51
|
Crowther GJ, Weller SM, Jones JC, Weaver T, Fan E, Van Voorhis WC, Rosen H. The Bacterial Sec Pathway of Protein Export: Screening and Follow-Up. ACTA ACUST UNITED AC 2015; 20:921-6. [PMID: 25987586 DOI: 10.1177/1087057115587458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 04/27/2015] [Indexed: 11/16/2022]
Abstract
Most noncytoplasmic bacterial proteins are exported through the SecYEG channel in the cytoplasmic membrane. This channel and its associated proteins, collectively referred to as the Sec pathway, have strong appeal as a possible antibiotic drug target, yet progress toward new drugs targeting this pathway has been slow, perhaps due partly to many researchers' focus on a single component, the SecA ATPase. Here we report on a pathway-based screen in which beta-galactosidase (β-gal) activity is trapped in the cytoplasm of Escherichia coli cells if translocation through SecYEG is impaired. Several hit compounds passed a counterscreen distinguishing between β-gal overexpression and impaired β-gal export. However, the most extensively characterized hit gave limited E. coli growth inhibition (EC(50) ≥ 400 µM), and growth inhibition could not be unambiguously linked to the compound's effect on the Sec pathway. Our study and others underscore the challenges of finding potent druglike hits against this otherwise promising drug target.
Collapse
Affiliation(s)
| | - Sara M Weller
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jackson C Jones
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Tatiana Weaver
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Erkang Fan
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | - Henry Rosen
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
52
|
Huo T, Liu W, Guo Y, Yang C, Lin J, Rao Z. Prediction of host - pathogen protein interactions between Mycobacterium tuberculosis and Homo sapiens using sequence motifs. BMC Bioinformatics 2015; 16:100. [PMID: 25887594 PMCID: PMC4456996 DOI: 10.1186/s12859-015-0535-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/13/2015] [Indexed: 12/28/2022] Open
Abstract
Background Emergence of multiple drug resistant strains of M. tuberculosis (MDR-TB) threatens to derail global efforts aimed at reigning in the pathogen. Co-infections of M. tuberculosis with HIV are difficult to treat. To counter these new challenges, it is essential to study the interactions between M. tuberculosis and the host to learn how these bacteria cause disease. Results We report a systematic flow to predict the host pathogen interactions (HPIs) between M. tuberculosis and Homo sapiens based on sequence motifs. First, protein sequences were used as initial input for identifying the HPIs by ‘interolog’ method. HPIs were further filtered by prediction of domain-domain interactions (DDIs). Functional annotations of protein and publicly available experimental results were applied to filter the remaining HPIs. Using such a strategy, 118 pairs of HPIs were identified, which involve 43 proteins from M. tuberculosis and 48 proteins from Homo sapiens. A biological interaction network between M. tuberculosis and Homo sapiens was then constructed using the predicted inter- and intra-species interactions based on the 118 pairs of HPIs. Finally, a web accessible database named PATH (Protein interactions of M. tuberculosis and Human) was constructed to store these predicted interactions and proteins. Conclusions This interaction network will facilitate the research on host-pathogen protein-protein interactions, and may throw light on how M. tuberculosis interacts with its host. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0535-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tong Huo
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China. .,College of Life Sciences, Nankai University, Tianjin, 300071, China. .,Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China.
| | - Wei Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China. .,College of Life Sciences, Nankai University, Tianjin, 300071, China. .,Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China.
| | - Yu Guo
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China. .,College of Pharmacy, Nankai University, Tianjin, 300071, China. .,Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China. .,College of Pharmacy, Nankai University, Tianjin, 300071, China. .,Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China.
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China. .,College of Pharmacy, Nankai University, Tianjin, 300071, China. .,Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China.
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China. .,College of Life Sciences, Nankai University, Tianjin, 300071, China. .,Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China.
| |
Collapse
|
53
|
Li W, Fan X, Long Q, Xie L, Xie J. Mycobacterium tuberculosis effectors involved in host-pathogen interaction revealed by a multiple scales integrative pipeline. INFECTION GENETICS AND EVOLUTION 2015; 32:1-11. [PMID: 25709069 DOI: 10.1016/j.meegid.2015.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/02/2015] [Accepted: 02/14/2015] [Indexed: 01/04/2023]
Abstract
BACKGROUND Mycobacterium tuberculosis (Mtb) has evolved multiple strategies to counter host immunity. Proteins are one important player in the host-pathogen interaction. A comprehensive list of such proteins will benefit our understanding of pathogenesis of Mtb. METHODS A genome-scale dataset was created from different sources of published data: global gene expression studies in disease models; genome-wide insertional mutagenesis defining gene essentiality under different conditions; genes lost in clinical isolates; subcellular localization analysis and non-homology analysis. Using data mining and meta-analysis, expressed proteins critical for intracellular survival of Mtb are first identified, followed by subcellular localization analysis, finally filtering a series of subtractive channel of analysis to find out promising drug target candidates. RESULTS The analysis found 54 potential candidates essential for the intracellular survival of the pathogen and non-homologous to host or gut flora, and might be promising drug targets. CONCLUSION Based on our meta-analysis and bioinformatics analysis, 54 hits were found from Mtb around 4000 open reading frames. These hits can be good candidates for further experimental investigation.
Collapse
Affiliation(s)
- Wu Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiangyu Fan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China; School of Biological Science and Technology, University of Jinan, Shandong 250022, China
| | - Quanxin Long
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China; The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases of the Ministry of Education, Chongqing Medical University, 1 Medical Road, Yuzhong District, Chongqing 400016, China
| | - Longxiang Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
54
|
Jadhav A, Shanmugham B, Rajendiran A, Pan A. Unraveling novel broad-spectrum antibacterial targets in food and waterborne pathogens using comparative genomics and protein interaction network analysis. INFECTION GENETICS AND EVOLUTION 2014; 27:300-8. [PMID: 25128740 DOI: 10.1016/j.meegid.2014.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 07/31/2014] [Accepted: 08/07/2014] [Indexed: 02/04/2023]
Abstract
Food and waterborne diseases are a growing concern in terms of human morbidity and mortality worldwide, even in the 21st century, emphasizing the need for new therapeutic interventions for these diseases. The current study aims at prioritizing broad-spectrum antibacterial targets, present in multiple food and waterborne bacterial pathogens, through a comparative genomics strategy coupled with a protein interaction network analysis. The pathways unique and common to all the pathogens under study (viz., methane metabolism, d-alanine metabolism, peptidoglycan biosynthesis, bacterial secretion system, two-component system, C5-branched dibasic acid metabolism), identified by comparative metabolic pathway analysis, were considered for the analysis. The proteins/enzymes involved in these pathways were prioritized following host non-homology analysis, essentiality analysis, gut flora non-homology analysis and protein interaction network analysis. The analyses revealed a set of promising broad-spectrum antibacterial targets, present in multiple food and waterborne pathogens, which are essential for bacterial survival, non-homologous to host and gut flora, and functionally important in the metabolic network. The identified broad-spectrum candidates, namely, integral membrane protein/virulence factor (MviN), preprotein translocase subunits SecB and SecG, carbon storage regulator (CsrA), and nitrogen regulatory protein P-II 1 (GlnB), contributed by the peptidoglycan pathway, bacterial secretion systems and two-component systems, were also found to be present in a wide range of other disease-causing bacteria. Cytoplasmic proteins SecG, CsrA and GlnB were considered as drug targets, while membrane proteins MviN and SecB were classified as vaccine targets. The identified broad-spectrum targets can aid in the design and development of antibacterial agents not only against food and waterborne pathogens but also against other pathogens.
