51
|
Silva VR, Santos LDS, Dias RB, Quadros CA, Bezerra DP. Emerging agents that target signaling pathways to eradicate colorectal cancer stem cells. Cancer Commun (Lond) 2021; 41:1275-1313. [PMID: 34791817 PMCID: PMC8696218 DOI: 10.1002/cac2.12235] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/28/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) represents the third most commonly diagnosed cancer and the second leading cause of cancer death worldwide. The modern concept of cancer biology indicates that cancer is formed of a small population of cells called cancer stem cells (CSCs), which present both pluripotency and self-renewal properties. These cells are considered responsible for the progression of the disease, recurrence and tumor resistance. Interestingly, some cell signaling pathways participate in CRC survival, proliferation, and self-renewal properties, and most of them are dysregulated in CSCs, including the Wingless (Wnt)/β-catenin, Notch, Hedgehog, nuclear factor kappa B (NF-κB), Janus kinase/signal transducer and activator of transcription (JAK/STAT), peroxisome proliferator-activated receptor (PPAR), phosphatidyl-inositol-3-kinase/Akt/mechanistic target of rapamycin (PI3K/Akt/mTOR), and transforming growth factor-β (TGF-β)/Smad pathways. In this review, we summarize the strategies for eradicating CRC stem cells by modulating these dysregulated pathways, which will contribute to the study of potential therapeutic schemes, combining conventional drugs with CSC-targeting drugs, and allowing better cure rates in anti-CRC therapy.
Collapse
Affiliation(s)
- Valdenizia R Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Luciano de S Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Claudio A Quadros
- São Rafael Hospital, Rede D'Or/São Luiz, Salvador, Bahia, 41253-190, Brazil.,Bahia State University, Salvador, Bahia, 41150-000, Brazil
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| |
Collapse
|
52
|
Targeting Cancer Stem Cells by Dietary Agents: An Important Therapeutic Strategy against Human Malignancies. Int J Mol Sci 2021; 22:ijms222111669. [PMID: 34769099 PMCID: PMC8584029 DOI: 10.3390/ijms222111669] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/23/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023] Open
Abstract
As a multifactorial disease, treatment of cancer depends on understanding unique mechanisms involved in its progression. The cancer stem cells (CSCs) are responsible for tumor stemness and by enhancing colony formation, proliferation as well as metastasis, and these cells can also mediate resistance to therapy. Furthermore, the presence of CSCs leads to cancer recurrence and therefore their complete eradication can have immense therapeutic benefits. The present review focuses on targeting CSCs by natural products in cancer therapy. The growth and colony formation capacities of CSCs have been reported can be attenuated by the dietary agents. These compounds can induce apoptosis in CSCs and reduce tumor migration and invasion via EMT inhibition. A variety of molecular pathways including STAT3, Wnt/β-catenin, Sonic Hedgehog, Gli1 and NF-κB undergo down-regulation by dietary agents in suppressing CSC features. Upon exposure to natural agents, a significant decrease occurs in levels of CSC markers including CD44, CD133, ALDH1, Oct4 and Nanog to impair cancer stemness. Furthermore, CSC suppression by dietary agents can enhance sensitivity of tumors to chemotherapy and radiotherapy. In addition to in vitro studies, as well as experiments on the different preclinical models have shown capacity of natural products in suppressing cancer stemness. Furthermore, use of nanostructures for improving therapeutic impact of dietary agents is recommended to rapidly translate preclinical findings for clinical use.
Collapse
|
53
|
Ashry R, Elhussiny M, Abdellatif H, Elkashty O, Abdel-Ghaffar HA, Gaballa ET, Mousa SA. Genetic Interpretation of the Impacts of Honokiol and EGCG on Apoptotic and Self-Renewal Pathways in HEp-2 Human Laryngeal CD44 high Cancer Stem Cells. Nutr Cancer 2021; 74:2152-2173. [PMID: 34590505 DOI: 10.1080/01635581.2021.1981404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Most current larynx cancer therapies are generally aimed at the global mass of tumor, targeting the non-tumorigenic cells, and unfortunately sparing the tumorigenic cancer stem cells (CSCs) that are responsible for sustained growth, metastasis, and chemo- and radioresistance. Phytochemicals and herbs have recently been introduced as therapeutic sources for eliminating CSCs. Therefore, we assessed the anti-tumor effects of two herbal ingredients, the green tea extract "Epigallocatechin-3-gallate (EGCG)" and Honokiol (HNK), on parental cells or CD44high CSCs of the human laryngeal squamous cell carcinoma cell line HEp-2. Results revealed that EGCG had a preeminent apoptotic potential on HEp-2 laryngeal CSCs. HNK conferred higher cytotoxic impacts on parental cells mostly by necrosis induction, especially with higher doses, but apoptosis induction with lower doses was also observed. The Notch signaling pathway genes were more potently suppressed by EGCG than HNK. However, HNK surpassed EGCG in downregulating the β-catenin and the Sonic Hedgehog signaling pathways genes. On a genetic basis, both agents engaged the BCL-2 family-regulated and caspase-dependent intrinsic apoptotic pathway, but EGCG and HNK triggered apoptosis via p53-independent and p53-dependent pathways, respectively. Taken together, EGCG and HNK eradicated HEp-2 human larynx cancer cells through targeting multiple self-renewal pathways and activating diverse cell death modalities.
Collapse
Affiliation(s)
- Ramy Ashry
- Institute of Toxicology, University Medical Center Mainz, Mainz, Germany.,Oral Pathology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Mahmoud Elhussiny
- Institute of Global Health and Human Ecology, American University in Cairo (AUC), Cairo, Egypt.,Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hussein Abdellatif
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman.,Anatomy and Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Osama Elkashty
- Oral Pathology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt.,Craniofacial Tissue and Stem Cell Laboratory, Faculty of Dentistry, McGill University, Montreal, Canada
| | - Hassan A Abdel-Ghaffar
- Hematology Laboratory, Oncology Center, Mansoura University, Mansoura, Egypt.,Hematology section, Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Essam T Gaballa
- Oral Pathology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt.,Oral Pathology Department, Faculty of Dentistry, Delta University, Mansoura, Egypt
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York, USA
| |
Collapse
|
54
|
Shah D, Gandhi M, Kumar A, Cruz-Martins N, Sharma R, Nair S. Current insights into epigenetics, noncoding RNA interactome and clinical pharmacokinetics of dietary polyphenols in cancer chemoprevention. Crit Rev Food Sci Nutr 2021; 63:1755-1791. [PMID: 34433338 DOI: 10.1080/10408398.2021.1968786] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Several studies have reported the health-beneficial effects of dietary phytochemicals, namely polyphenols, to prevent various diseases, including cancer. Polyphenols, like (-)-epigallocatechin-3-gallate (EGCG) from green tea, curcumin from turmeric, and ellagic acid from pomegranate are known to act by modulating antioxidant, anti-inflammatory and apoptotic signal transduction pathways in the tumor milieu. The evolving literature underscores the role of epigenetic regulation of genes associated with cancer by these polyphenols, primarily via non-coding RNAs (ncRNAs), such as microRNAs (miRNA) and long noncoding RNA (lncRNA). However, there is little clarity on the exact role(s) played by these ncRNAs and their interactions with other ncRNAs, or with their protein targets, in response to modulation by these dietary polyphenols. Here, we review ncRNA interactions and functional networks of the complex ncRNA interactome with their targets in preclinical studies along with the role of epigenetics as well as key aspects of pharmacokinetics and phytochemistry of dietary polyphenols. We also summarize the current state of clinical trials with these dietary polyphenols. Taken together, this synthetic review provides insights into the molecular aspects underlying the anticancer chemopreventive effects of dietary polyphenols as well as summarizes data on novel biomarkers modulated by these polyphenols for preventive or therapeutic purposes in various types of cancer.
Collapse
Affiliation(s)
| | | | - Arun Kumar
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Timarpur Delhi, India
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal.,Institute for research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Gandra PRD, Portugal
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | |
Collapse
|
55
|
Otsuka K, Ochiya T. Possible connection between diet and microRNA in cancer scenario. Semin Cancer Biol 2021; 73:4-18. [DOI: 10.1016/j.semcancer.2020.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
|
56
|
Targeting cancer stem cells by nutraceuticals for cancer therapy. Semin Cancer Biol 2021; 85:234-245. [PMID: 34273521 DOI: 10.1016/j.semcancer.2021.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
Accumulating evidence has demonstrated that cancer stem cells (CSCs) play an essential role in tumor progression and reoccurrence and drug resistance. Multiple signaling pathways have been revealed to be critically participated in CSC development and maintenance. Emerging evidence indicates that numerous chemopreventive compounds, also known as nutraceuticals, could eliminate CSCs in part via regulating several signaling pathways. Therefore, in this review, we will describe the some natural chemopreventive agents that target CSCs in a variety of human malignancies, including soy isoflavone, curcumin, resveratrol, tea polyphenols, sulforaphane, quercetin, indole-3-carbinol, 3,3'-diindolylmethane, withaferin A, apigenin, etc. Moreover, we discuss that eliminating CSCs by nutraceuticals might be a promising strategy for treating human cancer via overcoming drug resistance and reducing tumor reoccurrence.
Collapse
|
57
|
Zhao Y, Wang C, Goel A. Andrographis overcomes 5-fluorouracil-associated chemoresistance through inhibition of DKK1 in colorectal cancer. Carcinogenesis 2021; 42:814-825. [PMID: 33822896 PMCID: PMC8215595 DOI: 10.1093/carcin/bgab027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/21/2021] [Accepted: 04/01/2021] [Indexed: 12/25/2022] Open
Abstract
Colorectal cancer (CRC) ranks as the third leading cause of cancer-related deaths in the USA. 5-Fluorouracil (5FU)-based chemotherapeutic drug remains a mainstay of CRC treatment. Unfortunately, ~50-60% of patients eventually develop resistance to 5FU, leading to poor survival outcomes. Our previous work revealed that andrographis enhanced 5FU-induced anti-cancer activity, but the underlying mechanistic understanding largely remains unclear. In this study, we first established 5FU-resistant (5FUR) CRC cells and observed that combined treatment with andrographis-5FU in 5FUR cells exhibited superior effect on cell viability, proliferation, and colony formation capacity compared with individual treatments (P < 0.001). To identify key genes and pathways responsible for 5FU resistance, we analyzed genome-wide transcriptomic profiling data from CRC patients who either responded or did not respond to 5FU. Among a panel of differentially expressed genes, Dickkopf-1 (DKK1) overexpression was a critical event for 5FU resistance. Moreover, andrographis significantly downregulated 5FU-induced DKK1 overexpression, accompanied with enhanced anti-tumor effects by abrogating downstream Akt-phosphorylation. In line with in vitro findings, andrographis enhanced 5FU-induced anti-cancer activity in mice xenografts and patient-derived tumoroids (P < 0.01). In conclusion, our data provide novel evidence for andrographis-mediated reversal of 5FU resistance, highlighting its potential role as an adjunct to conventional chemotherapy in CRC.
