51
|
Kantapan J, Anukul N, Leetrakool N, Rolin G, Vergote J, Dechsupa N. Iron-Quercetin Complex Preconditioning of Human Peripheral Blood Mononuclear Cells Accelerates Angiogenic and Fibroblast Migration: Implications for Wound Healing. Int J Mol Sci 2021; 22:ijms22168851. [PMID: 34445558 PMCID: PMC8396238 DOI: 10.3390/ijms22168851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Cell-based therapy is a highly promising treatment paradigm in ischemic disease due to its ability to repair tissue when implanted into a damaged site. These therapeutic effects involve a strong paracrine component resulting from the high levels of bioactive molecules secreted in response to the local microenvironment. Therefore, the secreted therapeutic can be modulated by preconditioning the cells during in vitro culturing. Herein, we investigated the potential use of magnetic resonance imaging (MRI) probes, the "iron-quercetin complex" or IronQ, for preconditioning peripheral blood mononuclear cells (PBMCs) to expand proangiogenic cells and enhance their secreted therapeutic factors. PBMCs obtained from healthy donor blood were cultured in the presence of the iron-quercetin complex. Differentiated preconditioning PBMCs were characterized by immunostaining. An enzyme-linked immunosorbent assay was carried out to describe the secreted cytokines. In vitro migration and tubular formation using human umbilical vein endothelial cells (HUVECs) were completed to investigate the proangiogenic efficacy. IronQ significantly increased mononuclear progenitor cell proliferation and differentiation into spindle-shape-like cells, expressing both hematopoietic and stromal cell markers. The expansion increased the number of colony-forming units (CFU-Hill). The conditioned medium obtained from IronQ-treated PBMCs contained high levels of interleukin 8 (IL-8), IL-10, urokinase-type-plasminogen-activator (uPA), matrix metalloproteinases-9 (MMP-9), and tumor necrosis factor-alpha (TNF-α), as well as augmented migration and capillary network formation of HUVECs and fibroblast cells, in vitro. Our study demonstrated that the IronQ-preconditioning PBMC protocol could enhance the angiogenic and reparative potential of non-mobilized PBMCs. This protocol might be used as an adjunctive strategy to improve the efficacy of cell therapy when using PBMCs for ischemic diseases and chronic wounds. However, in vivo assessment is required for further validation.
Collapse
Affiliation(s)
- Jiraporn Kantapan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Nampeung Anukul
- Division of Transfusion Science, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Nipapan Leetrakool
- Blood Bank Section, Maharaj Nakorn Chiang Mai Hospital, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Gwenaël Rolin
- Inserm Centre d’Investigation Clinique-1431 (Inserm CIC-1431), Centre Hospitalier Régional Universitaire de Besançon, F-25000 Besançon, France;
- Inserm UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Etablissement Français du Sang en Bourgogne Franche-Comté, Université de Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Jackie Vergote
- Laboratoire Signalisation et Transports Ioniques Membranaires (EA 7349), Faculté de Pharmacie, Université de Tours, F-37200 Tours, France;
| | - Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
- Correspondence: ; Tel.: +66-53-936-022
| |
Collapse
|
52
|
Bidkhori HR, Bahrami AR, Mehrzad S, Bakhshi H, Miri R, Hedayati-Moghaddam MR, Shabani B, Hasanzadeh H, Danaee M, Shamsian SA, Akhavan-Rezayat A, Mohebbi P, Rohani F, M Matin M. Communication barriers between basic scientists and clinicians in regenerative medicine: A qualitative study from Iran. J Eval Clin Pract 2021; 27:799-808. [PMID: 32876983 DOI: 10.1111/jep.13472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 11/30/2022]
Abstract
RATIONALE, AIMS, AND OBJECTIVES Cell-based therapeutics are among the latest advances in health care technologies. The rapid evolution of stem cell science in Iran has necessitated the application of scientific achievements in clinical settings. However, various issues hindered their translation, in particular, impediments in the interactions of basic stem cell scientists and clinicians. We highlighted the impediments in the interactions of stem cell scientists and physicians involved in the opinion of professionals from both groups. METHOD This qualitative research was conducted with thematic analysis, performed by purposive sampling. Thirty-two distinguished stem cell scientists and clinicians were interviewed to identify their perspectives on this matter. MAXQDA 2018 was used to classify the axial codes based on factors related to communications inefficiencies. The analysis of coded data recognized 18 subthemes and six major themes. RESULTS Central themes include different registers of the two parties, counterproductive clusters hampered networking, external communication barriers, the competition to access resources, leadership conflicts, and the dissatisfaction of stakeholders with their share. CONCLUSIONS Most of the impediments were seemingly global, for example, the incoherent medical and basic science educational systems, the vulnerable career path of physician-scientists, and an increasing tendency towards overspecialization. However, some local specific issues were also described, for example, limited funding opportunities and the negative impacts of the division of medical education from the ministry of science, research, and technology in Iran. Proposed interventions include the reinforcement of physician-scientist programs, designing a distributed leadership model, and bringing back the scientific integrity to higher education in Iran.
Collapse
Affiliation(s)
- Hamid Reza Bidkhori
- Stem Cells and Regenerative Medicine Research Department, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Shadi Mehrzad
- Stem Cells and Regenerative Medicine Research Department, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Hamed Bakhshi
- Social Sciences Research Department, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Rahele Miri
- Blood-Borne Infections Research Center, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Mohammad Reza Hedayati-Moghaddam
- Blood-Borne Infections Research Center, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Bardia Shabani
- History of economic thought department, Paul Valéry - Montpellier III University, Route de Mende, Montpellier, France
| | - Halimeh Hasanzadeh
- Stem Cells and Regenerative Medicine Research Department, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Majid Danaee
- Social Sciences Research Department, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran.,Blood-Borne Infections Research Center, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Seyed Aliakbar Shamsian
- Blood-Borne Infections Research Center, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Arash Akhavan-Rezayat
- Clinical Research Development Unit, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parisa Mohebbi
- Anesthesiology Department, Razavi Hospital, Mashhad, Iran
| | - Farahnaz Rohani
- Clinical Research Development Unit, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
53
|
Kusamori K. Development of Advanced Cell-Based Therapy by Regulating Cell-Cell Interactions. Biol Pharm Bull 2021; 44:1029-1036. [PMID: 34334488 DOI: 10.1248/bpb.b21-00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell-based therapy for disease treatment involves the transplantation of cells obtained either from self or others into relevant patients. While cells constituting the body tissues maintain homeostasis by performing remarkable functions through complicated cell-cell interactions, transplanted cells, which are generally cultured as a monolayer, are unable to recapitulate similar interactions in vivo. The regulation of cell-cell interactions can immensely increase the function and therapeutic effect of transplanted cells. This review aims to summarize the methods of regulating cell-cell interactions that could significantly increase the therapeutic effects of transplanted cells. The first method involves the generation of multicellular spheroids by three-dimensional cell culture. Spheroid formation greatly improved the survival and therapeutic effects of insulin-secreting cells in diabetic mice after transplantation. Moreover, mixed multicellular spheroids, composed of insulin-secreting cells and aorta endothelial cells or fibroblasts, were found to significantly improve insulin secretion. Secondly, adhesamine derivatives, which are low-molecular-weight compounds that accelerate cell adhesion and avoid anoikis and anchorage-dependent apoptosis, have been used to improve the survival of bone marrow-derived cells and significantly enhanced the therapeutic effects in a diabetic mouse model of delayed wound healing. Finally, the avidin-biotin complex method, a cell surface modification method, has been applied to endow tumor-homing mesenchymal stem cells with anti-tumor ability by modifying them with doxorubicin-encapsulated liposomes. The modified cells showed excellent effectiveness in cell-based cancer-targeting therapy. The discussed methods can be useful tools for advanced cell-based therapy, promising future clinical applications.
Collapse
Affiliation(s)
- Kosuke Kusamori
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
54
|
Pires IS, Hammond PT, Irvine DJ. Engineering Strategies for Immunomodulatory Cytokine Therapies - Challenges and Clinical Progress. ADVANCED THERAPEUTICS 2021; 4:2100035. [PMID: 34734110 PMCID: PMC8562465 DOI: 10.1002/adtp.202100035] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 12/15/2022]
Abstract
Cytokines are immunoregulatory proteins involved in many pathological states with promising potential as therapeutic agents. A diverse array of cytokines have been studied in preclinical disease models since the 1950s, some of which became successful biopharmaceutical products with the advancement of recombinant protein technology in the 1980s. However, following these early approvals, clinical translation of these natural immune signaling molecules has been limited due to their pleiotropic action in many cell types, and the fact that they have evolved to act primarily locally in tissues. These characteristics, combined with poor pharmacokinetics, have hindered the delivery of cytokines via systemic administration routes due to dose-limiting toxicities. However, given their clinical potential and recent clinical successes in cancer immunotherapy, cytokines continue to be extensively pursued in preclinical and clinical studies, and a range of molecular and formulation engineering strategies are being applied to reduce treatment toxicity while maintaining or enhancing therapeutic efficacy. This review provides a brief background on the characteristics of cytokines and their history as clinical therapeutics, followed by a deeper discussion on the engineering strategies developed for cytokine therapies with a focus on the translational relevance of these approaches.
Collapse
Affiliation(s)
- Ivan S Pires
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
| | - Paula T Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
55
|
Chahal AS, Gómez-Florit M, Domingues RMA, Gomes ME, Tiainen H. Human Platelet Lysate-Loaded Poly(ethylene glycol) Hydrogels Induce Stem Cell Chemotaxis In Vitro. Biomacromolecules 2021; 22:3486-3496. [PMID: 34314152 PMCID: PMC8382254 DOI: 10.1021/acs.biomac.1c00573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
Platelet lysates
(PL) contain a selection of proteins and growth
factors (GFs) that are known to mediate cell activity. Many of these
biomolecules have been identified as chemoattractants with the capacity
to induce cell migration. In order to effectively deliver and retain
these biomolecules to the site of injury, a scaffold containing PL
could be an option. We use poly(ethylene glycol) (PEG) hydrogels consisting
of 90 vol % PL to investigate their migratory potential on human mesenchymal
stem cells (hMSCs). Cells exposed to these hydrogels were tracked,
resulting in cell trajectories and detailed migratory parameters (velocity,
Euclidean distance, directness, and forward migration index). Volumetric
swelling ratios, hydrogel mechanical properties, and the release kinetics
of proteins and GFs from hydrogels were also assessed. Furthermore,
hMSC spheroids were encapsulated within the hydrogels to qualitatively
assess cell invasion by means of sprouting and disintegration of the
spheroid. Cell spheroids encapsulated within the PL-PEG gels exhibited
initial outgrowths and eventually colonized the 3D matrix successfully.
