51
|
Are COMT Val158Met (rs4680), DRD2 TaqIA (rs1800497), and BDNF Val66Met (rs6265) polymorphisms associated with executive functions performance at rest and during physical exercise? Physiol Behav 2022; 257:113973. [PMID: 36179810 DOI: 10.1016/j.physbeh.2022.113973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022]
Abstract
Executive functions (EFs) encompass a wide array of cognitive processes, which appear to be influenced by genetic variants of the COMT, DRD2/ANKK1, and BDNF polymorphisms. The present study aimed to investigate whether COMT Val158Met (rs4680), DRD2/ANKK1 (rs1800497), and BDNF Val66Met (rs6265) polymorphisms were associated with EFs assessed at rest and during moderate acute physical exercise. Sixty physically active individuals underwent four laboratory visits. First, they filled out the pre-exercise survey, researchers collected their anthropometric data, and then performed a maximal cardiopulmonary exercise test. In the second and third sessions, participants performed EFs test in a randomized order: while the individual was seated on a cycle ergometer without pedaling (i.e., rest condition); and during physical exercise (pedaling for 30 minutes at moderate intensity before starting the EFs test during exercising). On the fourth day, blood samples were drawn. Our results showed that the response time of the COMT Val homozygotes group was significantly shorter than the COMT Met-carrier group [t(39.78) = 2.13, p = .039,d = 0.56] at rest condition. No significant association was found for the other analyses (DRD2/ANKK1 and BDNF). In conclusion, the present study suggests that COMT Val158Met (rs4680) polymorphisms may be associated with EFs at rest condition. However, further studies are needed to validate this association.
Collapse
|
52
|
Ding M, Li H, Zheng L. Drosophila exercise, an emerging model bridging the fields of exercise and aging in human. Front Cell Dev Biol 2022; 10:966531. [PMID: 36158212 PMCID: PMC9507000 DOI: 10.3389/fcell.2022.966531] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
Exercise is one of the most effective treatments for the diseases of aging. In recent years, a growing number of researchers have used Drosophila melanogaster to study the broad benefits of regular exercise in aging individuals. With the widespread use of Drosophila exercise models and the upgrading of the Drosophila exercise apparatus, we should carefully examine the differential contribution of regular exercise in the aging process to facilitate more detailed quantitative measurements and assessment of the exercise phenotype. In this paper, we review some of the resources available for Drosophila exercise models. The focus is on the impact of regular exercise or exercise adaptation in the aging process in Drosophila and highlights the great potential and current challenges faced by this model in the field of anti-aging research.
Collapse
|
53
|
Wender CLA, Manninen M, O’Connor PJ. The Effect of Chronic Exercise on Energy and Fatigue States: A Systematic Review and Meta-Analysis of Randomized Trials. Front Psychol 2022; 13:907637. [PMID: 35726269 PMCID: PMC9206544 DOI: 10.3389/fpsyg.2022.907637] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 12/03/2022] Open
Abstract
In this meta-analysis, we synthesized the results of randomized controlled trials of different exercise training interventions on participants' feelings of fatigue, energy, and vitality. The search of studies was conducted using six databases as well as several other supplementary search strategies available before December 2021. The initial search generated over 3,600 articles with 81 studies (7,050 participants) and 172 effects meeting the inclusion criteria. We analyzed the effects from the studies using a meta-analytic multivariate model and considered the potential moderating effect of multiple variables. Our analysis revealed exercise to decrease the feelings of fatigue by a small effect size (g = -0.374; 95% CI [-0.521, -0.227]), increase energy by a small-to-moderate effect size (g = 0.415; 95% CI [0.252, 0.578]), and to increase the feeling of vitality by a moderate effect size (g = 0.537; 95% CI [0.404, 0.671]). All main results remained robust after several sensitivity analyses using different statistical estimators, and consideration of outlier and influential studies. Moreover, moderator analyses revealed significant effects of exercise intensity and intervention duration on fatigue, exercise intensity, and modality on energy, and participant health, exercise intensity modality, and exercise training location on vitality. We conclude that when groups adopt a moderate intensity exercise training program while participating in a randomized trial, compared to controls, this typically results in small-to-moderate average improvements in feelings of fatigue, energy, and vitality.
Collapse
Affiliation(s)
- Carly L. A. Wender
- Center for Traumatic Brain Injury Research, Kessler Foundation, East Hanover, NJ, United States
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Mika Manninen
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Patrick J. O’Connor
- Exercise Psychology Laboratory, Department of Kinesiology, College of Education, University of Georgia, Athens, GA, United States
| |
Collapse
|
54
|
Gianfredi V, Ferrara P, Pennisi F, Casu G, Amerio A, Odone A, Nucci D, Dinu M. Association between Daily Pattern of Physical Activity and Depression: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116505. [PMID: 35682090 PMCID: PMC9180107 DOI: 10.3390/ijerph19116505] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 01/27/2023]
Abstract
Recent research suggested that daily pattern of physical activity (PA) may have an important association with depression, but findings are limited and contradictory. Our aim was to conduct a systematic review of the literature to summarize the literature evidence on the association between timing of PA and depression. A comprehensive search of PubMed/Medline and Scopus databases has been performed, and a total of five manuscripts have been thoroughly reviewed. The performed descriptive analysis shows lower levels of PA among individuals with depression or depressive symptoms, although evidence on the 24 h pattern of PA and depression is limited. An interesting finding is the association between lower PA during the morning, higher PA late in the evening (night), and depression or depressive symptoms. However, definitive conclusions could not be drawn due to the observational nature of the studies, their limited number, the high heterogeneity in the sample populations, and the studies’ differing outcome definitions and exposure assessments. Future studies considering not only the level of PA but also its daily variability might be important to further explore this novel area of research.
Collapse
Affiliation(s)
- Vincenza Gianfredi
- Department of Biomedical Sciences for Health, University of Milan, Via Pascal 36, 20133 Milan, Italy;
- CAPHRI Care and Public Health Research Institute, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Pietro Ferrara
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (P.F.); (A.O.)
- Center for Public Health Research, University of Milan-Bicocca, 20900 Monza, Italy
| | - Flavia Pennisi
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy; (F.P.); (G.C.)
| | - Giulia Casu
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy; (F.P.); (G.C.)
| | - Andrea Amerio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, 16146 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Department of Psychiatry, Tufts University, Boston, MA 02155, USA
| | - Anna Odone
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (P.F.); (A.O.)
| | - Daniele Nucci
- Nutritional Support Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
- Correspondence:
| | - Monica Dinu
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy;
| |
Collapse
|
55
|
Blake BD, Baur JE, Buckley MR. Let’s Get Physical: Physical Activity as a Team Intervention at Work. GROUP & ORGANIZATION MANAGEMENT 2022. [DOI: 10.1177/10596011221101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purpose of this article is to conceptualize a novel theoretical occurrence—team physical activity (PA)—and its relevance for researchers and organizations. By building a testable model of the consequences and contingencies of team PA, we integrate the science of teamwork with the scholarly domain of employee health and well-being. Hence, we clarify the construct of team PA, present a three-dimensional typology, and outline a model drawing on neuroscience, positive organizational behavior, and teams research. Our propositions and subsequent discussion proffer an outline of potential benefits for organizations when they increase the utility and frequency of team PA. We also suggest ways in which researchers can advance scholarship in this area.
Collapse
|
56
|
Ballester-Ferrer JA, Carbonell-Hernández L, Pastor D, Cervelló E. COVID-19 Quarantine Impact on Wellbeing and Cognitive Functioning During a 10-Week High-Intensity Functional Training Program in Young University Students. Front Behav Neurosci 2022; 16:822199. [PMID: 35464146 PMCID: PMC9028760 DOI: 10.3389/fnbeh.2022.822199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
Physical exercise can improve cognitive functioning and wellbeing; however, the degree of change in either of these two variables seems to be related to the exercise intensity or type. Therefore, new physical training (PT) programs have been developed to increase exercise efficiency. One such example is high-intensity functional training (HIFT), which has proven to be a time-efficient and highly effective strategy to improve physical fitness. This study analyzed whether HIFT can affect reaction time (RT) and vitality, as well as positive and negative affect. Forty-two college students participated in the study, 21 in the experimental group and 21 in the control group. The experimental group completed 10 weeks of training, five of which were supervised, and the remainder consisted of online training during the COVID-19 quarantine. Participants were evaluated at the beginning, at the end of the 5 weeks of supervised training, and after the 5 weeks of online training. HIFT improved RT without changes in psychological wellbeing during the entire period of training supervised and online. Therefore, during the HIFT program, the quarantine situation did not adversely affect this population’s wellbeing, but it did negatively affect adherence to the training program.
Collapse
|
57
|
Campos SM, Erley A, Ashraf Z, Wilczynski W. Signaler's Vasotocin Alters the Relationship between the Responder's Forebrain Catecholamines and Communication Behavior in Lizards (Anolis carolinensis). BRAIN, BEHAVIOR AND EVOLUTION 2022; 97:184-196. [PMID: 35320812 DOI: 10.1159/000524217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Dynamic fluctuations in the distribution of catecholamines across the brain modulate the responsiveness of vertebrates to social stimuli. Previous work demonstrates that green anoles (Anolis carolinensis) increase chemosensory behavior in response to males treated with exogenous arginine vasotocin (AVT), but the neurochemical mechanisms underlying this behavioral shift remains unclear. Since central catecholamine systems, including dopamine, rapidly activate in response to social stimuli, we tested whether exogenous AVT in signalers (stimulus animals) impacts catecholamine concentrations in the forebrain (where olfactory and visual information are integrated and processed) of untreated lizard responders. We also tested whether AVT influences the relationship between forebrain catecholamine concentrations and communication behavior in untreated receivers. We measured global catecholamine (dopamine = DA, epinephrine = Epi, and norepinephrine = NE) concentrations in the forebrain of untreated responders using high-performance liquid chromatography-mass spectrometry following either a 30-min social interaction with a stimulus male or a period of social isolation. Stimulus males were injected with exogenous AVT or vehicle saline (SAL). We found that global DA, but not Epi or NE, concentrations were elevated in lizards responding to SAL-males relative to isolated lizards. Lizards interacting with AVT-males had DA, Epi and NE concentrations that were not significantly different from SAL or isolated groups. For behavior, we found a significant effect of social treatment (AVT vs. SAL) on the relationships between (1) DA concentrations and the motivation to perform a chemical display (latency to tongue flick) and (2) Epi concentrations and time spent displaying mostly green body coloration. We also found a significant negative correlation between DA concentrations and the latency to perform a visual display but found no effect of social treatment on this relationship. These data suggest that catecholamine concentrations in the forebrain of untreated responders are associated with chemical and visual communication in lizards and that signaler AVT alters this relationship for some, but not all, aspects of social communication.
Collapse
Affiliation(s)
- Stephanie M Campos
- Biology, Swarthmore College, Swarthmore, Pennsylvania, USA
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia, USA
| | | | - Zoha Ashraf
- Biology, Swarthmore College, Swarthmore, Pennsylvania, USA
| | - Walter Wilczynski
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
58
|
Jesus DXGD, Pacheco CDR, Rezende RM. The use of Pilates for pain control in patients with fibromyalgia. FISIOTERAPIA EM MOVIMENTO 2022. [DOI: 10.1590/fm.2022.35204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract Introduction: Although the Pilates method is commonly used to treat fibromyalgia (FM) in clinical practice, research is scarce, and little is known about its real effectiveness in pain management. Objective: Systematically review the literature to determine whether Pilates affects pain control in FM patients. Methods: The PubMed, Science Direct, PEDro and Cochrane databases were searched to identify randomized controlled trials that investigated the effects of Pilates in individuals diagnosed with FM. The descriptors used were: “pilates based exercise” OR “pilates training” OR “pilates exercise” OR “pilates” AND “fibromyalgia.” Independent reviewers performed abstract/full-text screening, data extraction, and methodological quality assessments using the PEDro scale. Results: The search identified 646 potential articles, four of which were used in the analysis. The Pilates method had positive effects on pain control, physical function, quality of life and biopsychosocial factors such as stress and depression in individuals with FM in four studies. However, improvement in these parameters did not differ between intervention groups in three studies. Additionally, the control group showed no significant improvement for the same parameters in one study. The PEDro scale scores of the studies ranged from 6 to 8 points. Conclusion: Evidence suggests that Pilates influences pain control in individuals with FM, and is more effective than no intervention or minimal intervention in the treatment of FM.
