger LE, Sheng Z, Varghese RT. An integrated approach to biomarker discovery reveals gene signatures highly predictive of cancer progression. Sci Rep 2020; 10:21246. [PMID: 33277589 PMCID: PMC7718261 DOI: 10.1038/s41598-020-78126-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/13/2020] [Indexed: 12/25/2022] Open
Abstract
Current cancer biomarkers present variability in their predictive power and demonstrate limited clinical efficacy, possibly due to the lack of functional relevance of biomarker genes to cancer progression. To address this challenge, a biomarker discovery pipeline was developed to integrate gene expression profiles from The Cancer Genome Atlas and essential survival gene datasets from The Cancer Dependency Map, the latter of which catalogs genes driving cancer progression. By applying this pipeline to lung adenocarcinoma, lung squamous cell carcinoma, and glioblastoma, genes highly associated with cancer progression were identified and designated as progression gene signatures (PGSs). Analysis of area under the receiver operating characteristics curve revealed that PGSs predicted patient survival more accurately than previously identified cancer biomarkers. Moreover, PGSs stratified patients with high risk for progressive disease indicated by worse prognostic outcomes, increased frequency of cancer progression, and poor responses to chemotherapy. The robust performance of these PGSs were recapitulated in four independent microarray datasets from Gene Expression Omnibus and were further verified in six freshly dissected tumors from glioblastoma patients. Our results demonstrate the power of an integrated approach to cancer biomarker discovery and the possibility of implementing PGSs into clinical biomarker tests.
Collapse
Affiliation(s)
- Kevin L Sheng
- Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA, 24060, USA
| | - Lin Kang
- Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA, 24060, USA
| | - Kevin J Pridham
- Fralin Biomedical Research Institute at VTC, 2 Riverside Circle, Roanoke, VA, 24016, USA
| | - Logan E Dunkenberger
- Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA, 24060, USA
- Fralin Biomedical Research Institute at VTC, 2 Riverside Circle, Roanoke, VA, 24016, USA
| | - Zhi Sheng
- Fralin Biomedical Research Institute at VTC, 2 Riverside Circle, Roanoke, VA, 24016, USA
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
- Faculty of Health Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Robin T Varghese
- Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA, 24060, USA.
| |
Collapse
|
59
|
Role of tyrosine phosphorylation in modulating cancer cell metabolism. Biochim Biophys Acta Rev Cancer 2020; 1874:188442. [DOI: 10.1016/j.bbcan.2020.188442] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
|
60
|
Peng Z, Fang S, Jiang M, Zhao X, Zhou C, Gong Z. Circular RNAs: Regulatory functions in respiratory tract cancers. Clin Chim Acta 2020; 510:264-271. [PMID: 32710944 DOI: 10.1016/j.cca.2020.07.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022]
Abstract
Circular RNAs (circRNAs) are a class of single-stranded RNAs having a covalently closed loop structure generated from back-splicing of pre-mRNA. These novel RNAs are characterized by high stability, abundance and conservation. Accumulating evidence has revealed that circRNAs are intimately associated with the pathogenesis, development and progression of multiple human diseases, including respiratory tract cancers. CircRNAs may serve as oncogenes or tumor suppressors to influence cell proliferation, differentiation, apoptosis, invasion and metastasis. CircRNAs may act as microRNA (miRNA) sponges, interact with RNA-binding proteins (RBPs), regulate gene transcription and/or translate into mini-peptides or proteins. In this review, we discuss recent progress in understanding the pathologic roles of circRNAs in respiratory tract cancers, such as nasopharyngeal carcinoma, laryngeal squamous cell carcinoma, and especially lung adenocarcinoma. We further discuss the diagnostic, therapeutic and prognostic roles as potential biomarkers in respiratory tract cancers, providing insight into the possibilities of applying circRNAs as therapeutic targets and biomarkers in precision oncology.
Collapse
Affiliation(s)
- Ziyi Peng
- Department of Clinical Medicine, Ningbo University School of Medicine, Ningbo 315211, China
| | - Shuai Fang
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China; Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Meina Jiang
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China; Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Xiaodong Zhao
- Department of Clinical Medicine, Ningbo University School of Medicine, Ningbo 315211, China; Department of Thoracic Surgery, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo 315020, China
| | - Chengwei Zhou
- Department of Clinical Medicine, Ningbo University School of Medicine, Ningbo 315211, China; Department of Thoracic Surgery, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo 315020, China.
| | - Zhaohui Gong
- Department of Clinical Medicine, Ningbo University School of Medicine, Ningbo 315211, China; Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China; Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China.
| |
Collapse
|
61
|
Gao W, Zhang Y, Luo H, Niu M, Zheng X, Hu W, Cui J, Xue X, Bo Y, Dai F, Lu Y, Yang D, Guo Y, Guo H, Li H, Zhang Y, Yang T, Li L, Zhang L, Hou R, Wen S, An C, Ma T, Jin L, Xu W, Wu Y. Targeting SKA3 suppresses the proliferation and chemoresistance of laryngeal squamous cell carcinoma via impairing PLK1-AKT axis-mediated glycolysis. Cell Death Dis 2020; 11:919. [PMID: 33106477 PMCID: PMC7589524 DOI: 10.1038/s41419-020-03104-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022]
Abstract
Spindle and kinetochore-associated complex subunit 3 (SKA3) is a well-known regulator of chromosome separation and cell division, which plays an important role in cell proliferation. However, the mechanism of SKA3 regulating tumor proliferation via reprogramming metabolism is unknown. Here, SKA3 is identified as an oncogene in laryngeal squamous cell carcinoma (LSCC), and high levels of SKA3 are closely associated with malignant progression and poor prognosis. In vitro and in vivo experiments demonstrate that SKA3 promotes LSCC cell proliferation and chemoresistance through a novel role of reprogramming glycolytic metabolism. Further studies reveal the downstream mechanisms of SKA3, which can bind and stabilize polo-like kinase 1 (PLK1) protein via suppressing ubiquitin-mediated degradation. The accumulation of PLK1 activates AKT and thus upregulates glycolytic enzymes HK2, PFKFB3, and PDK1, resulting in enhancement of glycolysis. Furthermore, our data reveal that phosphorylation at Thr360 of SKA3 is critical for its binding to PLK1 and the increase in glycolysis. Collectively, the novel oncogenic signal axis "SKA3-PLK1-AKT" plays a critical role in the glycolysis of LSCC. SKA3 may serve as a prognostic biomarker and therapeutic target, providing a potential strategy for proliferation inhibition and chemosensitization in tumors, especially for LSCC patients with PLK1 inhibitor resistance.
Collapse
Affiliation(s)
- Wei Gao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
- Department of Cell Biology and Genetics, Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
| | - Yuliang Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
| | - Hongjie Luo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
| | - Min Niu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
| | - Xiwang Zheng
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
| | - Wanglai Hu
- School of Basic Medical Science, Anhui Medical University, 230032, Hefei, Anhui, P.R. China
| | - Jiajia Cui
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
| | - Xuting Xue
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
| | - Yunfeng Bo
- Department of Pathology, Shanxi Cancer Hospital, 030013, Taiyuan, Shanxi, P.R. China
| | - Fengsheng Dai
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
| | - Yan Lu
- Department of Otolaryngology Head & Neck Surgery, First Affiliated Hospital of Jinzhou Medical University, 121001, Jinzhou, Liaoning, P.R. China
| | - Dongli Yang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
| | - Yujia Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
| | - Huina Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
| | - Huizheng Li
- Department of Otolaryngology Head & Neck Surgery, Dalian Municipal Friendship Hospital, 116100, Dalian, Liaoning, P.R. China
| | - Yu Zhang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
- Department of Physiology, Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
| | - Tao Yang
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
| | - Li Li
- Department of Cell Biology and Genetics, Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China
| | - Linshi Zhang
- Department of Thyroid Surgery, Zhejiang University School of Medicine Second Affiliated Hospital, 310009, Hangzhou, Zhejiang, P.R. China
| | - Rui Hou
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, University of Western Australia, Perth, WA, 6009, Australia
| | - Shuxin Wen
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China.
- Department of Otolaryngology Head & Neck Surgery, Shanxi Bethune Hospital, 030032, Taiyuan, Shanxi, P.R. China.
| | - Changming An
- Department of Head and Neck Surgery, Chinese Academy of Medical Sciences Cancer Institute and Hospital, 100021, Beijing, P.R. China.
| | - Teng Ma
- Department of Cellular and Molecular Biology, Beijing Tuberculosis and Thoracic Tumor Research Institute, 101149, Beijing, P.R. China.
| | - Lei Jin
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Wei Xu
- Department of Head and Neck Surgery, Shandong Provincial ENT Hospital Affiliated to Shandong University, 250022, Jinan, Shandong, P.R. China.
- Shandong Provincial Institute of Otolaryngology, 250022, Jinan, Shandong, P.R. China.
- Key Laboratory of Otolaryngology, Ministry of Health, Shandong University, 250022, Jinan, Shandong, P.R. China.
| | - Yongyan Wu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China.
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China.
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China.
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China.
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, 030001, Taiyuan, Shanxi, P.R. China.
| |
Collapse
|
62
|
Gjorgjieva M, Sobolewski C, Ay AS, Abegg D, Correia de Sousa M, Portius D, Berthou F, Fournier M, Maeder C, Rantakari P, Zhang FP, Poutanen M, Picard D, Montet X, Nef S, Adibekian A, Foti M. Genetic Ablation of MiR-22 Fosters Diet-Induced Obesity and NAFLD Development. J Pers Med 2020; 10:jpm10040170. [PMID: 33066497 PMCID: PMC7711493 DOI: 10.3390/jpm10040170] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
miR-22 is one of the most abundant miRNAs in the liver and alterations of its hepatic expression have been associated with the development of hepatic steatosis and insulin resistance, as well as cancer. However, the pathophysiological roles of miR-22-3p in the deregulated hepatic metabolism with obesity and cancer remains poorly characterized. Herein, we observed that alterations of hepatic miR-22-3p expression with non-alcoholic fatty liver disease (NAFLD) in the context of obesity are not consistent in various human cohorts and animal models in contrast to the well-characterized miR-22-3p downregulation observed in hepatic cancers. To unravel the role of miR-22 in obesity-associated NAFLD, we generated constitutive Mir22 knockout (miR-22KO) mice, which were subsequently rendered obese by feeding with fat-enriched diet. Functional NAFLD- and obesity-associated metabolic parameters were then analyzed. Insights about the role of miR-22 in NAFLD associated with obesity were further obtained through an unbiased proteomic analysis of miR-22KO livers from obese mice. Metabolic processes governed by miR-22 were finally investigated in hepatic transformed cancer cells. Deletion of Mir22 was asymptomatic when mice were bred under standard conditions, except for an onset of glucose intolerance. However, when challenged with a high fat-containing diet, Mir22 deficiency dramatically exacerbated fat mass gain, hepatomegaly, and liver steatosis in mice. Analyses of explanted white adipose tissue revealed increased lipid synthesis, whereas mass spectrometry analysis of the liver proteome indicated that Mir22 deletion promotes hepatic upregulation of key enzymes in glycolysis and lipid uptake. Surprisingly, expression of miR-22-3p in Huh7 hepatic cancer cells triggers, in contrast to our in vivo observations, a clear induction of a Warburg effect with an increased glycolysis and an inhibited mitochondrial respiration. Together, our study indicates that miR-22-3p is a master regulator of the lipid and glucose metabolism with differential effects in specific organs and in transformed hepatic cancer cells, as compared to non-tumoral tissue.