Collapse
Affiliation(s)
- Yinghui Zhao
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Engineering and Technology Research Center for Tumor Marker Detection, Jinan, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| |
Collapse
|
58
|
Han JH, Kim M, Kim HJ, Jang SB, Bae SJ, Lee IK, Ryu D, Ha KT. Targeting Lactate Dehydrogenase A with Catechin Resensitizes SNU620/5FU Gastric Cancer Cells to 5-Fluorouracil. Int J Mol Sci 2021; 22:ijms22105406. [PMID: 34065602 PMCID: PMC8161398 DOI: 10.3390/ijms22105406] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Resistance to anticancer therapeutics occurs in virtually every type of cancer and becomes a major difficulty in cancer treatment. Although 5-fluorouracil (5FU) is the first-line choice of anticancer therapy for gastric cancer, its effectiveness is limited owing to drug resistance. Recently, altered cancer metabolism, including the Warburg effect, a preference for glycolysis rather than oxidative phosphorylation for energy production, has been accepted as a pivotal mechanism regulating resistance to chemotherapy. Thus, we investigated the detailed mechanism and possible usefulness of antiglycolytic agents in ameliorating 5FU resistance using established gastric cancer cell lines, SNU620 and SNU620/5FU. SNU620/5FU, a gastric cancer cell harboring resistance to 5FU, showed much higher lactate production and expression of glycolysis-related enzymes, such as lactate dehydrogenase A (LDHA), than those of the parent SNU620 cells. To limit glycolysis, we examined catechin and its derivatives, which are known anti-inflammatory and anticancer natural products because epigallocatechin gallate has been previously reported as a suppressor of LDHA expression. Catechin, the simplest compound among them, had the highest inhibitory effect on lactate production and LDHA activity. In addition, the combination of 5FU and catechin showed additional cytotoxicity and induced reactive oxygen species (ROS)-mediated apoptosis in SNU620/5FU cells. Thus, based on these results, we suggest catechin as a candidate for the development of a novel adjuvant drug that reduces chemoresistance to 5FU by restricting LDHA.
Collapse
Affiliation(s)
- Jung Ho Han
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea;
- Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan 50612, Korea;
| | - MinJeong Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea;
| | - Hyeon Jin Kim
- Department of Molecular Biology, College of Natural Science, Busan 46241, Korea; (H.J.K.); (S.B.J.)
| | - Se Bok Jang
- Department of Molecular Biology, College of Natural Science, Busan 46241, Korea; (H.J.K.); (S.B.J.)
| | - Sung-Jin Bae
- Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan 50612, Korea;
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine Kyungpook National University, Daegu 41566, Korea;
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea;
- Correspondence: (D.R.); (K.-T.H.)
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea;
- Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan 50612, Korea;
- Correspondence: (D.R.); (K.-T.H.)
| |
Collapse
|
59
|
Sung TC, Huang WL, Ban LK, Lee HHC, Wang JH, Su HY, Jen SH, Chang YH, Yang JM, Higuchi A, Ye Q. Enrichment of cancer-initiating cells from colon cancer cells through porous polymeric membranes by a membrane filtration method. J Mater Chem B 2021; 8:10577-10585. [PMID: 33124643 DOI: 10.1039/d0tb02312d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer-initiating cells (CICs) or cancer stem cells (CSCs) are primarily responsible for tumor initiation, growth, and metastasis and represent a few percent of the total tumor cell population. We designed a membrane filtration protocol to enrich CICs (CSCs) from the LoVo colon cancer cell line via nylon mesh filter membranes with 11 and 20 μm pore sizes and poly(lactide-co-glycolic acid)/silk screen (PLGA/silk screen) porous membranes (pore sizes of 20-30 μm). The colon cancer cell solution was filtered through the membranes to obtain a permeate solution. Subsequently, the cell culture medium was filtered through the membranes to collect the recovery solution where the cells attached to the membranes were rinsed off into the recovery solution. Then, the membranes were cultivated in the cultivation medium to collect the migrated cells from the membranes. The cells migrated from any membrane had higher expression of the CSC surface markers CD44 and CD133, had higher colony formation levels, and produced more carcinoembryonic antigen (CEA) than the colon cancer cells cultivated on conventional tissue culture plates (control). We established a method to enrich the CICs (CSCs) of colon cancer cells from migrated cells through porous polymeric membranes by the membrane filtration protocol developed in this study.
Collapse
Affiliation(s)
- Tzu-Cheng Sung
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda Rd., Jhongli, Taoyuan, 32001, Taiwan. and School of Ophthalmology and Optometry, The Eye Hospital of Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China
| | - Wei-Lun Huang
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda Rd., Jhongli, Taoyuan, 32001, Taiwan.
| | - Lee-Kiat Ban
- Department of Surgery, Hsinchu Cathay General Hospital, No. 678, Sec 2, Zhonghua Rd., Hsinchu, 30060, Taiwan
| | - Henry Hsin-Chung Lee
- Department of Surgery, Hsinchu Cathay General Hospital, No. 678, Sec 2, Zhonghua Rd., Hsinchu, 30060, Taiwan and Graduate Institute of Translational and Interdisciplinary Medicine, National Central University, No. 300, Jhongda Rd., Jhongli, Taoyuan, 32001, Taiwan
| | - Jia-Hua Wang
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda Rd., Jhongli, Taoyuan, 32001, Taiwan.
| | - Her-Young Su
- Department of Obstetrics and Gynecology, Bobson Yuho Women and Children's Clinic, No. 182, Zhuangjing S. Rd., Zhubei City, Hsinchu 302, Taiwan
| | - Shih Hsi Jen
- Department of Obstetrics and Gynecology, Taiwan Landseed Hospital, 77, Kuangtai Road, Pingjen City, Taoyuan 32405, Taiwan
| | - Yen-Hsiang Chang
- Department of General Dentistry, Chang Gung Memorial Hospital, Guishan, Taoyuan 333, Taiwan
| | - Jen-Ming Yang
- Department of Chemical and Materials Engineering, Chang Gung University, Guishan, Taoyuan 333, Taiwan.
| | - Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda Rd., Jhongli, Taoyuan, 32001, Taiwan. and School of Ophthalmology and Optometry, The Eye Hospital of Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China and Department of Chemical Engineering and R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan and Center for Emergent Matter Science, Riken, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan and Wenzhou Institute, University of Chinese Academy of Science, No. 16, Xinsan Road, Hi-tech Industry Park, Wenzhou, Zhejiang, China
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China and Skeletal Biology Research Center, OMFS, Massachusetts General Hospital & Harvard School of Dental Medicine, Boston, MA02114, USA and School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
60
|
Sethy C, Kundu CN. 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: Implication of DNA repair inhibition. Biomed Pharmacother 2021; 137:111285. [PMID: 33485118 DOI: 10.1016/j.biopha.2021.111285] [Citation(s) in RCA: 269] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
5-Fluorouracil (5-FU) has been an important anti-cancer drug to date. With an increase in the knowledge of its mechanism of action, various treatment modalities have been developed over the past few decades to increase its anti-cancer activity. But drug resistance has greatly affected the clinical use of 5-FU. Overcoming this chemoresistance is a challenge due to the presence of cancer stem cells like cells, cancer recurrence, metastasis, and angiogenesis. In this review, we have systematically discussed the mechanism of 5-FU resistance and advent strategies to increase the sensitivity of 5-FU therapy including resistance reversal. Special emphasis has been given to the cancer stem cells (CSCs) mediated 5-FU chemoresistance and its reversal process by different approaches including the DNA repair inhibition process.
Collapse
Affiliation(s)
- Chinmayee Sethy
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
61
|
Li F, Qasim S, Li D, Dou QP. Updated review on green tea polyphenol epigallocatechin-3-gallate as a cancer epigenetic regulator. Semin Cancer Biol 2021; 83:335-352. [PMID: 33453404 DOI: 10.1016/j.semcancer.2020.11.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
In-depth insights in cancer biology over the past decades have highlighted the important roles of epigenetic mechanisms in the initiation and progression of tumorigenesis. The cancer epigenome usually experiences multiple alternations, including genome-wide DNA hypomethylation and site-specific DNA hypermethylation, various histone posttranslational modifications, and dysregulation of non-coding RNAs (ncRNAs). These epigenetic changes are plastic and reversible, and could potentially occur in the early stage of carcinogenesis preceding genetic mutation, offering unique opportunities for intervention therapies. Therefore, targeting the cancer epigenome or cancer epigenetic dysregulation with some selected agents (called epi-drugs) represents an evolving and promising strategy for cancer chemoprevention and therapy. Phytochemicals, as a class of pleiotropic molecules, have manifested great potential in modulating different cancer processes through epigenetic machinery, of which green tea polyphenol epigallocatechin-3-gallate (EGCG) is one of the most extensively studied. In this review, we first summarize epigenetic events involved in the pathogenesis of cancer, including DNA/RNA methylations, histone modifications and ncRNAs' dysregulations. We then focus on the recently discovered roles of phytochemicals, with a special emphasis on EGCG, in modulating different cancer processes through regulating epigenetic machinery. We finally discuss limitations of EGCG as an epigenetic modulator for cancer chemoprevention and treatment and offer potential strategies to overcome the shortcomings.
