51
|
Intermittent Hypoxic Training at Lactate Threshold Intensity Improves Aiming Performance in Well-Trained Biathletes with Little Change of Cardiovascular Variables. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1287506. [PMID: 31662969 PMCID: PMC6778904 DOI: 10.1155/2019/1287506] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/13/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Abstract
The main objective of this research was to evaluate the efficacy of intermittent hypoxic training (IHT) on aiming performance and aerobic capacity in biathletes. Fourteen male biathletes were randomly divided into a hypoxia group (H) (n = 7), which trained three times per week in a normobaric hypoxic environment (FiO2 = 16.5%, 2000 m a.s.l.) with lactate threshold intensity (LT) determined in hypoxia, and a control group (C) (n = 7), which exercised under normoxic conditions with LT intensity determined in normoxia. The training program included three weekly microcycles, followed by three days of recovery. The main part of the interval workout consisted of four 7 min (1st week), 8 min (2nd week), or 9 min (3rd week) running bouts at treadmill separated by 2 minutes of active recovery. After the warm-up and during the rest between the bouts, the athletes performed aiming to the target in the standing position with a sporting rifle (20 s). The results showed that the IHT caused a significant (p < 0.05) increase in retention time in the target at rest (RT9rest) by 14.4% in hypoxia, whereas RT postincremental test (RT9post) increased by 27.4% in normoxia and 26.7% in hypoxia. No significant changes in this variable were found in group C. Additionally, the capillary oxygen saturation at the end of the maximal effort (SO2capillary max) in hypoxia increased significantly (p < 0.001) by ∼4% after IHT. The maximal workload during the incremental test (WRmax) in normoxia also increased significantly (p < 0.001) by 6.3% after IHT. Furthermore, in absolute and relative values of VO2max in normoxia, there was a propensity (p < 0.07) for increasing this value by 5% in group H. In conclusion, the main findings of this study showed a significant improvement in resting and postexercise aiming performance in normoxia and hypoxia. Furthermore, the results demonstrated beneficial effects of the IHT protocol on aerobic capacity of biathletes.
Collapse
|
52
|
Comparison of the Effectiveness of High-Intensity Interval Training in Hypoxia and Normoxia in Healthy Male Volunteers: A Pilot Study. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7315714. [PMID: 31662994 PMCID: PMC6778879 DOI: 10.1155/2019/7315714] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/07/2019] [Accepted: 09/05/2019] [Indexed: 01/05/2023]
Abstract
Aims The study investigated the effect of high-intensity interval training in hypoxia and normoxia on serum concentrations of proangiogenic factors, nitric oxide, and inflammatory responses in healthy male volunteers. Methods Twelve physically active male subjects completed a high-intensity interval training (HIIT) in normoxia (NorTr) and in normobaric hypoxia (HypTr) (FiO2 = 15.2%). The effects of HIIT in hypoxia and normoxia on maximal oxygen uptake, hypoxia-inducible factor-1-alpha, vascular endothelial growth factor, nitric oxide, and cytokines were analyzed. Results HIIT in hypoxia significantly increases maximal oxygen uptake (p=0.01) levels compared to pretraining levels. Serum hypoxia-inducible factor-1 (p=0.01) and nitric oxide levels (p=0.05), vascular endothelial growth factor (p=0.04), and transforming growth factor-β (p=0.01) levels were increased in response to exercise test after hypoxic training. There was no effect of training conditions for serum baseline angiogenic factors and cytokines (p > 0.05) with higher HIF-1α and NO levels after hypoxic training compared to normoxic training (F = 9.1; p < 0.01 and F = 5.7; p < 0.05, respectively). Conclusions High-intensity interval training in hypoxia seems to induce beneficial adaptations to exercise mediated via a significant increase in the serum concentrations of proangiogenic factors and serum nitric oxide levels compared to the same training regimen in normoxia.
Collapse
|
53
|
Watanabe K, Jesmin S, Murase Y, Takeda T, Shiraki T, Sengoku Y. Effects of Repetitive Altitude Training on Salivary Immunoglobulin A Secretion in Collegiate Swimmers. J Clin Med Res 2019; 11:550-555. [PMID: 31413766 PMCID: PMC6681853 DOI: 10.14740/jocmr3884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 07/08/2019] [Indexed: 12/03/2022] Open
Abstract
Background Altitude training has often been conducted just before main competition games in many sports. An increase in the frequency of upper respiratory tract infections and gastrointestinal infections due to an altitude-induced suppression of the immune system has been reported after altitude training. Salivary secretory immunoglobulin A (SIgA) is the major immunoglobulin of the mucosal immune system. A suppressive effect of heavy training on SIgA has been reported. However, little is known regarding the effects of repetitive altitude training and hypoxic exposure on SIgA. The objective of this study was to evaluate the changes in SIgA in swimmers undergoing repetitive altitude training at 1,900 m. Methods Nine collegiate swimmers who experienced their first altitude training experience (FT group) were compared to nine swimmers who experienced repetitive training (RT group) and non-training subjects (Con group). Saliva was collected before ascent and eight times every 2 days during altitude training. SIgA levels were measured by enzyme-linked immunosorbent assays. Results Compared to the Con group, SIgA levels and the secretion velocity were decreased after ascent and were slowly restored in both the FT and RT groups. The chronological trends in SIgA levels were similar, even though the decline in SIgA levels in the FT group was larger than that in the RT group. Conclusion Altitude training and experience with altitude training may be one of the factors influencing SIgA.
Collapse
Affiliation(s)
- Koichi Watanabe
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| | - Subrina Jesmin
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| | - Yosuke Murase
- Sports and Physical Education Center, University of Tsukuba, Ibaraki, Japan
| | - Tsuyoshi Takeda
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | - Takahisa Shiraki
- Coaching Course, Department of Athletic Sport, Biwako Seikei Sport College, Shiga, Japan
| | - Yasuo Sengoku
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
54
|
Sutehall S, Muniz-Pardos B, Lima G, Wang G, Malinsky FR, Bosch A, Zelenkova I, Tanisawa K, Pigozzi F, Borrione P, Pitsiladis Y. Altitude Training and Recombinant Human Erythropoietin: Considerations for Doping Detection. Curr Sports Med Rep 2019; 18:97-104. [PMID: 30969231 DOI: 10.1249/jsr.0000000000000577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The benefit of training at altitude to enhance exercise performance remains equivocal although the most widely accepted approach is one where the athletes live and perform lower-intensity running at approximately 2300 m with high-intensity training at approximately 1250 m. The idea is that this method maintains maximal augmentations in total hemoglobin mass while reducing the performance impairment of high-intensity sessions performed at moderate altitude and thus preventing any detraining that can occur when athletes live and train at moderate altitude. This training regimen, however, is not universally accepted and some argue that the performance enhancement is due to placebo and training camp effects. Altitude training may affect an athlete's hematological parameters in ways similar to those observed following blood doping. Current methods of detection appear insufficient to differentiate between altitude training and blood doping making the interpretation of an athlete's biological passport difficult. Further research is required to determine the optimal method for altitude training and to enhance current detection methods to be able to differentiate better blood doping and altitude exposure.
Collapse
Affiliation(s)
- Shaun Sutehall
- Division of Exercise Science and Sports Medicine, University of Cape Town, Cape Town, SOUTH AFRICA
| | - Borja Muniz-Pardos
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, University of Zaragoza, Zaragoza, SPAIN
| | - Giscard Lima
- Collaborating Centre of Sports Medicine, University of Brighton, Eastbourne, UNITED KINGDOM.,Centre for Exercise Science and Sports Medicine, University of Rome "Foro Italico", Rome, ITALY
| | - Guan Wang
- Collaborating Centre of Sports Medicine, University of Brighton, Eastbourne, UNITED KINGDOM
| | | | - Andrew Bosch
- Division of Exercise Science and Sports Medicine, University of Cape Town, Cape Town, SOUTH AFRICA
| | | | - Kumpei Tanisawa
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, JAPAN
| | - Fabio Pigozzi
- Centre for Exercise Science and Sports Medicine, University of Rome "Foro Italico", Rome, ITALY
| | - Paolo Borrione
- Centre for Exercise Science and Sports Medicine, University of Rome "Foro Italico", Rome, ITALY
| | - Yannis Pitsiladis
- Collaborating Centre of Sports Medicine, University of Brighton, Eastbourne, UNITED KINGDOM
| |
Collapse
|
55
|
Training to Compete at Altitude:Natural Altitude or Simulated Live High:Train Low? Int J Sports Physiol Perform 2019; 14:509-517. [PMID: 30300037 DOI: 10.1123/ijspp.2018-0099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE To compare the effects of natural altitude training (NAT) and simulated (SIM) live high:train low altitude training on road-race walking performance (min), as well as treadmill threshold walking speed (km·h-1) at 4 mmol·L-1 and maximal oxygen consumption, at 1380 m. METHODS Twenty-two elite-level male (n = 15) and female (n = 7) race walkers completed 14 d of NAT at 1380 m (n = 7), SIM live high:train low at 3000:600 m (n = 7), or control conditions (600-m altitude; CON, n = 8). All preintervention and postintervention testing procedures were conducted at 1380 m and consisted of an incremental treadmill test, completed prior to a 5 × 2-km road-race walking performance test. Differences between groups were analyzed via mixed-model analysis of variance and magnitude-based inferences, with a substantial change detected with >75% likelihood of exceeding the smallest worthwhile change. RESULTS The improvement in total performance time for the 5 × 2-km test in NAT was not substantially different from SIM but was substantially greater (85% likely) than CON. The improvement in percentage decrement in the 5 × 2-km performance test in NAT was greater than in both SIM (93% likely) and CON (93% likely). The increase in maximal oxygen consumption was substantially greater (91% likely) in NAT than in SIM. Improvement in threshold walking speed was substantially greater than CON for both SIM (91% likely) and NAT (90% likely). CONCLUSIONS Both NAT and SIM may allow athletes to achieve reasonable acclimation prior to competition at low altitude.
Collapse
|
56
|
Abstract
High-level athletes are always looking at ways to maximize training adaptations for competition performance, and using altered environmental conditions to achieve this outcome has become increasingly popular by elite athletes. Furthermore, a series of potential nutrition and hydration interventions may also optimize the adaptation to altered environments. Altitude training was first used to prepare for competition at altitude, and it still is today; however, more often now, elite athletes embark on a series of altitude training camps to try to improve sea-level performance. Similarly, the use of heat acclimation/acclimatization to optimize performance in hot/humid environmental conditions is a common practice by high-level athletes and is well supported in the scientific literature. More recently, the use of heat training to improve exercise capacity in temperate environments has been investigated and appears to have positive outcomes. This consensus statement will detail the use of both heat and altitude training interventions to optimize performance capacities in elite athletes in both normal environmental conditions and extreme conditions (hot and/or high), with a focus on the importance of nutritional strategies required in these extreme environmental conditions to maximize adaptations conducive to competitive performance enhancement.
