51
|
Meir J, Abid MA, Abid MB. State of the CAR-T: Risk of Infections with Chimeric Antigen Receptor T-Cell Therapy and Determinants of SARS-CoV-2 Vaccine Responses. Transplant Cell Ther 2021; 27:973-987. [PMID: 34587552 PMCID: PMC8473073 DOI: 10.1016/j.jtct.2021.09.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/06/2021] [Accepted: 09/19/2021] [Indexed: 02/08/2023]
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy has shown unprecedented response rates in patients with relapsed/refractory (R/R) hematologic malignancies. Although CAR-T therapy gives hope to heavily pretreated patients, the rapid commercialization and cumulative immunosuppression of this therapy predispose patients to infections for a prolonged period. CAR-T therapy poses distinctive short- and long-term toxicities and infection risks among patients who receive CAR T-cells after multiple prior treatments, often including hematopoietic cell transplantation. The acute toxicities include cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. The long-term B cell depletion, hypogammaglobulinemia, and cytopenia further predispose patients to severe infections and abrogate the remission success achieved by the living drug. These on-target-off-tumor toxicities deplete B-cells across the entire lineage and further diminish immune responses to vaccines. Early observational data suggest that patients with hematologic malignancies may not mount adequate humoral and cellular responses to SARS-CoV-2 vaccines. In this review, we summarize the immune compromising factors indigenous to CAR-T recipients. We discuss the immunogenic potential of different SARS-CoV-2 vaccines for CAR-T recipients based on the differences in vaccine manufacturing platforms. Given the lack of data related to the safety and efficacy of SARS-CoV-2 vaccines in this distinctively immunosuppressed cohort, we summarize the infection risks associated with Food and Drug Administration-approved CAR-T constructs and the potential determinants of vaccine responses. The review further highlights the potential need for booster vaccine dosing and the promise for heterologous prime-boosting and other novel vaccine strategies in CAR-T recipients. © 2021 American Society for Transplantation and Cellular Therapy. Published by Elsevier Inc.
Collapse
Affiliation(s)
- Juliet Meir
- Department of Medicine, Westchester Medical Center, Valhalla, New York
| | - Muhammad Abbas Abid
- Department of Hematopathology & Microbiology, The Aga Khan University Hospital, Karachi, Pakistan
| | - Muhammad Bilal Abid
- Divisions of Infectious Diseases and Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
52
|
Zhang M, Zhou L, Zhao H, Zhang Y, Wei G, Hong R, Wu W, Xu H, Wang L, Ni F, Cui J, Peng S, Huang CH, Chang AH, Hu Y, Huang H. Risk Factors Associated with Durable Progression-Free Survival in Patients with Relapsed or Refractory Multiple Myeloma Treated with Anti-BCMA CAR T-cell Therapy. Clin Cancer Res 2021; 27:6384-6392. [PMID: 34548316 PMCID: PMC9401500 DOI: 10.1158/1078-0432.ccr-21-2031] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/30/2021] [Accepted: 09/15/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE B-cell maturation antigen (BCMA) chimeric antigen receptor (CAR) T-cell therapy results in high remission rates in patients with relapsed/refractory (R/R) multiple myeloma. However, the factors associated with prognosis following CAR T-cell therapy are unknown. PATIENTS AND METHODS Between July 1, 2018 and July 31, 2020, 61 patients with R/R multiple myeloma received anti-BCMA CAR T-cell therapy (Chictr.org number, ChiCTR1800017404). Step-wise multivariate Cox regression and competing risk analyses were conducted to identify poor prognosis-associated risk factors. RESULTS Sixty patients (98.4%) experienced cytokine release syndrome (CRS), including 33, 23, and 4 cases of CRS grades 1 to 2, 3, and 4, respectively. The objective response rate (ORR) was 98.3%, and the complete remission (CR) rate was 70.3%. With a median follow-up period of 21.1 months, the 1-year overall survival (OS) and progression-free survival (PFS) rates were 78.0% and 50.2%, respectively. The median PFS was 12.7 months. Cox modeling revealed that poor PFS was associated with extramedullary disease [HR = 2.59, 95% confidence interval (95% CI) = 1.29-5.21, P = 0.008], light chain multiple myeloma (HR = 2.53, 95% CI = 1.03-5.97, P = 0.035), high-risk cytogenetics (HR = 2.80, 95% CI = 1.27-6.14, P = 0.01), and prior treatment with more than 3 therapeutic lines (HR = 3.14, 95% CI = 1.34-7.34, P = 0.008). Among the 41 CR cases, competing risk analyses demonstrated higher relapse predispositions in those with extramedullary disease (HR = 4.51, 95% CI = 1.86-10.9, P = 0.001), light chain multiple myeloma (HR = 4.89, 95% CI = 1.52 - 15.7, P = 0.008), or high-risk cytogenetics (HR = 5.09, 95% CI = 1.63-15.9, P = 0.005). CONCLUSIONS Anti-BCMA CAR T-cell therapy is safe and effective for R/R multiple myeloma. For patients with high-risk factors, improvements to extend remission and more specific individualized therapies are needed.
Collapse
Affiliation(s)
- Mingming Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Linghui Zhou
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Houli Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Yanlei Zhang
- Shanghai YaKe Biotechnology Ltd., Shanghai, China
| | - Guoqing Wei
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Ruimin Hong
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Wenjun Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Huijun Xu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Linqin Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Fang Ni
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Jiazhen Cui
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Shuixiu Peng
- Shanghai YaKe Biotechnology Ltd., Shanghai, China
| | | | - Alex H Chang
- Shanghai YaKe Biotechnology Ltd., Shanghai, China.
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| |
Collapse
|
53
|
Prawitz T, Popat R, Suvannasankha A, Sarri G, Hughes R, Wang F, Hogea C, Ferrante SA, Gorsh B, Willson J, Kapetanakis V. DREAMM-2: Indirect Comparisons of Belantamab Mafodotin vs. Selinexor + Dexamethasone and Standard of Care Treatments in Relapsed/Refractory Multiple Myeloma. Adv Ther 2021; 38:5501-5518. [PMID: 34561812 PMCID: PMC8523001 DOI: 10.1007/s12325-021-01884-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/03/2021] [Indexed: 11/30/2022]
Abstract
Introduction Single-agent belantamab mafodotin (belamaf; BLENREP) demonstrated deep and durable responses in patients with relapsed/refractory multiple myeloma and ≥ 3 prior lines of therapy, including an immunomodulatory agent, proteasome inhibitor, and anti-CD38 antibody (DREAMM-2; NCT03525678). Methods At the time of this study, STORM Part 2, NCT02336815 (selinexor plus low-dose dexamethasone; sel + dex) was systematically identified as the only feasible comparator to the DREAMM-2 cohort. Matching-adjusted indirect comparisons (MAIC) evaluated efficacy and safety of belamaf (2.5 mg/kg; n = 97) versus sel + dex (80 mg + 20 mg, respectively; n = 123). Populations were weighted for clinically validated effect modifiers and prognostic factors. Outcomes included overall survival (OS), progression-free survival (PFS), duration of response (DoR), overall response rate (ORR), time to response (TTR), and safety. The relative efficacy of belamaf versus standard of care (SoC) on OS was estimated by a Bucher indirect treatment comparison using the MAIC-adjusted hazard ratios (HR) for OS of belamaf (DREAMM-2) versus sel + dex (STORM Part 2) and a HR adjusted for refractoriness to carfilzomib and high-risk cytogenetics of sel + dex (STORM) versus SoC (MAMMOTH). Results Belamaf demonstrated improved OS (HR 0.53; 95% confidence interval 0.34, 0.83; p = 0.005) and DoR (0.41; 0.21, 0.83; p = 0.013) versus sel + dex. There were no statistically significant differences in ORR, TTR, and PFS. Belamaf had a favorable safety profile for most evaluable hematologic (any-grade, Grade 3–4) and non-hematologic (any-grade) adverse events versus sel + dex. Significantly improved OS was observed with belamaf versus SoC (0.29; 0.16, 0.54; p < 0.001). Conclusion Single-agent belamaf represents a new treatment option for triple-class refractory patients with RRMM. Supplementary Information The online version contains supplementary material available at 10.1007/s12325-021-01884-7.
Collapse
Affiliation(s)
- Thibaud Prawitz
- Evidence Synthesis, Modeling, and Communication Group, Evidera, Paris, France
| | - Rakesh Popat
- NIHR/UCLH Clinical Research Facility, University College London Hospitals, NHS Foundation Trust, London, UK
| | - Attaya Suvannasankha
- Indiana University Simon Cancer Center and Roudebush VAMC, Indianapolis, IN, USA
| | - Grammati Sarri
- Evidence Synthesis, Modeling, and Communication Group, Evidera, The Ark, 201 Talgarth Rd, Hammersmith, London, W6 8BJ, UK
- RWE Strategy Lead, Visible Analytics, London, UK
| | - Rachel Hughes
- Evidence Synthesis, Modeling, and Communication Group, Evidera, San Francisco, CA, USA
| | - Feng Wang
- Value Evidence and Outcomes, GlaxoSmithKline, Upper Providence, PA, USA
| | - Cosmina Hogea
- Value Evidence and Outcomes, GlaxoSmithKline, Upper Providence, PA, USA
- Bristol Myers Squibb, Greater Philadelphia, PA, USA
| | | | - Boris Gorsh
- Value Evidence and Outcomes, GlaxoSmithKline, Upper Providence, PA, USA
| | - Jenny Willson
- Value Evidence and Outcomes, GlaxoSmithKline, London, UK
| | - Venediktos Kapetanakis
- Evidence Synthesis, Modeling, and Communication Group, Evidera, The Ark, 201 Talgarth Rd, Hammersmith, London, W6 8BJ, UK.
| |
Collapse
|
54
|
Novel CS1 CAR-T Cells and Bispecific CS1-BCMA CAR-T Cells Effectively Target Multiple Myeloma. Biomedicines 2021; 9:biomedicines9101422. [PMID: 34680541 PMCID: PMC8533376 DOI: 10.3390/biomedicines9101422] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 11/26/2022] Open
Abstract
Multiple myeloma (MM) is a hematological cancer caused by abnormal proliferation of plasma cells in the bone marrow, and novel types of treatment are needed for this deadly disease. In this study, we aimed to develop novel CS1 CAR-T cells and bispecific CS1-BCMA CAR-T cells to specifically target multiple myeloma. We generated a new CS1 (CD319, SLAM-7) antibody, clone (7A8D5), which specifically recognized the CS1 antigen, and we applied it for the generation of CS1-CAR. CS1-CAR-T cells caused specific killing of CHO-CS1 target cells with secretion of IFN-gamma and targeted multiple myeloma cells. In addition, bispecific CS1-BCMA-41BB-CD3 CAR-T cells effectively killed CHO-CS1 and CHO-BCMA target cells, killed CS1/BCMA-positive multiple myeloma cells, and secreted IFN-gamma. Moreover, CS1-CAR-T cells and bispecific CS1-BCMA CAR-T cells effectively blocked MM1S multiple myeloma tumor growth in vivo. These data for the first time demonstrate that novel CS1 and bispecific CS1-BCMA-CAR-T cells are effective in targeting MM cells and provide a basis for future clinical trials.
Collapse
|
55
|
Advances in the Treatment of Relapsed and Refractory Multiple Myeloma in Patients with Renal Insufficiency: Novel Agents, Immunotherapies and Beyond. Cancers (Basel) 2021; 13:cancers13205036. [PMID: 34680184 PMCID: PMC8533858 DOI: 10.3390/cancers13205036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/19/2021] [Accepted: 09/29/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Renal insufficiency is one of the most frequent complications in multiple myeloma. The incidence of renal insufficiency in patients with multiple myeloma ranges from 20% to 50%. Renal impairment in patients with multiple myeloma results primarily from the toxic effects of monoclonal light chains on the kidneys. Dehydration, hypercalcemia, hyperuricemia, the application of nephrotoxic NSARs, antibiotics, contrast agents, etc., all play a major role in the deterioration of renal function in patients with multiple myeloma. The diagnosis and treatment of these patients use an interdisciplinary approach in consultation with hematologist-oncologists, radiologists, nephrologists and intensive care specialists. Using new drugs in the treatment of patients with refractory/relapsed multiple myeloma and renal insufficiency markedly improves progression-free survival and overall survival in these patients. CONCLUSIONS New drugs have helped to widen the treatment options available for patients with renal impairment and refractory/relapsed multiple myeloma, since dose adjustments are unnecessary with carfilzomib as well as with panobinostat, elotuzumab, pomalidomide or daratumumab in patients with renal impairment. Several new substances for the treatment of refractory/relapsed multiple myeloma have been approved in the meantime, including belantamab mafodotin, selinexor, melflufen, venetoclax, CAR T-cell therapy and checkpoint inhibitors. Ongoing studies are investigating their administration in patients with renal impairment.