Collapse
Affiliation(s)
- Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Tainan, 271018, China
| | - Syeda Qasim
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA; Ryerson University, Toronto, Ontario, M5B 2K3, Canada
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Tainan, 271018, China
| | - Q Ping Dou
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
62
|
Shabbir U, Rubab M, Daliri EBM, Chelliah R, Javed A, Oh DH. Curcumin, Quercetin, Catechins and Metabolic Diseases: The Role of Gut Microbiota. Nutrients 2021; 13:206. [PMID: 33445760 PMCID: PMC7828240 DOI: 10.3390/nu13010206] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Polyphenols (PPs) are the naturally occurring bioactive components in fruits and vegetables, and they are the most abundant antioxidant in the human diet. Studies are suggesting that ingestion of PPs might be helpful to ameliorate metabolic syndromes that may contribute in the prevention of several chronic disorders like diabetes, obesity, hypertension, and colon cancer. PPs have structural diversity which impacts their bioavailability as they accumulate in the large intestine and are extensively metabolized through gut microbiota (GM). Intestinal microbiota transforms PPs into their metabolites to make them bioactive. Interestingly, not only GM act on PPs to metabolize them but PPs also modulate the composition of GM. Thus, change in GM from pathogenic to beneficial ones may be helpful to ameliorate gut health and associated diseases. However, to overcome the low bioavailability of PPs, various approaches have been developed to improve their solubility and transportation through the gut. In this review, we present evidence supporting the structural changes that occur after metabolic reactions in PPs (curcumin, quercetin, and catechins) and their effect on GM composition that leads to improving overall gut health and helping to ameliorate metabolic disorders.
Collapse
Affiliation(s)
- Umair Shabbir
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea; (U.S.); (M.R.); (E.B.-M.D.); (R.C.)
| | - Momna Rubab
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea; (U.S.); (M.R.); (E.B.-M.D.); (R.C.)
| | - Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea; (U.S.); (M.R.); (E.B.-M.D.); (R.C.)
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea; (U.S.); (M.R.); (E.B.-M.D.); (R.C.)
| | - Ahsan Javed
- Department of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea; (U.S.); (M.R.); (E.B.-M.D.); (R.C.)
| |
Collapse
|
63
|
Moracci L, Crotti S, Traldi P, Agostini M. Mass spectrometry in the study of molecular complexes between 5-fluorouracil and catechins. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4682. [PMID: 33448570 DOI: 10.1002/jms.4682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/10/2020] [Accepted: 06/27/2020] [Indexed: 06/12/2023]
Abstract
5-Fluorouracil (5FU) is a widely employed antineoplastic agent that acts as antimetabolite. However, 5FU activity is strongly reduced against a subset of cancer cells called cancer stem cells (CSCs), which are believed to be responsible for chemoresistance and tumour recurrence. It was found that epigallocatechin-3-gallate (EGCG), the most abundant catechin present in green tea extract, suppresses CSCs grown in various cancers. This chemosensitizing effect of EGCG was investigated in 5FU-resistant (5FUR) CRC cells, showing that EGCG enhances 5FU-induced cytotoxicity. However, the real mechanism of an improved 5FU chemosensitivity in the presence of EGCG was not evaluated. Considering the capability of catechins to form bimolecular noncovalent complexes, in the present study, the interaction of catechins and 5FU was studied by different mass spectrometric approaches. The ESI(+) and ESI(-) spectra of [5FU-catechin] mixtures were studied, showing the formation of protonated and deprotonated bimolecular complexes, whose nature was confirmed by MS/MS experiments (product and precursor ion scans). To exclude the possible origin of these species as ESI artefacts, a further series of experiments were performed by high-resolution liquid chromatography-mass spectrometry. By this approach, bimolecular complexes have been detected at retention times different from those of free 5FU and catechins, proving their presence in the original solution. Analogous studies were performed on 5FU-green tea extract mixtures, showing that 5FU leads to complexes not only with EGCG but also with other catechins. These molecular species, differently to free 5FU drug alone, would in principle possess a new biological activity and could be an explanation of the described activity cited above.
Collapse
Affiliation(s)
- Laura Moracci
- Nano-Inspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, 35127, Italy
- First Surgical Clinic Section, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Sara Crotti
- Nano-Inspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, 35127, Italy
| | - Pietro Traldi
- Nano-Inspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, 35127, Italy
| | - Marco Agostini
- Nano-Inspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, 35127, Italy
- First Surgical Clinic Section, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| |
Collapse
|
64
|
Kang XL, He LR, Chen YL, Wang SB. Role of doublecortin-like kinase 1 and leucine-rich repeat-containing G-protein-coupled receptor 5 in patients with stage II/III colorectal cancer: Cancer progression and prognosis. World J Gastroenterol 2020; 26:6853-6866. [PMID: 33268966 PMCID: PMC7684452 DOI: 10.3748/wjg.v26.i43.6853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/29/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are a subpopulation of cancer cells with the potential of self-renewal and differentiation. CSCs play critical roles in tumorigenesis, recurrence, metastasis, radiation tolerance and chemoresistance.
AIM To assess the expression patterns and clinical potential of doublecortin-like kinase 1 (DCLK1) and leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5), as prognostic CSC markers of colorectal cancer (CRC).
METHODS The expression of DCLK1 and Lgr5 in CRC tissue sections from 92 patients was determined by immunohistochemistry. Each case was evaluated using a combined scoring method based on signal intensity staining (scored 0-3) and the proportion of positively stained cancer cells (scored 0-3). The final staining score was calculated as the intensity score multiplied by the proportion score. Low expression of DCLK1 and Lgr5 was defined as a score of 0-3; high expression of DCLK1 and Lgr5 was defined as a score of ≥ 4. Specimens were categorized as either high or low expression, and the correlation between the expression of DCLK1 or Lgr5 and clinicopathological factors was investigated.
RESULTS DCLK1 and Lgr5 expression levels were significantly positively correlated. CRC patients with high DCLK1, Lgr5 and DCLK1/Lgr5 expressions had poorer progression-free survival and overall survival. Moreover, high expression of DCLK1 was an independent prognostic factor for recurrence and overall survival in patients with CRC by multivariate analysis (P = 0.026 and P = 0.049, respectively).
CONCLUSION DCLK1 may be a potential CSC marker for the recurrence and survival of CRC patients.
Collapse
Affiliation(s)
- Xue-Ling Kang
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong Province, China
| | - Li-Rui He
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Yao-Li Chen
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Shu-Bin Wang
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, China Cancer Institute of Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong Province, China
| |
Collapse
|
65
|
Adami GR, Tangney C, Schwartz JL, Dang KC. Gut/Oral Bacteria Variability May Explain the High Efficacy of Green Tea in Rodent Tumor Inhibition and Its Absence in Humans. Molecules 2020; 25:molecules25204753. [PMID: 33081212 PMCID: PMC7594096 DOI: 10.3390/molecules25204753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Consumption of green tea (GT) and GT polyphenols has prevented a range of cancers in rodents but has had mixed results in humans. Human subjects who drank GT for weeks showed changes in oral microbiome. However, GT-induced changes in RNA in oral epithelium were subject-specific, suggesting GT-induced changes of the oral epithelium occurred but differed across individuals. In contrast, studies in rodents consuming GT polyphenols revealed obvious changes in epithelial gene expression. GT polyphenols are poorly absorbed by digestive tract epithelium. Their metabolism by gut/oral microbial enzymes occurs and can alter absorption and function of these molecules and thus their bioactivity. This might explain the overall lack of consistency in oral epithelium RNA expression changes seen in human subjects who consumed GT. Each human has different gut/oral microbiomes, so they may have different levels of polyphenol-metabolizing bacteria. We speculate the similar gut/oral microbiomes in, for example, mice housed together are responsible for the minimal variance observed in tissue GT responses within a study. The consistency of the tissue response to GT within a rodent study eases the selection of a dose level that affects tumor rates. This leads to the theory that determination of optimal GT doses in a human requires knowledge about the gut/oral microbiome in that human.
Collapse
Affiliation(s)
- Guy R. Adami
- Department of Oral Medicine & Diagnostic Sciences, Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL 60612, USA; (J.L.S.); (K.C.D.)
- Correspondence: ; Tel.: +1-312-996-6251
| | - Christy Tangney
- Department of Clinical Nutrition, College of Health Sciences, Rush University Medical Center, 600 South Paulina St, Room 716 AAC, Chicago, IL 60612, USA;
| | - Joel L. Schwartz
- Department of Oral Medicine & Diagnostic Sciences, Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL 60612, USA; (J.L.S.); (K.C.D.)
| | - Kim Chi Dang
- Department of Oral Medicine & Diagnostic Sciences, Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL 60612, USA; (J.L.S.); (K.C.D.)
| |
Collapse
|
66
|
G3BP1 controls the senescence-associated secretome and its impact on cancer progression. Nat Commun 2020; 11:4979. [PMID: 33020468 PMCID: PMC7536198 DOI: 10.1038/s41467-020-18734-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 09/03/2020] [Indexed: 01/07/2023] Open
Abstract
Cellular senescence is a known driver of carcinogenesis and age-related diseases, yet senescence is required for various physiological processes. However, the mechanisms and factors that control the negative effects of senescence while retaining its benefits are still elusive. Here, we show that the rasGAP SH3-binding protein 1 (G3BP1) is required for the activation of the senescent-associated secretory phenotype (SASP). During senescence, G3BP1 achieves this effect by promoting the association of the cyclic GMP-AMP synthase (cGAS) with cytosolic chromatin fragments. In turn, G3BP1, through cGAS, activates the NF-κB and STAT3 pathways, promoting SASP expression and secretion. G3BP1 depletion or pharmacological inhibition impairs the cGAS-pathway preventing the expression of SASP factors without affecting cell commitment to senescence. These SASPless senescent cells impair senescence-mediated growth of cancer cells in vitro and tumor growth in vivo. Our data reveal that G3BP1 is required for SASP expression and that SASP secretion is a primary mediator of senescence-associated tumor growth. The mechanisms that control the deleterious behaviour of senescent cells is unclear. Here, the authors show that G3BP1 is required for the induction of the senescence-associated secretory phenotype (SASP), without affecting senescence, and that SASP secretion is a primary mediator of senescence-associated tumour growth.