Results from this study confirmed that hMSCs exhibit directional migration
toward the PL-loaded hydrogel with increased velocity and directness,
compared to the controls. Overall, the incorporation of PL renders
the PEG hydrogel bioactive. This study demonstrates the capacity of
PL-loaded hydrogel constructs to attract stem cells for endogenous
tissue engineering purposes.
Collapse
Affiliation(s)
- Aman S Chahal
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Geitmyrsveien 69-71, 0455 Oslo, Norway
| | - Manuel Gómez-Florit
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
| | - Rui M A Domingues
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
| | - Hanna Tiainen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Geitmyrsveien 69-71, 0455 Oslo, Norway
| |
Collapse
|
56
|
Leask F. Technology digest: the importance of reagent consistency in culturing organoids. Regen Med 2021; 16:615-617. [PMID: 34269601 DOI: 10.2217/rme-2021-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
57
|
Abdeen AA, Cosgrove BD, Gersbach CA, Saha K. Integrating Biomaterials and Genome Editing Approaches to Advance Biomedical Science. Annu Rev Biomed Eng 2021; 23:493-516. [PMID: 33909475 DOI: 10.1146/annurev-bioeng-122019-121602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The recent discovery and subsequent development of the CRISPR-Cas9 (clustered regularly interspaced short palindromic repeat-CRISPR-associated protein 9) platform as a precise genome editing tool have transformed biomedicine. As these CRISPR-based tools have matured, multiple stages of the gene editing process and the bioengineering of human cells and tissues have advanced. Here, we highlight recent intersections in the development of biomaterials and genome editing technologies. These intersections include the delivery of macromolecules, where biomaterial platforms have been harnessed to enable nonviral delivery of genome engineering tools to cells and tissues in vivo. Further, engineering native-like biomaterial platforms for cell culture facilitates complex modeling of human development and disease when combined with genome engineering tools. Deeper integration of biomaterial platforms in these fields could play a significant role in enabling new breakthroughs in the application of gene editing for the treatment of human disease.
Collapse
Affiliation(s)
- Amr A Abdeen
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | - Brian D Cosgrove
- Department of Biomedical Engineering and Center for Advanced Genomic Technologies, Duke University, Durham, North Carolina 27708, USA;
| | - Charles A Gersbach
- Department of Biomedical Engineering and Center for Advanced Genomic Technologies, Duke University, Durham, North Carolina 27708, USA;
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27708, USA
| | - Krishanu Saha
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
- McPherson Eye Research Institute, Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA;
| |
Collapse
|
58
|
Man K, Brunet MY, Fernandez‐Rhodes M, Williams S, Heaney LM, Gethings LA, Federici A, Davies OG, Hoey D, Cox SC. Epigenetic reprogramming enhances the therapeutic efficacy of osteoblast-derived extracellular vesicles to promote human bone marrow stem cell osteogenic differentiation. J Extracell Vesicles 2021; 10:e12118. [PMID: 34262674 PMCID: PMC8263905 DOI: 10.1002/jev2.12118] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/18/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are emerging in tissue engineering as promising acellular tools, circumventing many of the limitations associated with cell-based therapies. Epigenetic regulation through histone deacetylase (HDAC) inhibition has been shown to increase differentiation capacity. Therefore, this study aimed to investigate the potential of augmenting osteoblast epigenetic functionality using the HDAC inhibitor Trichostatin A (TSA) to enhance the therapeutic efficacy of osteoblast-derived EVs for bone regeneration. TSA was found to substantially alter osteoblast epigenetic function through reduced HDAC activity and increased histone acetylation. Treatment with TSA also significantly enhanced osteoblast alkaline phosphatase activity (1.35-fold), collagen production (2.8-fold) and calcium deposition (1.55-fold) during osteogenic culture (P ≤ 0.001). EVs derived from TSA-treated osteoblasts (TSA-EVs) exhibited reduced particle size (1-05-fold) (P > 0.05), concentration (1.4-fold) (P > 0.05) and protein content (1.16-fold) (P ≤ 0.001) when compared to untreated EVs. TSA-EVs significantly enhanced the proliferation (1.13-fold) and migration (1.3-fold) of human bone marrow stem cells (hBMSCs) when compared to untreated EVs (P ≤ 0.05). Moreover, TSA-EVs upregulated hBMSCs osteoblast-related gene and protein expression (ALP, Col1a, BSP1 and OCN) when compared to cells cultured with untreated EVs. Importantly, TSA-EVs elicited a time-dose dependent increase in hBMSCs extracellular matrix mineralisation. MicroRNA profiling revealed a set of differentially expressed microRNAs from TSA-EVs, which were osteogenic-related. Target prediction demonstrated these microRNAs were involved in regulating pathways such as 'endocytosis' and 'Wnt signalling pathway'. Moreover, proteomics analysis identified the enrichment of proteins involved in transcriptional regulation within TSA-EVs. Taken together, our findings suggest that altering osteoblasts' epigenome accelerates their mineralisation and promotes the osteoinductive potency of secreted EVs partly due to the delivery of pro-osteogenic microRNAs and transcriptional regulating proteins. As such, for the first time we demonstrate the potential to harness epigenetic regulation as a novel engineering approach to enhance EVs therapeutic efficacy for bone repair.
Collapse
Affiliation(s)
- Kenny Man
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
| | | | | | - Soraya Williams
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Liam M. Heaney
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Lee A. Gethings
- Waters CorporationStamford AvenueWilmslowUK
- Division of Infection, Immunity and Respiratory MedicineFaculty of Biology, Medicine and HealthManchester Institute of BiotechnologyUniversity of ManchesterManchesterUK
| | - Angelica Federici
- Trinity Biomedical Sciences InstituteTrinity CollegeTrinity Centre for Biomedical EngineeringDublinIreland
- Department of Mechanical, Manufacturing, and Biomedical EngineeringSchool of EngineeringTrinity College DublinIreland
- Trinity College Dublin & RCSIAdvanced Materials and Bioengineering Research CentreDublinIreland
| | - Owen G. Davies
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - David Hoey
- Trinity Biomedical Sciences InstituteTrinity CollegeTrinity Centre for Biomedical EngineeringDublinIreland
- Department of Mechanical, Manufacturing, and Biomedical EngineeringSchool of EngineeringTrinity College DublinIreland
- Trinity College Dublin & RCSIAdvanced Materials and Bioengineering Research CentreDublinIreland
| | - Sophie C. Cox
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
| |
Collapse
|
59
|
Armstrong JPK, Keane TJ, Roques AC, Patrick PS, Mooney CM, Kuan WL, Pisupati V, Oreffo ROC, Stuckey DJ, Watt FM, Forbes SJ, Barker RA, Stevens MM. A blueprint for translational regenerative medicine. Sci Transl Med 2021; 12:12/572/eaaz2253. [PMID: 33268507 DOI: 10.1126/scitranslmed.aaz2253] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/05/2020] [Indexed: 12/11/2022]
Abstract
The past few decades have produced a large number of proof-of-concept studies in regenerative medicine. However, the route to clinical adoption is fraught with technical and translational obstacles that frequently consign promising academic solutions to the so-called "valley of death." Here, we present a proposed blueprint for translational regenerative medicine. We offer principles to help guide the selection of cells and materials, present key in vivo imaging modalities, and argue that the host immune response should be considered throughout design and development. Last, we suggest a pathway to navigate the often complex regulatory and manufacturing landscape of translational regenerative medicine.
Collapse
Affiliation(s)
- James P K Armstrong
- Department of Materials, Imperial College London, London SW7 2AZ, UK. .,Department of Bioengineering, Imperial College London, London SW7 2AZ, UK.,Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Timothy J Keane
- Department of Materials, Imperial College London, London SW7 2AZ, UK.,Department of Bioengineering, Imperial College London, London SW7 2AZ, UK.,Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Anne C Roques
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - P Stephen Patrick
- Centre for Advanced Biomedical Imaging, University College London, London WC1E 6DD, UK
| | - Claire M Mooney
- Centre for Stem Cells and Regenerative Medicine, King's College London, London SE1 9RT, UK
| | - Wei-Li Kuan
- John van Geest Centre for Brain Repair and Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0PY, UK
| | - Venkat Pisupati
- John van Geest Centre for Brain Repair and Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0PY, UK
| | - Richard O C Oreffo
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton SO16 6YD, UK
| | - Daniel J Stuckey
- Centre for Advanced Biomedical Imaging, University College London, London WC1E 6DD, UK
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, London SE1 9RT, UK
| | - Stuart J Forbes
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair and Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0PY, UK
| | - Molly M Stevens
- Department of Materials, Imperial College London, London SW7 2AZ, UK. .,Department of Bioengineering, Imperial College London, London SW7 2AZ, UK.,Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
60
|
Laurent A, Scaletta C, Michetti M, Hirt-Burri N, de Buys Roessingh AS, Raffoul W, Applegate LA. GMP Tiered Cell Banking of Non-enzymatically Isolated Dermal Progenitor Fibroblasts for Allogenic Regenerative Medicine. Methods Mol Biol 2021; 2286:25-48. [PMID: 32468492 DOI: 10.1007/7651_2020_295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Non-enzymatically isolated primary dermal progenitor fibroblasts derived from fetal organ donations are ideal cell types for allogenic musculoskeletal regenerative therapeutic applications. These cell types are differentiated, highly proliferative in standard in vitro culture conditions and extremely stable throughout their defined lifespans. Technical simplicity, robustness of bioprocessing and relatively small therapeutic dose requirements enable pragmatic and efficient production of clinical progenitor fibroblast lots under cGMP standards. Herein we describe optimized and standardized monolayer culture expansion protocols using dermal progenitor fibroblasts isolated under a Fetal Transplantation Program for the establishment of GMP tiered Master, Working and End of Production cryopreserved Cell Banks. Safety, stability and quality parameters are assessed through stringent testing of progeny biological materials, in view of clinical application to human patients suffering from diverse cutaneous chronic and acute affections. These methods and approaches, coupled to adequate cell source optimization, enable the obtention of a virtually limitless source of highly consistent and safe biological therapeutic material to be used for innovative regenerative medicine applications.