Collapse
|
56
|
Hosny M, Verkleij CPM, van der Schans J, Frerichs KA, Mutis T, Zweegman S, van de Donk NWCJ. Current State of the Art and Prospects of T Cell-Redirecting Bispecific Antibodies in Multiple Myeloma. J Clin Med 2021; 10:4593. [PMID: 34640611 PMCID: PMC8509238 DOI: 10.3390/jcm10194593] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) patients eventually develop multi-drug-resistant disease with poor survival. Hence, the development of novel treatment strategies is of great importance. Recently, different classes of immunotherapeutic agents have shown great promise in heavily pre-treated MM, including T cell-redirecting bispecific antibodies (BsAbs). These BsAbs simultaneously interact with CD3 on effector T cells and a tumor-associated antigen on MM cells, resulting in redirection of T cells to MM cells. This leads to the formation of an immunologic synapse, the release of granzymes/perforins, and subsequent tumor cell lysis. Several ongoing phase 1 studies show substantial activity and a favorable toxicity profile with BCMA-, GPRC5D-, or FcRH5-targeting BsAbs in heavily pre-treated MM patients. Resistance mechanisms against BsAbs include tumor-related features, T cell characteristics, and impact of components of the immunosuppressive tumor microenvironment. Various clinical trials are currently evaluating combination therapy with a BsAb and another agent, such as a CD38-targeting antibody or an immunomodulatory drug (e.g., pomalidomide), to further improve response depth and duration. Additionally, the combination of two BsAbs, simultaneously targeting two different antigens to prevent antigen escape, is being explored in clinical studies. The evaluation of BsAbs in earlier lines of therapy, including newly diagnosed MM, is warranted, based on the efficacy of BsAbs in advanced MM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Niels W. C. J. van de Donk
- Cancer Center Amsterdam, Department of Hematology, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands; (M.H.); (C.P.M.V.); (J.v.d.S.); (K.A.F.); (T.M.); (S.Z.)
| |
Collapse
|
57
|
Montes de Oca R, Alavi AS, Vitali N, Bhattacharya S, Blackwell C, Patel K, Seestaller-Wehr L, Kaczynski H, Shi H, Dobrzynski E, Obert L, Tsvetkov L, Cooper DC, Jackson H, Bojczuk P, Forveille S, Kepp O, Sauvat A, Kroemer G, Creighton-Gutteridge M, Yang J, Hopson C, Yanamandra N, Shelton C, Mayes P, Opalinska J, Barnette M, Srinivasan R, Smothers J, Hoos A. Belantamab Mafodotin (GSK2857916) Drives Immunogenic Cell Death and Immune-mediated Antitumor Responses In Vivo. Mol Cancer Ther 2021; 20:1941-1955. [PMID: 34253590 PMCID: PMC9398105 DOI: 10.1158/1535-7163.mct-21-0035] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/10/2021] [Accepted: 06/29/2021] [Indexed: 01/07/2023]
Abstract
B-cell maturation antigen (BCMA) is an attractive therapeutic target highly expressed on differentiated plasma cells in multiple myeloma and other B-cell malignancies. GSK2857916 (belantamab mafodotin, BLENREP) is a BCMA-targeting antibody-drug conjugate approved for the treatment of relapsed/refractory multiple myeloma. We report that GSK2857916 induces immunogenic cell death in BCMA-expressing cancer cells and promotes dendritic cell activation in vitro and in vivo GSK2857916 treatment enhances intratumor immune cell infiltration and activation, delays tumor growth, and promotes durable complete regressions in immune-competent mice bearing EL4 lymphoma tumors expressing human BCMA (EL4-hBCMA). Responding mice are immune to rechallenge with EL4 parental and EL4-hBCMA cells, suggesting engagement of an adaptive immune response, immunologic memory, and tumor antigen spreading, which are abrogated upon depletion of endogenous CD8+ T cells. Combinations with OX40/OX86, an immune agonist antibody, significantly enhance antitumor activity and increase durable complete responses, providing a strong rationale for clinical evaluation of GSK2857916 combinations with immunotherapies targeting adaptive immune responses, including T-cell-directed checkpoint modulators.
Collapse
Affiliation(s)
- Rocio Montes de Oca
- Experimental Medicine Unit, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania.,Corresponding Author: Rocio Montes de Oca, Experimental Medicine Unit, Oncology R&D, GlaxoSmithKline (United States), 1250 S. Collegeville Road, Collegeville, PA 19426. Phone: 610-917-5746; E-mail:
| | - Alireza S. Alavi
- Immuno-Oncology and Combinations RU, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Nick Vitali
- Immuno-Oncology and Combinations RU, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Sabyasachi Bhattacharya
- Immuno-Oncology and Combinations RU, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Christina Blackwell
- Immuno-Oncology and Combinations RU, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Krupa Patel
- Immuno-Oncology and Combinations RU, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Laura Seestaller-Wehr
- Immuno-Oncology and Combinations RU, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Heather Kaczynski
- Immuno-Oncology and Combinations RU, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Hong Shi
- Immuno-Oncology and Combinations RU, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Eric Dobrzynski
- Bioanalysis, Immunogenicity and Biomarkers, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Leslie Obert
- Translational Medicine and Comparative Pathobiology, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Lyuben Tsvetkov
- Immuno-Oncology and Combinations RU, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania
| | - David C. Cooper
- Research Statistics, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Heather Jackson
- Immuno-Oncology and Combinations RU, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Paul Bojczuk
- Immuno-Oncology and Combinations RU, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Sabrina Forveille
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Oliver Kepp
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Allan Sauvat
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, P.R. China.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | | | - Jingsong Yang
- Immuno-Oncology and Combinations RU, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Chris Hopson
- Immuno-Oncology and Combinations RU, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Niranjan Yanamandra
- Immuno-Oncology and Combinations RU, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Christopher Shelton
- Immuno-Oncology and Combinations RU, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Patrick Mayes
- Immuno-Oncology and Combinations RU, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania
| | | | - Mary Barnette
- Immuno-Oncology and Combinations RU, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Roopa Srinivasan
- Experimental Medicine Unit, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania
| | - James Smothers
- Immuno-Oncology and Combinations RU, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Axel Hoos
- Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania
| |
Collapse
|
58
|
Bourbon E, Ghesquières H, Bachy E. CAR-T cells, from principle to clinical applications. Bull Cancer 2021; 108:S4-S17. [DOI: 10.1016/j.bulcan.2021.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/28/2021] [Accepted: 02/11/2021] [Indexed: 11/29/2022]
|
59
|
Tong JTW, Harris PWR, Brimble MA, Kavianinia I. An Insight into FDA Approved Antibody-Drug Conjugates for Cancer Therapy. Molecules 2021; 26:5847. [PMID: 34641391 PMCID: PMC8510272 DOI: 10.3390/molecules26195847] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
The large number of emerging antibody-drug conjugates (ADCs) for cancer therapy has resulted in a significant market 'boom', garnering worldwide attention. Despite ADCs presenting huge challenges to researchers, particularly regarding the identification of a suitable combination of antibody, linker, and payload, as of September 2021, 11 ADCs have been granted FDA approval, with eight of these approved since 2017 alone. Optimism for this therapeutic approach is clear, despite the COVID-19 pandemic, 2020 was a landmark year for deals and partnerships in the ADC arena, suggesting that there remains significant interest from Big Pharma. Herein we review the enthusiasm for ADCs by focusing on the features of those approved by the FDA, and offer some thoughts as to where the field is headed.
Collapse
Affiliation(s)
- Juliana T. W. Tong
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; (J.T.W.T.); (P.W.R.H.)
- Maurice Wilkins Centre for Molecular Biodiversity, The University of Auckland, Auckland 1010, New Zealand
| | - Paul W. R. Harris
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; (J.T.W.T.); (P.W.R.H.)
- Maurice Wilkins Centre for Molecular Biodiversity, The University of Auckland, Auckland 1010, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; (J.T.W.T.); (P.W.R.H.)
- Maurice Wilkins Centre for Molecular Biodiversity, The University of Auckland, Auckland 1010, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Iman Kavianinia
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; (J.T.W.T.); (P.W.R.H.)
- Maurice Wilkins Centre for Molecular Biodiversity, The University of Auckland, Auckland 1010, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
60
|
Caveolin-1 in Kidney Chronic Antibody-Mediated Rejection: An Integrated Immunohistochemical and Transcriptomic Analysis Based on the Banff Human Organ Transplant (B-HOT) Gene Panel. Biomedicines 2021; 9:biomedicines9101318. [PMID: 34680435 PMCID: PMC8533527 DOI: 10.3390/biomedicines9101318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023] Open
Abstract
Caveolin-1 overexpression has previously been reported as a marker of endothelial injury in kidney chronic antibody-mediated rejection (c-ABMR), but conclusive evidence supporting its use for daily diagnostic practice is missing. This study aims to evaluate if Caveolin-1 can be considered an immunohistochemical surrogate marker of c-ABMR. Caveolin-1 expression was analyzed in a selected series of 22 c-ABMR samples and 11 controls. Caveolin-1 immunohistochemistry proved positive in peritubular and glomerular capillaries of c-ABMR specimens, irrespective of C4d status whereas all controls were negative. Multiplex gene expression profiling in c-ABMR cases confirmed Caveolin-1 overexpression and identified additional genes (n = 220) and pathways, including MHC Class II antigen presentation and Type II interferon signaling. No differences in terms of gene expression (including Caveolin-1 gene) were observed according to C4d status. Conversely, immune cell signatures showed a NK-cell prevalence in C4d-negative samples compared with a B-cell predominance in C4d-positive cases, a finding confirmed by immunohistochemical assessment. Finally, differentially expressed genes were observed between c-ABMR and controls in pathways associated with Caveolin-1 functions (angiogenesis, cell metabolism and cell–ECM interaction). Based on our findings, Caveolin-1 resulted as a key player in c-ABMR, supporting its role as a marker of this condition irrespective of C4d status.
Collapse
|
61
|
Chimeric Antigen Receptor T-Cell Therapeutics for Multiple Myeloma: Moving Into the Spotlight. ACTA ACUST UNITED AC 2021; 27:205-212. [PMID: 34549909 DOI: 10.1097/ppo.0000000000000525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Chimeric antigen receptor (CAR) T-cell therapy has quickly emerged as a highly promising treatment for patients with relapsed and refractory multiple myeloma. There are numerous candidates under development, each with their unique characteristics and points of differentiation. The most recent US Food and Drug Administration approval of the first B-cell maturation antigen-targeted CAR-T cell therapy on March 26, 2021, has paved a path forward for the eventual evaluation of more of these investigational agents undergoing clinical trials. Herein, we highlight, from a clinical development perspective, the CAR-T cell therapies farthest along in development with updated data from the American Society of Hematology 2020 annual meeting. We also discuss potential paths of overcoming resistance to these therapies and the future direction for CAR-T cell therapeutics in multiple myeloma.
Collapse
|
62
|
Nikolaou A, Ambavane A, Shah A, Ma W, Tosh J, Kapetanakis V, Willson J, Wang F, Hogea C, Gorsh B, Gutierrez B, Sapra S, Suvannasankha A, Samyshkin Y. Belantamab mafodotin for the treatment of relapsed/refractory multiple myeloma in heavily pretreated patients: a US cost-effectiveness analysis. Expert Rev Hematol 2021; 14:1137-1145. [PMID: 34465265 DOI: 10.1080/17474086.2021.1970522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Patients with relapsed/refractory multiple myeloma (RRMM) require several lines of therapy, with typically shorter remission duration with each additional line. RESEARCH DESIGN AND METHODS The cost-effectiveness of belantamab mafodotin (belamaf; DREAMM-2; NCT03525678) was compared with selinexor plus dexamethasone (SEL+DEX; STORM Part 2; NCT02336815) among patients with RRMM who have received at least four prior therapies. The base case used a US commercial payer's perspective over a 10-year time horizon. Efficacy data were based on parametric survival analysis of DREAMM-2 and matching-adjusted indirect treatment comparison between DREAMM-2 and STORM Part 2, which assessed relative treatment effects between belamaf and SEL+DEX. Cost inputs included drug treatment, concomitant medications, adverse event management, subsequent treatments, and disease management. RESULTS Belamaf decreased total treatment costs per patient by $14,267 and increased patient life years by 0.74 and quality-adjusted life years (QALYs) by 0.49 versus SEL+DEX. Patients receiving belamaf accrued 0.12 fewer progression-free life years versus patients on SEL+DEX. CONCLUSIONS From a US commercial payer's perspective, belamaf had lower costs, and increased QALYs and life-year gain, compared with SEL+DEX. Belamaf is therefore likely to be a cost-effective treatment option for patients with RRMM who have received four or more prior lines of therapy.
Collapse
Affiliation(s)
| | | | - Anshul Shah
- Modelling and Simulation, Evidera, Waltham, MA, USA
| | - Wenkang Ma
- Modelling and Simulation, Evidera, Waltham, MA, USA
| | - Jon Tosh
- Modelling and Simulation, Evidera, London, UK
| | | | | | - Feng Wang
- GlaxoSmithKline, Upper Providence, PA, USA
| | | | | | | | | | - Attaya Suvannasankha
- Indiana University Simon Cancer Center and Roudebush VAMC, Indianapolis, IN, USA
| | | |
Collapse
|
63
|
Abramson HN. Immunotherapy of Multiple Myeloma: Promise and Challenges. Immunotargets Ther 2021; 10:343-371. [PMID: 34527606 PMCID: PMC8437262 DOI: 10.2147/itt.s306103] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
Whereas the treatment of MM was dependent solely on alkylating agents and corticosteroids during the prior three decades, the landscape of therapeutic measures to treat the disease began to expand enormously early in the current century. The introduction of new classes of small-molecule drugs, such as proteasome blockers (bortezomib and carfilzomib), immunomodulators (lenalidomide and pomalidomide), nuclear export inhibitors (selinexor), and histone deacetylase blockers (panobinostat), as well as the application of autologous stem cell transplantation (ASCT), resulted in a seismic shift in how the disease is treated. The picture changed dramatically once again starting with the 2015 FDA approval of two monoclonal antibodies (mAbs) - the anti-CD38 daratumumab and the anti-SLAMF7 elotuzumab. Daratumumab, in particular, has had a great impact on MM therapy and today is often included in various regimens to treat the disease, both in newly diagnosed cases and in the relapse/refractory setting. Recently, other immunotherapies have been added to the arsenal of drugs available to fight this malignancy. These include isatuximab (also anti-CD38) and, in the past year, the antibody-drug conjugate (ADC) belantamab mafodotin and the chimeric antigen receptor (CAR) T-cell product idecabtagene vicleucel (ide-cel). While the accumulated benefits of these newer agents have resulted in a doubling of the disease's five-year survival rate to more than 5 years and improved quality of life, the disease remains incurable. Almost without exception patients experience relapse and/or become refractory to the drugs used, making the search for innovative therapies all the more essential. This review covers the current scope of anti-myeloma immunotherapeutic agents, both those in clinical use and on the horizon, including naked mAbs, ADCs, bi- and multi-targeted mAbs, and CAR T-cells. Emphasis is placed on the benefits of each along with the challenges that need to be overcome if MM is to be considered curable in the future.