Collapse
|
67
|
Pandiella-Alonso A, Díaz-Rodríguez E, Sanz E. Antitumoral Properties of the Nutritional Supplement Ocoxin Oral Solution: A Comprehensive Review. Nutrients 2020; 12:nu12092661. [PMID: 32878230 PMCID: PMC7551453 DOI: 10.3390/nu12092661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 12/23/2022] Open
Abstract
Ocoxin Oral Solution (OOS) is a nutritional supplement whose formulation includes several plant extracts and natural products with demonstrated antitumoral properties. This review summarizes the antitumoral action of the different constituents of OOS. The action of this formulation on different preclinical models as well as clinical trials is reviewed, paying special attention to the mechanism of action and quality of life improvement properties of this nutritional supplement. Molecularly, its mode of action includes a double edge role on tumor biology, that involves a slowdown in cell proliferation accompanied by cell death induction. Given the safety and good tolerability of OOS, and its potentiation of the antitumoral effect of other standard of care drugs, OOS may be used in the oncology clinic in combination with conventional therapies.
Collapse
Affiliation(s)
- Atanasio Pandiella-Alonso
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-IBSAL and CIBERONC, 37007 Salamanca, Spain;
- Correspondence:
| | - Elena Díaz-Rodríguez
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-IBSAL and CIBERONC, 37007 Salamanca, Spain;
| | | |
Collapse
|
68
|
Alnuqaydan AM. Targeting micro-RNAs by natural products: a novel future therapeutic strategy to combat cancer. Am J Transl Res 2020; 12:3531-3556. [PMID: 32774718 PMCID: PMC7407688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs are a class of short, non-coding RNAs that play a crucial role in normal physiology by attenuating translation or targeting messenger RNAs for degradation. Deregulation of miRNAs disturbs key molecular events in interconnected processes such as cell proliferation, tumor angiogenesis, self-renewal, apoptosis, metastasis and epithelial to mesenchymal transition. This process initiates, promotes and develops the pathophysiology of cancer. The modulation of miRNAs results in epigenetic changes in the genome, which eventually leads to cancer. Targeting deregulated miRNAs by natural products derived from plants is an ideal strategy to combat tumorigenesis. Owing to their fewer side effects, natural products have been used as chemotherapeutic agents against various cancers. These natural products modulate the dysregulated signaling pathways by downregulating the oncogenic miRNAs which play a crucial role in the development of tumorigenesis and maintain a fine balance of tumor suppressor miRNAs. This review article aims to highlight the key modifications of miRNAs which lead to tumorigenesis and the chemotherapeutic potential of natural products by targeting miRNAs and their possible mechanism of inhibition for developing an effective anti-cancer agent(s). They will have less damaging effects on normal cells for future chemotherapeutics.
Collapse
Affiliation(s)
- Abdullah M Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University Saudi Arabia
| |
Collapse
|
69
|
Khatoon E, Banik K, Harsha C, Sailo BL, Thakur KK, Khwairakpam AD, Vikkurthi R, Devi TB, Gupta SC, Kunnumakkara AB. Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives. Semin Cancer Biol 2020; 80:306-339. [DOI: 10.1016/j.semcancer.2020.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
|
70
|
Anticancer activity of lanthanum (III) and europium (III) 5‐fluorouracil complexes on Caco‐2 cell line. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
71
|
Eguchi H, Matsunaga T, Endo S, Ichihara K, Ikari A. Kaempferide Enhances Chemosensitivity of Human Lung Adenocarcinoma A549 Cells Mediated by the Decrease in Phosphorylation of Akt and Claudin-2 Expression. Nutrients 2020; 12:nu12041190. [PMID: 32340376 PMCID: PMC7230790 DOI: 10.3390/nu12041190] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/18/2022] Open
Abstract
Claudins (CLDNs) play crucial roles in the formation of tight junctions. We have reported that abnormal expression of CLDN2 confers chemoresistance in the spheroids of human lung adenocarcinoma A549 cells. A food composition, which can reduce CLDN2 expression, may function to prevent the malignant progression. Here, we found that ethanol extract of Brazilian green propolis (EBGP) and kaempferide, a major component of EBGP, decrease CLDN2 expression. In the two-dimensional culture model, EBGP decreased the tight junctional localization of CLDN2 without affecting that of zonula occludens-1, an adaptor protein, and enhanced paracellular permeability to doxorubicin, a cytotoxic anticancer drug. EBGP reduced hypoxic stress, and enhanced the accumulation and sensitivity of doxorubicin in the spheroid of A549 cells. Kaempferide dose-dependently decreased CLDN2 expression, although dihydrokaempferide and pinocembrin did not. The phosphorylation of Akt, a regulatory factor of CLDN2 expression, was inhibited by kaempferide but not by dihydrokaempferide. The 2,3-double bond in the C ring may be important to inhibit Akt. Kaempferide decreased the mRNA level and promoter activity of CLDN2, indicating that it inhibits the transcription of CLDN2. In accordance with EBGP, kaempferide decreased the tight junctional localization of CLDN2 and increased a paracellular permeability to doxorubicin, suggesting that it diminished the paracellular barrier to small molecules. In addition, kaempferide reduced hypoxic stress, and enhanced the accumulation and sensitivity of doxorubicin in the spheroids. In contrast, dihydrokaempferide did not improve the sensitivity to doxorubicin. Further study is needed using an animal model, but we suggest that natural foods abundantly containing kaempferide are candidates for the prevention of the chemoresistance of lung adenocarcinoma.
Collapse
Affiliation(s)
- Hiroaki Eguchi
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (H.E.); (S.E.)
| | - Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 502-8585, Japan;
| | - Satoshi Endo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (H.E.); (S.E.)
| | - Kenji Ichihara
- Nagaragawa Research Center, API Co., Ltd., Gifu 502-0071, Japan;
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (H.E.); (S.E.)
- Correspondence: ; Tel.: +81-58-230-8124
| |
Collapse
|
72
|
Farooqi AA, Pinheiro M, Granja A, Farabegoli F, Reis S, Attar R, Sabitaliyevich UY, Xu B, Ahmad A. EGCG Mediated Targeting of Deregulated Signaling Pathways and Non-Coding RNAs in Different Cancers: Focus on JAK/STAT, Wnt/β-Catenin, TGF/SMAD, NOTCH, SHH/GLI, and TRAIL Mediated Signaling Pathways. Cancers (Basel) 2020; 12:951. [PMID: 32290543 PMCID: PMC7226503 DOI: 10.3390/cancers12040951] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 12/12/2022] Open
Abstract
Decades of research have enabled us to develop a better and sharper understanding of multifaceted nature of cancer. Next-generation sequencing technologies have leveraged our existing knowledge related to intra- and inter-tumor heterogeneity to the next level. Functional genomics have opened new horizons to explore deregulated signaling pathways in different cancers. Therapeutic targeting of deregulated oncogenic signaling cascades by products obtained from natural sources has shown promising results. Epigallocatechin-3-gallate (EGCG) has emerged as a distinguished chemopreventive product because of its ability to regulate a myriad of oncogenic signaling pathways. Based on its scientifically approved anticancer activity and encouraging results obtained from preclinical trials, it is also being tested in various phases of clinical trials. A series of clinical trials associated with green tea extracts and EGCG are providing clues about significant potential of EGCG to mechanistically modulate wide ranging signal transduction cascades. In this review, we comprehensively analyzed regulation of JAK/STAT, Wnt/β-catenin, TGF/SMAD, SHH/GLI, NOTCH pathways by EGCG. We also discussed most recent evidence related to the ability of EGCG to modulate non-coding RNAs in different cancers. Methylation of the genome is also a widely studied mechanism and EGCG has been shown to modulate DNA methyltransferases (DNMTs) and protein enhancer of zeste-2 (EZH2) in multiple cancers. Moreover, the use of nanoformulations to increase the bioavailability and thus efficacy of EGCG will be also addressed. Better understanding of the pleiotropic abilities of EGCG to modulate intracellular pathways along with the development of effective EGCG delivery vehicles will be helpful in getting a step closer to individualized medicines.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan;
| | - Marina Pinheiro
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.G.); (S.R.)
| | - Andreia Granja
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.G.); (S.R.)
| | - Fulvia Farabegoli
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy;
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.G.); (S.R.)
| | - Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University, Ataşehir/İstanbul 34755, Turkey;
| | - Uteuliyev Yerzhan Sabitaliyevich
- Department of Health Policy and Health Care Development, Kazakh Medical University of Continuing Education, Almaty 050004, Kazakhstan;
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China;
| | - Aamir Ahmad
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205, USA;
| |
Collapse
|
73
|
Musial C, Kuban-Jankowska A, Gorska-Ponikowska M. Beneficial Properties of Green Tea Catechins. Int J Mol Sci 2020; 21:ijms21051744. [PMID: 32143309 PMCID: PMC7084675 DOI: 10.3390/ijms21051744] [Citation(s) in RCA: 355] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/17/2022] Open
Abstract
Green tea (Camellia sinesis) is widely known for its anticancer and anti-inflammatory properties. Among the biologically active compounds contained in Camellia sinesis, the main antioxidant agents are catechins. Recent scientific research indicates that the number of hydroxyl groups and the presence of characteristic structural groups have a major impact on the antioxidant activity of catechins. The best source of these compounds is unfermented green tea. Depending on the type and origin of green tea leaves, their antioxidant properties may be uneven. Catechins exhibit the strong property of neutralizing reactive oxygen and nitrogen species. The group of green tea catechin derivatives includes: epicatechin, epigallocatechin, epicatechin gallate and epigallocatechin gallate. The last of these presents the most potent anti-inflammatory and anticancer potential. Notably, green tea catechins are widely described to be efficient in the prevention of lung cancer, breast cancer, esophageal cancer, stomach cancer, liver cancer and prostate cancer. The current review aims to summarize the potential anticancer effects and molecular signaling pathways of major green tea catechins. It needs to be clearly emphasized that green tea as well as green tea catechols cannot replace the standard chemotherapy. Nonetheless, their beneficial effects may support the standard anticancer approach.
Collapse
Affiliation(s)
- Claudia Musial
- Department of Medical Chemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (C.M.); (A.K.-J.)
| | - Alicja Kuban-Jankowska
- Department of Medical Chemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (C.M.); (A.K.-J.)
| | - Magdalena Gorska-Ponikowska
- Department of Medical Chemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (C.M.); (A.K.-J.)
