51
|
Lyu K, Liu X, Jiang L, Chen Y, Lu J, Zhu B, Liu X, Li Y, Wang D, Li S. The Functions and Mechanisms of Low-Level Laser Therapy in Tendon Repair (Review). Front Physiol 2022; 13:808374. [PMID: 35242050 PMCID: PMC8886125 DOI: 10.3389/fphys.2022.808374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Tendon injury is a common disease of the musculoskeletal system, accounting for roughly 30%–40% of sports system disorder injuries. In recent years, its incidence is increasing. Many studies have shown that low-level laser therapy (LLLT) has a significant effect on tendon repair by firstly activating cytochrome C oxidase and thus carrying out the photon absorption process, secondly acting in all the three phases of tendon repair, and finally improving tendon recovery. The repair mechanisms of LLLT are different in the three phases of tendon repair. In the inflammatory phase, LLLT mainly activates a large number of VEGF and promotes angiogenesis under hypoxia. During the proliferation phase, LLLT increases the amount of collagen type III by promoting the proliferation of fibroblasts. Throughout the remodeling phase, LLLT mainly activates M2 macrophages and downregulates inflammatory factors, thus reducing inflammatory responses. However, it should also be noted that in the final phase of tendon repair, the use of LLLT causes excessive upregulation of some growth factors, which will lead to tendon fibrosis. In summary, we need to further investigate the functions and mechanisms of LLLT in the treatment of tendon injury and to clarify the nature of LLLT for the treatment of diverse tendon injury diseases.
Collapse
Affiliation(s)
- Kexin Lyu
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Xueli Liu
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Li Jiang
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Yixuan Chen
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Jingwei Lu
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Bin Zhu
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Xinyue Liu
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Yujie Li
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Dingxuan Wang
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Sen Li
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
52
|
Pentzold S, Wildemann B. Mechanical overload decreases tenogenic differentiation compared to physiological load in bioartificial tendons. J Biol Eng 2022; 16:5. [PMID: 35241113 PMCID: PMC8896085 DOI: 10.1186/s13036-022-00283-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/10/2022] [Indexed: 01/18/2023] Open
Abstract
Background Tenocytes as specialised fibroblasts and inherent cells of tendons require mechanical load for their homeostasis. However, how mechanical overload compared to physiological load impacts on the tenogenic differentiation potential of fibroblasts is largely unknown. Methods Three-dimensional bioartificial tendons (BATs) seeded with murine fibroblasts (cell line C3H10T1/2) were subjected to uniaxial sinusoidal elongation at either overload conditions (0–16%, Ø 8%) or physiological load (0–8%, Ø 4%). This regime was applied for 2 h a day at 0.1 Hz for 7 days. Controls were unloaded, but under static tension. Results Cell survival did not differ among overload, physiological load and control BATs. However, gene expression of tenogenic and extra-cellular matrix markers (Scx, Mkx, Tnmd, Col1a1 and Col3a1) was significantly decreased in overload versus physiological load and controls, respectively. In contrast, Mmp3 was significantly increased at overload compared to physiological load, and significantly decreased under physiological load compared to controls. Mkx and Tnmd were significantly increased in BATs subjected to physiological load compared to controls. Proinflammatory interleukin-6 showed increased protein levels comparing load (both over and physiological) versus unloaded controls. Alignment of the cytoskeleton in strain direction was decreased in overload compared to physiological load, while other parameters such as nuclear area, roundness or cell density were less affected. Conclusions Mechanical overload decreases tenogenic differentiation and increases ECM remodelling/inflammation in 3D-stimulated fibroblasts, whereas physiological load may induce opposite effects. Supplementary Information The online version contains supplementary material available at 10.1186/s13036-022-00283-y.
Collapse
Affiliation(s)
- Stefan Pentzold
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany.
| | - Britt Wildemann
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
| |
Collapse
|
53
|
Driving native-like zonal enthesis formation in engineered ligaments using mechanical boundary conditions and β-tricalcium phosphate. Acta Biomater 2022; 140:700-716. [PMID: 34954418 DOI: 10.1016/j.actbio.2021.12.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022]
Abstract
Fibrocartilaginous entheses are structurally complex tissues that translate load from elastic ligaments to stiff bone via complex zonal gradients in the organization, mineralization, and cell phenotype. Currently, these complex gradients necessary for long-term mechanical function are not recreated in soft tissue-to-bone healing or engineered replacements, contributing to high failure rates. Previously, we developed a culture system that guides ligament fibroblasts to develop aligned native-sized collagen fibers using high-density collagen gels and mechanical boundary conditions. These constructs are promising ligament replacements, however functional ligament-to-bone attachments, or entheses, are required for long-term function in vivo. The objective of this study was to investigate the effect of compressive mechanical boundary conditions and the addition of beta-tricalcium phosphate (βTCP), a known osteoconductive agent, on the development of zonal ligament-to-bone entheses. We found that compressive boundary clamps, that restrict cellular contraction and produce a zonal tensile-compressive environment, guide ligament fibroblasts to produce 3 unique zones of collagen organization and zonal accumulation of glycosaminoglycans (GAGs), type II, and type X collagen. Ultimately, by 6 weeks of culture these constructs had similar organization and composition as immature bovine entheses. Further, βTCP applied under the clamp enhanced maturation of these entheses, leading to significantly increased tensile moduli, and zonal GAG accumulation, ALP activity, and calcium-phosphate accumulation, suggesting the initiation of endochondral ossification. This culture system produced some of the most organized entheses to date, closely mirroring early postnatal enthesis development, and provides an in vitro platform to better understand the cues that drive enthesis maturation in vivo. STATEMENT OF SIGNIFICANCE: Ligaments are attached to bone via entheses. Entheses are complex tissues with gradients in organization, composition, and cell phenotype. Entheses are necessary for proper transfer of load from ligament-to-bone, but currently are not restored with healing or replacements. Here, we provide new insight into how tensile-compressive boundary conditions and βTCP drive zonal gradients in collagen organization, mineralization, and matrix composition, producing tissues similar to immature ligament-to-bone attachments. Collectively, this culture system uses a bottom-up approach with mechanical and biochemical cues to produce engineered replacements which closely mirror postnatal enthesis development. This culture system is a promising platform to better understanding the cues that regulate enthesis formation so to better drive enthesis regeneration following graft repair and in engineered replacements.
Collapse
|
54
|
Russo V, El Khatib M, Prencipe G, Citeroni MR, Faydaver M, Mauro A, Berardinelli P, Cerveró-Varona A, Haidar-Montes AA, Turriani M, Di Giacinto O, Raspa M, Scavizzi F, Bonaventura F, Stöckl J, Barboni B. Tendon Immune Regeneration: Insights on the Synergetic Role of Stem and Immune Cells during Tendon Regeneration. Cells 2022; 11:434. [PMID: 35159244 PMCID: PMC8834336 DOI: 10.3390/cells11030434] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 12/11/2022] Open
Abstract
Tendon disorders represent a very common pathology in today's population, and tendinopathies that account 30% of tendon-related injuries, affect yearly millions of people which in turn cause huge socioeconomic and health repercussions worldwide. Inflammation plays a prominent role in the development of tendon pathologies, and advances in understanding the underlying mechanisms during the inflammatory state have provided additional insights into its potential role in tendon disorders. Different cell compartments, in combination with secreted immune modulators, have shown to control and modulate the inflammatory response during tendinopathies. Stromal compartment represented by tenocytes has shown to display an important role in orchestrating the inflammatory response during tendon injuries due to the interplay they exhibit with the immune-sensing and infiltrating compartments, which belong to resident and recruited immune cells. The use of stem cells or their derived secretomes within the regenerative medicine field might represent synergic new therapeutical approaches that can be used to tune the reaction of immune cells within the damaged tissues. To this end, promising opportunities are headed to the stimulation of macrophages polarization towards anti-inflammatory phenotype together with the recruitment of stem cells, that possess immunomodulatory properties, able to infiltrate within the damaged tissues and improve tendinopathies resolution. Indeed, the comprehension of the interactions between tenocytes or stem cells with the immune cells might considerably modulate the immune reaction solving hence the inflammatory response and preventing fibrotic tissue formation. The purpose of this review is to compare the roles of distinct cell compartments during tendon homeostasis and injury. Furthermore, the role of immune cells in this field, as well as their interactions with stem cells and tenocytes during tendon regeneration, will be discussed to gain insights into new ways for dealing with tendinopathies.
Collapse
Affiliation(s)
- Valentina Russo
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Giuseppe Prencipe
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Maria Rita Citeroni
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Melisa Faydaver
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Annunziata Mauro
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Paolo Berardinelli
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Adrián Cerveró-Varona
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Arlette A. Haidar-Montes
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Maura Turriani
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Oriana Di Giacinto
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Marcello Raspa
- National Research Council (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), Institute of Biochemistry and Cellular Biology (IBBC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Ferdinando Scavizzi
- National Research Council (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), Institute of Biochemistry and Cellular Biology (IBBC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Fabrizio Bonaventura
- National Research Council (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), Institute of Biochemistry and Cellular Biology (IBBC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Johannes Stöckl
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Barbara Barboni
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| |
Collapse
|
55
|
Sichting F, Kram NC, Legerlotz K. An Identical Twin Study on Human Achilles Tendon Adaptation: Regular Recreational Exercise at Comparatively Low Intensities Can Increase Tendon Stiffness. Front Physiol 2022; 12:777403. [PMID: 35069241 PMCID: PMC8766644 DOI: 10.3389/fphys.2021.777403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Achilles tendon adaptation is a key aspect of exercise performance and injury risk prevention. However, much debate exists about the adaptation of the Achilles tendon in response to exercise activities. Most published research is currently limited to elite athletes and selected exercise activities. Also, existing studies on tendon adaptation do not control for genetic variation. Our explorative cross-sectional study investigated the effects of regular recreational exercise activities on Achilles tendon mechanical properties in 40 identical twin pairs. Using a handheld oscillation device to determine Achilles tendon mechanical properties, we found that the Achilles tendon appears to adapt to regular recreational exercise at comparatively low intensities by increasing its stiffness. Active twins showed a 28% greater Achilles tendon stiffness than their inactive twin (p < 0.05). Further, our research extends existing ideas on sport-specific adaptation by showing that tendon stiffness seemed to respond more to exercise activities that included an aerial phase such as running and jumping. Interestingly, the comparison of twin pairs revealed a high variation of Achilles tendon stiffness (305.4–889.8 N/m), and tendon adaptation was only revealed when we controlled for genetic variance. Those results offer new insights into the impact of genetic variation on individual Achilles tendon stiffness, which should be addressed more closely in future studies.
Collapse
Affiliation(s)
- Freddy Sichting
- Department of Human Locomotion, Chemnitz University of Technology, Chemnitz, Germany
| | - Nicolai C Kram
- Department of Human Locomotion, Chemnitz University of Technology, Chemnitz, Germany
| | - Kirsten Legerlotz
- Movement Biomechanics, Institute of Sport Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
56
|
Kourtidou-Papadeli C, Frantzidis CA, Bakirtzis C, Petridou A, Gilou S, Karkala A, Machairas I, Kantouris N, Nday CM, Dermitzakis EV, Bakas E, Mougios V, Bamidis PD, Vernikos J. Therapeutic Benefits of Short-Arm Human Centrifugation in Multiple Sclerosis-A New Approach. Front Neurol 2022; 12:746832. [PMID: 35058870 PMCID: PMC8764123 DOI: 10.3389/fneur.2021.746832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022] Open
Abstract
Short-arm human centrifugation (SAHC) is proposed as a robust countermeasure to treat deconditioning and prevent progressive disability in a case of secondary progressive multiple sclerosis. Based on long-term physiological knowledge derived from space medicine and missions, artificial gravity training seems to be a promising physical rehabilitation approach toward the prevention of musculoskeletal decrement due to confinement and inactivity. So, the present study proposes a novel infrastructure based on SAHC to investigate the hypothesis that artificial gravity ameliorates the degree of disability. The patient was submitted to a 4-week training programme including three weekly sessions of 30 min of intermittent centrifugation at 1.5–2 g. During sessions, cardiovascular, muscle oxygen saturation (SmO2) and electroencephalographic (EEG) responses were monitored, whereas neurological and physical performance tests were carried out before and after the intervention. Cardiovascular parameters improved in a way reminiscent of adaptations to aerobic exercise. SmO2 decreased during sessions concomitant with increased g load, and, as training progressed, SmO2 of the suffering limb dropped, both effects suggesting increased oxygen use, similar to that seen during hard exercise. EEG showed increased slow and decreased fast brain waves, with brain reorganization/plasticity evidenced through functional connectivity alterations. Multiple-sclerosis-related disability and balance capacity also improved. Overall, this study provides novel evidence supporting SAHC as a promising therapeutic strategy in multiple sclerosis, based on mechanical loading, thereby setting the basis for future randomized controlled trials.