Collapse
Affiliation(s)
- Ankush Jadhav
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry 605014, India
| | - Buvaneswari Shanmugham
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry 605014, India
| | - Anjana Rajendiran
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry 605014, India
| | - Archana Pan
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry 605014, India.
| |
Collapse
|
55
|
Frasinyuk MS, Kwiatkowski S, Wagner JM, Evans TJ, Reed RW, Korotkov KV, Watt DS. Pentapeptide boronic acid inhibitors of Mycobacterium tuberculosis MycP1 protease. Bioorg Med Chem Lett 2014; 24:3546-8. [PMID: 24915878 DOI: 10.1016/j.bmcl.2014.05.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 01/16/2023]
Abstract
Mycosin protease-1 (MycP1) cleaves ESX secretion-associated protein B (EspB) that is a virulence factor of Mycobacterium tuberculosis, and accommodates an octapeptide, AVKAASLG, as a short peptide substrate. Because peptidoboronic acids are known inhibitors of serine proteases, the synthesis and binding of a boronic acid analog of the pentapeptide cleavage product, AVKAA, was studied using MycP1 variants from Mycobacterium thermoresistible (MycP1mth), Mycobacterium smegmatis (MycP1msm) and M. tuberculosis (MycP1mtu). We synthesized the boropentapeptide, HAlaValLysAlaAlaB(OH)2 (1) and the analogous pinanediol PD-protected HAlaValLysAlaAlaBO2(PD) (2) using an Fmoc/Boc peptide strategy. The pinanediol boropentapeptide 2 displayed IC50 values 121.6±25.3 μM for MycP1mth, 93.2±37.3 μM for MycP1msm and 37.9±5.2 μM for MycP1mtu. Such relatively strong binding creates a chance for crystalizing the complex with 2 and finding the structure of the unknown MycP1 catalytic site that would potentially facilitate the development of new anti-tuberculosis drugs.
Collapse
Affiliation(s)
- Mykhaylo S Frasinyuk
- Institute of Bioorganic Chemistry and Petrochemistry, Kyiv-94 02660, Ukraine; Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, USA
| | - Stefan Kwiatkowski
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, USA; Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA
| | - Jonathan M Wagner
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, USA
| | - Timothy J Evans
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, USA
| | - Robert W Reed
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, USA
| | - Konstantin V Korotkov
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, USA
| | - David S Watt
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, USA; Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA; Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0093, USA.
| |
Collapse
|
56
|
Gangwar SP, Meena SR, Saxena AK. Comparison of four different crystal forms of the Mycobacterium tuberculosis ESX-1 secreted protein regulator EspR. Acta Crystallogr F Struct Biol Commun 2014; 70:433-7. [PMID: 24699733 PMCID: PMC3976057 DOI: 10.1107/s2053230x14004166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 02/23/2014] [Indexed: 11/10/2022] Open
Abstract
The Mycobacterium tuberculosis ESX-1 secreted protein regulator (EspR, Rv3849) is the key protein that delivers bacterial proteins into the host cell during mycobacterial infection. EspR binds directly to the espACD operon and is involved in transcriptional activation. In the current study, M. tuberculosis EspR has been crystallized and its X-ray structure has been determined at 3.3 Å resolution in a P3221 crystal form. EspR forms a physiological dimer in the crystal. Each EspR monomer contains an N-terminal helix-turn-helix DNA-binding domain and a C-terminal dimerization domain. The EspR structure in the P3221 crystal form was compared with previously determined EspR structures in P32, P21 and P212121 crystal forms. Structural comparison analysis indicated that the N-terminal helix-turn-helix domain of EspR acquires a rigid structure in the four crystal forms. However, significant structural differences were observed in the C-terminal domain of EspR in the P21 crystal form when compared with the P3221 and P32 crystal forms. The interaction, stabilization energy and buried surface area analysis of EspR in the four different crystal forms have provided information about the physiological dimer interface of EspR.
Collapse
Affiliation(s)
- Shanti P. Gangwar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Sita R. Meena
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Ajay K. Saxena
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| |
Collapse
|
57
|
Rao C V S, De Waelheyns E, Economou A, Anné J. Antibiotic targeting of the bacterial secretory pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1762-83. [PMID: 24534745 DOI: 10.1016/j.bbamcr.2014.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/27/2014] [Accepted: 02/06/2014] [Indexed: 02/06/2023]
Abstract
Finding new, effective antibiotics is a challenging research area driven by novel approaches required to tackle unconventional targets. In this review we focus on the bacterial protein secretion pathway as a target for eliminating or disarming pathogens. We discuss the latest developments in targeting the Sec-pathway for novel antibiotics focusing on two key components: SecA, the ATP-driven motor protein responsible for driving preproteins across the cytoplasmic membrane and the Type I signal peptidase that is responsible for the removal of the signal peptide allowing the release of the mature protein from the membrane. We take a bird's-eye view of other potential targets in the Sec-pathway as well as other Sec-dependent or Sec-independent protein secretion pathways as targets for the development of novel antibiotics. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Smitha Rao C V
- Laboratory of Molecular Bacteriology, Rega Institute, Department of Microbiology and Immunology, KU Leuven, O&N1, 6th floor, Herestraat 49, P.O. Box 1037, B-3000 Leuven, Belgium.
| | - Evelien De Waelheyns
- Laboratory of Molecular Bacteriology, Rega Institute, Department of Microbiology and Immunology, KU Leuven, O&N1, 6th floor, Herestraat 49, P.O. Box 1037, B-3000 Leuven, Belgium.