Collapse
Affiliation(s)
- Hanley N Abramson
- Wayne State University, Department of Pharmaceutical Sciences, Detroit, MI, 48201, USA
| |
Collapse
|
64
|
Ferron-Brady G, Rathi C, Collins J, Struemper H, Opalinska J, Visser S, Jewell RC. Exposure-Response Analyses for Therapeutic Dose Selection of Belantamab Mafodotin in Patients With Relapsed/Refractory Multiple Myeloma. Clin Pharmacol Ther 2021; 110:1282-1292. [PMID: 34468979 PMCID: PMC9293327 DOI: 10.1002/cpt.2409] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022]
Abstract
Belantamab mafodotin is an antibody–drug conjugate comprising a humanized anti‐B‐cell maturation antigen (BCMA) monoclonal antibody conjugated to monomethyl auristatin F (MMAF) via a protease‐resistant maleimidocaproyl linker. Single‐agent belantamab mafodotin showed clinically meaningful activity and manageable safety in patients with heavily pretreated relapsed/refractory multiple myeloma (RRMM) in the phase I DREAMM‐1 and phase II DREAMM‐2 studies and is approved by the US Food and Drug Administration and European Medicines Agency for RRMM treatment. To support monotherapy dose selection, the relationship between Cycle 1 exposure (derived using a population pharmacokinetic model) and clinical response (for multiple efficacy and safety end points) was explored. In DREAMM‐2, efficacy end points (probability of response (PoR) and progression‐free survival (PFS)) were associated with exposure in univariate evaluation; however, once disease burden factors were included in the model (e.g., baseline soluble BCMA, ß2‐microglobulin), exposure was no longer significant. Patients with higher disease burden had lower exposure. In DREAMM‐1, belantamab mafodotin exposure was the only variable to correlate with PoR and PFS. Probability of corneal events (keratopathy), but not dry eye or blurred vision, was strongly associated with belantamab mafodotin exposure (DREAMM‐2). Higher cys‐mcMMAF maximum plasma drug concentration (Cmax) and lower baseline platelet count were associated with increased probability of thrombocytopenia (DREAMM‐1 and DREAMM ‐2). In general, safety end points were more strongly associated with belantamab mafodotin exposure than efficacy end points, particularly after disease factors and patient characteristics were taken into account. Overall, these findings supported the monotherapy dose recommendation of belantamab mafodotin as 2.5 mg/kg every 3 weeks in patients with RRMM who have received four or more prior therapies.
Collapse
Affiliation(s)
| | - Chetan Rathi
- GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Jon Collins
- GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | | | | | | | | |
Collapse
|
65
|
Swan D, Routledge D, Harrison S. The evolving status of immunotherapies in multiple myeloma: the future role of bispecific antibodies. Br J Haematol 2021; 196:488-506. [PMID: 34472091 DOI: 10.1111/bjh.17805] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022]
Abstract
Treatment outcomes in multiple myeloma (MM) have improved dramatically over the past 10 years. However, patients with high-risk disease such as those with Stage III disease by the Revised International Staging System, the presence of adverse cytogenetics, or who are refractory to proteosome inhibitors, immunomodulatory drugs and monoclonal antibodies may have dismal outcomes. These patients represent an urgent ongoing need in MM. One of the hallmarks of MM is immune dysfunction and a tumour-permissive immune microenvironment. Ameliorating the immune-paresis could lead to improved outcomes. The role of immunotherapies has been growing at an exponential pace with numerous agents under development in clinical trials. In the present review, we provide an overview of immunotherapies in MM, focussing on bispecific antibodies (BsAbs). We review efficacy outcomes from the published clinical trials and consider the important safety aspects of these therapies, in particular the risk of cytokine-release syndrome and immune effector cell-associated neurotoxicity syndrome, and how these compare with patients receiving chimeric antigen receptor T cells. We discuss the MM epitopes being targeted by BsAbs, either in clinical or preclinical stages, and we consider where these therapies might best fit within the future ever-changing paradigm of MM treatment.
Collapse
Affiliation(s)
- Dawn Swan
- Department of Haematology, St James' Hospital, Dublin, Ireland
| | - David Routledge
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | - Simon Harrison
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
66
|
Abstract
PURPOSE OF REVIEW Despite considerable advances in the treatment of multiple myeloma (MM) in the last decade, a significant number of patients still progress on current available therapies. Here, we review treatment modalities used to target BCMA in the treatment of MM, specifically antibody-drug conjugates (ADC), bispecific antibody constructs, and chimeric antibody receptor (CAR) modified T-cell therapies. We will provide an overview of therapies from these classes that have presented or published clinical data, as well as data on mechanisms of resistance to these novel agents. RECENT FINDINGS Clinical trials exploring different BCMA-targeting modalities to treat multiple myeloma are underway and demonstrate promising results. In relapsed/refractory multiple myeloma, anti-BCMA ADCs and bispecific antibody constructs are showing impressive efficacy with manageable side effect profiles. In parallel, adoptive cellular therapy has induced dramatic durable responses in multiply relapsed and refractory myeloma patients. Therapeutic approaches targeting BCMA hold significant potential in the management of multiple myeloma and will soon be incorporated in combination with current standard therapies to improve outcomes for patients with multiple myeloma. In addition, novel approaches are being evaluated to overcome resistance mechanisms to anti-BCMA therapies.
Collapse
Affiliation(s)
- Carlyn Rose Tan
- Myeloma Service Department of Medicine, Memorial Sloan Kettering Cancer Center, 530 E 74th Street, New York, NY, 10021, USA.
| | - Urvi A Shah
- Myeloma Service Department of Medicine, Memorial Sloan Kettering Cancer Center, 530 E 74th Street, New York, NY, 10021, USA
| |
Collapse
|
67
|
Deng H, Liu M, Yuan T, Zhang H, Cui R, Li J, Yuan J, Wang X, Wang Y, Deng Q. Efficacy of Humanized Anti-BCMA CAR T Cell Therapy in Relapsed/Refractory Multiple Myeloma Patients With and Without Extramedullary Disease. Front Immunol 2021; 12:720571. [PMID: 34421924 PMCID: PMC8374046 DOI: 10.3389/fimmu.2021.720571] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/14/2021] [Indexed: 01/22/2023] Open
Abstract
In recent years, many new treatments for relapsed/refractory (R/R) multiple myeloma (MM) have improved patient prognosis, but the prognosis of patients with extramedullary MM is still particularly poor. Therefore, more efficacious therapies and novel strategies are urgently needed for these patients. The aim of this study was to observe and compare the efficacy and safety of humanized anti-B cell maturation antigen (anti-BCMA) chimeric antigen receptor (CAR) T cell therapy in R/R MM patients with and without extramedullary disease. Seven R/R MM patients with extramedullary disease and 13 without extramedullary disease received humanized anti-BCMA CAR T cell therapy. The overall response rate was not different between patients with and without extramedullary disease. There was no difference in the progression-free survival (PFS) or overall survival (OS) rates between the two groups at 180 days, but the PFS and OS rates in patients with extramedullary disease were lower at 360 days than those in patients without extramedullary disease. Although some patients with extramedullary disease experienced further disease progression, their M protein level did not increase. We did not see this change trend of M protein in patients without extramedullary disease. However, this was not observed in patients without extramedullary disease. Among patients who responded to CAR T cell therapy, the grades of cytokine release syndrome (CRS) and immune effector cell-associated neurotoxic syndrome (ICANS) were much higher among patients with extramedullary disease. In summary, R/R MM patients with extramedullary disease could benefit from humanized anti-BCMA CAR T cell therapy in the short term, although the CRS and ICANS grades were much higher in patients with extramedullary disease. Therefore, anti-BCMA CAR T cell therapy allows for a remission time for R/R MM patients with extramedullary disease, which could be maintained by bridging hematopoietic stem cell transplantation, radiotherapy, and other therapies. Clinical Trial Registration http://www.chictr.org.cn/index.aspx, identifiers ChiCTR1800017051 and ChiCTR2000033925.
Collapse
Affiliation(s)
- Haobin Deng
- First Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Meijing Liu
- First Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Ting Yuan
- Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Huan Zhang
- Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Rui Cui
- Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Jingyi Li
- Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Jijun Yuan
- Shanghai Genbase Biotechnology Co., Ltd., Shanghai, China
| | - Xiaofang Wang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yafei Wang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qi Deng
- Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
68
|
Tracking the CAR-T Revolution: Analysis of Clinical Trials of CAR-T and TCR-T Therapies for the Treatment of Cancer (1997-2020). Healthcare (Basel) 2021; 9:healthcare9081062. [PMID: 34442199 PMCID: PMC8392279 DOI: 10.3390/healthcare9081062] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 12/21/2022] Open
Abstract
Chimeric antigen receptor and T-cell receptor (CAR-T/TCR-T) cellular immunotherapies have shown remarkable success in the treatment of some refractory B-cell malignancies, with potential to provide durable clinical response for other types of cancer. In this paper, we look at all available FDA CAR-T/TCR-T clinical trials for the treatment of cancer, and analyze them with respect to different disease tissues, targeted antigens, products, and originator locations. We found that 627 of 1007 registered are currently active and of those 273 (44%) originated in China and 280 (45%) in the US. Our analysis suggests that the rapid increase in the number of clinical trials is driven by the development of different CAR-T products that use a similar therapeutic approach. We coin the term bioparallels to describe such products. Our results suggest that one feature of the CAR-T/TCR-T industry may be a robust response to success and failure of competitor products.
Collapse
|
69
|
Joseph NS, Tai YT, Anderson KC, Lonial S. Novel Approaches to Treating Relapsed and Refractory Multiple Myeloma with a Focus on Recent Approvals of Belantamab Mafodotin and Selinexor. Clin Pharmacol 2021; 13:169-180. [PMID: 34434061 PMCID: PMC8380622 DOI: 10.2147/cpaa.s288840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/28/2021] [Indexed: 01/10/2023] Open
Abstract
Though survival outcomes in multiple myeloma patients have improved drastically over the past few decades, there still remains an ongoing need for effective and tolerable treatment options in the relapsed and refractory space. Encouragingly, there have been three recent FDA approvals for triple-class refractory multiple myeloma, and there is promising ongoing development of additional agents with varying novel mechanisms of action. Here, we will review the most recent data on both belantamab mafodotin, an antibody drug conjugate (ADC) targeting BCMA, and selinexor, a first-in-class selective inhibitor of XPO1, as well as touch on some of the recently published data for other immunotherapies in development, namely bispecific T cell engagers, ADCs, and CAR-T cell therapies.
Collapse
Affiliation(s)
- Nisha S Joseph
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Yu-Tzu Tai
- Dana-Farber Cancer Institute, Harvard University, Boston, MA, USA
| | | | - Sagar Lonial
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
70
|
Rathi C, Collins J, Struemper H, Opalinska J, Jewell RC, Ferron-Brady G. Population pharmacokinetics of belantamab mafodotin, a BCMA-targeting agent in patients with relapsed/refractory multiple myeloma. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2021; 10:851-863. [PMID: 34076364 PMCID: PMC8376139 DOI: 10.1002/psp4.12660] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023]
Abstract
Belantamab mafodotin (belamaf) is an antibody-drug conjugate (ADC) targeting B-cell maturation antigen (BCMA). Nonlinear mixed-effects models were developed to characterize the population pharmacokinetics (PopPK) of ADC, total monoclonal antibody (mAb), and cysteine-maleimidocaproyl-MMAF (cys-mcMMAF) after 0.03-4.6 mg/kg dosing every 3 weeks in heavily pretreated patients with relapsed/refractory multiple myeloma (RRMM; DREAMM-1, n = 73; DREAMM-2, n = 218). Sequential modeling methodology was used. Individual post hoc parameter estimates from the final ADC model were used to develop total mAb and cys-mcMMAF models. Formal covariate selection used a modified stepwise forward inclusion method with backward elimination. A linear, two-compartment PopPK model with a time-varying clearance (CL) described ADC PK. Initial ADC typical value for CL for a DREAMM-2 patient was 0.936 L/day with a half-life of 11.5 days, over time CL was reduced by 28% resulting in a half-life of 14.3 days. Time to 50% maximal CL change was ~ 50 days. Baseline soluble BCMA (sBCMA), immunoglobulin (IgG), albumin, and bodyweight impacted ADC CL. Cys-mcMMAF concentrations were described with a linear two-compartment model linked to ADC; input rate was governed by deconjugation/intracellular proteolytic degradation of ADC represented by an exponentially decreasing MMAF:mAb (drug antibody ratio [DAR]) after each dose. Time to 50% DAR reduction was 10.3 days. Baseline sBCMA and IgG impacted cys-mcMMAF central volume of distribution. In conclusion, ADC, total mAb, and cys-mcMMAF concentration-time profiles in RRMM were well-described by PopPK models, and exposure was most strongly impacted by disease-related characteristics.