Collapse
Affiliation(s)
- Alexis Laurent
- Regenerative Therapy Unit, Musculoskeletal Medicine Department, Lausanne University Hospital, University of Lausanne, Epalinges, Switzerland.,Plastic, Reconstructive & Hand Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Corinne Scaletta
- Regenerative Therapy Unit, Musculoskeletal Medicine Department, Lausanne University Hospital, University of Lausanne, Epalinges, Switzerland.,Plastic, Reconstructive & Hand Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Murielle Michetti
- Regenerative Therapy Unit, Musculoskeletal Medicine Department, Lausanne University Hospital, University of Lausanne, Epalinges, Switzerland.,Plastic, Reconstructive & Hand Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Musculoskeletal Medicine Department, Lausanne University Hospital, University of Lausanne, Epalinges, Switzerland.,Plastic, Reconstructive & Hand Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | | | - Wassim Raffoul
- Plastic, Reconstructive & Hand Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Musculoskeletal Medicine Department, Lausanne University Hospital, University of Lausanne, Epalinges, Switzerland. .,Plastic, Reconstructive & Hand Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland. .,Oxford Suzhou Center for Advanced Research, Science and Technology Co. Ltd., Oxford University, Suzhou, People's Republic of China. .,Competence Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
61
|
Swiss Fetal Transplantation Program and Non-enzymatically Isolated Primary Progenitor Cell Types for Regenerative Medicine. Methods Mol Biol 2021; 2286:1-24. [PMID: 32430595 DOI: 10.1007/7651_2020_294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Primary progenitor cell types adequately isolated from fetal tissue samples present considerable therapeutic potential for a wide range of applications within allogeneic musculoskeletal regenerative medicine. Progenitor cells are inherently differentiated and extremely stable in standard bioprocessing conditions and can be culture-expanded to establish extensive and robust cryopreserved cell banks. Stringent processing conditions and exhaustive traceability are prerequisites for establishing a cell source admissible for further cGMP biobanking and clinical-grade production lot manufacture. Transplantation programs are ideal platforms for the establishment of primary progenitor cell sources to be used for manufacture of cell therapies or cell-based products. Well-defined and regulated procurement and processing of fetal biopsies after voluntary pregnancy interruptions ensure traceability and safety of progeny materials and therapeutic products derived therefrom. We describe herein the workflows and specifications devised under the Swiss Fetal Progenitor Cell Transplantation Program in order to traceably isolate primary progenitor cell types in vitro and to constitute Parental Cell Banks fit for subsequent industrial-scale cGMP processing. When properly devised, derived, and maintained, such cell sources established after a single organ donation can furnish sufficient progeny materials for years of development in translational musculoskeletal regenerative medicine.
Collapse
|
62
|
Baryeh K, Asopa V, Kader N, Caplan N, Maffulli N, Kader D. Cell-based therapies for the treatment of sports injuries of the upper limb. Expert Opin Biol Ther 2021; 21:1561-1574. [PMID: 34036854 DOI: 10.1080/14712598.2021.1928630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: The use of cell-based therapies in the management of sports injuries of the upper limb is increasingly popular despite the limited scientific evidence available for their use. We aim to evaluate the evidence for the use of cell-based therapies in these injuries and recommend areas for further research.Areas covered: In accordance with a published protocol (PROSPERO; Registration No. CRD42020193258), a comprehensive search of the literature was performed using the MEDLINE and EMBASE databases from inception to June 2020. All human studies reporting on the clinical, histological, or radiological outcomes following the use of cell-based therapies in the management of epicondylitis or rotator cuff pathology were included in this study. This resulted in 22 studies being included in this review, all of which underwent risk of bias assessments.Expert opinion: The evidence for the use of cell-based therapies in upper limb sports injuries is limited and generally of low quality. Given the heterogeneity in the cell types used, their harvesting methods and cell amounts, future research should be targeted at developing standardization of the reporting of these studies and more direct comparative studies looking at the efficacy of the different cell types.
Collapse
Affiliation(s)
- Kwaku Baryeh
- Academic Surgical Unit, South West London Elective Orthopaedic Centre, Epsom, UK
| | - Vipin Asopa
- Academic Surgical Unit, South West London Elective Orthopaedic Centre, Epsom, UK
| | - Nardeen Kader
- Academic Surgical Unit, South West London Elective Orthopaedic Centre, Epsom, UK
| | - Nick Caplan
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Nicola Maffulli
- Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Mile End Hospital, Queen Mary University of London, London, UK
| | - Deiary Kader
- Academic Surgical Unit, South West London Elective Orthopaedic Centre, Epsom, UK
| |
Collapse
|
63
|
Wang LL, Janes ME, Kumbhojkar N, Kapate N, Clegg JR, Prakash S, Heavey MK, Zhao Z, Anselmo AC, Mitragotri S. Cell therapies in the clinic. Bioeng Transl Med 2021; 6:e10214. [PMID: 34027097 PMCID: PMC8126820 DOI: 10.1002/btm2.10214] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/30/2021] [Accepted: 02/09/2021] [Indexed: 12/16/2022] Open
Abstract
Cell therapies have emerged as a promising therapeutic modality with the potential to treat and even cure a diverse array of diseases. Cell therapies offer unique clinical and therapeutic advantages over conventional small molecules and the growing number of biologics. Particularly, living cells can simultaneously and dynamically perform complex biological functions in ways that conventional drugs cannot; cell therapies have expanded the spectrum of available therapeutic options to include key cellular functions and processes. As such, cell therapies are currently one of the most investigated therapeutic modalities in both preclinical and clinical settings, with many products having been approved and many more under active clinical investigation. Here, we highlight the diversity and key advantages of cell therapies and discuss their current clinical advances. In particular, we review 28 globally approved cell therapy products and their clinical use. We also analyze >1700 current active clinical trials of cell therapies, with an emphasis on discussing their therapeutic applications. Finally, we critically discuss the major biological, manufacturing, and regulatory challenges associated with the clinical translation of cell therapies.
Collapse
Affiliation(s)
- Lily Li‐Wen Wang
- John A. Paulson School of Engineering & Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
- Harvard‐MIT Division of Health Sciences and Technology, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Morgan E. Janes
- John A. Paulson School of Engineering & Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
- Harvard‐MIT Division of Health Sciences and Technology, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Ninad Kumbhojkar
- John A. Paulson School of Engineering & Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Neha Kapate
- John A. Paulson School of Engineering & Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
- Harvard‐MIT Division of Health Sciences and Technology, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - John R. Clegg
- John A. Paulson School of Engineering & Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Supriya Prakash
- John A. Paulson School of Engineering & Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Mairead K. Heavey
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Zongmin Zhao
- John A. Paulson School of Engineering & Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Aaron C. Anselmo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Samir Mitragotri
- John A. Paulson School of Engineering & Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
| |
Collapse
|
64
|
Chang C, Yan J, Yao Z, Zhang C, Li X, Mao H. Effects of Mesenchymal Stem Cell-Derived Paracrine Signals and Their Delivery Strategies. Adv Healthc Mater 2021; 10:e2001689. [PMID: 33433956 PMCID: PMC7995150 DOI: 10.1002/adhm.202001689] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/13/2020] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) have been widely studied as a versatile cell source for tissue regeneration and remodeling due to their potent bioactivity, which includes modulation of inflammation response, macrophage polarization toward proregenerative lineage, promotion of angiogenesis, and reduction in fibrosis. This review focuses on profiling the effects of paracrine signals of MSCs, commonly referred to as the secretome, and highlighting the various engineering approaches to tune the MSC secretome. Recent advances in biomaterials‐based therapeutic strategies for delivery of MSCs and MSC‐derived secretome in the form of extracellular vesicles are discussed, along with their advantages and challenges.
Collapse
Affiliation(s)
- Calvin Chang
- Department of Biomedical Engineering, School of Medicine Johns Hopkins University Baltimore MD 21205 USA
- Translational Tissue Engineering Center Johns Hopkins School of Medicine Baltimore MD 21287 USA
- Institute for NanoBioTechnology Johns Hopkins University Baltimore MD 21218 USA
| | - Jerry Yan
- Department of Biomedical Engineering, School of Medicine Johns Hopkins University Baltimore MD 21205 USA
- Translational Tissue Engineering Center Johns Hopkins School of Medicine Baltimore MD 21287 USA
- Institute for NanoBioTechnology Johns Hopkins University Baltimore MD 21218 USA
| | - Zhicheng Yao
- Translational Tissue Engineering Center Johns Hopkins School of Medicine Baltimore MD 21287 USA
- Institute for NanoBioTechnology Johns Hopkins University Baltimore MD 21218 USA
- Department of Materials Science and Engineering, Whiting School of Engineering Johns Hopkins University Baltimore MD 21218 USA
| | - Chi Zhang
- Translational Tissue Engineering Center Johns Hopkins School of Medicine Baltimore MD 21287 USA
- Institute for NanoBioTechnology Johns Hopkins University Baltimore MD 21218 USA
- Department of Materials Science and Engineering, Whiting School of Engineering Johns Hopkins University Baltimore MD 21218 USA
| | - Xiaowei Li
- Mary and Dick Holland Regenerative Medicine Program and Department of Neurological Sciences University of Nebraska Medical Center Omaha NE 68198 USA
| | - Hai‐Quan Mao
- Department of Biomedical Engineering, School of Medicine Johns Hopkins University Baltimore MD 21205 USA
- Translational Tissue Engineering Center Johns Hopkins School of Medicine Baltimore MD 21287 USA
- Institute for NanoBioTechnology Johns Hopkins University Baltimore MD 21218 USA
- Department of Materials Science and Engineering, Whiting School of Engineering Johns Hopkins University Baltimore MD 21218 USA
| |
Collapse
|
65
|
Baudequin T, Nyland R, Ye H. Objectives, benefits and challenges of bioreactor systems for the clinical-scale expansion of T lymphocyte cells. Biotechnol Adv 2021; 49:107735. [PMID: 33781889 DOI: 10.1016/j.biotechadv.2021.107735] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/16/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Cell therapies based on T cell have gathered interest over the last decades for treatment of cancers, becoming recently the most investigated lineage for clinical trials. Although results of adoptive cell therapies are very promising, obtaining large batches of T cell at clinical scale is still challenging nowadays. We propose here a review study focusing on how bioreactor systems could increase expansion rates of T cell culture specifically towards efficient, reliable and reproducible cell therapies. After describing the specificities of T cell culture, in particular activation, phenotypical characterization and cell density considerations, we detail the main objectives of bioreactors in this context, namely scale-up, GMP-compliance and reduced time and costs. Then, we report recent advances on the different classes of bioreactor systems commonly investigated for non-adherent cell expansion, in comparison with the current "gold standard" of T cell culture (flasks and culture bag). Results obtained with hollow fibres, G-Rex® flasks, Wave bioreactor, multiple-step bioreactors, spinner flasks as well as original homemade designs are discussed to highlight advantages and drawbacks in regards to T cells' specificities. Although there is currently no consensus on an optimal bioreactor, overall, most systems reviewed here can improve T cell culture towards faster, easier and/or cheaper protocols. They also offer strong outlooks towards automation, process control and complete closed systems, which could be mandatory developments for a massive clinical breakthrough. However, proper controls are sometimes lacking to conclude clearly on the features leading to the progresses regarding cell expansion, and the field could benefit from process engineering methods, such as quality by design, to perform multi parameters studies and face these challenges.
Collapse
Affiliation(s)
- Timothée Baudequin
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, United Kingdom.
| | - Robin Nyland
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, United Kingdom.