Collapse
Affiliation(s)
- Monika Gjorgjieva
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (M.G.); (C.S.); (A.-S.A.); (M.C.d.S.); (D.P.); (F.B.); (M.F.); (C.M.)
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (M.G.); (C.S.); (A.-S.A.); (M.C.d.S.); (D.P.); (F.B.); (M.F.); (C.M.)
| | - Anne-Sophie Ay
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (M.G.); (C.S.); (A.-S.A.); (M.C.d.S.); (D.P.); (F.B.); (M.F.); (C.M.)
| | - Daniel Abegg
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA; (D.A.); (A.A.)
| | - Marta Correia de Sousa
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (M.G.); (C.S.); (A.-S.A.); (M.C.d.S.); (D.P.); (F.B.); (M.F.); (C.M.)
| | - Dorothea Portius
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (M.G.); (C.S.); (A.-S.A.); (M.C.d.S.); (D.P.); (F.B.); (M.F.); (C.M.)
| | - Flavien Berthou
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (M.G.); (C.S.); (A.-S.A.); (M.C.d.S.); (D.P.); (F.B.); (M.F.); (C.M.)
| | - Margot Fournier
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (M.G.); (C.S.); (A.-S.A.); (M.C.d.S.); (D.P.); (F.B.); (M.F.); (C.M.)
| | - Christine Maeder
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (M.G.); (C.S.); (A.-S.A.); (M.C.d.S.); (D.P.); (F.B.); (M.F.); (C.M.)
| | - Pia Rantakari
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, and Turku Center for Disease Modeling, University of Turku, FI-20014 Turku, Finland; (P.R.); (F.-P.Z.); (M.P.)
| | - Fu-Ping Zhang
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, and Turku Center for Disease Modeling, University of Turku, FI-20014 Turku, Finland; (P.R.); (F.-P.Z.); (M.P.)
| | - Matti Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, and Turku Center for Disease Modeling, University of Turku, FI-20014 Turku, Finland; (P.R.); (F.-P.Z.); (M.P.)
| | - Didier Picard
- Department of Cell Biology, Faculty of Science, University of Geneva, 1205 Geneva, Switzerland;
| | - Xavier Montet
- Department of Radiology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Serge Nef
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Alexander Adibekian
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA; (D.A.); (A.A.)
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (M.G.); (C.S.); (A.-S.A.); (M.C.d.S.); (D.P.); (F.B.); (M.F.); (C.M.)
- Diabetes Center, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Correspondence: ; Tel.: +41-22-37-95-204; Fax: +41-22-37-95-260
| |
Collapse
|
63
|
Yang H, Zhu J, Wang G, Liu H, Zhou Y, Qian J. STK35 Is Ubiquitinated by NEDD4L and Promotes Glycolysis and Inhibits Apoptosis Through Regulating the AKT Signaling Pathway, Influencing Chemoresistance of Colorectal Cancer. Front Cell Dev Biol 2020; 8:582695. [PMID: 33117809 PMCID: PMC7578231 DOI: 10.3389/fcell.2020.582695] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022] Open
Abstract
The development of colorectal cancer (CRC) is often sporadic, but its etiology is multifactorial. Chemoresistance of CRC leads to tumor recurrence and poor prognosis in patients. The phosphorylation of protein kinase B (AKT) can activate metabolic reprogramming toward cellular glycolysis. Serine/threonine kinase 35 (STK35) regulates the cell cycle and is frequently associated with cancer progression, whereas little is known about its specific roles in CRC. In the current study, bioinformatics analyses were performed to investigate the relationship between STK35 and CRC prognosis. STK35 knockdown and overexpressing CRC cells were established to examine its functions in CRC. Fluorouracil (5-FU) was utilized to evaluate the effect of STK35 on CRC chemoresistance. Moreover, co-immunoprecipitation was performed to explore the ubiquitination of STK35. STK35 was highly expressed in CRC, and its protein expression was negatively correlated with the survival of CRC patients. Furthermore, STK35 overexpression could promote glycolysis, suppress apoptosis, upregulate p-AKT, and counteract the antitumor functions of 5-FU and neural precursor cell expressed developmentally downregulated gene 4-like (NEDD4L) in CRC cells. NEDD4L was associated with and could ubiquitinate STK35. STK35 could be a prognostic biomarker for CRC prognosis and has promotive effects on CRC cellular activities, partially through the AKT pathway. Moreover, STK35 also interferes with the chemosensitivity of CRC.
Collapse
Affiliation(s)
- Haojun Yang
- Department of Gastrointestinal Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Jie Zhu
- Department of Gastrointestinal Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Guangyao Wang
- Department of Gastrointestinal Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Hanyang Liu
- Department of Gastrointestinal Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yan Zhou
- Department of Gastrointestinal Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Jun Qian
- Department of Gastrointestinal Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
64
|
Metabolic Constrains Rule Metastasis Progression. Cells 2020; 9:cells9092081. [PMID: 32932943 PMCID: PMC7563739 DOI: 10.3390/cells9092081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
Metastasis formation accounts for the majority of tumor-associated deaths and consists of different steps, each of them being characterized by a distinctive adaptive phenotype of the cancer cells. Metabolic reprogramming represents one of the main adaptive phenotypes exploited by cancer cells during all the main steps of tumor and metastatic progression. In particular, the metabolism of cancer cells evolves profoundly through all the main phases of metastasis formation, namely the metastatic dissemination, the metastatic colonization of distant organs, the metastatic dormancy, and ultimately the outgrowth into macroscopic lesions. However, the metabolic reprogramming of metastasizing cancer cells has only recently become the subject of intense study. From a clinical point of view, the latter steps of the metastatic process are very important, because patients often undergo surgical removal of the primary tumor when cancer cells have already left the primary tumor site, even though distant metastases are not clinically detectable yet. In this scenario, to precisely elucidate if and how metabolic reprogramming drives acquisition of cancer-specific adaptive phenotypes might pave the way to new therapeutic strategies by combining chemotherapy with metabolic drugs for better cancer eradication. In this review we discuss the latest evidence that claim the importance of metabolic adaptation for cancer progression.
Collapse
|
65
|
Othman N, Sasidharan S. Validation of target proteins of down-regulated miR-221-5p in HeLa cells treated with Polyalthia longifolia leaf extract using label-free quantitative proteomics approaches. 3 Biotech 2020; 10:399. [PMID: 32850286 DOI: 10.1007/s13205-020-02396-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/12/2020] [Indexed: 12/14/2022] Open
Abstract
The current study was conducted to validate the target proteins of down-regulated miR-221-5p in HeLa cells treated with P. longifolia leaf extract. The validation was done by label-free quantitative proteomics approaches, Gene Ontology (GO) and protein-protein interaction analyses after the cells transfected with miRNA mimics or miRNA inhibitor. The LC-ESI-MS/MS identified a total of 1061, 668, 564 and 940 proteins from untransfected and untreated HeLa cells, untransfected P. longifolia leaf extract-treated HeLa cells, miR-221-5p mimic-transfected P. longifolia leaf extract-treated HeLa cells and anti-miR-221-5p-transfected P. longifolia leaf extract-treated HeLa cells, respectively. The proteomic, GO and protein-protein interaction analyses showed that P. longifolia treatment regulated various protein expressions in HeLa cells, namely tropomyosin, PRKC apoptosis WT1 regulator protein (PAWR), alpha-enolase and beta-enolase, which induced apoptotic cell death after the down-regulation of miR-221-5p. Conclusively, this study showed P. longifolia leaf extract's vital contribution in regulating various protein expressions in HeLa cervical cancer cells to induce apoptotic cell death after downregulation miR-221-5p.
Collapse
Affiliation(s)
- Nurulhasanah Othman
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), 11800 Gelugor, Pulau Pinang Malaysia
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), 11800 Gelugor, Pulau Pinang Malaysia
| |
Collapse
|
66
|
Metabolic Reprogramming of Chemoresistant Cancer Cells and the Potential Significance of Metabolic Regulation in the Reversal of Cancer Chemoresistance. Metabolites 2020; 10:metabo10070289. [PMID: 32708822 PMCID: PMC7408410 DOI: 10.3390/metabo10070289] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/15/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming is one of the hallmarks of tumors. Alterations of cellular metabolism not only contribute to tumor development, but also mediate the resistance of tumor cells to antitumor drugs. The metabolic response of tumor cells to various chemotherapy drugs can be analyzed by metabolomics. Although cancer cells have experienced metabolic reprogramming, the metabolism of drug resistant cancer cells has been further modified. Metabolic adaptations of drug resistant cells to chemotherapeutics involve redox, lipid metabolism, bioenergetics, glycolysis, polyamine synthesis and so on. The proposed metabolic mechanisms of drug resistance include the increase of glucose and glutamine demand, active pathways of glutaminolysis and glycolysis, promotion of NADPH from the pentose phosphate pathway, adaptive mitochondrial reprogramming, activation of fatty acid oxidation, and up-regulation of ornithine decarboxylase for polyamine production. Several genes are associated with metabolic reprogramming and drug resistance. Intervening regulatory points described above or targeting key genes in several important metabolic pathways may restore cell sensitivity to chemotherapy. This paper reviews the metabolic changes of tumor cells during the development of chemoresistance and discusses the potential of reversing chemoresistance by metabolic regulation.