| | - Anastassios Economou
- Laboratory of Molecular Bacteriology, Rega Institute, Department of Microbiology and Immunology, KU Leuven, O&N1, 6th floor, Herestraat 49, P.O. Box 1037, B-3000 Leuven, Belgium; Institute of Molecular Biology and Biotechnology, FORTH, University of Crete, P.O. Box 1385, GR-711 10 Iraklio, Crete, Greece; Department of Biology, University of Crete, P.O. Box 1385, GR-71110 Iraklio, Crete, Greece.
| | - Jozef Anné
- Laboratory of Molecular Bacteriology, Rega Institute, Department of Microbiology and Immunology, KU Leuven, O&N1, 6th floor, Herestraat 49, P.O. Box 1037, B-3000 Leuven, Belgium.
| |
Collapse
|
58
|
Jackson M, McNeil MR, Brennan PJ. Progress in targeting cell envelope biogenesis in Mycobacterium tuberculosis. Future Microbiol 2014; 8:855-75. [PMID: 23841633 DOI: 10.2217/fmb.13.52] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Most of the newly discovered compounds showing promise for the treatment of TB, notably multidrug-resistant TB, inhibit aspects of Mycobacterium tuberculosis cell envelope metabolism. This review reflects on the evolution of the knowledge that many of the front-line and emerging products inhibit aspects of cell envelope metabolism and in the process are bactericidal not only against actively replicating M. tuberculosis, but contrary to earlier impressions, are effective against latent forms of the disease. While mycolic acid and arabinogalactan synthesis are still primary targets of existing and new drugs, peptidoglycan synthesis, transport mechanisms and the synthesis of the decaprenyl-phosphate carrier lipid all show considerable promise as targets for new products, older drugs and new combinations. The advantages of whole cell- versus target-based screening in the perpetual search for new targets and products to counter multidrug-resistant TB are discussed.
Collapse
Affiliation(s)
- Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA.
| | | | | |
Collapse
|
59
|
Gupta S, Bram EE, Weiss R. Genetically programmable pathogen sense and destroy. ACS Synth Biol 2013; 2:715-23. [PMID: 23763381 DOI: 10.1021/sb4000417] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a major cause of urinary tract and nosocomial infections. Here, we propose and demonstrate proof-of-principle for a potential cell therapy approach against P. aeruginosa. Using principles of synthetic biology, we genetically modified E. coli to specifically detect wild type P. aeruginosa (PAO1) via its quorum sensing (QS) molecule, 3OC 12 HSL. Engineered E. coli sentinels respond to the presence of 3OC 12 HSL by secreting CoPy, a novel pathogen-specific engineered chimeric bacteriocin, into the extracellular medium using the flagellar secretion tag FlgM. Extracellular FlgM-CoPy is designed to kill PAO1 specifically. CoPy was constructed by replacing the receptor and translocase domain of Colicin E3 with that of Pyocin S3. We show that CoPy toxicity is PAO1 specific, not affecting sentinel E. coli or the other bacterial strains tested. In order to define the system's basic requirements and PAO1-killing capabilities, we further determined the growth rates of PAO1 under different conditions and concentrations of purified and secreted FlgM-CoPy. The integrated system was tested by co-culturing PAO1 cells, on semisolid agar plates, together with engineered sentinel E. coli, capable of secreting FlgM-CoPy when induced by 3OC 12 HSL. Optical microscopy results show that the engineered E. coli sentinels successfully inhibit PAO1 growth.
Collapse
Affiliation(s)
- Saurabh Gupta
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, United States
| | - Eran E. Bram
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, United States
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, United States
| |
Collapse
|
60
|
ESAT-6 (EsxA) and TB10.4 (EsxH) based vaccines for pre- and post-exposure tuberculosis vaccination. PLoS One 2013; 8:e80579. [PMID: 24349004 PMCID: PMC3861245 DOI: 10.1371/journal.pone.0080579] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 10/04/2013] [Indexed: 12/12/2022] Open
Abstract
The ESX systems from Mycobacterium tuberculosis are responsible for the secretion of highly immunogenic proteins of key importance for bacterial survival and growth. The two prototypic proteins, ESAT-6 (EsxA from ESX-1) and TB10.4 (EsxH from ESX-3) share a lot of characteristics regarding genome organization, size, antigenic properties, and vaccine potential but the two molecules clearly have very different roles in bacterial physiology. To further investigate the role of ESAT-6 and TB10.4 as preventive and post-exposure tuberculosis vaccines, we evaluated four different fusion-protein vaccines; H1, H4, H56 and H28, that differ only in these two components. We found that all of these vaccines give rise to protection in a conventional prophylactic vaccination model. In contrast, only the ESAT-6-containing vaccines resulted in significant protection against reactivation, when administered post-exposure. This difference in post-exposure activity did not correlate with a difference in gene expression during infection or a differential magnitude or quality of the vaccine-specific CD4 T cells induced by ESAT-6 versus TB10.4-containing vaccines. The post-exposure effect of the ESAT-6 based vaccines was found to be influenced by the infectious load at the time-point of vaccination and was abolished in chronically infected animals with high bacterial loads at the onset of vaccination. Our data demonstrate that there are specific requirements for the immune system to target an already established tuberculosis infection and that ESAT-6 has a unique potential in post-exposure vaccination strategies.
Collapse
|
61
|
D'Lima NG, Teschke CM. ADP-dependent conformational changes distinguish Mycobacterium tuberculosis SecA2 from SecA1. J Biol Chem 2013; 289:2307-17. [PMID: 24297168 DOI: 10.1074/jbc.m113.533323] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In bacteria, most secreted proteins are exported through the SecYEG translocon by the SecA ATPase motor via the general secretion or "Sec" pathway. The identification of an additional SecA protein, particularly in Gram-positive pathogens, has raised important questions about the role of SecA2 in both protein export and establishment of virulence. We previously showed in Mycobacterium tuberculosis, the causative agent of tuberculosis, the accessory SecA2 protein possesses ATPase activity that is required for bacterial survival in host macrophages, highlighting its importance in virulence. Here, we show that SecA2 binds ADP with much higher affinity than SecA1 and releases the nucleotide more slowly. Nucleotide binding also regulates movement of the precursor-binding domain in SecA2, unlike in SecA1 or conventional SecA proteins. This conformational change involving closure of the clamp in SecA2 may provide a mechanism for the cell to direct protein export through the conventional SecA1 pathway under normal growth conditions while preventing ordinary precursor proteins from interacting with the specialized SecA2 ATPase.
Collapse
|
62
|
Genetic regulation of vesiculogenesis and immunomodulation in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2013; 110:E4790-7. [PMID: 24248369 DOI: 10.1073/pnas.1320118110] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) restrains immune responses well enough to escape eradication but elicits enough immunopathology to ensure its transmission. Here we provide evidence that this host-pathogen relationship is regulated in part by a cytosolic, membrane-associated protein with a unique structural fold, encoded by the Mtb gene rv0431. The protein acts by regulating the quantity of Mtb-derived membrane vesicles bearing Toll-like receptor 2 ligands, including the lipoproteins LpqH and SodC. We propose that rv0431 be named "vesiculogenesis and immune response regulator."