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, United Kingdom.
| |
Collapse
|
66
|
Thorp H, Kim K, Kondo M, Maak T, Grainger DW, Okano T. Trends in Articular Cartilage Tissue Engineering: 3D Mesenchymal Stem Cell Sheets as Candidates for Engineered Hyaline-Like Cartilage. Cells 2021; 10:cells10030643. [PMID: 33805764 PMCID: PMC7998529 DOI: 10.3390/cells10030643] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Articular cartilage defects represent an inciting factor for future osteoarthritis (OA) and degenerative joint disease progression. Despite multiple clinically available therapies that succeed in providing short term pain reduction and restoration of limited mobility, current treatments do not reliably regenerate native hyaline cartilage or halt cartilage degeneration at these defect sites. Novel therapeutics aimed at addressing limitations of current clinical cartilage regeneration therapies increasingly focus on allogeneic cells, specifically mesenchymal stem cells (MSCs), as potent, banked, and available cell sources that express chondrogenic lineage commitment capabilities. Innovative tissue engineering approaches employing allogeneic MSCs aim to develop three-dimensional (3D), chondrogenically differentiated constructs for direct and immediate replacement of hyaline cartilage, improve local site tissue integration, and optimize treatment outcomes. Among emerging tissue engineering technologies, advancements in cell sheet tissue engineering offer promising capabilities for achieving both in vitro hyaline-like differentiation and effective transplantation, based on controlled 3D cellular interactions and retained cellular adhesion molecules. This review focuses on 3D MSC-based tissue engineering approaches for fabricating “ready-to-use” hyaline-like cartilage constructs for future rapid in vivo regenerative cartilage therapies. We highlight current approaches and future directions regarding development of MSC-derived cartilage therapies, emphasizing cell sheet tissue engineering, with specific focus on regulating 3D cellular interactions for controlled chondrogenic differentiation and post-differentiation transplantation capabilities.
Collapse
Affiliation(s)
- Hallie Thorp
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA; (H.T.); (M.K.); (D.W.G.)
- Department of Biomedical Engineering, University of Utah, 36 S Wasatch Dr, Salt Lake City, UT 84112, USA
| | - Kyungsook Kim
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA; (H.T.); (M.K.); (D.W.G.)
- Correspondence: (K.K.); (T.O.); Tel.: +1-801-585-0070 (K.K. & T.O.); Fax: +1-801-581-3674 (K.K. & T.O.)
| | - Makoto Kondo
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA; (H.T.); (M.K.); (D.W.G.)
| | - Travis Maak
- Department of Orthopaedic Surgery, University of Utah, 590 Wakara Way, Salt Lake City, UT 84108, USA;
| | - David W. Grainger
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA; (H.T.); (M.K.); (D.W.G.)
- Department of Biomedical Engineering, University of Utah, 36 S Wasatch Dr, Salt Lake City, UT 84112, USA
| | - Teruo Okano
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA; (H.T.); (M.K.); (D.W.G.)
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Wakamatsucho, 2−2, Shinjuku-ku, Tokyo 162-8480, Japan
- Correspondence: (K.K.); (T.O.); Tel.: +1-801-585-0070 (K.K. & T.O.); Fax: +1-801-581-3674 (K.K. & T.O.)
| |
Collapse
|
67
|
Fröhlich E. Therapeutic Potential of Mesenchymal Stem Cells and Their Products in Lung Diseases-Intravenous Administration versus Inhalation. Pharmaceutics 2021; 13:232. [PMID: 33562240 PMCID: PMC7915745 DOI: 10.3390/pharmaceutics13020232] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
The number of publications studying the therapeutic use of stem cells has steadily increased since 2000. Compared to other applications, there has been little interest in the evaluation of mesenchymal stem cells (MSCs) and MSC-derived products (mostly extracellular vesicles) for the treatment of respiratory diseases. Due to the lack of efficient treatments for acute respiratory distress syndrome caused by infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the action of MSCs has also been studied. This review describes mode of action and use of MSCs and MSC-derived products in the treatment of lung diseases including the respective advantages and limitations of the products. Further, issues related to standardized production are addressed. Administration by inhalation of MSCs, compared to intravenous injection, could decrease cell damage by shear stress, eliminate the barrier to reach target cells in the alveoli, prevent thrombus formation in the pulmonary vasculature and retention in filter for extracorporeal membrane oxygenation. There is more feasible to deliver extracellular vesicles than MSCs with inhalers, offering the advantage of non-invasive and repeated administration by the patient. Major obstacles for comparison of results are heterogeneity of the products, differences in the treatment protocols and small study cohorts.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, Stiftingtalstr 24, 8010 Graz, Austria; ; Tel.: +43-316-385-73011
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
68
|
Lewandowski RB, Stępińska M, Gietka A, Dobrzyńska M, Łapiński MP, Trafny EA. The red-light emitting diode irradiation increases proliferation of human bone marrow mesenchymal stem cells preserving their immunophenotype. Int J Radiat Biol 2021; 97:553-563. [PMID: 33471577 DOI: 10.1080/09553002.2021.1876947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 11/20/2020] [Accepted: 01/05/2021] [Indexed: 01/02/2023]
Abstract
PURPOSE For effective clinical application of human bone marrow mesenchymal stem cells (hBM-MSCs), the enhancement of their proliferation in vitro together with maintaining the expression of their crucial surface antigens and differentiation potential is necessary. The present study aimed to investigate the effect of light-emitting diode (LED) irradiation on hBM-MSCs proliferation after two, five, or nine days post-irradiation. MATERIALS AND METHODS The hBM-MSCs were exposed to the LED light at 630 nm, 4 J/cm2, and power densities of 7, 17, or 30 mW/cm2. To assess the cell proliferation rate in the sham-irradiated and irradiated samples the cells metabolic activity and DNA content were determined. The number of apoptotic and necrotic cells in the samples was also evaluated. The expression of the crucial surface antigens of the hBM-MSCs up to nine days after irradiation at 4 J/cm2 and 17 mW/cm2 was monitored with flow cytometry. Additionally, the potential of hBM-MSCs for induced differentiation was measured. RESULTS When the metabolic activity was assayed, the significant increase in the cell proliferation rate by 31 and 50% after the irradiation with 4 J/cm2 and 17 mW/cm2, respectively, was observed at day five and nine when compared to the sham-irradiated cells (p < .05). Similarly, DNA content within the irradiated hBM-MSCs increased by 31 and 41% at day five and nine after the irradiation with 4 J/cm2 and 17 mW/cm2 in comparison to the sham-irradiated cells. LED irradiation did not change the expression of the crucial surface antigens of the hBM-MSCs up to nine days after irradiation at 4 J/cm2 and 17 mW/cm2. At the same experimental conditions, the hBM-MSCs maintain in vitro their capability for multipotential differentiation into osteoblasts, adipocytes, and chondrocytes. CONCLUSION Therefore, LED irradiation at a wavelength of 630 nm, energy density 4 J/cm2, and power density 17 mW/cm2 can effectively increase the number of viable hBM-MSCs in vitro.
Collapse
Affiliation(s)
- Rafał B Lewandowski
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
| | - Małgorzata Stępińska
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
| | - Andrzej Gietka
- Optoelectronic Technologies Division, Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
| | - Monika Dobrzyńska
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
| | - Mariusz P Łapiński
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
| | - Elżbieta A Trafny
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
| |
Collapse
|
69
|
Papantoniou I, Nilsson Hall G, Loverdou N, Lesage R, Herpelinck T, Mendes L, Geris L. Turning Nature's own processes into design strategies for living bone implant biomanufacturing: a decade of Developmental Engineering. Adv Drug Deliv Rev 2021; 169:22-39. [PMID: 33290762 PMCID: PMC7839840 DOI: 10.1016/j.addr.2020.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 11/20/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022]
Abstract
A decade after the term developmental engineering (DE) was coined to indicate the use of developmental processes as blueprints for the design and development of engineered living implants, a myriad of proof-of-concept studies demonstrate the potential of this approach in small animal models. This review provides an overview of DE work, focusing on applications in bone regeneration. Enabling technologies allow to quantify the distance between in vitro processes and their developmental counterpart, as well as to design strategies to reduce that distance. By embedding Nature's robust mechanisms of action in engineered constructs, predictive large animal data and subsequent positive clinical outcomes can be gradually achieved. To this end, the development of next generation biofabrication technologies should provide the necessary scale and precision for robust living bone implant biomanufacturing.
Collapse
Affiliation(s)
- Ioannis Papantoniou
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology - Hellas (FORTH), Stadiou street, 26504 Patras, Greece; Skeletal Biology & Engineering Research Center, KU Leuven, Herestraat 49 (813), 3000 Leuven, Belgium; Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium.
| | - Gabriella Nilsson Hall
- Skeletal Biology & Engineering Research Center, KU Leuven, Herestraat 49 (813), 3000 Leuven, Belgium; Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium.
| | - Niki Loverdou
- Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium; GIGA in silico medicine, University of Liège, Avenue de l'Hôpital 11 (B34), 4000 Liège, Belgium; Biomechanics Section, KU Leuven, Celestijnenlaan 300C (2419), 3001 Leuven, Belgium.
| | - Raphaelle Lesage
- Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium; Biomechanics Section, KU Leuven, Celestijnenlaan 300C (2419), 3001 Leuven, Belgium.
| | - Tim Herpelinck
- Skeletal Biology & Engineering Research Center, KU Leuven, Herestraat 49 (813), 3000 Leuven, Belgium; Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium.
| | - Luis Mendes
- Skeletal Biology & Engineering Research Center, KU Leuven, Herestraat 49 (813), 3000 Leuven, Belgium; Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium.
| | - Liesbet Geris
- Skeletal Biology & Engineering Research Center, KU Leuven, Herestraat 49 (813), 3000 Leuven, Belgium; GIGA in silico medicine, University of Liège, Avenue de l'Hôpital 11 (B34), 4000 Liège, Belgium; Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium; Biomechanics Section, KU Leuven, Celestijnenlaan 300C (2419), 3001 Leuven, Belgium.
| |
Collapse
|
70
|
Ting DSJ, Peh GSL, Adnan K, Mehta JS. Translational and Regulatory Challenges of Corneal Endothelial Cell Therapy: A Global Perspective. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:52-62. [PMID: 33267724 DOI: 10.1089/ten.teb.2020.0319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell therapies are emerging as a unique class of clinical therapeutics in medicine. In 2015, Holoclar (ex vivo expanded autologous human corneal epithelial cells containing stem cells) gained the regulatory approval for treating limbal stem cell deficiency after chemical eye burn. This has set a precedent in ophthalmology and in medicine, reinforcing the therapeutic promise of cell therapy. However, to generalize and commercialize cell therapies on a global scale, stringent translational and regulatory requirements need to be fulfilled at both local and international levels. Over the past decade, the Singapore group has taken significant steps in developing human corneal endothelial cell (HCEnC) therapy for treating corneal endothelial diseases, which are currently the leading indication for corneal transplantation in many countries. Successful development of HCEnC therapy may serve as a novel solution to the current global shortage of donor corneas. Based on the experience in Singapore, this review aims to provide a global perspective on the translational and regulatory challenges for bench-to-bedside translation of cell therapy. Specifically, we discussed about the characterization of the critical quality attributes (CQA), the challenges that can affect the CQA, and the variations in the regulatory framework embedded within different regions, including Singapore, Europe, and the United States. Impact statement Functional corneal endothelium is critical to normal vision. Corneal endothelial disease-secondary to trauma, surgery, or pathology-represents an important cause of visual impairment and blindness in both developed and developing countries. Currently, corneal transplantation serves as the current gold standard for treating visually significant corneal endothelial diseases, although limited by the shortage of donor corneas. Over the past decade, human corneal endothelial cell therapy has emerged as a promising treatment option for treating corneal endothelial diseases. To allow widespread application of this therapy, significant regulatory challenges will need to be systematically overcome.