Collapse
Affiliation(s)
- Chrysoula Kourtidou-Papadeli
- Biomedical Engineering and Aerospace Neuroscience (BEAN), Laboratory of Medical Physics and Digital Innovation, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Greek Aerospace Medical Association and Space Research (GASMA-SR), Thessaloniki, Greece.,Laboratory of Aerospace and Rehabilitation Applications "Joan Vernikos", AROGI Rehabilitation Centre, Thessaloniki, Greece.,Aeromedical Center of Thessaloniki (AeMC), Thessaloniki, Greece
| | - Christos A Frantzidis
- Biomedical Engineering and Aerospace Neuroscience (BEAN), Laboratory of Medical Physics and Digital Innovation, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Greek Aerospace Medical Association and Space Research (GASMA-SR), Thessaloniki, Greece
| | - Christos Bakirtzis
- Department of Neurology, Multiple Sclerosis Center, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anatoli Petridou
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sport Science at Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sotiria Gilou
- Biomedical Engineering and Aerospace Neuroscience (BEAN), Laboratory of Medical Physics and Digital Innovation, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aliki Karkala
- Greek Aerospace Medical Association and Space Research (GASMA-SR), Thessaloniki, Greece
| | - Ilias Machairas
- Biomedical Engineering and Aerospace Neuroscience (BEAN), Laboratory of Medical Physics and Digital Innovation, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Kantouris
- Greek Aerospace Medical Association and Space Research (GASMA-SR), Thessaloniki, Greece
| | - Christiane M Nday
- Biomedical Engineering and Aerospace Neuroscience (BEAN), Laboratory of Medical Physics and Digital Innovation, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Eleftherios Bakas
- Laboratory of Aerospace and Rehabilitation Applications "Joan Vernikos", AROGI Rehabilitation Centre, Thessaloniki, Greece
| | - Vassilis Mougios
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sport Science at Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiotis D Bamidis
- Biomedical Engineering and Aerospace Neuroscience (BEAN), Laboratory of Medical Physics and Digital Innovation, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Greek Aerospace Medical Association and Space Research (GASMA-SR), Thessaloniki, Greece
| | - Joan Vernikos
- Greek Aerospace Medical Association and Space Research (GASMA-SR), Thessaloniki, Greece.,Thirdage LLC, Culpeper, VA, United States
| |
Collapse
|
57
|
Docherty S, Harley R, McAuley JJ, Crowe LAN, Pedret C, Kirwan PD, Siebert S, Millar NL. The effect of exercise on cytokines: implications for musculoskeletal health: a narrative review. BMC Sports Sci Med Rehabil 2022; 14:5. [PMID: 34991697 PMCID: PMC8740100 DOI: 10.1186/s13102-022-00397-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/31/2021] [Indexed: 02/07/2023]
Abstract
The physiological effects of physical exercise are ubiquitously reported as beneficial to the cardiovascular and musculoskeletal systems. Exercise is widely promoted by medical professionals to aid both physical and emotional wellbeing; however, mechanisms through which this is achieved are less well understood. Despite numerous beneficial attributes, certain types of exercise can inflict significant significant physiological stress. Several studies document a key relationship between exercise and immune activation. Activation of the innate immune system occurs in response to exercise and it is proposed this is largely mediated by cytokine signalling. Cytokines are typically classified according to their inflammatory properties and evidence has shown that cytokines expressed in response to exercise are diverse and may act to propagate, modulate or mitigate inflammation in musculoskeletal health. The review summarizes the existing literature on the relationship between exercise and the immune system with emphasis on how exercise-induced cytokine expression modulates inflammation and the immune response.
Collapse
Affiliation(s)
- Sophie Docherty
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, 120 University Avenue, Glasgow, G12 8TA, Scotland, UK
| | - Rachael Harley
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, 120 University Avenue, Glasgow, G12 8TA, Scotland, UK
| | - Joseph J McAuley
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, 120 University Avenue, Glasgow, G12 8TA, Scotland, UK
| | - Lindsay A N Crowe
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, 120 University Avenue, Glasgow, G12 8TA, Scotland, UK
| | - Carles Pedret
- Sports Medicine and Imaging Department, Clinica Diagonal, C/Sant Mateu 24-26, 08950, Esplugues de Llobregat, Spain
| | - Paul D Kirwan
- School of Physiotherapy, Royal College of Surgeons in Ireland, Dublin, Ireland
- Physiotherapy Department, Connolly Hospital, Dublin, Ireland
| | - Stefan Siebert
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, 120 University Avenue, Glasgow, G12 8TA, Scotland, UK
| | - Neal L Millar
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, 120 University Avenue, Glasgow, G12 8TA, Scotland, UK.
| |
Collapse
|
58
|
Extracorporeal Shockwave Therapy With a Modified Technique on Tendon and Ligament for Knee Osteoarthritis: A Randomized Controlled Trial. Am J Phys Med Rehabil 2022; 101:11-17. [PMID: 34915541 DOI: 10.1097/phm.0000000000001730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND There have been no definitive guidelines on the treatment method and specific points in the body. PURPOSE The aim of the study was to investigate the effects of extracorporeal shockwave therapy on treating the main tendons and ligaments of knee osteoarthritis. METHOD A total of 36 patients with knee osteoarthritis were enrolled in trial and organized into two groups: 3-wk extracorporeal shockwave therapy for the intervention group and 3-wk sham extracorporeal shockwave therapy for control group. Both groups received the same physical therapies: (1) transcutaneous electrical nerve stimulation, (2) magnetic field treatment, and (3) quadricep muscle strength training. Evaluation was performed before the start of treatment, at third week after the start of treatment, and 1 wk after the end of treatment. The study used randomized controlled trials (level of evidence, 1). RESULT Eextracorporeal shockwave therapy group had significant improvement in WOMAC pain score, physical function, and total score (mean difference = -2.8, P < 0.001; -5.1, P = 0.02; -8.3, P = 0.004, respectively), Visual Analog Scale score (mean difference = -2.3, P < 0.001), and the distance of 6-min walk test (mean difference = 28.7, P = 0.01) in the 1 wk after the end of treatment. Statistical significance in WOMAC pain, physical function, and total scores (mean difference = -3.0, P = 0.001; -5.6, P = 0.02; -9.3, P = 0.004, respectively) and Visual Analog Scale score (mean difference = -1.2, P = 0.027) was observed between the extracorporeal shockwave therapy group and control group. CONCLUSIONS Extracorporeal shockwave therapy for the tendons and ligaments has clinical benefits for pain and physical function improvement in knee osteoarthritis. In addition, improvement in physical performance was observed in the short-term follow-up.
Collapse
|
59
|
Howe D, Dixit NN, Saul KR, Fisher MB. A Direct Comparison of Node and Element-Based Finite Element Modeling Approaches to Study Tissue Growth. J Biomech Eng 2022; 144:011001. [PMID: 34227653 PMCID: PMC8420794 DOI: 10.1115/1.4051661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 06/25/2021] [Indexed: 01/03/2023]
Abstract
Finite element analysis is a useful tool to model growth of biological tissues and predict how growth can be impacted by stimuli. Previous work has simulated growth using node-based or element-based approaches, and this implementation choice may influence predicted growth, irrespective of the applied growth model. This study directly compared node-based and element-based approaches to understand the isolated impact of implementation method on growth predictions by simulating growth of a bone rudiment geometry, and determined what conditions produce similar results between the approaches. We used a previously reported node-based approach implemented via thermal expansion and an element-based approach implemented via osmotic swelling, and we derived a mathematical relationship to relate the growth resulting from these approaches. We found that material properties (modulus) affected growth in the element-based approach, with growth completely restricted for high modulus values relative to the growth stimulus, and no restriction for low modulus values. The node-based approach was unaffected by modulus. Node- and element-based approaches matched marginally better when the conversion coefficient to relate the approaches was optimized based on the results of initial simulations, rather than using the theoretically predicted conversion coefficient (median difference in node position 0.042 cm versus 0.052 cm, respectively). In summary, we illustrate here the importance of the choice of implementation approach for modeling growth, provide a framework for converting models between implementation approaches, and highlight important considerations for comparing results in prior work and developing new models of tissue growth.
Collapse
Affiliation(s)
- Danielle Howe
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, Raleigh, NC 27695; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695
| | - Nikhil N. Dixit
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695
| | - Katherine R. Saul
- Department of Mechanical and Aerospace Engineering, North Carolina State University, 3162 Engineering Building III, 1840 Entrepreneur Dr, CB 7910, Raleigh, NC 27695
| | - Matthew B. Fisher
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, 4130 Engineering Building III, 1840 Entrepreneur Drive, CB 7115, Raleigh, NC 27695; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695; Department of Orthopaedics, University of North Carolina at Chapel Hill, NC 27599
| |
Collapse
|
60
|
König D, Kohl J, Jerger S, Centner C. Potential Relevance of Bioactive Peptides in Sports Nutrition. Nutrients 2021; 13:3997. [PMID: 34836255 PMCID: PMC8622853 DOI: 10.3390/nu13113997] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/27/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Bioactive peptides are physiologically active peptides mostly derived from proteins following gastrointestinal digestion, fermentation or hydrolysis by proteolytic enzymes. It has been shown that bioactive peptides can be resorbed in their intact form and have repeatedly been shown to have a positive effect on health-related parameters such as hypertension, dyslipoproteinemia, inflammation and oxidative stress. In recent years, there has been increasing evidence that biologically active peptides could also play an important role in sports nutrition. Current studies have shown that bioactive peptides could have a positive impact on changes in body composition and muscular performance, reduce muscle damage following exercise and induce beneficial adaptions within the connective tissue. In the following overview, potential mechanisms as well as possible limitations regarding the sports-related effect of bioactive peptides and their potential mechanisms are presented and discussed. In addition, practical applications will be discussed on how bioactive peptides can be integrated into a nutritional approach in sports to enhance athletic performance as well as prevent injuries and improve the rehabilitation process.
Collapse
Affiliation(s)
- Daniel König
- Centre for Sports Science and University Sports, Institute for Nutrition, Exercise and Health, University of Vienna, Auf der Schmelz, 61150 Vienna, Austria
- Department for Nutritional Science, Institute for Nutrition, Exercise and Health, University of Vienna, 61150 Vienna, Austria
| | - Jan Kohl
- Department of Sport and Sport Science, University of Freiburg, 79102 Freiburg, Germany; (J.K.); (S.J.); (C.C.)
| | - Simon Jerger
- Department of Sport and Sport Science, University of Freiburg, 79102 Freiburg, Germany; (J.K.); (S.J.); (C.C.)
| | - Christoph Centner
- Department of Sport and Sport Science, University of Freiburg, 79102 Freiburg, Germany; (J.K.); (S.J.); (C.C.)
- Praxisklinik Rennbahn, CH-4132 Muttenz, Switzerland
| |
Collapse
|
61
|
Chen Y, Zhang T, Wan L, Wang Z, Li S, Hu J, Xu D, Lu H. Early treadmill running delays rotator cuff healing via Neuropeptide Y mediated inactivation of the Wnt/β-catenin signaling. J Orthop Translat 2021; 30:103-111. [PMID: 34722153 PMCID: PMC8517718 DOI: 10.1016/j.jot.2021.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 11/29/2022] Open
Abstract
Background Defining the optimal rehabilitation programs for rotator cuff healing remains a challenge. Early treadmill running may have negative effects on tendon-bone interface (TBI) healing with increased expression of Neuropeptide Y (NPY). However, the underlying mechanism is still unknown. Methods The mice were randomly assigned to four groups: control group, treadmill group, treadmill + BIBO3304 group and BIBO3304 group alone. Specifically, the control group was allowed free cage activity without any treatment after surgery. The treadmill group received early treadmill running initiated from postoperative day 2. The treadmill + BIBO3304 group received treadmill running combined with intra-articular injection of BIBO3304 postoperatively. The BIBO3304 group only received type 1 NPY receptor (Y1 receptor, Y1R) antagonist BIBO3304 postoperatively. Healing outcomes of the rotator cuff were evaluated by histological analysis, synchrotron radiation micro-computed tomography (SR-μCT) scanning, and biomechanical testing at 4 and 8 weeks after surgery. The expression of NPY and its Y1 receptor during the treadmill running were tested by immunofluorescence. In addition, the related signaling pathway of Neuropeptide Y among all groups was detected by immunohistochemistry and western-blot. Results Immunofluorescence results show that early treadmill training could lead to a significant increase in the expression of NPY at the healing site, and Y1R was widely expressed in both normal or injured rotator cuff without statistical difference. At the same time, early treadmill running delayed the healing of rotator cuff, as indicated with unsatisfactory outcomes, including a significantly lower histological score, decreased bone formation and inferior biomechanical properties at postoperative week 4 and 8. Moreover, the use of BIBO3304 could partly alleviate the negative effects of early treadmill running on the healing of rotator cuff and promote the natural healing process of rotator cuff, as evidenced by significant differences observed between the treadmill and treadmill + BIBO3304 groups, as well as observed between the control and BIBO3304 groups. On the other hand, the expressions of Wnt3a and β-catenin in the treadmill group were significantly lower compared with the other groups, while the expression in the BIBO3304 group was the highest, as evaluated by immunohistochemistry and western-blot. Conclusions Early treadmill running increased the expression of NPY at the RC healing site, which might burden the expression of Wnt3a/β-catenin and delay the healing process, inhibition of Y1 receptor with BIBO3304 could promote bone-tendon healing through the Wnt/β-catenin signaling. The translational potential of this article: This is the first study to evaluate the specific role of the NPY-Y1R axis and its underlying mechanism by which early treadmill running delays bone-tendon healing. Further, our study may provide references of precise and individualized exercise-based rehabilitation strategies for TBI healing in clinic. The translational potential of this article This is the first study to evaluate the specific role of the NPY-Y1R axis and its underlying mechanism by which early treadmill running delays bone-tendon healing. Further, our study may provide references of precise and individualized exercise-based rehabilitation strategies for TBI healing in clinic.