Collapse
|
57
|
Álvarez-Herms J, Julià-Sánchez S, Corbi F, Odriozola-Martínez A, Burtscher M. Putative Role of Respiratory Muscle Training to Improve Endurance Performance in Hypoxia: A Review. Front Physiol 2019; 9:1970. [PMID: 30697170 PMCID: PMC6341067 DOI: 10.3389/fphys.2018.01970] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/31/2018] [Indexed: 12/22/2022] Open
Abstract
Respiratory/inspiratory muscle training (RMT/IMT) has been proposed to improve the endurance performance of athletes in normoxia. In recent years, due to the increased use of hypoxic training method among athletes, the RMT applicability has also been tested as a method to minimize adverse effects since hyperventilation may cause respiratory muscle fatigue during prolonged exercise in hypoxia. We performed a review in order to determine factors potentially affecting the change in endurance performance in hypoxia after RMT in healthy subjects. A comprehensive search was done in the electronic databases MEDLINE and Google Scholar including keywords: “RMT/IMT,” and/or “endurance performance,” and/or “altitude” and/or “hypoxia.” Seven appropriate studies were found until April 2018. Analysis of the studies showed that two RMT methods were used in the protocols: respiratory muscle endurance (RME) (isocapnic hyperpnea: commonly 10–30′, 3–5 d/week) in three of the seven studies, and respiratory muscle strength (RMS) (Powerbreathe device: commonly 2 × 30 reps at 50% MIP (maximal inspiratory pressure), 5–7 d/week) in the remaining four studies. The duration of the protocols ranged from 4 to 8 weeks, and it was found in synthesis that during exercise in hypoxia, RMT promoted (1) reduced respiratory muscle fatigue, (2) delayed respiratory muscle metaboreflex activation, (3) better maintenance of SaO2 and blood flow to locomotor muscles. In general, no increases of maximal oxygen uptake (VO2max) were described. Ventilatory function improvements (maximal inspiratory pressure) achieved by using RMT fostered the capacity to adapt to hypoxia and minimized the impact of respiratory stress during the acclimatization stage in comparison with placebo/sham. In conclusion, RMT was found to elicit general positive effects mainly on respiratory efficiency and breathing patterns, lower dyspneic perceptions and improved physical performance in conditions of hypoxia. Thus, this method is recommended to be used as a pre-exposure tool for strengthening respiratory muscles and minimizing the adverse effects caused by hypoxia related hyperventilation. Future studies will assess these effects in elite athletes.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Sonia Julià-Sánchez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Francisco Corbi
- National Institute of Physical Education of Catalonia (INEFC) - Lleida Centre, University of Lleida, Lleida, Spain
| | - Adrian Odriozola-Martínez
- Department of Genetics, Anthropology and Physiology, University of the Basque Country (UPV), Campus de Bizkaia, Bilbao, Spain
| | - Martin Burtscher
- Department of Sport Science, University Innsbruck, Innsbruck, Austria
| |
Collapse
|
58
|
Girard O, Brocherie F, Millet GP. Effects of Altitude/Hypoxia on Single- and Multiple-Sprint Performance: A Comprehensive Review. Sports Med 2018; 47:1931-1949. [PMID: 28451905 DOI: 10.1007/s40279-017-0733-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Many sport competitions, typically involving the completion of single- (e.g. track-and-field or track cycling events) and multiple-sprint exercises (e.g. team and racquet sports, cycling races), are staged at terrestrial altitudes ranging from 1000 to 2500 m. Our aim was to comprehensively review the current knowledge on the responses to either acute or chronic altitude exposure relevant to single and multiple sprints. Performance of a single sprint is generally not negatively affected by acute exposure to simulated altitude (i.e. normobaric hypoxia) because an enhanced anaerobic energy release compensates for the reduced aerobic adenosine triphosphate production. Conversely, the reduction in air density in terrestrial altitude (i.e. hypobaric hypoxia) leads to an improved sprinting performance when aerodynamic drag is a limiting factor. With the repetition of maximal efforts, however, repeated-sprint ability is more altered (i.e. with earlier and larger performance decrements) at high altitudes (>3000-3600 m or inspired fraction of oxygen <14.4-13.3%) compared with either normoxia or low-to-moderate altitudes (<3000 m or inspired fraction of oxygen >14.4%). Traditionally, altitude training camps involve chronic exposure to low-to-moderate terrestrial altitudes (<3000 m or inspired fraction of oxygen >14.4%) for inducing haematological adaptations. However, beneficial effects on sprint performance after such altitude interventions are still debated. Recently, innovative 'live low-train high' methods, in isolation or in combination with hypoxic residence, have emerged with the belief that up-regulated non-haematological peripheral adaptations may further improve performance of multiple sprints compared with similar normoxic interventions.
Collapse
Affiliation(s)
- Olivier Girard
- Aspetar Orthopaedic and Sports Medicine Hospital, Athlete Health and Performance Research Centre, Doha, Qatar.
- ISSUL, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), Research Department, French Institute of Sport (INSEP), Paris, France
- ISSUL, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Grégoire P Millet
- ISSUL, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
59
|
Lawler NG, Abbiss CR, Gummer JPA, Broadhurst DI, Govus AD, Fairchild TJ, Thompson KG, Garvican-Lewis LA, Gore CJ, Maker GL, Trengove RD, Peiffer JJ. Characterizing the plasma metabolome during 14 days of live-high, train-low simulated altitude: A metabolomic approach. Exp Physiol 2018; 104:81-92. [PMID: 30311980 DOI: 10.1113/ep087159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023]
Abstract
NEW FINDINGS What is the central question of this study? Does 14 days of live-high, train-low simulated altitude alter an individual's metabolomic/metabolic profile? What is the main finding and its importance? This study demonstrated that ∼200 h of moderate simulated altitude exposure resulted in greater variance in measured metabolites between subject than within subject, which indicates individual variability during the adaptive phase to altitude exposure. In addition, metabolomics results indicate that altitude alters multiple metabolic pathways, and the time course of these pathways is different over 14 days of altitude exposure. These findings support previous literature and provide new information on the acute adaptation response to altitude. ABSTRACT The purpose of this study was to determine the influence of 14 days of normobaric hypoxic simulated altitude exposure at 3000 m on the human plasma metabolomic profile. For 14 days, 10 well-trained endurance runners (six men and four women; 29 ± 7 years of age) lived at 3000 m simulated altitude, accumulating 196.4 ± 25.6 h of hypoxic exposure, and trained at ∼600 m. Resting plasma samples were collected at baseline and on days 3 and 14 of altitude exposure and stored at -80°C. Plasma samples were analysed using liquid chromatography-high-resolution mass spectrometry to construct a metabolite profile of altitude exposure. Mass spectrometry of plasma identified 36 metabolites, of which eight were statistically significant (false discovery rate probability 0.1) from baseline to either day 3 or day 14. Specifically, changes in plasma metabolites relating to amino acid metabolism (tyrosine and proline), glycolysis (adenosine) and purine metabolism (adenosine) were observed during altitude exposure. Principal component canonical variate analysis showed significant discrimination between group means (P < 0.05), with canonical variate 1 describing a non-linear recovery trajectory from baseline to day 3 and then back to baseline by day 14. Conversely, canonical variate 2 described a weaker non-recovery trajectory and increase from baseline to day 3, with a further increase from day 3 to 14. The present study demonstrates that metabolomics can be a useful tool to monitor metabolic changes associated with altitude exposure. Furthermore, it is apparent that altitude exposure alters multiple metabolic pathways, and the time course of these changes is different over 14 days of altitude exposure.
Collapse
Affiliation(s)
- Nathan G Lawler
- School of Psychology and Exercise Science, Murdoch University, Murdoch, WA, Australia.,Separation Science and Metabolomics Laboratory, Murdoch University, Murdoch, WA, Australia.,Centre for Integrative Metabolomics and Computational Biology, School of Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Chris R Abbiss
- Centre for Exercise and Sport Science Research, School of Exercise and Health Science, Edith Cowan University, Joondalup, WA, Australia
| | - Joel P A Gummer
- Separation Science and Metabolomics Laboratory, Murdoch University, Murdoch, WA, Australia.,Metabolomics Australia, Murdoch University Node, Murdoch, WA, Australia
| | - David I Broadhurst
- Centre for Integrative Metabolomics and Computational Biology, School of Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Andrew D Govus
- Department of Rehabilitation, Nutrition and Sport, School of Allied Health, La Trobe University, Melbourne, Victoria, Australia
| | - Timothy J Fairchild
- School of Psychology and Exercise Science, Murdoch University, Murdoch, WA, Australia
| | - Kevin G Thompson
- Research Institute of Sport and Exercise, University of Canberra, Bruce, ACT, Australia
| | - Laura A Garvican-Lewis
- Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia.,Department of Physiology, Australian Institute of Sport, Bruce, ACT, Australia
| | - Christopher J Gore
- Department of Physiology, Australian Institute of Sport, Bruce, ACT, Australia
| | - Garth L Maker
- Separation Science and Metabolomics Laboratory, Murdoch University, Murdoch, WA, Australia.,School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Robert D Trengove
- Separation Science and Metabolomics Laboratory, Murdoch University, Murdoch, WA, Australia.,Metabolomics Australia, Murdoch University Node, Murdoch, WA, Australia
| | - Jeremiah J Peiffer
- School of Psychology and Exercise Science, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
60
|
Burtscher M, Niedermeier M, Burtscher J, Pesta D, Suchy J, Strasser B. Preparation for Endurance Competitions at Altitude: Physiological, Psychological, Dietary and Coaching Aspects. A Narrative Review. Front Physiol 2018; 9:1504. [PMID: 30425646 PMCID: PMC6218926 DOI: 10.3389/fphys.2018.01504] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/05/2018] [Indexed: 01/14/2023] Open
Abstract
It was the Summer Olympic Games 1968 held in Mexico City (2,300 m) that required scientists and coaches to cope with the expected decline of performance in endurance athletes and to establish optimal preparation programs for competing at altitude. From that period until now many different recommendations for altitude acclimatization in advance of an altitude competition were proposed, ranging from several hours to several weeks. Those recommendations are mostly based on the separate consideration of the physiology of acclimatization, psychological issues, performance changes, logistical or individual aspects, but there is no review considering all these aspects in their entirety. Therefore, the present work primarily focusses on the period of altitude sojourn prior to the competition at altitude based on physiological and psychological aspects complemented by nutritional and sports practical considerations.
Collapse
Affiliation(s)
- Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria.,Austrian Society for Alpine and Mountain Medicine, Innsbruck, Austria
| | - Martin Niedermeier
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Johannes Burtscher
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Dominik Pesta
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research, München-Neuherberg, Germany
| | - Jiri Suchy
- Faculty of Physical Education and Sport, Charles University, Prague, Czechia
| | - Barbara Strasser
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany.,Medical School, Sigmund Freud University, Vienna, Austria
| |
Collapse
|
61
|
Sumi D, Kojima C, Kasai N, Goto K. The effects of endurance exercise in hypoxia on acid-base balance and potassium kinetics: a randomized crossover design in male endurance athletes. SPORTS MEDICINE - OPEN 2018; 4:45. [PMID: 30317397 PMCID: PMC6186263 DOI: 10.1186/s40798-018-0160-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/04/2018] [Indexed: 11/25/2022]
Abstract
Background Exercise-induced disturbance of acid-base balance and accumulation of extracellular potassium (K+) are suggested to elicit fatigue. Exercise under hypoxic conditions may augment exercise-induced alterations of these two factors compared with exercise under normoxia. In the present study, we investigated acid-base balance and potassium kinetics in response to exercise under moderate hypoxic conditions in endurance athletes. Methods Nine trained middle-to-long distance athletes [maximal oxygen uptake (VO2max) 57.2 ± 1.0 mL/kg/min] completed two different trials on different days, consisting of exercise in moderate hypoxia [fraction of inspired oxygen (FiO2) = 14.5%, H trial] and exercise in normoxia (FiO2 = 20.9%, N trial). They performed interval endurance exercise (8 × 4 min pedaling at 80% of VO2max alternated with 2-min intervals of active rest at 40% of VO2max) under hypoxic or normoxic conditions. Venous blood samples were obtained to determine blood lactate, pH, bicarbonate ion, and K+ concentrations before exercise, during exercise, and after exercise. Results The blood lactate concentrations increased significantly with exercise in both trials. Exercise-induced blood lactate elevations were significantly greater in the N trial than in the H trial at all time points (P = 0.012). Bicarbonate ion concentrations (P = 0.001) and blood pH (P = 0.019) during exercise and post-exercise periods were significantly lower in the N trial than in the H trial. A significantly greater exercise-induced elevation in blood K+ concentration was produced in the N trial than in the H trial during exercise and immediately after exercise (P = 0.03). Conclusions High-intensity interval exercise on a cycle ergometer under moderate hypoxic conditions did not elicit a decrease in blood pH or elevation in K+ levels compared with an equivalent level of exercise under normoxic conditions.