Collapse
|
63
|
The twin arginine translocation system is essential for aerobic growth and full virulence of Burkholderia thailandensis. J Bacteriol 2013; 196:407-16. [PMID: 24214943 DOI: 10.1128/jb.01046-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The twin arginine translocation (Tat) system in bacteria is responsible for transporting folded proteins across the cytoplasmic membrane, and in some bacteria, Tat-exported substrates have been linked to virulence. We report here that the Tat machinery is present in Burkholderia pseudomallei, B. mallei, and B. thailandensis, and we show that the system is essential for aerobic but not anaerobic growth. Switching off of the Tat system in B. thailandensis grown anaerobically resulted in filamentous bacteria, and bacteria showed increased sensitivity to some β-lactam antibiotics. In Galleria mellonella and zebrafish infection models, the Tat conditional mutant was attenuated. The aerobic growth-restricted phenotype indicates that Tat substrates may play a functional role in oxygen-dependent energy conservation. In other bacteria, aerobic growth restriction in Tat mutants has been attributed to the inability to translocate PetA, the Rieske iron-sulfur protein which forms part of the quinol-cytochrome c oxidoreductase complex. Here, we show that PetA is not responsible for aerobic growth restriction in B. thailandensis. However, we have identified an operon encoding 2 proteins of unknown function (BTH_I2176 and BTH_I2175) that play a role in aerobic growth restriction, and we present evidence that BTH_I2176 is Tat translocated.
Collapse
|
64
|
Chagnot C, Zorgani MA, Astruc T, Desvaux M. Proteinaceous determinants of surface colonization in bacteria: bacterial adhesion and biofilm formation from a protein secretion perspective. Front Microbiol 2013; 4:303. [PMID: 24133488 PMCID: PMC3796261 DOI: 10.3389/fmicb.2013.00303] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/22/2013] [Indexed: 01/30/2023] Open
Abstract
Bacterial colonization of biotic or abiotic surfaces results from two quite distinct physiological processes, namely bacterial adhesion and biofilm formation. Broadly speaking, a biofilm is defined as the sessile development of microbial cells. Biofilm formation arises following bacterial adhesion but not all single bacterial cells adhering reversibly or irreversibly engage inexorably into a sessile mode of growth. Among molecular determinants promoting bacterial colonization, surface proteins are the most functionally diverse active components. To be present on the bacterial cell surface, though, a protein must be secreted in the first place. Considering the close association of secreted proteins with their cognate secretion systems, the secretome (which refers both to the secretion systems and their protein substrates) is a key concept to apprehend the protein secretion and related physiological functions. The protein secretion systems are here considered in light of the differences in the cell-envelope architecture between diderm-LPS (archetypal Gram-negative), monoderm (archetypal Gram-positive) and diderm-mycolate (archetypal acid-fast) bacteria. Besides, their cognate secreted proteins engaged in the bacterial colonization process are regarded from single protein to supramolecular protein structure as well as the non-classical protein secretion. This state-of-the-art on the complement of the secretome (the secretion systems and their cognate effectors) involved in the surface colonization process in diderm-LPS and monoderm bacteria paves the way for future research directions in the field.
Collapse
Affiliation(s)
- Caroline Chagnot
- UR454 Microbiologie, INRA Saint-Genès Champanelle, France ; UR370 Qualité des Produits Animaux, INRA Saint-Genès Champanelle, France
| | | | | | | |
Collapse
|
65
|
Serafini A, Pisu D, Palù G, Rodriguez GM, Manganelli R. The ESX-3 secretion system is necessary for iron and zinc homeostasis in Mycobacterium tuberculosis. PLoS One 2013; 8:e78351. [PMID: 24155985 PMCID: PMC3796483 DOI: 10.1371/journal.pone.0078351] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/18/2013] [Indexed: 12/25/2022] Open
Abstract
ESX-3 is one of the five type VII secretion systems encoded by the Mycobacterium tuberculosis genome. We recently showed the essentiality of ESX-3 for M. tuberculosis viability and proposed its involvement in iron and zinc metabolism. In this study we confirmed the role of ESX-3 in iron uptake and its involvement in the adaptation to low zinc environment in M. tuberculosis. Moreover, we unveiled functional differences between the ESX-3 roles in M. tuberculosis and M. smegmatis showing that in the latter ESX-3 is only involved in the adaptation to iron and not to zinc restriction. Finally, we also showed that in M. tuberculosis this secretion system is essential for iron and zinc homeostasis not only in conditions in which the concentrations of these metals are limiting but also in metal sufficient conditions.
Collapse
Affiliation(s)
- Agnese Serafini
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Davide Pisu
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - G. Marcela Rodriguez
- Public Health Research Institute - Rutgers, the State University of New Jersey, Newark, New Jersey, United States of America
| | - Riccardo Manganelli
- Department of Molecular Medicine, University of Padova, Padova, Italy
- * E-mail:
| |
Collapse
|
66
|
Premkumar L, Heras B, Duprez W, Walden P, Halili M, Kurth F, Fairlie DP, Martin JL. Rv2969c, essential for optimal growth in Mycobacterium tuberculosis, is a DsbA-like enzyme that interacts with VKOR-derived peptides and has atypical features of DsbA-like disulfide oxidases. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1981-94. [PMID: 24100317 PMCID: PMC3792642 DOI: 10.1107/s0907444913017800] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/28/2013] [Indexed: 12/16/2022]
Abstract
The bacterial disulfide machinery is an attractive molecular target for developing new antibacterials because it is required for the production of multiple virulence factors. The archetypal disulfide oxidase proteins in Escherichia coli (Ec) are DsbA and DsbB, which together form a functional unit: DsbA introduces disulfides into folding proteins and DsbB reoxidizes DsbA to maintain it in the active form. In Mycobacterium tuberculosis (Mtb), no DsbB homologue is encoded but a functionally similar but structurally divergent protein, MtbVKOR, has been identified. Here, the Mtb protein Rv2969c is investigated and it is shown that it is the DsbA-like partner protein of MtbVKOR. It is found that it has the characteristic redox features of a DsbA-like protein: a highly acidic catalytic cysteine, a highly oxidizing potential and a destabilizing active-site disulfide bond. Rv2969c also has peptide-oxidizing activity and recognizes peptide segments derived from the periplasmic loops of MtbVKOR. Unlike the archetypal EcDsbA enzyme, Rv2969c has little or no activity in disulfide-reducing and disulfide-isomerase assays. The crystal structure of Rv2969c reveals a canonical DsbA fold comprising a thioredoxin domain with an embedded helical domain. However, Rv2969c diverges considerably from other DsbAs, including having an additional C-terminal helix (H8) that may restrain the mobility of the catalytic helix H1. The enzyme is also characterized by a very shallow hydrophobic binding surface and a negative electrostatic surface potential surrounding the catalytic cysteine. The structure of Rv2969c was also used to model the structure of a paralogous DsbA-like domain of the Ser/Thr protein kinase PknE. Together, these results show that Rv2969c is a DsbA-like protein with unique properties and a limited substrate-binding specificity.