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70569 Stuttgart, Germany
- Euro-Mediterranean Institute of Science and Technology, 90139 Palermo, Italy
- Correspondence:
| |
Collapse
|
74
|
Namiki K, Wongsirisin P, Yokoyama S, Sato M, Rawangkan A, Sakai R, Iida K, Suganuma M. (-)-Epigallocatechin gallate inhibits stemness and tumourigenicity stimulated by AXL receptor tyrosine kinase in human lung cancer cells. Sci Rep 2020; 10:2444. [PMID: 32051483 PMCID: PMC7016176 DOI: 10.1038/s41598-020-59281-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/22/2020] [Indexed: 11/09/2022] Open
Abstract
Cancer stem cells (H1299-sdCSCs) were obtained from tumour spheres of H1299 human lung cancer cells. We studied low stiffness, a unique biophysical property of cancer cells, in H1299-sdCSCs and parental H1299. Atomic force microscopy revealed an average Young’s modulus value of 1.52 kPa for H1299-sdCSCs, which showed low stiffness compared with that of H1299 cells, with a Young’s modulus value of 2.24 kPa. (−)-Epigallocatechin gallate (EGCG) reversed the average Young’s modulus value of H1299-sdCSCs to that of H1299 cells. EGCG treatment inhibited tumour sphere formation and ALDH1A1 and SNAI2 (Slug) expression. AXL receptor tyrosine kinase is highly expressed in H1299-sdCSCs and AXL knockdown with siAXLs significantly reduced tumour sphere formation and ALDH1A1 and SNAI2 (Slug) expression. An AXL-high population of H1299-sdCSCs was similarly reduced by treatment with EGCG and siAXLs. Transplantation of an AXL-high clone isolated from H1299 cells into SCID/Beige mice induced faster development of bigger tumour than bulk H1299 cells, whereas transplantation of the AXL-low clone yielded no tumours. Oral administration of EGCG and green tea extract (GTE) inhibited tumour growth in mice and reduced p-AXL, ALDH1A1, and SLUG in tumours. Thus, EGCG inhibits the stemness and tumourigenicity of human lung cancer cells by inhibiting AXL.
Collapse
Affiliation(s)
- Kozue Namiki
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.,Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, 362-0806, Japan
| | - Pattama Wongsirisin
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.,Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, 362-0806, Japan
| | - Shota Yokoyama
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.,Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, 362-0806, Japan
| | - Motoi Sato
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.,Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, 362-0806, Japan
| | - Anchalee Rawangkan
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.,Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, 362-0806, Japan.,School of Medical Science, University of Phayao, Phayao, Thailand, 56000
| | - Ryo Sakai
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.,Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, 362-0806, Japan
| | - Keisuke Iida
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.,Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, 362-0806, Japan.,Molecular Chirality Research Center and Department of Chemistry, Graduate School of Science, Chiba University, Chiba, 263-8522, Japan
| | - Masami Suganuma
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan. .,Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, 362-0806, Japan.
| |
Collapse
|
75
|
Depciuch J, Stec M, Maximenko A, Drzymała E, Pawlyta M, Baran J, Parlinska‐Wojtan M. Synthesis method‐dependent photothermal effects of colloidal solutions of platinum nanoparticles used in photothermal anticancer therapy. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- J. Depciuch
- Institute of Nuclear Physics Polish Academy of Sciences Krakow PL‐31‐342 Poland
| | - M. Stec
- Department of Clinical ImmunologyInstitute of Pediatrics, Jagiellonian University Medical College Krakow PL‐30‐663 Poland
| | - A. Maximenko
- Institute of Nuclear Physics Polish Academy of Sciences Krakow PL‐31‐342 Poland
| | - E. Drzymała
- Institute of Nuclear Physics Polish Academy of Sciences Krakow PL‐31‐342 Poland
| | - M. Pawlyta
- Institute of Engineering Materials and BiomaterialsSilesian University of Technology Konarskiego 18A Gliwice 44100 Poland
| | - J. Baran
- Department of Clinical ImmunologyInstitute of Pediatrics, Jagiellonian University Medical College Krakow PL‐30‐663 Poland
| | - M. Parlinska‐Wojtan
- Institute of Nuclear Physics Polish Academy of Sciences Krakow PL‐31‐342 Poland
| |
Collapse
|
76
|
Peng F, Xie X, Peng C. Chinese Herbal Medicine-Based Cancer Therapy: Novel Anticancer Agents Targeting MicroRNAs to Regulate Tumor Growth and Metastasis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1711-1735. [PMID: 31801358 DOI: 10.1142/s0192415x19500873] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MicroRNAs, small non-coding RNA molecules, have gained a reputation of the most substantial regulators in gene network with the ability to down-regulate their targets. Accumulating evidence shifted insight toward microRNAs regulation as the key element of cancer initiation, development, and aggression. Recent studies have attached the importance of traditional Chinese medicine (TCM) to the treatment of various cancers, and the functional natural compounds have been considered as novel anticancer agents to directly inhibit tumor progression. In more recent decades, a wide range of biologically active components of TCM has gained increasing attention to their applications in the modulation of microRNAs. This review is on the purpose of demonstrating the significance of TCM bioactive ingredients in microRNAs regulation for cancer treatment according to the reports mainly in the recent six years, providing the evidence of efficient Chinese herbal medicine-based therapy and effective pro-diagnosis focusing on microRNAs expression of cancer patients.
Collapse
Affiliation(s)
- Fu Peng
- West China School of Pharmacy, Sichuan University, Chengdu, P. R. China
| | - Xiaofang Xie
- Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China.,State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Sichuan Province and Ministry of Science and Technology, Chengdu, P. R. China
| | - Cheng Peng
- Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China.,State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Sichuan Province and Ministry of Science and Technology, Chengdu, P. R. China
| |
Collapse
|
77
|
Vincent A, Ouelkdite-Oumouchal A, Souidi M, Leclerc J, Neve B, Van Seuningen I. Colon cancer stemness as a reversible epigenetic state: Implications for anticancer therapies. World J Stem Cells 2019; 11:920-936. [PMID: 31768220 PMCID: PMC6851010 DOI: 10.4252/wjsc.v11.i11.920] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/29/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
The recent discovery of cancer cell plasticity, i.e. their ability to reprogram into cancer stem cells (CSCs) either naturally or under chemotherapy and/or radiotherapy, has changed, once again, the way we consider cancer treatment. If cancer stemness is a reversible epigenetic state rather than a genetic identity, opportunities will arise for therapeutic strategies that remodel epigenetic landscapes of CSCs. However, the systematic use of DNA methyltransferase and histone deacetylase inhibitors, alone or in combination, in advanced solid tumors including colorectal cancers, regardless of their molecular subtypes, does not seem to be the best strategy. In this review, we first summarize the knowledge researchers have gathered on the epigenetic signatures of CSCs with the difficulty of isolating rare populations of cells. We raise questions about the relevant use of currently available epigenetic inhibitors (epidrugs) while the expression of numerous cancer stem cell markers are often repressed by epigenetic mechanisms. These markers include the three cluster of differentiation CD133, CD44 and CD166 that have been extensively used for the isolation of colon CSCs.and . Finally, we describe current treatment strategies using epidrugs, and we hypothesize that, using correlation tools comparing associations of relevant CSC markers with chromatin modifier expression, we could identify better candidates for epienzyme targeting.
Collapse
Affiliation(s)
- Audrey Vincent
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
| | - Aïcha Ouelkdite-Oumouchal
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
| | - Mouloud Souidi
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
| | - Julie Leclerc
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
- Department of Biochemistry and Molecular Biology, Lille University Hospital, Lille F-59000, France
| | - Bernadette Neve
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
| | - Isabelle Van Seuningen
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
| |
Collapse
|
78
|
Montgomery M, Srinivasan A. Epigenetic Gene Regulation by Dietary Compounds in Cancer Prevention. Adv Nutr 2019; 10:1012-1028. [PMID: 31100104 PMCID: PMC6855955 DOI: 10.1093/advances/nmz046] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/07/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
Traditionally, cancer has been viewed as a set of diseases that are driven by the accumulation of genetic mutations, but we now understand that disruptions in epigenetic regulatory mechanisms are prevalent in cancer as well. Unlike genetic mutations, however, epigenetic alterations are reversible, making them desirable therapeutic targets. The potential for diet, and bioactive dietary components, to target epigenetic pathways in cancer is now widely appreciated, but our understanding of how to utilize these compounds for effective chemopreventive strategies in humans is in its infancy. This review provides a brief overview of epigenetic regulation and the clinical applications of epigenetics in cancer. It then describes the capacity for dietary components to contribute to epigenetic regulation, with a focus on the efficacy of dietary epigenetic regulators as secondary cancer prevention strategies in humans. Lastly, it discusses the necessary precautions and challenges that will need to be overcome before the chemopreventive power of dietary-based intervention strategies can be fully harnessed.
Collapse
Affiliation(s)
- McKale Montgomery
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK,Address correspondence to MM (E-mail: )
| | | |
Collapse
|
79
|
Zhang W, Zhang W, Sun L, Xiang L, Lai X, Li Q, Sun S. The effects and mechanisms of epigallocatechin-3-gallate on reversing multidrug resistance in cancer. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
80
|
Kim H, Lee J, Oh JH, Chang HJ, Sohn DK, Shin A, Kim J. Protective Effect of Green Tea Consumption on Colorectal Cancer Varies by Lifestyle Factors. Nutrients 2019; 11:nu11112612. [PMID: 31683767 PMCID: PMC6893578 DOI: 10.3390/nu11112612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 02/08/2023] Open
Abstract
The inconsistent findings regarding green tea intake and colorectal cancer (CRC) risk in several epidemiological studies might result from variations in lifestyle factors. Therefore, we examined whether increased green tea intake was associated with a decreased risk of CRC and how the risk of CRC was altered by the protective effect of green tea consumption and five health-related factors. A case-control study including 2742 participants (922 cases and 1820 controls) was conducted in Korea. Green tea consumption was assessed using a semiquantitative food frequency questionnaire. The risk of CRC was approximately 40% less in the participants in the highest green tea intake tertile than in participants in the lowest green tea intake tertile. Of the five lifestyle factors examined, high body mass index and physical inactivity were independent risk factors for CRC. Regarding the interactions between tea consumption and lifestyle factors, high green tea consumption was associated with a decreased risk of CRC, with or without considering lifestyle factors. However, moderate green tea consumption increased the risk of CRC among ever-smokers, ever-drinkers and the high-inflammatory diet group. Increased consumption of green tea might be helpful to reduce the risk of CRC in those with an unhealthy lifestyle.