Collapse
Affiliation(s)
- Daichi Sumi
- Graduate School of Sports and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Chihiro Kojima
- Graduate School of Sports and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Nobukazu Kasai
- Graduate School of Sports and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Kazushige Goto
- Graduate School of Sports and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan. .,Faculty of Sports and Health Science, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
62
|
Brocherie F, Millet GP. "Live High-Train Low" Paradigm: Moving the Debate Forward. Exerc Sport Sci Rev 2018; 46:271. [PMID: 30216292 DOI: 10.1249/jes.0000000000000164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), Research Department, French Institute of Sport (INSEP), Paris, France Institute of Sport Sciences (ISSUL), University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
63
|
Schmitt L, Willis SJ, Coulmy N, Millet GP. Effects of Different Training Intensity Distributions Between Elite Cross-Country Skiers and Nordic-Combined Athletes During Live High-Train Low. Front Physiol 2018; 9:932. [PMID: 30072913 PMCID: PMC6060253 DOI: 10.3389/fphys.2018.00932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/25/2018] [Indexed: 11/22/2022] Open
Abstract
Purpose: To analyze the effects of different training strategies (i.e., mainly intensity distribution) during living high – training low (LHTL) between elite cross-country skiers and Nordic-combined athletes. Methods: 12 cross-country skiers (XC) (7 men, 5 women), and 8 male Nordic combined (NC) of the French national teams were monitored during 15 days of LHTL. The distribution of training at low-intensity (LIT), below the first ventilatory threshold (VT1), was 80% and 55% in XC and NC respectively. Daily, they filled a questionnaire of fatigue, and performed a heart rate variability (HRV) test. Prior (Pre) and immediately after (Post), athletes performed a treadmill incremental running test for determination of V˙O2max and V˙O2 at the second ventilatory threshold (V˙O2V T2), a field roller-skiing test with blood lactate ([La-]) assessment. Results: The training volume was in XC and NC, respectively: at LIT: 45.9 ± 6.4 vs. 23.9 ± 2.8 h (p < 0.001), at moderate intensity: 1.9 ± 0.5 vs. 3.0 ± 0.4 h, (p < 0.001), at high intensity: 1.2 ± 0.9 vs. 1.4 ± 02 h (p = 0.05), in strength (and jump in NC): 7.1 ± 1.5 vs. 18.4 ± 2.7 h, (p < 0.001). Field roller-skiing performance was improved (-2.9 ± 1.6%, p < 0.001) in XC but decreased (4.1 ± 2.6%, p < 0.01) in NC. [La-] was unchanged (-4.1 ± 14.2%, p = 0.3) in XC but decreased (-27.0 ± 11.1%, p < 0.001) in NC. Changes in field roller-skiing performance and in [La-] were correlated (r = -0.77, p < 0.001). V˙O2max increased in both XC and NC (3.7 ± 4.2%, p = 0.01 vs. 3.7 ± 2.2%, p = 0.002) but V˙O2V T2 increased only in XC (7.3 ± 5.8%, p = 0.002). HRV analysis showed differences between XC and NC mainly in high spectral frequency in the supine position (HFSU). All NC skiers showed some signs of overreaching at Post. Conclusion: During LHTL, despite a higher training volume, XC improved specific performance and aerobic capacities, while NC did not. All NC skiers showed fatigue states. These findings suggest that a large amount of LIT with a moderate volume of strength and speed training is required during LHTL in endurance athletes.
Collapse
Affiliation(s)
- Laurent Schmitt
- National School of Mountain Sports/National Ski-Nordic Centre, Premanon, France.,Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Sarah J Willis
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | - Gregoire P Millet
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
64
|
Mourot L. Limitation of Maximal Heart Rate in Hypoxia: Mechanisms and Clinical Importance. Front Physiol 2018; 9:972. [PMID: 30083108 PMCID: PMC6064954 DOI: 10.3389/fphys.2018.00972] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/02/2018] [Indexed: 12/17/2022] Open
Abstract
The use of exercise intervention in hypoxia has grown in popularity amongst patients, with encouraging results compared to similar intervention in normoxia. The prescription of exercise for patients largely rely on heart rate recordings (percentage of maximal heart rate (HRmax) or heart rate reserve). It is known that HRmax decreases with high altitude and the duration of the stay (acclimatization). At an altitude typically chosen for training (2,000-3,500 m) conflicting results have been found. Whether or not this decrease exists or not is of importance since the results of previous studies assessing hypoxic training based on HR may be biased due to improper intensity. By pooling the results of 86 studies, this literature review emphasizes that HRmax decreases progressively with increasing hypoxia. The dose–response is roughly linear and starts at a low altitude, but with large inter-study variabilities. Sex or age does not seem to be a major contributor in the HRmax decline with altitude. Rather, it seems that the greater the reduction in arterial oxygen saturation, the greater the reduction in HRmax, due to an over activity of the parasympathetic nervous system. Only a few studies reported HRmax at sea/low level and altitude with patients. Altogether, due to very different experimental design, it is difficult to draw firm conclusions in these different clinical categories of people. Hence, forthcoming studies in specific groups of patients are required to properly evaluate (1) the HRmax change during acute hypoxia and the contributing factors, and (2) the physiological and clinical effects of exercise training in hypoxia with adequate prescription of exercise training intensity if based on heart rate.
Collapse
Affiliation(s)
- Laurent Mourot
- EA 3920 Prognostic Markers and Regulatory Factors of Cardiovascular Diseases and Exercise Performance, Health, Innovation Platform, University of Franche-Comté, Besançon, France.,Tomsk Polytechnic University, Tomsk, Russia
| |
Collapse
|
65
|
Viscor G, Torrella JR, Corral L, Ricart A, Javierre C, Pages T, Ventura JL. Physiological and Biological Responses to Short-Term Intermittent Hypobaric Hypoxia Exposure: From Sports and Mountain Medicine to New Biomedical Applications. Front Physiol 2018; 9:814. [PMID: 30038574 PMCID: PMC6046402 DOI: 10.3389/fphys.2018.00814] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022] Open
Abstract
In recent years, the altitude acclimatization responses elicited by short-term intermittent exposure to hypoxia have been subject to renewed attention. The main goal of short-term intermittent hypobaric hypoxia exposure programs was originally to improve the aerobic capacity of athletes or to accelerate the altitude acclimatization response in alpinists, since such programs induce an increase in erythrocyte mass. Several model programs of intermittent exposure to hypoxia have presented efficiency with respect to this goal, without any of the inconveniences or negative consequences associated with permanent stays at moderate or high altitudes. Artificial intermittent exposure to normobaric hypoxia systems have seen a rapid rise in popularity among recreational and professional athletes, not only due to their unbeatable cost/efficiency ratio, but also because they help prevent common inconveniences associated with high-altitude stays such as social isolation, nutritional limitations, and other minor health and comfort-related annoyances. Today, intermittent exposure to hypobaric hypoxia is known to elicit other physiological response types in several organs and body systems. These responses range from alterations in the ventilatory pattern to modulation of the mitochondrial function. The central role played by hypoxia-inducible factor (HIF) in activating a signaling molecular cascade after hypoxia exposure is well known. Among these targets, several growth factors that upregulate the capillary bed by inducing angiogenesis and promoting oxidative metabolism merit special attention. Applying intermittent hypobaric hypoxia to promote the action of some molecules, such as angiogenic factors, could improve repair and recovery in many tissue types. This article uses a comprehensive approach to examine data obtained in recent years. We consider evidence collected from different tissues, including myocardial capillarization, skeletal muscle fiber types and fiber size changes induced by intermittent hypoxia exposure, and discuss the evidence that points to beneficial interventions in applied fields such as sport science. Short-term intermittent hypoxia may not only be useful for healthy people, but could also be considered a promising tool to be applied, with due caution, to some pathophysiological states.
Collapse
Affiliation(s)
- Ginés Viscor
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Joan R. Torrella
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Luisa Corral
- Exercise Physiology Unit, Department of Physiological Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Antoni Ricart
- Exercise Physiology Unit, Department of Physiological Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Casimiro Javierre
- Exercise Physiology Unit, Department of Physiological Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Teresa Pages
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Josep L. Ventura
- Exercise Physiology Unit, Department of Physiological Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
66
|
Optimizing Heat Acclimation for Endurance Athletes: High- Versus Low-Intensity Training. Int J Sports Physiol Perform 2018; 13:816-823. [DOI: 10.1123/ijspp.2017-0007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Purpose: To determine the effect of high- versus low-intensity training in the heat and ensuing taper period in the heat on endurance performance. Methods: In total, 19 well-trained triathletes undertook 5 days of normal training and a 1-wk taper including either low- (heat acclimation [HA-L], n = 10) or high-intensity (HA-H, n = 9) training sessions in the heat (30°C, 50% relative humidity). A control group (n = 10) reproduced their usual training in thermoneutral conditions. Indoor 20-km cycling time trials (35°C, 50% relative humidity) were performed before (Pre) and after the main heat exposure (Mid) and after the taper (Post). Results: Power output remained stable in the control group from Pre to Mid (effect size: −0.10 [0.26]) and increased from Mid to Post (0.18 [0.22]). The HA-L group demonstrated a progressive increase in performance from Pre to Mid (0.62 [0.33]) and from Mid to Post (0.53 [0.30]), alongside typical physiological signs of HA (reduced core temperature and heart rate and increased body-mass loss). While the HA-H group presented similar adaptations, increased perceived fatigue and decreased performance at Mid (−0.35 [0.26]) were evidenced and reversed at Post (0.50 [0.20]). No difference in power output was reported at Post between the HA-H and control groups. Conclusion: HA-H can quickly induce functional overreaching in nonacclimatized endurance athletes. As it was associated with a weak subsequent performance supercompensation, coaches and athletes should pay particular attention to training monitoring during a final preparation in the heat and reduce training intensity when early signs of functional overreaching are identified.
Collapse
|
67
|
Turner G, Fudge BW, Pringle JSM, Maxwell NS, Richardson AJ. Altitude training in endurance running: perceptions of elite athletes and support staff. J Sports Sci 2018; 37:163-172. [PMID: 29932816 DOI: 10.1080/02640414.2018.1488383] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This study sought to establish perceptions of elite endurance athletes on the role and worth of altitude training. Elite British endurance runners were surveyed to identify the altitude and hypoxic training methods utilised, along with reasons for use, and any situational, cultural and behaviour factors influencing these. Prior to the 2012 Olympics Games, 39 athletes and 20 support staff (coaches/practitioners) completed an internet-based survey to establish differences between current practices and the accepted "best-practice". Almost all of the athletes (98%) and support staff (95%) surveyed had utilised altitude and hypoxic training, or had advised it to athletes. 75% of athletes believed altitude and hypoxia to be a "very important" factor in their training regime, with 50% of support staff believing the same. Athletes and support staff were in agreement of the methods of altitude training utilised (i.e. 'hypoxic dose' and strategy), with camps lasting 3-4 weeks at 1,500-2,500 m being the most popular. Athletes and support staff are utilising altitude and hypoxic training methods in a manner agreeing with research-based suggestions. The survey identified a number of specific challenges and priorities, which could provide scope to optimise future altitude training methods for endurance performance in these elite groups.