Collapse
Affiliation(s)
- Lakshmanane Premkumar
- Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St Lucia, QLD 4067, Australia
| | - Begoña Heras
- Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St Lucia, QLD 4067, Australia
| | - Wilko Duprez
- Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St Lucia, QLD 4067, Australia
| | - Patricia Walden
- Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St Lucia, QLD 4067, Australia
| | - Maria Halili
- Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St Lucia, QLD 4067, Australia
| | - Fabian Kurth
- Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St Lucia, QLD 4067, Australia
| | - David P. Fairlie
- Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St Lucia, QLD 4067, Australia
| | - Jennifer L. Martin
- Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St Lucia, QLD 4067, Australia
| |
Collapse
|
67
|
Yang R, Xi C, Sita DR, Sakai S, Tsuchiya K, Hara H, Shen Y, Qu H, Fang R, Mitsuyama M, Kawamura I. The RD1 locus in the Mycobacterium tuberculosis genome contributes to the maturation and secretion of IL-1α from infected macrophages through the elevation of cytoplasmic calcium levels and calpain activation. Pathog Dis 2013; 70:51-60. [PMID: 23913588 DOI: 10.1111/2049-632x.12075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/30/2013] [Accepted: 07/23/2013] [Indexed: 11/30/2022] Open
Abstract
Region of difference 1 (RD1) is a genomic locus in the Mycobacterium tuberculosis genome that has been shown to participate in the virulence of the bacterium, induction of cell death, and cytokine secretion in infected macrophages. In this study, we investigated the role of RD1 in interleukin-1α (IL-1α) secretion. M. tuberculosis H37Rv strain, but not a mutant strain deficient for RD1 (∆RD1), significantly induced IL-1α secretion from infected macrophages. Although IL-1α secretion was only observed in H37Rv-infected macrophages, there was no difference in the level of IL-1α transcription and pro-IL1α synthesis after infection with H37Rv and ∆RD1. Interestingly, ∆RD1 infection did not increase intracellular Ca(2+) levels, and Ca(2+) chelators markedly inhibited IL-1α secretion in response to H37Rv infection. Moreover, the inability of ∆RD1 to induce IL-1α secretion was restored by treatment with the calcium ionophore A23187. A significant increase in calpain activity was detected in macrophages infected with H37Rv, but not with ∆RD1, and calpain inhibitors abrogated IL-1α secretion. Taken together, these results suggest that in M. tuberculosis-infected macrophages, RD1 contributed to maturation and secretion of IL-1α by enhancing the influx of Ca(2+) followed by calpain activation.
Collapse
Affiliation(s)
- Ruili Yang
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, China; Department of Microbiology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Hahn S, Giaglis S, Chowdhury CS, Chowdury CS, Hösli I, Hasler P. Modulation of neutrophil NETosis: interplay between infectious agents and underlying host physiology. Semin Immunopathol 2013; 35:439-53. [PMID: 23649713 PMCID: PMC3685704 DOI: 10.1007/s00281-013-0380-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 04/24/2013] [Indexed: 12/12/2022]
Abstract
The ability of neutrophils and other leucocyte members of the innate immune system to expel their DNA into the extracellular environment in a controlled manner in order to trap and kill pathogenic microorganisms lead to a paradigm shift in our understanding of host microbe interactions. Surprisingly, the neutrophil extracellular trap (NET) cast by neutrophils is very wide and extends to the entrapment of viruses as well as multicellular eukaryotic parasites. Not unexpectedly, it has emerged that pathogenic microorganisms can employ a wide array of strategies to avoid ensnarement, including expression of DNAse enzymes that destroy the lattice backbone of NETs. Alternatively, they may use molecular mimicry to avoid detection or trigger events leading to the expression of immune modulatory cytokines such as IL-10, which dampen the NETotic response of neutrophils. In addition, the host microenvironment may contribute to the innate immune response by the production of lectin-like molecules that bind to bacteria and promote their entrapment on NETs. An example of this is the production of surfactant protein D by the lung epithelium. In addition, pregnancy provides a different challenge, as the mother needs to mount an effective response against pathogens, without harming her unborn child. An examination of these decoy and host response mechanisms may open the path for new therapies to treat pathologies mediated by overt NETosis.
Collapse
Affiliation(s)
- Sinuhe Hahn
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
69
|
Moraxella catarrhalis uses a twin-arginine translocation system to secrete the β-lactamase BRO-2. BMC Microbiol 2013; 13:140. [PMID: 23782650 PMCID: PMC3695778 DOI: 10.1186/1471-2180-13-140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/10/2013] [Indexed: 12/13/2022] Open
Abstract
Background Moraxella catarrhalis is a human-specific gram-negative bacterium readily isolated from the respiratory tract of healthy individuals. The organism also causes significant health problems, including 15-20% of otitis media cases in children and ~10% of respiratory infections in adults with chronic obstructive pulmonary disease. The lack of an efficacious vaccine, the rapid emergence of antibiotic resistance in clinical isolates, and high carriage rates reported in children are cause for concern. Virtually all Moraxella catarrhalis isolates are resistant to β-lactam antibiotics, which are generally the first antibiotics prescribed to treat otitis media in children. The enzymes responsible for this resistance, BRO-1 and BRO-2, are lipoproteins and the mechanism by which they are secreted to the periplasm of M. catarrhalis cells has not been described. Results Comparative genomic analyses identified M. catarrhalis gene products resembling the TatA, TatB, and TatC proteins of the well-characterized Twin Arginine Translocation (TAT) secretory apparatus. Mutations in the M. catarrhalis tatA, tatB and tatC genes revealed that the proteins are necessary for optimal growth and resistance to β-lactams. Site-directed mutagenesis was used to replace highly-conserved twin arginine residues in the predicted signal sequence of M. catarrhalis strain O35E BRO-2, which abolished resistance to the β-lactam antibiotic carbanecillin. Conclusions Moraxella catarrhalis possesses a TAT secretory apparatus, which plays a key role in growth of the organism and is necessary for secretion of BRO-2 into the periplasm where the enzyme can protect the peptidoglycan cell wall from the antimicrobial activity of β-lactam antibiotics.