Collapse
Affiliation(s)
- Chetan Rathi
- GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Jon Collins
- GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | | | | | | | | |
Collapse
|
71
|
Xing L, Wang S, Liu J, Yu T, Chen H, Wen K, Li Y, Lin L, Hsieh PA, Cho SF, An G, Qiu L, Kinneer K, Munshi N, Anderson KC, Tai YT. BCMA-Specific ADC MEDI2228 and Daratumumab Induce Synergistic Myeloma Cytotoxicity via IFN-Driven Immune Responses and Enhanced CD38 Expression. Clin Cancer Res 2021; 27:5376-5388. [PMID: 34301753 DOI: 10.1158/1078-0432.ccr-21-1621] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/11/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Efforts are required to improve the potency and durability of CD38- and BCMA-based immunotherapies in human multiple myeloma. We here delineated the molecular and cellular mechanisms underlying novel immunomodulatory effects triggered by BCMA pyrrolobenzodiazepine (PBD) antibody drug conjugate (ADC) MEDI2228 which can augment efficacy of these immunotherapies. EXPERIMENTAL DESIGN MEDI2228-induced transcriptional and protein changes were investigated to define significantly impacted genes and signaling cascades in multiple myeloma cells. Mechanisms whereby MEDI2228 combination therapies can enhance cytotoxicity or overcome drug resistance in multiple myeloma cell lines and patient multiple myeloma cells were defined using in vitro models of tumor in the bone marrow (BM) microenvironment, as well as in human natural killer (NK)-reconstituted NOD/SCID gamma (NSG) mice bearing MM1S tumors. RESULTS MEDI2228 enriched IFN I signaling and enhanced expression of IFN-stimulated genes in multiple myeloma cell lines following the induction of DNA damage-ATM/ATR-CHK1/2 pathways. It activated cGAS-STING-TBK1-IRF3 and STAT1-IRF1-signaling cascades and increased CD38 expression in multiple myeloma cells but did not increase CD38 expression in BCMA-negative NK effector cells. It overcame CD38 downregulation on multiple myeloma cells triggered by IL6 and patient BM stromal cell-culture supernatant via activation of STAT1-IRF1, even in immunomodulatory drug (IMiD)- and bortezomib-resistant multiple myeloma cells. In vitro and in vivo upregulation of NKG2D ligands and CD38 in MEDI2228-treated multiple myeloma cells was further associated with synergistic daratumumab (Dara) CD38 MoAb-triggered NK-mediated cytotoxicity of both cell lines and autologous drug-resistant patient multiple myeloma cells. CONCLUSIONS These results provide the basis for clinical evaluation of combination MEDI2228 with Dara to further improve patient outcome in multiple myeloma.
Collapse
Affiliation(s)
- Lijie Xing
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Su Wang
- Department of Biomedical Informatics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
| | - Jiye Liu
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts
| | - Tengteng Yu
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts
| | - Hailin Chen
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts
| | - Kenneth Wen
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts
| | - Yuyin Li
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts
- School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin China
| | - Liang Lin
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts
| | - Phillip A Hsieh
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts
| | - Shih-Feng Cho
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Gang An
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | | | - Nikhil Munshi
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts
| | - Kenneth C Anderson
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts
| | - Yu-Tzu Tai
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts
| |
Collapse
|
72
|
Haber L, Olson K, Kelly MP, Crawford A, DiLillo DJ, Tavaré R, Ullman E, Mao S, Canova L, Sineshchekova O, Finney J, Pawashe A, Patel S, McKay R, Rizvi S, Damko E, Chiu D, Vazzana K, Ram P, Mohrs K, D'Orvilliers A, Xiao J, Makonnen S, Hickey C, Arnold C, Giurleo J, Chen YP, Thwaites C, Dudgeon D, Bray K, Rafique A, Huang T, Delfino F, Hermann A, Kirshner JR, Retter MW, Babb R, MacDonald D, Chen G, Olson WC, Thurston G, Davis S, Lin JC, Smith E. Generation of T-cell-redirecting bispecific antibodies with differentiated profiles of cytokine release and biodistribution by CD3 affinity tuning. Sci Rep 2021; 11:14397. [PMID: 34257348 PMCID: PMC8277787 DOI: 10.1038/s41598-021-93842-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/30/2021] [Indexed: 01/07/2023] Open
Abstract
T-cell-redirecting bispecific antibodies have emerged as a new class of therapeutic agents designed to simultaneously bind to T cells via CD3 and to tumor cells via tumor-cell-specific antigens (TSA), inducing T-cell-mediated killing of tumor cells. The promising preclinical and clinical efficacy of TSAxCD3 antibodies is often accompanied by toxicities such as cytokine release syndrome due to T-cell activation. How the efficacy and toxicity profile of the TSAxCD3 bispecific antibodies depends on the binding affinity to CD3 remains unclear. Here, we evaluate bispecific antibodies that were engineered to have a range of CD3 affinities, while retaining the same binding affinity for the selected tumor antigen. These agents were tested for their ability to kill tumor cells in vitro, and their biodistribution, serum half-life, and anti-tumor activity in vivo. Remarkably, by altering the binding affinity for CD3 alone, we can generate bispecific antibodies that maintain potent killing of TSA + tumor cells but display differential patterns of cytokine release, pharmacokinetics, and biodistribution. Therefore, tuning CD3 affinity is a promising method to improve the therapeutic index of T-cell-engaging bispecific antibodies.
Collapse
Affiliation(s)
- Lauric Haber
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA.
| | - Kara Olson
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Marcus P Kelly
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | | | - Richard Tavaré
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Erica Ullman
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Shu Mao
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Lauren Canova
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | | | - Arpita Pawashe
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Supriya Patel
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Ryan McKay
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Sahar Rizvi
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | | | | | - Priyanka Ram
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Katja Mohrs
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | - Jenny Xiao
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | - Carlos Hickey
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Cody Arnold
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Jason Giurleo
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Ya Ping Chen
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | - Drew Dudgeon
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Kevin Bray
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | - Tammy Huang
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Frank Delfino
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Aynur Hermann
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | - Marc W Retter
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Robert Babb
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | - Gang Chen
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | - Gavin Thurston
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Samuel Davis
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - John C Lin
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Eric Smith
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| |
Collapse
|
73
|
Cornell RF, Bishop MR, Kumar S, Giralt SA, Nooka AK, Larson SM, Locke FL, Raje NS, Lei L, Dong J, Le Gall JB, Rossi JM, Orlowski RZ. A phase 1, multicenter study evaluating the safety and efficacy of KITE-585, an autologous anti-BCMA CAR T-cell therapy, in patients with relapsed/refractory multiple myeloma. Am J Cancer Res 2021; 11:3285-3293. [PMID: 34249462 PMCID: PMC8263642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/13/2021] [Indexed: 06/13/2023] Open
Abstract
Despite advances in treatment, most patients with multiple myeloma (MM) will relapse, and long-term survival remains poor. B-cell maturation antigen (BCMA) is an ideal therapeutic target as it is expressed throughout the disease course with normal tissue expression limited to plasma and some B-cell lineages. This phase 1, multicenter, first-in-human study evaluated the safety and efficacy of KITE-585, an autologous anti-BCMA chimeric antigen receptor (CAR) T-cell therapy, in patients with relapsed/refractory MM (RRMM). Key eligibility criteria included measurable MM and progression, defined by the International Myeloma Working Group Consensus Criteria within 60 days of the last treatment. Patients underwent leukapheresis and subsequently received a 3-day conditioning therapy regimen (cyclophosphamide [300 mg/m2/day] and fludarabine [30 mg/m2/day]). Patients then received a flat dose of 3 × 107 to 1 × 109 KITE-585 CAR T cells in a 3+3 dose-escalation design. The primary endpoint was incidence of adverse events (AEs) defined as dose-limiting toxicities (DLTs). Key secondary and exploratory endpoints included efficacy outcomes, incidence of AEs, levels of KITE-585 in blood, serum cytokines, and incidence of anti-BCMA CAR antibodies. Seventeen patients were enrolled, and 14 received KITE-585 with a median follow-up of 12.0 months. The median age of patients was 56 years, 41.2% had an Eastern Cooperative Oncology Group performance status of 1, 92.9% had baseline BCMA expression on plasma cells, and median number of prior therapies was 5.5. No patients experienced a DLT, all patients experienced ≥ 1 grade ≥ 3 treatment-emergent AE (TEAE), and no grade 5 TEAEs were observed. There were no grade ≥ 3 events of cytokine release syndrome, neurologic events, or infections; all were grade 1 or 2, and each occurred in 21.4% of patients. Among all patients infused with KITE-585, 1 patient who received 3 × 107 anti-BCMA CAR T cells experienced a partial response. Median peak CAR T-cell expansion was low (0.98 cells/μL), as were median peak serum levels of CAR-associated cytokines, including interferon-γ (61.45 pg/mL) and interleukin-2 (0.9 pg/mL). KITE-585 demonstrated a manageable safety profile; however, the limited CAR T-cell expansion and associated lack of anti-tumor response in patients with RRMM treated with KITE-585 is consistent with the minimal CAR T-cell activity observed.
Collapse
Affiliation(s)
| | | | | | | | - Ajay K Nooka
- Winship Cancer Institute, Emory University School of MedicineAtlanta, GA, USA
| | | | | | - Noopur S Raje
- Massachussetts General Hospital Cancer CenterBoston, MA, USA
| | - Lei Lei
- Kite, A Gilead CompanySanta Monica, CA, USA
| | | | | | | | | |
Collapse
|
74
|
Lonial S, Nooka AK, Thulasi P, Badros AZ, Jeng BH, Callander NS, Potter HA, Sborov D, Zaugg BE, Popat R, Degli Esposti S, Byrne J, Opalinska J, Baron J, Piontek T, Gupta I, Dana R, Farooq AV, Colby K, Jakubowiak A. Management of belantamab mafodotin-associated corneal events in patients with relapsed or refractory multiple myeloma (RRMM). Blood Cancer J 2021; 11:103. [PMID: 34039952 PMCID: PMC8155129 DOI: 10.1038/s41408-021-00494-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/31/2021] [Accepted: 04/26/2021] [Indexed: 12/25/2022] Open
Abstract
Belantamab mafodotin (belamaf) demonstrated deep and durable responses in patients with heavily pretreated relapsed or refractory multiple myeloma (RRMM) in DREAMM-2 (NCT03525678). Corneal events, specifically keratopathy (including superficial punctate keratopathy and/or microcyst-like epithelial changes (MECs), eye examination findings with/without symptoms), were common, consistent with reports from other antibody–drug conjugates. Given the novel nature of corneal events in RRMM management, guidelines are required for their prompt identification and appropriate management. Eye examination findings from DREAMM-2 and insights from hematology/oncology investigators and ophthalmologists, including corneal specialists, were collated and used to develop corneal event management guidelines. The following recommendations were formulated: close collaboration among hematologist/oncologists and eye care professionals is needed, in part, to provide optimal care in relation to the belamaf benefit–risk profile. Patients receiving belamaf should undergo eye examinations before and during every treatment cycle and promptly upon worsening of symptoms. Severity of corneal events should be determined based on corneal examination findings and changes in best-corrected visual acuity. Treatment decisions, including dose modifications, should be based on the most severe finding present. These guidelines are recommended for the assessment and management of belamaf-associated ocular events to help mitigate ocular risk and enable patients to continue to experience a clinical benefit with belamaf.
Collapse
Affiliation(s)
- Sagar Lonial
- Emory University, Winship Cancer Institute, Atlanta, GA, USA.
| | - Ajay K Nooka
- Emory University, Winship Cancer Institute, Atlanta, GA, USA
| | | | - Ashraf Z Badros
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bennie H Jeng
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - Douglas Sborov
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Brian E Zaugg
- Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Rakesh Popat
- University College London Hospitals, NHS Foundation Trust, London, UK
| | - Simona Degli Esposti
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | | | | | | | | | - Ira Gupta
- GlaxoSmithKline, Upper Providence, PA, USA
| | - Reza Dana
- Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Asim V Farooq
- University of Chicago Medical Center, Chicago, IL, USA
| | - Kathryn Colby
- New York University Grossman School of Medicine, New York, NY, USA
| | | |
Collapse
|
75
|
AMG 701 induces cytotoxicity of multiple myeloma cells and depletes plasma cells in cynomolgus monkeys. Blood Adv 2021; 4:4180-4194. [PMID: 32886754 DOI: 10.1182/bloodadvances.2020002565] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM) is a hematologic malignancy that is characterized by the accumulation of abnormal plasma cells (PCs) in the bone marrow (BM). Patient outcome may be improved with BiTE (bispecific T-cell engager) molecules, which redirect T cells to lyse tumor cells. B-cell maturation antigen (BCMA) supports PC survival and is highly expressed on MM cells. A half-life extended anti-BCMA BiTE molecule (AMG 701) induced selective cytotoxicity against BCMA-expressing MM cells (average half-maximal effective concentration, 18.8 ± 14.8 pM), T-cell activation, and cytokine release in vitro. In a subcutaneous mouse xenograft model, at all doses tested, AMG 701 completely inhibited tumor formation (P < .001), as well as inhibited growth of established tumors (P ≤ .001) and extended survival in an orthotopic MM model (P ≤ .01). To evaluate AMG 701 bioactivity in cynomolgus monkeys, a PC surface phenotype and specific genes were defined to enable a quantitative digital droplet polymerase chain reaction assay (sensitivity, 0.1%). Dose-dependent pharmacokinetic and pharmacodynamic behavior was observed, with depletion of PC-specific genes reaching 93% in blood and 85% in BM. Combination with a programmed cell death protein 1 (PD-1)-blocking antibody significantly increased AMG 701 potency in vitro. A model of AMG 701 binding to BCMA and CD3 indicates that the distance between the T-cell and target cell membranes (ie, the immunological synapse) is similar to that of the major histocompatibility complex class I molecule binding to a T-cell receptor and suggests that the synapse would not be disrupted by the half-life extending Fc domain. These data support the clinical development of AMG 701.