Collapse
Affiliation(s)
- Gareth Turner
- a Centre for Sport and Exercise Science and Medicine (SESAME) , University of Brighton , Eastbourne , UK.,c EIS Performance Centre , Loughborough University , Loughborough , UK
| | - Barry W Fudge
- b National Performance Centre , Loughborough University , Loughborough , UK
| | - Jamie S M Pringle
- c EIS Performance Centre , Loughborough University , Loughborough , UK
| | - Neil S Maxwell
- a Centre for Sport and Exercise Science and Medicine (SESAME) , University of Brighton , Eastbourne , UK
| | - Alan J Richardson
- a Centre for Sport and Exercise Science and Medicine (SESAME) , University of Brighton , Eastbourne , UK
| |
Collapse
|
68
|
An Integrated, Multifactorial Approach to Periodization for Optimal Performance in Individual and Team Sports. Int J Sports Physiol Perform 2018; 13:538-561. [PMID: 29848161 DOI: 10.1123/ijspp.2018-0093] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sports periodization has traditionally focused on the exercise aspect of athletic preparation, while neglecting the integration of other elements that can impact an athlete's readiness for peak competition performances. Integrated periodization allows the coordinated inclusion of multiple training components best suited for a given training phase into an athlete's program. The aim of this article is to review the available evidence underpinning integrated periodization, focusing on exercise training, recovery, nutrition, psychological skills, and skill acquisition as key factors by which athletic preparation can be periodized. The periodization of heat and altitude adaptation, body composition, and physical therapy is also considered. Despite recent criticism, various methods of exercise training periodization can contribute to performance enhancement in a variety of elite individual and team sports, such as soccer. In the latter, both physical and strategic periodization are useful tools for managing the heavy travel schedule, fatigue, and injuries that occur throughout a competitive season. Recovery interventions should be periodized (ie, withheld or emphasized) to influence acute and chronic training adaptation and performance. Nutrient intake and timing in relation to exercise and as part of the periodization of an athlete's training and competition calendar can also promote physiological adaptations and performance capacity. Psychological skills are a central component of athletic performance, and their periodization should cater to each athlete's individual needs and the needs of the team. Skill acquisition can also be integrated into an athlete's periodized training program to make a significant contribution to competition performance.
Collapse
|
69
|
DiPasquale DM. Moving the Debate Forward: Are Normobaric and Hypobaric Hypoxia Interchangeable in the Study of Altitude? Curr Sports Med Rep 2018; 16:68-70. [PMID: 28282350 DOI: 10.1249/jsr.0000000000000337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Dana M DiPasquale
- Biomedical Department, Navy Experimental Diving Unit, Panama City, FL
| |
Collapse
|
70
|
Bejder J, Nordsborg NB. Specificity of “Live High-Train Low” Altitude Training on Exercise Performance. Exerc Sport Sci Rev 2018; 46:129-136. [DOI: 10.1249/jes.0000000000000144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
71
|
Robach P, Hansen J, Pichon A, Meinild Lundby AK, Dandanell S, Slettaløkken Falch G, Hammarström D, Pesta DH, Siebenmann C, Keiser S, Kérivel P, Whist JE, Rønnestad BR, Lundby C. Hypobaric live high-train low does not improve aerobic performance more than live low-train low in cross-country skiers. Scand J Med Sci Sports 2018; 28:1636-1652. [DOI: 10.1111/sms.13075] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2018] [Indexed: 01/16/2023]
Affiliation(s)
- P. Robach
- Ecole Nationale des Sports de Montagne; site de l'Ecole Nationale de Ski et d'Alpinisme; Chamonix France
- HP2, Université Grenoble Alpes; Grenoble France
| | - J. Hansen
- Inland Norway University of Applied Sciences; Lillehammer Norway
| | - A. Pichon
- Laboratory Mobility, Aging & Exercise (MOVE) - EA 6314; Faculty of Sport Sciences; University of Poitiers; Poitiers France
| | - A.-K. Meinild Lundby
- The Centre for Physical Activity Research; University Hospital of Copenhagen; Copenhagen Denmark
| | - S. Dandanell
- Center for Healthy Aging; Department of Biomedical Sciences; XLab; University of Copenhagen; Copenhagen Denmark
- Department for Physiotherapy and Occupational Therapy; Metropolitan University College; Copenhagen Denmark
| | | | - D. Hammarström
- Inland Norway University of Applied Sciences; Lillehammer Norway
| | - D. H. Pesta
- Department of Sport Science; Faculty for Sports Science and Psychology; University of Innsbruck; Innsbruck Austria
- Department of Visceral, Transplant, and Thoracic Surgery; D. Swarovski Research Laboratory; Medical University of Innsbruck; Innsbruck Austria
| | - C. Siebenmann
- The Centre for Physical Activity Research; University Hospital of Copenhagen; Copenhagen Denmark
| | - S. Keiser
- Institute of Physiology; University of Zürich; Zürich Switzerland
| | - P. Kérivel
- Ecole Nationale des Sports de Montagne; site de l'Ecole Nationale de Ski et d'Alpinisme; Chamonix France
| | - J. E. Whist
- Innlandet Hospital Trust; Lillehammer Norway
| | - B. R. Rønnestad
- Inland Norway University of Applied Sciences; Lillehammer Norway
| | - C. Lundby
- The Centre for Physical Activity Research; University Hospital of Copenhagen; Copenhagen Denmark
| |
Collapse
|
72
|
Sotiridis A, Debevec T, Mekjavić IB. Letter to the Editor: Combined effects of hypoxia and heat: importance of hypoxic dose. Am J Physiol Regul Integr Comp Physiol 2018; 314:R228-R229. [PMID: 29388459 DOI: 10.1152/ajpregu.00347.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Alexandros Sotiridis
- Department of Automation, Biocybernetics and Robotics, "Jozef Stefan" Institute , Ljubljana , Slovenia
| | - Tadej Debevec
- Department of Automation, Biocybernetics and Robotics, "Jozef Stefan" Institute , Ljubljana , Slovenia
| | - Igor B Mekjavić
- Department of Automation, Biocybernetics and Robotics, "Jozef Stefan" Institute , Ljubljana , Slovenia.,Department of Biomedical Physiology and Kinesiology, Simon Fraser University, British Columbia, Canada
| |
Collapse
|
73
|
Botek M, Krejčí J, McKune A. Sex Differences in Autonomic Cardiac Control and Oxygen Saturation Response to Short-Term Normobaric Hypoxia and Following Recovery: Effect of Aerobic Fitness. Front Endocrinol (Lausanne) 2018; 9:697. [PMID: 30532736 PMCID: PMC6265316 DOI: 10.3389/fendo.2018.00697] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/05/2018] [Indexed: 01/06/2023] Open
Abstract
Introduction: The main aims of this study were to investigate autonomic nervous system (ANS) and arterial oxygen saturation (SpO2) responses to simulated altitude in males and females, and to determine the association between maximal oxygen uptake (VO2max) and these responses. Materials and Methods: Heart rate variability (HRV) and SpO2 were monitored in a resting supine position during Preliminary (6 min normoxia), Hypoxia (10 min, fraction of inspired oxygen (FiO2) of 9.6%, simulated altitude ~6,200 m) and Recovery (6 min normoxia) phases in 28 males (age 23.7 ± 1.7 years, normoxic VO2max 59.0 ± 7.8 ml.kg-1.min-1, body mass index (BMI) 24.2 ± 2.1 kg.m-2) and 30 females (age 23.8 ± 1.8 years, VO2max 45.1 ± 8.7 ml.kg-1.min-1, BMI 21.8 ± 3.0 kg.m-2). Spectral analysis of HRV quantified the ANS activity by means of low frequency (LF, 0.05-0.15 Hz) and high frequency (HF, 0.15-0.50 Hz) power, transformed by natural logarithm (Ln). Time domain analysis incorporated the square root of the mean of the squares of the successive differences (rMSSD). Results: There were no significant differences in SpO2 level during hypoxia between the males (71.9 ± 7.5%) and females (70.8 ± 7.1%). Vagally-related HRV variables (Ln HF and Ln rMSSD) exhibited no significant differences between sexes across each phase. However, while the sexes demonstrated similar Ln LF/HF values during the Preliminary phase, the males (0.5 ± 1.3) had a relatively higher (p = 0.001) sympathetic activity compared to females (-0.6 ± 1.4) during the Hypoxia phase. Oxygen desaturation during resting hypoxia was significantly correlated with VO2max in males (r = -0.45, p = 0.017) but not in females (r = 0.01, p = 0.952) and difference between regression lines were significant (p = 0.024). Conclusions: Despite similar oxygen desaturation levels, males exhibited a relatively higher sympathetic responses to hypoxia exposure compared with females. In addition, the SpO2 response to resting hypoxia exposure was related to maximal aerobic capacity in males but not females.
Collapse
Affiliation(s)
- Michal Botek
- Department of Natural Sciences in Kinanthropology, Faculty of Physical Culture, Palacký University Olomouc, Olomouc, Czechia
| | - Jakub Krejčí
- Department of Natural Sciences in Kinanthropology, Faculty of Physical Culture, Palacký University Olomouc, Olomouc, Czechia
- *Correspondence: Jakub Krejčí
| | - Andrew McKune
- Discipline of Sport and Exercise Science, School of Rehabilitation and Exercise Sciences, Research Institute for Sport and Exercise Science, University of Canberra, Canberra, ACT, Australia
- Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
74
|
Live high–train low guided by daily heart rate variability in elite Nordic-skiers. Eur J Appl Physiol 2017; 118:419-428. [DOI: 10.1007/s00421-017-3784-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/05/2017] [Indexed: 11/26/2022]
|
75
|
Millet GP, Chapman RF, Girard O, Brocherie F. Is live high -train low altitude training relevant for elite athletes? Flawed analysis from inaccurate data. Br J Sports Med 2017; 53:923-925. [PMID: 29247024 DOI: 10.1136/bjsports-2017-098083] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2017] [Indexed: 11/04/2022]
Affiliation(s)
- Gregoire P Millet
- Institute of Sport Sciences, Faculty of Biology and Medicine, ISSUL, University of Lausanne, Lausanne, Switzerland
| | - Robert F Chapman
- Department of Kinesiology, HH Morris Human Performance Laboratory, Indiana University, Bloomington, Indiana, USA
| | - Olivier Girard
- Aspetar Orthopaedic and Sports Medicine Hospital, Athlete Health and Performance Research Centre, Doha, Qatar
| | - Franck Brocherie
- Research Department, Laboratory Sport, Expertise and Performance, French Institute of Sport (INSEP), Paris, France
| |
Collapse
|
76
|
Wonnabussapawich P, Hamlin MJ, Lizamore CA, Manimmanakorn N, Leelayuwat N, Tunkamnerdthai O, Thuwakum W, Manimmanakorn A. Living and Training at 825 m for 8 Weeks Supplemented With Intermittent Hypoxic Training at 3,000 m Improves Blood Parameters and Running Performance. J Strength Cond Res 2017; 31:3287-3294. [DOI: 10.1519/jsc.0000000000002227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
77
|
Hauser A, Troesch S, Steiner T, Brocherie F, Girard O, Saugy JJ, Schmitt L, Millet GP, Wehrlin JP. Do male athletes with already high initial haemoglobin mass benefit from 'live high-train low' altitude training? Exp Physiol 2017; 103:68-76. [PMID: 29024137 DOI: 10.1113/ep086590] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/09/2017] [Indexed: 01/19/2023]
Abstract
NEW FINDINGS What is the central question of this study? It has been assumed that athletes embarking on an 'live high-train low' (LHTL) camp with already high initial haemoglobin mass (Hbmass ) have a limited ability to increase their Hbmass further post-intervention. Therefore, the relationship between initial Hbmass and post-intervention increase was tested with duplicate Hbmass measures and comparable hypoxic doses in male athletes. What is the main finding and its importance? There were trivial to moderate inverse relationships between initial Hbmass and percentage Hbmass increase in endurance and team-sport athletes after the LHTL camp, indicating that even athletes with higher initial Hbmass can reasonably expect Hbmass gains post-LHTL. It has been proposed that athletes with high initial values of haemoglobin mass (Hbmass ) will have a smaller Hbmass increase in response to 'live high-train low' (LHTL) altitude training. To verify this assumption, the relationship between initial absolute and relative Hbmass values and their respective Hbmass increase following LHTL in male endurance and team-sport athletes was investigated. Overall, 58 male athletes (35 well-trained endurance athletes and 23 elite male field hockey players) undertook an LHTL training camp with similar hypoxic doses (200-230 h). The Hbmass was measured in duplicate pre- and post-LHTL by the carbon monoxide rebreathing method. Although there was no relationship (r = 0.02, P = 0.91) between initial absolute Hbmass (in grams) and the percentage increase in absolute Hbmass , a moderate relationship (r = -0.31, P = 0.02) between initial relative Hbmass (in grams per kilogram) and the percentage increase in relative Hbmass was detected. Mean absolute and relative Hbmass increased to a similar extent (P ≥ 0.81) in endurance (from 916 ± 88 to 951 ± 96 g, +3.8%, P < 0.001 and from 13.1 ± 1.2 to 13.6 ± 1.1 g kg-1 , +4.1%, P < 0.001, respectively) and team-sport athletes (from 920 ± 120 to 957 ± 127 g, +4.0%, P < 0.001 and from 11.9 ± 0.9 to 12.3 ± 0.9 g kg-1 , +4.0%, P < 0.001, respectively) after LHTL. The direct comparison study using individual data of male endurance and team-sport athletes and strict methodological control (duplicate Hbmass measures and matched hypoxic dose) indicated that even athletes with higher initial Hbmass can reasonably expect Hbmass gain post-LHTL.