Collapse
|
70
|
Rv3868 (EccA1), an essential component of the Mycobacterium tuberculosis ESX-1 secretion system, is thermostable. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1181-6. [DOI: 10.1016/j.bbapap.2013.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 02/01/2013] [Accepted: 02/04/2013] [Indexed: 11/18/2022]
|
71
|
Resisting resistant Mycobacterium tuberculosis naturally: Mechanistic insights into the inhibition of the parasite’s sole signal peptidase Leader peptidase B. Biochem Biophys Res Commun 2013; 433:552-7. [DOI: 10.1016/j.bbrc.2013.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 03/11/2013] [Indexed: 11/16/2022]
|
72
|
Jayachandran R, Scherr N, Pieters J. Elimination of intracellularly residing Mycobacterium tuberculosis through targeting of host and bacterial signaling mechanisms. Expert Rev Anti Infect Ther 2013; 10:1007-22. [PMID: 23106276 DOI: 10.1586/eri.12.95] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With more than 2 billion latently infected people, TB continues to represent a serious threat to human health. According to the WHO, 1.1 million people died from TB in 2010, which is equal to approximately 3000 deaths per day. The causative agent of the disease, Mycobacterium tuberculosis, is a highly successful pathogen having evolved remarkable strategies to persist within the host. Although normally, upon phagocytosis by macrophages, bacteria are readily eliminated by lysosomes, pathogenic mycobacteria actively prevent destruction within macrophages. The strategies that pathogenic mycobacteria apply range from releasing virulence factors to manipulating host molecules resulting in the modulation of host signal transduction pathways in order to sustain their viability within the infected host. Here, we analyze the current status of how a better understanding of both the bacterial and host factors involved in virulence can be used to develop drugs that may be helpful to curb the TB epidemic.
Collapse
Affiliation(s)
- Rajesh Jayachandran
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | | | |
Collapse
|
73
|
Freudl R. Leaving home ain't easy: protein export systems in Gram-positive bacteria. Res Microbiol 2013; 164:664-74. [PMID: 23541477 DOI: 10.1016/j.resmic.2013.03.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/05/2013] [Indexed: 10/27/2022]
Abstract
Transport of proteins into or across biological membranes is catalyzed by membrane-bound transport machineries. In Gram-positive bacteria, the vast majority of proteins are exported out of the cytosol by the conserved general secretion (Sec) system or, alternatively, by the twin-arginine translocation (Tat) system, that closely resemble their well-studied counterparts in Gram-negative bacteria. Besides these common major export routes, additional unique protein export systems (such as accessory Sec2 systems and/or type VII/WXG100 secretion systems) exist in some Gram-positive bacteria that are specifically involved in the secretion of limited subsets of proteins.
Collapse
Affiliation(s)
- Roland Freudl
- Institut für Bio- und Geowissenschaften 1, Biotechnologie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| |
Collapse
|
74
|
Characterization of Ffh of Mycobacterium tuberculosis and its interaction with 4.5S RNA. Microbiol Res 2012; 167:520-5. [DOI: 10.1016/j.micres.2012.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 02/27/2012] [Accepted: 03/11/2012] [Indexed: 11/20/2022]
|
75
|
Stein MP, Müller MP, Wandinger-Ness A. Bacterial pathogens commandeer Rab GTPases to establish intracellular niches. Traffic 2012; 13:1565-88. [PMID: 22901006 DOI: 10.1111/tra.12000] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 08/13/2012] [Indexed: 12/11/2022]
Abstract
Intracellular bacterial pathogens deploy virulence factors termed effectors to inhibit degradation by host cells and to establish intracellular niches where growth and differentiation take place. Here, we describe mechanisms by which human bacterial pathogens (including Chlamydiae; Coxiella burnetii; Helicobacter pylori; Legionella pneumophila; Listeria monocytogenes; Mycobacteria; Pseudomonas aeruginosa, Salmonella enterica) modulate endocytic and exocytic Rab GTPases in order to thrive in host cells. Host cell Rab GTPases are critical for intracellular transport following pathogen phagocytosis or endocytosis. At the molecular level bacterial effectors hijack Rab protein function to: evade degradation, direct transport to particular intracellular locations and monopolize host vesicles carrying molecules that are needed for a stable niche and/or bacterial growth and differentiation. Bacterial effectors may serve as specific receptors for Rab GTPases or as enzymes that post-translationally modify Rab proteins or endosomal membrane lipids required for Rab function. Emerging data indicate that bacterial effector expression is temporally and spatially regulated and multiple virulence factors may act concertedly to usurp Rab GTPase function, alter signaling and ensure niche establishment and intracellular bacterial growth, making this field an exciting area for further study.
Collapse
Affiliation(s)
- Mary-Pat Stein
- Department of Biology, California State University, Northridge, Northridge, CA, USA.
| | | | | |
Collapse
|
76
|
Butt AM, Nasrullah I, Tahir S, Tong Y. Comparative genomics analysis of Mycobacterium ulcerans for the identification of putative essential genes and therapeutic candidates. PLoS One 2012; 7:e43080. [PMID: 22912793 PMCID: PMC3418265 DOI: 10.1371/journal.pone.0043080] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/16/2012] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium ulcerans, the causative agent of Buruli ulcer, is the third most common mycobacterial disease after tuberculosis and leprosy. The present treatment options are limited and emergence of treatment resistant isolates represents a serious concern and a need for better therapeutics. Conventional drug discovery methods are time consuming and labor-intensive. Unfortunately, the slow growing nature of M. ulcerans in experimental conditions is also a barrier for drug discovery and development. In contrast, recent advancements in complete genome sequencing, in combination with cheminformatics and computational biology, represent an attractive alternative approach for the identification of therapeutic candidates worthy of experimental research. A computational, comparative genomics workflow was defined for the identification of novel therapeutic candidates against M. ulcerans, with the aim that a selected target should be essential to the pathogen, and have no homology in the human host. Initially, a total of 424 genes were predicted as essential from the M. ulcerans genome, via homology searching of essential genome content from 20 different bacteria. Metabolic pathway analysis showed that the most essential genes are associated with carbohydrate and amino acid metabolism. Among these, 236 proteins were identified as non-host and essential, and could serve as potential drug and vaccine candidates. Several drug target prioritization parameters including druggability were also calculated. Enzymes from several pathways are discussed as potential drug targets, including those from cell wall synthesis, thiamine biosynthesis, protein biosynthesis, and histidine biosynthesis. It is expected that our data will facilitate selection of M. ulcerans proteins for successful entry into drug design pipelines.