Collapse
|
76
|
The immunomodulatory drugs lenalidomide and pomalidomide enhance the potency of AMG 701 in multiple myeloma preclinical models. Blood Adv 2021; 4:4195-4207. [PMID: 32898244 DOI: 10.1182/bloodadvances.2020002524] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/23/2020] [Indexed: 12/30/2022] Open
Abstract
We investigated here the novel immunomodulation and anti-multiple myeloma (MM) function of T cells engaged by the bispecific T-cell engager molecule AMG 701, and further examined the impact of AMG 701 in combination with immunomodulatory drugs (IMiDs; lenalidomide and pomalidomide). AMG 701 potently induced T-cell-dependent cellular cytotoxicity (TDCC) against MM cells expressing B-cell maturation antigen, including autologous cells from patients with relapsed and refractory MM (RRMM) (half maximal effective concentration, <46.6 pM). Besides inducing T-cell proliferation and cytolytic activity, AMG 701 also promoted differentiation of patient T cells to central memory, effector memory, and stem cell-like memory (scm) phenotypes, more so in CD8 vs CD4 T subsets, resulting in increased CD8/CD4 ratios in 7-day ex vivo cocultures. IMiDs and AMG 701 synergistically induced TDCC against MM cell lines and autologous RRMM patient cells, even in the presence of immunosuppressive bone marrow stromal cells or osteoclasts. IMiDs further upregulated AMG 701-induced patient T-cell differentiation toward memory phenotypes, associated with increased CD8/CD4 ratios, increased Tscm, and decreased interleukin 10-positive T and T regulatory cells (CD25highFOXP3high), which may downregulate T effector cells. Importantly, the combination of AMG 701 with lenalidomide induced sustained inhibition of MM cell growth in SCID mice reconstituted with human T cells; tumor regrowth was eventually observed in cohorts treated with either agent alone (P < .001). These results strongly support AMG 701 clinical studies as monotherapy in patients with RRMM (NCT03287908) and the combination with IMiDs to improve patient outcomes in MM.
Collapse
|
77
|
Hosoya H, Sidana S. Antibody-Based Treatment Approaches in Multiple Myeloma. Curr Hematol Malig Rep 2021; 16:183-191. [PMID: 33730360 PMCID: PMC8715952 DOI: 10.1007/s11899-021-00624-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 01/25/2023]
Abstract
PURPOSE OF REVIEW The field of multiple myeloma treatment has entered a new era with antibody-based approaches in clinical practice. In this review, we focus on the clinical approaches of utilizing antibody-based modality, specifically monoclonal antibodies, antibody-drug conjugates, and bispecific T-cell antibodies in the treatment of multiple myeloma. RECENT FINDINGS Three monoclonal antibodies (daratumumab, isatuximab, elotuzumab) and one anti-BCMA (B-cell maturation antigen) antibody-drug conjugate (belantamab mafodotin) have been approved by the FDA in the last 5 years for the treatment of multiple myeloma. There are many ongoing clinical trials using novel targets and constructs, including bispecific antibodies against BCMA, GPRC5D, and FCRH5. In addition to exploring efficacy, there are ongoing efforts to overcome the resistance to therapy. Antibody-based therapy has improved the outcomes of patients with multiple myeloma and has been incorporated in the standard of care. We expect to see novel targets and constructs that can achieve a deeper and more durable response while minimizing toxicity, as well as better strategies for toxicity management for existing agents. We also expect that antibody-based strategies will be used in earlier lines of therapy in the future.
Collapse
Affiliation(s)
- Hitomi Hosoya
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford, CA, USA
| | - Surbhi Sidana
- Stanford Cancer Institute, Stanford, CA, USA.
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, 300 Pasteur Drive, Room H0101c, Stanford, CA, USA.
| |
Collapse
|
78
|
Marofi F, Tahmasebi S, Rahman HS, Kaigorodov D, Markov A, Yumashev AV, Shomali N, Chartrand MS, Pathak Y, Mohammed RN, Jarahian M, Motavalli R, Motavalli Khiavi F. Any closer to successful therapy of multiple myeloma? CAR-T cell is a good reason for optimism. Stem Cell Res Ther 2021; 12:217. [PMID: 33781320 PMCID: PMC8008571 DOI: 10.1186/s13287-021-02283-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
Abstract
Despite many recent advances on cancer novel therapies, researchers have yet a long way to cure cancer. They have to deal with tough challenges before they can reach success. Nonetheless, it seems that recently developed immunotherapy-based therapy approaches such as adoptive cell transfer (ACT) have emerged as a promising therapeutic strategy against various kinds of tumors even the cancers in the blood (liquid cancers). The hematological (liquid) cancers are hard to be targeted by usual cancer therapies, for they do not form localized solid tumors. Until recently, two types of ACTs have been developed and introduced; tumor-infiltrating lymphocytes (TILs) and chimeric antigen receptor (CAR)-T cells which the latter is the subject of our discussion. It is interesting about engineered CAR-T cells that they are genetically endowed with unique cancer-specific characteristics, so they can use the potency of the host immune system to fight against either solid or liquid cancers. Multiple myeloma (MM) or simply referred to as myeloma is a type of hematological malignancy that affects the plasma cells. The cancerous plasma cells produce immunoglobulins (antibodies) uncontrollably which consequently damage the tissues and organs and break the immune system function. Although the last few years have seen significant progressions in the treatment of MM, still a complete remission remains unconvincing. MM is a medically challenging and stubborn disease with a disappointingly low rate of survival rate. When comparing the three most occurring blood cancers (i.e., lymphoma, leukemia, and myeloma), myeloma has the lowest 5-year survival rate (around 40%). A low survival rate indicates a high mortality rate with difficulty in treatment. Therefore, novel CAR-T cell-based therapies or combination therapies along with CAT-T cells may bring new hope for multiple myeloma patients. CAR-T cell therapy has a high potential to improve the remission success rate in patients with MM. To date, many preclinical and clinical trial studies have been conducted to investigate the ability and capacity of CAR T cells in targeting the antigens on myeloma cells. Despite the problems and obstacles, CAR-T cell experiments in MM patients revealed a robust therapeutic potential. However, several factors might be considered during CAR-T cell therapy for better response and reduced side effects. Also, incorporating the CAT-T cell method into a combinational treatment schedule may be a promising approach. In this paper, with a greater emphasis on CAR-T cell application in the treatment of MM, we will discuss and introduce CAR-T cell's history and functions, their limitations, and the solutions to defeat the limitations and different types of modifications on CAR-T cells.
Collapse
Affiliation(s)
- Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safa Tahmasebi
- Department of Immunology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Suleimanyah, Sulaymaniyah, Iraq
| | - Denis Kaigorodov
- Director of Research Institute "MitoKey", Moscow State Medical University, Moscow, Russian Federation
| | | | - Alexei Valerievich Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Trubetskaya St., 8-2, Moscow, Russian Federation, 119991
| | - Navid Shomali
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Yashwant Pathak
- Faculty Affairs, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
- Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Rebar N Mohammed
- Bone Marrow Transplant Center, Hiwa Cancer Hospital, Suleimanyah, Iraq
| | - Mostafa Jarahian
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, 69120, Heidelberg, Germany
| | - Roza Motavalli
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
79
|
Atrash S, Moyo TK. A Review of Chimeric Antigen Receptor T-Cell Therapy for Myeloma and Lymphoma. Onco Targets Ther 2021; 14:2185-2201. [PMID: 33814917 PMCID: PMC8009535 DOI: 10.2147/ott.s242018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022] Open
Abstract
Collectively, hematological malignancies account for the fourth most common malignancy. Myeloma and lymphoma are the most common types of hematological malignancies. Unfortunately, the management of refractory myeloma and lymphoma remains challenging. The discovery of new immunological therapies, namely chimeric antigen receptors T cells (CAR-T), outlined unprecedented B cell malignancies results. In this context, the CAR-T-based approach has led to the proliferation of many clinical studies. In this review, we will deal with the CAR-T structure, and we will summarize the primary clinical studies assessing the risks and benefits of CAR-T cell therapy. We will also deal with the adverse events and management of cytokine release syndromes/immune effector cell-associated neurotoxicity syndrome (ICANS). Subsequently, we will review potential future improvements to overcome refractoriness and improve expansion while decreasing CAR-T's off-target effects. The advances in the CAR-T platform represent a step forward with promising unlimited future possibilities that made it a paradigm-shifting for the management of B cell malignancies.
Collapse
Affiliation(s)
- Shebli Atrash
- Plasma Cell Disorders Division, Department of Hematologic Oncology & Blood Disorders, Levine Cancer Institute/Atrium Health, Charlotte, NC, USA
| | - Tamara K Moyo
- Lymphoma Division, Department of Hematologic Oncology & Blood Disorders, Levine Cancer Institute/Atrium Health, Charlotte, NC, USA
| |
Collapse
|
80
|
Li C, Cao W, Que Y, Wang Q, Xiao Y, Gu C, Wang D, Wang J, Jiang L, Xu H, Xu J, Zhou X, Hong Z, Wang N, Huang L, Zhang S, Chen L, Mao X, Xiao M, Zhang W, Meng L, Cao Y, Zhang T, Li J, Zhou J. A phase I study of anti-BCMA CAR T cell therapy in relapsed/refractory multiple myeloma and plasma cell leukemia. Clin Transl Med 2021; 11:e346. [PMID: 33784005 PMCID: PMC7943908 DOI: 10.1002/ctm2.346] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Relapsed/refractory (R/R) multiple myeloma (MM) patients and primary plasma cell leukemia (PCL) have an unfavorable prognosis and no effective treatment. This study was designed to assess the safety and preliminary efficacy of a novel anti-B-cell maturation antigen (BCMA) chimeric antigen receptor (CAR) T cell in R/R MM and PCL. METHODS Between February 22, 2017, and June 25, 2018, 28 R/R and two R/R primary PCL patients received a median dose of 11.2 × 106 CAR+ cells/kg. The subjects were refractory to a proteasome inhibitor and/or an immunomodulatory agent. Fludarabine and cyclophosphamide were given as lymphodepletion chemotherapy. RESULTS Results for these 30 consecutive patients who received an anti-BCMA CAR T cell infusion are reported. The patients had received a median of four prior lines of therapy. A total of 44 different types of adverse events were recorded, and hematologic toxic effects were the most common events of any grade during treatment. Hematologic toxic effects were also the most common events of grade 3 or higher. A total of 29 patients (96.7%) had cytokine release syndrome, which was of grade 1 or 2 in 24 patients (80%) and grade 3 in five patients (16.7%). Neurologic toxic effects only occurred in one patient (3.3%) and were of grade 1. The objective response rate was 90%, and the complete response rate was 43.3%. With a median follow-up of 12.6 months, the median progression-free survival (PFS) and overall survival were 5.2 months and 14.0 months. One of the two primary PCL achieved a complete response with a PFS of 307 days. The other patients achieved a very good partial response with a PFS of 117 days. CONCLUSIONS Anti-BCMA CAR T cell treatment is safe and highly active in R/R multiple myeloma.