Collapse
|
67
|
Ghafouri-Fard S, Vafaee R, Shoorei H, Taheri M. MicroRNAs in gastric cancer: Biomarkers and therapeutic targets. Gene 2020; 757:144937. [PMID: 32640300 DOI: 10.1016/j.gene.2020.144937] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/09/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are a group of non-coding RNAs that have critical roles in regulation of expression of genes. They can inhibit or decrease expression of target genes mostly via interaction with 3' untranslated region of their targets. Their crucial roles in the regulation of expression of tumor suppressor genes and oncogenes have potentiated them as contributors in tumorigenesis. Moreover, their stability in body fluids has enhanced their potential as cancer biomarkers. In the present review article, we describe the role of miRNAs in the pathogenesis of gastric cancer and advances in application of miRNAs as biomarkers and therapeutic targets in this kind of malignancy.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Vafaee
- Proteomics Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
68
|
Shao M, Zhang J, Zhang J, Shi H, Zhang Y, Ji R, Mao F, Qian H, Xu W, Zhang X. SALL4 promotes gastric cancer progression via hexokinase II mediated glycolysis. Cancer Cell Int 2020; 20:188. [PMID: 32489324 PMCID: PMC7247129 DOI: 10.1186/s12935-020-01275-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/16/2020] [Indexed: 02/11/2023] Open
Abstract
Background The stem cell factor SALL4 is reactivated in human cancers. SALL4 plays diverse roles in tumor growth, metastasis, and drug resistance, but its role in tumor metabolism has not been well characterized. Methods The glycolytic levels of gastric cancer cells were detected by glucose uptake, lactate production, lactate dehydrogenase activity, ATP level, and hexokinase activity. QRT-PCR and western blot were used to detect the changes in the expression of glycolytic genes and proteins. The downstream target genes of SALL4 were identified by microarray. The regulation of hexokinase II (HK-2) by SALL4 was analyzed by luciferase reporter assay and chromatin immunoprecipitation assay. Transwell migration assay, matrigel invasion assay, cell counting assay and colony formation assay were used to study the roles of HK-2 regulation by SALL4 in gastric cancer cells in vitro. The effects of SALL4 on glycolysis and gastric cancer progression in vivo were determined by subcutaneous xenograft and peritoneal metastasis tumor models in nude mice. Results SALL4 knockdown inhibited glucose uptake, lactate production, lactate dehydrogenase activity, ATP level and hexokinase activity in gastric cancer cells, and decreased the expression of glycolytic genes and proteins. Microarray analysis showed that SALL4 knockdown affected glycolysis-related pathway. The regulation of HK-2 gene expression by SALL4 was confirmed by luciferase reporter assay and chromatin immunoprecipitation assay. HK-2 knockdown abrogated the promotion of glycolysis by SALL4 in gastric cancer cells, indicating that HK-2 acts as a downstream effector of SALL4. Moreover, HK-2 knockdown reversed the promoting role of SALL4 in gastric cancer cell proliferation, migration and invasion, suggesting that SALL4 drives gastric cancer progression by upregulating HK-2. Conclusions SALL4 promotes gastric cancer progression through HK-2-mediated glycolysis, which reveals a new mechanism for the oncogenic roles of SALL4 in cancer.
Collapse
Affiliation(s)
- Meng Shao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013 China
| | - Jiayin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013 China
| | - Jiahui Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013 China
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013 China
| | - Yu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013 China
| | - Runbi Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013 China.,Department of Clinical Laboratory Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002 China
| | - Fei Mao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013 China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013 China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013 China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013 China
| |
Collapse
|
69
|
Zhao Z, Ji M, Wang Q, He N, Li Y. miR-16-5p/PDK4-Mediated Metabolic Reprogramming Is Involved in Chemoresistance of Cervical Cancer. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:509-517. [PMID: 32577500 PMCID: PMC7301169 DOI: 10.1016/j.omto.2020.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/20/2020] [Indexed: 12/26/2022]
Abstract
Cervical cancer is one of the most prevalent malignancies in women worldwide. Therefore, investigation about molecular pathogenesis and related therapy targets of cervical cancer is an emergency. The molecular mechanisms responsible for the chemoresistance of cervical cancer were investigated by the use of doxorubicin (Dox)-resistant HeLa/Dox and SiHa/Dox cells. Our data showed that chemoresistant cells exhibited significantly higher glucose consumption, lactate production rate, and ATP levels than that of their parental cells. Among metabolic and glycolytic related genes, the expression of PDK4 was upregulated in Dox-resistant cells. Knockdown of PDK4 can decrease glucose consumption, lactate production rate, and ATP levels and further sensitize resistant cervical cancer cells to Dox treatment. By screening microRNAs (miRNAs), which can regulate expression of PDK4, we found that miR-16-5p was downregulated in chemoresistant cells. Overexpression of miR-16-5p can decrease the expression of PDK4 and sensitize the resistant cells to Dox treatment. Xenograft models confirmed that knockdown of PDK4 can increase chemotherapy efficiency for in vivo tumor growth. Collectively, our data suggested that miR-16-5p/PDK4-mediated metabolic reprogramming is involved in chemoresistance of cervical cancer.
Collapse
Affiliation(s)
- Zhao Zhao
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mei Ji
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qianqing Wang
- Department of Gynaecological Oncology, Xinxiang Central Hospital, Xinxiang 453000, China
| | - Nannan He
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yue Li
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
70
|
Qian Y, Wu X, Wang H, Hou G, Han X, Song W. MicroRNA-4290 suppresses PDK1-mediated glycolysis to enhance the sensitivity of gastric cancer cell to cisplatin. ACTA ACUST UNITED AC 2020; 53:e9330. [PMID: 32321153 PMCID: PMC7184963 DOI: 10.1590/1414-431x20209330] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/10/2020] [Indexed: 02/06/2023]
Abstract
The development of chemotherapy resistance significantly impairs the efficiency of chemotherapy, but the underlying mechanisms of chemotherapy resistance in gastric cancer (GC) are complicated and still need to be further explored. Here, we aimed to reveal the effects of miR-4290/PDK1 (pyruvate dehydrogenase kinase 1) axis on chemotherapy resistance of GC in vitro. The expression patterns of miR-4290 in GC tissues and cell lines were determined by real-time quantitative PCR. Kaplan-Meier was used to assess the relationship between miR-4290 expression levels and patients' overall survival. CCK-8 and flow cytometry technologies were applied to detect cell proliferation and apoptosis. The luciferase gene reporter assay was used to evaluate the interaction between miR-4290 and PDK1. miR-4290 was lowly expressed in GC tissues and cell lines, which was closely associated with the shorter overall survival of GC patients. miR-4290 mimics significantly inhibited cell proliferation and induced cell apoptosis, as well as induced a significant reduction in the expression of PDK1. Moreover, miR-4290 significantly inhibited glycolysis and decreased the IC50 value to cisplatin in SGC7901 cells, whereas these effects were abolished and cell apoptosis was promoted when PDK1 was overexpressed. In conclusion, this study revealed that miR-4290 suppressed PDK1-mediated glycolysis to enhance the sensitivity of GC cells to cisplatin.
Collapse
Affiliation(s)
- Yan Qian
- Department of Gastric Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Xu Wu
- Department of Gastric Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Haixiao Wang
- Department of Gastric Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Guowei Hou
- Department of Gastric Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Xiao Han
- Department of Gastric Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Wei Song
- Department of Gastroenterology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| |
Collapse
|
71
|
Santana-Rivera Y, Rabelo-Fernández RJ, Quiñones-Díaz BI, Grafals-Ruíz N, Santiago-Sánchez G, Lozada-Delgado EL, Echevarría-Vargas IM, Apiz J, Soto D, Rosado A, Meléndez L, Valiyeva F, Vivas-Mejía PE. Reduced expression of enolase-1 correlates with high intracellular glucose levels and increased senescence in cisplatin-resistant ovarian cancer cells. Am J Transl Res 2020; 12:1275-1292. [PMID: 32355541 PMCID: PMC7191177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Despite good responses to first-line treatment with platinum-based combination chemotherapy, most ovarian cancer patients will relapse and eventually develop a platinum-resistant disease with a poor overall prognosis. The molecular events leading to the cisplatin resistance of ovarian cancer cells are not fully understood. Here, we performed a proteomic analysis to identify protein candidates deregulated in a cisplatin-resistant ovarian cancer cell line (A2780CP20) in comparison to their sensitive counterpart (A2780). Forty-eight proteins were differentially abundant in A2780CP20, as compared with A2780, cells. Enolase-1 (ENO1) was significantly decreased in cisplatin-resistant ovarian cancer cells. Western blots and RT-PCR confirmed our findings. Ectopic ENO1 expression increased the sensitivity of ovarian cancer cells to cisplatin treatment. In contrast, small-interfering (siRNA)-based ENO1 silencing in A2780 cells reduced the sensitivity of these cells to cisplatin treatment. Whereas glucose consumption was lower, intracellular levels were higher in cisplatin-resistant ovarian cancer cells as compared with their cisplatin-sensitive counterparts. Senescence-associated β-galactosidase (β-Gal) levels were higher in cisplatin-resistant ovarian cancer cells as compared with cisplatin-sensitive ovarian cancer cells. β-Gal levels were decreased in ENO1 overexpressed clones. Protein levels of the cell cycle regulators and senescence markers p21 and p53 showed opposite expression patterns in cisplatin-resistant compared with cisplatin sensitive cells. Our studies suggest that decreased expression of ENO1 promotes glucose accumulation, induces senescence, and leads to cisplatin resistance of ovarian cancer cells.
Collapse
Affiliation(s)
- Yasmarie Santana-Rivera
- Department of Interdisciplinary Sciences, University of Puerto Rico, Rio Piedras CampusSan Juan 00927, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
| | - Robert J Rabelo-Fernández
- Department of Biology, University of Puerto Rico, Rio Piedras CampusSan Juan 00927, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
| | - Blanca I Quiñones-Díaz
- Department of Biochemistry, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
| | - Nilmary Grafals-Ruíz
- Department of Physiology, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
| | - Ginette Santiago-Sánchez
- Department of Biochemistry, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
| | - Eunice L Lozada-Delgado
- Department of Biology, University of Puerto Rico, Rio Piedras CampusSan Juan 00927, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
| | - Ileabett M Echevarría-Vargas
- Department of Biochemistry, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
| | - Juan Apiz
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
- Department of Biology, University of Puerto Rico, Cayey CampusCayey 00736, Puerto Rico
| | - Daniel Soto
- Department of Biology, University of Puerto Rico, Rio Piedras CampusSan Juan 00927, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
| | - Andrea Rosado
- Department of Interdisciplinary Sciences, University of Puerto Rico, Rio Piedras CampusSan Juan 00927, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
| | - Loyda Meléndez
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
| | - Fatima Valiyeva
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
| | - Pablo E Vivas-Mejía
- Department of Biochemistry, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
| |
Collapse
|
72
|
Wang L, Yin H, Bi R, Gao G, Li K, Liu HL. ENO1-targeted superparamagnetic iron oxide nanoparticles for detecting pancreatic cancer by magnetic resonance imaging. J Cell Mol Med 2020; 24:5751-5757. [PMID: 32285549 PMCID: PMC7214157 DOI: 10.1111/jcmm.15237] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to investigate in vitro magnetic resonance imaging (MRI) of PDAC using ENO1‐targeted superparamagnetic iron oxide nanoparticles and xenograft models. Expression level and location of ENO1 protein in pancreatic cancer cell lines of CFPAC‐1 and MiaPaCa‐2 were detected by Western blotting, flow cytometry and confocal microscopy. Dex‐g‐PCL/SPIO nanoparticles targeting ENO1 were constructed with ENO1 antibody and characterized by MRI. In addition, ENO1‐Dex‐g‐PCL/SPIO nanoparticles were tested to assess their efficacy on the detection of PDAC using in vitro and in vivo MRI. The results showed that ENO1 was expressed in both human PDAC cell lines of CFPAC‐1 and MiaPaCa‐2, demonstrating that the localization of cytoplasm and membrane was dominant. It was confirmed that ENO1 antibody was connected to the SPIO surface in ENO1‐Dex‐g‐PCL/SPIO nanoparticles. The nanoparticles had satisfactory superparamagnetism and significantly enhance the detection of PDAC by in vivo and in vitro MRI. In conclusion, ENO1 can serve as a membrane protein expressed on human PDAC cell lines. ENO1‐targeted SPIO nanoparticles using ENO1 antibody can increase the efficiency of detection of PDAC by in vitro and in vivo MRI.