Collapse
Affiliation(s)
- Hyejin Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Korea.
| | - Jeonghee Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Korea.
| | - Jae Hwan Oh
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Korea.
| | - Hee Jin Chang
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Korea.
| | - Dae Kyung Sohn
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Korea.
| | - Aesun Shin
- Department of Preventive Medicine, Seoul National University College of Medicine, 103, Deahak-ro, Jongno-gu, Seoul 03080, Korea.
| | - Jeongseon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Korea.
| |
Collapse
|
81
|
Wan TMH, Iyer DN, Ng L. Roles of microRNAs as non-invasive biomarker and therapeutic target in colorectal cancer. Histol Histopathol 2019; 35:225-237. [PMID: 31617575 DOI: 10.14670/hh-18-171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
MicroRNAs are endogenous, short non-coding RNA molecules that function as critical regulators of various biological processes. There is a strong functional evidence linking the involvement of dysregulated miRNAs to the occurrence, development and progression of colorectal cancer. Studies indicate that while overexpression of oncomiRs, and repression of tumor suppressor miRNAs tends to drive the overall tumorigenic process, the global picture of aberrant miRNA expression in colorectal cancer can classify the disease into multiple molecular phenotypes. Moreover, the expression pattern of miRNAs in colorectal cancer make them viable disease determinants as well as potential therapeutic targets. Through this review, we will summarize the importance of miRNAs in the etiology and progression of colorectal cancer. Specifically, we will explore the key role played by these RNA molecules as likely therapeutic avenues and the strategies presently available to target them. Finally, we will investigate the role of miRNAs as potential non-invasive diagnostic and prognostic biomarkers in colorectal cancer.
Collapse
Affiliation(s)
- Timothy Ming-Hun Wan
- Department of Surgery, Li Ka Shing Faculty of Medicine, the University of Hong Kong
| | | | - Lui Ng
- Department of Surgery, Li Ka Shing Faculty of Medicine, the University of Hong Kong.
| |
Collapse
|
82
|
Arora I, Sharma M, Tollefsbol TO. Combinatorial Epigenetics Impact of Polyphenols and Phytochemicals in Cancer Prevention and Therapy. Int J Mol Sci 2019; 20:ijms20184567. [PMID: 31540128 PMCID: PMC6769666 DOI: 10.3390/ijms20184567] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/08/2019] [Accepted: 09/11/2019] [Indexed: 12/24/2022] Open
Abstract
Polyphenols are potent micronutrients that can be found in large quantities in various food sources and spices. These compounds, also known as phenolics due to their phenolic structure, play a vital nutrient-based role in the prevention of various diseases such as diabetes, cardiovascular diseases, neurodegenerative diseases, liver disease, and cancers. However, the function of polyphenols in disease prevention and therapy depends on their dietary consumption and biological properties. According to American Cancer Society statistics, there will be an expected rise of 23.6 million new cancer cases by 2030. Due to the severity of the increased risk, it is important to evaluate various preventive measures associated with cancer. Relatively recently, numerous studies have indicated that various dietary polyphenols and phytochemicals possess properties of modifying epigenetic mechanisms that modulate gene expression resulting in regulation of cancer. These polyphenols and phytochemicals, when administrated in a dose-dependent and combinatorial-based manner, can have an enhanced effect on epigenetic changes, which play a crucial role in cancer prevention and therapy. Hence, this review will focus on the mechanisms of combined polyphenols and phytochemicals that can impact various epigenetic modifications such as DNA methylation and histone modifications as well as regulation of non-coding miRNAs expression for treatment and prevention of various types of cancer.
Collapse
Affiliation(s)
- Itika Arora
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
| | - Manvi Sharma
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
- Comprehensive Center for Healthy Aging, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA.
- Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA.
- Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA.
- Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| |
Collapse
|
83
|
Wang R, Huang J, Chen J, Yang M, Wang H, Qiao H, Chen Z, Hu L, Di L, Li J. Enhanced anti-colon cancer efficacy of 5-fluorouracil by epigallocatechin-3- gallate co-loaded in wheat germ agglutinin-conjugated nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102068. [PMID: 31374249 DOI: 10.1016/j.nano.2019.102068] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/19/2022]
Abstract
Colon adenocarcinoma is the third most common cause of cancer-related deaths worldwide owing to its aggressive nature. Here, we developed a novel oral drug delivery system (DDS) that comprised active targeted nanoparticles made from gelatin and chitosan (non-toxic polymers). The nanoparticles were fabricated using a complex coacervation method, which was accompanied by conjugation of wheat germ agglutinin (WGA) onto their surface by glutaraldehyde cross-linking. Specifically, we integrated 5-fluorouracil (5-FU), the first-line treatment agent against colon cancer, and (-)-epigallocatechin-3-gallate (EGCG), which inhibits tumor growth via anti-angiogenesis and apoptosis-inducing effects, into the nanoparticles, named WGA-EF-NP. The 5-FU and EGCG co-loaded nanoparticles showed sustained drug release, enhanced cellular uptake, and longer circulation time. WGA-EF-NP exhibited superior anti-tumor activity and pro-apoptotic efficacy compared to the drugs and nanoparticles without WGA decoration owing to better bioavailability and longer circulation time in vivo. Thus, WGA-EF-NP shows promise as a DDS for enhanced efficacy against colon cancer.
Collapse
Affiliation(s)
- Ruoning Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Jinyu Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Jian Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Mengmeng Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Honglan Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Hongzhi Qiao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Zhipeng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Lihong Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing, China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Junsong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China.
| |
Collapse
|
84
|
Abstract
Epigenetic reprogramming plays a crucial role in the tumorigenicity and maintenance of tumor-specific gene expression that especially occurs through DNA methylation and/or histone modifications. It has well-defined mechanisms. It is known that alterations in the DNA methylation pattern and/or the loss of specific histone acetylation/methylation markers are related to several hallmarks of cancer, such as drug resistance, stemness, epithelial-mesenchymal transition, and metastasis. It has also recently been highlighted that epigenetic alterations are critical for the regulation of the stemlike properties of cancer cells (tumor-initiating cells; cancer stem cells). Cancer stem cells are thought to be responsible for the recurrence of cancer which makes the patient return to the clinic with metastatic tumor tissue. Hence, the dysregulation of epigenetic machinery represents potential new therapeutic targets. Therefore, compounds with epigenetic activities have become crucial for developing new therapy regimens (e.g., antimetastatic agents) in the fight against cancer. Here, we review the epigenetic modifiers that have already been used in the clinic and/or in clinical trials, related preclinical studies in cancer therapy, and the smart combination strategies that target cancer stem cells along with the other cancer cells. The emerging role of epitranscriptome (RNA epigenetic) in cancer therapy has also been included in this review as a new avenue and potential target for the better management of cancer-beneficial epigenetic machinery.
Collapse
Affiliation(s)
- Remzi Okan Akar
- Department of Cancer Biology and Pharmacology, Institute of Health Sciences, İstinye University, İstanbul, Turkey
| | - Selin Selvi
- Department of Cancer Biology and Pharmacology, Institute of Health Sciences, İstinye University, İstanbul, Turkey
| | - Engin Ulukaya
- Department of Medical Biochemistry, Faculty of Medicine, İstinye University, İstanbul, Turkey
| | - Nazlıhan Aztopal
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, İstinye University, İstanbul, Turkey
| |
Collapse
|
85
|
Combination of 5-fluorouracil and thymoquinone targets stem cell gene signature in colorectal cancer cells. Cell Death Dis 2019; 10:379. [PMID: 31097715 PMCID: PMC6522523 DOI: 10.1038/s41419-019-1611-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/06/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) residing in colorectal cancer tissues have tumorigenic capacity and contribute to chemotherapeutic resistance and disease relapse. It is well known that the survival of colorectal CSCs after 5-fluorouracil (5-FU)-based therapy leads to cancer recurrence. Thus CSCs represent a promising drug target. Here, we designed and synthesized novel hybrid molecules linking 5-FU with the plant-derived compound thymoquinone (TQ) and tested the potential of individual compounds and their combination to eliminate colorectal CSCs. Both, Combi and SARB hybrid showed augmented cytotoxicity against colorectal cancer cells, but were non-toxic to organoids prepared from healthy murine small intestine. NanoString analysis revealed a unique signature of deregulated gene expression in response to the combination of TQ and 5-FU (Combi) and SARB treatment. Importantly, two principle stem cell regulatory pathways WNT/ß-Catenin and PI3K/AKT were found to be downregulated after Combi and hybrid treatment. Furthermore, both treatments strikingly eliminated CD133+ CSC population, accompanying the depleted self-renewal capacity by eradicating long-term propagated 3D tumor cell spheres at sub-toxic doses. In vivo xenografts on chicken eggs of SARB-treated HCT116 cells showed a prominent nuclear ß-Catenin and E-cadherin staining. This was in line with the reduced transcriptional activity of ß-Catenin and diminished cell adhesion under SARB exposure. In contrast to 5-FU, both, Combi and SARB treatment effectively reduced the angiogenic capacity of the remaining resistant tumor cells. Taken together, combination or hybridization of single compounds target simultaneously a broader spectrum of oncogenic pathways leading to an effective eradication of colorectal cancer cells.
Collapse
|
86
|
Liu C, Li P, Qu Z, Xiong W, Liu A, Zhang S. Advances in the Antagonism of Epigallocatechin-3-gallate in the Treatment of Digestive Tract Tumors. Molecules 2019; 24:molecules24091726. [PMID: 31058847 PMCID: PMC6539113 DOI: 10.3390/molecules24091726] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022] Open
Abstract
Due to changes in the dietary structure of individuals, the incidence of digestive tract tumors has increased significantly in recent years, causing a serious threat to the life and health of patients. This has in turn led to an increase in cancer prevention research. Many studies have shown that epigallocatechin-3-gallate (EGCG), an active ingredient in green tea, is in direct contact with the digestive tract upon ingestion, which allows it to elicit a significant antagonizing effect on digestive tract tumors. The main results of EGCG treatment include the prevention of tumor development in the digestive tract and the induction of cell cycle arrest and apoptosis. EGCG can be orally administered, is safe, and combats other resistances. The synergistic use of cancer drugs can promote the efficacy and reduce the anti-allergic properties of drugs, and is thus, favored in medical research. EGCG, however, currently possesses several shortcomings such as poor stability and low bioavailability, and its clinical application prospects need further development. In this paper, we have systematically summarized the research progress on the ability of EGCG to antagonize the activity and mechanism of action of digestive tract tumors, to achieve prevention, alleviation, delay, and even treat human gastrointestinal tract tumors via exogenous dietary EGCG supplementation or the development of new drugs containing EGCG.