Collapse
Affiliation(s)
- Chunrui Li
- Department of Hematology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Immunotherapy Research Center for Hematologic Diseases of Hubei ProvinceWuhanHubeiChina
| | - Wenyue Cao
- Department of Hematology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Immunotherapy Research Center for Hematologic Diseases of Hubei ProvinceWuhanHubeiChina
| | - Yimei Que
- Department of Hematology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Immunotherapy Research Center for Hematologic Diseases of Hubei ProvinceWuhanHubeiChina
| | | | - Yi Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Immunotherapy Research Center for Hematologic Diseases of Hubei ProvinceWuhanHubeiChina
| | - Chaojiang Gu
- College of Life Science and HealthWuhan University of Science and TechnologyWuhanHubeiChina
- Wuhan Bio‐Raid Biotechnology Co., Ltd.WuhanHubeiChina
| | - Di Wang
- Department of Hematology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Immunotherapy Research Center for Hematologic Diseases of Hubei ProvinceWuhanHubeiChina
| | - Jue Wang
- Department of Hematology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Immunotherapy Research Center for Hematologic Diseases of Hubei ProvinceWuhanHubeiChina
| | - Lijun Jiang
- Department of Hematology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Immunotherapy Research Center for Hematologic Diseases of Hubei ProvinceWuhanHubeiChina
| | - Hao Xu
- Department of Hematology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Immunotherapy Research Center for Hematologic Diseases of Hubei ProvinceWuhanHubeiChina
| | - Jinhuan Xu
- Department of Hematology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Immunotherapy Research Center for Hematologic Diseases of Hubei ProvinceWuhanHubeiChina
| | - Xiaoxi Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Immunotherapy Research Center for Hematologic Diseases of Hubei ProvinceWuhanHubeiChina
| | - Zhenya Hong
- Department of Hematology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Immunotherapy Research Center for Hematologic Diseases of Hubei ProvinceWuhanHubeiChina
| | - Na Wang
- Department of Hematology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Immunotherapy Research Center for Hematologic Diseases of Hubei ProvinceWuhanHubeiChina
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Immunotherapy Research Center for Hematologic Diseases of Hubei ProvinceWuhanHubeiChina
| | - Shangkun Zhang
- College of Life Science and HealthWuhan University of Science and TechnologyWuhanHubeiChina
- Wuhan Bio‐Raid Biotechnology Co., Ltd.WuhanHubeiChina
| | - Liting Chen
- Department of Hematology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Immunotherapy Research Center for Hematologic Diseases of Hubei ProvinceWuhanHubeiChina
| | - Xia Mao
- Department of Hematology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Immunotherapy Research Center for Hematologic Diseases of Hubei ProvinceWuhanHubeiChina
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Immunotherapy Research Center for Hematologic Diseases of Hubei ProvinceWuhanHubeiChina
| | - Wei Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Immunotherapy Research Center for Hematologic Diseases of Hubei ProvinceWuhanHubeiChina
| | - Li Meng
- Department of Hematology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Immunotherapy Research Center for Hematologic Diseases of Hubei ProvinceWuhanHubeiChina
| | - Yang Cao
- Department of Hematology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Immunotherapy Research Center for Hematologic Diseases of Hubei ProvinceWuhanHubeiChina
| | - Tongcun Zhang
- College of Life Science and HealthWuhan University of Science and TechnologyWuhanHubeiChina
- Wuhan Bio‐Raid Biotechnology Co., Ltd.WuhanHubeiChina
| | - Jian Li
- Department of HematologyPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Immunotherapy Research Center for Hematologic Diseases of Hubei ProvinceWuhanHubeiChina
| |
Collapse
|
81
|
CAR-T Therapy, the End of a Chapter or the Beginning of a New One? Cancers (Basel) 2021; 13:cancers13040853. [PMID: 33670515 PMCID: PMC7922383 DOI: 10.3390/cancers13040853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/14/2021] [Accepted: 02/14/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary CAR-T therapy is a breakthrough treatment in our fight against cancer. It was recently approved for the treatment of advanced diffuse large B-cell lymphoma and acute lymphoblastic leukaemia after the failure of previous multiple therapies. The positive results achieved in the registration studies for those patients were remarkable. Unfortunately, this was not the end of this chapter. Disease relapses occur in the range of 30–60% of patients treated with CAR-T therapy. Cytokine release syndrome represents a major side effect for treatment with CAR-T therapy. Notwithstanding, the high positive results triggered the start of a huge research activity of CAR-T therapy in other haematologic malignancies such as acute myelogenous leukaemia, Hodgkin’s disease, chronic lymphocytic leukaemia, and multiple myeloma. The research is also trying to overcome the hurdles stated above. These activities represent a new chapter in the management of haematologic malignancies with CAR-T therapy. Abstract Chimeric antigen receptor-T (CAR-T) therapy targeting CD19 has revolutionised the treatment of advanced acute lymphoblastic leukaemia (ALL) and diffuse large B-cell lymphoma (DLBCL). The ability to specifically target the cancer cells has shown high positive results as reported in the registration studies. The success of CAR-T therapy in the first two indications led to the initiation of a large number of studies testing CAR-T therapy in different haematologic tumours such as acute myelogenous leukaemia (AML), Hodgkin’s disease (HD), chronic lymphocytic leukaemia (CLL), multiple myeloma (MM), as well as different solid tumours. Unfortunately, relapses occurred in patients treated with CAR-T therapy, calling for the development of effective subsequent therapies. Likewise, this novel mechanism of action was also accompanied by a different toxicity profile, such as cytokine release syndrome (CRS). Patients’ access to the treatment is still limited by its cost. Notwithstanding, this did not prohibit further development of this new therapy to treat other malignancies. This research activity of CAR-T therapy moves it from being used as an end-stage treatment for ALL and DLBCL to a new therapeutic option for a wide range of patients with different haematologic and solid tumours.
Collapse
|
82
|
Fang Y, Hou J. Immunotherapeutic strategies targeting B cell maturation antigen in multiple myeloma. Mil Med Res 2021; 8:9. [PMID: 33504363 PMCID: PMC7839214 DOI: 10.1186/s40779-021-00302-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/19/2021] [Indexed: 12/31/2022] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy, and is characterized by the clonal expansion of malignant plasma cells. Despite the recent improvement in patient outcome due to the use of novel therapeutic agents and stem cell transplantation, all patients eventually relapse due to clone evolution. B cell maturation antigen (BCMA) is highly expressed in and specific for MM cells, and has been implicated in the pathogenesis as well as treatment development for MM. In this review, we will summarize representative anti-BCMA immune therapeutic strategies, including BCMA-targeted vaccines, anti-BCMA antibodies and BCMA-targeted CAR cells. Combination of different immunotherapeutic strategies of targeting BCMA, multi-target immune therapeutic strategies, and adding immune modulatory agents to normalize anti-MM immune system in minimal residual disease (MRD) negative patients, will also be discussed.
Collapse
Affiliation(s)
- Yi Fang
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Jian Hou
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
83
|
Becnel MR, Lee HC. The role of belantamab mafodotin for patients with relapsed and/or refractory multiple myeloma. Ther Adv Hematol 2020; 11:2040620720979813. [PMID: 33403093 PMCID: PMC7739070 DOI: 10.1177/2040620720979813] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Belantamab mafodotin (belamaf) is a first-in-class anti-B-cell maturation antigen (BCMA) antibody-drug conjugate (ADC) that recently gained regulatory approval for the treatment of relapsed and/or refractory multiple myeloma (RRMM) patients who have received at least four prior therapies including an anti-CD38 monoclonal antibody (mAb), a proteasome inhibitor (PI), and an immunomodulatory drug (IMiD). As the first BCMA-targeted therapy to be approved in multiple myeloma along with its "off-the-shelf" outpatient administration, belamaf addresses a significant unmet need in RRMM that is refractory to IMiD, PI, and anti-CD38 mAb therapy, otherwise known as triple-class refractory myeloma. Belamaf is also associated with frequent corneal ocular adverse events, which represents a unique toxicity in multiple myeloma therapeutics, and its administration requires a multidisciplinary approach with oncologists and eye care specialists to safely and effectively manage patients on belamaf therapy. In this review, we discuss the preclinical and clinical data leading to the regulatory approval of belamaf, the monitoring and mitigation strategies of corneal ocular adverse events, and its current and future role in the RRMM treatment landscape.
Collapse
Affiliation(s)
- Melody R Becnel
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hans C Lee
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 429, Houston, TX, 77030, USA
| |
Collapse
|
84
|
Figueroa-Vazquez V, Ko J, Breunig C, Baumann A, Giesen N, Pálfi A, Müller C, Lutz C, Hechler T, Kulke M, Müller-Tidow C, Krämer A, Goldschmidt H, Pahl A, Raab MS. HDP-101, an Anti-BCMA Antibody-Drug Conjugate, Safely Delivers Amanitin to Induce Cell Death in Proliferating and Resting Multiple Myeloma Cells. Mol Cancer Ther 2020; 20:367-378. [PMID: 33298585 DOI: 10.1158/1535-7163.mct-20-0287] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/09/2020] [Accepted: 11/24/2020] [Indexed: 11/16/2022]
Abstract
Despite major treatment advances in recent years, patients with multiple myeloma inevitably relapse. The RNA polymerase II complex has been identified as a promising therapeutic target in both proliferating and dormant cancer cells. Alpha-amanitin, a toxin so far without clinical application due to high liver toxicity, specifically inhibits this complex. Here, we describe the development of HDP-101, an anti-B-cell maturation antigen (BCMA) antibody conjugated with an amanitin derivative. HDP-101 displayed high efficacy against both proliferating and resting myeloma cells in vitro, sparing BCMA-negative cells. In subcutaneous and disseminated murine xenograft models, HDP-101 induced tumor regression at low doses, including durable complete remissions after a single intravenous dose. In cynomolgus monkeys, HDP-101 was well tolerated with a promising therapeutic index. In conclusion, HDP-101 safely and selectively delivers amanitin to myeloma cells and provides a novel therapeutic approach to overcome drug resistance in this disease.
Collapse
Affiliation(s)
- Vianihuini Figueroa-Vazquez
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany.,Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Jonathan Ko
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany.,Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Anja Baumann
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany.,Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Nicola Giesen
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany.,Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Anikó Pálfi
- Heidelberg Pharma Research GmbH, Ladenburg, Germany
| | | | | | | | | | - Carsten Müller-Tidow
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany.,Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Hartmut Goldschmidt
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany.,National Center of Tumor Diseases (NCT), Heidelberg, Germany
| | - Andreas Pahl
- Heidelberg Pharma Research GmbH, Ladenburg, Germany.
| | - Marc S Raab
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany. .,Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
85
|
Demel I, Bago JR, Hajek R, Jelinek T. Focus on monoclonal antibodies targeting B-cell maturation antigen (BCMA) in multiple myeloma: update 2021. Br J Haematol 2020; 193:705-722. [PMID: 33216972 DOI: 10.1111/bjh.17235] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/01/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022]
Abstract
Remarkable advances have been achieved in the treatment of multiple myeloma (MM) in the last decade, which saw targeted immunotherapy, represented by anti-CD38 monoclonal antibodies, successfully incorporated across indications. However, myeloma is still considered curable in only a small subset of patients, and the majority of them eventually relapse. B-cell maturation antigen (BCMA) is expressed exclusively in mature B lymphocytes and plasma cells, and represents an ideal new target for immunotherapy, presented by bispecific antibody (bsAb) constructs, antibody-drug conjugates (ADCs) and chimeric antigen receptor T (CAR-T) cells. Each of them has proved its efficacy with the potential for deep and long-lasting responses as a single agent therapy in heavily pretreated patients. As a result, belantamab mafodotin was approved by the United States Food and Drug Administration for the treatment of relapsed/refractory MM, as the first anti-BCMA agent. In the present review, we focus on monoclonal antibodies targeting BCMA - bsAbs and ADCs. The data from preclinical studies as well as first-in-human clinical trials will be reviewed, together with the coverage of their constructs and mechanisms of action. The present results have laid the groundwork for the ongoing or upcoming clinical trials with combinatory regimens, which have always been a cornerstone in the treatment of MM.
Collapse
Affiliation(s)
- Ivo Demel
- Department of Haemato-oncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Julio Rodriguez Bago
- Department of Haemato-oncology, University Hospital Ostrava, Ostrava, Czech Republic.,Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Roman Hajek
- Department of Haemato-oncology, University Hospital Ostrava, Ostrava, Czech Republic.,Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Tomas Jelinek
- Department of Haemato-oncology, University Hospital Ostrava, Ostrava, Czech Republic.,Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
86
|
Devarakonda S, Cottini F, Bumma N, Khan A, Sharma N, Chaudhry M, Benson D, Rosko A, Efebera Y. Multiple Myeloma: Clinical Updates from the American Society of Clinical Oncology Annual Scientific Symposium 2020. J Clin Med 2020; 9:E3626. [PMID: 33187184 PMCID: PMC7697517 DOI: 10.3390/jcm9113626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/01/2022] Open
Abstract
The novel clinical data for plasma cell neoplasms (smoldering myeloma, multiple myeloma, and AL amyloidosis) that were presented in the 2020 American Society of Clinical Oncology virtual scientific symposium are summarized here. Data from large phase-3 studies (CASSIOPEIA, ENDURANCE, and TOURMALINE-MM4 trials) and phase-2 studies (SWOG 1211, GMMG CONCEPT trials) for newly diagnosed multiple myeloma patients who are eligible for autologous stem cell transplantation are described. Updates from previous important studies for multiple myeloma (STaMINA) along with studies on three different chimeric antigen receptor (CAR-) T cell products are also described. Results of clinical studies involving the use of anti-myeloma drugs with novel mechanisms of action such as immunoconjugates, selinexor, venetoclax, monoclonal antibodies, and data on minimal residual disease (MRD) are discussed. These data provide an overview of the efficacy and safety of the various treatments in multiple myeloma and could lead to changes in our clinical practice, which could pave the path for a "cure" in myeloma.
Collapse
Affiliation(s)
- Srinivas Devarakonda
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (F.C.); (N.B.); (A.K.); (N.S.); (M.C.); (D.B.); (A.R.); (Y.E.)
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Richardson PG, Lee HC, Abdallah AO, Cohen AD, Kapoor P, Voorhees PM, Hoos A, Wang K, Baron J, Piontek T, Byrne J, Richmond S, Jewell RC, Opalinska J, Gupta I, Lonial S. Single-agent belantamab mafodotin for relapsed/refractory multiple myeloma: analysis of the lyophilised presentation cohort from the pivotal DREAMM-2 study. Blood Cancer J 2020; 10:106. [PMID: 33097687 PMCID: PMC7584571 DOI: 10.1038/s41408-020-00369-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/11/2020] [Accepted: 09/23/2020] [Indexed: 12/28/2022] Open
Abstract
DREAMM-2 (NCT03525678) is an ongoing global, open-label, phase 2 study of single-agent belantamab mafodotin (belamaf; GSK2857916), a B-cell maturation antigen-targeting antibody-drug conjugate, in a frozen-liquid presentation in patients with relapsed/refractory multiple myeloma (RRMM). Alongside the main study, following identical inclusion/exclusion criteria, a separate patient cohort was enrolled to receive belamaf in a lyophilised presentation (3.4 mg/kg, every 3 weeks) until disease progression/unacceptable toxicity. Primary outcome was independent review committee-assessed overall response rate (ORR). Twenty-five patients were enrolled; 24 received ≥1 dose of belamaf. As of 31 January 2020, ORR was 52% (95% CI: 31.3–72.2); 24% of patients achieved very good partial response. Median duration of response was 9.0 months (2.8–not reached [NR]); median progression-free survival was 5.7 months (2.2–9.7); median overall survival was not reached (8.7 months–NR). Most common grade 3/4 adverse events were keratopathy (microcyst-like corneal epithelial changes, a pathological finding seen on eye examination [75%]), thrombocytopenia (21%), anaemia (17%), hypercalcaemia and hypophosphatemia (both 13%), neutropenia and blurred vision (both 8%). Pharmacokinetics supported comparability of frozen-liquid and lyophilised presentations. Single-agent belamaf in a lyophilised presentation (intended for future use) showed a deep and durable clinical response and acceptable safety profile in patients with heavily pre-treated RRMM.