Collapse
Affiliation(s)
- Lei Wang
- Department of Gastroenterology, The Ninth People's Hospital Affiliated to the School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hang Yin
- Department of Gastroenterology, The Ninth People's Hospital Affiliated to the School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Rongrong Bi
- Department of Pulmonary, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guo Gao
- Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Kaicheng Li
- Department of Radiology, The Ninth People's Hospital Affiliated to the School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hai-Lin Liu
- Department of Gastroenterology, The Ninth People's Hospital Affiliated to the School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
73
|
Chen JMM, Chiu SC, Chen KC, Huang YRJ, Liao YTA, Yu CTR. Enolase 1 differentially contributes to cell transformation in lung cancer but not in esophageal cancer. Oncol Lett 2020; 19:3189-3196. [PMID: 32256815 PMCID: PMC7074250 DOI: 10.3892/ol.2020.11427] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022] Open
Abstract
Enolase transforms 2-phospho-D-glycerate into phosphoenolpyruvate during glycolysis. The human enolase (ENO) family comprises three members named ENO3, which is restricted to muscle tissues, ENO2, which is neuron- and neuroendocrine tissue-specific, and ENO1, which is expressed in almost all tissues. ENO1 is involved in various types of human cancer, including retinoblastoma, hepatocellular carcinoma, pancreatic cancer, renal cell carcinoma, cholangiocarcinoma and gastric cancer. Furthermore, ENO1 enhances cell transformation in numerous cancer cell lines. It has been reported that ENO1 is involved in various activities that are detrimental to cell transformation, including apoptosis and differentiation. However, a few studies demonstrated that ENO1 can be down- or upregulated in various types of lung cancer, which suggests that ENO1 has an ambiguous role in the development of lung cancer. The present study aimed to investigate the differential influences of ENO1 on various types of cancer, and to clarify the role of ENO1 in lung cancer in particular. Western blotting was performed to assess ENO1 protein expression levels in lung cancer and esophageal cancer tissues. Furthermore, exogenous ENO1 was overexpressed in cell lines derived from various tissues and single cell proliferation, flowcytometric analysis, and western blotting were performed to determine the cell proliferation rate, cell transformation status, cell cycle progression and the expression of cell cycle regulators, such as cyclins and cyclin-dependent kinases, and survival factors, such as MAPK and AKT. The results demonstrated that ENO1 was upregulated in collected panels of lung cancer tissues, but not in esophageal cancer tissues. In addition, overexpression of ectopic ENO1 promoted cell proliferation and survival in lung cancer cell lines, which was not the case in other cells, including an esophageal cell line. Furthermore, mechanistic analyses revealed that ENO1 enhanced cell proliferation by accelerating G1 progression and upregulating G1 phase cyclin-dependent kinase 6 (CDK6), and improved cell survival by upregulating p38 in the MAPK cascade and increasing p-AKT in the AKT cascade, in particular in lung cancer cell lines. Overall, the results from the present study demonstrated that ENO1 may contribute to the development of lung cancers, but not esophageal cancers.
Collapse
Affiliation(s)
- Jo-Mei Maureen Chen
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou 54561, Taiwan, R.O.C
| | - Shao-Chih Chiu
- Center for Neuropsychiatry, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C.,Graduate Institute of Immunology, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Kun-Chieh Chen
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan, R.O.C.,Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| | - Yun-Ru Jaoying Huang
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou 54561, Taiwan, R.O.C
| | - Yu-Ting Amber Liao
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou 54561, Taiwan, R.O.C.,Center for Neuropsychiatry, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| | - Chang-Tze Ricky Yu
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou 54561, Taiwan, R.O.C
| |
Collapse
|
74
|
Links between cancer metabolism and cisplatin resistance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:107-164. [PMID: 32475471 DOI: 10.1016/bs.ircmb.2020.01.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cisplatin is one of the most potent and widely used chemotherapeutic agent in the treatment of several solid tumors, despite the high toxicity and the frequent relapse of patients due to the onset of drug resistance. Resistance to chemotherapeutic agents, either intrinsic or acquired, is currently one of the major problems in oncology. Thus, understanding the biology of chemoresistance is fundamental in order to overcome this challenge and to improve the survival rate of patients. Studies over the last 30 decades have underlined how resistance is a multifactorial phenomenon not yet completely understood. Recently, tumor metabolism has gained a lot of interest in the context of chemoresistance; accumulating evidence suggests that the rearrangements of the principal metabolic pathways within cells, contributes to the sensitivity of tumor to the drug treatment. In this review, the principal metabolic alterations associated with cisplatin resistance are highlighted. Improving the knowledge of the influence of metabolism on cisplatin response is fundamental to identify new possible metabolic targets useful for combinatory treatments, in order to overcome cisplatin resistance.
Collapse
|
75
|
Ngoi NYL, Eu JQ, Hirpara J, Wang L, Lim JSJ, Lee SC, Lim YC, Pervaiz S, Goh BC, Wong ALA. Targeting Cell Metabolism as Cancer Therapy. Antioxid Redox Signal 2020; 32:285-308. [PMID: 31841375 DOI: 10.1089/ars.2019.7947] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Cancer cells exhibit altered metabolic pathways to keep up with biosynthetic and reduction-oxidation needs during tumor proliferation and metastasis. The common induction of metabolic pathways during cancer progression, regardless of cancer histio- or genotype, makes cancer metabolism an attractive target for therapeutic exploitation. Recent Advances: Emerging data suggest that these altered pathways may even result in resistance to anticancer therapies. Identifying specific metabolic dependencies that are unique to cancer cells has proved challenging in this field, limiting the therapeutic window for many candidate drug approaches. Critical Issues: Cancer cells display significant metabolic flexibility in nutrient-limited environments, hampering the longevity of suppressing cancer metabolism through any singular approach. Combinatorial "synthetic lethal" approaches may have a better chance for success and promising strategies are reviewed here. The dynamism of the immune system adds a level of complexity, as various immune populations in the tumor microenvironment often share metabolic pathways with cancer, with successive alterations during immune activation and quiescence. Decoding the reprogramming of metabolic pathways within cancer cells and stem cells, as well as examining metabolic symbiosis between components of the tumor microenvironment, would be essential to further meaningful drug development within the tumor's metabolic ecosystem. Future Directions: In this article, we examine evidence for the therapeutic potential of targeting metabolic alterations in cancer, and we discuss the drawbacks and successes that have stimulated this field.
Collapse
Affiliation(s)
- Natalie Y L Ngoi
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Jie Qing Eu
- Department of Physiology and Medical Science Cluster Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cancer Science Institute, Singapore, National University of Singapore, Singapore
| | - Jayshree Hirpara
- Department of Physiology and Medical Science Cluster Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cancer Science Institute, Singapore, National University of Singapore, Singapore
| | - Lingzhi Wang
- Cancer Science Institute, Singapore, National University of Singapore, Singapore
| | - Joline S J Lim
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Soo-Chin Lee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore.,Cancer Science Institute, Singapore, National University of Singapore, Singapore
| | - Yaw-Chyn Lim
- Department of Physiology and Medical Science Cluster Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shazib Pervaiz
- Department of Physiology and Medical Science Cluster Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore.,National University Cancer Institute, National University Health System, Singapore
| | - Boon Cher Goh
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore.,Cancer Science Institute, Singapore, National University of Singapore, Singapore
| | - Andrea L A Wong
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore.,Cancer Science Institute, Singapore, National University of Singapore, Singapore
| |
Collapse
|
76
|
Ma L, Zong X. Metabolic Symbiosis in Chemoresistance: Refocusing the Role of Aerobic Glycolysis. Front Oncol 2020; 10:5. [PMID: 32038983 PMCID: PMC6992567 DOI: 10.3389/fonc.2020.00005] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
Abstract
Cellular metabolic reprogramming is now recognized as a hallmark of tumors. Altered tumor metabolism determines the malignant biological behaviors and phenotypes of cancer. More recently, studies have begun to reveal that cancer cells generally exhibit increased glycolysis or oxidative phosphorylation (OXPHOS) for Adenosine Triphosphate(ATP)generation, which is frequently associated with drug resistance. The metabolism of drug-resistant cells is regulated by the PI3K/AKT/mTOR pathway which ultimately confer cancer cells drug resistance phenotype. The key enzymes involved in glycolysis and the key molecules in relevant pathways have been used as targets to reverse drug resistance. In this review, we highlight our current understanding of the role of metabolic symbiosis in therapeutic resistance and discuss the ongoing effort to develop metabolic inhibitors as anti-cancer drugs to overcome drug resistance to classical chemotherapy.
Collapse
Affiliation(s)
- Lisi Ma
- Department of Breast Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiangyun Zong
- Department of Breast Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
77
|
Chen R, Li D, Zheng M, Chen B, Wei T, Wang Y, Li M, Huang W, Tong Q, Wang Q, Zhu Y, Fang W, Guo L, Fang S. FGFRL1 affects chemoresistance of small-cell lung cancer by modulating the PI3K/Akt pathway via ENO1. J Cell Mol Med 2020; 24:2123-2134. [PMID: 31957179 PMCID: PMC7011138 DOI: 10.1111/jcmm.14763] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/21/2019] [Accepted: 08/31/2019] [Indexed: 12/18/2022] Open
Abstract
Fibroblast growth factor receptor‐like 1 (FGFRL1), a member of the FGFR family, has been demonstrated to play important roles in various cancers. However, the role of FGFRL1 in small‐cell lung cancer (SCLC) remains unclear. Our study aimed to investigate the role of FGFRL1 in chemoresistance of SCLC and elucidate the possible molecular mechanism. We found that FGFRL1 levels are significantly up‐regulated in multidrug‐resistant SCLC cells (H69AR and H446DDP) compared with the sensitive parental cells (H69 and H446). In addition, clinical samples showed that FGFRL1 was overexpressed in SCLC tissues, and high FGFRL1 expression was associated with the clinical stage, chemotherapy response and survival time of SCLC patients. Knockdown of FGFRL1 in chemoresistant SCLC cells increased chemosensitivity by increasing cell apoptosis and cell cycle arrest, whereas overexpression of FGFRL1 in chemosensitive SCLC cells produced the opposite results. Mechanistic investigations showed that FGFRL1 interacts with ENO1, and FGFRL1 was found to regulate the expression of ENO1 and its downstream signalling pathway (the PI3K/Akt pathway) in SCLC cells. In brief, our study demonstrated that FGFRL1 modulates chemoresistance of SCLC by regulating the ENO1‐PI3K/Akt pathway. FGFRL1 may be a predictor and a potential therapeutic target for chemoresistance in SCLC.