Collapse
Affiliation(s)
- Yang Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
| | - Tao Zhang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
| | - Liyang Wan
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
| | - Zhanwen Wang
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
| | - Shengcan Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
| | - Jianzhong Hu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China.,Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Daqi Xu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
| |
Collapse
|
62
|
Mechanobiology-based physical therapy and rehabilitation after orthobiologic interventions: a narrative review. INTERNATIONAL ORTHOPAEDICS 2021; 46:179-188. [PMID: 34709429 DOI: 10.1007/s00264-021-05253-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE This review aims to summarize the evidence for the role of mechanotherapies and rehabilitation in supporting the synergy between regeneration and repair after an orthobiologic intervention. METHODS A selective literature search was performed using Web of Science, OVID, and PubMed to review research articles that discuss the effects of combining mechanotherapy with various forms of regenerative medicine. RESULTS Various mechanotherapies can encourage the healing process for patients at different stages. Taping, bracing, cold water immersion, and extracorporeal shockwave therapy can be used throughout the duration of acute inflammatory response. The regulation of angiogenesis can be sustained with blood flow restriction and resistance training, whereas heat therapy and tissue loading during exercise are recommended in the remodeling phase. CONCLUSION Combining mechanotherapy with various forms of regenerative medicine has shown promise for improving treatment outcomes. However, further studies that reveal a greater volume of evidence are needed to support clinical decisions.
Collapse
|
63
|
Mlyniec A, Dabrowska S, Heljak M, Weglarz WP, Wojcik K, Ekiert-Radecka M, Obuchowicz R, Swieszkowski W. The dispersion of viscoelastic properties of fascicle bundles within the tendon results from the presence of interfascicular matrix and flow of body fluids. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112435. [PMID: 34702520 DOI: 10.1016/j.msec.2021.112435] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 01/12/2023]
Abstract
In this work, we investigate differences in the mechanical and structural properties of tendon fascicle bundles dissected from different areas of bovine tendons. The properties of tendon fascicle bundles were investigated by means of uniaxial tests with relaxation periods and hysteresis, dynamic mechanical analysis (DMA), as well as magnetic resonance imaging (MRI). Uniaxial tests with relaxation periods revealed greater elastic modulus, hysteresis, as well as stress drop during the relaxation of samples dissected from the posterior side of the tendon. However, the normalized stress relaxation curves did not show a statistically significant difference in the stress drop between specimens cut from different zones or between different strain levels. Using dynamic mechanical analysis, we found that fascicle bundles dissected from the anterior side of the tendon had lower storage and loss moduli, which could result from altered fluid flow within the interfascicular matrix (IFM). The lower water content, diffusivity, and higher fractional anisotropy of the posterior part of the tendon, as observed using MRI, indicates a different structure of the IFM, which controls the flow of fluids within the tendon. Our results show that the viscoelastic response to dynamic loading is correlated with fluid flow within the IFM, which was confirmed during analysis of the MRI results. In contrast to this, the long-term relaxation of tendon fascicle bundles is controlled by viscoplasticity of the IFM and depends on the spatial distribution of the matrix within the tendon. Comparison of results from tensile tests, DMA, and MRI gives new insight into tendon mechanics and the role of the IFM. These findings may be useful in improving the diagnosis of tendon injury and effectiveness of medical treatments for tendinopathies.
Collapse
Affiliation(s)
- Andrzej Mlyniec
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Krakow, Poland.
| | - Sylwia Dabrowska
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Krakow, Poland
| | - Marcin Heljak
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw, Poland
| | | | - Kaja Wojcik
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Krakow, Poland
| | - Martyna Ekiert-Radecka
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Krakow, Poland
| | - Rafal Obuchowicz
- Jagiellonian University Collegium Medicum, Department of Radiology, Krakow, Poland
| | - Wojciech Swieszkowski
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw, Poland
| |
Collapse
|
64
|
Williamson PM, Freedman BR, Kwok N, Beeram I, Pennings J, Johnson J, Hamparian D, Cohen E, Galloway JL, Ramappa AJ, DeAngelis JP, Nazarian A. Tendinopathy and tendon material response to load: What we can learn from small animal studies. Acta Biomater 2021; 134:43-56. [PMID: 34325074 DOI: 10.1016/j.actbio.2021.07.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 12/20/2022]
Abstract
Tendinopathy is a debilitating disease that causes as much as 30% of all musculoskeletal consultations. Existing treatments for tendinopathy have variable efficacy, possibly due to incomplete characterization of the underlying pathophysiology. Mechanical load can have both beneficial and detrimental effects on tendon, as the overall tendon response depends on the degree, frequency, timing, and magnitude of the load. The clinical continuum model of tendinopathy offers insight into the late stages of tendinopathy, but it does not capture the subclinical tendinopathic changes that begin before pain or loss of function. Small animal models that use high tendon loading to mimic human tendinopathy may be able to fill this knowledge gap. The goal of this review is to summarize the insights from in-vivo animal studies of mechanically-induced tendinopathy and higher loading regimens into the mechanical, microstructural, and biological features that help characterize the continuum between normal tendon and tendinopathy. STATEMENT OF SIGNIFICANCE: This review summarizes the insights gained from in-vivo animal studies of mechanically-induced tendinopathy by evaluating the effect high loading regimens have on the mechanical, structural, and biological features of tendinopathy. A better understanding of the interplay between these realms could lead to improved patient management, especially in the presence of painful tendon.
Collapse
|
65
|
He S, Qin T. [Research progress of interfacial tissue engineering in rotator cuff repair]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:1341-1351. [PMID: 34651491 DOI: 10.7507/1002-1892.202104064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To summarize the research progress of interfacial tissue engineering in rotator cuff repair. Methods The recent literature at home and abroad concerning interfacial tissue engineering in rotator cuff repair was analysed and summarized. Results Interfacial tissue engineering is to reconstruct complex and hierarchical interfacial tissues through a variety of methods to repair or regenerate damaged joints of different tissues. Interfacial tissue engineering in rotator cuff repair mainly includes seed cells, growth factors, biomaterials, oxygen concentration, and mechanical stimulation. Conclusion The best strategy for rotator cuff healing and regeneration requires not only the use of biomaterials with gradient changes, but also the combination of seed cells, growth factors, and specific culture conditions (such as oxygen concentration and mechanical stimulation). However, the clinical transformation of the relevant treatment is still a very slow process.
Collapse
Affiliation(s)
- Shukun He
- Laboratory of Stem Cells and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Tingwu Qin
- Laboratory of Stem Cells and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| |
Collapse
|
66
|
Ciardulli MC, Lovecchio J, Scala P, Lamparelli EP, Dale TP, Giudice V, Giordano E, Selleri C, Forsyth NR, Maffulli N, Della Porta G. 3D Biomimetic Scaffold for Growth Factor Controlled Delivery: An In-Vitro Study of Tenogenic Events on Wharton's Jelly Mesenchymal Stem Cells. Pharmaceutics 2021; 13:pharmaceutics13091448. [PMID: 34575523 PMCID: PMC8465418 DOI: 10.3390/pharmaceutics13091448] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 11/25/2022] Open
Abstract
The present work described a bio-functionalized 3D fibrous construct, as an interactive teno-inductive graft model to study tenogenic potential events of human mesenchymal stem cells collected from Wharton’s Jelly (hWJ-MSCs). The 3D-biomimetic and bioresorbable scaffold was functionalized with nanocarriers for the local controlled delivery of a teno-inductive factor, i.e., the human Growth Differentiation factor 5 (hGDF-5). Significant results in terms of gene expression were obtained. Namely, the up-regulation of Scleraxis (350-fold, p ≤ 0.05), type I Collagen (8-fold), Decorin (2.5-fold), and Tenascin-C (1.3-fold) was detected at day 14; on the other hand, when hGDF-5 was supplemented in the external medium only (in absence of nanocarriers), a limited effect on gene expression was evident. Teno-inductive environment also induced pro-inflammatory, (IL-6 (1.6-fold), TNF (45-fold, p ≤ 0.001), and IL-12A (1.4-fold)), and anti-inflammatory (IL-10 (120-fold) and TGF-β1 (1.8-fold)) cytokine expression upregulation at day 14. The presented 3D construct opens perspectives for the study of drug controlled delivery devices to promote teno-regenerative events.
Collapse
Affiliation(s)
- Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (P.S.); (E.P.L.); (V.G.); (C.S.); (N.M.)
| | - Joseph Lovecchio
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, Via dell’Università 50, 47522 Cesena, Italy; (J.L.); (E.G.)
| | - Pasqualina Scala
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (P.S.); (E.P.L.); (V.G.); (C.S.); (N.M.)
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (P.S.); (E.P.L.); (V.G.); (C.S.); (N.M.)
| | - Tina Patricia Dale
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK; (T.P.D.); (N.R.F.)
| | - Valentina Giudice
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (P.S.); (E.P.L.); (V.G.); (C.S.); (N.M.)
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| | - Emanuele Giordano
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, Via dell’Università 50, 47522 Cesena, Italy; (J.L.); (E.G.)
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano dell’Emilia, Italy
- Advanced Research Center on Electronic Systems (ARCES), University of Bologna, Via Vincenzo Toffano 2/2, 40125 Bologna, Italy
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (P.S.); (E.P.L.); (V.G.); (C.S.); (N.M.)
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
- Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| | - Nicholas Robert Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK; (T.P.D.); (N.R.F.)
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (P.S.); (E.P.L.); (V.G.); (C.S.); (N.M.)
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK; (T.P.D.); (N.R.F.)
- Centre for Sport and Exercise Medicine, Barts and The London School of Medicine, Queen Mary University of London, London E1 4NL, UK
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (P.S.); (E.P.L.); (V.G.); (C.S.); (N.M.)
- Research Centre for Biomaterials BIONAM, Università di Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
- Correspondence: ; Tel.: +39-089-965-234
| |
Collapse
|
67
|
Viganò M, Lugano G, Orfei CP, Menon A, Ragni E, Colombini A, de Luca P, Talò G, Randelli PS, de Girolamo L. Tendon Cells Derived From The Long Head Of The Biceps And The Supraspinatus Tendons Of Patients Affected By Rotator Cuff Tears Show Different Expression Of Inflammatory Markers. Connect Tissue Res 2021; 62:570-579. [PMID: 32921180 DOI: 10.1080/03008207.2020.1816993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM OF THE STUDY Tendons are exposed to mechanical stress constantly during movements and thus they are frequently subjected to injuries. Rotator cuff tears are common musculoskeletal disorders, mainly involving the supraspinatus tendon. The characterization of the tenocytes derived from this tendon and the comparison to cells isolated from the long head of the biceps tendon obtained from donors affected by rotator cuff disease may improve the knowledge of the cellular mechanisms involved in the initiation and progression of the pathology. Thus, the aim of the present study was to characterize and compare donor-matched human tendon cells (TCs) isolated from the long head of the biceps (LHB-TCs) and the supraspinatus tendons (SSP-TCs) of patients affected by rotator cuff tears. METHODS donor-matched LHB-TCs and SSP-TCs were isolated and cultured up to passage 3. Phenotypic appearance, metabolic activity, DNA content, production of soluble mediators (IL-1Ra, IL-1β, IL-6, and VEGF) and gene expression of tendon markers (SCX, COL1A1, COL3A1), inflammatory (PTGS2), and catabolic enzymes (MMP-1, MMP-3) were evaluated. RESULTS LHB-TCs showed an elongated fibroblast-like shape, while SSP-TCs appeared irregular with jagged membrane. SSP-TCs gene expression revealed an augmented production of PTGS2, a marker of inflammation, whereas they produced a reduced amount of IL-6, in respect to LHB-TCs. CONCLUSION SSP-TCs showed higher cellular stress and expression of inflammatory markers with respect to donor-matched LHB-TCs, suggesting that addressing the physio-pathological state of supraspinatus tendon cells during treatment of rotator cuff tears could favor tissue healing and possibly prevent relapses.
Collapse
Affiliation(s)
- Marco Viganò
- Orthopedics Biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Gaia Lugano
- Orthopedics Biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | | | - Alessandra Menon
- Laboratory of Applied Biomechanics, Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy.,U.O.C. 1° Clinica Ortopedica, ASST Centro Specialistico Ortopedico Traumatologico Gaetano Pini-CTO, Milan, Italy.,Research Center for Adult and Pediatric Rheumatic Diseases (RECAP-RD), Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Enrico Ragni
- Orthopedics Biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | | | - Paola de Luca
- Orthopedics Biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Giuseppe Talò
- Orthopedics Biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Pietro S Randelli
- Laboratory of Applied Biomechanics, Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy.,U.O.C. 1° Clinica Ortopedica, ASST Centro Specialistico Ortopedico Traumatologico Gaetano Pini-CTO, Milan, Italy.,Research Center for Adult and Pediatric Rheumatic Diseases (RECAP-RD), Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Laura de Girolamo
- Orthopedics Biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
68
|
Still C, Chang WT, Sherman SL, Sochacki KR, Dragoo JL, Qi LS. Single-cell transcriptomic profiling reveals distinct mechanical responses between normal and diseased tendon progenitor cells. Cell Rep Med 2021; 2:100343. [PMID: 34337559 PMCID: PMC8324492 DOI: 10.1016/j.xcrm.2021.100343] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 02/23/2021] [Accepted: 06/14/2021] [Indexed: 11/25/2022]
Abstract
Regenerative medicine approaches utilizing stem cells offer a promising strategy to address tendinopathy, a class of common tendon disorders associated with pain and impaired function. Tendon progenitor cells (TPCs) are important in healing and maintaining tendon tissues. Here we provide a comprehensive single cell transcriptomic profiling of TPCs from three normal and three clinically classified tendinopathy samples in response to mechanical stimuli. Analysis reveals seven distinct TPC subpopulations including subsets that are responsive to the mechanical stress, highly clonogenic, and specialized in cytokine or growth factor expression. The single cell transcriptomic profiling of TPCs and their subsets serves as a foundation for further investigation into the pathology and molecular hallmarks of tendinopathy in mechanical stimulation conditions.