Collapse
Affiliation(s)
| | - Hans C Lee
- MD Anderson Cancer Center, Houston, TX, USA
| | | | - Adam D Cohen
- Abramson Cancer Center, University of Philadelphia, Philadelphia, PA, USA
| | | | | | - Axel Hoos
- GlaxoSmithKline, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | - Ira Gupta
- GlaxoSmithKline, Philadelphia, PA, USA
| | - Sagar Lonial
- Emory University, Winship Cancer Institute, Atlanta, GA, USA.
| |
Collapse
|
88
|
Nadeem O, Tai YT, Anderson KC. Immunotherapeutic and Targeted Approaches in Multiple Myeloma. Immunotargets Ther 2020; 9:201-215. [PMID: 33117743 PMCID: PMC7569026 DOI: 10.2147/itt.s240886] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
The multiple myeloma (MM) therapeutic landscape has evolved significantly with the approval of numerous novel agents, including next generation proteasome inhibitors (PIs), immunomodulatory agents (IMIDs), and monoclonal antibodies (MoABs) targeting CD38 and SLAMF7. While these discoveries have led to an unprecedented improval in patient outcomes, the disease still remains incurable. Immunotherapeutic approaches have shown substantial promise in recent studies of chimeric antigen receptor T-cell (CAR T-cell) therapy, bispecific antibodies, and antibody drug conjugates targeting B-cell maturation antigen (BCMA). This review will highlight these novel and targeted therapies in MM, with particular focus on PIs, IMIDs, MoAb and BCMA-directed immunotherapy.
Collapse
Affiliation(s)
- Omar Nadeem
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yu-Tzu Tai
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
89
|
Mikkilineni L, Kochenderfer JN. CAR T cell therapies for patients with multiple myeloma. Nat Rev Clin Oncol 2020; 18:71-84. [PMID: 32978608 DOI: 10.1038/s41571-020-0427-6] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2020] [Indexed: 12/21/2022]
Abstract
Despite several therapeutic advances over the past decade, multiple myeloma (MM) remains largely incurable, indicating a need for new treatment approaches. Chimeric antigen receptor (CAR) T cell therapy works by mechanisms distinct from those of other MM therapies and involves the modification of patient or donor T cells to target specific cell-surface antigens. B cell maturation antigen (BCMA) is expressed only on plasma cells, a small subset of B cells and MM cells, which makes it a suitable target antigen for such therapies. At the time of writing, data from >20 clinical trials involving anti-BCMA CAR T cells have demonstrated that patients with relapsed and/or refractory MM can achieve objective responses. These early investigations have been instrumental in demonstrating short-term safety and efficacy; however, most patients do not have disease remission lasting >18 months. Attempts to reduce or delay the onset of relapsed disease are underway and include identifying additional CAR T cell target antigens and methods of enhancing BCMA expression on MM cells. Engineering CAR T cells to enhance both the activity and safety of treatment continues to be a promising avenue for improvement. In this Review we summarize data from clinical trials that have been carried out to date, describe novel antigens that could be targeted in the future, and highlight potential future innovations that could enhance the efficacy and/or reduce the toxicities associated with CAR T cell therapies.
Collapse
Affiliation(s)
- Lekha Mikkilineni
- Surgery Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA.
| | | |
Collapse
|
90
|
Joubert N, Beck A, Dumontet C, Denevault-Sabourin C. Antibody-Drug Conjugates: The Last Decade. Pharmaceuticals (Basel) 2020; 13:ph13090245. [PMID: 32937862 PMCID: PMC7558467 DOI: 10.3390/ph13090245] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 01/01/2023] Open
Abstract
An armed antibody (antibody–drug conjugate or ADC) is a vectorized chemotherapy, which results from the grafting of a cytotoxic agent onto a monoclonal antibody via a judiciously constructed spacer arm. ADCs have made considerable progress in 10 years. While in 2009 only gemtuzumab ozogamicin (Mylotarg®) was used clinically, in 2020, 9 Food and Drug Administration (FDA)-approved ADCs are available, and more than 80 others are in active clinical studies. This review will focus on FDA-approved and late-stage ADCs, their limitations including their toxicity and associated resistance mechanisms, as well as new emerging strategies to address these issues and attempt to widen their therapeutic window. Finally, we will discuss their combination with conventional chemotherapy or checkpoint inhibitors, and their design for applications beyond oncology, to make ADCs the magic bullet that Paul Ehrlich dreamed of.
Collapse
Affiliation(s)
- Nicolas Joubert
- GICC EA7501, Equipe IMT, Université de Tours, UFR des Sciences Pharmaceutiques, 31 Avenue Monge, 37200 Tours, France;
- Correspondence:
| | - Alain Beck
- Institut de Recherche Pierre Fabre, Centre d’Immunologie Pierre Fabre, 5 Avenue Napoléon III, 74160 Saint Julien en Genevois, France;
| | - Charles Dumontet
- Cancer Research Center of Lyon (CRCL), INSERM, 1052/CNRS 5286/UCBL, 69000 Lyon, France;
- Hospices Civils de Lyon, 69000 Lyon, France
| | - Caroline Denevault-Sabourin
- GICC EA7501, Equipe IMT, Université de Tours, UFR des Sciences Pharmaceutiques, 31 Avenue Monge, 37200 Tours, France;
| |
Collapse
|
91
|
Novel Approaches to Improve Myeloma Cell Killing by Monoclonal Antibodies. J Clin Med 2020; 9:jcm9092864. [PMID: 32899714 PMCID: PMC7564331 DOI: 10.3390/jcm9092864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
The monoclonal antibodies (mAbs) have significantly changed the treatment of multiple myeloma (MM) patients. However, despite their introduction, MM remains an incurable disease. The mAbs currently used for MM treatment were developed with different mechanisms of action able to target antigens, such as cluster of differentiation 38 (CD38) and SLAM family member 7 (SLAMF7) expressed by both, MM cells and the immune microenvironment cells. In this review, we focused on the mechanisms of action of the main mAbs approved for the therapy of MM, and on the possible novel approaches to improve MM cell killing by mAbs. Actually, the combination of anti-CD38 or anti-SLAMF7 mAbs with the immunomodulatory drugs significantly improved the clinical effect in MM patients. On the other hand, pre-clinical evidence indicates that different approaches may increase the efficacy of mAbs. The use of trans-retinoic acid, the cyclophosphamide or the combination of anti-CD47 and anti-CD137 mAbs have given the rationale to design these types of combinations therapies in MM patients in the future. In conclusion, a better understanding of the mechanism of action of the mAbs will allow us to develop novel therapeutic approaches to improve their response rate and to overcome their resistance in MM patients.
Collapse
|
92
|
Zanwar S, Nandakumar B, Kumar S. Immune-based therapies in the management of multiple myeloma. Blood Cancer J 2020; 10:84. [PMID: 32829378 PMCID: PMC7443188 DOI: 10.1038/s41408-020-00350-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) is a clonal plasma cell malignancy affecting a predominantly elderly population. The continued development of newer therapies with novel mechanisms of action has reshaped the treatment paradigm of this disorder in the last two decades, leading to a significantly improved prognosis. This has in turn resulted in an increasing number of patients in need of therapy for relapsed/refractory disease. Immune-based therapies, including monoclonal antibodies, immune checkpoint inhibitors, and most promisingly, adoptive cellular therapies represent important therapeutic strategies in these patients due to their non-cross resistant mechanisms of actions with the usual frontline therapies comprising of immunomodulatory drugs (IMiDs) and proteasome inhibitors (PIs). The anti-CD38 antibodies daratumumab and more recently isatuximab, with their excellent efficacy and safety profile along with its synergy in combination with IMiDs and PIs, are being increasingly incorporated in the frontline setting. Chimeric antigen receptor-T cell (CART) therapies and bi-specific T-cell engager (BiTE) represent exciting new options that have demonstrated efficacy in heavily pretreated and refractory MM. In this review, we discuss the rationale for use of immune-based therapies in MM and summarize the currently available literature for common antibodies and CAR-T therapies that are utilized in MM.
Collapse
Affiliation(s)
- Saurabh Zanwar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Shaji Kumar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
93
|
Abstract
Introduction: Antibody-drug conjugates (ADC) are a new class of treatment for multiple myeloma (MM) patients, delivering a potent cytotoxic agent directly to the myeloma cell. The target is defined by the specificity of the monoclonal antibody which is linked to the cytotoxic agent. This mechanism of action minimizes bystander cell injury and allows a favorable therapeutic window.Areas covered: This review describes the rationale, pre- and clinical data for ADCs that have been and are currently in development for MM. As the treatment landscape for MM rapidly evolves, the treatment paradigm and a description of novel agents in development including immunotherapies are provided to understand how ADCs may fit in the pathway.Expert opinion: ADCs have a significant potential for the treatment for MM. As they are 'off the shelf' treatments, they can be used across nearly all MM treatment centers and to a wide range of patients. Some ADCs have specific adverse events that may require specialist input to optimally manage. The most clinically advanced ADC is belantamab mafodotin which has demonstrated clinically meaningful responses in patients with heavily pre-treated MM. Additionally, it is being combined with standard of care agents and at earlier lines of treatment.
Collapse
Affiliation(s)
- Annabel McMillan
- Haematology Department, National Institute for Health Research University College Hospital Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, UK
| | - Dana Warcel
- Haematology Department, National Institute for Health Research University College Hospital Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, UK
| | - Rakesh Popat
- Haematology Department, National Institute for Health Research University College Hospital Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
94
|
Xing L, Lin L, Yu T, Li Y, Cho SF, Liu J, Wen K, Hsieh PA, Kinneer K, Munshi N, Anderson KC, Tai YT. A novel BCMA PBD-ADC with ATM/ATR/WEE1 inhibitors or bortezomib induce synergistic lethality in multiple myeloma. Leukemia 2020; 34:2150-2162. [PMID: 32060401 PMCID: PMC7392808 DOI: 10.1038/s41375-020-0745-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/14/2020] [Accepted: 02/05/2020] [Indexed: 01/08/2023]
Abstract
To target mechanisms critical for multiple myeloma (MM) plasma cell adaptations to genomic instabilities and further sustain MM cell killing, we here specifically trigger DNA damage response (DDR) in MM cells by a novel BCMA antibody-drug conjugate (ADC) delivering the DNA cross-linking PBD dimer tesirine, MEDI2228. MEDI2228, more effectively than its anti-tubulin MMAF-ADC homolog, induces cytotoxicity against MM cells regardless of drug resistance, BCMA levels, p53 status, and the protection conferred by bone marrow stromal cells and IL-6. Distinctly, prior to apoptosis, MEDI2228 activates DDRs in MM cells via phosphorylation of ATM/ATR kinases, CHK1/2, CDK1/2, and H2AX, associated with expression of DDR-related genes. Significantly, MEDI2228 synergizes with DDR inhibitors (DDRi s) targeting ATM/ATR/WEE1 checkpoints to induce MM cell lethality. Moreover, suboptimal doses of MEDI2228 and bortezomib (btz) synergistically trigger apoptosis of even drug-resistant MM cells partly via modulation of RAD51 and accumulation of impaired DNA. Such combination further induces superior in vivo efficacy than monotherapy via increased nuclear γH2AX-expressing foci, irreversible DNA damages, and tumor cell death, leading to significantly prolonged host survival. These results indicate leveraging MEDI2228 with DDRi s or btz as novel combination strategies, further supporting ongoing clinical development of MEDI2228 in patients with relapsed and refractory MM.
Collapse
Key Words
- multiple myeloma, mm
- b cell maturation antigen, bcma
- antibody drug conjugate, adc
- pyrrolobenzodiazepine, pbd
- monomethyl auristatin f, mmaf
- bortezomib, btz
- lenalidomide, len
- pomalidomide, pom
- bone marrow stromal cells, bmscs
- interleukin-6, il-6
- dna damage response, ddr
- double strand break, dsb
- ddr inhibitor, ddri
- dna repair
- ataxia-telangiesctasia mutated, atm
- atr, ataxia telangiectasia and rad3-related protein
- wee1
- drug resistance
- synthetic cytotoxicity
Collapse
Affiliation(s)
- Lijie Xing
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Hematology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, Shandong, PR China
| | - Liang Lin
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tengteng Yu
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yuyin Li
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin, 300457, PR China
| | - Shih-Feng Cho
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jiye Liu
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kenneth Wen
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Phillip A Hsieh
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Nikhil Munshi
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kenneth C Anderson
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Yu-Tzu Tai
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
95
|
Farooq AV, Degli Esposti S, Popat R, Thulasi P, Lonial S, Nooka AK, Jakubowiak A, Sborov D, Zaugg BE, Badros AZ, Jeng BH, Callander NS, Opalinska J, Baron J, Piontek T, Byrne J, Gupta I, Colby K. Corneal Epithelial Findings in Patients with Multiple Myeloma Treated with Antibody-Drug Conjugate Belantamab Mafodotin in the Pivotal, Randomized, DREAMM-2 Study. Ophthalmol Ther 2020; 9:889-911. [PMID: 32712806 PMCID: PMC7708586 DOI: 10.1007/s40123-020-00280-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Patients with relapsed or refractory multiple myeloma (RRMM) represent an unmet clinical need. Belantamab mafodotin (belamaf; GSK2857916) is a first-in-class antibody-drug conjugate (ADC; or immunoconjugate) that delivers a cytotoxic payload, monomethyl auristatin F (MMAF), to myeloma cells. In the phase II DREAMM-2 study (NCT03525678), single-agent belamaf (2.5 mg/kg) demonstrated clinically meaningful anti-myeloma activity (overall response rate 32%) in patients with heavily pretreated disease. Microcyst-like epithelial changes (MECs) were common, consistent with reports from other MMAF-containing ADCs. METHODS Corneal examination findings from patients in DREAMM-2 were reviewed, and the clinical descriptions and accompanying images (slit lamp microscopy and in vivo confocal microscopy [IVCM]) of representative events were selected. A literature review on corneal events reported with other ADCs was performed. RESULTS In most patients receiving single-agent belamaf (72%; 68/95), MECs were observed by slit lamp microscopy early in treatment (69% had their first event by dose 4). However, IVCM revealed hyperreflective material. Blurred vision (25%) and dry eye (15%) were commonly reported symptoms. Management of MECs included dose delays (47%)/reductions (25%), with few patients discontinuing due to MECs (1%). The first event resolved in most patients (grade ≥2 MECs and visual acuity [each 77%], blurred vision [67%], and dry eye [86%]), with no reports of permanent vision loss to date. A literature review confirmed that similar MECs were reported with other ADCs; however, event management strategies varied. The pathophysiology of MECs is unclear, though the ADC cytotoxic payload may contribute to on- or off-target effects on corneal epithelial cells. CONCLUSION Single-agent belamaf represents a new treatment option for patients with RRMM. As with other ADCs, MECs were observed and additional research is warranted to determine their pathophysiology. A multidisciplinary approach, involving close collaboration between eye care professionals and hematologist/oncologists, is needed to determine appropriate diagnosis and management of these patients. TRIAL REGISTRATION ClinicalTrials.gov Identifier, NCT03525678.