Collapse
|
59
|
Peng G, Zheng H, Wu C, Wu C, Ma X, Xiong J, Hou J, Zhang L, Yang L, Pan H. Intranasal administration of DHED protects against exhaustive exercise-induced brain injury in rats. Brain Res 2021; 1772:147665. [PMID: 34562473 DOI: 10.1016/j.brainres.2021.147665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 09/07/2021] [Accepted: 09/18/2021] [Indexed: 11/24/2022]
Abstract
DHED (10β,17β-dihydroxyestra-1,4-dien-3-one) is a brain-selective prodrug of 17β-estradiol and has been reported to have a strong neuroprotective effect. In this study, the exhaustive swimming rat model was used to investigate the therapeutic effects and mechanisms of intranasal DHED treatment. Male eight-week-old healthy Sprague Dawley rats were randomly divided into three groups: control group (Cont), exhaustive swimming (ES), and DHED + exhaustive swimming (DHED). The open-field test and beam-walking test were performed to measure exploratory behavior and general activity in rats. Immunofluorescence staining, western blotting, ELISA analysis and related assay kits were applied to measure brain damage, inflammatory cytokines, and apoptosis pathways. Behavioral data shows that DHED intranasal administration can prevent neurobehavioral impairment caused by exhaustive swimming. Using a series of bioanalytical assays, we demonstrated that DHED markedly abated neuronal injury compared to the exhaustive swimming group, as evidenced by the reduced expression of apoptosis-regulated proteins, the improvement of neural survival, and the prevention of myelin loss. In addition, mitochondrial fission was attenuated distinctly, and a dynamic equilibrium was restored. Intranasal administration of DHED likewise significantly suppressed reactive gliosis and the release of inflammatory cytokines in the rat cerebral motor cortex. Consistent with previous reports, DHED treatment ameliorated changes of excitatory neurotransmitters. These results provide strong support for the promising therapeutic effects of DHED on neuroprotection during exhaustive swimming. The underlying mechanisms may rely on mitochondrial dynamics, neuroinflammation, and the balance of neurotransmitters.
Collapse
Affiliation(s)
- Guangcong Peng
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Huaping Zheng
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin 541001, China
| | - Chunyi Wu
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Chongyun Wu
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Xu Ma
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Jing Xiong
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Jun Hou
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Limei Zhang
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Luodan Yang
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China.
| | - Hongying Pan
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
60
|
Can acute resistance exercise facilitate episodic memory encoding? CURRENT PSYCHOLOGY 2021. [DOI: 10.1007/s12144-021-02352-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractResearch has shown benefits of physical exercise on memory performance when carried out before or after a memory task. The effects of concurrent physical exercise and particularly resistance exercise are still inconclusive. The current study investigates the influence of resistance exercise with two intensities (fast and slow squats) on performance in a wordlist learning task using a within-subject design. Sport students (N = 58, Mage = 23 years; 26 women) were trained in a mnemonic technique to encode word lists (method of loci). In each session they were asked to encode two lists, each consisting of 20 words. During encoding, participants either performed one squat per word (fast-squat-condition), one squat every second word (slow-squat-condition), or stayed seated (control-condition). Participants performed three sessions for each condition, in counterbalanced order. Heart rates differed significantly according to exercise intensity. Memory performances in the sitting condition were better, compared to the exercise conditions. Performance in sitting and the fast squat conditions improved similarly over time, while performance in the slow squat condition increased faster, and reached the level of the fast squat condition at the end of the study phase. We conclude that light to moderate resistance exercise while working on an episodic memory task may rather represent a dual-task situation (= two tasks that compete for attentional resources). Especially doing a squat every second word may represent an inhibition task that people have to get used to. Future studies should include biochemical markers of arousal and neuronal plasticity in addition to heart rate.
Collapse
|
61
|
Kruk J, Aboul-Enein BH, Duchnik E. Exercise-induced oxidative stress and melatonin supplementation: current evidence. J Physiol Sci 2021; 71:27. [PMID: 34470608 PMCID: PMC8409271 DOI: 10.1186/s12576-021-00812-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023]
Abstract
Melatonin possesses the indoleamine structure and exerts antioxidant and anti-inflammatory actions and other physiological properties. Physical exercise can influence secretion of melatonin. Melatonin is used as a natural supplement among athletes to regulate sleep cycles and protect muscles against oxidative damage. Despite decades of research, there is still a lack of a comprehensive and critical review on melatonin supplementation and physical activity relationship. The aim of this literature review is to examine the antioxidant, anti-inflammatory and other biological functions played by melatonin with reference to the effect of physical exercise on melatonin secretion and the effect of this compound supplementation on exercise-induced oxidative stress in athletes. Evidence shows that intense exercises disturb antioxidant status of competitive athletes, whereas supplementation with melatonin strengthens antioxidant status in trained athletes in various sports as the compound showed high potency in reduction of the oxidative stress and inflammation markers generated during intense and prolonged exercise.
Collapse
Affiliation(s)
- Joanna Kruk
- Faculty of Physical Culture and Health, University of Szczecin, Szczecin, Poland.
| | | | - Ewa Duchnik
- Department of Aesthetic Dermatology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
62
|
Marques A, Marconcin P, Werneck AO, Ferrari G, Gouveia ÉR, Kliegel M, Peralta M, Ihle A. Bidirectional Association between Physical Activity and Dopamine Across Adulthood-A Systematic Review. Brain Sci 2021; 11:829. [PMID: 34201523 PMCID: PMC8301978 DOI: 10.3390/brainsci11070829] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
Physical activity (PA) may influence the secretion of neurotransmitters and thereby have positive consequences for an individual's vulnerability (i.e., reducing anxiety and depressive symptoms). This systematic review aims to analyse the potential bidirectional effects of exercise on dopamine from young adulthood to old age. The article search was conducted in PubMed, Scopus, and Web of Science in December 2020. The inclusion criteria were longitudinal and experimental study design; outcomes included dopamine and exercise; effect of exercise on dopamine and vice versa; adults; and articles published in English, Portuguese, or Spanish. Fifteen articles were included in the review. We observed robust findings concerning the potential effects of PA on dopamine, which notably seem to be observable across a wide range of participants characteristics (including age and sex), a variety of PA characteristics, and a broad set of methods to analyse dopamine. By contrast, regarding the potential effects of dopamine on PA, findings were mixed across studies. Thus, there are robust effects of physical exercise on dopamine. These findings further strengthen the idea that innovative approaches could include PA interventions for treating and preventing mental disorders. Therefore, it seems that PA is a potential alternative to deal with mental health issues.
Collapse
Affiliation(s)
- Adilson Marques
- CIPER, Faculty of Human Kinetics, University of Lisbon, 1499-002 Cruz Quebrada, Portugal; (A.M.); (M.P.)
- ISAMB, University of Lisbon, 1649-004 Lisbon, Portugal
| | - Priscila Marconcin
- Faculty of Human Kinetics, University of Lisbon, 1649-004 Lisbon, Portugal
| | - André O. Werneck
- Center for Epidemiological Research in Nutrition and Health, Department of Nutrition, School of Public Health, University of São Paulo (USP), São Paulo 05508-220, Brazil;
| | - Gerson Ferrari
- Escuela de Ciencias de la Actividad Física, el Deporte y la Salud, Universidad de Santiago de Chile (USACH), Santiago 9170124, Chile;
| | - Élvio R. Gouveia
- Departamento de Educação Física e Desporto, Universidade da Madeira, 9000-390 Funchal, Portugal;
- Interactive Technologies Institute, LARSyS, 9020-105 Funchal, Portugal
- Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, 1205 Geneva, Switzerland; (M.K.); (A.I.)
| | - Matthias Kliegel
- Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, 1205 Geneva, Switzerland; (M.K.); (A.I.)
- Swiss National Centre of Competence in Research LIVES—Overcoming Vulnerability, Life Course Perspectives, 1015 Lausanne, Switzerland
- Department of Psychology, University of Geneva, 1205 Geneva, Switzerland
| | - Miguel Peralta
- CIPER, Faculty of Human Kinetics, University of Lisbon, 1499-002 Cruz Quebrada, Portugal; (A.M.); (M.P.)
- ISAMB, University of Lisbon, 1649-004 Lisbon, Portugal
| | - Andreas Ihle
- Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, 1205 Geneva, Switzerland; (M.K.); (A.I.)
- Swiss National Centre of Competence in Research LIVES—Overcoming Vulnerability, Life Course Perspectives, 1015 Lausanne, Switzerland
- Department of Psychology, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
63
|
You Y, Wang D, Wang Y, Li Z, Ma X. A Bird's-Eye View of Exercise Intervention in Treating Depression Among Teenagers in the Last 20 Years: A Bibliometric Study and Visualization Analysis. Front Psychiatry 2021; 12:661108. [PMID: 34220574 PMCID: PMC8249759 DOI: 10.3389/fpsyt.2021.661108] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/30/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Exercise is medicine. Multiple studies on the effects and mechanisms of exercise in treating depression among teenagers and adolescents have been widely reported. However, literature involving scientometric analysis of this topic is sparse. Here, we endeavored to conduct a bibliometric study and visualization analysis to give a bird's-eye view of publications between 2000 and 2020 on exercise therapy treating depression. Methods: Relevant original publications were obtained from the Science Citation Index Expanded in the Web of Science Core Collection (WoSCC) database between 2000 and 2020. CiteSpace (5.7.R 5) and VOSviewer (1.6.16) software were used to perform bibliometric analysis of countries, institutions, categories, journals, authors, references, and keywords involved in this topic. Results: A total number of 975 articles on this field were retrieved from the WoSCC database and we identified an overall increase in the amount of publications over the past two decades, with the United States and Harvard University leading the field. Most related publications were published in the journals with a focus on sport, medicine, rehabilitation, psychology, and health, as represented by the dual-map overlay. A series of authors and co-cited authors were identified as main contributors in the exercise-depression-teenager domain. Three major clusters were explored based on the reference co-citation analysis: "exercise," "suicide," and "concussion". Conclusions: Current concerns and hotspots of exercise intervention in depression treatments were summarized by "individual level," "social level," "role of exercise," and "research quality." We considered that the following four directions were potential future perspectives: "research on the effect of specific exercise intervention," "research on the essence of exercise and sports," "research on the combination mode of 'exercise + X'," and "research on the micro and molecular level," which should receive more attention.
Collapse
Affiliation(s)
| | | | | | | | - Xindong Ma
- Division of Sport Science and Physical Education, Tsinghua University, Beijing, China
| |
Collapse
|
64
|
Steventon JJ, Foster C, Furby H, Helme D, Wise RG, Murphy K. Hippocampal Blood Flow Is Increased After 20 min of Moderate-Intensity Exercise. Cereb Cortex 2021; 30:525-533. [PMID: 31216005 PMCID: PMC7703728 DOI: 10.1093/cercor/bhz104] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/01/2019] [Accepted: 04/25/2019] [Indexed: 01/17/2023] Open
Abstract
Long-term exercise interventions have been shown to be a potent trigger for both neurogenesis and vascular plasticity. However, little is known about the underlying temporal dynamics and specifically when exercise-induced vascular adaptations first occur, which is vital for therapeutic applications. In this study, we investigated whether a single session of moderate-intensity exercise was sufficient to induce changes in the cerebral vasculature. We employed arterial spin labeling magnetic resonance imaging to measure global and regional cerebral blood flow (CBF) before and after 20 min of cycling. The blood vessels’ ability to dilate, measured by cerebrovascular reactivity (CVR) to CO2 inhalation, was measured at baseline and 25-min postexercise. Our data showed that CBF was selectively increased by 10–12% in the hippocampus 15, 40, and 60 min after exercise cessation, whereas CVR to CO2 was unchanged in all regions. The absence of a corresponding change in hippocampal CVR suggests that the immediate and transient hippocampal adaptations observed after exercise are not driven by a mechanical vascular change and more likely represents an adaptive metabolic change, providing a framework for exploring the therapeutic potential of exercise-induced plasticity (neural, vascular, or both) in clinical and aged populations.