Collapse
Affiliation(s)
- Changwei Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China.
| | - Penghui Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China.
| | - Zhihao Qu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China.
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha 410078, China.
| | - Ailing Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Sheng Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
87
|
Wang LX, Shi YL, Zhang LJ, Wang KR, Xiang LP, Cai ZY, Lu JL, Ye JH, Liang YR, Zheng XQ. Inhibitory Effects of (-)-Epigallocatechin-3-gallate on Esophageal Cancer. Molecules 2019; 24:molecules24050954. [PMID: 30857144 PMCID: PMC6429180 DOI: 10.3390/molecules24050954] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/24/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
There is epidemiological evidence showing that drinking green tea can lower the risk of esophageal cancer (EC). The effect is mainly attributed to tea polyphenols and their most abundant component, (−)-epigallocatechin-3-gallate (EGCG). The possible mechanisms of tumorigenesis inhibition of EGCG include its suppressive effects on cancer cell proliferation, angiogenesis, DNA methylation, metastasis and oxidant stress. EGCG modulates multiple signal transduction and metabolic signaling pathways involving in EC. A synergistic effect was also observed when EGCG was used in combination with other treatment methods.
Collapse
Affiliation(s)
- Liu-Xiang Wang
- China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Zhengzhou 450008, Henan, China.
| | - Yun-Long Shi
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Long-Jie Zhang
- Ningbo Huangjinyun Tea Science and Technology Co. Ltd., Yuyao 315412, China.
| | - Kai-Rong Wang
- Ningbo Huangjinyun Tea Science and Technology Co. Ltd., Yuyao 315412, China.
| | - Li-Ping Xiang
- National Tea and Tea Product Quality Supervision and Inspection Center (Guizhou), Zunyi 563100, China.
| | - Zhuo-Yu Cai
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
88
|
Rady I, Mohamed H, Rady M, Siddiqui IA, Mukhtar H. Cancer preventive and therapeutic effects of EGCG, the major polyphenol in green tea. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.ejbas.2017.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Islam Rady
- School of Medicine and Public Health, Department of Dermatology, University of Wisconsin-Madison, WI 53706, USA
- Department of Zoology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Hadir Mohamed
- School of Medicine and Public Health, Department of Dermatology, University of Wisconsin-Madison, WI 53706, USA
| | - Mohamad Rady
- Department of Zoology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Imtiaz A. Siddiqui
- School of Medicine and Public Health, Department of Dermatology, University of Wisconsin-Madison, WI 53706, USA
| | - Hasan Mukhtar
- School of Medicine and Public Health, Department of Dermatology, University of Wisconsin-Madison, WI 53706, USA
| |
Collapse
|
89
|
Combination of 5-Florouracil and polyphenol EGCG exerts suppressive effects on oral cancer cells exposed to radiation. Arch Oral Biol 2019; 101:8-12. [PMID: 30851692 DOI: 10.1016/j.archoralbio.2019.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/03/2019] [Accepted: 02/27/2019] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Natural compounds such as epigallocatechin-3-gallate (EGCG) have previously shown chemotherapeutic properties with few side-effects. In our study, we evaluated the effects of combining EGCG with 5-fluorouracil (5-FU) and radiotherapy on oral squamous cell cancer. We evaluated whether the combination of lower doses of 5-FU with EGCG could be equally or more effective than the use of higher doses of 5-FU alone. METHODS Cell viability, migration and cell cycles were assayed in oral cancer cell lines treated with 5-FU, 5-FU + EGCG and radiation (0, 2.5 and 5 Gy). RESULTS This study found that the combination of EGCG with 5-FU reduced cell viability and migration distance compared to control samples and the same dose of 5-FU alone. Addition of EGCG increased the number of cells in the G2/M phase, while 5-FU arrested the cell cycle in phase S. Moreover, cell exposure to 5 Gy radiation decreased the effects of combining with EGCG. CONCLUSIONS In summary, the combination of EGCG and 5-FU reduced both cell viability and migration as well as altered the cell cycle to a greater extent than 5-FU alone.
Collapse
|
90
|
Targeting cancer stem cells as therapeutic approach in the treatment of colorectal cancer. Int J Biochem Cell Biol 2019; 110:75-83. [PMID: 30818083 DOI: 10.1016/j.biocel.2019.02.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023]
Abstract
Colorectal cancer is one of the most common cancers globally. A large portion of colorectal cancer patients who are treated with conventional chemotherapy eventually develop local recurrence or metastases. The failure of a complete cure in colorectal cancer patients may be related to the lack of complete eradication of cancer stem cells when using conventional therapy. Colorectal cancer stem cells comprise a small population of tumor cells that possess the properties of rapid proliferation and differentiation. The colorectal cancer stem cells are also phenotypically and molecularly distinct, and resistant to conventional chemo-radiotherapy. Therefore, it is important to identify approaches in combination with conventional therapy for targeting and eradicating cancer cells. The aim of this review was to summarize the main findings of recent studies on targeting colorectal cancer stem cells as a novel therapeutic approach in colorectal cancer treatment.
Collapse
|
91
|
Xing L, Zhang H, Qi R, Tsao R, Mine Y. Recent Advances in the Understanding of the Health Benefits and Molecular Mechanisms Associated with Green Tea Polyphenols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1029-1043. [PMID: 30653316 DOI: 10.1021/acs.jafc.8b06146] [Citation(s) in RCA: 326] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Tea, leaf, or bud from the plant Camellia sinensis, make up some of the beverages popularly consumed in different parts of the world as green tea, oolong tea, or black tea. More particularly, as a nonfermented tea, green tea has gained more renown because of the significant health benefits assigned to its rich content in polyphenols. As a main constituent, green tea polyphenols were documented for their antioxidant, anti-inflammation, anticancer, anticardiovascular, antimicrobial, antihyperglycemic, and antiobesity properties. Recent reports demonstrate that green tea may exert a positive effect on the reduction of medical chronic conditions such as cardiovascular disease, cancer, Alzheimer's disease, Parkinson's disease, and diabetes. The health benefits of green teas, in particular EGCG, are widely investigated, and these effects are known to be primarily associated with the structure and compositions of its polyphenols. This Review focuses on the diverse constituents of green tea polyphenols and their molecular mechanisms from the perspective of their potential therapeutic function. Recent advances of green tea polyphenols on their bioavailability, bioaccessibility, and microbiota were also summarized in this article. Dietary supplementation with green tea represents an attractive alternative toward promoting human health.
Collapse
Affiliation(s)
- Lujuan Xing
- Department of Food Science , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
- Key Lab of Meat Processing and Quality Control, College of Food Science and Technology , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Hua Zhang
- Guelph Food Research Centre, Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
| | - Ruili Qi
- Department of Food Science , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Rong Tsao
- Guelph Food Research Centre, Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
| | - Yoshinori Mine
- Department of Food Science , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| |
Collapse
|
92
|
Huang D, Cui L, Ahmed S, Zainab F, Wu Q, Wang X, Yuan Z. An overview of epigenetic agents and natural nutrition products targeting DNA methyltransferase, histone deacetylases and microRNAs. Food Chem Toxicol 2019; 123:574-594. [DOI: 10.1016/j.fct.2018.10.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/25/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023]
|
93
|
Abstract
Tea is the most widely used beverage worldwide. Japanese and Chinese people have been drinking tea for centuries and in Asia, it is the most consumed beverage besides water. It is a rich source of pharmacologically active molecules which have been implicated to provide diverse health benefits. The three major forms of tea are green, black and oolong tea based on the degree of fermentation. The composition of tea differs with the species, season, leaves, climate, and horticultural practices. Polyphenols are the major active compounds present in teas. The catechins are the major polyphenolic compounds in green tea, which include epigallocatechin-3-gallate (EGCG), epigallocatechin, epicatechin-3-gallate and epicatechin, gallocatechins and gallocatechin gallate. EGCG is the predominant and most studied catechin in green tea. There are numerous evidences from cell culture and animal studies that tea polyphenols have beneficial effects against several pathological diseases including cancer, diabetes and cardiovascular diseases. The polyphenolic compounds present in black tea include theaflavins and thearubigins. In this review article, we will summarize recent studies documenting the role of tea polyphenols in the prevention of cancer, diabetes, cardiovascular and neurological diseases.
Collapse
Affiliation(s)
- Naghma Khan
- 4385 Medical Sciences Center, 1300 University Ave, Dept. of Dermatology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Hasan Mukhtar
- 4385 Medical Sciences Center, 1300 University Ave, Dept. of Dermatology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
94
|
Khan N, Mukhtar H. Tea Polyphenols in Promotion of Human Health. Nutrients 2018; 11:nu11010039. [PMID: 30585192 PMCID: PMC6356332 DOI: 10.3390/nu11010039] [Citation(s) in RCA: 411] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/16/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023] Open
Abstract
Tea is the most widely used beverage worldwide. Japanese and Chinese people have been drinking tea for centuries and in Asia, it is the most consumed beverage besides water. It is a rich source of pharmacologically active molecules which have been implicated to provide diverse health benefits. The three major forms of tea are green, black and oolong tea based on the degree of fermentation. The composition of tea differs with the species, season, leaves, climate, and horticultural practices. Polyphenols are the major active compounds present in teas. The catechins are the major polyphenolic compounds in green tea, which include epigallocatechin-3-gallate (EGCG), epigallocatechin, epicatechin-3-gallate and epicatechin, gallocatechins and gallocatechin gallate. EGCG is the predominant and most studied catechin in green tea. There are numerous evidences from cell culture and animal studies that tea polyphenols have beneficial effects against several pathological diseases including cancer, diabetes and cardiovascular diseases. The polyphenolic compounds present in black tea include theaflavins and thearubigins. In this review article, we will summarize recent studies documenting the role of tea polyphenols in the prevention of cancer, diabetes, cardiovascular and neurological diseases.