Collapse
Affiliation(s)
- Chris Still
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Wen-Teh Chang
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305, USA
| | - Seth L. Sherman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305, USA
| | - Kyle R. Sochacki
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305, USA
| | - Jason L. Dragoo
- Deparment of Orthopaedic Surgery, University of Colorado, Denver, CO 80045, USA
| | - Lei S. Qi
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Deparment of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
- ChEM-H, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
69
|
Crawford SK, Rudolph A, Engel AJ, Ransone JW, Bashford GR. Novel Quantitative Ultrasonic Analysis of Patellar Tendon in Collegiate Athlete Following Bilateral Debridement: A Case Report. J Athl Train 2021; 56:1349-1354. [PMID: 34279639 DOI: 10.4085/1062-6050-0480.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An NCAA Division I female basketball athlete (20 years, 190.5 cm, 87 kg) suffered from chronic tendinopathy. After failed conservative treatments, the athlete underwent bilateral open patellar debridement surgery. Pain and dysfunction were assessed via the Victorian Institute of Sport-P (VISA-P) with concurrently collected B-mode ultrasound images of the patellar tendon throughout a 12 month rehabilitation. Peak spatial frequency radius (PSFR), a quantitative ultrasound parameter previously shown to correlate to collagen organization, was compared to changes in VISA-P scores. An overall increase in PSFR values across 0, 30, 60, and 90° of knee flexion were observed throughout recovery. Despite increased PSFR and returning to sport, the athlete still reported significant pain. This level 3 exploration case report provides novel insight into ultrasonically-measured structural changes of the patellar tendon following surgery and during rehabilitation of an athlete suffering from chronic tendinopathy. Perceived pain measurements were not necessarily related to structural adaptations.
Collapse
Affiliation(s)
- Scott K Crawford
- Department of Orthopedics & Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| | - Ashley Rudolph
- Department of Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA.,Department of Athletic Medicine, University of Nebraska, Lincoln, NE, USA
| | - Aaron J Engel
- Department of Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA
| | - Jack W Ransone
- Department of Athletics, College of William and Mary, Williamsburg, VA, USA
| | - Gregory R Bashford
- Department of Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA.,Nebraska Athletic Performance Laboratory, University of Nebraska, Lincoln, NE, USA
| |
Collapse
|
70
|
Bramson MTK, Van Houten SK, Corr DT. Mechanobiology in Tendon, Ligament, and Skeletal Muscle Tissue Engineering. J Biomech Eng 2021; 143:070801. [PMID: 33537704 DOI: 10.1115/1.4050035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 12/28/2022]
Abstract
Tendon, ligament, and skeletal muscle are highly organized tissues that largely rely on a hierarchical collagenous matrix to withstand high tensile loads experienced in activities of daily life. This critical biomechanical role predisposes these tissues to injury, and current treatments fail to recapitulate the biomechanical function of native tissue. This has prompted researchers to pursue engineering functional tissue replacements, or dysfunction/disease/development models, by emulating in vivo stimuli within in vitro tissue engineering platforms-specifically mechanical stimulation, as well as active contraction in skeletal muscle. Mechanical loading is critical for matrix production and organization in the development, maturation, and maintenance of native tendon, ligament, and skeletal muscle, as well as their interfaces. Tissue engineers seek to harness these mechanobiological benefits using bioreactors to apply both static and dynamic mechanical stimulation to tissue constructs, and induce active contraction in engineered skeletal muscle. The vast majority of engineering approaches in these tissues are scaffold-based, providing interim structure and support to engineered constructs, and sufficient integrity to withstand mechanical loading. Alternatively, some recent studies have employed developmentally inspired scaffold-free techniques, relying on cellular self-assembly and matrix production to form tissue constructs. Whether utilizing a scaffold or not, incorporation of mechanobiological stimuli has been shown to improve the composition, structure, and biomechanical function of engineered tendon, ligament, and skeletal muscle. Together, these findings highlight the importance of mechanobiology and suggest how it can be leveraged to engineer these tissues and their interfaces, and to create functional multitissue constructs.
Collapse
Affiliation(s)
- Michael T K Bramson
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180
| | - Sarah K Van Houten
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180
| | - David T Corr
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180
| |
Collapse
|
71
|
Wang T, Chen P, Chen L, Zhou Y, Wang A, Zheng Q, Mitchell CA, Leys T, Tuan RS, Zheng MH. Reduction of mechanical loading in tendons induces heterotopic ossification and activation of the β-catenin signaling pathway. J Orthop Translat 2021; 29:42-50. [PMID: 34094857 PMCID: PMC8142054 DOI: 10.1016/j.jot.2021.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/15/2021] [Accepted: 03/01/2021] [Indexed: 11/24/2022] Open
Abstract
Background Tendons are the force transferring tissue that enable joint movement. Excessive mechanical loading is commonly considered as a primary factor causing tendinopathy, however, an increasing body of evidence supports the hypothesis that overloading creates microdamage of collagen fibers resulting in a localized decreased loading on the cell population within the damaged site. Heterotopic ossification is a complication of late stage tendinopathy, which can significantly affect the mechanical properties and homeostasis of the tendon. Here, we the examine the effect of mechanical underloading on tendon ossification and investigate its underlying molecular mechanism. Method Rabbit Achilles tendons were dissected and cultured in an underloading environment (3% cyclic tensile stain,0.25 Hz, 8 h/day) for either 10, 15 or 20 days. Using isolated tendon-derived stem cells (TDSCs) 3D constructs were generated, cultured and subjected to an underloading environment for 6 days. Histological assessments were performed to evaluate the structure of the 3D constructs; qPCR and immunohistochemistry were employed to study TDSC differentiation and the β-catenin signal pathway was investigated by Western blotting. Mechanical testing was used to determine ability of the tendon to withstand force generation. Result Tendons cultured for extended times in an environment of underloading showed progressive heterotopic ossification and a reduction in biomechanical strength. qPCR revealed that 3D TDSCs constructs cultured in an underloading environment exhibited increased expression of several osteogenic genes: these include RUNX2, ALP and osteocalcin in comparison to tenogenic differentiation markers (scleraxis and tenomodulin). Immunohistochemical analysis further confirmed high osteocalcin production in 3D TDSCs constructs subject to underloading. Western blotting of TDSC constructs revealed that β-catenin accumulation and translocation were associated with an increase in phosphorylation at Ser552 and decrease phosphorylation at Ser33. Conclusion These findings unveil a potential mechanism for heterotopic ossification in tendinopathy due to the underloading of TDSCs at the damage sites, and also that β-catenin could be a potential target for treating heterotopic ossification in tendons. The Translational potential Tendon heterotopic ossification detrimentally affect quality of life especially for those who has atheletic career. This study reveals the possible mechanism of heterotpic ossification in tendon related to mechanical loading. This study provided the possible to develop a mechanical stimulation protocol for preventive and therapeutic purpose for tendon heterotopic ossification.
Collapse
Affiliation(s)
- Tao Wang
- Centre for Orthopaedic Translational Research, School of Biomedical Sciences, University of Western Australia, Nedlands, Australia.,Division of Orthopaedic Surgery, Department of Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Peilin Chen
- Centre for Orthopaedic Translational Research, School of Biomedical Sciences, University of Western Australia, Nedlands, Australia
| | - Lianzhi Chen
- Centre for Orthopaedic Translational Research, School of Biomedical Sciences, University of Western Australia, Nedlands, Australia
| | - Yinghong Zhou
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| | - Allan Wang
- Centre for Orthopaedic Translational Research, School of Biomedical Sciences, University of Western Australia, Nedlands, Australia.,Sir Charles Gairdner Hospital, Perth, Australia
| | - Qiujian Zheng
- Division of Orthopaedic Surgery, Department of Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Christopher A Mitchell
- Centre for Orthopaedic Translational Research, School of Biomedical Sciences, University of Western Australia, Nedlands, Australia
| | - Toby Leys
- Sir Charles Gairdner Hospital, Perth, Australia
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Ming H Zheng
- Division of Orthopaedic Surgery, Department of Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
72
|
Salvatore L, Gallo N, Natali ML, Terzi A, Sannino A, Madaghiele M. Mimicking the Hierarchical Organization of Natural Collagen: Toward the Development of Ideal Scaffolding Material for Tissue Regeneration. Front Bioeng Biotechnol 2021; 9:644595. [PMID: 33987173 PMCID: PMC8112590 DOI: 10.3389/fbioe.2021.644595] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Biological materials found in living organisms, many of which are proteins, feature a complex hierarchical organization. Type I collagen, a fibrous structural protein ubiquitous in the mammalian body, provides a striking example of such a hierarchical material, with peculiar architectural features ranging from the amino acid sequence at the nanoscale (primary structure) up to the assembly of fibrils (quaternary structure) and fibers, with lengths of the order of microns. Collagen plays a dominant role in maintaining the biological and structural integrity of various tissues and organs, such as bone, skin, tendons, blood vessels, and cartilage. Thus, "artificial" collagen-based fibrous assemblies, endowed with appropriate structural properties, represent ideal substrates for the development of devices for tissue engineering applications. In recent years, with the ultimate goal of developing three-dimensional scaffolds with optimal bioactivity able to promote both regeneration and functional recovery of a damaged tissue, numerous studies focused on the capability to finely modulate the scaffold architecture at the microscale and the nanoscale in order to closely mimic the hierarchical features of the extracellular matrix and, in particular, the natural patterning of collagen. All of these studies clearly show that the accurate characterization of the collagen structure at the submolecular and supramolecular levels is pivotal to the understanding of the relationships between the nanostructural/microstructural properties of the fabricated scaffold and its macroscopic performance. Several studies also demonstrate that the selected processing, including any crosslinking and/or sterilization treatments, can strongly affect the architecture of collagen at various length scales. The aim of this review is to highlight the most recent findings on the development of collagen-based scaffolds with optimized properties for tissue engineering. The optimization of the scaffolds is particularly related to the modulation of the collagen architecture, which, in turn, impacts on the achieved bioactivity.
Collapse
Affiliation(s)
- Luca Salvatore
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Maria Lucia Natali
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Alberta Terzi
- Institute of Crystallography, National Research Council, Bari, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Marta Madaghiele
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| |
Collapse
|
73
|
Hyde D, Littlewood C, Mazuquin B, Manning L. Rehabilitation following rotator cuff repair: a narrative review. PHYSICAL THERAPY REVIEWS 2021. [DOI: 10.1080/10833196.2021.1894377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- David Hyde
- Spire Little Aston Hospital, Birmingham, UK
- Faculty of Health and Life Sciences, Coventry University, Coventry, UK
| | - Chris Littlewood
- Department of Health Professions, Faculty of Health, Psychology & Social Care, Manchester Metropolitan University, Manchester, UK
| | - Bruno Mazuquin
- Department of Health Professions, Faculty of Health, Psychology & Social Care, Manchester Metropolitan University, Manchester, UK
| | | |
Collapse
|
74
|
Rinoldi C, Kijeńska-Gawrońska E, Khademhosseini A, Tamayol A, Swieszkowski W. Fibrous Systems as Potential Solutions for Tendon and Ligament Repair, Healing, and Regeneration. Adv Healthc Mater 2021; 10:e2001305. [PMID: 33576158 PMCID: PMC8048718 DOI: 10.1002/adhm.202001305] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Tendon and ligament injuries caused by trauma and degenerative diseases are frequent and affect diverse groups of the population. Such injuries reduce musculoskeletal performance, limit joint mobility, and lower people's comfort. Currently, various treatment strategies and surgical procedures are used to heal, repair, and restore the native tissue function. However, these strategies are inadequate and, in some cases, fail to re-establish the lost functionality. Tissue engineering and regenerative medicine approaches aim to overcome these disadvantages by stimulating the regeneration and formation of neotissues. Design and fabrication of artificial scaffolds with tailored mechanical properties are crucial for restoring the mechanical function of tendons. In this review, the tendon and ligament structure, their physiology, and performance are presented. On the other hand, the requirements are focused for the development of an effective reconstruction device. The most common fiber-based scaffolding systems are also described for tendon and ligament tissue regeneration like strand fibers, woven, knitted, braided, and braid-twisted fibrous structures, as well as electrospun and wet-spun constructs, discussing critically the advantages and limitations of their utilization. Finally, the potential of multilayered systems as the most effective candidates for tendon and ligaments tissue engineering is pointed out.
Collapse
Affiliation(s)
- Chiara Rinoldi
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
| | - Ewa Kijeńska-Gawrońska
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Warsaw, 02-822, Poland
| | - Ali Khademhosseini
- Department of Bioengineering, Department of Chemical and Biomolecular Engineering, Department of Radiology, California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06030, USA
| | - Wojciech Swieszkowski
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
| |
Collapse
|
75
|
Ruiz-Alonso S, Lafuente-Merchan M, Ciriza J, Saenz-Del-Burgo L, Pedraz JL. Tendon tissue engineering: Cells, growth factors, scaffolds and production techniques. J Control Release 2021; 333:448-486. [PMID: 33811983 DOI: 10.1016/j.jconrel.2021.03.040] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023]
Abstract
Tendon injuries are a global health problem that affects millions of people annually. The properties of tendons make their natural rehabilitation a very complex and long-lasting process. Thanks to the development of the fields of biomaterials, bioengineering and cell biology, a new discipline has emerged, tissue engineering. Within this discipline, diverse approaches have been proposed. The obtained results turn out to be promising, as increasingly more complex and natural tendon-like structures are obtained. In this review, the nature of the tendon and the conventional treatments that have been applied so far are underlined. Then, a comparison between the different tendon tissue engineering approaches that have been proposed to date is made, focusing on each of the elements necessary to obtain the structures that allow adequate regeneration of the tendon: growth factors, cells, scaffolds and techniques for scaffold development. The analysis of all these aspects allows understanding, in a global way, the effect that each element used in the regeneration of the tendon has and, thus, clarify the possible future approaches by making new combinations of materials, designs, cells and bioactive molecules to achieve a personalized regeneration of a functional tendon.