Collapse
Affiliation(s)
- J J Steventon
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK.,School of Physics and Astronomy, The Parade, Cardiff University, Cardiff, CF24 3AA, UK.,Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, UK
| | - C Foster
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, UK
| | - H Furby
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK.,Institute of Neurology, University College London, London, WC1B 5EH, UK
| | - D Helme
- Department of Anaesthetics and Intensive Care Medicine, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - R G Wise
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, UK
| | - K Murphy
- School of Physics and Astronomy, The Parade, Cardiff University, Cardiff, CF24 3AA, UK.,Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, UK
| |
Collapse
|
65
|
Eight-week high-intensity interval training is associated with improved sleep quality and cardiorespiratory fitness in patients with depressive disorders. Sleep Breath 2021; 26:397-406. [PMID: 34046817 DOI: 10.1007/s11325-021-02388-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE This study aimed to examine the effect of high-intensity interval training (HIIT) on both sleep and cardiorespiratory fitness in patients with depression. METHODS Using a single pre- and post-test study design with no control group, 82 patients diagnosed with depressive disorders underwent HIIT comprising a total of 24 15-min sessions, three times per week for 8 weeks. Depressive symptoms, sleep quality, and cardiorespiratory fitness were evaluated using the Beck depression inventory-II, the Pittsburgh sleep quality index (PSQI), and cardiopulmonary exercise testing (CPET) in the form of maximum oxygen uptake (VO2 max), respectively. RESULTS All 82 patients completed the intervention. HIIT training was associated with significant improvements in BDI-II score (diff = - 1.57 [95% CI - 2.40 to - 0.73], P = 0.001), PSQI score (diff = - 1.20 [95% CI - 2.10 to - 0.32], P = 0.008), and CPET VO2 max (diff = 0.95 [95% CI 0.62-1.28], P = 0.001). Effect size calculations revealed that the greatest improvement occurred in CPET VO2 max (Cohen's d = 0.64) and that improvements in the BDI-II and PSQI scores were somewhat smaller in magnitude (Cohen's d = - 0.41 and - 0.30, respectively). Sleep quality improvements were observed in sleep latency, habitual sleep efficiency, and the use of sleep-promoting medications (Cohen's d = 0.18, 0.19, and 0.25, respectively). Change in cardiorespiratory fitness successfully predicted change in sleep quality but not in depressive symptoms. Adverse effects were limited to minor injuries which did not interfere with completion of training. CONCLUSIONS HIIT training delivered over 8 weeks was associated with improvements in depression symptoms, sleep quality, and cardiorespiratory fitness in patients with depressive disorders.
Collapse
|
66
|
Brauns K, Friedl-Werner A, Gunga HC, Stahn AC. Effects of two months of bed rest and antioxidant supplementation on attentional processing. Cortex 2021; 141:81-93. [PMID: 34044245 DOI: 10.1016/j.cortex.2021.03.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/05/2021] [Accepted: 03/25/2021] [Indexed: 12/18/2022]
Abstract
Physical inactivity across the lifespan is a growing public health concern affecting the cardiovascular, musculoskeletal, and central nervous system. Data on the effects of dietary antioxidants as neuroprotective treatments when physical activity levels are impaired are lacking. In this randomized controlled study, twenty young healthy men underwent 60 days of bed rest. Participants were randomly assigned to a treatment group (n = 10) receiving a daily antioxidant supplement comprising polyphenols, omega-3 fatty acids, vitamin E, and selenium or a control group (n = 10). Event-related potentials (ERPs) and behavioral data from a three-stimulus oddball paradigm were collected eight days before bed rest, after 60 days of immobilization, and after eight days of recovery. After two months of bed rest, we found a significant decrease in task efficiency irrespective of the treatment that was corroborated by lower ERPs in fronto-central and parietal brain regions. Neither behavioral nor electrocortical data returned to baseline values after eight days of recovery. Our results provide support for the adverse and persistent neurobehavioral effects of prolonged bed rest, which could not be mitigated by antioxidant supplementation. These findings raise important implications for situations in which physical activity levels become severely restricted such as medical conditions or sedentary lifestyles.
Collapse
Affiliation(s)
- Katharina Brauns
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Physiology, Berlin, Germany
| | - Anika Friedl-Werner
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Physiology, Berlin, Germany; Université de Normandie, INSERM U 1075 COMETE, Caen, France
| | - Hanns-Christian Gunga
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Physiology, Berlin, Germany
| | - Alexander C Stahn
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Physiology, Berlin, Germany; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19004, USA.
| |
Collapse
|
67
|
Ramis MR, Sarubbo F, Moranta D, Tejada S, Lladó J, Miralles A, Esteban S. Neurochemical and Cognitive Beneficial Effects of Moderate Physical Activity and Catechin in Aged Rats. Antioxidants (Basel) 2021; 10:antiox10040621. [PMID: 33921628 PMCID: PMC8072822 DOI: 10.3390/antiox10040621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
A healthy aging process is a requirement for good life quality. A relationship between physical activity, the consumption of antioxidants and brain health has been stablished via the activation of pathways that reduce the harmful effects of oxidative stress, by inducing enzymes such as SIRT1, which is a protector of brain function. We analyzed the cognitive and neurochemical effects of applying physical exercise in elderly rats, alone or in combination with the antioxidant catechin. Several tests of spatial and episodic memory and motor coordination were evaluated. In addition, brain monoaminergic neurotransmitters and SIRT1 protein levels were assessed in the brains of the same rats. The results show that physical activity by itself improved age-related memory and learning deficits, correlating with the restoration of brain monoaminergic neurotransmitters and SIRT1 protein levels in the hippocampus. The administration of the antioxidant catechin along with the exercise program enhanced further the monoaminergic pathways, but not the other parameters studied. These results agree with previous reports revealing a neuroprotective effect of physical activity, probably based on its ability to improve the redox status of the brain, demonstrating that exercise at an advanced age, combined with the consumption of antioxidants, could produce favorable effects in terms of brain health.
Collapse
Affiliation(s)
- Margarita R. Ramis
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain; (M.R.R.); (F.S.); (D.M.); (S.T.); (A.M.)
| | - Fiorella Sarubbo
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain; (M.R.R.); (F.S.); (D.M.); (S.T.); (A.M.)
- Research Unit, University Hospital Son Llàtzer, Crta. Manacor Km 4, 07198 Palma, Spain
| | - David Moranta
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain; (M.R.R.); (F.S.); (D.M.); (S.T.); (A.M.)
| | - Silvia Tejada
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain; (M.R.R.); (F.S.); (D.M.); (S.T.); (A.M.)
- CIBERON (Physiopathology of Obesity and Nutrition), 28029 Madrid, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Jerònia Lladó
- Department of Biology and University Institute of Health Sciences Research (IUNICS-IdISBa), University of Balearic Islands, 07122 Palma, Spain;
| | - Antoni Miralles
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain; (M.R.R.); (F.S.); (D.M.); (S.T.); (A.M.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Susana Esteban
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain; (M.R.R.); (F.S.); (D.M.); (S.T.); (A.M.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- Correspondence: ; Tel.: +34-971-173-145
| |
Collapse
|
68
|
One single physical exercise session improves memory persistence by hippocampal activation of D1 dopamine receptors and PKA signaling in rats. Brain Res 2021; 1762:147439. [PMID: 33753064 DOI: 10.1016/j.brainres.2021.147439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 01/01/2023]
Abstract
Previously, we demonstrated that one single physical exercise session could positively modulate recognition memory persistence by D1/D5 activation. Here, we aim to investigate whether the effect of physical exercise on memory occurs due to the activation of both receptors, D1 and D5, or only one of them. Adult male Wistar rats were habituated on a treadmill one week before experiments. After learning session in the object recognition task, some animals received intrahippocampal infusions of the vehicle or a D1/D5 agonist (SKF 38393, 12.5 μg/μL/side), whereas others performed a single session of physical exercise on a treadmill (30 min at an intensity of 60-70% of indirect VO2 max.). Immediately after physical exercise, some animals received intrahippocampal infusions of vehicle or D1/D5 antagonist (SCH 23390, 1 μg/μL/side). Signaling pathways of D1 and D5 receptors in the hippocampus were evaluated by pharmacological activation or inactivation of protein kinases A (PKA) and C (PKC), respectively. According to previous findings, D1/D5 agonist and a single physical exercise session after learning promoted memory persistence, and D1/D5 block impaired physical exercise effect. Importantly, here we demonstrated for the first time that PKA inhibition, but not PKC, impairs the effect of acute physical exercise on memory persistence. Besides, PKA stimulation can promote its effects on memory. Therefore, we provide evidence that corroborates the idea that D1-like dopaminergic receptors, by activation of the PKA pathway, are involved in the effects of acute physical exercise on memory.
Collapse
|
69
|
Lopes BC, Medeiros LF, Stein DJ, Cioato SG, de Souza VS, Medeiros HR, Sanches PRS, Fregni F, Caumo W, Torres ILS. tDCS and exercise improve anxiety-like behavior and locomotion in chronic pain rats via modulation of neurotrophins and inflammatory mediators. Behav Brain Res 2021; 404:113173. [PMID: 33577881 DOI: 10.1016/j.bbr.2021.113173] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/16/2022]
Abstract
Anxiety disorders cause distress and are commonly found to be comorbid with chronic pain. Both are difficult-to-treat conditions for which alternative treatment options are being pursued. This study aimed to evaluate the effects of transcranial direct current stimulation (tDCS), treadmill exercise, or both, on anxiety-like behavior and associated growth factors and inflammatory markers in the hippocampus and sciatic nerve of rats with neuropathic pain. Male Wistar rats (n = 216) were subjected to sham-surgery or sciatic nerve constriction for pain induction. Fourteen days following neuropathic pain establishment, either bimodal tDCS, treadmill exercise, or a combination of both was used for 20 min a day for 8 consecutive days. The elevated plus-maze test was used to assess anxiety-like behavior and locomotor activity during the early (24 h) or late (7 days) phase after the end of treatment. BDNF, TNF-ɑ, and IL-10 levels in the hippocampus, and BDNF, NGF, and IL-10 levels in the sciatic nerve were assessed 48 h or 7 days after the end of treatment. Rats from the pain groups developed an anxiety-like state. Both tDCS and treadmill exercise provided ethological and neurochemical alterations induced by pain in the early and/or late phase, and a modest synergic effect between tDCS and exercise was observed. These results indicate that non-invasive neuromodulatory approaches can attenuate both anxiety-like status and locomotor activity and alter the biochemical profile in the hippocampus and sciatic nerve of rats with neuropathic pain and that combined interventions may be considered as a treatment option.