Collapse
Affiliation(s)
- Rui Chen
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Oncology, Jiujiang First People's Hospital, Jiujiang, China
| | - Deyu Li
- Department of Medical Oncology, Provincial Clinical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Meng Zheng
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Chen
- Department of Hepatic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ting Wei
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Wang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Man Li
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weimei Huang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qin Tong
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qi Wang
- Department of Medical Oncology, Provincial Clinical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Yaru Zhu
- Department of Cardiothoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Fang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Linlang Guo
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shun Fang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
78
|
Zhao X, Hu GF, Shi YF, Xu W. Research Progress in microRNA-Based Therapy for Gastric Cancer. Onco Targets Ther 2019; 12:11393-11411. [PMID: 31920330 PMCID: PMC6935305 DOI: 10.2147/ott.s221354] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC) is one of the leading causes of tumor-related mortality. In addition to surgery and endoscopic resection, systemic therapy remains the main treatment option for GC, especially for advanced-stage disease and for cases not suitable for surgical therapy. Hence, improving the efficacy of systemic therapy is still an urgent problem to overcome. In the past decade, the essential roles of microRNAs (miRNAs) in tumor treatment have been increasingly recognized. In particular, miRNAs were recently shown to reverse the resistance to chemotherapy drugs such as 5-fluorouracil, cisplatin, and doxorubicin. Synthesized nanoparticles loaded with mimics or inhibitors of miRNAs can directly target tumor cells to suppress their growth. Moreover, exosomes may serve as promising safe carriers for mimics or inhibitors of miRNAs to treat GC. Some miRNAs have also been shown to play roles in the mechanism of action of other anti-tumor drugs. Therefore, in this review, we highlight the research progress on microRNA-based therapy in GC and discuss the challenges and prospects associated with this strategy. We believe that microRNA-based therapy has the potential to offer a clinical benefit to GC patients, and this review would contribute to and motivate further research to promote this field toward this ultimate goal.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Hepatology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Gao-Feng Hu
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Yan-Fen Shi
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Wei Xu
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| |
Collapse
|
79
|
Ji H, Guo W, Niu C, Li Y, Lian S, Zhan X, Guo J, Zhen L, Yang H, Li S, Wang J. Metabonomics analysis of Zi goose follicular granulosa cells using ENO1 gene expression interference. J Anim Physiol Anim Nutr (Berl) 2019; 104:838-846. [PMID: 31821655 DOI: 10.1111/jpn.13254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/24/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023]
Abstract
The Zi goose is native to North-east China and is noted for its high egg production. Alpha enolase (ENO1) is a glycolytic enzyme which functions as a plasminogen receptor in follicular granulosa cells (FGCs), with several studies showing that FGCs can support follicular development. By transfecting the ENO1 interfering plasmid (shRNA) into FGCs, ENO1 expression in these cells was downregulated, suggesting the successful knock-down of ENO1 in these cells. In this knock-down model, we detected 13 metabolites from FGCs using LC/MS. When compared with the non-coding shRNA (NC) group, the lower level metabolites were (R)-(+)-citronellic acid, altretamine, 3-hydroxycaproic acid, heptadecanoic acid, cholecalciferol vitamin D3, indole, benzoic acid, capric acid, caffeic acid, azelaic acid, 3,4-dihydroxyhydrocinnamic acid and cholic acid, while oleic acid was detected at high levels. To further examine the results of metabolomics, six key metabolites were verified by gas chromatography-mass spectrometry (GC-MS). We found that vitamin D3, indole, benzoic acid, capric acid and cholic acid were significantly downregulated in the shRNA group, while oleic acid was significantly upregulated. This observation was consistent with the metabolomics data. Through these studies, we found that decreased ENO1 levels altered certain metabolite levels in FGCs.
Collapse
Affiliation(s)
- Hong Ji
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wenjin Guo
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chunyang Niu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yue Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xuelong Zhan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jingru Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Li Zhen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Huanmin Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
80
|
Zhou J, Zhang S, Chen Z, He Z, Xu Y, Li Z. CircRNA-ENO1 promoted glycolysis and tumor progression in lung adenocarcinoma through upregulating its host gene ENO1. Cell Death Dis 2019; 10:885. [PMID: 31767835 PMCID: PMC6877563 DOI: 10.1038/s41419-019-2127-7] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/12/2019] [Accepted: 10/04/2019] [Indexed: 01/16/2023]
Abstract
Lung adenocarcinoma (LUAD) has long been one of the predominant reasons for the global cancer-linked mortality. The tumor progression is shown by several studies to be promoted by increased glycolysis. Enolase 1 (ENO1), as a glycolysis enzyme, performs pivotal role in glucose metabolism and contributes to tumor progression of numerous cancers. Circular RNAs (circRNAs) are catching increasing attentions for their surging roles in regulating gene expression in cancers. Our work is to uncover the regulatory mechanism circ-ENO1 on its host gene ENO1 and its function in glycolysis and tumor progression. Circ-ENO1 and its host gene ENO1 were identified to be upregulated in LUAD cells. Functionally, silencing circ-ENO1 retarded glycolysis, inhibited proliferation, migration and EMT, induced apoptosis. The cytoplasmic localization of circ-ENO1 was determined by FISH and subcellular fractionation. Mechanistically, circ-ENO1 acted as a ceRNA to interact with miR-22-3p and upregulate ENO1 expression. In vivo experiments certified that circ-ENO1 drove tumor growth and metastasis in vivo. In summary, current study elucidated that circ-ENO1 promoted glycolysis and tumor progression in LUAD by miR-22-3p/ENO1 axis, indicating circ-ENO1 as a promising treatment target for LUAD patients.
Collapse
Affiliation(s)
- Jiayu Zhou
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou City, 310000, Zhejiang Province, China
| | - Shizhen Zhang
- Institute of translational Medicine, Zhejiang University, Hangzhou City, 310000, Zhejiang province, China
| | - Zhoumiao Chen
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou City, 310000, Zhejiang Province, China.
| | - Zhengfu He
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou City, 310000, Zhejiang Province, China
| | - Yong Xu
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou City, 310000, Zhejiang Province, China
| | - Zhijun Li
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou City, 310000, Zhejiang Province, China
| |
Collapse
|
81
|
Luo YJ, Huang QM, Ren Y, Liu ZL, Xu CF, Wang H, Xiao JW. Non-coding RNA in drug resistance of gastric cancer. World J Gastrointest Oncol 2019; 11:957-970. [PMID: 31798777 PMCID: PMC6883183 DOI: 10.4251/wjgo.v11.i11.957] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 09/21/2019] [Accepted: 10/03/2019] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related mortality worldwide. The poorly prognosis and survival of GC are due to diagnose in an advanced, non-curable stage and with a limited response to chemotherapy. The acquisition of drug resistance accounts for the majority of therapy failure of chemotherapy in GC patients. Although the mechanisms of anticancer drug resistance have been broadly studied, the regulation of these mechanisms has not been completely understood. Accumulating evidence has recently highlighted the role of non-coding RNAs (ncRNAs), including long non-coding RNAs and microRNAs, in the development and maintenance of drug resistance due to their regulatory features in specific genes involved in the chemoresistant phenotype of GC. We review the literature on ncRNAs in drug resistance of GC. This review summarizes the current knowledge about the ncRNAs’ characteristics, their regulation of the genes involved in chemoresistance and their potential as targeted therapies for personalized treatment in resistant GC.
Collapse
Affiliation(s)
- Ya-Jun Luo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Qing-Mei Huang
- Department of Oncology, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Yan Ren
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Zi-Lin Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Cheng-Fei Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Hao Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Jiang-Wei Xiao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| |
Collapse
|
82
|
Korshunov DA, Kondakova IV, Shashova EE. Modern Perspective on Metabolic Reprogramming in Malignant Neoplasms. BIOCHEMISTRY (MOSCOW) 2019; 84:1129-1142. [PMID: 31694509 DOI: 10.1134/s000629791910002x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metabolic reprogramming is one of the central features of transformed cells. Elucidation of interactions between oncogenic signaling and cell metabolic processes has become the basis for extensive studies of metabolism reprogramming in tumor tissue. The review summarizes the key results of studies on the catabolic and anabolic rearrangements in tumor cells with special emphasis on carbohydrate, lipid, amino acid, and acetate metabolism determining the cancer phenotype of cells.
Collapse
Affiliation(s)
- D A Korshunov
- Tomsk National Research Medical Center, Tomsk, 634009, Russia.
| | - I V Kondakova
- Tomsk National Research Medical Center, Tomsk, 634009, Russia
| | - E E Shashova
- Tomsk National Research Medical Center, Tomsk, 634009, Russia
| |
Collapse
|
83
|
Up-regulated ENO1 promotes the bladder cancer cell growth and proliferation via regulating β-catenin. Biosci Rep 2019; 39:BSR20190503. [PMID: 31431517 PMCID: PMC6734116 DOI: 10.1042/bsr20190503] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/09/2019] [Accepted: 08/16/2019] [Indexed: 12/17/2022] Open
Abstract
Bladder cancer (BC) is the ninth most common malignancy throughout the world. The molecular mechanisms of this disease remain largely unclear. The glycolytic enzyme enolase 1 (ENO1) has been shown to regulate the development of various cancers. However, the significance of ENO1 in BC is underdetermined. In this study, we found that ENO1 was highly expressed in BC tissues and cells. High expression of ENO1 was associated with the poor survival of BC patients. Using lentivirus-mediated knockdown and over-expression, we revealed that ENO1 was critical for the growth and proliferation of BC cells. ENO1 over-expression also promoted the proliferation of SV-HUC-1 cells. At the molecular level, the cell cycle and apoptosis related genes were regulated by ENO1. β-catenin expression was positively regulated by ENO1. Furthermore, ectopic expression of β-catenin reversed the effect of ENO1 knockdown on T24 cell proliferation and growth. Opposite results were observed in β-catenin knockdown T24 cells. Our findings suggested that ENO1 functioned as an oncogene in BC through regulating cell cycle, apoptosis and β-catenin. Targeting ENO1/β-catenin cascade may benefit for BC patients.