Collapse
Affiliation(s)
- Azeem Mehmood Butt
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
- * E-mail: (AMB); (YT)
| | - Izza Nasrullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shifa Tahir
- National Center for Bioinformatics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
- * E-mail: (AMB); (YT)
| |
Collapse
|
77
|
Ollinger J, O'Malley T, Ahn J, Odingo J, Parish T. Inhibition of the sole type I signal peptidase of Mycobacterium tuberculosis is bactericidal under replicating and nonreplicating conditions. J Bacteriol 2012; 194:2614-9. [PMID: 22427625 PMCID: PMC3347204 DOI: 10.1128/jb.00224-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 03/07/2012] [Indexed: 02/02/2023] Open
Abstract
Proteins secreted by bacteria perform functions vital for cell survival and play a role in virulence in Mycobacterium tuberculosis. M. tuberculosis lepB (Rv2903c) encodes the sole homolog of the type I signal peptidase (SPase). The lepB gene is essential in M. tuberculosis, since we could delete the chromosomal copy only when a second functional copy was provided elsewhere. By placing expression under the control of an anhydrotetracycline-inducible promoter, we confirmed that reduced lepB expression was detrimental to growth. Furthermore, we demonstrated that a serine-lysine catalytic dyad, characteristic for SPase function, is required for LepB function. We confirmed the involvement of LepB in the secretion of a reporter protein fused to an M. tuberculosis signal peptide. An inhibitor of LepB (MD3; a beta-aminoketone) was active against M. tuberculosis, exhibiting growth inhibition and bactericidal activity. Overexpression of lepB reduced the susceptibility of M. tuberculosis to MD3, and downregulation resulted in increased susceptibility, suggesting that LepB is the true target of MD3. MD3 lead to a rapid loss of viability and cell lysis. Interestingly, the compound had increased potency in nonreplicating cells, causing a reduction in viable cell numbers below the detection limit after 24 h. These data suggest that protein secretion is required to maintain viability under starvation conditions and that secreted proteins play a critical role in generating and surviving the persistent state. We conclude that LepB is a promising novel target for drug discovery in M. tuberculosis, since its inhibition results in rapid killing of persistent and replicating organisms.
Collapse
Affiliation(s)
- J Ollinger
- Infectious Disease Research Institute, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
78
|
Rosenberger T, Brülle JK, Sander P. A β-Lactamase based reporter system for ESX dependent protein translocation in mycobacteria. PLoS One 2012; 7:e35453. [PMID: 22530024 PMCID: PMC3329429 DOI: 10.1371/journal.pone.0035453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/16/2012] [Indexed: 01/22/2023] Open
Abstract
Protein secretion is essential for all bacteria in order to interact with their environment. Mycobacterium tuberculosis depends on protein secretion to subvert host immune response mechanisms. Both the general secretion system (Sec) and the twin-arginine translocation system (Tat) are functional in mycobacteria. Furthermore, a novel type of protein translocation system named ESX has been identified. In the genome of M. tuberculosis five paralogous ESX regions (ESX-1 to ESX-5) have been found. Several components of the ESX translocation apparatus have been identified over the last ten years. The ESX regions are composed of a basic set of genes for the translocation machinery and the main substrate - a heterodimer. The best studied of these heterodimers is EsxA (ESAT-6)/EsxB (CFP-10), which has been shown to be exported by ESX-1. EsxA/B is heavily involved in virulence of M. tuberculosis. EsxG/H is exported by ESX-3 and seems to be involved in an essential iron-uptake mechanism in M. tuberculosis. These findings make ESX-3 components high profile drug targets. Until now, reporter systems for determination of ESX protein translocation have not been developed. In order to create such a reporter system, a truncated β-lactamase (‘bla TEM-1) was fused to the N-terminus of EsxB, EsxG and EsxU, respectively. These constructs have then been tested in a β-lactamase (BlaS) deletion strain of Mycobacterium smegmatis. M. smegmatis ΔblaS is highly susceptible to ampicillin. An ampicillin resistant phenotype was conferred by translocation of Bla TEM-1-Esx fusion proteins into the periplasm. BlaTEM-1-Esx fusion proteins were not found in the culture filtrate suggesting that plasma membrane translocation and outer membrane translocation are two distinct steps in ESX secretion. Thus we have developed a powerful tool to dissect the molecular mechanisms of ESX dependent protein translocation and to screen for novel components of the ESX systems on a large scale.
Collapse
Affiliation(s)
- Tobias Rosenberger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Juliane K. Brülle
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Peter Sander
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
- Nationales Zentrum für Mykobakterien, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
79
|
Chen LC, Yeh HY, Yeh CY, Arias CR, Soo VW. Identifying co-targets to fight drug resistance based on a random walk model. BMC SYSTEMS BIOLOGY 2012; 6:5. [PMID: 22257493 PMCID: PMC3296574 DOI: 10.1186/1752-0509-6-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 01/19/2012] [Indexed: 11/17/2022]
Abstract
BACKGROUND Drug resistance has now posed more severe and emergent threats to human health and infectious disease treatment. However, wet-lab approaches alone to counter drug resistance have so far still achieved limited success due to less knowledge about the underlying mechanisms of drug resistance. Our approach apply a heuristic search algorithm in order to extract active network under drug treatment and use a random walk model to identify potential co-targets for effective antibacterial drugs. RESULTS We use interactome network of Mycobacterium tuberculosis and gene expression data which are treated with two kinds of antibiotic, Isoniazid and Ethionamide as our test data. Our analysis shows that the active drug-treated networks are associated with the trigger of fatty acid metabolism and synthesis and nicotinamide adenine dinucleotide (NADH)-related processes and those results are consistent with the recent experimental findings. Efflux pumps processes appear to be the major mechanisms of resistance but SOS response is significantly up-regulation under Isoniazid treatment. We also successfully identify the potential co-targets with literature confirmed evidences which are related to the glycine-rich membrane, adenosine triphosphate energy and cell wall processes. CONCLUSIONS With gene expression and interactome data supported, our study points out possible pathways leading to the emergence of drug resistance under drug treatment. We develop a computational workflow for giving new insights to bacterial drug resistance which can be gained by a systematic and global analysis of the bacterial regulation network. Our study also discovers the potential co-targets with good properties in biological and graph theory aspects to overcome the problem of drug resistance.