Collapse
Affiliation(s)
- Bettega Costa Lopes
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-Clínicas, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, 90035-007 Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), 90050-170 Porto Alegre, Brazil
| | - Liciane Fernandes Medeiros
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-Clínicas, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, 90035-007 Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal Rio Grande do Sul, 90050-170 Porto Alegre, Brazil; Programa de Pós-Graduação em Saúde e Desenvolvimento Humano, Universidade La Salle, 92010-000 Canoas, Brazil.
| | - Dirson João Stein
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-Clínicas, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, 90035-007 Porto Alegre, Brazil; Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, 90035-003 Porto Alegre, Brazil
| | - Stefania Giotti Cioato
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-Clínicas, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, 90035-007 Porto Alegre, Brazil
| | - Vanessa Silva de Souza
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-Clínicas, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, 90035-007 Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal Rio Grande do Sul, 90050-170 Porto Alegre, Brazil
| | - Helouise Richardt Medeiros
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-Clínicas, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, 90035-007 Porto Alegre, Brazil; Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, 90035-003 Porto Alegre, Brazil
| | - Paulo Roberto Stefani Sanches
- Laboratório de Engenharia Biomédica, Grupo de Pesquisa e Pós-Graduação, Hospital de Clínicas de Porto Alegre, 90035-003 Porto Alegre, Brazil
| | - Felipe Fregni
- Laboratory of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital & Massachusetts General Hospital. Harvard Medical School and Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 02215 Boston, USA
| | - Wolnei Caumo
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, 90035-003 Porto Alegre, Brazil
| | - Iraci L S Torres
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-Clínicas, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, 90035-007 Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), 90050-170 Porto Alegre, Brazil; Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, 90035-003 Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal Rio Grande do Sul, 90050-170 Porto Alegre, Brazil.
| |
Collapse
|
70
|
[Psychosocial factors in the prevention of pain]. Schmerz 2021; 35:21-29. [PMID: 33534105 DOI: 10.1007/s00482-020-00523-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
The question of pain prevention is becoming increasingly important, both in society and in science. According to the International Society for the Study of Pain, general areas for which pain prevention measures can be recommended have been defined. These approaches are mostly limited to unspecific recommendations with the aim of improving general health behaviour. Common to all of them is that they essentially address psychosocial and psychobehavioral aspects. In contrast to genetic factors or other non-modifiable environmental factors, psychosocial and psychobehavioral aspects are potentially modifiable variables, making them possible starting points for prevention programs. Furthermore, recent studies provide important knowledge about psychological and social risk factors of pain chronification and thus offer new approaches for future pain prevention strategies. At the same time, the efficacy and successful implementation of such programs is so complex that valid statements on effectiveness and benefit can only be made through care-related evaluation. This review addresses psychological and social factors in the prevention of pain. A selective literature search was carried out to this end. Based on selected studies, psychological and social predictors of pain development are presented and their potential for future pain prevention programs discussed. The article concludes with a discussion of possible implications.
Collapse
|
71
|
Gianfredi V, Koster A, Eussen SJPM, Odone A, Amerio A, Signorelli C, Stehouwer CDA, Savelberg HHCM, Wesselius A, Köhler S, Schram MT, Schaper NC. The association between cardio-respiratory fitness and incident depression: The Maastricht Study. J Affect Disord 2021; 279:484-490. [PMID: 33128938 DOI: 10.1016/j.jad.2020.09.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/04/2020] [Accepted: 09/21/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Moderate to vigorous physical activity (MVPA) can help to prevent depression, but identification of the most important psycho-biological pathways involved is unclear. The improvement of cardio-respiratory fitness (CRF) in response to MVPA can vary markedly, we therefore examined the association between CRF and the incidence of depressive symptoms. METHODS We used data from The Maastricht Study, a large population-based prospective-cohort study. CRF was estimated at baseline from a graded submaximal exercise protocol and MVPA was measured with accelerometry. Depressive symptoms were assessed using the validated Dutch version of the 9-item Patient Health Questionnaire, both at baseline and during annual follow-up over five years. Cox proportional hazards models were used. RESULTS A total of 1,730 individuals without depressive symptoms at baseline were included in the analysis. During the 5-year follow-up, n = 166 (9.6%) of individuals developed depressive symptoms. Compared to individuals with a low CRF, those with a moderate-to-high CRF had a significantly lower risk of developing depressive symptoms, independent of MVPA (medium CRF: HR = 0.49 (95%CI = 0.33-0.72); high CRF: HR = 0.48 (95% CI = 0.30-0.75). These associations were adjusted for age, sex, level of education, diabetes status, smoking status, alcohol use, energy intake, waist circumferences and antidepressant medications. LIMITATIONS PHQ-9 is a validated screening instrument, but it is not a diagnostic tool of depression. CONCLUSIONS Higher CRF was strongly associated with a lower risk of incident depressive symptoms over 5-year follow-up, independent of the level of MVPA at baseline, suggesting that interventions aimed at improving CRF could reduce the risk of depression.
Collapse
Affiliation(s)
- Vincenza Gianfredi
- School of Public Health, University Vita-Salute San Raffaele, Milan, Italy; CARIM School for Cardiovascular Diseases, Maastricht University, Medical Center+, Maastricht, the Netherlands; CAPHRI Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy.
| | - Annemarie Koster
- CAPHRI Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands; Department of Social Medicine, Maastricht University, Maastricht, the Netherlands; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy.
| | - Simone J P M Eussen
- CARIM School for Cardiovascular Diseases, Maastricht University, Medical Center+, Maastricht, the Netherlands; Department of Epidemiology, Maastricht University, Maastricht, the Netherlands.
| | - Anna Odone
- School of Public Health, University Vita-Salute San Raffaele, Milan, Italy.
| | - Andrea Amerio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Mood Disorders Program, Tufts Medical Center, Boston, MA, United States.
| | - Carlo Signorelli
- School of Public Health, University Vita-Salute San Raffaele, Milan, Italy.
| | - Coen D A Stehouwer
- CARIM School for Cardiovascular Diseases, Maastricht University, Medical Center+, Maastricht, the Netherlands; Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands.
| | - Hans H C M Savelberg
- Department of Nutrition and Movement Sciences, Maastricht University, Maastricht, the Netherlands; School of Health Professions Education, Maastricht University, Maastricht, the Netherlands; NUTRIM, School for Nutrition and Translation Research Maastricht, Maastricht University, the Netherlands.
| | - Anke Wesselius
- NUTRIM, School for Nutrition and Translation Research Maastricht, Maastricht University, the Netherlands; Department of Complex Genetics, Maastricht University, Maastricht, the Netherlands.
| | - Sebastian Köhler
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands; MHeNS School for Mental Health and Neuroscience, Maastricht University Medical Center+, Maastricht, the Netherlands.
| | - Miranda T Schram
- CARIM School for Cardiovascular Diseases, Maastricht University, Medical Center+, Maastricht, the Netherlands; Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; The Netherlands Heart and Vascular Center, Maastricht University Medical Center+, Maastricht, the Netherlands.
| | - Nicolaas C Schaper
- CARIM School for Cardiovascular Diseases, Maastricht University, Medical Center+, Maastricht, the Netherlands; CAPHRI Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands; Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands.
| |
Collapse
|
72
|
Alausa A, Ogundepo S, Olaleke B, Adeyemi R, Olatinwo M, Ismail A. Chinese nutraceuticals and physical activity; their role in neurodegenerative tauopathies. Chin Med 2021; 16:1. [PMID: 33407732 PMCID: PMC7789572 DOI: 10.1186/s13020-020-00418-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
The onset of neurodegenerative disease has not only been a major cause of scientific worry, but of economic burden to the health system. This condition has been further attributed to mis-stability, deletion or mutation of tau protein, causing the onset of Corticobasal degeneration, Pick's diseases, Progressive supranuclear palsy, Argyrophilic grains disease, Alzheimer's diseases etc. as scientifically renowned. This is mainly related to dysregulation of translational machinery, upregulation of proinflammatory cytokines and inhibition of several essential cascades such as ERK signaling cascade, GSK3β, CREB, and PKA/PKB (Akt) signaling cascades that enhances protein processing, normal protein folding, cognitive function, and microtubule associated tau stability. Administration of some nutrients and/or bioactive compounds has a high tendency to impede tau mediated inflammation at neuronal level. Furthermore, prevention and neutralization of protein misfolding through modulation of microtubule tau stability and prevention of protein misfolding is by virtue few of the numerous beneficial effects of physical activity. Of utmost important in this study is the exploration of promising bioactivities of nutraceuticals found in china and the ameliorating potential of physical activity on tauopathies, while highlighting animal and in vitro studies that have been investigated for comprehensive understanding of its potential and an insight into the effects on human highly probable to tau mediated neurodegeneration.
Collapse
Affiliation(s)
- Abdullahi Alausa
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Sunday Ogundepo
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Barakat Olaleke
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Rofiat Adeyemi
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria.
| | - Mercy Olatinwo
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Aminat Ismail
- Department of Science Laboratory Technology, Faculty of Pure & Applied Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| |
Collapse
|
73
|
Saeidi A, Tayebi SM, To-aj O, Karimi N, Kamankesh S, Niazi S, Khosravi A, Khademosharie M, Soltani M, Johnson KE, Rashid H, Laher I, Hackney AC, Zouhal H. Physical Activity and Natural Products and Minerals in the SARS-CoV-2 Pandemic: An Update. ANNALS OF APPLIED SPORT SCIENCE 2021; 9:e976. [PMID: 35237740 PMCID: PMC8887880 DOI: 10.29252/aassjournal.976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Coronavirus-disease 19 (COVID-19) has rapidly become a global public health issue, and there is a desperate need for strategies of prevention, reduction, and treatment to halt the epidemic. The coronavirus affects the immune system, and individuals with a compromised immune system, such as those with diabetes, hypertension, obesity, are more susceptible to this virus. Lifestyle-related variables such as physical activity and nutritional supplements can decrease inflammatory markers, increase anti-inflammatory and antioxidant status, and improve the immune system. Lifesty-lerelated variables play preventive roles against various infectious diseases including COVID-19. This review highlights the effects of physical activity and nutrients supplements on the immune system and their possible benefits in combating the harms caused by infection with the COVID-19 virus.
Collapse
Affiliation(s)
- Ayoub Saeidi
- Damghan Branch, Islamic Azad University, Damghan,
Iran
| | | | - Oam To-aj
- Bangkok Thonburi University, Bangkok, Thailand
- Corresponding Authors: 1. Oam To-aj,
PhD. , 2. Hassane Zouhal,
Professor.
| | | | | | | | | | | | | | | | - Harunor Rashid
- National Centre for Immunisation Research &
Surveillance of Vaccine Preventable Diseases (NCIRS), Westmead, Australia
| | - Ismail Laher
- University of British Columbia, Vancouver, Canada
| | | | - Hassane Zouhal
- University of Rennes 2, Rennes, France
- Corresponding Authors: 1. Oam To-aj,
PhD. , 2. Hassane Zouhal,
Professor.
| |
Collapse
|
74
|
Matsunaga D, Nakagawa H, Ishiwata T. Difference in the brain serotonin and its metabolite level and anxiety-like behavior between forced and voluntary exercise conditions in rats. Neurosci Lett 2020; 744:135556. [PMID: 33373674 DOI: 10.1016/j.neulet.2020.135556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 11/17/2022]
Abstract
Physical exercise is beneficial to both physical and mental health, though it is unclear whether voluntary and forced exercise have the same effects. We investigated the effects of chronic forced and voluntary wheel running on brain levels of serotonin (5-HT), its metabolite 5-hydroxyindoleacetic acid (5-HIAA), and anxiety-like behavioral change in rats. Forty-eight rats were randomly assigned to standard cages (sedentary control: SC); voluntary exercise (free running on a wheel, V-EX); voluntary limited exercise (wheel available only 1 h per day, VL-EX); and forced exercise (running on a motorized wheel, F-EX). After 4 weeks, rats either underwent the open field test (OFT) or their 5-HT and 5-HIAA levels were measured in the major serotonergic neural cell bodies and projection areas. 5-HT and 5-HIAA levels in the dorsal and median raphe nuclei were increased in the V-EX, but not in the VL-EX and F-EX groups, compared with the SC group. In the paraventricular hypothalamic nucleus and caudate putamen, only 5-HT levels were increased in the V-EX group. Interestingly, in the amygdala, only 5-HIAA levels were significantly increased in the V-EX group. Conversely, we found that F-EX rats showed no significant 5-HT changes and increased anxiety-like behavior. VL-EX did not have significant beneficial effects on any of the experimental parameters. These data suggest that only unlimited voluntary exercise stimulates the serotonergic system and suppresses anxiety-like behavior.