Collapse
Affiliation(s)
- Darren Shu Jeng Ting
- Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Department of Ophthalmology, Queen's Medical Centre, Nottingham, United Kingdom.,Singapore Eye Research Institute, Singapore, Singapore
| | - Gary S L Peh
- Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore
| | | | - Jodhbir S Mehta
- Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore.,Schools of Material Science and Engineering, Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
71
|
Yeola A, Subramanian S, Oliver RA, Lucas CA, Thoms JAI, Yan F, Olivier J, Chacon D, Tursky ML, Srivastava P, Potas JR, Hung T, Power C, Hardy P, Ma DD, Kilian KA, McCarroll J, Kavallaris M, Hesson LB, Beck D, Curtis DJ, Wong JWH, Hardeman EC, Walsh WR, Mobbs R, Chandrakanthan V, Pimanda JE. Induction of muscle-regenerative multipotent stem cells from human adipocytes by PDGF-AB and 5-azacytidine. SCIENCE ADVANCES 2021; 7:7/3/eabd1929. [PMID: 33523875 PMCID: PMC7806226 DOI: 10.1126/sciadv.abd1929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Terminally differentiated murine osteocytes and adipocytes can be reprogrammed using platelet-derived growth factor-AB and 5-azacytidine into multipotent stem cells with stromal cell characteristics. We have now optimized culture conditions to reprogram human adipocytes into induced multipotent stem (iMS) cells and characterized their molecular and functional properties. Although the basal transcriptomes of adipocyte-derived iMS cells and adipose tissue-derived mesenchymal stem cells were similar, there were changes in histone modifications and CpG methylation at cis-regulatory regions consistent with an epigenetic landscape that was primed for tissue development and differentiation. In a non-specific tissue injury xenograft model, iMS cells contributed directly to muscle, bone, cartilage, and blood vessels, with no evidence of teratogenic potential. In a cardiotoxin muscle injury model, iMS cells contributed specifically to satellite cells and myofibers without ectopic tissue formation. Together, human adipocyte-derived iMS cells regenerate tissues in a context-dependent manner without ectopic or neoplastic growth.
Collapse
Affiliation(s)
- Avani Yeola
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Shruthi Subramanian
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Rema A Oliver
- Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Christine A Lucas
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Julie A I Thoms
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Feng Yan
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Jake Olivier
- School of Mathematics and Statistics, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Diego Chacon
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Melinda L Tursky
- St. Vincent's Centre for Applied Medical Research, St Vincent's Hospital Sydney and St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Pallavi Srivastava
- School of Material Sciences and Engineering, School of Chemistry, Australian Centre for Nanomedicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Jason R Potas
- Translational Neuroscience Facility, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Tzongtyng Hung
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Carl Power
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW 2052, Australia
| | | | - David D Ma
- St. Vincent's Centre for Applied Medical Research, St Vincent's Hospital Sydney and St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Kristopher A Kilian
- School of Material Sciences and Engineering, School of Chemistry, Australian Centre for Nanomedicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Joshua McCarroll
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, Sydney, NSW, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for Nanomedicine, UNSW Sydney, Sydney, NSW 2052, Australia
- School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Luke B Hesson
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Dominik Beck
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - David J Curtis
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Clinical Haematology, Alfred Health, Melbourne, VIC, Australia
| | - Jason W H Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Edna C Hardeman
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - William R Walsh
- Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Ralph Mobbs
- Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia
- Department of Neurosurgery, Prince of Wales Hospital, Randwick, NSW 2031, Australia
| | - Vashe Chandrakanthan
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia.
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - John E Pimanda
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia.
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
- Department of Haematology, Prince of Wales Hospital, Randwick, NSW 2031, Australia
| |
Collapse
|
72
|
Niada S, Giannasi C, Magagnotti C, Andolfo A, Brini AT. Proteomic analysis of extracellular vesicles and conditioned medium from human adipose-derived stem/stromal cells and dermal fibroblasts. J Proteomics 2020; 232:104069. [PMID: 33309826 DOI: 10.1016/j.jprot.2020.104069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/23/2020] [Accepted: 11/29/2020] [Indexed: 12/19/2022]
Abstract
Conditioned medium (CM) and extracellular vesicles (EV) from Adipose-derived Stem/stromal cells (ASC) and Dermal fibroblasts (DF) represent promising tools for therapeutic applications. Which one should be preferred is still under debate and no direct comparison of their proteome has been reported yet. Here, we apply quantitative proteomics to explore the protein composition of CM and EV from the two cell types. Data are available via ProteomeXchange (identifier PXD020219). We identified 1977 proteins by LC-MS/MS proteomic analysis. Unsupervised clustering analysis and PCA recognized CM and EV as separate groups. We identified 68 and 201 CM and EV specific factors. CM were enriched in proteins of endoplasmic reticulum, Golgi apparatus and lysosomes, whereas EV contained a large amount of GTPases, ribosome and translation factors. The analysis of ASC and DF secretomes revealed the presence of cell type-specific proteins. ASC-CM and -EV carried factors involved in ECM organization and immunological regulation, respectively. Conversely, DF-CM and -EV were enriched in epithelium development associated factors and -EV in Wnt signaling factors. In conclusion, this analysis provides evidence of a different protein composition between CM and EV and of the presence of cell type-specific bioactive mediators suggesting their specific future use as advanced therapy medicinal products. SIGNIFICANCE: The use of cell secretome presents several advantages over cell therapy such as the lower risks associated to the administration step and the avoidance of any potential risk of malignant transformation. The main secretome preparations consist in concentrated conditioned medium (CM) and extracellular vesicles (EV). Both of them showed well-documented therapeutic potentials. However, it is still not clear in which case it should be better to use one preparation over the other and an exhaustive comparison between their proteome has not been performed yet. The choice of the cell source is another relevant aspect that still needs to be addressed. In order to shed light on these questions we explored the protein composition of CM and EV obtained from Adipose-derived Stem/stromal Cells (ASC) and Dermal Fibroblasts (DF), by a comprehensive quantitative proteomics approach. The analysis showed a clear distinction between CM and EV proteome. CM were enriched in proteins of endoplasmic reticulum, Golgi apparatus and lysosomes, whereas EV contained a large amount of GTPases, ribosome and translation-related factors. Furthermore, the analysis of ASC and DF secretomes revealed specific biological processes for the different cell products. ASC secretome presented factors involved in ECM organization (hyaluronan and glycosaminoglycan metabolism) and immunological regulation (e.g. macrophage and IkB/NFkB signaling regulation), respectively. On the other hand, DF-CM and -EV were both enriched in epithelium development associated factors, whilst DF-CM in proteins involved in cellular processes regulation and -EV in Wnt signaling factors. In conclusion, our study shed a light on the different protein composition of CM and EV of two promising cell types, spanning from basic processes involved in secretion to specific pathways supporting their therapeutic potential and their possible future use as advanced therapy medicinal products.
Collapse
Affiliation(s)
| | | | - Cinzia Magagnotti
- Proteomics and Metabolomics Facility (ProMeFa), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Annapaola Andolfo
- Proteomics and Metabolomics Facility (ProMeFa), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Anna Teresa Brini
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
73
|
Challenges for Cell-Based Medicinal Products From a Pharmaceutical Product Perspective. J Pharm Sci 2020; 110:1900-1908. [PMID: 33307042 DOI: 10.1016/j.xphs.2020.11.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 11/19/2020] [Accepted: 11/30/2020] [Indexed: 11/22/2022]
Abstract
Advanced therapy medicinal products (ATMPs), such as somatic cell-therapy medicinal products or tissue-engineered products for human use, offer new and potentially curative opportunities to treat yet untreatable diseases or disorders. For cell-therapy medicinal products (CBMPs), multiple stability and quality challenges exist and relate to the cellular composition and unstable nature of these parenteral preparations. It is the aim of this review to discuss open questions and problems associated with the development, manufacturing and testing of CBMPs from a pharmaceutical drug product perspective. This includes safety, storage and handling, particulates, the choice of container closure systems and integrity. Analytical methods commonly used to evaluate the quality of the final CBMP to ensure patient's safety will be discussed. Particulate contamination in final products deserve special attention since CBMPs cannot be sterile filtered. Visible and sub-visible particles may represent environmental contaminations or may form during storage. They may be introduced from processing materials such as single use product contact materials, ancillary materials, or any components such as primary packaging used for the final product. Currently available analytical methods for detecting particulates may not be easily applicable to CBMPs due to their inherent particulate nature and appearance.
Collapse
|
74
|
Swanson WB, Zhang Z, Xiu K, Gong T, Eberle M, Wang Z, Ma PX. Scaffolds with controlled release of pro-mineralization exosomes to promote craniofacial bone healing without cell transplantation. Acta Biomater 2020; 118:215-232. [PMID: 33065285 PMCID: PMC7796555 DOI: 10.1016/j.actbio.2020.09.052] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/10/2020] [Accepted: 09/29/2020] [Indexed: 12/20/2022]
Abstract
Biomimetic bone regeneration methods which demonstrate both clinical and manufacturing feasibility, as alternatives to autogenic or allogenic bone grafting, remain a challenge to the field of tissue engineering. Here, we report the pro-osteogenic capacity of exosomes derived from human dental pulp stem cells (hDPSCs) to facilitate bone marrow stromal cell (BMSC) differentiation and mineralization. To support their delivery, we engineered a biodegradable polymer delivery platform to improve the encapsulation and the controlled release of exosomes on a tunable time scale from poly(lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) triblock copolymer microspheres. Our delivery platform integrates within three-dimensional tissue engineering scaffolds to enable a straightforward surgical insertion into a mouse calvarial defect. We demonstrate the osteogenic potential of these functional constructs in vitro and in vivo. Controlled release of osteogenic hDPSC-derived exosomes facilitates osteogenic differentiation of BMSCs, leading to mineralization to a degree which is comparable to exogenous administration of the same exosomes in human and mouse BMSCs. By recruiting endogenous cells to the defects and facilitating their differentiation, the controlled release of osteogenic exosomes from a tissue engineering scaffold demonstrates accelerated bone healing in vivo at 8 weeks. Exosomes recapitulate the advantageous properties of mesenchymal stem/progenitor cells, without manufacturing or immunogenic concerns associated with transplantation of exogenous cells. This biomaterial platform enables exosome-mediated bone regeneration in an efficacious and clinically relevant way.