Collapse
Affiliation(s)
- Sandra Ruiz-Alonso
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| | - Markel Lafuente-Merchan
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| | - Jesús Ciriza
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Laura Saenz-Del-Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain.
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain.
| |
Collapse
|
76
|
Zhang T, Chen Y, Chen C, Li S, Xiao H, Wang L, Hu J, Lu H. Treadmill exercise facilitated rotator cuff healing is coupled with regulating periphery neuropeptides expression in a murine model. J Orthop Res 2021; 39:680-692. [PMID: 32239544 DOI: 10.1002/jor.24678] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/18/2020] [Accepted: 03/12/2020] [Indexed: 02/04/2023]
Abstract
Postoperative exercise has been found able to accelerate bone-tendon (B-T) healing. In this study, we systematically compared tendon-to-bone healing in mice subjected to postoperative treadmill exercise and free cage recovery in a murine rotator cuff repair model. Specifically, C57BL/6 mice underwent unilateral supraspinatus tendon (SST) detachment and repair were randomly allocated into treadmill group and control group. Treadmill group received daily treadmill running initiated from postoperative day 7 while the control group was allowed free cage activity. Mice were euthanized at postoperative 4 and 8 weeks for synchrotron radiation micro-computed tomography (SR-μCT), histology and biomechanical tests to investigate the effect of treadmill running on B-T healing. The results indicated that treadmill running initiated at day 7 postoperatively was able to accelerate B-T healing, as evidenced by better tendon-to-bone maturation and increased mechanical property. Recent studies show that peripheral neuropeptides are closely associated with musculoskeletal tissue repair. We furtherly conducted quantitative reverse transcription-polymerase chain reaction and immunofluorescence staining to investigate the temporal-spatial expression of calcitonin gene-related peptide (CGRP), substance P (SP), and peripheral neuropeptide Y (NPY) to verify whether they are related to rotator cuff healing. Our results show increased expression of CGRP, SP, and NPY at the healing site under the effect of mechanical stimulation. In conclusion, delayed postoperative exercise with moderate strength appears to accelerate the early phase of B-T healing, a process that may prove to be linked to increased expression of periphery neuropeptides known to play a role in tissue healing.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Yang Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Can Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Shengcan Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Han Xiao
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Linfeng Wang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Jianzhong Hu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
77
|
Garrison CM, Schwarzbauer JE. Fibronectin fibril alignment is established upon initiation of extracellular matrix assembly. Mol Biol Cell 2021; 32:739-752. [PMID: 33625865 PMCID: PMC8108514 DOI: 10.1091/mbc.e20-08-0533] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The physical structure of the extracellular matrix (ECM) is tissue-specific and fundamental to normal tissue function. Proper alignment of ECM fibers is essential for the functioning of a variety of tissues. While matrix assembly in general has been intensively investigated, little is known about the mechanisms required for formation of aligned ECM fibrils. We investigated the initiation of fibronectin (FN) matrix assembly using fibroblasts that assemble parallel ECM fibrils and found that matrix assembly sites, where FN fibrillogenesis is initiated, were oriented in parallel at the cell poles. We show that these polarized matrix assembly sites progress into fibrillar adhesions and ultimately into aligned FN fibrils. Cells that assemble an unaligned meshwork matrix form matrix assembly sites around the cell periphery, but the distribution of matrix assembly sites in these cells could be modulated through micropatterning or mechanical stretch. While an elongated cell shape corresponds with a polarized matrix assembly site distribution, these two features are not absolutely linked, since we discovered that transforming growth factor beta (TGF-β1) enhances matrix assembly site polarity and assembly of aligned fibrils independent of cell elongation. We conclude that the ultimate orientation of FN fibrils is determined by the alignment and distribution of matrix assembly sites that form during the initial stages of cell–FN interactions.
Collapse
Affiliation(s)
- Carly M Garrison
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | | |
Collapse
|
78
|
Rezvani SN, Nichols AEC, Grange RW, Dahlgren LA, Brolinson PG, Wang VM. A novel murine muscle loading model to investigate Achilles musculotendinous adaptation. J Appl Physiol (1985) 2021; 130:1043-1051. [PMID: 33571057 DOI: 10.1152/japplphysiol.00638.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Achilles tendinopathy is a debilitating condition affecting the entire spectrum of society and a condition that increases the risk of tendon rupture. Effective therapies remain elusive, as anti-inflammatory drugs and surgical interventions show poor long-term outcomes. Eccentric loading of the Achilles muscle-tendon unit is an effective physical therapy for treatment of symptomatic human tendinopathy. Here, we introduce a novel mouse model of hindlimb muscle loading designed to achieve a tissue-targeted therapeutic exercise. This model includes the application of tissue (muscle and tendon)-loading "doses," coupled with ankle dorsiflexion and plantarflexion, inspired by human clinical protocols. Under computer control, the foot was rotated through the entire ankle joint range of motion while the plantar flexors simultaneously contracted to simulate body mass loading, consistent with human therapeutic exercises. This approach achieved two key components of the heel drop and raise movement: ankle range of motion coupled with body mass loading. Model development entailed the tuning of parameters such as footplate speed, number of repetitions, number of sets of repetitions, treatment frequency, treatment duration, and treatment timing. Initial model development was carried out on uninjured mice to define a protocol that was well tolerated and nondeleterious to tendon biomechanical function. When applied to a murine Achilles tendinopathy model, muscle loading led to a significant improvement in biomechanical outcome measures, with a decrease in cross-sectional area and an increase in material properties, compared with untreated animals. Our model facilitates the future investigation of mechanisms whereby rehabilitative muscle loading promotes healing of Achilles tendon injuries.NEW & NOTEWORTHY We introduce a novel mouse model of hindlimb muscle loading designed to achieve a tissue-targeted therapeutic exercise. This innovative model allows for application of muscle loading "doses," coupled with ankle dorsiflexion and plantarflexion, inspired by human loading clinical treatment. Our model facilitates future investigation of mechanisms whereby rehabilitative muscle loading promotes healing of Achilles tendon injuries.
Collapse
Affiliation(s)
- Sabah N Rezvani
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Anne E C Nichols
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York
| | - Robert W Grange
- Department of Human Nutrition, Foods, and Exercise, and Metabolism Core, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Linda A Dahlgren
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | | | - Vincent M Wang
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| |
Collapse
|
79
|
Puetzer JL, Ma T, Sallent I, Gelmi A, Stevens MM. Driving Hierarchical Collagen Fiber Formation for Functional Tendon, Ligament, and Meniscus Replacement. Biomaterials 2021; 269:120527. [PMID: 33246739 PMCID: PMC7883218 DOI: 10.1016/j.biomaterials.2020.120527] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/09/2020] [Accepted: 11/03/2020] [Indexed: 12/22/2022]
Abstract
Hierarchical collagen fibers are the primary source of strength in musculoskeletal tendons, ligaments, and menisci. It has remained a challenge to develop these large fibers in engineered replacements or in vivo after injury. The objective of this study was to investigate the ability of restrained cell-seeded high density collagen gels to drive hierarchical fiber formation for multiple musculoskeletal tissues. We found boundary conditions applied to high density collagen gels were capable of driving tenocytes, ligament fibroblasts, and meniscal fibrochondrocytes to develop native-sized hierarchical collagen fibers 20-40 μm in diameter. The fibers organize similar to bovine juvenile collagen with native fibril banding patterns and hierarchical fiber bundles 50-350 μm in diameter by 6 weeks. Mirroring fiber organization, tensile properties of restrained samples improved significantly with time, reaching ~1 MPa. Additionally, tendon, ligament, and meniscal cells produced significantly different sized fibers, different degrees of crimp, and different GAG concentrations, which corresponded with respective juvenile tissue. To our knowledge, these are some of the largest, most organized fibers produced to date in vitro. Further, cells produced tissue specific hierarchical fibers, suggesting this system is a promising tool to better understand cellular regulation of fiber formation to better stimulate it in vivo after injury.
Collapse
Affiliation(s)
- Jennifer L Puetzer
- Department of Materials, Department of Bioengineering, And Institute for Biomedical Engineering, Imperial College London, London, United Kingdom, SW7 2AZ; Department of Biomedical Engineering and Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, United States, 23284.
| | - Tianchi Ma
- Department of Materials, Department of Bioengineering, And Institute for Biomedical Engineering, Imperial College London, London, United Kingdom, SW7 2AZ
| | - Ignacio Sallent
- Department of Materials, Department of Bioengineering, And Institute for Biomedical Engineering, Imperial College London, London, United Kingdom, SW7 2AZ
| | - Amy Gelmi
- Department of Materials, Department of Bioengineering, And Institute for Biomedical Engineering, Imperial College London, London, United Kingdom, SW7 2AZ
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, And Institute for Biomedical Engineering, Imperial College London, London, United Kingdom, SW7 2AZ.
| |
Collapse
|
80
|
Chen P, Chen Z, Mitchell C, Gao J, Chen L, Wang A, Leys T, Landao-Bassonga E, Zheng Q, Wang T, Zheng M. Intramuscular injection of Botox causes tendon atrophy by induction of senescence of tendon-derived stem cells. Stem Cell Res Ther 2021; 12:38. [PMID: 33413592 PMCID: PMC7791643 DOI: 10.1186/s13287-020-02084-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/07/2020] [Indexed: 01/04/2023] Open
Abstract
Background Botulinum toxin (Botox) injection is in widespread clinical use for the treatment of muscle spasms and tendinopathy but the mechanism of action is poorly understood. Hypothesis We hypothesised that the reduction of patellar-tendon mechanical-loading following intra-muscular injection of Botox results in tendon atrophy that is at least in part mediated by the induction of senescence of tendon-derived stem cells (TDSCs). Study design Controlled laboratory study Methods A total of 36 mice were randomly divided into 2 groups (18 Botox-injected and 18 vehicle-only control). Mice were injected into the right vastus lateralis of quadriceps muscles either with Botox (to induce mechanical stress deprivation of the patellar tendon) or with normal saline as a control. At 2 weeks post-injection, animals were euthanized prior to tissues being harvested for either evaluation of tendon morphology or in vitro studies. TDSCs were isolated by cell-sorting prior to determination of viability, differentiation capacity or the presence of senescence markers, as well as assessing their response to mechanical loading in a bioreactor. Finally, to examine the mechanism of tendon atrophy in vitro, the PTEN/AKT-mediated cell senescence pathway was evaluated in TDSCs from both groups. Results Two weeks after Botox injection, patellar tendons displayed several atrophic features including tissue volume reduction, collagen fibre misalignment and increased degradation. A colony formation assay revealed a significantly reduced number of colony forming units of TDSCs in the Botox-injected group compared to controls. Multipotent differentiation capacities of TDSCs were also diminished after Botox injection. To examine if mechanically deprived TDSC are capable of forming tendon tissue, we used an isolated bioreactor system to culture tendon constructs using TDSC. These results showed that TDSCs from the Botox-treated group failed to restore tenogenic differentiation after appropriate mechanical loading. Examination of the signalling pathway revealed that injection of Botox into quadriceps muscles causes PTEN/AKT-mediated cell senescence of TDSCs. Conclusion Intramuscular injection of Botox interferes with tendon homeostasis by inducing tendon atrophy and senescence of TDSCs. Botox injection may have long-term adverse consequences for the treatment of tendinopathy. Clinical relevance Intramuscular Botox injection for tendinopathy or tendon injury could result in adverse effects in human tendons and evaluation of its long-term efficacy is warranted.
Collapse
Affiliation(s)
- Peilin Chen
- Center for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, Australia
| | - Ziming Chen
- Center for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, Australia
| | - Christopher Mitchell
- Center for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, Australia
| | - Junjie Gao
- Perron Institute for Neurological and Translational Science, Perth, Western Australia, Australia
| | - Lianzhi Chen
- Center for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, Australia
| | - Allan Wang
- Center for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, Australia.,Medical School, University of Notre Dame, Fremantle, Western Australia, Australia
| | - Toby Leys
- Department of Orthopaedics, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Euphemie Landao-Bassonga
- Center for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, Australia.,Perron Institute for Neurological and Translational Science, Perth, Western Australia, Australia
| | - Qiujian Zheng
- Division of Orthopaedic Surgery, Department of Surgery, Guangdong General Hospital, Guangdong Academy of Medical Science, Guangzhou, Guangdong, China.
| | - Tao Wang
- Center for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, Australia. .,Division of Orthopaedic Surgery, Department of Surgery, Guangdong General Hospital, Guangdong Academy of Medical Science, Guangzhou, Guangdong, China.
| | - Minghao Zheng
- Center for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, Australia. .,Perron Institute for Neurological and Translational Science, Perth, Western Australia, Australia.
| |
Collapse
|
81
|
Randelli F, Sartori P, Carlomagno C, Bedoni M, Menon A, Vezzoli E, Sommariva M, Gagliano N. The Collagen-Based Medical Device MD-Tissue Acts as a Mechanical Scaffold Influencing Morpho-Functional Properties of Cultured Human Tenocytes. Cells 2020; 9:cells9122641. [PMID: 33302563 PMCID: PMC7763591 DOI: 10.3390/cells9122641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/27/2022] Open
Abstract
Mechanotransduction is the ability of cells to translate mechanical stimuli into biochemical signals that can ultimately influence gene expression, cell morphology and cell fate. Tenocytes are responsible for tendon mechanical adaptation converting mechanical stimuli imposed during mechanical loading, thus affecting extracellular matrix homeostasis. Since we previously demonstrated that MD-Tissue, an injectable collagen-based medical compound containing swine-derived collagen as the main component, is able to affect tenocyte properties, the aim of this study was to analyze whether the effects triggered by MD-Tissue were based on mechanotransduction-related mechanisms. For this purpose, MD-Tissue was used to coat Petri dishes and cytochalasin B was used to deprive tenocytes of mechanical stimulation mediated by the actin cytoskeleton. Cell morphology, migration, collagen turnover pathways and the expression of key mechanosensors were analyzed by morphological and molecular methods. Our findings confirm that MD-Tissue affects collagen turnover pathways and favors cell migration and show that the MD-Tissue-induced effect represents a mechanical input involving the mechanotransduction machinery. Overall, MD-Tissue, acting as a mechanical scaffold, could represent an effective medical device for a novel therapeutic, regenerative and rehabilitative approach to favor tendon healing in tendinopathies.