Collapse
Affiliation(s)
- Daisuke Matsunaga
- Graduate School of Community & Human Services, Rikkyo University, 1-2-26 Kitano, Niiza, Saitama, 352-8558, Japan
| | - Hikaru Nakagawa
- Graduate School of Community & Human Services, Rikkyo University, 1-2-26 Kitano, Niiza, Saitama, 352-8558, Japan; Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda, Tokyo, 102-0083, Japan
| | - Takayuki Ishiwata
- Graduate School of Community & Human Services, Rikkyo University, 1-2-26 Kitano, Niiza, Saitama, 352-8558, Japan.
| |
Collapse
|
75
|
Howells K, Sivaratnam C, Lindor E, Hyde C, McGillivray J, Whitehouse A, Rinehart N. Can Participation in a Community Organized Football Program Improve Social, Behavioural Functioning and Communication in Children with Autism Spectrum Disorder? A Pilot Study. J Autism Dev Disord 2020; 50:3714-3727. [PMID: 32107700 DOI: 10.1007/s10803-020-04423-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This pilot research investigated the effects of a community-based organized football program on behavioral, social and communicative outcomes in children with Autism Spectrum Disorder. In a non-randomized design, 19 children completed the football program and were compared pre- and post-intervention with 21 children who received no comparable intervention (ages 5-12 years). Caregiver-report using the child behavior checklist indicated a significant decrease in total, internalizing, DSM-oriented anxiety and social problems for children who participated in the program, with no change in the comparison group. There were no group differences in socialization and communication scores on the Vineland Adaptive Behavior scale. Results provide preliminary evidence in support of the program, justifying the need for further, more rigorous trials in this area.
Collapse
Affiliation(s)
- Katherine Howells
- Deakin Child Study Centre, School of Psychology Faculty of Health, Deakin University, Geelong, VIC, Australia.
| | - Carmel Sivaratnam
- Deakin Child Study Centre, School of Psychology Faculty of Health, Deakin University, Geelong, VIC, Australia
| | - Ebony Lindor
- Deakin Child Study Centre, School of Psychology Faculty of Health, Deakin University, Geelong, VIC, Australia
| | - Christian Hyde
- Deakin Child Study Centre, School of Psychology Faculty of Health, Deakin University, Geelong, VIC, Australia.,Cognitive Neuroscience Unit, School of Psychology, Faculty of Health, Deakin University, Geelong, VIC, Australia
| | - Jane McGillivray
- Deakin Child Study Centre, School of Psychology Faculty of Health, Deakin University, Geelong, VIC, Australia
| | - Andrew Whitehouse
- Telethon Kids Institute, The University of Western Australia, Perth, WA, 6009, Australia
| | - Nicole Rinehart
- Deakin Child Study Centre, School of Psychology Faculty of Health, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
76
|
Arida RM. Physical exercise and seizure activity. Biochim Biophys Acta Mol Basis Dis 2020; 1867:165979. [PMID: 32980461 DOI: 10.1016/j.bbadis.2020.165979] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 09/05/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
Abstract
Neuroprotective and antiepileptogenic therapies have been extensively investigated for epilepsy prevention and treatment. This review gives an overview of the promising contribution of the ketogenic diet, a complementary treatment, on the intestinal microbiota to reduce seizure susceptibility. Next, the relevance of physical exercise is extensively addressed as a complementary therapy to reduce seizure susceptibility, and thereby impact beneficially on the epilepsy condition. In this context, particular attention is given to the potential risks and benefits of physical exercise, possible precipitant factors related to exercise and proposed mechanisms by which exercise can reduce seizures, and its antiepileptogenic effects. Finally, this review points to emerging evidence of exercise reducing comorbidities from epilepsy and improving the quality of life of people with epilepsy. Based on evidence from current literature, physical or sport activities represent a potential non-pharmacological intervention that can be integrated with conventional therapy for epilepsy.
Collapse
Affiliation(s)
- Ricardo Mario Arida
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| |
Collapse
|
77
|
Sá Filho AS, Cheniaux E, de Paula CC, Murillo-Rodriguez E, Teixeira D, Monteiro D, Cid L, Yamamoto T, Telles-Correia D, Imperatori C, Budde H, Machado S. Exercise is medicine: a new perspective for health promotion in bipolar disorder. Expert Rev Neurother 2020; 20:1099-1107. [PMID: 32762382 DOI: 10.1080/14737175.2020.1807329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Similar effects in reducing the symptoms of the mood disorder are reported in the literature compared the action of drugs and aerobic exercise sessions, demonstrating the potential of exercise in the control and mood stabilization. Therefore, there are many reasons to believe that the increased cardiorespiratory fitness (VO2max) can be an important means of protection and a reducing potential of physical and mental damage in bipolar disorders (BD). This review will highlight the current pattern of response of exercise on the pathophysiology of BD, relating the possible mechanisms, and hypotheses based on exercises. AREAS COVERED The mechanism of monoaminergic action and its relationship with exercise, role of physical conditioning and increased VO2Max on neurotrophin release, and new perspectives on long-term exercise will be reviewed. EXPERT OPINION The adaptations to training, although little explored in the context of BD, can induce the expression of substances that co-regulate several processes related to the pathophysiology of BD. Furthermore, high intensity interval training (HIIT) can also be adjusted to improve the physical fitness and health in patients with BD. Future research is needed to adopt a training strategy that is both time efficient and adequate for the population in question.
Collapse
Affiliation(s)
- Alberto Souza Sá Filho
- Department of Physical Education, Paulista University (UNIP) , São Paulo, Brazil.,Department of Physical Education, University Center of Anápolis (Unievangélica) , Anápolis, Brazil
| | - Elie Cheniaux
- School of Medical Sciences, State University of Rio De Janeiro (UERJ) , Rio De Janeiro, Brazil.,Institute of Psychiatry, Federal University of Rio De Janeiro , Rio De Janeiro, Brazil
| | - Carolina Cavalcante de Paula
- Department of Cellular, Tissue and Developmental Biology, The Institute of Biomedical Science, The University of São Paulo (ICB/USP) , São Paulo, Brazil
| | - Eric Murillo-Rodriguez
- International Neuroscience Research Group , Yucatan, México.,Laboratorio De Neurociencias Moleculares E Integrativas, Escuela De Medicina, División Ciencias De La Salud, Universidad Anáhuac Mayab , Mérida, Mexico
| | - Diogo Teixeira
- International Neuroscience Research Group , Yucatan, México.,Faculty of Physical Education and Sport, ULHT , Lisbon, Portugal
| | - Diogo Monteiro
- International Neuroscience Research Group , Yucatan, México.,Research Centre in Sports, Health and Human Development, CIDESD , Rio Maior, Portugal.,Sport Science School of Rio Maior, Polytechnique Institute of Santarém , Rio Maior, Portugal
| | - Luis Cid
- International Neuroscience Research Group , Yucatan, México.,Research Centre in Sports, Health and Human Development, CIDESD , Rio Maior, Portugal.,Sport Science School of Rio Maior, Polytechnique Institute of Santarém , Rio Maior, Portugal
| | - Tetsuya Yamamoto
- International Neuroscience Research Group , Yucatan, México.,Graduate School of Technology, Industrial and Social Sciences, Tokushima University , Tokushima, Japan
| | - Diogo Telles-Correia
- International Neuroscience Research Group , Yucatan, México.,Clínica Universitária De Psicologia E Psiquiatria, Faculdade De Medicina, Universidade De Lisboa , Lisbon, Portugal.,Departamento De Psiquiatria, Faculdade De Medicina, Universidade De Lisboa , Lisbon, Portugal
| | - Claudio Imperatori
- International Neuroscience Research Group , Yucatan, México.,Department of Human Sciences, European University of Rome, Via degli Aldobrandeschi 190 , Rome, Italy
| | - Henning Budde
- International Neuroscience Research Group , Yucatan, México.,Faculty of Human Sciences, Medical School Hamburg, University of Applied Science and Medical University , Hamburg, Germany
| | - Sergio Machado
- Institute of Psychiatry, Federal University of Rio De Janeiro , Rio De Janeiro, Brazil.,International Neuroscience Research Group , Yucatan, México.,Laboratory of Physical Activity Neuroscience, Physical Activity Sciences Postgraduate Program, Salgado De Oliveira University (UNIVERSO) , Niterói, Brazil.,Laboratory of Physical Activity Neuroscience, Neurodiversity Institute, Queimados , RJ, Brazil
| |
Collapse
|
78
|
Mahalakshmi B, Maurya N, Lee SD, Bharath Kumar V. Possible Neuroprotective Mechanisms of Physical Exercise in Neurodegeneration. Int J Mol Sci 2020; 21:ijms21165895. [PMID: 32824367 PMCID: PMC7460620 DOI: 10.3390/ijms21165895] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 12/22/2022] Open
Abstract
Physical exercise (PE) improves physical performance, mental status, general health, and well-being. It does so by affecting many mechanisms at the cellular and molecular level. PE is beneficial for people suffering from neuro-degenerative diseases because it improves the production of neurotrophic factors, neurotransmitters, and hormones. PE promotes neuronal survival and neuroplasticity and also optimizes neuroendocrine and physiological responses to psychosocial and physical stress. PE sensitizes the parasympathetic nervous system (PNS), Autonomic Nervous System (ANS) and central nervous system (CNS) by promoting many processes such as synaptic plasticity, neurogenesis, angiogenesis, and autophagy. Overall, it carries out many protective and preventive activities such as improvements in memory, cognition, sleep and mood; growth of new blood vessels in nervous system; and the reduction of stress, anxiety, neuro-inflammation, and insulin resistance. In the present work, the protective effects of PE were overviewed. Suitable examples from the current research work in this context are also given in the article.
Collapse
Affiliation(s)
- B. Mahalakshmi
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam;
| | - Nancy Maurya
- Department of Botany, Government Science College, Pandhurna, Chhindwara, Madhya Pradesh 480334, India;
| | - Shin-Da Lee
- Department of Physical Therapy, Asia University, Taichung 41354, Taiwan
- Department of Physical Therapy Graduate Institute of Rehabilitation Science, China Medical University, Taichung 40402, Taiwan
- Correspondence: (S.-D.L.); (V.B.K.); Tel.: +886-4-22053366 (ext. 7300) (S.-D.L.); +886-4-2332-3456 (ext. 6352 or 6353) (V.B.K.); Fax: 886-4-22065051 (S.-D.L.); +886-4-23305834 (V.B.K.)
| | - V. Bharath Kumar
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan
- Correspondence: (S.-D.L.); (V.B.K.); Tel.: +886-4-22053366 (ext. 7300) (S.-D.L.); +886-4-2332-3456 (ext. 6352 or 6353) (V.B.K.); Fax: 886-4-22065051 (S.-D.L.); +886-4-23305834 (V.B.K.)
| |
Collapse
|
79
|
Yamamotová A. Endogenous antinociceptive system and potential ways to influence It. Physiol Res 2020; 68:S195-S205. [PMID: 31928038 DOI: 10.33549/physiolres.934351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The biological significance of pain is to protect the organism from possible injury. However, there exists a situation, where, in the interest of survival, it is more important not to perceive pain. Spontaneous suppression of pain or weakening of nociception is mediated by an endogenous antinociceptive (analgesic) system. Its anatomical substrate ranges from the periaqueductal gray matter of the midbrain, through the noradrenergic and serotonergic nuclei of the brain stem to the spinal neurons, which receive "pain" information from nociceptors. Moreover, the activity of this system is under significant control of emotional and cognitive circuits. Pain can be moderated primarily through stimulation of positive emotions, while negative emotions increase pain. Paradoxically, one pain can also suppress another pain. Analgesia can be induced by stress, physical exercise, orosensory stimulation via a sweet taste, listening to music, and after placebo, i.e. when relief from pain is expected. Since pain has sensory, affective, and cognitive components, it turns out that activation of these entire systems can, in specific ways, contribute to pain suppression.