Collapse
Affiliation(s)
- W Benton Swanson
- Department of Biologic and Materials Science, School of Dentistry, University of Michigan, Ann Arbor, USA
| | - Zhen Zhang
- Department of Biologic and Materials Science, School of Dentistry, University of Michigan, Ann Arbor, USA
| | - Kemao Xiu
- Department of Biologic and Materials Science, School of Dentistry, University of Michigan, Ann Arbor, USA
| | - Ting Gong
- Department of Biologic and Materials Science, School of Dentistry, University of Michigan, Ann Arbor, USA
| | - Miranda Eberle
- Department of Chemistry, University of Michigan, Ann Arbor, USA
| | - Ziqi Wang
- Department of Mechanical Engineering, College of Engineering, University of Michigan, Ann Arbor, USA
| | - Peter X Ma
- Department of Biologic and Materials Science, School of Dentistry, University of Michigan, Ann Arbor, USA; Macromolecular Science and Engineering Center, College of Engineering, University of Michigan, Ann Arbor, USA; Department of Biomedical Engineering, College of Engineering and Medical School, University of Michigan, Ann Arbor, USA; Department of Materials Science and Engineering, College of Engineering, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
75
|
Zhao Z, Pan DC, Qi QM, Kim J, Kapate N, Sun T, Shields CW, Wang LLW, Wu D, Kwon CJ, He W, Guo J, Mitragotri S. Engineering of Living Cells with Polyphenol-Functionalized Biologically Active Nanocomplexes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003492. [PMID: 33150643 DOI: 10.1002/adma.202003492] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Approaches to safely and effectively augment cellular functions without compromising the inherent biological properties of the cells, especially through the integration of biologically labile domains, remain of great interest. Here, a versatile strategy to assemble biologically active nanocomplexes, including proteins, DNA, mRNA, and even viral carriers, on cellular surfaces to generate a cell-based hybrid system referred to as "Cellnex" is established. This strategy can be used to engineer a wide range of cell types used in adoptive cell transfers, including erythrocytes, macrophages, NK cells, T cells, etc. Erythrocytenex can enhance the delivery of cargo proteins to the lungs in vivo by 11-fold as compared to the free cargo counterpart. Biomimetic microfluidic experiments and modeling provided detailed insights into the targeting mechanism. In addition, Macrophagenex is capable of enhancing the therapeutic efficiency of anti-PD-L1 checkpoint inhibitors in vivo. This simple and adaptable approach may offer a platform for the rapid generation of complex cellular systems.
Collapse
Affiliation(s)
- Zongmin Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Daniel C Pan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Qin M Qi
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Jayoung Kim
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Neha Kapate
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Tao Sun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - C Wyatt Shields
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Lily Li-Wen Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Debra Wu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Christopher J Kwon
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Wei He
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Junling Guo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
76
|
Thorp H, Kim K, Kondo M, Grainger DW, Okano T. Fabrication of hyaline-like cartilage constructs using mesenchymal stem cell sheets. Sci Rep 2020; 10:20869. [PMID: 33257787 PMCID: PMC7705723 DOI: 10.1038/s41598-020-77842-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022] Open
Abstract
Cell and tissue engineering approaches for articular cartilage regeneration increasingly focus on mesenchymal stem cells (MSCs) as allogeneic cell sources, based on availability and innate chondrogenic potential. Many MSCs exhibit chondrogenic potential as three-dimensional (3D) cultures (i.e. pellets and seeded biomaterial scaffolds) in vitro; however, these constructs present engraftment, biocompatibility, and cell functionality limitations in vivo. Cell sheet technology maintains cell functionality as scaffold-free constructs while enabling direct cell transplantation from in vitro culture to targeted sites in vivo. The present study aims to develop transplantable hyaline-like cartilage constructs by stimulating MSC chondrogenic differentiation as cell sheets. To achieve this goal, 3D MSC sheets are prepared, exploiting spontaneous post-detachment cell sheet contraction, and chondrogenically induced. Results support 3D MSC sheets' chondrogenic differentiation to hyaline cartilage in vitro via post-contraction cytoskeletal reorganization and structural transformations. These 3D cell sheets' initial thickness and cellular densities may also modulate MSC-derived chondrocyte hypertrophy in vitro. Furthermore, chondrogenically differentiated cell sheets adhere directly to cartilage surfaces via retention of adhesion molecules while maintaining the cell sheets' characteristics. Together, these data support the utility of cell sheet technology for fabricating scaffold-free, hyaline-like cartilage constructs from MSCs for future transplantable articular cartilage regeneration therapies.
Collapse
Affiliation(s)
- Hallie Thorp
- Department of Pharmaceutics and Pharmaceutical Chemistry, Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, 30 South 2000 East, Salt Lake City, UT, 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Kyungsook Kim
- Department of Pharmaceutics and Pharmaceutical Chemistry, Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, 30 South 2000 East, Salt Lake City, UT, 84112, USA.
| | - Makoto Kondo
- Department of Pharmaceutics and Pharmaceutical Chemistry, Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, 30 South 2000 East, Salt Lake City, UT, 84112, USA
| | - David W Grainger
- Department of Pharmaceutics and Pharmaceutical Chemistry, Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, 30 South 2000 East, Salt Lake City, UT, 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Teruo Okano
- Department of Pharmaceutics and Pharmaceutical Chemistry, Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, 30 South 2000 East, Salt Lake City, UT, 84112, USA.
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
77
|
Extracellular matrix-based biomaterials as adipose-derived stem cell delivery vehicles in wound healing: a comparative study between a collagen scaffold and two xenografts. Stem Cell Res Ther 2020; 11:510. [PMID: 33246508 PMCID: PMC7694925 DOI: 10.1186/s13287-020-02021-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Stem cell therapies represent a promising tool in regenerative medicine. Considering the drawbacks of direct stem cell injections (e.g. poor cell localisation), extracellular matrix-based biomaterials (e.g. scaffolds and tissue grafts), due to their compositional biofunctionality and cytocompatibility, are under investigation as potential stem cell carriers. METHODS The present study assessed the potential of three commercially available extracellular matrix-based biomaterials [a collagen/glycosaminoglycan scaffold (Integra™ Matrix Wound Dressing), a decellularised porcine peritoneum (XenoMEM™) and a porcine urinary bladder (MatriStem™)] as human adipose-derived stem cell delivery vehicles. RESULTS Both tissue grafts induced significantly (p < 0.01) higher human adipose-derived stem cell proliferation in vitro over the collagen scaffold, especially when the cells were seeded on the basement membrane side. Human adipose-derived stem cell phenotype and trilineage differentiation potential was preserved in all biomaterials. In a splinted wound healing nude mouse model, in comparison to sham, biomaterials alone and cells alone groups, all biomaterials seeded with human adipose-derived stem cells showed a moderate improvement of wound closure, a significantly (p < 0.05) lower wound gap and scar index and a significantly (p < 0.05) higher proportion of mature collagen deposition and angiogenesis (the highest, p < 0.01, was observed for the cell loaded at the basement membrane XenoMEM™ group). All cell-loaded biomaterial groups retained more cells at the implantation side than the direct injection group, even though they were loaded with half of the cells than the cell injection group. CONCLUSIONS This study further advocates the use of extracellular matrix-based biomaterials (in particular porcine peritoneum) as human adipose-derived stem cell delivery vehicles. Comparative analysis of a collagen scaffold (Integra™ Matrix Wound Dressing) and two tissue grafts [decellularised porcine peritoneum (XenoMEM™) and porcine urinary bladder (MatriStem™)] as human adipose-derived stem cells carriers.
Collapse
|
78
|
Nath SC, Harper L, Rancourt DE. Cell-Based Therapy Manufacturing in Stirred Suspension Bioreactor: Thoughts for cGMP Compliance. Front Bioeng Biotechnol 2020; 8:599674. [PMID: 33324625 PMCID: PMC7726241 DOI: 10.3389/fbioe.2020.599674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/30/2020] [Indexed: 12/23/2022] Open
Abstract
Cell-based therapy (CBT) is attracting much attention to treat incurable diseases. In recent years, several clinical trials have been conducted using human pluripotent stem cells (hPSCs), and other potential therapeutic cells. Various private- and government-funded organizations are investing in finding permanent cures for diseases that are difficult or expensive to treat over a lifespan, such as age-related macular degeneration, Parkinson’s disease, or diabetes, etc. Clinical-grade cell manufacturing requiring current good manufacturing practices (cGMP) has therefore become an important issue to make safe and effective CBT products. Current cell production practices are adopted from conventional antibody or protein production in the pharmaceutical industry, wherein cells are used as a vector to produce the desired products. With CBT, however, the “cells are the final products” and sensitive to physico- chemical parameters and storage conditions anywhere between isolation and patient administration. In addition, the manufacturing of cellular products involves multi-stage processing, including cell isolation, genetic modification, PSC derivation, expansion, differentiation, purification, characterization, cryopreservation, etc. Posing a high risk of product contamination, these can be time- and cost- prohibitive due to maintenance of cGMP. The growing demand of CBT needs integrated manufacturing systems that can provide a more simple and cost-effective platform. Here, we discuss the current methods and limitations of CBT, based upon experience with biologics production. We review current cell manufacturing integration, automation and provide an overview of some important considerations and best cGMP practices. Finally, we propose how multi-stage cell processing can be integrated into a single bioreactor, in order to develop streamlined cGMP-compliant cell processing systems.
Collapse
Affiliation(s)
- Suman C Nath
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lane Harper
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Derrick E Rancourt
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
79
|
Muckom RJ, Sampayo RG, Johnson HJ, Schaffer DV. Advanced Materials to Enhance Central Nervous System Tissue Modeling and Cell Therapy. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2002931. [PMID: 33510596 PMCID: PMC7840150 DOI: 10.1002/adfm.202002931] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Indexed: 05/04/2023]
Abstract
The progressively deeper understanding of mechanisms underlying stem cell fate decisions has enabled parallel advances in basic biology-such as the generation of organoid models that can further one's basic understanding of human development and disease-and in clinical translation-including stem cell based therapies to treat human disease. Both of these applications rely on tight control of the stem cell microenvironment to properly modulate cell fate, and materials that can be engineered to interface with cells in a controlled and tunable manner have therefore emerged as valuable tools for guiding stem cell growth and differentiation. With a focus on the central nervous system (CNS), a broad range of material solutions that have been engineered to overcome various hurdles in constructing advanced organoid models and developing effective stem cell therapeutics is reviewed. Finally, regulatory aspects of combined material-cell approaches for CNS therapies are considered.