Collapse
Affiliation(s)
- Liang-Chun Chen
- Institute of Information Systems and Applications, National Tsing Hua University, HsinChu 300, Taiwan
| | - Hsiang-Yuan Yeh
- Department of Computer Science, National Tsing Hua University, HsinChu 300, Taiwan
| | - Cheng-Yu Yeh
- Institute of Information Systems and Applications, National Tsing Hua University, HsinChu 300, Taiwan
| | - Carlos Roberto Arias
- Institute of Information Systems and Applications, National Tsing Hua University, HsinChu 300, Taiwan
| | - Von-Wun Soo
- Department of Computer Science, National Tsing Hua University, HsinChu 300, Taiwan
- Institute of Information Systems and Applications, National Tsing Hua University, HsinChu 300, Taiwan
| |
Collapse
|
80
|
Crowther GJ, Quadri SA, Shannon-Alferes BJ, Van Voorhis WC, Rosen H. A mechanism-based whole-cell screening assay to identify inhibitors of protein export in Escherichia coli by the Sec pathway. ACTA ACUST UNITED AC 2012; 17:535-41. [PMID: 22233648 DOI: 10.1177/1087057111431606] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
More than 20% of bacterial proteins are noncytoplasmic, and most of these pass through the SecYEG channel en route to the periplasm, cell membrane, or surrounding environment. The Sec pathway, encompassing SecYEG and several associated proteins (SecA, SecB, YidC, SecDFYajC), is of interest as a potential drug target because it is distinct from targets of current drugs, is essential for bacterial growth, and exhibits dissimilarities in eukaryotes and bacteria that increase the likelihood of selectively inhibiting the microbial pathway. As a step toward validating the pathway as a drug target, we have adapted a mechanism-based whole-cell assay in a manner suitable for high-throughput screening (HTS). The assay uses an engineered strain of Escherichia coli that accumulates beta-galactosidase (β-gal) in its cytoplasm if translocation through SecYEG is blocked. The assay should facilitate rapid identification of compounds that specifically block the Sec pathway because widely, toxic compounds and nonspecific protein synthesis inhibitors prevent β-gal production and thus do not register as hits. Testing of current antibiotics confirmed that they do not generally act through the Sec pathway. A mini-screen of 800 compounds indicated the assay's readiness for larger screening projects.
Collapse
|
81
|
The Mycobacterium tuberculosis SecA2 system subverts phagosome maturation to promote growth in macrophages. Infect Immun 2012; 80:996-1006. [PMID: 22215736 DOI: 10.1128/iai.05987-11] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ability of Mycobacterium tuberculosis to grow in macrophages is critical to the virulence of this important pathogen. One way M. tuberculosis is thought to maintain a hospitable niche in macrophages is by arresting the normal process of phagosomes maturing into acidified phagolysosomes. The process of phagosome maturation arrest by M. tuberculosis is not fully understood, and there has remained a need to firmly establish a requirement for phagosome maturation arrest for M. tuberculosis growth in macrophages. Other intracellular pathogens that control the phagosomal environment use specialized protein export systems to deliver effectors of phagosome trafficking to the host cell. In M. tuberculosis, the accessory SecA2 system is a specialized protein export system that is required for intracellular growth in macrophages. In studying the importance of the SecA2 system in macrophages, we discovered that SecA2 is required for phagosome maturation arrest. Shortly after infection, phagosomes containing a ΔsecA2 mutant of M. tuberculosis were more acidified and showed greater association with markers of late endosomes than phagosomes containing wild-type M. tuberculosis. We further showed that inhibitors of phagosome acidification rescued the intracellular growth defect of the ΔsecA2 mutant, which demonstrated that the phagosome maturation arrest defect of the ΔsecA2 mutant is responsible for the intracellular growth defect. This study demonstrates the importance of phagosome maturation arrest for M. tuberculosis growth in macrophages, and it suggests there are effectors of phagosome maturation that are exported into the host environment by the accessory SecA2 system.
Collapse
|
82
|
Ligon LS, Hayden JD, Braunstein M. The ins and outs of Mycobacterium tuberculosis protein export. Tuberculosis (Edinb) 2011; 92:121-32. [PMID: 22192870 DOI: 10.1016/j.tube.2011.11.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 11/10/2011] [Accepted: 11/11/2011] [Indexed: 11/25/2022]
Abstract
Mycobacterium tuberculosis is an important pathogen that infects approximately one-third of the world's population and kills almost two million people annually. An important aspect of M. tuberculosis physiology and pathogenesis is its ability to export proteins into and across the thick mycobacterial cell envelope, where they are ideally positioned to interact with the host. In addition to the specific proteins that are exported by M. tuberculosis, the systems through which these proteins are exported represent potential targets for future drug development. M. tuberculosis possesses two well-known and conserved export systems: the housekeeping Sec pathway and the Tat pathway. In addition, M. tuberculosis possesses specialized export systems including the accessory SecA2 pathway and five ESX pathways. Here we review the current understanding of each of these export systems, with a focus on M. tuberculosis, and discuss the contribution of each system to disease and physiology.
Collapse
Affiliation(s)
- Lauren S Ligon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, CB #7290, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
83
|
Immunogenic proteins of Brucella abortus to minimize cross reactions in brucellosis diagnosis. Vet Microbiol 2011; 156:374-80. [PMID: 22192360 DOI: 10.1016/j.vetmic.2011.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 10/14/2011] [Accepted: 11/15/2011] [Indexed: 11/24/2022]
Abstract
To overcome the limitations of serological diagnosis, including false positive reactions caused by other pathogens, specific antigens for diagnosis of brucellosis other than LPS have been required. The present study was conducted to separate and identify immuno-dominant insoluble proteins of Brucella abortus against the antisera of cattle infected with B. abortus, or/and Yersinia enterocolitica, or the sera of non-infected cattle. After separating insoluble proteins of B. abortus by two dimensional electrophoresis (2-DE), their immuno-reactivity was determined by western blotting. A portion of the immunogenic spots against the positive antisera of B. abortus that have the potential for use as specific antigens were identified by MS/MS analysis. Overall, 18 immunogenic insoluble proteins of B. abortus 1119-3 showed immuno-reactivity against only the positive antisera of B. abortus, but failed to have immunogenicity toward both the positive sera of Y. enterocolitica and the negative sera of B. abortus. Identification of these proteins revealed the following: F0F1 ATP synthase subunit β, solute-binding family 5 protein, 28 kDa OMP, Leu/Ile/Val-binding family protein, Histidinol dehyddrogenase, Hypothetical protein, Twin-arginine translocation pathway signal sequence domain-containing protein, Dihydroorotase, Serine protease family protein, β-hydroxyacyl-(acyl-carrier-protein) dehydratase FabA, Short-chain dehydrogenase-/reductase carbonic anhydrase, Orinithine carbamoyltransferase, Leucyl aminopeptidase, Cold shock DNA-binding domain-containing protein, Cu/Zn superoxide dismutase, and Methionine aminopeptidase. The 18 immunogenic proteins separated in the present study can be considered candidate antigens to minimize cross reaction in the diagnosis of brucellosis and useful sources for Brucella vaccine development.
Collapse
|