Collapse
Affiliation(s)
- Asim V Farooq
- University of Chicago Medical Center, Chicago, IL, USA.
| | - Simona Degli Esposti
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, UK
| | - Rakesh Popat
- University College London Hospitals, NHS Foundation Trust, London, UK
| | | | - Sagar Lonial
- Emory University, Winship Cancer Institute, Atlanta, GA, USA
| | - Ajay K Nooka
- Emory University, Winship Cancer Institute, Atlanta, GA, USA
| | | | - Douglas Sborov
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Brian E Zaugg
- Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Ashraf Z Badros
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bennie H Jeng
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | - Ira Gupta
- GlaxoSmithKline, Upper Providence, PA, USA
| | - Kathryn Colby
- University of Chicago Medical Center, Chicago, IL, USA
| |
Collapse
|
96
|
Abramson HN. B-Cell Maturation Antigen (BCMA) as a Target for New Drug Development in Relapsed and/or Refractory Multiple Myeloma. Int J Mol Sci 2020; 21:E5192. [PMID: 32707894 PMCID: PMC7432930 DOI: 10.3390/ijms21155192] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023] Open
Abstract
During the past two decades there has been a major shift in the choice of agents to treat multiple myeloma, whether newly diagnosed or in the relapsed/refractory stage. The introduction of new drug classes, such as proteasome inhibitors, immunomodulators, and anti-CD38 and anti-SLAMF7 monoclonal antibodies, coupled with autologous stem cell transplantation, has approximately doubled the disease's five-year survival rate. However, this positive news is tempered by the realization that these measures are not curative and patients eventually relapse and/or become resistant to the drug's effects. Thus, there is a need to discover newer myeloma-driving molecular markers and develop innovative drugs designed to precisely regulate the actions of such putative targets. B cell maturation antigen (BCMA), which is found almost exclusively on the surfaces of malignant plasma cells to the exclusion of other cell types, including their normal counterparts, has emerged as a specific target of interest in this regard. Immunotherapeutic agents have been at the forefront of research designed to block BCMA activity. These agents encompass monoclonal antibodies, such as the drug conjugate belantamab mafodotin; bispecific T-cell engager strategies exemplified by AMG 420; and chimeric antigen receptor (CAR) T-cell therapeutics that include idecabtagene vicleucel (bb2121) and JNJ-68284528.
Collapse
Affiliation(s)
- Hanley N Abramson
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
97
|
Lin L, Cho SF, Xing L, Wen K, Li Y, Yu T, Hsieh PA, Chen H, Kurtoglu M, Zhang Y, Andrew Stewart C, Munshi N, Anderson KC, Tai YT. Preclinical evaluation of CD8+ anti-BCMA mRNA CAR T cells for treatment of multiple myeloma. Leukemia 2020; 35:752-763. [PMID: 32632095 PMCID: PMC7785573 DOI: 10.1038/s41375-020-0951-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 01/21/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy remains limited to select centers that can carefully monitor adverse events. To broaden use of CAR T cells in community clinics and in a frontline setting, we developed a novel CD8+ CAR T-cell product, Descartes-08, with predictable pharmacokinetics for treatment of multiple myeloma. Descartes-08 is engineered by mRNA transfection to express anti-BCMA CAR for a defined length of time. Descartes-08 expresses anti-BCMA CAR for 1 week, limiting risk of uncontrolled proliferation; produce inflammatory cytokines in response to myeloma target cells; and are highly cytolytic against myeloma cells regardless of the presence of myeloma-protecting bone marrow stromal cells, exogenous a proliferation-inducing ligand, or drug resistance including IMiDs. The magnitude of cytolysis correlates with anti-BCMA CAR expression duration, indicating a temporal limit in activity. In the mouse model of aggressive disseminated human myeloma, Descartes-08 induces BCMA CAR-specific myeloma growth inhibition and significantly prolongs host survival (p < 0.0001). These preclinical data, coupled with an ongoing clinical trial of Descartes-08 in relapsed/refractory myeloma (NCT03448978) showing preliminary durable responses and a favorable therapeutic index, have provided the framework for a recently initiated trial of an optimized/humanized version of Descartes-08 (i.e., Descartes-11) in newly diagnosed myeloma patients with residual disease after induction therapy.
Collapse
Affiliation(s)
- Liang Lin
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Shih-Feng Cho
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lijie Xing
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kenneth Wen
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yuyin Li
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,School of Biotechnology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Tengteng Yu
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Phillip A Hsieh
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hailin Chen
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Yi Zhang
- Cartesian Therapeutics, Gaithersburg, MD, USA
| | | | - Nikhil Munshi
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kenneth C Anderson
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Yu-Tzu Tai
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
98
|
Shah N, Aiello J, Avigan DE, Berdeja JG, Borrello IM, Chari A, Cohen AD, Ganapathi K, Gray L, Green D, Krishnan A, Lin Y, Manasanch E, Munshi NC, Nooka AK, Rapoport AP, Smith EL, Vij R, Dhodapkar M. The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of multiple myeloma. J Immunother Cancer 2020; 8:e000734. [PMID: 32661116 PMCID: PMC7359060 DOI: 10.1136/jitc-2020-000734] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2020] [Indexed: 12/24/2022] Open
Abstract
Outcomes in multiple myeloma (MM) have improved dramatically in the last two decades with the advent of novel therapies including immunomodulatory agents (IMiDs), proteasome inhibitors and monoclonal antibodies. In recent years, immunotherapy for the treatment of MM has advanced rapidly, with the approval of new targeted agents and monoclonal antibodies directed against myeloma cell-surface antigens, as well as maturing data from late stage trials of chimeric antigen receptor CAR T cells. Therapies that engage the immune system to treat myeloma offer significant clinical benefits with durable responses and manageable toxicity profiles, however, the appropriate use of these immunotherapy agents can present unique challenges for practicing physicians. Therefore, the Society for Immunotherapy of Cancer convened an expert panel, which met to consider the current role of approved and emerging immunotherapy agents in MM and provide guidance to the oncology community by developing consensus recommendations. As immunotherapy evolves as a therapeutic option for the treatment of MM, these guidelines will be updated.
Collapse
Affiliation(s)
- Nina Shah
- Division of Hematology-Oncology, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Jack Aiello
- Patient Empowerment Network, San Jose, California, USA
| | - David E Avigan
- Division of Hematology and Hematologic Malignancies, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Jesus G Berdeja
- Department of Medicine, Sarah Cannon Research Institute, Nashville, Tennessee, USA
| | - Ivan M Borrello
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center of Johns Hopkins, Baltimore, Maryland, USA
| | - Ajai Chari
- Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adam D Cohen
- Department of Medicine, Abramson Cancer Center at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Karthik Ganapathi
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Lissa Gray
- University of California San Francisco, San Francisco, CA, USA
| | - Damian Green
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Amrita Krishnan
- Department of Hematology and Hematopoietic Cell Transplantation, Judy and Bernard Briskin Multiple Myeloma Center for Clinical Research, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Yi Lin
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Elisabet Manasanch
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nikhil C Munshi
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Ajay K Nooka
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia, USA
| | - Aaron P Rapoport
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Eric L Smith
- Myeloma Service and Cellular Therapeutics Center, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ravi Vij
- Division of Medical Oncology, Siteman Cancer Center, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - Madhav Dhodapkar
- School of Medicine, Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
99
|
Dogan A, Siegel D, Tran N, Fu A, Fowler J, Belani R, Landgren O. B-cell maturation antigen expression across hematologic cancers: a systematic literature review. Blood Cancer J 2020; 10:73. [PMID: 32606424 PMCID: PMC7327051 DOI: 10.1038/s41408-020-0337-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 12/23/2022] Open
Abstract
B-cell maturation antigen (BCMA) plays a critical role in regulating B-cell proliferation and survival. There is evidence for BCMA expression in various hematologic malignancies, suggesting that BCMA may play an important role as a biomarker or therapeutic target in these diseases. Given advances in understanding the role of BCMA in B-cell development and the promise of BCMA as a therapeutic target, a systematic review is needed to rigorously assess the evidence for BCMA expression and identify areas of consensus and future research. The objective of this review was to summarize the evidence on BCMA protein and mRNA expression across hematologic malignancies. Using a PubMed database search up to 28 August 2019, a systematic literature review of publications reporting BCMA expression in patients with hematologic malignancies was conducted. Data from published congress abstracts presented at the American Society of Clinical Oncology and the American Society of Hematology were also searched. Studies that assessed BCMA expression (protein or mRNA) in patients of any age with hematologic malignancies were included. A total of 21 studies met inclusion criteria and were included in the review. BCMA was expressed in several hematologic malignancies, including multiple myeloma (MM), chronic lymphocytic leukemia, acute B-lymphoblastic leukemia, non-Hodgkin lymphoma (NHL), and Hodgkin lymphoma. BCMA was expressed at uniformly high levels across all 13 MM studies and at low to moderate levels in acute myeloid leukemia and acute lymphoblastic leukemia. These results suggest that BCMA is a relevant target in MM as well as in a subset of B-cell leukemia. BCMA expression in Hodgkin lymphoma and NHL varied across studies, and further research is needed to determine the utility of BCMA as an antibody target and biomarker in these diseases. Differences in sample type, timing of sample collection, and laboratory technique used may have affected the reporting of BCMA levels.
Collapse
Affiliation(s)
- Ahmet Dogan
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - David Siegel
- John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, NJ, USA
| | | | - Alan Fu
- Amgen, Inc., Thousand Oaks, CA, USA
| | | | | | - Ola Landgren
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
100
|
Cho SF, Lin L, Xing L, Li Y, Yu T, Anderson KC, Tai YT. BCMA-Targeting Therapy: Driving a New Era of Immunotherapy in Multiple Myeloma. Cancers (Basel) 2020; 12:E1473. [PMID: 32516895 PMCID: PMC7352710 DOI: 10.3390/cancers12061473] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
The treatment of multiple myeloma (MM) has entered into a new era of immunotherapy. Novel immunotherapies will significantly improve patient outcome via simultaneously targeting malignant plasma cell (PC) and reversing immunocompromised bone marrow (BM) microenvironment. B-cell maturation antigen (BCMA), selectively expressed in PCs and a key receptor for A proliferation-inducing ligand (APRIL), is highly expressed in MM cells from patients at all stages. The APRIL/BCMA signal cascades promote the survival and drug resistance of MM cells and further modulate immunosuppressive BM milieu. Impressively, anti-BCMA immunotherapeutic reagents, including chimeric antigen receptor (CAR), antibody-drug conjugate (ADC) and bispecific T cell engager (BiTE) have all shown high response rates in their first clinical trials in relapse and refractory patients with very limited treatment options. These results rapidly inspired numerous development of next-generation anti-BCMA biotherapeutics, i.e., bispecific molecule, bispecific or trispecific antibodies, a novel form of CAR T/NK cells and T Cell Antigen Coupler (TAC) receptors, antibody-coupled T cell receptor (ACTR) as well as a cancer vaccine. We here highlight seminal preclinical and clinical studies on novel BCMA-based immunotherapies as effective monotherapy and discuss their potential in combination with current anti-MM and novel checkpoint drugs in earlier disease stages to further achieve durable responses in patients.
Collapse
Affiliation(s)
- Shih-Feng Cho
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02138, USA; (S.-F.C.); (L.L.); (L.X.); (Y.L.); (T.Y.); (K.C.A.)
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Liang Lin
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02138, USA; (S.-F.C.); (L.L.); (L.X.); (Y.L.); (T.Y.); (K.C.A.)
| | - Lijie Xing
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02138, USA; (S.-F.C.); (L.L.); (L.X.); (Y.L.); (T.Y.); (K.C.A.)
| | - Yuyin Li
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02138, USA; (S.-F.C.); (L.L.); (L.X.); (Y.L.); (T.Y.); (K.C.A.)
| | - Tengteng Yu
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02138, USA; (S.-F.C.); (L.L.); (L.X.); (Y.L.); (T.Y.); (K.C.A.)
| | - Kenneth C Anderson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02138, USA; (S.-F.C.); (L.L.); (L.X.); (Y.L.); (T.Y.); (K.C.A.)
| | - Yu-Tzu Tai
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02138, USA; (S.-F.C.); (L.L.); (L.X.); (Y.L.); (T.Y.); (K.C.A.)
| |
Collapse
|