Collapse
Affiliation(s)
- Filippo Randelli
- Hip Department (CAD) Gaetano Pini—CTO Orthopedic Institute, Università degli Studi di Milano, Piazza Cardinal Ferrari 1, 20122 Milan, Italy;
| | - Patrizia Sartori
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, via Mangiagalli 31, 20133 Milan, Italy; (P.S.); (A.M.); (E.V.); (M.S.)
| | - Cristiano Carlomagno
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, via Capecelatro 66, 20148 Milan, Italy; (C.C.); (M.B.)
| | - Marzia Bedoni
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, via Capecelatro 66, 20148 Milan, Italy; (C.C.); (M.B.)
| | - Alessandra Menon
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, via Mangiagalli 31, 20133 Milan, Italy; (P.S.); (A.M.); (E.V.); (M.S.)
- U.O.C. 1° Clinica Ortopedica, ASST Centro Specialistico Ortopedico Traumatologico Gaetano Pini-CTO, Piazza Cardinal Ferrari 1, 20122 Milan, Italy
| | - Elena Vezzoli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, via Mangiagalli 31, 20133 Milan, Italy; (P.S.); (A.M.); (E.V.); (M.S.)
| | - Michele Sommariva
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, via Mangiagalli 31, 20133 Milan, Italy; (P.S.); (A.M.); (E.V.); (M.S.)
| | - Nicoletta Gagliano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, via Mangiagalli 31, 20133 Milan, Italy; (P.S.); (A.M.); (E.V.); (M.S.)
- Correspondence: ; Tel.: +39-02-50315374
| |
Collapse
|
82
|
Vinhas A, Rodrigues MT, Gonçalves AI, Reis RL, Gomes ME. Magnetic responsive materials modulate the inflammatory profile of IL-1β conditioned tendon cells. Acta Biomater 2020; 117:235-245. [PMID: 32966921 DOI: 10.1016/j.actbio.2020.09.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022]
Abstract
Tendinopathies represent half of all musculoskeletal injuries worldwide. Inflammatory events contribute to both tendon healing and to tendinopathy conditions but the cellular triggers leading to one or the other are unknown. In previous studies, we showed that magnetic field actuation modulates human tendon cells (hTDCs) behavior in pro-inflammatory environments, and that magnetic responsive membranes could positively influence inflammation responses in a rat ectopic model. Herein, we propose to investigate the potential synergistic action of the magnetic responsive membranes, made of a polymer blend of starch with polycaprolactone incorporating magnetic nanoparticles (magSPCL), and the actuation of pulsed electromagnetic field (PEMF): 5 Hz, 4mT of intensity and 50% of duty cycle, in IL-1β-treated-hTDCs, and in the immunomodulatory response of macrophages. It was found that the expression of pro-inflammatory (TNFα, IL-6, IL-8, COX-2) and ECM remodeling (MMP-1,-2,-3) markers tend to decrease in cells cultured onto magSPCL membranes under PEMF, while the expression of TIMP-1 and anti-inflammatory genes (IL-4, IL-10) increases. Also, CD16++ and CD206+ macrophages were only found on magSPCL membranes with PEMF application. Magnetic responsive membranes show a modulatory effect on the inflammatory profile of hTDCs favoring anti-inflammatory cues which is also supported by the anti-inflammatory/repair markers expressed in macrophages. These results suggest that magnetic responsive magSPCL membranes can contribute for inflammation resolution acting on both resident cell populations and inflammatory cells, and thus significantly contribute to tendon regenerative strategies. Statement of significance Magnetically-assisted strategies have received great attention in recent years to remotely trigger and guide cell responses. Inflammation plays a key role in tendon healing but persistent pro-inflammatory molecules can contribute to tendon disorders, and therefore provide a therapeutic target for advanced treatments. We have previously reported that magnetic fields modulate the response of human tendon cells (hTDCs) conditioned to pro-inflammatory environments (IL-1β-treated-hTDCs), and that magnetic responsive membranes positively influence immune responses. In the present work, we combined pulsed electromagnetic field (PEMF) and magnetic responsive membranes to guide the inflammatory profile of IL-1β-treated-hTDCs and of macrophages. The results showed that the synergistic action of PEMF and magnetic membranes supports the applicability of magnetically actuated systems to regulate inflammatory events and stimulate tendon regeneration.
Collapse
Affiliation(s)
- A Vinhas
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - M T Rodrigues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - A I Gonçalves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - R L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - M E Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
83
|
Influence of Badminton Practice on Age-Related Changes in Patellar and Achilles Tendons. J Aging Phys Act 2020; 29:382-390. [PMID: 33049699 DOI: 10.1123/japa.2020-0215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 11/18/2022]
Abstract
Regular sport practice could prevent age-related changes in tendinous tissues. The purpose of the study was to investigate the effect of regular badminton practice on patellar and Achilles tendon mechanical properties in senior competitive badminton players (>35 years old) and to compare the results with physically active people matched by age. One hundred ninety-two badminton players and 193 physically active people were divided by age into four groups, between 35 and 44 (U45), between 45 and 54 (U55), between 55 and 64 (U65), and over 65 (O65) years old. A LogiqS8 transducer in elastography mode and a MyotonPRO myotonometer were used to assess patellar and Achilles mechanical properties. Achilles tendon stiffness was higher in the control group than the badminton players for the U45, U55, and O65 age groups (p < .01). Also, the elastography index was higher in the control group than the badminton players for the U45, U55, U65, and O65 age groups (p < .05). In conclusion, regular badminton practice could prevent the decline in mechanical properties of the patellar and Achilles tendons.
Collapse
|
84
|
Patient reported outcomes and ankle plantarflexor muscle performance following gastrocnemius recession for Achilles tendinopathy: A prospective case-control study. Foot Ankle Surg 2020; 26:771-776. [PMID: 31727534 DOI: 10.1016/j.fas.2019.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/04/2019] [Accepted: 10/05/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND Prospective studies to guide the application of a gastrocnemius recession for Achilles tendinopathy are limited. Our aim was to prospectively evaluate patient reported outcomes and muscle performance. METHODS Patients with unilateral recalcitrant Achilles tendinopathy who received an isolated gastrocnemius recession (n=8) and a healthy control group (n=8) were included. Patient reported outcomes, ankle power during walking and stair ascent, and the heel rise limb symmetry index (total work) were collected. RESULTS Improvements in pain and self-reported function were observed (six months and two years). Sport participation scores reached 92% by two years. Patients demonstrated lower ankle power during stair ascent and decreased limb symmetry during heel rise six months following treatment (p≤.02). CONCLUSIONS Study findings regarding long-term improvements in patient pain, self-reported function and sport participation, and early preservation of ankle function during walking, can help refine patient selection, anticipated outcomes, and rehabilitation strategies.
Collapse
|
85
|
Wang HN, Huang YC, Ni GX. Mechanotransduction of stem cells for tendon repair. World J Stem Cells 2020; 12:952-965. [PMID: 33033557 PMCID: PMC7524696 DOI: 10.4252/wjsc.v12.i9.952] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/06/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
Tendon is a mechanosensitive tissue that transmits force from muscle to bone. Physiological loading contributes to maintaining the homeostasis and adaptation of tendon, but aberrant loading may lead to injury or failed repair. It is shown that stem cells respond to mechanical loading and play an essential role in both acute and chronic injuries, as well as in tendon repair. In the process of mechanotransduction, mechanical loading is detected by mechanosensors that regulate cell differentiation and proliferation via several signaling pathways. In order to better understand the stem-cell response to mechanical stimulation and the potential mechanism of the tendon repair process, in this review, we summarize the source and role of endogenous and exogenous stem cells active in tendon repair, describe the mechanical response of stem cells, and finally, highlight the mechanotransduction process and underlying signaling pathways.
Collapse
Affiliation(s)
- Hao-Nan Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Yong-Can Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Guo-Xin Ni
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China.
| |
Collapse
|
86
|
Citeroni MR, Ciardulli MC, Russo V, Della Porta G, Mauro A, El Khatib M, Di Mattia M, Galesso D, Barbera C, Forsyth NR, Maffulli N, Barboni B. In Vitro Innovation of Tendon Tissue Engineering Strategies. Int J Mol Sci 2020; 21:E6726. [PMID: 32937830 PMCID: PMC7555358 DOI: 10.3390/ijms21186726] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Tendinopathy is the term used to refer to tendon disorders. Spontaneous adult tendon healing results in scar tissue formation and fibrosis with suboptimal biomechanical properties, often resulting in poor and painful mobility. The biomechanical properties of the tissue are negatively affected. Adult tendons have a limited natural healing capacity, and often respond poorly to current treatments that frequently are focused on exercise, drug delivery, and surgical procedures. Therefore, it is of great importance to identify key molecular and cellular processes involved in the progression of tendinopathies to develop effective therapeutic strategies and drive the tissue toward regeneration. To treat tendon diseases and support tendon regeneration, cell-based therapy as well as tissue engineering approaches are considered options, though none can yet be considered conclusive in their reproduction of a safe and successful long-term solution for full microarchitecture and biomechanical tissue recovery. In vitro differentiation techniques are not yet fully validated. This review aims to compare different available tendon in vitro differentiation strategies to clarify the state of art regarding the differentiation process.
Collapse
Affiliation(s)
- Maria Rita Citeroni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
- Interdepartment Centre BIONAM, Università di Salerno, via Giovanni Paolo I, 84084 Fisciano (SA), Italy
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Miriam Di Mattia
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Devis Galesso
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme (PD), Italy; (D.G.); (C.B.)
| | - Carlo Barbera
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme (PD), Italy; (D.G.); (C.B.)
| | - Nicholas R. Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Thornburrow Drive, Stoke on Trent ST4 7QB, UK;
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
- Department of Musculoskeletal Disorders, Faculty of Medicine and Surgery, University of Salerno, Via San Leonardo 1, 84131 Salerno, Italy
- Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Mile End Hospital, Queen Mary University of London, 275 Bancroft Road, London E1 4DG, UK
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Thornburrow Drive, Stoke on Trent ST5 5BG, UK
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| |
Collapse
|
87
|
Pizzolato C, Shim VB, Lloyd DG, Devaprakash D, Obst SJ, Newsham-West R, Graham DF, Besier TF, Zheng MH, Barrett RS. Targeted Achilles Tendon Training and Rehabilitation Using Personalized and Real-Time Multiscale Models of the Neuromusculoskeletal System. Front Bioeng Biotechnol 2020; 8:878. [PMID: 32903393 PMCID: PMC7434842 DOI: 10.3389/fbioe.2020.00878] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022] Open
Abstract
Musculoskeletal tissues, including tendons, are sensitive to their mechanical environment, with both excessive and insufficient loading resulting in reduced tissue strength. Tendons appear to be particularly sensitive to mechanical strain magnitude, and there appears to be an optimal range of tendon strain that results in the greatest positive tendon adaptation. At present, there are no tools that allow localized tendon strain to be measured or estimated in training or a clinical environment. In this paper, we first review the current literature regarding Achilles tendon adaptation, providing an overview of the individual technologies that so far have been used in isolation to understand in vivo Achilles tendon mechanics, including 3D tendon imaging, motion capture, personalized neuromusculoskeletal rigid body models, and finite element models. We then describe how these technologies can be integrated in a novel framework to provide real-time feedback of localized Achilles tendon strain during dynamic motor tasks. In a proof of concept application, Achilles tendon localized strains were calculated in real-time for a single subject during walking, single leg hopping, and eccentric heel drop. Data was processed at 250 Hz and streamed on a smartphone for visualization. Achilles tendon peak localized strains ranged from ∼3 to ∼11% for walking, ∼5 to ∼15% during single leg hop, and ∼2 to ∼9% during single eccentric leg heel drop, overall showing large strain variation within the tendon. Our integrated framework connects, across size scales, knowledge from isolated tendons and whole-body biomechanics, and offers a new approach to Achilles tendon rehabilitation and training. A key feature is personalization of model components, such as tendon geometry, material properties, muscle geometry, muscle-tendon paths, moment arms, muscle activation, and movement patterns, all of which have the potential to affect tendon strain estimates. Model personalization is important because tendon strain can differ substantially between individuals performing the same exercise due to inter-individual differences in these model components.