Collapse
Affiliation(s)
- Anna Hauser
- Swiss Federal Institute of Sport, Section for Elite Sport, Magglingen, Switzerland.,Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Severin Troesch
- Swiss Federal Institute of Sport, Section for Elite Sport, Magglingen, Switzerland
| | - Thomas Steiner
- Swiss Federal Institute of Sport, Section for Elite Sport, Magglingen, Switzerland
| | - Franck Brocherie
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Switzerland.,Institut National du Sport de l'Expertise et de la Performance, Paris, France
| | - Olivier Girard
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Switzerland.,Aspetar, Orthopaedic and Sports Medicine Hospital, Athlete Health and Performance Research Centre, Doha, Qatar
| | - Jonas J Saugy
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Laurent Schmitt
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Switzerland.,National School of Mountain Sports/National Ski-Nordic Centre, Prémanon, France
| | - Grégoire P Millet
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Jon P Wehrlin
- Swiss Federal Institute of Sport, Section for Elite Sport, Magglingen, Switzerland
| |
Collapse
|
78
|
McCleave EL, Slattery KM, Duffield R, Saunders PU, Sharma AP, Crowcroft SJ, Coutts AJ. Temperate Performance Benefits after Heat, but Not Combined Heat and Hypoxic Training. Med Sci Sports Exerc 2017; 49:509-517. [PMID: 27787334 DOI: 10.1249/mss.0000000000001138] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Independent heat and hypoxic exposure can enhance temperate endurance performance in trained athletes, although their combined effects remain unknown. This study examined whether the addition of heat interval training during "live high, train low" (LHTL) hypoxic exposure would result in enhanced performance and physiological adaptations as compared with heat or temperate training. METHODS Twenty-six well-trained runners completed 3 wk of interval training assigned to one of three conditions: 1) LHTL hypoxic exposure plus heat training (H + H; 3000 m for 13 h·d, train at 33°C, 60% relative humidity [RH]), 2) heat training with no hypoxic exposure (HOT, live at <600 m and train at 33°C, 60% RH), or 3) temperate training with no hypoxic exposure (CONT; live at <600 m and train at 14°C, 55% RH). Performance 3-km time-trials (3-km TT), running economy, hemoglobin mass, and plasma volume were assessed using magnitude-based inferences statistical approach before (Baseline), after (Post), and 3 wk (3wkP) after exposure. RESULTS Compared with Baseline, 3-km TT performance was likely increased in HOT at 3wkP (-3.3% ± 1.3%; mean ± 90% confidence interval), with no performance improvement in either H + H or CONT. Hemoglobin mass increased by 3.8% ± 1.8% at Post in H + H only. Plasma volume in HOT was possibly elevated above H + H and CONT at Post but not at 3wkP. Correlations between changes in 3-km TT performance and physiological adaptations were unclear. CONCLUSION Incorporating heat-based training into a 3-wk training block can improve temperate performance at 3 wk after exposure, with athlete psychology, physiology, and environmental dose all important considerations. Despite hematological adaptations, the addition of LHTL to heat interval training has no greater 3-km TT performance benefit than temperate training alone.
Collapse
Affiliation(s)
- Erin L McCleave
- 1Sport and Exercise Science Discipline Group, Faculty of Health, University of Technology Sydney (UTS), Moore Park, AUSTRALIA; 2New South Wales Institute of Sport (NSWIS), Sydney Olympic Park, AUSTRALIA; 3Department of Physiology, Australian Institute of Sport (AIS), Canberra, AUSTRALIA; and 4University of Canberra Research Institute for Sport and Exercise (UCRISE), Canberra, AUSTRALIA
| | | | | | | | | | | | | |
Collapse
|
79
|
Comparison of the effect of intermittent hypoxic training vs. the live high, train low strategy on aerobic capacity and sports performance in cyclists in normoxia. Biol Sport 2017; 35:39-48. [PMID: 30237660 PMCID: PMC6135973 DOI: 10.5114/biolsport.2018.70750] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/16/2017] [Accepted: 06/16/2017] [Indexed: 11/17/2022] Open
Abstract
The aim of the study was to compare the effect of intermittent hypoxic training (IHT) and the live high, train low strategy on aerobic capacity and sports performance in off-road cyclists in normoxia. Thirty off-road cyclists were randomized to three groups and subjected to 4-week training routines. The participants from the first experimental group were exposed to normobaric hypoxia conditions (FiO2 = 16.3%) at rest and during sleep (G-LH-TL; n=10; age: 20.5 ± 2.9 years; body height 1.81 ± 0.04 m; body mass: 69.6 ± 3.9 kg). Training in this group was performed under normoxic conditions. In the second experimental group, study participants followed an intermittent hypoxic training (IHT, three sessions per week, FiO2 = 16.3%) routine (G-IHT; n=10; age: 20.7 ± 3.1 years; body height 1.78 ± 0.05 m; body mass: 67.5 ± 5.6 kg). Exercise intensity was adjusted based on the lactate threshold (LT) load determined in hypoxia. The control group lived and trained under normoxic conditions (G-C; n=10; age: 21.8 ± 4.0 years; body height 1.78 ± 0.03 m; body mass: 68.1 ± 4.7 kg; body fat content: 8.4 ± 2.4%). The evaluations included two research series (S1, S2). Between S1 and S2, athletes from all groups followed a similar training programme for 4 weeks. In each research series a graded ergocycle test was performed in order to measure VO2max and determine the LT and a simulated 30 km individual time trial. Significant (p<0.05) improvements in VO2max, VO2LT, WRmax and WRLT were observed in the G-IHT (by 3.5%, 9.1%, 6.7% and 7.7% respectively) and G-LH-TL groups (by 4.8%, 6.7%, 5.9% and 4.8% respectively). Sports performance (TT) was also improved (p<0.01) in both groups by 3.6% in G-LH-TL and 2.5% in G-IHT. Significant changes (p<0.05) in serum EPO levels and haematological variables (increases in RBC, HGB, HCT and reticulocyte percentage) were observed only in G-LH-TL. Normobaric hypoxia has been demonstrated to be an effective ergogenic aid that can enhance the exercise capacity of cyclists in normoxia. Both LH-TL and IHT lead to improvements in aerobic capacity. The adaptations induced by both approaches are likely to be caused by different mechanisms. The evaluations included two research series (S1, S2). Between S1 and S2, athletes from all groups followed a similar training programme for 4 weeks. In each research series a graded ergocycle exercise test was performed in order to measure VO2max and determine the lactate threshold as well as a simulated 30 km individual time trial.
Collapse
|
80
|
Rendell RA, Prout J, Costello JT, Massey HC, Tipton MJ, Young JS, Corbett J. Effects of 10 days of separate heat and hypoxic exposure on heat acclimation and temperate exercise performance. Am J Physiol Regul Integr Comp Physiol 2017; 313:R191-R201. [DOI: 10.1152/ajpregu.00103.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/31/2017] [Accepted: 06/05/2017] [Indexed: 11/22/2022]
Abstract
Adaptations to heat and hypoxia are typically studied in isolation but are often encountered in combination. Whether the adaptive response to multiple stressors affords the same response as when examined in isolation is unclear. We examined 1) the influence of overnight moderate normobaric hypoxia on the time course and magnitude of adaptation to daily heat exposure and 2) whether heat acclimation (HA) was ergogenic and whether this was influenced by an additional hypoxic stimulus. Eight males [V̇o2max = 58.5 (8.3) ml·kg−1·min−1] undertook two 11-day HA programs (balanced-crossover design), once with overnight normobaric hypoxia (HAHyp): 8 (1) h per night for 10 nights [[Formula: see text] = 0.156; SpO2 = 91 (2)%] and once without (HACon). Days 1, 6, and 11 were exercise-heat stress tests [HST (40°C, 50% relative humidity, RH)]; days 2–5 and 7–10 were isothermal strain [target rectal temperature (Tre) ~38.5°C], exercise-heat sessions. A graded exercise test and 30-min cycle trial were undertaken pre-, post-, and 14 days after HA in temperate normoxia (22°C, 55% RH; FIO2 = 0.209). HA was evident on day 6 (e.g., reduced Tre, mean skin temperature (T̄sk), heart rate, and sweat [Na+], P < 0.05) with additional adaptations on day 11 (further reduced T̄sk and heart rate). HA increased plasma volume [+5.9 (7.3)%] and erythropoietin concentration [+1.8 (2.4) mIU/ml]; total hemoglobin mass was unchanged. Peak power output [+12 (20) W], lactate threshold [+15 (18) W] and work done [+12 (20) kJ] increased following HA. The additional hypoxic stressor did not affect these adaptations. In conclusion, a separate moderate overnight normobaric hypoxic stimulus does not affect the time course or magnitude of HA. Performance may be improved in temperate normoxia following HA, but this is unaffected by an additional hypoxic stressor.
Collapse
Affiliation(s)
- Rebecca A. Rendell
- Department of Sport and Exercise Science, Faculty of Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Jamie Prout
- School of Physical Education, Sport and Exercise Science, Division of Sciences, University of Otago, Dunedin, New Zealand; and
| | - Joseph T. Costello
- Department of Sport and Exercise Science, Faculty of Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Heather C. Massey
- Department of Sport and Exercise Science, Faculty of Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Michael J. Tipton
- Department of Sport and Exercise Science, Faculty of Science, University of Portsmouth, Portsmouth, United Kingdom
| | - John S. Young
- School of Pharmacy and Biomedical Science, Faculty of Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Jo Corbett
- Department of Sport and Exercise Science, Faculty of Science, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
81
|
Czuba M, Wilk R, Karpiński J, Chalimoniuk M, Zajac A, Langfort J. Intermittent hypoxic training improves anaerobic performance in competitive swimmers when implemented into a direct competition mesocycle. PLoS One 2017; 12:e0180380. [PMID: 28763443 PMCID: PMC5538675 DOI: 10.1371/journal.pone.0180380] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/14/2017] [Indexed: 11/18/2022] Open
Abstract
The main objective of this research was to evaluate the efficacy of intermittent hypoxic training (IHT) on anaerobic and aerobic capacity and swimming performance in well-trained swimmers. Sixteen male swimmers were randomly divided into a hypoxia (H) group (n = 8), which trained in a normobaric hypoxia environment, and a control (C) group (n = 8), which exercised under normoxic conditions. However, one participant left the study without explanation. During the experiment group H trained on land twice per week in simulated hypoxia (FiO2 = 15.5%, corresponding to 2,500 m a.s.l); however, they conducted swim training in normoxic conditions. Group C performed the same training program under normoxic conditions. The training program included four weekly microcyles, followed by three days of recovery. During practice sessions on land, the swimmers performed 30 second sprints on an arm-ergometer, alternating with two minute high intensity intervals on a lower limb cycle ergometer. The results showed that the training on land caused a significant (p<0.05) increase in absolute maximal workload (WRmax) by 7.4% in group H and by 3.2% in group C and relative values of VO2max by 6.9% in group H and 3.7% in group C. However, absolute values of VO2max were not significantly changed. Additionally, a significant (p<0.05) increase in mean power (Pmean) during the first (11.7%) and second (11.9%) Wingate tests was only observed in group H. The delta values of lactate concentration (ΔLA) after both Wingate tests were significantly (p<0.05) higher in comparison to baseline levels by 28.8% in group H. Opposite changes were observed in delta values of blood pH (ΔpH) after both Wingate tests in group H, with a significant decrease in values of ΔpH by 33.3%. The IHT caused a significant (p<0.05) improvement in 100m and 200m swimming performance, by 2.1% and 1.8%, respectively in group H. Training in normoxia (group C), resulted in a significant (p<0.05) improvement of swimming performance at 100m and 200m, by 1.1% and 0.8%, respectively. In conclusion, the most important finding of this study includes a significant improvement in anaerobic capacity and swimming performance after high-intensity IHT. However, this training protocol had no effect on absolute values of VO2max and hematological variables.