Collapse
Affiliation(s)
- A Yamamotová
- Charles University, Third Faculty of Medicine, Department of Physiology, Ke Karlovu 4, 120 00 Prague 2, Czech Republic.
| |
Collapse
|
80
|
Walsh EI, Smith L, Northey J, Rattray B, Cherbuin N. Towards an understanding of the physical activity-BDNF-cognition triumvirate: A review of associations and dosage. Ageing Res Rev 2020; 60:101044. [PMID: 32171785 DOI: 10.1016/j.arr.2020.101044] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/06/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022]
Abstract
Physical activity has received substantial research attention due to its beneficial impact on cognition in ageing, particularly via the action of brain-derived neurotrophic factor (BDNF). It is well established that physical activity can elevate circulating levels of BDNF, and that BDNF has neurotrophic, neuroprotective and cognitively beneficial properties. Yet, practical implementation of this knowledge is limited by a lack of clarity on context and dose-effect. Against a shifting backdrop of gradually diminishing physical and cognitive capacity in normal ageing, the type, intensity, and duration of physical activity required to elicit elevations in BDNF, and more importantly, the magnitude of BDNF elevation required for detectable neuroprotection remains poorly characterised. The purpose of this review is to provide an overview of the association between physical activity, BDNF, and cognition, with a focus on clarifying the magnitude of these effects in the context of normative ageing. We discuss the implications of the available evidence for the design of physical activity interventions intended to promote healthy cognitive ageing.
Collapse
|
81
|
Nouchi R, Nouchi H, Kawashima R. A Single 30 Minutes Bout of Combination Physical Exercises Improved Inhibition and Vigor-Mood in Middle-Aged and Older Females: Evidence From a Randomized Controlled Trial. Front Aging Neurosci 2020; 12:179. [PMID: 32670049 PMCID: PMC7326951 DOI: 10.3389/fnagi.2020.00179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/25/2020] [Indexed: 12/23/2022] Open
Abstract
Background Long-term combination of physical exercises has reported benefits for cognitive functions and mood states. However, it remains unclear whether a single bout of combination exercise training has acute positive effects on cognitive functions and mood states in middle-aged and older women. It is important to investigate acute effect of physical exercise because it would help to understand a mechanism of benefits of physical exercise. The purpose of this study was to investigate 30 min of a single bout of combination exercise training on cognition and mood states in middle-aged and older females. Methods In this single-blinded randomized control trial (RCT), middle-aged and older females were assigned randomly to two groups: a combination exercise group and a no-exercise control group. The former group did the combination exercise training (aerobic, strength, and stretching exercises) for 30 min. Meanwhile, the latter group did not do any exercise and waited for 30 min. We measured cognitive functions and mood performance states before and after the exercise or control interventions. Results Our main results demonstrated that, compared to the control group, the combination exercise improved inhibition (reverse Stroop and Stroop) and increased vigor–activity mood scores in both middle-aged and older groups. We also found that the only combination exercise group showed the significant positive correlations between improved inhibition performance and improved vigor–activity mood. Discussion This randomized controlled trial revealed the acute benefits of combination exercise on inhibition in executive functions and vigor–activity in the healthy middle-aged and older females. Our results provided the scientific evidence related to acute effects of the single bout of the combination exercise training. It suggests that we would be better to do the 30 min physical exercise for our health. Clinical Trial Registration This trial was registered in the University Hospital Medical Information Network Clinical Trials Registry (UMIN000029681). Registered 24 October 2017, https://upload.umin.ac.jp/cgi-bin/ctr/ctr_view_reg.cgi?recptno=R000033922.
Collapse
Affiliation(s)
- Rui Nouchi
- Department of Cognitive Health Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Smart Aging Research Center, Tohoku University, Sendai, Japan
| | - Haruka Nouchi
- Department of Cognitive Health Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- Smart Aging Research Center, Tohoku University, Sendai, Japan.,Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
82
|
San-Millán I, Stefanoni D, Martinez JL, Hansen KC, D’Alessandro A, Nemkov T. Metabolomics of Endurance Capacity in World Tour Professional Cyclists. Front Physiol 2020; 11:578. [PMID: 32581847 PMCID: PMC7291837 DOI: 10.3389/fphys.2020.00578] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/08/2020] [Indexed: 12/23/2022] Open
Abstract
The study of elite athletes provides a unique opportunity to define the upper limits of human physiology and performance. Across a variety of sports, these individuals have trained to optimize the physiological parameters of their bodies in order to compete on the world stage. To characterize endurance capacity, techniques such as heart rate monitoring, indirect calorimetry, and whole blood lactate measurement have provided insight into oxygen utilization, and substrate utilization and preference, as well as total metabolic capacity. However, while these techniques enable the measurement of individual, representative variables critical for sports performance, they lack the molecular resolution that is needed to understand which metabolic adaptations are necessary to influence these metrics. Recent advancements in mass spectrometry-based analytical approaches have enabled the measurement of hundreds to thousands of metabolites in a single analysis. Here we employed targeted and untargeted metabolomics approaches to investigate whole blood responses to exercise in elite World Tour (including Tour de France) professional cyclists before and after a graded maximal physiological test. As cyclists within this group demonstrated varying blood lactate accumulation as a function of power output, which is an indicator of performance, we compared metabolic profiles with respect to lactate production to identify adaptations associated with physiological performance. We report that numerous metabolic adaptations occur within this physically elite population (n = 21 males, 28.2 ± 4.7 years old) in association with the rate of lactate accumulation during cycling. Correlation of metabolite values with lactate accumulation has revealed metabolic adaptations that occur in conjunction with improved endurance capacity. In this population, cycling induced increases in tricarboxylic acid (TCA) cycle metabolites and Coenzyme A precursors. These responses occurred proportionally to lactate accumulation, suggesting a link between enhanced mitochondrial networks and the ability to sustain higher workloads. In association with lactate accumulation, altered levels of amino acids before and after exercise point to adaptations that confer unique substrate preference for energy production or to promote more rapid recovery. Cyclists with slower lactate accumulation also have higher levels of basal oxidative stress markers, suggesting long term physiological adaptations in these individuals that support their premier competitive status in worldwide competitions.
Collapse
Affiliation(s)
- Iñigo San-Millán
- Department of Human Physiology and Nutrition, University of Colorado Colorado Springs, Colorado Springs, CO, United States
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Research and Development, UAE Team Emirates, Abu Dhabi, United Arab Emirates
| | - Davide Stefanoni
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Janel L. Martinez
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
83
|
Depression and Objectively Measured Physical Activity: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17103738. [PMID: 32466242 PMCID: PMC7277615 DOI: 10.3390/ijerph17103738] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/20/2022]
Abstract
Depression is a major contributor to the overall global burden of disease, with high prevalence and relapse rate. Several factors have been considered in order to reduce the depression burden. Among them, physical activity (PA) showed a potential protective role. However, evidence is contrasting probably because of the differences in PA measurement. The aim of this systematic review with meta-analysis is to assess the association between objectively measured PA and incident and prevalent depression. The systematic review was conducted according to methods recommended by the Cochrane Collaboration and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Relevant papers published through 31 August 2019 were identified searching through the electronic databases PubMed/MEDLINE, Excerpta Medica dataBASE (Embase), PsycINFO, Scopus, Web of Science (WoS), and the Cochrane Library. All analyses were conducted using ProMeta3. Finally, 42 studies met inclusion criteria. The overall Effect size (ES) of depression for the highest vs. the lowest level of PA was −1.16 [(95% CI = −1.41; −0.91), p-value < 0.001] based on 37,408 participants. The results of the meta-analysis showed a potential protective effect of PA on prevalent and incident depression.
Collapse
|
84
|
Lopes BC, Medeiros LF, Silva de Souza V, Cioato SG, Medeiros HR, Regner GG, Lino de Oliveira C, Fregni F, Caumo W, Torres IL. Transcranial direct current stimulation combined with exercise modulates the inflammatory profile and hyperalgesic response in rats subjected to a neuropathic pain model: Long-term effects. Brain Stimul 2020; 13:774-782. [DOI: 10.1016/j.brs.2020.02.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/06/2020] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
|
85
|
Ryu Y, Maekawa T, Yoshino D, Sakitani N, Takashima A, Inoue T, Suzurikawa J, Toyohara J, Tago T, Makuuchi M, Fujita N, Sawada K, Murase S, Watanave M, Hirai H, Sakai T, Yoshikawa Y, Ogata T, Shinohara M, Nagao M, Sawada Y. Mechanical Regulation Underlies Effects of Exercise on Serotonin-Induced Signaling in the Prefrontal Cortex Neurons. iScience 2020; 23:100874. [PMID: 32062453 PMCID: PMC7016263 DOI: 10.1016/j.isci.2020.100874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 01/15/2020] [Accepted: 01/27/2020] [Indexed: 12/28/2022] Open
Abstract
Mechanical forces are known to be involved in various biological processes. However, it remains unclear whether brain functions are mechanically regulated under physiological conditions. Here, we demonstrate that treadmill running and passive head motion (PHM), both of which produce mechanical impact on the head, have similar effects on the hallucinogenic 5-hydroxytryptamine (5-HT) receptor subtype 2A (5-HT2A) signaling in the prefrontal cortex (PFC) of rodents. PHM generates interstitial fluid movement that is estimated to exert shear stress of a few pascals on cells in the PFC. Fluid shear stress of a relevant magnitude on cultured neuronal cells induces ligand-independent internalization of 5-HT2A receptor, which is observed in mouse PFC neurons after treadmill running or PHM. Furthermore, inhibition of interstitial fluid movement by introducing polyethylene glycol hydrogel eliminates the effect of PHM on 5-HT2A receptor signaling in the PFC. Our findings indicate that neuronal cell function can be physiologically regulated by mechanical forces in the brain. Mechanical forces regulate brain functions under physiological conditions Intracerebral interstitial fluid has mechanical roles in regulating brain functions Mechanical impact on the head mediates effects of exercise on the brain Fluid shear stress physiologically modulates signaling in nervous cells
Collapse
Affiliation(s)
- Youngjae Ryu
- Department of Rehabilitation for Motor Functions, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama 359-8555, Japan; Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Takahiro Maekawa
- Department of Rehabilitation for Motor Functions, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama 359-8555, Japan
| | - Daisuke Yoshino
- Division of Advanced Applied Physics, Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Naoyoshi Sakitani
- Department of Rehabilitation for Motor Functions, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama 359-8555, Japan
| | - Atsushi Takashima
- Department of Assistive Technology, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama 359-8555, Japan
| | - Takenobu Inoue
- Department of Assistive Technology, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama 359-8555, Japan
| | - Jun Suzurikawa
- Department of Assistive Technology, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama 359-8555, Japan
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan
| | - Tetsuro Tago
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan
| | - Michiru Makuuchi
- Section of Neuropsychology, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama 359-8555, Japan
| | - Naoki Fujita
- Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Keisuke Sawada
- University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Shuhei Murase
- Department of Rehabilitation for Motor Functions, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama 359-8555, Japan
| | - Masashi Watanave
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takamasa Sakai
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
| | - Yuki Yoshikawa
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
| | - Toru Ogata
- Department of Rehabilitation for Motor Functions, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama 359-8555, Japan
| | - Masahiro Shinohara
- Department of Rehabilitation for Motor Functions, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama 359-8555, Japan
| | - Motoshi Nagao
- Department of Rehabilitation for Motor Functions, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama 359-8555, Japan
| | - Yasuhiro Sawada
- Department of Rehabilitation for Motor Functions, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama 359-8555, Japan; Department of Clinical Research, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama 359-8555, Japan.
| |
Collapse
|
86
|
Booher WC, Reyes Martínez GJ, Ehringer MA. Behavioral and neuronal interactions between exercise and alcohol: Sex and genetic differences. GENES BRAIN AND BEHAVIOR 2020; 19:e12632. [DOI: 10.1111/gbb.12632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Winona C. Booher
- Institute for Behavioral GeneticsUniversity of Colorado Boulder Colorado
- Department of Integrative PhysiologyUniversity of Colorado Boulder Colorado
| | - Guillermo J. Reyes Martínez
- Institute for Behavioral GeneticsUniversity of Colorado Boulder Colorado
- Department of Integrative PhysiologyUniversity of Colorado Boulder Colorado
| | - Marissa A. Ehringer
- Institute for Behavioral GeneticsUniversity of Colorado Boulder Colorado
- Department of Integrative PhysiologyUniversity of Colorado Boulder Colorado
| |
Collapse
|
87
|
Mehren A, Reichert M, Coghill D, Müller HHO, Braun N, Philipsen A. Physical exercise in attention deficit hyperactivity disorder - evidence and implications for the treatment of borderline personality disorder. Borderline Personal Disord Emot Dysregul 2020; 7:1. [PMID: 31921425 PMCID: PMC6945516 DOI: 10.1186/s40479-019-0115-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
A growing body of literature indicates a potential role for physical exercise in the treatment of attention deficit hyperactivity disorder (ADHD). Suggested effects include the reduction of ADHD core symptoms as well as improvements in executive functions. In the current review, we provide a short overview on the neurophysiological mechanisms assumed to underlie the beneficial effects of exercise. Further, we review the current evidence from experimental studies regarding both acute exercise and long-term interventions in ADHD. While the positive effects observed after acute aerobic exercise are promising, very few well-designed long-term intervention studies have been conducted yet. Moreover, although exercise effects have not yet been studied in borderline personality disorder (BPD), in the end of this paper we derive hypotheses why exercise could also be beneficial for this patient population.