Collapse
Affiliation(s)
- Claudio Pizzolato
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia.,Griffith Centre of Biomedical and Rehabilitation Engineering, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Vickie B Shim
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia.,Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - David G Lloyd
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia.,Griffith Centre of Biomedical and Rehabilitation Engineering, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Daniel Devaprakash
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia.,Griffith Centre of Biomedical and Rehabilitation Engineering, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Steven J Obst
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia.,School of Health, Medical and Applied Sciences, Central Queensland University, Bundaberg, QLD, Australia
| | - Richard Newsham-West
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
| | - David F Graham
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia.,Department of Health and Human Development, Montana State University, Bozeman, MT, United States
| | - Thor F Besier
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Ming Hao Zheng
- Centre for Orthopaedic Translational Research, School of Surgery, The University of Western Australia, Nedlands, WA, Australia
| | - Rod S Barrett
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia.,Griffith Centre of Biomedical and Rehabilitation Engineering, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
88
|
Chen M, Shetye SS, Rooney SI, Soslowsky LJ. Short- and Long-Term Exercise Results in a Differential Achilles Tendon Mechanical Response. J Biomech Eng 2020; 142:081011. [PMID: 32253439 PMCID: PMC7477707 DOI: 10.1115/1.4046864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/22/2020] [Indexed: 12/28/2022]
Abstract
The study was conducted to define the biomechanical response of rat Achilles tendon after a single bout of exercise and a short or long duration of daily exercise. We hypothesized that a single bout or a short duration of exercise would cause a transient decrease in Achilles tendon mechanical properties and a long duration of daily exercise would improve these properties. One hundred and thirty-six Sprague-Dawley rats were divided into cage activity (CA) or exercise (EX) groups for a single bout, short-term, or long-term exercise. Animals in single bout EX groups were euthanized, 3, 12, 24, or 48 h upon completion of a single bout of exercise (10 m/min, 1 h) on a flat treadmill. Animals in short-term EX groups ran on a flat treadmill for 3 days, 1, or 2 weeks while animals in long-term EX groups ran for 8 weeks. Tendon quasi-static and viscoelastic response was evaluated for all Achilles tendons. A single bout of exercise increased tendon stiffness after 48 h of recovery. Short-term exercise up to 1 week decreased cross-sectional area, stiffness, modulus, and dynamic modulus of the Achilles tendon. In contrast, 8 weeks of daily exercise increased stiffness, modulus, and dynamic modulus of the tendon. This study highlights the response of Achilles tendons to single and sustained bouts of exercise. Adequate time intervals are important to allow for tendon adaptations when initiating a new training regimen and overall beneficial effects to the Achilles tendon.
Collapse
Affiliation(s)
- Mengcun Chen
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104; Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Snehal S. Shetye
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Louis J. Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, G13A Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6081
| |
Collapse
|
89
|
DiLiberto FE, Nawoczenski DA, Tome J, Tan RK, DiGiovanni BF. Changes in Muscle Morphology Following Gastrocnemius Recession for Achilles Tendinopathy: A Prospective Cohort Imaging Study. Foot Ankle Spec 2020; 13:297-305. [PMID: 31230471 DOI: 10.1177/1938640019857805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background. The purpose of this study was to evaluate changes in posterior compartment muscle volume and intramuscular fat content following gastrocnemius recession in people with Achilles tendinopathy (AT). Methods. Eight patients diagnosed with unilateral recalcitrant AT and an isolated gastrocnemius contracture participated in this prospective cohort study. Magnetic resonance imaging was performed on both limbs of each participant before and 6 months following an isolated gastrocnemius recession. Involved limb muscle volumes and fat fractions (FFs) of the medial gastrocnemius, lateral gastrocnemius, and soleus muscle were normalized to the uninvolved limb. Preoperative to postoperative comparisons were made with Wilcoxon signed-rank tests. Results. Soleus or lateral gastrocnemius muscle volumes or FFs were not significantly different between study time points. A significant difference was found in medial gastrocnemius muscle volume (decrease; P = .012) and FF (increase; P = .017). Conclusion. A major goal of the Strayer gastrocnemius recession, selective lengthening of the posterior compartment while preserving soleus muscle morphology, was supported. The observed changes isolated to the medial gastrocnemius muscle may reduce ankle plantarflexion torque capacity. Study findings may help inform selection of surgical candidates, refine anticipated outcomes, and better direct postoperative rehabilitation following gastrocnemius recession for AT.Levels of Evidence: Level IV: Prospective cohort study.
Collapse
Affiliation(s)
- Frank E DiLiberto
- Department of Physical Therapy, College of Health Professions, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois (FED).,Department of Orthopaedics, School of Medicine and Dentistry, University of Rochester, University of Rochester Medical Center, Rochester, New York (DAN, BFD).,School of Health Science and Human Performance, Movement Analysis Laboratory, Ithaca College, Ithaca, New York (JT).,Department of Imaging Sciences, University of Rochester Medical Center, Highland Hospital, Rochester, New York (RKT)
| | - Deborah A Nawoczenski
- Department of Physical Therapy, College of Health Professions, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois (FED).,Department of Orthopaedics, School of Medicine and Dentistry, University of Rochester, University of Rochester Medical Center, Rochester, New York (DAN, BFD).,School of Health Science and Human Performance, Movement Analysis Laboratory, Ithaca College, Ithaca, New York (JT).,Department of Imaging Sciences, University of Rochester Medical Center, Highland Hospital, Rochester, New York (RKT)
| | - Josh Tome
- Department of Physical Therapy, College of Health Professions, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois (FED).,Department of Orthopaedics, School of Medicine and Dentistry, University of Rochester, University of Rochester Medical Center, Rochester, New York (DAN, BFD).,School of Health Science and Human Performance, Movement Analysis Laboratory, Ithaca College, Ithaca, New York (JT).,Department of Imaging Sciences, University of Rochester Medical Center, Highland Hospital, Rochester, New York (RKT)
| | - Raymond K Tan
- Department of Physical Therapy, College of Health Professions, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois (FED).,Department of Orthopaedics, School of Medicine and Dentistry, University of Rochester, University of Rochester Medical Center, Rochester, New York (DAN, BFD).,School of Health Science and Human Performance, Movement Analysis Laboratory, Ithaca College, Ithaca, New York (JT).,Department of Imaging Sciences, University of Rochester Medical Center, Highland Hospital, Rochester, New York (RKT)
| | - Benedict F DiGiovanni
- Department of Physical Therapy, College of Health Professions, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois (FED).,Department of Orthopaedics, School of Medicine and Dentistry, University of Rochester, University of Rochester Medical Center, Rochester, New York (DAN, BFD).,School of Health Science and Human Performance, Movement Analysis Laboratory, Ithaca College, Ithaca, New York (JT).,Department of Imaging Sciences, University of Rochester Medical Center, Highland Hospital, Rochester, New York (RKT)
| |
Collapse
|
90
|
Ergene E, Sezlev Bilecen D, Kaya B, Yilgor Huri P, Hasirci V. 3D cellular alignment and biomimetic mechanical stimulation enhance human adipose-derived stem cell myogenesis. ACTA ACUST UNITED AC 2020; 15:055017. [PMID: 32442983 DOI: 10.1088/1748-605x/ab95e2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Determination of a stem cell source with sufficient myogenic differentiation capacity that can be easily obtained in large quantities is of great importance in skeletal muscle regeneration therapies. Adipose-derived stem cells (ASCs) are readily available, can be isolated from fat tissue with high yield and possess myogenic differentiation capacity. Consequently, ASCs have high applicability in muscle regenerative therapies. However, a key challenge is their low differentiation efficiency. In this study, we have explored the potential of mimicking the natural microenvironment of the skeletal muscle tissue to enhance ASC myogenesis by inducing 3D cellular alignment and using dynamic biomimetic culture. ASCs were entrapped and 3D aligned in parallel within fibrin-based microfibers and subjected to uniaxial cyclic stretch. 3D cell alignment was shown to be necessary for achieving and maintaining the stiffness of the construct mimicking the natural tissue (12 ± 1 kPa), where acellular aligned fibers and cell-laden random fibers had stiffness values of 4 ± 1 and 5 ± 2 kPa, respectively, at the end of 21 d. The synergistic effect of 3D cell alignment and biomimetic dynamic culture was evaluated on cell proliferation, viability and the expression of muscle-specific markers (immunofluorescent staining for MyoD1, myogenin, desmin and myosin heavy chain). It was shown that the myogenic markers were only expressed on the aligned-dynamic culture samples on day 21 of dynamic culture. These results demonstrate that 3D skeletal muscle grafts can be developed using ASCs by mimicking the structural and physiological muscle microenvironment.
Collapse
Affiliation(s)
- Emre Ergene
- Department of Biomedical Engineering, Ankara University Faculty of Engineering, Ankara, Turkey. Ankara University Biotechnology Institute, Ankara, Turkey
| | | | | | | | | |
Collapse
|
91
|
Mousavizadeh R, Hojabrpour P, Eltit F, McDonald PC, Dedhar S, McCormack RG, Duronio V, Jafarnejad SM, Scott A. β1 integrin, ILK and mTOR regulate collagen synthesis in mechanically loaded tendon cells. Sci Rep 2020; 10:12644. [PMID: 32724089 PMCID: PMC7387456 DOI: 10.1038/s41598-020-69267-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/08/2020] [Indexed: 01/11/2023] Open
Abstract
Tendons are specialized tissues composed primarily of load-responsive fibroblasts (tenocytes) embedded in a collagen-rich extracellular matrix. Habitual mechanical loading or targeted exercise causes tendon cells to increase the stiffness of the extracellular matrix; this adaptation may occur in part through collagen synthesis or remodeling. Integrins are likely to play an important role in transmitting mechanical stimuli from the extracellular matrix to tendon cells, thereby triggering cell signaling pathways which lead to adaptive regulation of mRNA translation and protein synthesis. In this study, we discovered that mechanical stimulation of integrin β1 leads to the phosphorylation of AKT, an event which required the presence of integrin-linked kinase (ILK). Repetitive stretching of tendon cells activates the AKT and mTOR pathways, which in turn regulates mRNA translation and collagen expression. These results support a model in which integrins are an upstream component of the mechanosensory cellular apparatus, regulating fundamental tendon cell functions relevant to exercise-induced adaptation and mechanotherapy.
Collapse
Affiliation(s)
- Rouhollah Mousavizadeh
- Department of Physical Therapy, Centre for Hip Health and Mobility, University of British Columbia, 2635 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
| | - Payman Hojabrpour
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Felipe Eltit
- Department of Materials Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Paul C McDonald
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, BC, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Robert G McCormack
- Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada
| | - Vincent Duronio
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Alex Scott
- Department of Physical Therapy, Centre for Hip Health and Mobility, University of British Columbia, 2635 Laurel Street, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
92
|
Effect of localized tendon remodeling on supraspinatus tear propagation. J Biomech 2020; 108:109903. [PMID: 32636012 DOI: 10.1016/j.jbiomech.2020.109903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 11/24/2022]
Abstract
Rotator cuff tear propagation is multifactorial and may be due to localized changes in mechanical properties from tendon remodeling based on the inhomogeneous stresses experienced by a tendon with a tear. The objective of this study was to investigate the effect of localized tendon remodeling on tear propagation for simulated supraspinatus tendon tears. A validated computational model of a supraspinatus tendon using subject-specific geometry and material properties with a 1 cm wide anterior tear was used. The medial edge of the supraspinatus tendon was displaced 5 mm to induce tear propagation and cohesive elements were used to model tear propagation. Four remodeling scenarios were investigated: (1) Baseline (no remodeling), (2) Positive remodeling (increased fiber stiffness) and (3) Negative remodeling (decreased fiber stiffness) at tear tips, and (4) Negative remodeling along the medial-lateral tear edge. Output parameters included the amount of tear propagation, critical load to propagate the tear, and maximum principal stress at the tear tips. Positive remodeling at the tear tips resulted in the largest amount of tear propagation (18.4 mm), highest peak maximum principal stress (25.2 MPa), and lowest critical load to propagate the tear (249N). Conversely, negative remodeling at the tear tips resulted in the least amount of tear propagation (16 mm), lowest peak maximum principal stress (17.6 MPa) and highest critical load to propagate the tear (278N). Overall, remodeling at the tear tips has the greatest effect on tear propagation. Therefore, a better method for clinicians to measure tendon stiffness at the tear tips would be helpful to improve outcome of patients.
Collapse
|
93
|
Jaiswal D, Yousman L, Neary M, Fernschild E, Zolnoski B, Katebifar S, Rudraiah S, Mazzocca AD, Kumbar SG. Tendon tissue engineering: biomechanical considerations. Biomed Mater 2020; 15:052001. [DOI: 10.1088/1748-605x/ab852f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
94
|
Torres-Eguia R, Betancourt LE, Mas Martinez J, Sanz-Reig J. Severe Weakness of Hip Flexor after Iliopsoas Tenotomy: Two Case Reports. Hip Pelvis 2020; 32:112-117. [PMID: 32566543 PMCID: PMC7295613 DOI: 10.5371/hp.2020.32.2.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 11/28/2022] Open
Abstract
Hip arthroscopies are becoming a standard surgical technique, with psoas tenotomy being a relatively common procedure during this operation. A 37-year-old male and a 42-year-old female with internal hip snapping came to our department. Arthroscopic partial psoas tenotomy of the iliopsoas portion of the conjoint tendon was performed, but its results were bad. Patients reported preoperative unilateral low-back pain and weakness when flexing the hip. Unilateral atrophy of the lumbar psoas and fatty multifidus were detected in both cases. Patients at risk of unsatisfactory outcomes after psoas tenotomy should be ideally identified prior to surgery. Warning symptoms, physical examination, and imaging studies should be considered to avoid unsatisfactory results.