Collapse
Affiliation(s)
- Miłosz Czuba
- Department of Sports Training, the Jerzy Kukuczka Academy of Physical Education in Katowice, Faculty of Physical Education, Katowice, Poland
- * E-mail:
| | - Robert Wilk
- Department of Swimming, the Jerzy Kukuczka Academy of Physical Education in Katowice, Faculty of Physical Education, Katowice, Poland
| | - Jakub Karpiński
- Department of Swimming, the Jerzy Kukuczka Academy of Physical Education in Katowice, Faculty of Physical Education, Katowice, Poland
| | - Małgorzata Chalimoniuk
- Department of Tourism and Health in Biala Podlaska, Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Adam Zajac
- Department of Sports Training, the Jerzy Kukuczka Academy of Physical Education in Katowice, Faculty of Physical Education, Katowice, Poland
| | - Józef Langfort
- Department of Sports Training, the Jerzy Kukuczka Academy of Physical Education in Katowice, Faculty of Physical Education, Katowice, Poland
| |
Collapse
|
82
|
Hauser A, Troesch S, Saugy JJ, Schmitt L, Cejuela-Anta R, Faiss R, Steiner T, Robinson N, Millet GP, Wehrlin JP. Individual hemoglobin mass response to normobaric and hypobaric "live high-train low": A one-year crossover study. J Appl Physiol (1985) 2017; 123:387-393. [PMID: 28522767 DOI: 10.1152/japplphysiol.00932.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 11/22/2022] Open
Abstract
The purpose of this research was to compare individual hemoglobin mass (Hbmass) changes following a live high-train low (LHTL) altitude training camp under either normobaric hypoxia (NH) or hypobaric hypoxia (HH) conditions in endurance athletes. In a crossover design with a one-year washout, 15 male triathletes randomly performed two 18-day LHTL training camps in either HH or NH. All athletes slept at 2,250 meters and trained at altitudes <1,200 meters. Hbmass was measured in duplicate with the optimized carbon monoxide rebreathing method before (pre) and immediately after (post) each 18-day training camp. Hbmass increased similarly in HH (916-957 g, 4.5 ± 2.2%, P < 0.001) and in NH (918-953 g, 3.8 ± 2.6%, P < 0.001). Hbmass changes did not differ between HH and NH (P = 0.42). There was substantial interindividual variability among subjects to both interventions (i.e., individual responsiveness or the individual variation in the response to an intervention free of technical noise): 0.9% in HH and 1.7% in NH. However, a correlation between intraindividual ΔHbmass changes (%) in HH and in NH (r = 0.52, P = 0.048) was observed. HH and NH evoked similar mean Hbmass increases following LHTL. Among the mean Hbmass changes, there was a notable variation in individual Hbmass response that tended to be reproducible.NEW & NOTEWORTHY This is the first study to compare individual hemoglobin mass (Hbmass) response to normobaric and hypobaric live high-train low using a same-subject crossover design. The main findings indicate that hypobaric and normobaric hypoxia evoked a similar mean increase in Hbmass following 18 days of live high-train low. Notable variability and reproducibility in individual Hbmass responses between athletes was observed, indicating the importance of evaluating individual Hbmass response to altitude training.
Collapse
Affiliation(s)
- Anna Hauser
- Swiss Federal Institute of Sport, Section for Elite Sport, Magglingen, Switzerland; .,Faculty of Biology and Medicine, Department of Physiology, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Severin Troesch
- Swiss Federal Institute of Sport, Section for Elite Sport, Magglingen, Switzerland
| | - Jonas J Saugy
- Faculty of Biology and Medicine, Department of Physiology, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Laurent Schmitt
- National School of Mountain Sports/National Ski-Nordic Centre, Prémanon, France
| | - Roberto Cejuela-Anta
- Departmental Section of Physical Education and Sports, University of Alicante, Alicante, Spain; and
| | - Raphael Faiss
- Faculty of Biology and Medicine, Department of Physiology, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Thomas Steiner
- Swiss Federal Institute of Sport, Section for Elite Sport, Magglingen, Switzerland
| | - Neil Robinson
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Geneva & Lausanne, Center Hospitalier Universitaire Vaudois & University of Lausanne, Lausanne, Switzerland
| | - Grégoire P Millet
- Faculty of Biology and Medicine, Department of Physiology, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Jon P Wehrlin
- Swiss Federal Institute of Sport, Section for Elite Sport, Magglingen, Switzerland
| |
Collapse
|
83
|
Constantini K, Wilhite DP, Chapman RF. A Clinician Guide to Altitude Training for Optimal Endurance Exercise Performance at Sea Level. High Alt Med Biol 2017; 18:93-101. [PMID: 28453305 DOI: 10.1089/ham.2017.0020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Constantini, Keren, Daniel P. Wilhite, and Robert F. Chapman. A clinician guide to altitude training for optimal endurance exercise performance at sea level. High Alt Med Biol. 18:93-101, 2017.-For well over 50 years, endurance athletes have been utilizing altitude training in an effort to enhance performance in sea level competition. This brief review will offer the clinician a series of evidence-based best-practice guidelines on prealtitude and altitude training considerations, which can ultimately maximize performance improvement outcomes.
Collapse
Affiliation(s)
- Keren Constantini
- HH Morris Human Performance Laboratory, Department of Kinesiology, Indiana University , Bloomington, Indiana
| | - Daniel P Wilhite
- HH Morris Human Performance Laboratory, Department of Kinesiology, Indiana University , Bloomington, Indiana
| | - Robert F Chapman
- HH Morris Human Performance Laboratory, Department of Kinesiology, Indiana University , Bloomington, Indiana
| |
Collapse
|
84
|
Endurance, aerobic high-intensity, and repeated sprint cycling performance is unaffected by normobaric “Live High-Train Low”: a double-blind placebo-controlled cross-over study. Eur J Appl Physiol 2017; 117:979-988. [DOI: 10.1007/s00421-017-3586-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 03/08/2017] [Indexed: 10/19/2022]
|
85
|
Feriche B, García-Ramos A, Morales-Artacho AJ, Padial P. Resistance Training Using Different Hypoxic Training Strategies: a Basis for Hypertrophy and Muscle Power Development. SPORTS MEDICINE-OPEN 2017; 3:12. [PMID: 28315193 PMCID: PMC5357242 DOI: 10.1186/s40798-017-0078-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/23/2017] [Indexed: 12/14/2022]
Abstract
The possible muscular strength, hypertrophy, and muscle power benefits of resistance training under environmental conditions of hypoxia are currently being investigated.Nowadays, resistance training in hypoxia constitutes a promising new training strategy for strength and muscle gains. The main mechanisms responsible for these effects seem to be related to increased metabolite accumulation due to hypoxia. However, no data are reported in the literature to describe and compare the efficacy of the different hypertrophic resistance training strategies in hypoxia.Moreover, improvements in sprinting, jumping, or throwing performance have also been described at terrestrial altitude, encouraging research into the speed of explosive movements at altitude. It has been suggested that the reduction in the aerodynamic resistance and/or the increase in the anaerobic metabolism at higher altitudes can influence the metabolic cost, increase the take-off velocities, or improve the motor unit recruitment patterns, which may explain these improvements. Despite these findings, the applicability of altitude conditions in improving muscle power by resistance training remains to be clarified.This review examines current knowledge regarding resistance training in different types of hypoxia, focusing on strategies designed to improve muscle hypertrophy as well as power for explosive movements.
Collapse
Affiliation(s)
- Belén Feriche
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Crta Alfacar sn, 18011, Granada, Spain.
| | - Amador García-Ramos
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Crta Alfacar sn, 18011, Granada, Spain
| | - Antonio J Morales-Artacho
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Crta Alfacar sn, 18011, Granada, Spain
| | - Paulino Padial
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Crta Alfacar sn, 18011, Granada, Spain
| |
Collapse
|
86
|
Gollan S, Chalmers S, Alderton S, Norton K. Supplemental intermittent-day heat training and the lactate threshold. J Therm Biol 2017; 65:16-20. [PMID: 28343570 DOI: 10.1016/j.jtherbio.2017.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 10/20/2022]
Abstract
Heat acclimation over consecutive days has been shown to improve aerobic-based performance. Recently, it has been suggested that heat training can improve performance in a temperate environment. However, due to the multifactorial training demands of athletes, consecutive-day heat training may not be suitable. The current study aimed to investigate the effect of brief (8×30min) intermittent (every 3-4 days) supplemental heat training on the second lactate threshold point (LT2) in temperate and hot conditions. 21 participants undertook eight intermittent-day mixed-intensity treadmill exercise training sessions in hot (30°C; 50% relative humidity [RH]) or temperate (18°C; 30% RH) conditions. A pre- and post-incremental exercise test occurred in temperate (18°C; 30% RH) and hot conditions (30°C; 50% RH) to determine the change in LT2. The heat training protocol did not improve LT2 in temperate (Effect Size [ES]±90 confidence interval=0.10±0.16) or hot (ES=0.26±0.26) conditions. The primary finding was that although the intervention group had a change greater than the SWC, no statistically significant improvements were observed following an intermittent eight day supplemental heat training protocol comparable to a control group training only in temperate conditions. This is likely due to the brief length of each heat training session and/or the long duration between each heat exposure.
Collapse
Affiliation(s)
- Stuart Gollan
- Alliance for Research in Exercise, Nutrition, and Activity (ARENA), Sansom Institute for Health Research, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia.
| | - Samuel Chalmers
- Alliance for Research in Exercise, Nutrition, and Activity (ARENA), Sansom Institute for Health Research, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia; Sport and Exercise Science, School of Science and Health, Western Sydney University, Australia
| | - Stephen Alderton
- Alliance for Research in Exercise, Nutrition, and Activity (ARENA), Sansom Institute for Health Research, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
| | - Kevin Norton
- Alliance for Research in Exercise, Nutrition, and Activity (ARENA), Sansom Institute for Health Research, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
| |
Collapse
|
87
|
Nakamoto FP, Ivamoto RK, Andrade MDS, de Lira CAB, Silva BM, da Silva AC. Effect of Intermittent Hypoxic Training Followed by Intermittent Hypoxic Exposure on Aerobic Capacity of Long Distance Runners. J Strength Cond Res 2016; 30:1708-20. [PMID: 26562716 DOI: 10.1519/jsc.0000000000001258] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Effects of intermittent hypoxic training (IHT) are still controversial and detraining effects remain uninvestigated. Therefore, we investigated (a) whether IHT improves aerobic capacity; (b) whether aerobic detraining occurs post-IHT; and (c) whether intermittent hypoxic exposure (IHE) at rest reduces a possible aerobic detraining post-IHT. Twenty eight runners (21 men/7 women; 36 ± 2 years; maximal oxygen uptake [V[Combining Dot Above]O2max] 55.4 ± 1.3 ml·kg·min) participated in a single-blinded placebo-controlled trial. Twice a week, 1 group performed 6 weeks of IHT (n = 11), followed by 4 weeks of IHE (n = 11) at rest (IHT+IHE group). Another group performed 6 weeks of IHT (n = 10), followed by 4 weeks of normoxic exposure (NE, n = 9) at rest (IHT+NE group). A control group performed 6 weeks of normoxic training (NT, n = 7), followed by 4 weeks of NE (n = 6) at rest (NT+NE group). Hematological and submaximal/maximal aerobic measurements were conducted in normoxia at pretraining, posttraining, and postexposure. Hemoglobin concentration did not change, but lactate threshold and running economy improved in all groups at posttraining (p ≤ 0.05 vs. pretraining). Ventilatory threshold, respiratory compensation point, and V[Combining Dot Above]O2max increased after IHT (IHT+IHE group: 7.3, 5.4, and 9.2%, respectively; IHT+NE group: 10.7, 7.5, and 4.8%; p ≤ 0.05 vs. pretraining), but not after NT (-1.1, -1.0, and -3.8%; p > 0.05 vs. pretraining). Such IHT-induced adaptations were maintained at postexposure (p > 0.05 vs. postexposure). In conclusion, IHT induced further aerobic improvements than NT. These additional IHT adaptations were maintained for 4 weeks post-IHT, regardless of IHE.