Collapse
Affiliation(s)
- Riya J Muckom
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94704, USA
| | - Rocío G Sampayo
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94704, USA
| | - Hunter J Johnson
- Department of Bioengineering, UC Berkeley, Berkeley, CA 94704, USA
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94704, USA
| |
Collapse
|
80
|
Huang Z, Powell R, Phillips JB, Haastert-Talini K. Perspective on Schwann Cells Derived from Induced Pluripotent Stem Cells in Peripheral Nerve Tissue Engineering. Cells 2020; 9:E2497. [PMID: 33213068 PMCID: PMC7698557 DOI: 10.3390/cells9112497] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Schwann cells play a crucial role in successful peripheral nerve repair and regeneration by supporting both axonal growth and myelination. Schwann cells are therefore a feasible option for cell therapy treatment of peripheral nerve injury. However, sourcing human Schwann cells at quantities required for development beyond research is challenging. Due to their availability, rapid in vitro expansion, survival, and integration within the host tissue, stem cells have attracted considerable attention as candidate cell therapies. Among them, induced pluripotent stem cells (iPSCs) with the associated prospects for personalized treatment are a promising therapy to take the leap from bench to bedside. In this critical review, we firstly focus on the current knowledge of the Schwann cell phenotype in regard to peripheral nerve injury, including crosstalk with the immune system during peripheral nerve regeneration. Then, we review iPSC to Schwann cell derivation protocols and the results from recent in vitro and in vivo studies. We finally conclude with some prospects for the use of iPSCs in clinical settings.
Collapse
Affiliation(s)
- Zhong Huang
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30623 Hannover, Germany;
- Center for Systems Neuroscience (ZSN) Hannover, 30559 Hannover, Germany
| | - Rebecca Powell
- Department of Pharmacology, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK;
- UCL Centre for Nerve Engineering, University College London, London WC1E 6BT, UK
| | - James B. Phillips
- Department of Pharmacology, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK;
- UCL Centre for Nerve Engineering, University College London, London WC1E 6BT, UK
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30623 Hannover, Germany;
- Center for Systems Neuroscience (ZSN) Hannover, 30559 Hannover, Germany
| |
Collapse
|
81
|
Holland I, Davies JA. Automation in the Life Science Research Laboratory. Front Bioeng Biotechnol 2020; 8:571777. [PMID: 33282848 PMCID: PMC7691657 DOI: 10.3389/fbioe.2020.571777] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/26/2020] [Indexed: 12/22/2022] Open
Abstract
Protocols in the academic life science laboratory are heavily reliant on the manual manipulation of tools, reagents and instruments by a host of research staff and students. In contrast to industrial and clinical laboratory environments, the usage of automation to augment or replace manual tasks is limited. Causes of this 'automation gap' are unique to academic research, with rigid short-term funding structures, high levels of protocol variability and a benevolent culture of investment in people over equipment. Automation, however, can bestow multiple benefits through improvements in reproducibility, researcher efficiency, clinical translation, and safety. Less immediately obvious are the accompanying limitations, including obsolescence and an inhibitory effect on the freedom to innovate. Growing the range of automation options suitable for research laboratories will require more flexible, modular and cheaper designs. Academic and commercial developers of automation will increasingly need to design with an environmental awareness and an understanding that large high-tech robotic solutions may not be appropriate for laboratories with constrained financial and spatial resources. To fully exploit the potential of laboratory automation, future generations of scientists will require both engineering and biology skills. Automation in the research laboratory is likely to be an increasingly critical component of future research programs and will continue the trend of combining engineering and science expertise together to answer novel research questions.
Collapse
Affiliation(s)
- Ian Holland
- Deanery of Biomedical Science and Synthsys Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom
| | | |
Collapse
|
82
|
Somville E, Kumar AA, Guicheux J, Halgand B, Demoustier-Champagne S, des Rieux A, Jonas AM, Glinel K. Green and Tunable Animal Protein-Free Microcarriers for Cell Expansion. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50303-50314. [PMID: 33119274 DOI: 10.1021/acsami.0c16875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cell culture on microcarriers emerges as an alternative of two-dimensional culture to produce large cell doses, which are required for cell-based therapies. Herein, we report a versatile and easy solvent-free greener fabrication process to prepare microcarriers based on a biosourced and compostable polymer. The preparation of the microcarrier core, which is based on poly(L-lactide) crystallization from a polymer blend, allows us to easily tune the density, porosity, and size of the microparticles. A bioadhesive coating based on biopolymers, devoid of animal protein and optimized to improve cell adhesion, is then successfully deposited on the surface of the microcarriers. The ability of these new microcarriers to expand human adipose-derived stromal cells with good yield, in semistatic and dynamic conditions, is demonstrated. Finally, bead-to-bead cell transfer is shown to increase the yield of cell production without having to stop the culture. These microcarriers are therefore a promising and efficient green alternative to currently existing systems.
Collapse
Affiliation(s)
- Eleana Somville
- Institute of Condensed Matter and Nanosciences, Bio and Soft Matter, Universite' catholique de Louvain, Croix du Sud 1, Box L7.04.02, 1348 Louvain-la-Neuve, Belgium
| | - Anitha Ajith Kumar
- Institute of Condensed Matter and Nanosciences, Bio and Soft Matter, Universite' catholique de Louvain, Croix du Sud 1, Box L7.04.02, 1348 Louvain-la-Neuve, Belgium
| | - Jérôme Guicheux
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, 44042 Nantes, France
| | - Boris Halgand
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, 44042 Nantes, France
- Centre Hospitalier Universitaire de Nantes, PHU4 OTONN, 44093 Nantes, France
| | - Sophie Demoustier-Champagne
- Institute of Condensed Matter and Nanosciences, Bio and Soft Matter, Universite' catholique de Louvain, Croix du Sud 1, Box L7.04.02, 1348 Louvain-la-Neuve, Belgium
| | - Anne des Rieux
- Institute of Condensed Matter and Nanosciences, Bio and Soft Matter, Universite' catholique de Louvain, Croix du Sud 1, Box L7.04.02, 1348 Louvain-la-Neuve, Belgium
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Av. E. Mounier 73, Box B1.73.12, 1200 Brussels, Belgium
| | - Alain M Jonas
- Institute of Condensed Matter and Nanosciences, Bio and Soft Matter, Universite' catholique de Louvain, Croix du Sud 1, Box L7.04.02, 1348 Louvain-la-Neuve, Belgium
| | - Karine Glinel
- Institute of Condensed Matter and Nanosciences, Bio and Soft Matter, Universite' catholique de Louvain, Croix du Sud 1, Box L7.04.02, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
83
|
Khang MK, Kuriakose AE, Nguyen T, Co CMD, Zhou J, Truong TTD, Nguyen KT, Tang L. Enhanced Endothelial Cell Delivery for Repairing Injured Endothelium via Pretargeting Approach and Bioorthogonal Chemistry. ACS Biomater Sci Eng 2020; 6:6831-6841. [PMID: 33320611 DOI: 10.1021/acsbiomaterials.0c00957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Arterial wall injury often leads to endothelium cell activation, endothelial detachment, and atherosclerosis plaque formation. While abundant research efforts have been placed on treating the end stages of the disease, no cure has been developed to repair injured and denude endothelium often occurred at an early stage of atherosclerosis. Here, a pretargeting cell delivery strategy using combined injured endothelial targeting nanoparticles and bioorthogonal click chemistry approach was developed to deliver endothelial cells to replenish the injured endothelium via a two-step process. First, nanoparticles bearing glycoprotein 1b α (Gp1bα) proteins and tetrazine (Tz) were fabricated to provide a homogeneous nanoparticle coating on an injured arterial wall via the interactions between Gp1bα and von Willebrand factor (vWF), a ligand that is present on denuded endothelium. Second, transplanted endothelium cells bearing transcyclooctene (TCO) would be quickly immobilized on the surfaces of nanoparticles via TCO:Tz reactions. In vitro binding studies under both static and flow conditions confirmed that our novel Tz-labeled Gp1bα-conjugated poly(lactic-co-glycolic acid) (PLGA) nanoparticles can successfully pretargeted toward the injured site and support rapid adhesion of endothelial cells from the circulation. Ex vivo results also confirm that such an approach is highly efficient in mediating the local delivery of endothelial cells at the sites of arterial injury. The results support that this pretargeting cell delivery approach may be used for repairing injured endothelium in situ at its early stage.
Collapse
Affiliation(s)
- Min Kyung Khang
- Department of Bioengineering, University of Texas at Arlington, P.O. Box 19138, Arlington, Texas 76010, United States.,Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76010, United States
| | - Aneetta Elizabeth Kuriakose
- Department of Bioengineering, University of Texas at Arlington, P.O. Box 19138, Arlington, Texas 76010, United States
| | - Tam Nguyen
- Department of Bioengineering, University of Texas at Arlington, P.O. Box 19138, Arlington, Texas 76010, United States
| | - Cynthia My-Dung Co
- Department of Bioengineering, University of Texas at Arlington, P.O. Box 19138, Arlington, Texas 76010, United States
| | - Jun Zhou
- Department of Bioengineering, University of Texas at Arlington, P.O. Box 19138, Arlington, Texas 76010, United States
| | - Thuy Thi Dang Truong
- Department of Bioengineering, University of Texas at Arlington, P.O. Box 19138, Arlington, Texas 76010, United States
| | - Kytai Truong Nguyen
- Department of Bioengineering, University of Texas at Arlington, P.O. Box 19138, Arlington, Texas 76010, United States
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, P.O. Box 19138, Arlington, Texas 76010, United States
| |
Collapse
|
84
|
Min H, Xu L, Parrott R, Overall CC, Lillich M, Rabjohns EM, Rampersad RR, Tarrant TK, Meadows N, Fernandez-Castaneda A, Gaultier A, Kurtzberg J, Filiano AJ. Mesenchymal stromal cells reprogram monocytes and macrophages with processing bodies. STEM CELLS (DAYTON, OHIO) 2020; 39:115-128. [PMID: 33166420 DOI: 10.1002/stem.3292] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/28/2020] [Indexed: 11/11/2022]
Abstract
Mesenchymal stromal cells (MSCs) are widely used in clinical trials because of their ability to modulate inflammation. The success of MSCs has been variable over 25 years, most likely due to an incomplete understanding of their mechanism. After MSCs are injected, they traffic to the lungs and other tissues where they are rapidly cleared. Despite being cleared, MSCs suppress the inflammatory response in the long term. Using human cord tissue-derived MSCs (hCT-MSCs), we demonstrated that hCT-MSCs directly interact and reprogram monocytes and macrophages. After engaging hCT-MSCs, monocytes and macrophages engulfed cytoplasmic components of live hCT-MSCs, then downregulated gene programs for antigen presentation and costimulation, and functionally suppressed the activation of helper T cells. We determined that low-density lipoprotein receptor-related proteins on monocytes and macrophages mediated the engulfment of hCT-MSCs. Since a large amount of cellular information can be packaged in cytoplasmic RNA processing bodies (p-bodies), we generated p-body deficient hCT-MSCs and confirmed that they failed to reprogram monocytes and macrophages in vitro and in vivo. hCT-MSCs suppressed an inflammatory response caused by a nasal lipopolysaccharide challenge. Although both control and p-body deficient hCT-MSCs were engulfed by infiltrating lung monocytes and macrophages, p-body deficient hCT-MSCs failed to suppress inflammation and downregulate MHC-II. Overall, we identified a novel mechanism by which hCT-MSCs indirectly suppressed a T-cell response by directly interacting and reprogramming monocytes and macrophages via p-bodies. The results of this study suggest a novel mechanism for how MSCs can reprogram the inflammatory response and have long-term effects to suppress inflammation.