Collapse
Affiliation(s)
- Raul Torres-Eguia
- Hip Unit, Department of Orthopedic Surgery, Clinica Cemtro, Madrid, Spain
| | - L E Betancourt
- Hip Unit, Department of Orthopedic Surgery, Clinica Cemtro, Madrid, Spain
| | - Jesus Mas Martinez
- Hip Unit, Department of Orthopedic Surgery, Clinica Vistahermosa, Alicante, Spain
| | - Javier Sanz-Reig
- Hip Unit, Department of Orthopedic Surgery, Clinica Vistahermosa, Alicante, Spain
| |
Collapse
|
95
|
Binkley HM, Douglass D, Phillips K, Wise SL. Rehabilitation and Return to Sport After Nonsurgical Treatment of Achilles Tendon Rupture. Strength Cond J 2020. [DOI: 10.1519/ssc.0000000000000536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
96
|
Torgutalp ŞŞ, Babayeva N, Taş S, Dönmez G, Korkusuz F. Effects of hyperlipidemia on patellar tendon stiffness: A shear wave elastography study. Clin Biomech (Bristol, Avon) 2020; 75:104998. [PMID: 32335470 DOI: 10.1016/j.clinbiomech.2020.104998] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Recent studies presented that increased adiposity and hyperlipidemia may cause tendon pathology. The aim of this study was to evaluate the effect of hyperlipidemia on the patellar tendon stiffness by shear wave elastography. METHODS A total of 51 participants (19 female, 32 male) were included. Participants were divided into two groups, according to their low-density lipoprotein levels, as the study group (hyperlipidemia, n = 24) and the control group (non-hyperlipidemia, n = 27). The patellar tendon and rectus femoris muscle shear wave velocities were measured by shear wave elastography. FINDINGS Patellar tendon shear wave velocities was 5.02 (SD: 0.78) m/s in the control group and 5.98 (SD: 1.19) m/s in the hyperlipidemia group (ES = 0.95, P = .001). There was a positive moderate statistically significant correlation between patellar tendon shear wave velocity and low-density lipoprotein (r = 0.432, p < .002). In the multiple linear regression analysis, only low-density lipoprotein was found as a significant predictor of patellar tendon shear wave velocity (CI: 0.005-0.028, P = .007). INTERPRETATION We evaluated the effects of hyperlipidemia and body mass index on patellar tendon mechanical properties with shear wave elastography. We found that the blood low-density lipoprotein level had an impact on patellar tendon stiffness independently of body mass index. Accordingly, it is important to evaluate individuals' low-density lipoprotein levels when examining risk factors for tendon pathology.
Collapse
Affiliation(s)
- Şerife Şeyma Torgutalp
- Hacettepe University, Faculty of Medicine, Department of Sports Medicine, 06100 Ankara, Turkey.
| | - Naila Babayeva
- Hacettepe University, Faculty of Medicine, Department of Sports Medicine, 06100 Ankara, Turkey
| | - Serkan Taş
- Toros University, School of Health Sciences, Department of Physiotherapy and Rehabilitation, 33140, Mersin, Turkey
| | - Gürhan Dönmez
- Hacettepe University, Faculty of Medicine, Department of Sports Medicine, 06100 Ankara, Turkey
| | - Feza Korkusuz
- Hacettepe University, Faculty of Medicine, Department of Sports Medicine, 06100 Ankara, Turkey
| |
Collapse
|
97
|
Tondelli T, Götschi T, Camenzind RS, Snedeker JG. Assessing the effects of intratendinous genipin injections: Mechanical augmentation and spatial distribution in an ex vivo degenerative tendon model. PLoS One 2020; 15:e0231619. [PMID: 32294117 PMCID: PMC7159246 DOI: 10.1371/journal.pone.0231619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 03/29/2020] [Indexed: 11/25/2022] Open
Abstract
Background Tendinopathy is a common musculoskeletal disorder and current treatment options show limited success. Genipin is an effective collagen crosslinker with low cytotoxicity and a promising therapeutic strategy for stabilizing an intratendinous lesion. Purpose This study examined the mechanical effect and delivery of intratendinous genipin injection in healthy and degenerated tendons. Study design Controlled laboratory study Methods Bovine superficial digital flexor tendons were randomized into four groups: Healthy control (N = 25), healthy genipin (N = 25), degenerated control (N = 45) and degenerated genipin (N = 45). Degeneration was induced by Collagenase D injection. After 24h, degenerated tendons were subsequently injected with either 0.2ml of 80mM genipin or buffer only. 24h post-treatment, samples were cyclically loaded for 500 cycles and then ramp loaded to failure. Fluorescence and absorption assays were performed to analyze genipin crosslink distribution and estimate tissue concentration after injection. Results Compared to controls, genipin treatment increased ultimate force by 19% in degenerated tendons (median control 530 N vs. 633 N; p = 0.0078). No significant differences in mechanical properties were observed in healthy tendons, while degenerated tendons showed a significant difference in ultimate stress (+23%, p = 0.049), stiffness (+27%, p = 0.037), work to failure (+42%, p = 0.009), and relative stress relaxation (-11%, p < 0.001) after genipin injection. Fluorescence and absorption were significantly higher in genipin treated tendons compared to control groups. A higher degree of crosslinking (+45%, p < 0.001) and a more localized distribution were observed in the treated healthy compared to degenerated tendons, with higher genipin tissue concentrations in healthy (7.9 mM) than in degenerated tissue (2.3 mM). Conclusion Using an ex-vivo tendinopathy model, intratendinous genipin injections recovered mechanical strength to the level of healthy tendons. Measured by genipin tissue distribution, injection is an effective method for local delivery. Clinical relevance This study provides a proof of concept for the use of intratendinous genipin injection in the treatment of tendinopathy. The results demonstrate that a degenerated tendon can be mechanically augmented by a clinically viable method of local genipin delivery. This warrants further in vivo studies towards the development of a clinically applicable treatment based on genipin.
Collapse
Affiliation(s)
- Timo Tondelli
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Tobias Götschi
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Roland S. Camenzind
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
| | - Jess G. Snedeker
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
98
|
Rak Kwon D, Jung S, Jang J, Park GY, Suk Moon Y, Lee SC. A 3-Dimensional Bioprinted Scaffold With Human Umbilical Cord Blood-Mesenchymal Stem Cells Improves Regeneration of Chronic Full-Thickness Rotator Cuff Tear in a Rabbit Model. Am J Sports Med 2020; 48:947-958. [PMID: 32167836 DOI: 10.1177/0363546520904022] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Chronic full-thickness rotator cuff tears (FTRCTs) represent a major clinical concern because they show highly compromised healing capacity. PURPOSE To evaluate the efficacy of using a 3-dimensional (3D) bioprinted scaffold with human umbilical cord blood (hUCB)-mesenchymal stem cells (MSCs) for regeneration of chronic FTRCTs in a rabbit model. STUDY DESIGN Controlled laboratory study. METHODS A total of 32 rabbits were randomly assigned to 4 treatment groups (n = 8 per group) at 6 weeks after a 5-mm FTRCT was created on the supraspinatus tendon. Group 1 (G1-SAL) was transplanted with normal saline. Group 2 (G2-MSC) was transplanted with hUCB-MSCs (0.2 mL, 1 × 106) into FTRCTs. Group 3 (G3-3D) was transplanted with a 3D bioprinted construct without MSCs, and group 4 (G4-3D+MSC) was transplanted with a 3D bioprinted construct containing hUCB-MSCs (0.2 mL, 1 × 106 cells) into FTRCTs. All 32 rabbits were euthanized at 4 weeks after treatment. Examination of gross morphologic changes and histologic results was performed on all rabbits after sacrifice. Motion analysis was also performed before and after treatment. RESULTS In G4-3D+MSC, newly regenerated collagen type 1 fibers, walking distance, fast walking time, and mean walking speed were greater than those in G2-MSC based on histochemical and motion analyses. In addition, when compared with G3-3D, G4-3D+MSC showed more prominent regenerated tendon fibers and better parameters of motion analysis. However, there was no significant difference in gross tear size among G2-MSC, G3-3D, and G4-3D+MSC, although these groups showed significant decreases in tear size as compared with the control group (G1-SAL). CONCLUSION Findings of this study show that a tissue engineering strategy based on a 3D bioprinted scaffold filled with hUCB-MSCs can improve the microenvironment for regenerative processes of FTRCT without any surgical repair. CLINICAL RELEVANCE In the case of rotator cuff tear, the cell loss of the external MSCs can be increased by exposure to synovial fluid. Therefore, a 3D bioprinted scaffold in combination with MSCs without surgical repair may be effective in increasing cell retention in FTRCT.
Collapse
Affiliation(s)
- Dong Rak Kwon
- Department of Rehabilitation Medicine, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Seungman Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jinah Jang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Republic of Korea.,Department of Creative IT Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea.,Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Gi-Young Park
- Department of Rehabilitation Medicine, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Yong Suk Moon
- Department of Anatomy, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Sang Chul Lee
- Department and Research Institute of Rehabilitation Medicine, College of Medicine, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
99
|
Tendon and ligament mechanical loading in the pathogenesis of inflammatory arthritis. Nat Rev Rheumatol 2020; 16:193-207. [PMID: 32080619 DOI: 10.1038/s41584-019-0364-x] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2019] [Indexed: 12/18/2022]
Abstract
Mechanical loading is an important factor in musculoskeletal health and disease. Tendons and ligaments require physiological levels of mechanical loading to develop and maintain their tissue architecture, a process that is achieved at the cellular level through mechanotransduction-mediated fine tuning of the extracellular matrix by tendon and ligament stromal cells. Pathological levels of force represent a biological (mechanical) stress that elicits an immune system-mediated tissue repair pathway in tendons and ligaments. The biomechanics and mechanobiology of tendons and ligaments form the basis for understanding how such tissues sense and respond to mechanical force, and the anatomical extent of several mechanical stress-related disorders in tendons and ligaments overlaps with that of chronic inflammatory arthritis in joints. The role of mechanical stress in 'overuse' injuries, such as tendinopathy, has long been known, but mechanical stress is now also emerging as a possible trigger for some forms of chronic inflammatory arthritis, including spondyloarthritis and rheumatoid arthritis. Thus, seemingly diverse diseases of the musculoskeletal system might have similar mechanisms of immunopathogenesis owing to conserved responses to mechanical stress.
Collapse
|
100
|
Golman M, Wright ML, Wong TT, Lynch TS, Ahmad CS, Thomopoulos S, Popkin CA. Rethinking Patellar Tendinopathy and Partial Patellar Tendon Tears: A Novel Classification System. Am J Sports Med 2020; 48:359-369. [PMID: 31913662 DOI: 10.1177/0363546519894333] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Patellar tendinopathy is an overuse injury of the patellar tendon frequently affecting athletes involved in jumping sports. The tendinopathy may progress to partial patellar tendon tears (PPTTs). Current classifications of patellar tendinopathy are based on symptoms and do not provide satisfactory evidence-based treatment guidelines. PURPOSE To define the relationship between PPTT characteristics and treatment guidelines, as well as to develop a magnetic resonance imaging (MRI)-based classification system for partial patellar tendon injuries. STUDY DESIGN Cohort study (prognosis); Level of evidence, 2. METHODS MRI characteristics and clinical treatment outcomes were retrospectively reviewed for 85 patients with patellar tendinopathy, as well as 86 physically active control participants who underwent MRI of the knee for other conditions. A total of 56 patients had a PPTT and underwent further evaluation for tear size and location. The relationship between tear characteristics and clinical outcome was defined with use of statistical comparisons and univariate and logistic regression models. RESULTS Of the 85 patients, 56 had partial-thickness patellar tendon tears. Of these tears, 91% involved the posterior and posteromedial regions of the proximal tendon. On axial MRI views, patients with a partial tear had a mean tendon thickness of 10 mm, as compared with 6.2 mm for those without (P < .001). Eleven patients underwent surgery for their partial-thickness tear. All of these patients had a tear >50% of tendon thickness (median thickness of tear, 10.3 mm) on axial views. Logistic regression showed that tendon thickness >8.8 mm correlated with the presence of a partial tear, while tendon thickness >11.45 mm and tear thickness >55.7% predicted surgical management. CONCLUSION Partial-thickness tears are located posterior or posteromedially in the proximal patellar tendon. The most sensitive predictor for detecting the presence of a partial tear was patellar tendon thickness, in which thickness >8.8 mm was strongly correlated with a tear of the tendon. Tracking thickness changes on axial MRI may predict the effectiveness of nonoperative therapy: athletes with patellar tendon thickness >11.5 mm and/or >50% tear thickness on axial MRI were less likely to improve with nonoperative treatment. A novel proposed classification system for partial tears, the Popkin-Golman classification, can be used to guide treatment decisions for these patients.
Collapse
Affiliation(s)
- Mikhail Golman
- Department of Orthopedic Surgery, Columbia University Medical Center, New York, New York, USA.,Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Margaret L Wright
- Center for Shoulder, Elbow and Sports Medicine, Columbia University, New York, New York, USA
| | - Tony T Wong
- Department of Musculoskeletal Radiology, Columbia University Medical Center, New York, New York, USA
| | - T Sean Lynch
- Center for Shoulder, Elbow and Sports Medicine, Columbia University, New York, New York, USA
| | - Christopher S Ahmad
- Center for Shoulder, Elbow and Sports Medicine, Columbia University, New York, New York, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University Medical Center, New York, New York, USA.,Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Charles A Popkin
- Center for Shoulder, Elbow and Sports Medicine, Columbia University, New York, New York, USA
| |
Collapse
|