Collapse
Affiliation(s)
- Aylin Mehren
- 1Department of Psychology, Biological Psychology Lab, European Medical School, University of Oldenburg, Oldenburg, Germany
| | - Markus Reichert
- 2Department of Applied Psychology, Mental mHealth Lab, Institute of Sports and Sports Science, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,3Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - David Coghill
- 4Royal Children's Hospital, Melbourne, Victoria Australia
| | - Helge H O Müller
- 5Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Niclas Braun
- 5Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Alexandra Philipsen
- 5Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| |
Collapse
|
88
|
André N, Audiffren M, Baumeister RF. An Integrative Model of Effortful Control. Front Syst Neurosci 2019; 13:79. [PMID: 31920573 PMCID: PMC6933500 DOI: 10.3389/fnsys.2019.00079] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/06/2019] [Indexed: 11/21/2022] Open
Abstract
This article presents an integrative model of effortful control, a resource-limited top-down control mechanism involved in mental tasks and physical exercises. Based on recent findings in the fields of neuroscience, social psychology and cognitive psychology, this model posits the intrinsic costs related to a weakening of the connectivity of neural networks underpinning effortful control as the main cause of mental fatigue in long and high-demanding tasks. In this framework, effort reflects three different inter-related aspects of the same construct. First, effort is a mechanism comprising a limited number of interconnected processing units that integrate information regarding the task constraints and subject’s state. Second, effort is the main output of this mechanism, namely, the effort signal that modulates neuronal activity in brain regions involved in the current task to select pertinent information. Third, effort is a feeling that emerges in awareness during effortful tasks and reflects the costs associated with goal-directed behavior. Finally, the model opens new avenues for research investigating effortful control at the behavioral and neurophysiological levels.
Collapse
Affiliation(s)
- Nathalie André
- Research Centre on Cognition and Learning, UMR CNRS 7295, University of Poitiers, Poitiers, France
| | - Michel Audiffren
- Research Centre on Cognition and Learning, UMR CNRS 7295, University of Poitiers, Poitiers, France
| | - Roy F Baumeister
- School of Psychology, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
89
|
Vargas LS, Ramires Lima K, Piaia Ramborger B, Roehrs R, Izquierdo I, Mello-Carpes PB. Catecholaminergic hippocampal activation is necessary for object recognition memory persistence induced by one-single physical exercise session. Behav Brain Res 2019; 379:112356. [PMID: 31730785 DOI: 10.1016/j.bbr.2019.112356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 02/01/2023]
Abstract
Previously we demonstrated that a single physical exercise session promotes the persistence of object recognition (OR) memory and this effect involves the activation of the noradrenergic system. Here, using adult male Wistar rats (3 months old) we confirm that an aerobic single physical exercise session (30 min of treadmill running at an intensity of 60-70 % of indirect VO2 max.) after OR learning promotes memory persistence. We also demonstrate that this effect involves the dopaminergic system, since it is blocked when a D1-family receptor antagonist (SCH-23390, 1μg/μl) is infused into the hippocampus after the physical exercise session. Additionally, through HPLC experiments we demonstrate that a physical exercise session increases the hippocampal dopamine levels. Taken together, our results demonstrate that acute post-learning physical exercise is able to promote the persistence of OR memory, inducing the release of dopamine in hippocampus, which is necessary for the modulation of memory persistence. This work brings new evidences on the benefit of a single physical exercise session to memory, as well as suggests that catecholaminergic mechanisms are behind this effect.
Collapse
Affiliation(s)
- Liane S Vargas
- Physiology Research Group, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Karine Ramires Lima
- Physiology Research Group, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Bruna Piaia Ramborger
- Interdisciplinary Group of Research in Teaching Practice, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Rafael Roehrs
- Interdisciplinary Group of Research in Teaching Practice, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Iván Izquierdo
- Memory Center, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience/CNPq, Brazil
| | - Pâmela B Mello-Carpes
- Physiology Research Group, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Physiology Research Group, Federal University of Pampa, Uruguaiana, RS, Brazil.
| |
Collapse
|
90
|
Ando S, Komiyama T, Sudo M, Higaki Y, Ishida K, Costello JT, Katayama K. The interactive effects of acute exercise and hypoxia on cognitive performance: A narrative review. Scand J Med Sci Sports 2019; 30:384-398. [PMID: 31605635 DOI: 10.1111/sms.13573] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/09/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022]
Abstract
Acute moderate intensity exercise has been shown to improve cognitive performance. In contrast, hypoxia is believed to impair cognitive performance. The detrimental effects of hypoxia on cognitive performance are primarily dependent on the severity and duration of exposure. In this review, we describe how acute exercise under hypoxia alters cognitive performance, and propose that the combined effects of acute exercise and hypoxia on cognitive performance are mainly determined by interaction among exercise intensity and duration, the severity of hypoxia, and duration of exposure to hypoxia. We discuss the physiological mechanism(s) of the interaction and suggest that alterations in neurotransmitter function, cerebral blood flow, and possibly cerebral metabolism are the primary candidates that determine cognitive performance when acute exercise is combined with hypoxia. Furthermore, acclimatization appears to counteract impaired cognitive performance during prolonged exposure to hypoxia although the precise physiological mechanism(s) responsible for this amelioration remain to be elucidated. This review has implications for sporting, occupational, and recreational activities at terrestrial high altitude where cognitive performance is essential. Further studies are required to understand physiological mechanisms that determine cognitive performance when acute exercise is performed in hypoxia.
Collapse
Affiliation(s)
- Soichi Ando
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Takaaki Komiyama
- Center for Education in Liberal Arts and Sciences, Osaka University, Osaka, Japan
| | - Mizuki Sudo
- Meiji Yasuda Life Foundation of Health and Welfare, Tokyo, Japan
| | - Yasuki Higaki
- Faculty of Sports Science, Fukuoka University, Fukuoka, Japan
| | - Koji Ishida
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| | - Joseph T Costello
- Extreme Environments Laboratory, Department of Sport and Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Keisho Katayama
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| |
Collapse
|
91
|
Malaguti M, Cardenia V, Rodriguez-Estrada MT, Hrelia S. Nutraceuticals and physical activity: Their role on oxysterols-mediated neurodegeneration. J Steroid Biochem Mol Biol 2019; 193:105430. [PMID: 31325497 DOI: 10.1016/j.jsbmb.2019.105430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 01/07/2023]
Abstract
Over the past few years, the contribution of oxysterols to the onset and development of some of the major neurodegenerative diseases (such as Alzheimer's and Parkinson's diseases) has been scientifically asserted, being mainly related to altered brain cholesterol homeostasis. To counteract oxysterol induced inflammation at neuronal level, one possible intervention approach is the administration of some nutrients and/or plant secondary metabolites. On the other hand, the pleiotropic beneficial effects of physical activity seem to play an important role on prevention and counteraction of neurodegenerative diseases, through the modulation of oxysterol homeostasis and the prevention of demyelination. The present review provides a picture of the promising role of nutraceuticals and physical activity on oxysterol-mediated neurodegeneration, pointing out also the different in vitro and in vivo aspects that need to be further investigated for a better understanding of the association of these three counterparts and their overall effect on people at increased risk for neurodegenerative diseases.
Collapse
Affiliation(s)
- Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna, Rimini, 47921, Italy.
| | - Vladimiro Cardenia
- Department of Agricultural, Forest and Food Sciences DISAFA, University of Turin, Largo Braccini 2, 10095, Grugliasco, Italy
| | | | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna, Rimini, 47921, Italy
| |
Collapse
|
92
|
Systemic low-grade inflammation and subsequent depressive symptoms: Is there a mediating role of physical activity? Brain Behav Immun 2019; 80:688-696. [PMID: 31085217 DOI: 10.1016/j.bbi.2019.05.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/08/2019] [Accepted: 05/11/2019] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Systemic low-grade inflammation has been associated with the onset of depression, but the exact mechanisms underlying this relationship remain elusive. This study examined whether physical activity (PA) explained the association between elevated serum levels of inflammatory markers and subsequent depressive symptoms. DESIGN Prospective cohort design. METHOD The sample consisted of 3809 non-depressed men and women (aged 50+) recruited from the English Longitudinal Study of Ageing (ELSA). Serum levels of inflammatory markers (C-reactive protein (CRP), fibrinogen) and covariates (age, sex, education, wealth, body mass index, smoking, cholesterol, triglycerides) were measured at baseline (wave 4, 2008/09). Self-reported weekly moderate/vigorous (high) PA versus no weekly moderate/vigorous (low) PA was examined at a four-year follow-up (wave 6, 2012/13), using a single-item question. Depressive symptoms were assessed at baseline, four years (wave 6, 2012/13) and six years post baseline (wave 7, 2014/15), using the 8-item version of the Centre for Epidemiological Studies Depression Scale (CES-D). RESULTS Participants with higher baseline concentrations of inflammatory markers were significantly more likely to report low PA levels four years later (CRP: OR: 1.25; 95% CI, 1.05-1.48; fibrinogen: OR: 1.18; 95% CI, 1.05-1.39). Moreover, low PA was associated with higher odds of elevated depressive symptoms at follow-up (OR: 1.59; 95% CI, 1.15-2.19). Mediation analyses revealed that low PA explained a total of 36.71% of the relationship between high CRP and elevated depressive symptoms, and 33.26% between higher levels of fibrinogen and elevated depressive symptoms six years later. No direct association was found between systemic low-grade inflammation and future depressive symptoms. CONCLUSION These results suggest that low PA is a significant partial mediator of the relationship between systemic low-grade inflammation and subsequent elevated depressive symptoms in a nationally representative cohort of older adults.