Collapse
|
84
|
Wang L, Bi R, Yin H, Liu H, Li L. ENO1 silencing impaires hypoxia-induced gemcitabine chemoresistance associated with redox modulation in pancreatic cancer cells. Am J Transl Res 2019; 11:4470-4480. [PMID: 31396350 PMCID: PMC6684912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/21/2019] [Indexed: 06/10/2023]
Abstract
Resistance to Gemcitabine (GEM) is a crucial problem in treatment of pancreatic cancer. Many studies indicate the direct impact of glycolytic enzyme on chemoresistance. However, it still has not been known whether Enolase 1 (ENO1), a multifunctional glycolytic enzyme, is a potential target to overcome GEM resistance in pancreatic ductal adenocarcinoma (PDAC). In this study, we showed that ENO1 high expression was associated with poor prognosis of PDAC patients. Moreover, we investigated the impacts of ENO1 silencing on hypoxia induced GEM chemoresistance in CFPAC-1 and MiaPaCa-2 cells. The results showed that, targeting ENO1 using ENO1-shRNA could sensitize hypoxia induced chemoresistance in pancreatic cancer cells by modulation of redox homeostasis, the mechanisms appear to be associated with influences on proliferation, apoptosis, and cell cycle regulated by increased intracellular reactive oxygen species (ROS). We demonstrated that targeting ENO1 could be a potential strategy for overcoming hypoxia induced GEM chemoresistance in PDAC cells.
Collapse
Affiliation(s)
- Lei Wang
- Department of Gastroenterology, Shanghai Ninth Peoples’ Hospital, Shanghai Jiaotong UniversityShanghai 200011, China
| | - Rongrong Bi
- Department of Pulmonary, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200032, China
| | - Hang Yin
- Department of Gastroenterology, Shanghai Ninth Peoples’ Hospital, Shanghai Jiaotong UniversityShanghai 200011, China
| | - Hailin Liu
- Department of Gastroenterology, Shanghai Ninth Peoples’ Hospital, Shanghai Jiaotong UniversityShanghai 200011, China
| | - Lei Li
- Department of Gastroenterology, Shanghai Ninth Peoples’ Hospital, Shanghai Jiaotong UniversityShanghai 200011, China
| |
Collapse
|
85
|
Wang G, Wang YZ, Yu Y, Wang JJ, Yin PH, Xu K. Triterpenoids Extracted fromRhus chinensis MillAct Against Colorectal Cancer by Inhibiting Enzymes in Glycolysis and Glutaminolysis: Network Analysis and Experimental Validation. Nutr Cancer 2019; 72:293-319. [PMID: 31267795 DOI: 10.1080/01635581.2019.1631858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Gang Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Yu-Zhu Wang
- Department of Medicine, Jiangsu University, Zhenjiang City, China
| | - Yang Yu
- Department of Medicine, Jiangsu University, Zhenjiang City, China
| | - Jun-Jie Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Pei-Hao Yin
- Central laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Xu
- Central laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
86
|
Kotagama K, Schorr AL, Steber HS, Mangone M. ALG-1 Influences Accurate mRNA Splicing Patterns in the Caenorhabditis elegans Intestine and Body Muscle Tissues by Modulating Splicing Factor Activities. Genetics 2019; 212:931-951. [PMID: 31073019 PMCID: PMC6614907 DOI: 10.1534/genetics.119.302223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/06/2019] [Indexed: 01/05/2023] Open
Abstract
MicroRNAs (miRNAs) are known to modulate gene expression, but their activity at the tissue-specific level remains largely uncharacterized. To study their contribution to tissue-specific gene expression, we developed novel tools to profile putative miRNA targets in the Caenorhabditis elegans intestine and body muscle. We validated many previously described interactions and identified ∼3500 novel targets. Many of the candidate miRNA targets curated are known to modulate the functions of their respective tissues. Within our data sets we observed a disparity in the use of miRNA-based gene regulation between the intestine and body muscle. The intestine contained significantly more putative miRNA targets than the body muscle highlighting its transcriptional complexity. We detected an unexpected enrichment of RNA-binding proteins targeted by miRNA in both tissues, with a notable abundance of RNA splicing factors. We developed in vivo genetic tools to validate and further study three RNA splicing factors identified as putative miRNA targets in our study (asd-2, hrp-2, and smu-2), and show that these factors indeed contain functional miRNA regulatory elements in their 3'UTRs that are able to repress their expression in the intestine. In addition, the alternative splicing pattern of their respective downstream targets (unc-60, unc-52, lin-10, and ret-1) is dysregulated when the miRNA pathway is disrupted. A reannotation of the transcriptome data in C. elegans strains that are deficient in the miRNA pathway from past studies supports and expands on our results. This study highlights an unexpected role for miRNAs in modulating tissue-specific gene isoforms, where post-transcriptional regulation of RNA splicing factors associates with tissue-specific alternative splicing.
Collapse
Affiliation(s)
- Kasuen Kotagama
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, Arizona State University, Tempe, Arizona 85287
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, Arizona
| | - Anna L Schorr
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, Arizona State University, Tempe, Arizona 85287
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, Arizona
| | - Hannah S Steber
- Barrett, The Honors College, Arizona State University, Tempe, Arizona 85281
| | - Marco Mangone
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, Arizona State University, Tempe, Arizona 85287
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, Arizona
| |
Collapse
|
87
|
Li Y, Xu Q, Yang W, Wu T, Lu X. Oleanolic acid reduces aerobic glycolysis-associated proliferation by inhibiting yes-associated protein in gastric cancer cells. Gene 2019; 712:143956. [PMID: 31271843 DOI: 10.1016/j.gene.2019.143956] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/29/2019] [Accepted: 06/29/2019] [Indexed: 12/13/2022]
Abstract
Gastric cancer represents a common malignancy of digestive tract with high incidence and mortality. Increasing evidence suggests that the growth of gastric tumor cells relies largely on aerobic glycolysis. Currently, many potential anti-cancer candidates are derived from natural products. Here, we evaluated the effects of oleanolic acid (OA), a triterpenoid component widely found in the plants of Oleaceae family, on aerobic glycolysis and proliferation in human MKN-45 and SGC-7901 gastric cancer cells. Our results demonstrated that OA reduced the viability and proliferation of gastric cancer cells and inhibited the expression of cyclin A and cyclin-dependent kinase 2. OA blocked glycolysis in these cells evidenced by decreases in the uptake and consumption of glucose, intracellular lactate levels and extracellular acidification rate. Glycolysis inhibitor 2-deoxy-d-glucose, similar to OA, suppressed gastric cancer cell proliferation. OA also decreased the expression and intracellular activities of glycolysis rate-limiting enzymes hexokinase 2 (HK2) and phosphofructokinase 1 (PFK1). Moreover, OA downregulated the expression of hypoxia inducible factor-1α (HIF-1α) and decreased its nuclear abundance. Upregulation of HIF-1α by deferoxamine rescued OA-inhibited HK2 and PFK1. Furthermore, OA reduced the nuclear abundance of yes-associated protein (YAP) in gastric tumor cells. YAP inhibitor verteporfin, similar to OA, downregulated the expression of HIF-1α and glycolytic enzymes in gastric cancer cells; whereas overexpression of YAP abrogated all these effects of OA. Collectively, inhibition of YAP was responsible for OA blockade of HIF-1α-mediated aerobic glycolysis and proliferation in human gastric tumor cells. OA could be developed as a promising candidate for gastric cancer treatment.
Collapse
Affiliation(s)
- Yuyi Li
- Department of Spleen and Stomach and Hepatology, The Kunshan Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, Jiangsu, China; Department of Spleen and Stomach and Hepatology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, China
| | - Qianfei Xu
- Department of Spleen and Stomach and Hepatology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, China
| | - Wei Yang
- Department of Spleen and Stomach and Hepatology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, China
| | - Tongli Wu
- Department of Gastroenterology, The Fourth People's Hospital of Kunshan, Kunshan, Jiangsu, China
| | - Xirong Lu
- Department of Spleen and Stomach and Hepatology, The Kunshan Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, Jiangsu, China; Department of Spleen and Stomach and Hepatology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, China.
| |
Collapse
|
88
|
Zhu L, Zhu Y, Han S, Chen M, Song P, Dai D, Xu W, Jiang T, Feng L, Shin VY, Wang X, Jin H. Impaired autophagic degradation of lncRNA ARHGAP5-AS1 promotes chemoresistance in gastric cancer. Cell Death Dis 2019; 10:383. [PMID: 31097692 PMCID: PMC6522595 DOI: 10.1038/s41419-019-1585-2] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/18/2019] [Accepted: 04/08/2019] [Indexed: 01/08/2023]
Abstract
Chemoresistance remains the uppermost disincentive for cancer treatment on account of many genetic and epigenetic alterations. Long non-coding RNAs (lncRNAs) are emerging players in promoting cancer initiation and progression. However, the regulation and function in chemoresistance are largely unknown. Herein, we identified ARHGAP5-AS1 as a lncRNA upregulated in chemoresistant gastric cancer cells and its knockdown reversed chemoresistance. Meanwhile, high ARHGAP5-AS1 expression was associated with poor prognosis of gastric cancer patients. Intriguingly, its abundance is affected by autophagy and SQSTM1 is responsible for transporting ARHGAP5-AS1 to autophagosomes. Inhibition of autophagy in chemoresistant cells, thus, resulted in the upregulation of ARHGAP5-AS1. In turn, it activated the transcription of ARHGAP5 in the nucleus by directly interacting with ARHGAP5 promoter. Interestingly, ARHGAP5-AS1 also stabilized ARHGAP5 mRNA in the cytoplasm by recruiting METTL3 to stimulate m6A modification of ARHGAP5 mRNA. As a result, ARHGAP5 was upregulated to promote chemoresistance and its upregulation was also associated with poor prognosis in gastric cancer. In summary, impaired autophagic degradation of lncRNA ARHGAP5-AS1 in chemoresistant cancer cells promoted chemoresistance. It can activate the transcription of ARHGAP5 in the nucleus and stimulate m6A modification of ARHGAP5 mRNA to stabilize ARHGAP5 mRNA in the cytoplasm by recruiting METTL3. Therefore, targeting ARHGAP5-AS1/ARHGAP5 axis might be a promising strategy to overcome chemoresistance in gastric cancer.