Collapse
Affiliation(s)
- Fernanda P Nakamoto
- 1Graduate Program in Pharmacology, Federal University of São Paulo, São Paulo, Brazil; 2Olympic Center of Training and Research, São Paulo City Hall, São Paulo, Brazil; 3Department of Physiology, Federal University of São Paulo, São Paulo, Brazil; and 4Section of Human and Exercise Physiology, Faculty of Physical Education and Dance, Federal University of Goiás, Goiânia, Brazil
| | | | | | | | | | | |
Collapse
|
88
|
Kilding AE, Dobson BP, Ikeda E. Effects of Acutely Intermittent Hypoxic Exposure on Running Economy and Physical Performance in Basketball Players. J Strength Cond Res 2016; 30:2033-42. [PMID: 26677826 DOI: 10.1519/jsc.0000000000001301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Kilding, AE, Dobson, BP, and Ikeda, E. Effects of acutely intermittent hypoxic exposure on running economy and physical performance in basketball players. J Strength Cond Res 30(7): 2033-2042, 2016-The aim of this study was to determine the effect of short duration intermittent hypoxic exposure (IHE) on physical performance in basketball players. Using a single-blind placebo-controlled group design, 14 trained basketball players were subjected to 15 days of passive short duration IHE (n = 7), or normoxic control (CON, n = 7), using a biofeedback nitrogen dilution device. A range of physiological, performance, and hematological variables were measured at baseline, and 10 days after IHE. After intervention, the IHE group, relative to the CON group, exhibited improvements in the Yo-Yo intermittent recovery level 1 (+4.8 ± 1.6%; effect size [ES]: 1.0 ± 0.4) and repeated high-intensity exercise test performance (-3.5 ± 1.6%; ES: -0.4 ± 0.2). Changes in hematological parameters were minimal, although soluble transferrin receptor increased after IHE (+9.2 ± 10.1%; ES: 0.3 ± 0.3). Running economy at 11 km·h (-9.0 ± 9.7%; ES: -0.7 ± 0.7) and 13 km·h was improved (-8.2 ± 6.9%; ES: -0.7 ± 0.5), but changes to V[Combining Dot Above]O2peak, HRpeak, and lactate were unclear. In summary, acutely IHE resulted in worthwhile changes in physical performance tests among competitive basketball players. However, physiological measures explaining the performance enhancement were in most part unclear.
Collapse
Affiliation(s)
- Andrew E Kilding
- Sports Performance Research Institute New Zealand, AUT University, Auckland, New Zealand
| | | | | |
Collapse
|
89
|
Abstract
CONTEXT Athletes at different skill levels perform strenuous physical activity at high altitude for a variety of reasons. Multiple team and endurance events are held at high altitude and may place athletes at increased risk for developing acute high altitude illness (AHAI). Training at high altitude has been a routine part of preparation for some of the high level athletes for a long time. There is a general belief that altitude training improves athletic performance for competitive and recreational athletes. EVIDENCE ACQUISITION A review of relevant publications between 1980 and 2015 was completed using PubMed and Google Scholar. STUDY DESIGN Clinical review. LEVEL OF EVIDENCE Level 3. RESULTS AHAI is a relatively uncommon and potentially serious condition among travelers to altitudes above 2500 m. The broad term AHAI includes several syndromes such as acute mountain sickness (AMS), high altitude pulmonary edema (HAPE), and high altitude cerebral edema (HACE). Athletes may be at higher risk for developing AHAI due to faster ascent and more vigorous exertion compared with nonathletes. Evidence regarding the effects of altitude training on athletic performance is weak. The natural live high, train low altitude training strategy may provide the best protocol for enhancing endurance performance in elite and subelite athletes. High altitude sports are generally safe for recreational athletes, but they should be aware of their individual risks. CONCLUSION Individualized and appropriate acclimatization is an essential component of injury and illness prevention.
Collapse
Affiliation(s)
- Morteza Khodaee
- Department of Family Medicine, University of Colorado School of Medicine, Denver, Colorado
- Morteza Khodaee, MD, MPH, Department of Family Medicine, University of Colorado School of Medicine, AFW Clinic, 3055 Roslyn Street, Denver, CO 80238 ()
| | - Heather L. Grothe
- Department of Family Medicine, University of Colorado School of Medicine, Denver, Colorado
| | - Jonathan H. Seyfert
- Department of Family Medicine, University of Colorado School of Medicine, Denver, Colorado
| | - Karin VanBaak
- Department of Family Medicine, University of Colorado School of Medicine, Denver, Colorado
| |
Collapse
|
90
|
Hauser A, Schmitt L, Troesch S, Saugy JJ, Cejuela-Anta R, Faiss R, Robinson N, Wehrlin JP, Millet GP. Similar Hemoglobin Mass Response in Hypobaric and Normobaric Hypoxia in Athletes. Med Sci Sports Exerc 2016; 48:734-41. [PMID: 26540262 DOI: 10.1249/mss.0000000000000808] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE To compare hemoglobin mass (Hb(mass)) changes during an 18-d live high-train low (LHTL) altitude training camp in normobaric hypoxia (NH) and hypobaric hypoxia (HH). METHODS Twenty-eight well-trained male triathletes were split into three groups (NH: n = 10, HH: n = 11, control [CON]: n = 7) and participated in an 18-d LHTL camp. NH and HH slept at 2250 m, whereas CON slept, and all groups trained at altitudes <1200 m. Hb(mass) was measured in duplicate with the optimized carbon monoxide rebreathing method before (pre-), immediately after (post-) (hypoxic dose: 316 vs 238 h for HH and NH), and at day 13 in HH (230 h, hypoxic dose matched to 18-d NH). Running (3-km run) and cycling (incremental cycling test) performances were measured pre and post. RESULTS Hb(mass) increased similar in HH (+4.4%, P < 0.001 at day 13; +4.5%, P < 0.001 at day 18) and NH (+4.1%, P < 0.001) compared with CON (+1.9%, P = 0.08). There was a wide variability in individual Hb(mass) responses in HH (-0.1% to +10.6%) and NH (-1.4% to +7.7%). Postrunning time decreased in HH (-3.9%, P < 0.001), NH (-3.3%, P < 0.001), and CON (-2.1%, P = 0.03), whereas cycling performance changed nonsignificantly in HH and NH (+2.4%, P > 0.08) and remained unchanged in CON (+0.2%, P = 0.89). CONCLUSION HH and NH evoked similar Hb(mass) increases for the same hypoxic dose and after 18-d LHTL. The wide variability in individual Hb(mass) responses in HH and NH emphasizes the importance of individual Hb(mass) evaluation of altitude training.
Collapse
Affiliation(s)
- Anna Hauser
- 1Section for Elite Sport, Swiss Federal Institute of Sport, Magglingen, SWITZERLAND; 2Department of Physiology, Faculty of Biology and Medicine, ISSUL, Institute of Sport Sciences, University of Lausanne, SWITZERLAND; 3National School of Mountain Sports/National Ski-Nordic Centre, Prémanon, FRANCE; 4Departmental Section of Physical Education and Sports, University of Alicante, SPAIN; and 5Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Geneva & Lausanne, Center Hospitalier Universitaire Vaudois & University of Lausanne, SWITZERLAND
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
The Effect of an Altitude Training Camp on Swimming Start Time and Loaded Squat Jump Performance. PLoS One 2016; 11:e0160401. [PMID: 27467760 PMCID: PMC4965075 DOI: 10.1371/journal.pone.0160401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/19/2016] [Indexed: 11/20/2022] Open
Abstract
This study evaluated the influence of an altitude training (AT) camp on swimming start time and loaded squat jump performance. To accomplish this goal, 13 international swimmers (8 women, 5 men) were allocated to both the control (Sea Level Training, SLT) and experimental conditions (AT, 2320 m above sea level) that were separated by a one year period. All tests (15 m freestyle swimming start and loaded squat jumps with additional loads of 25%, 50%, 75%, and 100% of swimmers' body weight) were performed before and after a concurrent 3-week strength and endurance training program prescribed by the national coach. Following the SLT camp, significant impairments in swimming start times to 10 (+3.1%) and 15 m (+4.0%) were observed (P < 0.05), whereas no significant changes for the same distances were detected following the AT camp (-0.89%; P > 0.05). Trivial changes in peak velocity were obtained during the loaded squat jump after both training periods (effect sizes: < 0.20). Based on these results we can conclude that a traditional training high-living high strategy concurrent training of 3 weeks does not adversely affect swimming start time and loaded squat jump performance in high level swimmers, but further studies are necessary to assess the effectiveness of power-oriented resistance training in the development of explosive actions.
Collapse
|
92
|
McLean BD, Tofari PJ, Gore CJ, Kemp JG. Changes in Running Performance After Four Weeks of Interval Hypoxic Training in Australian Footballers: A Single-Blind Placebo-Controlled Study. J Strength Cond Res 2016; 29:3206-15. [PMID: 25944456 DOI: 10.1519/jsc.0000000000000984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is a paucity of data examining the impact of high-intensity interval hypoxic training (IHT) on intermittent running performance. This study assessed the effects of IHT on 17 amateur Australian Footballers, who completed 8 interval treadmill running sessions (IHT [FIO2 = 15.1%] or PLACEBO) over 4 weeks, in addition to normoxic football (2 per week) and resistance (2 per week) training sessions. To match relative training intensity, absolute IHT intensity reduced by 6% of normoxic vV[Combining Dot Above]O2peak compared with PLACEBO. Before and after the intervention, performance was assessed by Yo-Yo intermittent recovery test level 2 (Yo-Yo IR2) and a self-paced team sport running protocol. Standardized effect size statistics were calculated using Cohen's d to compare between the interventions. Compared with PLACEBO, IHT subjects experienced (a) smaller improvements in Yo-Yo IR2 performance (Cohen's d = -0.42 [-0.82 to -0.02; 90% confidence interval]); (b) similar increases in high-intensity running distance during the team sport protocol (d = 0.17 [-0.50 to 0.84]); and (c) greater improvements in total distance (d = 0.72 [0.33-1.10]) and distance covered during low-intensity activity (d = 0.59 [-0.07 to 1.11]) during the team sport protocol. The lower absolute training intensity of IHT may explain the smaller improvements in Yo-Yo IR2 performance in the hypoxic group. Conversely, the data from the self-paced protocol suggest that IHT may positively influence pacing strategies in team sport athletes. In conclusion, IHT alters pacing strategies in team sport athletes (i.e., increased distance covered during low-intensity activity). However, IHT leads to smaller improvements in externally paced high-intensity intermittent running performance (i.e., Yo-Yo IR2), which may be related to a reduced absolute training intensity during IHT sessions.