Collapse
|
93
|
Maurus I, Hasan A, Röh A, Takahashi S, Rauchmann B, Keeser D, Malchow B, Schmitt A, Falkai P. Neurobiological effects of aerobic exercise, with a focus on patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 2019; 269:499-515. [PMID: 31115660 DOI: 10.1007/s00406-019-01025-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/15/2019] [Indexed: 02/08/2023]
Abstract
Schizophrenia is a severe neuropsychiatric disease that is associated with neurobiological alterations in multiple brain regions and peripheral organs. Negative symptoms and cognitive deficits are present in about half of patients and are difficult to treat, leading to an unfavorable functional outcome. To investigate the impact of aerobic exercise on various neurobiological parameters, we conducted a narrative review. Add-on aerobic exercise was shown to be effective in improving negative and general symptoms, cognition, global functioning, and quality of life in schizophrenia patients. Based on findings in healthy individuals and animal models, this qualitative review gives an overview of different lines of evidence on how aerobic exercise impacts brain structure and function and molecular mechanisms in patients with schizophrenia and how its effects could be related to clinical and functional outcomes. Structural magnetic resonance imaging studies showed a volume increase in the hippocampus and cortical regions in schizophrenia patients and healthy controls after endurance training. However, results are inconsistent and individual risk factors may influence neuroplastic processes. Animal studies indicate that alterations in epigenetic mechanisms and synaptic plasticity are possible underlying mechanisms, but that differentiation of glial cells, angiogenesis, and possibly neurogenesis may also be involved. Clinical and animal studies also revealed effects of aerobic exercise on the hypothalamus-pituitary-adrenal axis, growth factors, and immune-related mechanisms. Some findings indicate effects on neurotransmitters and the endocannabinoid system. Further research is required to clarify how individual risk factors in schizophrenia patients mediate or moderate the neurobiological effects of exercise on brain and cognition. Altogether, aerobic exercise is a promising candidate in the search for pathophysiology-based add-on interventions in schizophrenia.
Collapse
Affiliation(s)
- Isabel Maurus
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany.
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Astrid Röh
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Shun Takahashi
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany.,Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Boris Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany.,Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Berend Malchow
- Department of Psychiatry and Psychotherapy, University Hospital Jena, Jena, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany.,Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, São Paulo, Brazil
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| |
Collapse
|
94
|
The Effects of Biological Sex and Ovarian Hormones on Exercise-Induced Neuroplasticity. Neuroscience 2019; 410:29-40. [DOI: 10.1016/j.neuroscience.2019.04.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/05/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022]
|
95
|
Effects of Exercise on Cognitive Performance in Children and Adolescents with ADHD: Potential Mechanisms and Evidence-based Recommendations. J Clin Med 2019; 8:jcm8060841. [PMID: 31212854 PMCID: PMC6617109 DOI: 10.3390/jcm8060841] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022] Open
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder with a complex symptomatology, and core symptoms as well as functional impairment often persist into adulthood. Recent investigations estimate the worldwide prevalence of ADHD in children and adolescents to be ~7%, which is a substantial increase compared to a decade ago. Conventional treatment most often includes pharmacotherapy with central nervous stimulants, but the number of non-responders and adverse effects call for treatment alternatives. Exercise has been suggested as a safe and low-cost adjunctive therapy for ADHD and is reported to be accompanied by positive effects on several aspects of cognitive functions in the general child population. Here we review existing evidence that exercise affects cognitive functions in children with and without ADHD and present likely neurophysiological mechanisms of action. We find well-described associations between physical activity and ADHD, as well as causal evidence in the form of small to moderate beneficial effects following acute aerobic exercise on executive functions in children with ADHD. Despite large heterogeneity, meta-analyses find small positive effects of exercise in population-based control (PBC) children, and our extracted effect sizes from long-term interventions suggest consistent positive effects in children and adolescents with ADHD. Paucity of studies probing the effect of different exercise parameters impedes finite conclusions in this regard. Large-scale clinical trials with appropriately timed exercise are needed. In summary, the existing preliminary evidence suggests that exercise can improve cognitive performance intimately linked to ADHD presentations in children with and without an ADHD diagnosis. Based on the findings from both PBC and ADHD children, we cautiously provide recommendations for parameters of exercise.
Collapse
|
96
|
Takehara K, Ganchimeg T, Kikuchi A, Gundegmaa L, Altantsetseg L, Aoki A, Fukuie T, Suwabe K, Bat-Erdene S, Mikami M, Mori R, Soya H. The effectiveness of exercise intervention for academic achievement, cognitive function, and physical health among children in Mongolia: a cluster RCT study protocol. BMC Public Health 2019; 19:697. [PMID: 31170967 PMCID: PMC6555710 DOI: 10.1186/s12889-019-6986-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/15/2019] [Indexed: 12/03/2022] Open
Abstract
Background Many studies have demonstrated positive effects of physical activity on children’s health such as improved cardiorespiratory function and decreased obesity. Physical activity has also been found to have positive effects on academic achievement and cognitive function. However, there are few high quality RCT studies on this topic at present and the findings remain controversial. Methods This protocol describes cluster randomized controlled trials assessing the impact of school-based exercise intervention among children in Mongolia. The intervention consists of 3-min sessions of high intensity interval training combined with music implemented two times a week at school during study periods. The participants are children in the fourth grade in public elementary schools in the Sukhbaatar district in Ulaanbaatar, Mongolia. The participants are cluster randomized by school and allocated either to the intervention or control group. The primary outcome is academic achievement. Secondary outcomes are obesity/overweight, physical fitness function, lifestyle, mental health, and cognitive function. Discussion This cluster-RCT is designed and implemented to assess the effectiveness of exercise intervention on academic achievement, cognitive function, and physical and mental health among school-age children in Mongolia. This study will provide evidence to promote physical activities among children in low- and middle- income countries. Trial registration UMIN: UMIN000031062. Registered on 1st February 2018.
Collapse
Affiliation(s)
- Kenji Takehara
- Department of Health Policy, National Center for Child Health and Development, 2-10-1, Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Togoobaatar Ganchimeg
- Global Health Nursing, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Akihito Kikuchi
- Division of Sport Neuroscience, Advanced Research Initiative for Human High Performacnce (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, 305-8574, Ibaraki, Japan
| | - Lkagvasuren Gundegmaa
- Mongolian National Institute of Physical Education, P.O.Box-224, Ikh Toiruu-49, Sukhbaatar district, Ulaanbaatar, Mongolia
| | - Lkagvasuren Altantsetseg
- Mongolian National Institute of Physical Education, P.O.Box-224, Ikh Toiruu-49, Sukhbaatar district, Ulaanbaatar, Mongolia
| | - Ai Aoki
- Department of Health Policy, National Center for Child Health and Development, 2-10-1, Okura, Setagaya, Tokyo, 157-8535, Japan.,Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Takemune Fukuie
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, 305-8574, Ibaraki, Japan
| | - Kazuya Suwabe
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, 305-8574, Ibaraki, Japan.,Division of Sport Neuroscience, Advanced Research Initiative for Human High Performacnce (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, 305-8574, Ibaraki, Japan
| | - Shagdar Bat-Erdene
- Mongolian National Institute of Physical Education, P.O.Box-224, Ikh Toiruu-49, Sukhbaatar district, Ulaanbaatar, Mongolia
| | - Masashi Mikami
- Division of Biostatistics, National Center for Child Health and Development, 2-10-1, Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Rintaro Mori
- Department of Health Policy, National Center for Child Health and Development, 2-10-1, Okura, Setagaya, Tokyo, 157-8535, Japan.
| | - Hideaki Soya
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, 305-8574, Ibaraki, Japan.,Division of Sport Neuroscience, Advanced Research Initiative for Human High Performacnce (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, 305-8574, Ibaraki, Japan
| |
Collapse
|
97
|
Stojan R, Voelcker-Rehage C. A Systematic Review on the Cognitive Benefits and Neurophysiological Correlates of Exergaming in Healthy Older Adults. J Clin Med 2019; 8:jcm8050734. [PMID: 31126052 PMCID: PMC6571688 DOI: 10.3390/jcm8050734] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022] Open
Abstract
Human aging is associated with structural and functional brain deteriorations and a corresponding cognitive decline. Exergaming (i.e., physically active video-gaming) has been supposed to attenuate age-related brain deteriorations and may even improve cognitive functions in healthy older adults. Effects of exergaming, however, vary largely across studies. Moreover, the underlying neurophysiological mechanisms by which exergaming may affect cognitive and brain function are still poorly understood. Therefore, we systematically reviewed the effects of exergame interventions on cognitive outcomes and neurophysiological correlates in healthy older adults (>60 years). After screening 2709 studies (Cochrane Library, PsycINFO, Pubmed, Scopus), we found 15 eligible studies, four of which comprised neurophysiological measures. Most studies reported within group improvements in exergamers and favorable interaction effects compared to passive controls. Fewer studies found superior effects of exergaming over physically active control groups and, if so, solely for executive functions. Regarding individual cognitive domains, results showed no consistence. Positive effects on neurophysiological outcomes were present in all respective studies. In summary, exergaming seems to be equally or slightly more effective than other physical interventions on cognitive functions in healthy older adults. Tailored interventions using well-considered exergames and intervention designs, however, may result in more distinct effects on cognitive functions.
Collapse
Affiliation(s)
- Robert Stojan
- Department of Human Movement Science and Health, Chemnitz University of Technology, Thueringer Weg 11, DE-09126 Chemnitz, Germany.
| | - Claudia Voelcker-Rehage
- Department of Human Movement Science and Health, Chemnitz University of Technology, Thueringer Weg 11, DE-09126 Chemnitz, Germany.
| |
Collapse
|
98
|
Effects of Liuwei Dihuang Decoction (Yukmijihwang-tang) on Physical Fatigue by Regulating Neurotransmitters in Brain. Chin J Integr Med 2019; 26:839-844. [DOI: 10.1007/s11655-019-3157-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2018] [Indexed: 11/25/2022]
|
99
|
Leem YH, Park JS, Chang H, Park J, Kim HS. Exercise Prevents Memory Consolidation Defects Via Enhancing Prolactin Responsiveness of CA1 Neurons in Mice Under Chronic Stress. Mol Neurobiol 2019; 56:6609-6625. [DOI: 10.1007/s12035-019-1560-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/13/2019] [Indexed: 12/21/2022]
|
100
|
Padulo J, Bragazzi NL, De Giorgio A, Grgantov Z, Prato S, Ardigò LP. The Effect of Physical Activity on Cognitive Performance in an Italian Elementary School: Insights From a Pilot Study Using Structural Equation Modeling. Front Physiol 2019; 10:202. [PMID: 30890960 PMCID: PMC6412095 DOI: 10.3389/fphys.2019.00202] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/15/2019] [Indexed: 01/11/2023] Open
Abstract
When compared to the previous generations, younger generations have become sedentary on a global level. Physical activity positively contributes to human growth and development, causing, indeed, both physiological and psychological benefits. The aim of the current study was examining the relationship between physical activity and school achievement in a sample of 80 Italian elementary (viz. primary) school last year responding children (11.0 ± 0.3 years, 1.46 ± 0.09 m, 39.5 ± 7.9 kg). Such an aim was fulfilled by investigating eventual correlations between physical tests results and school marks and by disclosing eventual mutual relationships between socio-demographics, family context, lifestyle (including physical activity), and school performance information using a structural modeling approach. Children were assessed for lower/upper limbs muscle strength and running/agility performance. Pearson's correlation between physical tests and school performance was studied. We found that agility correlated with English, Italian, mathematics, music, and sport marks, whereas jump correlated with English, mathematics, sport, and technologies marks. Sprint correlated with mathematics, sport, and technologies marks. All correlation coefficients were moderate, except for correlations between sport marks and physical tests (strong correlation). From the structural model, we found that socio-demographics and lifestyle significantly impacted on school achievement. In particular, lifestyle was found to fully moderate the impact of the family context on school achievement. Schools and households represent important settings for improving children physical and psychological-cognitive health and status, offering physical activities opportunities.
Collapse
Affiliation(s)
- Johnny Padulo
- Department of Psychology, eCampus University, Novedrate, Italy
- Faculty of Kinesiology, University of Split, Split, Croatia
- Sport Performance Laboratory, University of Split, Split, Croatia
- Research Laboratory “Sport Performance Optimization”, National Center of Medicine and Sciences in Sport (CNMSS), Tunis, Tunisia
| | - Nicola Luigi Bragazzi
- Faculty of Kinesiology, University of Split, Split, Croatia
- Postgraduate School of Public Health, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | | | - Zoran Grgantov
- Faculty of Kinesiology, University of Split, Split, Croatia
| | | | - Luca Paolo Ardigò
- School of Exercise and Sport Science, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|