Collapse
Affiliation(s)
- Naghma Khan
- 4385 Medical Sciences Center, 1300 University Ave, Dept. of Dermatology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Hasan Mukhtar
- 4385 Medical Sciences Center, 1300 University Ave, Dept. of Dermatology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
95
|
de Melo FHM, Oliveira JS, Sartorelli VOB, Montor WR. Cancer Chemoprevention: Classic and Epigenetic Mechanisms Inhibiting Tumorigenesis. What Have We Learned So Far? Front Oncol 2018; 8:644. [PMID: 30627525 PMCID: PMC6309127 DOI: 10.3389/fonc.2018.00644] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 12/07/2018] [Indexed: 12/21/2022] Open
Abstract
Cancers derive from step by step processes which are differentiated by the progressively accumulated mutations. For some tumors there is a clear progressive advancement from benign lesions to malignancy and for these, preventive screening programs exist. In such cases having those benign lesions are a clear indicator of predisposition while for some other cases, familial patterns of cancer incidence and the identification of mutations are the main indicators of higher risk for having the disease. For patients identified as having predisposition, chemoprevention is a goal and in some cases a possibility. Chemoprevention is the use of any compound, either natural or synthetic that abrogates carcinogenesis or tumor progression, through different mechanisms, some of which have already been described. For example, the classic mechanisms may involve activation of free radical scavenging enzymes, control of chronic inflammation, and downregulation of specific signaling pathways. More recently, epigenetics allowed further understanding of the chemopreventive potential of several agents, such as sulforaphane, green tea derived compounds, resveratrol, isoflavones, and others which we exploit in this review article. Throughout the text we discuss the properties compounds should have in order to be classified as chemopreventive ones and the challenges in translational research in this area, as lots of the success achieved in vitro cannot be translated into the clinical settings, due to several different drawbacks, which include toxicity, cost, dose definition, patient adherence, and regimen of use.
Collapse
Affiliation(s)
| | - Julia Salles Oliveira
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), São Paulo, Brazil
| | | | - Wagner Ricardo Montor
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), São Paulo, Brazil
| |
Collapse
|
96
|
Flavonoids and Colorectal Cancer Prevention. Antioxidants (Basel) 2018; 7:antiox7120187. [PMID: 30544686 PMCID: PMC6316869 DOI: 10.3390/antiox7120187] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/03/2018] [Accepted: 12/04/2018] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer, but despite advances in treatment, it remains the second most common cause of cancer-related mortality. Prevention may, therefore, be a key strategy in reducing colorectal cancer deaths. Given reports of an inverse association between fruit and vegetable consumption with colorectal cancer risk, there has been significant interest in understanding the metabolism and bioactivity of flavonoids, which are highly abundant in fruits and vegetables and account for their pigmentation. In this review, we discuss host and microbiota-mediated metabolism of flavonoids and the potential mechanisms by which flavonoids can exert protective effects against colon tumorigenesis, including regulation of signaling pathways involved in apoptosis, cellular proliferation, and inflammation and modulation of the gut microbiome.
Collapse
|
97
|
Molecular Targets of Epigallocatechin-Gallate (EGCG): A Special Focus on Signal Transduction and Cancer. Nutrients 2018; 10:nu10121936. [PMID: 30563268 PMCID: PMC6315581 DOI: 10.3390/nu10121936] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022] Open
Abstract
Green tea is a beverage that is widely consumed worldwide and is believed to exert effects on different diseases, including cancer. The major components of green tea are catechins, a family of polyphenols. Among them, epigallocatechin-gallate (EGCG) is the most abundant and biologically active. EGCG is widely studied for its anti-cancer properties. However, the cellular and molecular mechanisms explaining its action have not been completely understood, yet. EGCG is effective in vivo at micromolar concentrations, suggesting that its action is mediated by interaction with specific targets that are involved in the regulation of crucial steps of cell proliferation, survival, and metastatic spread. Recently, several proteins have been identified as EGCG direct interactors. Among them, the trans-membrane receptor 67LR has been identified as a high affinity EGCG receptor. 67LR is a master regulator of many pathways affecting cell proliferation or apoptosis, also regulating cancer stem cells (CSCs) activity. EGCG was also found to be interacting directly with Pin1, TGFR-II, and metalloproteinases (MMPs) (mainly MMP2 and MMP9), which respectively regulate EGCG-dependent inhibition of NF-kB, epithelial-mesenchimal transaction (EMT) and cellular invasion. EGCG interacts with DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), which modulates epigenetic changes. The bulk of this novel knowledge provides information about the mechanisms of action of EGCG and may explain its onco-suppressive function. The identification of crucial signalling pathways that are related to cancer onset and progression whose master regulators interacts with EGCG may disclose intriguing pharmacological targets, and eventually lead to novel combined treatments in which EGCG acts synergistically with known drugs.
Collapse
|
98
|
Jiang P, Xu C, Chen L, Chen A, Wu X, Zhou M, Haq IU, Mariyam Z, Feng Q. EGCG inhibits CSC-like properties through targeting miR-485/CD44 axis in A549-cisplatin resistant cells. Mol Carcinog 2018; 57:1835-1844. [DOI: 10.1002/mc.22901] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/24/2018] [Accepted: 08/31/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Pan Jiang
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health; Nanjing Medical University; Nanjing Jiangsu China
| | - Chuyue Xu
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health; Nanjing Medical University; Nanjing Jiangsu China
| | - Lijun Chen
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health; Nanjing Medical University; Nanjing Jiangsu China
| | - Aochang Chen
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health; Nanjing Medical University; Nanjing Jiangsu China
| | - Xiaoyue Wu
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health; Nanjing Medical University; Nanjing Jiangsu China
| | - Ming Zhou
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health; Nanjing Medical University; Nanjing Jiangsu China
| | - Ijaz ul Haq
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health; Nanjing Medical University; Nanjing Jiangsu China
| | - Zahula Mariyam
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health; Nanjing Medical University; Nanjing Jiangsu China
| | - Qing Feng
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health; Nanjing Medical University; Nanjing Jiangsu China
| |
Collapse
|
99
|
De Robertis M, Poeta ML, Signori E, Fazio VM. Current understanding and clinical utility of miRNAs regulation of colon cancer stem cells. Semin Cancer Biol 2018; 53:232-247. [PMID: 30130662 DOI: 10.1016/j.semcancer.2018.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/10/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs) in colorectal tumorigenesis are suggested to be responsible for initiation, development and propagation of colorectal cancer (CRC) and have been extensively characterized by the expression of phenotypic determinants, such as surface or intracellular proteins. The generation of CSCs is likely due to a dysregulation of the signaling pathways that principally control self-renewal and pluripotency in normal intestinal stem cells (ISCs) through different (epi)genetic changes that define cell fate, identity, and phenotype of CSCs. These aspects are currently under intense investigation. In the framework of the oncogenic signaling pathways controlled by microRNAs (miRNAs) during CRC development, a plethora of data suggests that miRNAs can play a key role in several regulatory pathways involving CSCs biology, epithelial-mesenchymal transition (EMT), angiogenesis, metastatization, and pharmacoresistance. This review examines the most relevant evidences about the role of miRNAs in the etiology of CRC, through the regulation of colon CSCs and the principal differences between colorectal CSCs and benign stem cells. In this perspective, the utility of the principal CSCs-related miRNAs changes is explored, emphasizing their use as potential biomarkers to aid in diagnosis, prognosis and predicting response to therapy in CRC patients, but also as promising targets for more effective and personalized anti-CRC treatments.
Collapse
Affiliation(s)
- Mariangela De Robertis
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", Via Orabona 4, 70126 Bari, Italy; Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; Laboratory of Molecular Pathology and Experimental Oncology, Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - Maria Luana Poeta
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", Via Orabona 4, 70126 Bari, Italy
| | - Emanuela Signori
- Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; Laboratory of Molecular Pathology and Experimental Oncology, Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - Vito Michele Fazio
- Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; IRCCS "Casa Sollievo della Sofferenza", viale dei Cappuccini, 71013 San Giovanni Rotondo (FG), Italy
| |
Collapse
|
100
|
Miyata Y, Matsuo T, Araki K, Nakamura Y, Sagara Y, Ohba K, Sakai H. Anticancer Effects of Green Tea and the Underlying Molecular Mechanisms in Bladder Cancer. MEDICINES (BASEL, SWITZERLAND) 2018; 5:medicines5030087. [PMID: 30103466 PMCID: PMC6164790 DOI: 10.3390/medicines5030087] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 05/12/2023]
Abstract
Green tea and green tea polyphenols (GTPs) are reported to inhibit carcinogenesis and malignant behavior in several diseases. Various in vivo and in vitro studies have shown that GTPs suppress the incidence and development of bladder cancer. However, at present, opinions concerning the anticancer effects and preventive role of green tea are conflicting. In addition, the detailed molecular mechanisms underlying the anticancer effects of green tea in bladder cancer remain unclear, as these effects are regulated by several cancer-related factors. A detailed understanding of the pathological roles and regulatory mechanisms at the molecular level is necessary for advancing treatment strategies based on green tea consumption for patients with bladder cancer. In this review, we discuss the anticancer effects of GTPs on the basis of data presented in in vitro studies in bladder cancer cell lines and in vivo studies using animal models, as well as new treatment strategies for patients with bladder cancer, based on green tea consumption. Finally, on the basis of the accumulated data and the main findings, we discuss the potential usefulness of green tea as an antibladder cancer agent and the future direction of green tea-based treatment strategies for these patients.
Collapse
Affiliation(s)
- Yasuyoshi Miyata
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 852-8501 Nagasaki, Japan.
| | - Tomohiro Matsuo
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 852-8501 Nagasaki, Japan.
| | - Kyohei Araki
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 852-8501 Nagasaki, Japan.
| | - Yuichiro Nakamura
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 852-8501 Nagasaki, Japan.
| | - Yuji Sagara
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 852-8501 Nagasaki, Japan.
| | - Kojiro Ohba
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 852-8501 Nagasaki, Japan.
| | - Hideki Sakai
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 852-8501 Nagasaki, Japan.
| |
Collapse
|