Collapse
Affiliation(s)
- Blake D McLean
- 1School of Exercise Science, Australian Catholic University, Melbourne, Australia; 2Department of Physiology, Australian Institute of Sport, Canberra, Australia; and 3Exercise Physiology Laboratory, Flinders University of South Australia, Bedford Park, Australia
| | | | | | | |
Collapse
|
93
|
Park HY, Hwang H, Park J, Lee S, Lim K. The effects of altitude/hypoxic training on oxygen delivery capacity of the blood and aerobic exercise capacity in elite athletes - a meta-analysis. J Exerc Nutrition Biochem 2016; 20:15-22. [PMID: 27298808 PMCID: PMC4899894 DOI: 10.20463/jenb.2016.03.20.1.3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 11/22/2022] Open
Abstract
PURPOSE This study was designed as a meta-analysis of randomized controlled trials comparing effectiveness of altitude/hypoxic training (experimental) versus sea-level training (control) on oxygen delivery capacity of the blood and aerobic exercise capacity of elite athletes in Korea. METHODS Databases (Research Information Service System, Korean studies Information Service System, National Assembly Library) were for randomized controlled trials comparing altitude/hypoxic training versus sea-level training in elite athletes. Studies published in Korea up to December 2015 were eligible for inclusion. Oxygen delivery capacity of the blood was quantified by red blood cell (RBC), hemoglobin (Hb), hematocrit (Hct), erythropoietin (EPO); and aerobic exercise capacity was quantified by maximal oxygen consumption (VO2max). RBC, Hb, Hct, VO2max represented heterogeneity and compared post-intervention between altitude/hypoxic training and sea-level training in elite athletes by a random effect model meta-analysis. EPO represented homogeneity and meta-analysis performed by a fixed effect model. Eight independent studies with 156 elite athletes (experimental: n = 82, control: n = 74) were included in the metaanalysis. RESULTS RBC (4.499×10(5) cell/ul, 95 % CI: 2.469 to 6.529), Hb (5.447 g/dl, 95 % CI: 3.028 to 7.866), Hct (3.639 %, 95 % CI: 1.687 to 5.591), EPO (0.711 mU/mL, 95% CI: 0.282 to 1.140), VO2max (1.637 ml/kg/min, 95% CI: 0.599 to 1.400) showed significantly greater increase following altitude/hypoxic training, as compared with sea-level training. CONCLUSION For elite athletes in Korea, altitude/ hypoxic training appears more effective than sea-level training for improvement of oxygen delivery capacity of the blood and aerobic exercise capacity.
Collapse
Affiliation(s)
- Hun-Young Park
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul Republic of Korea
| | - Hyejung Hwang
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul Republic of Korea
| | - Jonghoon Park
- Department of Physical Education, Korea University, Seoul Republic of Korea
| | - Seongno Lee
- Department of Physical Education, Hanyang University, Seoul Republic of Korea
| | - Kiwon Lim
- Physical Activity and Performance Institute (PAPI), Konkuk University, SeoulRepublic of Korea; Department of Physical Education, Konkuk University, SeoulRepublic of Korea
| |
Collapse
|
94
|
Lundby C, Robach P. Does ‘altitude training’ increase exercise performance in elite athletes? Exp Physiol 2016; 101:783-8. [DOI: 10.1113/ep085579] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/10/2016] [Indexed: 01/27/2023]
Affiliation(s)
- Carsten Lundby
- Institute of Physiology; University of Zürich; Zürich Switzerland
| | - Paul Robach
- Ecole Nationale des Sports de Montagne; site de l'Ecole Nationale de Ski et d'Alpinisme Chamonix France
| |
Collapse
|
95
|
García-Ramos A, Padial P, de la Fuente B, Argüelles-Cienfuegos J, Bonitch-Góngora J, Feriche B. Relationship Between Vertical Jump Height and Swimming Start Performance Before and After an Altitude Training Camp. J Strength Cond Res 2016; 30:1638-45. [DOI: 10.1519/jsc.0000000000001242] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
96
|
Rodríguez FA, Iglesias X, Feriche B, Calderón-Soto C, Chaverri D, Wachsmuth NB, Schmidt W, Levine BD. Altitude Training in Elite Swimmers for Sea Level Performance (Altitude Project). Med Sci Sports Exerc 2016; 47:1965-78. [PMID: 25628173 DOI: 10.1249/mss.0000000000000626] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION This controlled, nonrandomized, parallel-groups trial investigated the effects on performance, V˙O2 and hemoglobin mass (tHbmass) of four preparatory in-season training interventions: living and training at moderate altitude for 3 and 4 wk (Hi-Hi3, Hi-Hi), living high and training high and low (Hi-HiLo, 4 wk), and living and training at sea level (SL) (Lo-Lo, 4 wk). METHODS From 61 elite swimmers, 54 met all inclusion criteria and completed time trials over 50- and 400-m crawl (TT50, TT400), and 100 (sprinters) or 200 m (nonsprinters) at best stroke (TT100/TT200). Maximal oxygen uptake (V˙O2max) and HR were measured with an incremental 4 × 200 m test. Training load was estimated using cumulative training impulse method and session RPE. Initial measures (PRE) were repeated immediately (POST) and once weekly on return to SL (PostW1 to PostW4). tHbmass was measured in duplicate at PRE and once weekly during the camp with CO rebreathing. Effects were analyzed using mixed linear modeling. RESULTS TT100 or TT200 was worse or unchanged immediately at POST, but improved by approximately 3.5% regardless of living or training at SL or altitude after at least 1 wk of SL recovery. Hi-HiLo achieved greater improvement 2 (5.3%) and 4 wk (6.3%) after the camp. Hi-HiLo also improved more in TT400 and TT50 2 (4.2% and 5.2%, respectively) and 4 wk (4.7% and 5.5%) from return. This performance improvement was not linked linearly to changes in V˙O2max or tHbmass. CONCLUSIONS A well-implemented 3- or 4-wk training camp may impair performance immediately but clearly improves performance even in elite swimmers after a period of SL recovery. Hi-HiLo for 4 wk improves performance in swimming above and beyond altitude and SL controls through complex mechanisms involving altitude living and SL training effects.
Collapse
Affiliation(s)
- Ferran A Rodríguez
- 1INEFC-Barcelona Sport Sciences Research Group, National Institute of Physical Education of Catalonia, University of Barcelona, Barcelona, SPAIN; 2Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, SPAIN; 3Altitude Training Center of Sierra Nevada, Consejo Superior de Deportes, Granada, SPAIN; 4Department of Sports Medicine and Physiology, University of Bayreuth, Bayreuth, GERMANY; and 5Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, and University of Texas Southwestern Medical Center at Dallas, Dallas, TX
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Saugy JJ, Schmitt L, Hauser A, Constantin G, Cejuela R, Faiss R, Wehrlin JP, Rosset J, Robinson N, Millet GP. Same Performance Changes after Live High-Train Low in Normobaric vs. Hypobaric Hypoxia. Front Physiol 2016; 7:138. [PMID: 27148076 PMCID: PMC4835493 DOI: 10.3389/fphys.2016.00138] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/30/2016] [Indexed: 01/28/2023] Open
Abstract
PURPOSE We investigated the changes in physiological and performance parameters after a Live High-Train Low (LHTL) altitude camp in normobaric (NH) or hypobaric hypoxia (HH) to reproduce the actual training practices of endurance athletes using a crossover-designed study. METHODS Well-trained triathletes (n = 16) were split into two groups and completed two 18-day LTHL camps during which they trained at 1100-1200 m and lived at 2250 m (P i O2 = 111.9 ± 0.6 vs. 111.6 ± 0.6 mmHg) under NH (hypoxic chamber; FiO2 18.05 ± 0.03%) or HH (real altitude; barometric pressure 580.2 ± 2.9 mmHg) conditions. The subjects completed the NH and HH camps with a 1-year washout period. Measurements and protocol were identical for both phases of the crossover study. Oxygen saturation (S p O2) was constantly recorded nightly. P i O2 and training loads were matched daily. Blood samples and VO2max were measured before (Pre-) and 1 day after (Post-1) LHTL. A 3-km running-test was performed near sea level before and 1, 7, and 21 days after training camps. RESULTS Total hypoxic exposure was lower for NH than for HH during LHTL (230 vs. 310 h; P < 0.001). Nocturnal S p O2 was higher in NH than in HH (92.4 ± 1.2 vs. 91.3 ± 1.0%, P < 0.001). VO2max increased to the same extent for NH and HH (4.9 ± 5.6 vs. 3.2 ± 5.1%). No difference was found in hematological parameters. The 3-km run time was significantly faster in both conditions 21 days after LHTL (4.5 ± 5.0 vs. 6.2 ± 6.4% for NH and HH), and no difference between conditions was found at any time. CONCLUSION Increases in VO2max and performance enhancement were similar between NH and HH conditions.
Collapse
Affiliation(s)
- Jonas J Saugy
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of LausanneLausanne, Switzerland; Department of Physiology, Faculty of Biology and Medicine, University of LausanneLausanne, Switzerland
| | - Laurent Schmitt
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of LausanneLausanne, Switzerland; National School of Mountain Sports/National Ski-Nordic CentrePrémanon, France
| | - Anna Hauser
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of LausanneLausanne, Switzerland; Section for Elite Sport, Swiss Federal Institute of SportMagglingen, Switzerland
| | - Guillaume Constantin
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne Lausanne, Switzerland
| | - Roberto Cejuela
- Departmental Section of Physical Education and Sports, University of Alicante Alicante, Spain
| | - Raphael Faiss
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of LausanneLausanne, Switzerland; Section for Elite Sport, Swiss Federal Institute of SportMagglingen, Switzerland
| | - Jon P Wehrlin
- Section for Elite Sport, Swiss Federal Institute of Sport Magglingen, Switzerland
| | - Jérémie Rosset
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne Lausanne, Switzerland
| | - Neil Robinson
- Swiss Laboratory for Doping Analyses, University of Lausanne Lausanne, Switzerland
| | - Grégoire P Millet
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of LausanneLausanne, Switzerland; Department of Physiology, Faculty of Biology and Medicine, University of LausanneLausanne, Switzerland
| |
Collapse
|
98
|
Flaherty G, O'Connor R, Johnston N. Altitude training for elite endurance athletes: A review for the travel medicine practitioner. Travel Med Infect Dis 2016; 14:200-11. [PMID: 27040934 DOI: 10.1016/j.tmaid.2016.03.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 11/30/2022]
Abstract
High altitude training is regarded as an integral component of modern athletic preparation, especially for endurance sports such as middle and long distance running. It has rapidly achieved popularity among elite endurance athletes and their coaches. Increased hypoxic stress at altitude facilitates key physiological adaptations within the athlete, which in turn may lead to improvements in sea-level athletic performance. Despite much research in this area to date, the exact mechanisms which underlie such improvements remain to be fully elucidated. This review describes the current understanding of physiological adaptation to high altitude training and its implications for athletic performance. It also discusses the rationale and main effects of different training models currently employed to maximise performance. Athletes who travel to altitude for training purposes are at risk of suffering the detrimental effects of altitude. Altitude illness, weight loss, immune suppression and sleep disturbance may serve to limit athletic performance. This review provides an overview of potential problems which an athlete may experience at altitude, and offers specific training recommendations so that these detrimental effects are minimised.
Collapse
Affiliation(s)
- Gerard Flaherty
- School of Medicine, National University of Ireland, Galway, Ireland; School of Medicine, International Medical University, Kuala Lumpur, Malaysia.
| | - Rory O'Connor
- School of Biomedical Science, National University of Ireland, Galway, Ireland.
| | - Niall Johnston
- School of Medicine, National University of Ireland, Galway, Ireland.
| |
Collapse
|
99
|
Wojtys EM. Pushing the Envelope. Sports Health 2016; 8:115-6. [PMID: 26896215 PMCID: PMC4789938 DOI: 10.1177/1941738116631491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
100
|
Luft FC. Hypoxemia as a model for high altitude and cardiovascular risk reduction. J Mol Med (Berl) 2016; 94:247-9. [PMID: 26915418 DOI: 10.1007/s00109-016-1390-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Friedrich C Luft
- Experimental and Clinical Research Center, Max-Delbrück Center and Charité Medical Faculty, Berlin, Germany.
| |
Collapse
|