Collapse
Affiliation(s)
- Liyuan Zhu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Yiran Zhu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Shuting Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Miaoqin Chen
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Ping Song
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Dongjun Dai
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Wenxia Xu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Tingting Jiang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Lifeng Feng
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Vivian Y Shin
- Department of Surgery, the University of Hong Kong, Hong Kong SAR, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| |
Collapse
|
89
|
Xu J, Shi Q, Xu W, Zhou Q, Shi R, Ma Y, Chen D, Zhu L, Feng L, Cheng ASL, Morrison H, Wang X, Jin H. Metabolic enzyme PDK3 forms a positive feedback loop with transcription factor HSF1 to drive chemoresistance. Am J Cancer Res 2019; 9:2999-3013. [PMID: 31244938 PMCID: PMC6568185 DOI: 10.7150/thno.31301] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
Background & Aims: Dysregulation of metabolism plays an important role in the development and progression of cancers, while the underlying mechanisms remain largely unknown. This study aims to explore the regulation and relevance of glycolysis in chemoresistance of gastric cancer. Methods: Biochemical differences between chemoresistant and chemosensitive cancer cells were determined by metabolism profiling, microarray gene expression, PCR or western blotting. Cancer cell growth in vitro or in vivo were analyzed by viability, apoptosis and nude mice assay. Immunoprecipation was used to explore the interaction of proteins with other proteins or DNAs. Results: By metabolic and gene expression profiling, we found that pyruvate dehydrogenase kinase 3 (PDK3) was highly expressed to promote glycolysis in chemoresistant cancer cells. Its genetic or chemical inhibition reverted chemoresistance in vitro and in vivo. It was transcriptionally regulated by transcription factor HSF1 (Heat shock factor 1). Interestingly, PDK3 can localize in the nucleus and interact with HSF1 to disrupt its phosphorylation by GSK3β. Since HSF1 was subjected to FBXW7-catalyzed polyubiquitination in a phosphorylation-dependent manner, PDK3 prevented HSF1 from proteasomal degradation. Thus, metabolic enzyme PDK3 and transcription factor HSF1 forms a positive feedback loop to promote glycolysis. As a result, inhibition of HSF1 impaired enhanced glycolysis and reverted chemoresistance both in vitro and in vivo. Conclusions: PDK3 forms a positive feedback loop with HSF1 to drive glycolysis in chemoresistance. Targeting this mitonuclear communication may represent a novel approach to overcome chemoresistance.
Collapse
|
90
|
James NE, Cantillo E, Yano N, Chichester CO, DiSilvestro PA, Hovanesian V, Rao RSP, Kim KK, Moore RG, Ahsan N, Ribeiro JR. Septin-2 is overexpressed in epithelial ovarian cancer and mediates proliferation via regulation of cellular metabolic proteins. Oncotarget 2019; 10:2959-2972. [PMID: 31105878 PMCID: PMC6508204 DOI: 10.18632/oncotarget.26836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/23/2019] [Indexed: 02/06/2023] Open
Abstract
Epithelial Ovarian Cancer (EOC) is associated with dismal survival rates due to the fact that patients are frequently diagnosed at an advanced stage and eventually become resistant to traditional chemotherapeutics. Hence, there is a crucial need for new and innovative therapies. Septin-2, a member of the septin family of GTP binding proteins, has been characterized in EOC for the first time and represents a potential future target. Septin-2 was found to be overexpressed in serous and clear cell human patient tissue compared to benign disease. Stable septin-2 knockdown clones developed in an ovarian cancer cell line exhibited a significant decrease in proliferation rates. Comparative label-free proteomic analysis of septin-2 knockdown cells revealed differential protein expression of pathways associated with the TCA cycle, acetyl CoA, proteasome and spliceosome. Further validation of target proteins indicated that septin-2 plays a predominant role in post-transcriptional and translational modifications as well as cellular metabolism, and suggested the potential novel role of septin-2 in promoting EOC tumorigenesis through these mechanisms.
Collapse
Affiliation(s)
- Nicole E. James
- Division of Gynecologic Oncology, Program in Women’s Oncology, Department of Obstetrics and Gynecology, Women and Infants Hospital, Providence, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Evelyn Cantillo
- Division of Gynecologic Oncology, Program in Women’s Oncology, Department of Obstetrics and Gynecology, Women and Infants Hospital, Providence, RI, USA
| | - Naohiro Yano
- Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Providence, RI, USA
| | - Clinton O. Chichester
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Paul A. DiSilvestro
- Division of Gynecologic Oncology, Program in Women’s Oncology, Department of Obstetrics and Gynecology, Women and Infants Hospital, Providence, RI, USA
- Division of Biology and Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | | | - R. Shyama Prasad Rao
- Biostatistics and Bioinformatics Division, Yenepoya Research Center, Yenepoya University, Mangalore, India
| | - Kyukwang K. Kim
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Richard G. Moore
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Nagib Ahsan
- Center for Cancer Research Development, Proteomics Core Facility, Rhode Island Hospital, Providence, RI, USA
- Division of Biology and Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Jennifer R. Ribeiro
- Division of Gynecologic Oncology, Program in Women’s Oncology, Department of Obstetrics and Gynecology, Women and Infants Hospital, Providence, RI, USA
- Division of Biology and Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
91
|
Chen C, Tang X, Liu Y, Zhu J, Liu J. Induction/reversal of drug resistance in gastric cancer by non-coding RNAs (Review). Int J Oncol 2019; 54:1511-1524. [PMID: 30896792 PMCID: PMC6438417 DOI: 10.3892/ijo.2019.4751] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/21/2019] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer (GC) is one of the most prevalent and malignant types of cancer worldwide. In China, it is the second most common type of cancer and the malignancy with the highest incidence and mortality rate. Chemotherapy for GC is not always effective due to the development of drug resistance. Drug resistance, which is frequently observed in GC, undermines the success rate of chemotherapy and the survival of patients with GC. The dysregulation of non‑coding RNAs (ncRNAs), primarily microRNAs (miRNAs or miRs) and long non‑coding RNAs (lncRNAs), is involved in the development of GC drug resistance via numerous mechanisms. These mechanisms contribute to the involvement of a large and complex network of ncRNAs in drug resistance. In this review, we focus on and summarize the latest research on the specific mechanisms of action of miRNAs and lncRNAs that modulate drug resistance in GC. In addition, we discuss future prospects and clinical applications of ncRNAs as potential targeted therapies against the chemoresistance of GC.
Collapse
Affiliation(s)
- Chao Chen
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Xiaohuan Tang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yuanda Liu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jiaming Zhu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jingjing Liu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
92
|
Yan X, Zhuo Y, Bian X, Li J, Zhang Y, Ma L, Lu G, Guo MQ, Wu JL, Li N. Integrated Proteomics, Biological Functional Assessments, and Metabolomics Reveal Toosendanin-Induced Hepatic Energy Metabolic Disorders. Chem Res Toxicol 2019; 32:668-680. [DOI: 10.1021/acs.chemrestox.8b00350] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xiaojing Yan
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
- Changzhou Affiliated Hospital of Nanjing University of Chinese Medicine, 25 Heping North Road, Changzhou 213003, China
| | - Yue Zhuo
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Xiqing Bian
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Jianmin Li
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Yida Zhang
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Lidong Ma
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Guanghua Lu
- School of Ethnic Medicine, Chengdu University of Traditional Medicine, Chengdu 611137, China
| | - Ming-Quan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jian-Lin Wu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Na Li
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| |
Collapse
|
93
|
Huang Z, Lin B, Pan H, Du J, He R, Zhang S, Ouyang P. Gene expression profile analysis of ENO1 knockdown in gastric cancer cell line MGC-803. Oncol Lett 2019; 17:3881-3889. [PMID: 30930989 PMCID: PMC6425391 DOI: 10.3892/ol.2019.10053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/25/2019] [Indexed: 01/03/2023] Open
Abstract
Gastric cancer (GC) is the third leading cause of cancer-associated mortality. In a previous study, we identified that α-enolase (ENO1) promoted cell migration in GC, but the underlying molecular mechanisms remain to be fully elucidated. In the present study, small interfering RNAs were identified to interfere with ENO1 expression. The cDNA expression profiling was performed using an Affymetrix mRNA array platform to identify genes that may be associated with ENO1 in human GC cell line MGC-803. The differentially expressed genes (DEGs) were identified using the reverse transcription-quantitative polymerase chain reaction, followed by a series of bioinformatic analyses. As a result, there were 448 DEGs, among which 183 (40.85%) were downregulated. The most significant functional terms for the DEGs were the nuclear lumen for cell components (P=2.83×10−4), transcription for biological processes (P=3.7×10−7) and transcription factor activity for molecular functions (P=1.16×104). In total, six significant pathways were enriched, including the most common cancer-associated forkhead box O signaling pathway (P=0.0077), microRNAs in cancer (P=0.0183) and the cAMP signaling pathway (P=0.0415). Furthermore, a network analysis identified three hub genes (HUWE1, PPP1CB and HSPA4), which were all involved in tumor metastasis. Taken together, the DEGs, significant pathways and hub genes identified in the present study shed some light on the molecular mechanisms of ENO1 involved in the pathogenesis of GC.
Collapse
Affiliation(s)
- Zhigang Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China.,Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Bode Lin
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Haiyan Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Jinlin Du
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Rongwei He
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Shizhuo Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Ping Ouyang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
94
|
Ye M, Pang N, Wan T, Huang Y, Wei T, Jiang X, Zhou Y, Huang Y, Yang H, Zhang Z, Yang L. Oxidized Vitamin C (DHA) Overcomes Resistance to EGFR-targeted Therapy of Lung Cancer through Disturbing Energy Homeostasis. J Cancer 2019; 10:757-764. [PMID: 30719175 PMCID: PMC6360421 DOI: 10.7150/jca.28087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 10/28/2018] [Indexed: 02/07/2023] Open
Abstract
Switching aerobic respiration to anaerobic glycolysis of cancer cells plays an important role in development and progression of acquired resistance. Since vitamin C enabled the inhibition of glycolysis of cancer cells, and erlotinib-resistant sub-line of HCC827 (ER6 cells) switched its metabolic features to higher glycolysis for survival, we hypothesize that vitamin C is able to inhibit glycolysis of ER6 cells. In this study, we found that both reduced vitamin C and oxidized vitamin C (DHA) could selectively suppress the viability of ER6 cells. DHA was efficient in inhibiting glycolysis and leading to energy crisis, which could be one mechanism for overcoming drug resistance to erlotinib of ER6 cells. Our data suggest that applying DHA could be a novel treatment strategy for NSCLC with acquired resistance to targeted therapy.
Collapse
Affiliation(s)
- Mingtong Ye
- The First Women and Children's Hospital of Huizhou, Huizhou, Guangdong, PR China
| | - Nengzhi Pang
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, PR China
| | - Ting Wan
- Huizhou First People's Hospital, Huizhou, Guangdong, PR China
| | - Yuanling Huang
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, PR China
| | - Tianyi Wei
- The First Women and Children's Hospital of Huizhou, Huizhou, Guangdong, PR China
| | - Xuye Jiang
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, PR China
| | - Yujia Zhou
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, PR China
| | - Yufeng Huang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Hainan Yang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Zhenfeng Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Lili Yang
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, PR China
| |
Collapse
|
95
|
Liu Y, Zhang Z, Wang J, Chen C, Tang X, Zhu J, Liu J. Metabolic reprogramming results in abnormal glycolysis in gastric cancer: a review. Onco Targets Ther 2019; 12:1195-1204. [PMID: 30863087 PMCID: PMC6389007 DOI: 10.2147/ott.s189687] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Warburg effect in tumor cells involves the uptake of high levels of glucose, enhanced glycolysis, and the metabolism of pyruvate to lactic acid rather than oxidative phos-phorylation to generate energy under aerobic conditions. This effect is closely related to the occurrence, invasion, metastasis, drug resistance, and poor prognosis of gastric cancer (GC). Current research has further demonstrated that the Warburg effect in GC cells is not only mediated by the glycolysis pathway, but also includes roles for mitochondria, noncoding RNAs, and other proteins that do not directly regulate metabolism. As a result, changes in the glycolysis pathway not only lead to abnormal glucose metabolism, but they also affect mitochondrial functions, cellular processes such as apoptosis and cell cycle regulation, and the metabolism of lipids and amino acids. In this review, we discuss metabolic reprogramming in GC based on glycolysis, a possible link between glucose metabolism, lipid metabolism, and amino acid metabolism, and we clarify the role of mitochondria. We also examine recent studies of metabolic inhibitors in GC.
Collapse
Affiliation(s)
- Yuanda Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun 130041, China, ;
| | - Ze Zhang
- Department of General Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Junyang Wang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun 130041, China, ;
| | - Chao Chen
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun 130041, China, ;
| | - Xiaohuan Tang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun 130041, China, ;
| | - Jiaming Zhu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun 130041, China, ;
| | - Jingjing Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun 130041, China, ;
| |
Collapse
|
96
|
Sun L, Lu T, Tian K, Zhou D, Yuan J, Wang X, Zhu Z, Wan D, Yao Y, Zhu X, He S. Alpha-enolase promotes gastric cancer cell proliferation and metastasis via regulating AKT signaling pathway. Eur J Pharmacol 2018; 845:8-15. [PMID: 30582908 DOI: 10.1016/j.ejphar.2018.12.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/16/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022]
Abstract
Increased aerobic glycolysis is considered as a hallmark of cancer and targeting key glycolytic enzymes will be a promising therapeutic approach in cancer treatment. Alpha-enolase (ENO1), as a prominent glycolytic enzyme, is upregulated in multiple cancers and its overexpression is involved in tumor cell proliferation and metastasis. In the present study, we aimed to investigate the potential role of ENO1 in the development and progression of gastric cancer (GC). Here, we found that ENO1 expression was upregulated in human GC and was associated with Lauren type, lymph node metastasis (LNM) and TNM stage. Knockdown of ENO1 attenuated GC cell proliferation and metastasis and reversed epithelial-mesenchymal transition (EMT) progress in vitro while ENO1 overexpression did the opposite. ENO1 could modulate AKT signaling pathway in GC cells and the enhanced proliferation and migration ability induced by ENO1 overexpression was impaired after incubation with PI3K inhibitor Ly294002 in SGC7901 cells. Our data demonstrated that ENO1 enhances GC cell proliferation and metastasis through the protein kinase B (AKT) signaling pathway, indicating that ENO1/AKT signaling axis may serve as a potential target for treatment of GC.
Collapse
Affiliation(s)
- Liang Sun
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Ting Lu
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Kangjun Tian
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Diyuan Zhou
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jingfeng Yuan
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xuchao Wang
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Zheng Zhu
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Daiwei Wan
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yizhou Yao
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xinguo Zhu
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Songbing He
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| |
Collapse
|
97
|
Granulin A Synergizes with Cisplatin to Inhibit the Growth of Human Hepatocellular Carcinoma. Int J Mol Sci 2018; 19:ijms19103060. [PMID: 30301274 PMCID: PMC6213591 DOI: 10.3390/ijms19103060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 01/16/2023] Open
Abstract
Cisplatin is one of the most potent chemotherapy drugs widely used for cancer treatment. However, due to resistance and toxicity, the application of cisplatin for the treatment of hepatocellular carcinoma (HCC) is limited. Our previous study has shown that granulin A (GRN A), an anticancer peptide, is able to interact with enolase1 (ENO1) and inhibit the growth of HCC in vitro. In the present study, we studied the synergistic effect of the combination of cisplatin and GRN A for the inhibitory effect on HCC. An 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and Chou-Talalay approaches revealed that the combination of GRN A and cisplatin displayed potent synergistic effect. The colony formation and cell viability of HCC cells were inhibited significantly in cells treated with the combination of cisplatin and GRN A, compared with cells treated with cisplatin or GRN A alone. Overexpression of ENO1 diminished the synergistic effect of GRN A and cisplatin in HCC cells. The combination of the two drugs exhibited a more obvious inhibitory effect on cancer cell apoptosis, as analyzed by the cytometry flow, mitochondrial membrane potential (MMP) and western blot analysis. An in vivo study confirmed that the combined use of the two drugs displayed more potent antitumor activity compared to mice treated with cisplatin and GRN A alone; the inhibitory rate of tumor growth was 65.46% and 68.94%, respectively, in mice treated with GRN A and cisplatin. However, the inhibitory rate increased to 86.63% in mice treated with the combination of the two drugs. This study provides evidence that the combination of GRN A and cisplatin is able to sensitize the liver cancer to cisplatin, and that targeting ENO1 is a promising approach for enhancing the antitumor activity of cisplatin.
Collapse
|
98
|
MiR-22-3p targeting alpha-enolase 1 regulates the proliferation of retinoblastoma cells. Biomed Pharmacother 2018; 105:805-812. [DOI: 10.1016/j.biopha.2018.06.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/11/2018] [Accepted: 06/11/2018] [Indexed: 11/23/2022] Open
|
99
|
The role of metabolism and tunneling nanotube-mediated intercellular mitochondria exchange in cancer drug resistance. Biochem J 2018; 475:2305-2328. [PMID: 30064989 DOI: 10.1042/bcj20170712] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/11/2018] [Accepted: 07/03/2018] [Indexed: 12/14/2022]
Abstract
Intercellular communications play a major role in tissue homeostasis. In pathologies such as cancer, cellular interactions within the tumor microenvironment (TME) contribute to tumor progression and resistance to therapy. Tunneling nanotubes (TNTs) are newly discovered long-range intercellular connections that allow the exchange between cells of various cargos, ranging from ions to whole organelles such as mitochondria. TNT-transferred mitochondria were shown to change the metabolism and functional properties of recipient cells as reported for both normal and cancer cells. Metabolic plasticity is now considered a hallmark of cancer as it notably plays a pivotal role in drug resistance. The acquisition of cancer drug resistance was also associated to TNT-mediated mitochondria transfer, a finding that relates to the role of mitochondria as a hub for many metabolic pathways. In this review, we first give a brief overview of the various mechanisms of drug resistance and of the cellular communication means at play in the TME, with a special focus on the recently discovered TNTs. We further describe recent studies highlighting the role of the TNT-transferred mitochondria in acquired cancer cell drug resistance. We also present how changes in metabolic pathways, including glycolysis, pentose phosphate and lipid metabolism, are linked to cancer cell resistance to therapy. Finally, we provide examples of novel therapeutic strategies targeting mitochondria and cell metabolism as a way to circumvent cancer cell drug resistance.
Collapse
|
100
|
Obrist F, Michels J, Durand S, Chery A, Pol J, Levesque S, Joseph A, Astesana V, Pietrocola F, Wu GS, Castedo M, Kroemer G. Metabolic vulnerability of cisplatin-resistant cancers. EMBO J 2018; 37:embj.201798597. [PMID: 29875130 DOI: 10.15252/embj.201798597] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 05/02/2018] [Accepted: 05/08/2018] [Indexed: 01/09/2023] Open
Abstract
Cisplatin is the most widely used chemotherapeutic agent, and resistance of neoplastic cells against this cytoxicant poses a major problem in clinical oncology. Here, we explored potential metabolic vulnerabilities of cisplatin-resistant non-small human cell lung cancer and ovarian cancer cell lines. Cisplatin-resistant clones were more sensitive to killing by nutrient deprivation in vitro and in vivo than their parental cisplatin-sensitive controls. The susceptibility of cisplatin-resistant cells to starvation could be explained by a particularly strong dependence on glutamine. Glutamine depletion was sufficient to restore cisplatin responses of initially cisplatin-resistant clones, and glutamine supplementation rescued cisplatin-resistant clones from starvation-induced death. Mass spectrometric metabolomics and specific interventions on glutamine metabolism revealed that, in cisplatin-resistant cells, glutamine is mostly required for nucleotide biosynthesis rather than for anaplerotic, bioenergetic or redox reactions. As a result, cisplatin-resistant cancers became exquisitely sensitive to treatment with antimetabolites that target nucleoside metabolism.
Collapse
Affiliation(s)
- Florine Obrist
- Faculty of Medicine, University of Paris Sud, Kremlin-Bicêtre, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Centre de Recherche des Cordeliers, Equipe 11 labellisée Ligue Nationale Contre le Cancer, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Equipe labellisée Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Judith Michels
- Faculty of Medicine, University of Paris Sud, Kremlin-Bicêtre, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Centre de Recherche des Cordeliers, Equipe 11 labellisée Ligue Nationale Contre le Cancer, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Equipe labellisée Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Department of Medical Oncology, Gustave Roussy Comprehensive Cancer Center, Villejuif Paris-Sud University, Villejuif, France
| | - Sylvere Durand
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Centre de Recherche des Cordeliers, Equipe 11 labellisée Ligue Nationale Contre le Cancer, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Equipe labellisée Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Alexis Chery
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Centre de Recherche des Cordeliers, Equipe 11 labellisée Ligue Nationale Contre le Cancer, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Equipe labellisée Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Jonathan Pol
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Centre de Recherche des Cordeliers, Equipe 11 labellisée Ligue Nationale Contre le Cancer, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Equipe labellisée Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Sarah Levesque
- Faculty of Medicine, University of Paris Sud, Kremlin-Bicêtre, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Centre de Recherche des Cordeliers, Equipe 11 labellisée Ligue Nationale Contre le Cancer, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Equipe labellisée Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Adrien Joseph
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Centre de Recherche des Cordeliers, Equipe 11 labellisée Ligue Nationale Contre le Cancer, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Equipe labellisée Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Valentina Astesana
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Centre de Recherche des Cordeliers, Equipe 11 labellisée Ligue Nationale Contre le Cancer, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Equipe labellisée Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Department of Biology and Biotechnology L. Spallanzani, University of Pavia, Pavia, Italy
| | - Federico Pietrocola
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Centre de Recherche des Cordeliers, Equipe 11 labellisée Ligue Nationale Contre le Cancer, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Equipe labellisée Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Gen Sheng Wu
- Departments of Oncology and Pathology, Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Maria Castedo
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France .,Centre de Recherche des Cordeliers, Equipe 11 labellisée Ligue Nationale Contre le Cancer, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Equipe labellisée Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France .,Centre de Recherche des Cordeliers, Equipe 11 labellisée Ligue Nationale Contre le Cancer, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Equipe labellisée Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|