Collapse
Affiliation(s)
- Hyunjung Min
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA.,Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Li Xu
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA
| | - Roberta Parrott
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA
| | - Christopher C Overall
- Department of Neuroscience, Center for Brain Immunology and Glia, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Melina Lillich
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA
| | - Emily M Rabjohns
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Rishi R Rampersad
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Teresa K Tarrant
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Norin Meadows
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA
| | - Anthony Fernandez-Castaneda
- Department of Neuroscience, Center for Brain Immunology and Glia, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Alban Gaultier
- Department of Neuroscience, Center for Brain Immunology and Glia, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Joanne Kurtzberg
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA.,Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Anthony J Filiano
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA.,Department of Neurosurgery, Duke University, Durham, North Carolina, USA.,Department of Immunology, Duke University, Durham, North Carolina, USA.,Department of Pathology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
85
|
Duckert B, Vinkx S, Braeken D, Fauvart M. Single-cell transfection technologies for cell therapies and gene editing. J Control Release 2020; 330:963-975. [PMID: 33160005 DOI: 10.1016/j.jconrel.2020.10.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/29/2022]
Abstract
Advances in gene editing and cell therapies have recently led to outstanding clinical successes. However, the lack of a cost-effective manufacturing process prevents the democratization of these innovative medical tools. Due to the common use of viral vectors, the step of transfection in which cells are engineered to gain new functions, is a major bottleneck in making safe and affordable cell products. A promising opportunity lies in Single-Cell Transfection Technologies (SCTTs). SCTTs have demonstrated higher efficiency, safety and scalability than conventional transfection methods. They can also feature unique abilities such as substantial dosage control over the cargo delivery, single-cell addressability and integration in microdevices comprising multiple monitoring modalities. Unfortunately, the potential of SCTTs is not fully appreciated: they are most often restricted to research settings with little adoption in clinical settings. To encourage their adoption, we review and compare recent developments in SCTTs, and how they can enable selected clinical applications. To help bridge the gap between fundamental research and its translation to the clinic, we also describe how Good Manufacturing Practices (GMP) can be integrated in the design of SCTTs.
Collapse
Affiliation(s)
- Bastien Duckert
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200d, 3001 Leuven, Belgium; IMEC, Kapeldreef 75, 3001 Leuven, Belgium.
| | | | | | | |
Collapse
|
86
|
de Almeida Fuzeta M, Bernardes N, Oliveira FD, Costa AC, Fernandes-Platzgummer A, Farinha JP, Rodrigues CAV, Jung S, Tseng RJ, Milligan W, Lee B, Castanho MARB, Gaspar D, Cabral JMS, da Silva CL. Scalable Production of Human Mesenchymal Stromal Cell-Derived Extracellular Vesicles Under Serum-/Xeno-Free Conditions in a Microcarrier-Based Bioreactor Culture System. Front Cell Dev Biol 2020; 8:553444. [PMID: 33224943 PMCID: PMC7669752 DOI: 10.3389/fcell.2020.553444] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stromal cells (MSC) hold great promise for tissue engineering and cell-based therapies due to their multilineage differentiation potential and intrinsic immunomodulatory and trophic activities. Over the past years, increasing evidence has proposed extracellular vesicles (EVs) as mediators of many of the MSC-associated therapeutic features. EVs have emerged as mediators of intercellular communication, being associated with multiple physiological processes, but also in the pathogenesis of several diseases. EVs are derived from cell membranes, allowing high biocompatibility to target cells, while their small size makes them ideal candidates to cross biological barriers. Despite the promising potential of EVs for therapeutic applications, robust manufacturing processes that would increase the consistency and scalability of EV production are still lacking. In this work, EVs were produced by MSC isolated from different human tissue sources [bone marrow (BM), adipose tissue (AT), and umbilical cord matrix (UCM)]. A serum-/xeno-free microcarrier-based culture system was implemented in a Vertical-WheelTM bioreactor (VWBR), employing a human platelet lysate culture supplement (UltraGROTM-PURE), toward the scalable production of MSC-derived EVs (MSC-EVs). The morphology and structure of the manufactured EVs were assessed by atomic force microscopy, while EV protein markers were successfully identified in EVs by Western blot, and EV surface charge was maintained relatively constant (between −15.5 ± 1.6 mV and −19.4 ± 1.4 mV), as determined by zeta potential measurements. When compared to traditional culture systems under static conditions (T-flasks), the VWBR system allowed the production of EVs at higher concentration (i.e., EV concentration in the conditioned medium) (5.7-fold increase overall) and productivity (i.e., amount of EVs generated per cell) (3-fold increase overall). BM, AT and UCM MSC cultured in the VWBR system yielded an average of 2.8 ± 0.1 × 1011, 3.1 ± 1.3 × 1011, and 4.1 ± 1.7 × 1011 EV particles (n = 3), respectively, in a 60 mL final volume. This bioreactor system also allowed to obtain a more robust MSC-EV production, regarding their purity, compared to static culture. Overall, we demonstrate that this scalable culture system can robustly manufacture EVs from MSC derived from different tissue sources, toward the development of novel therapeutic products.
Collapse
Affiliation(s)
- Miguel de Almeida Fuzeta
- iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno Bernardes
- iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Filipa D Oliveira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Catarina Costa
- iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Fernandes-Platzgummer
- iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - José Paulo Farinha
- Centro de Química Estrutural and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Carlos A V Rodrigues
- iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | | | | | | | - Brian Lee
- PBS Biotech Inc., Camarillo, CA, United States
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Diana Gaspar
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim M S Cabral
- iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudia Lobato da Silva
- iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
87
|
Laurent A, Hirt-Burri N, Scaletta C, Michetti M, de Buys Roessingh AS, Raffoul W, Applegate LA. Holistic Approach of Swiss Fetal Progenitor Cell Banking: Optimizing Safe and Sustainable Substrates for Regenerative Medicine and Biotechnology. Front Bioeng Biotechnol 2020; 8:557758. [PMID: 33195124 PMCID: PMC7644790 DOI: 10.3389/fbioe.2020.557758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/21/2020] [Indexed: 12/17/2022] Open
Abstract
Safety, quality, and regulatory-driven iterative optimization of therapeutic cell source selection has constituted the core developmental bedrock for primary fetal progenitor cell (FPC) therapy in Switzerland throughout three decades. Customized Fetal Transplantation Programs were pragmatically devised as straightforward workflows for tissue procurement, traceability maximization, safety, consistency, and robustness of cultured progeny cellular materials. Whole-cell bioprocessing standardization has provided plethoric insights into the adequate conjugation of modern biotechnological advances with current restraining legislative, ethical, and regulatory frameworks. Pioneer translational advances in cutaneous and musculoskeletal regenerative medicine continuously demonstrate the therapeutic potential of FPCs. Extensive technical and clinical hindsight was gathered by managing pediatric burns and geriatric ulcers in Switzerland. Concomitant industrial transposition of dermal FPC banking, following good manufacturing practices, demonstrated the extensive potential of their therapeutic value. Furthermore, in extenso, exponential revalorization of Swiss FPC technology may be achieved via the renewal of integrative model frameworks. Consideration of both longitudinal and transversal aspects of simultaneous fetal tissue differential processing allows for a better understanding of the quasi-infinite expansion potential within multi-tiered primary FPC banking. Multiple fetal tissues (e.g., skin, cartilage, tendon, muscle, bone, lung) may be simultaneously harvested and processed for adherent cell cultures, establishing a unique model for sustainable therapeutic cellular material supply chains. Here, we integrated fundamental, preclinical, clinical, and industrial developments embodying the scientific advances supported by Swiss FPC banking and we focused on advances made to date for FPCs that may be derived from a single organ donation. A renewed model of single organ donation bioprocessing is proposed, achieving sustained standards and potential production of billions of affordable and efficient therapeutic doses. Thereby, the aim is to validate the core therapeutic value proposition, to increase awareness and use of standardized protocols for translational regenerative medicine, potentially impacting millions of patients suffering from cutaneous and musculoskeletal diseases. Alternative applications of FPC banking include biopharmaceutical therapeutic product manufacturing, thereby indirectly and synergistically enhancing the power of modern therapeutic armamentariums. It is hypothesized that a single qualifying fetal organ donation is sufficient to sustain decades of scientific, medical, and industrial developments, as technological optimization and standardization enable high efficiency.
Collapse
Affiliation(s)
- Alexis Laurent
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
- Tec-Pharma SA, Bercher, Switzerland
- LAM Biotechnologies SA, Épalinges, Switzerland
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
| | - Murielle Michetti
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
| | - Anthony S. de Buys Roessingh
- Children and Adolescent Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Wassim Raffoul
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
- Oxford Suzhou Center for Advanced Research, Science and Technology Co., Ltd., Oxford University, Suzhou, China
- Competence Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
88
|
Hume RD, Chong JJH. The Cardiac Injury Immune Response as a Target for Regenerative and Cellular Therapies. Clin Ther 2020; 42:1923-1943. [PMID: 33010930 DOI: 10.1016/j.clinthera.2020.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Despite modern reperfusion and pharmacologic therapies, myocardial infarction (MI) remains a leading cause of morbidity and mortality worldwide. Therefore, the development of further therapeutics affecting post-MI recovery poses significant benefits. This review focuses on the post-MI immune response and immunomodulatory therapeutics that could improve the wound-healing response. METHODS This narrative review used OVID versions of MEDLINE and EMBASE searching for clinical therapeutics targeting the immune system during MI. Preclinical models and clinical trials were included. Additional studies were sourced from the reference lists of relevant articles and other personal files. FINDINGS After MI, cardiomyocytes are starved of oxygen and undergo cell death via coagulative necrosis. This process activates the immune system and a multifaceted wound-healing response, comprising a number of complex and overlapping phases. Overactivation or persistence of one or more of these phases can have potentially lethal implications. This review describes the immune response post-MI and any adverse events that can occur during these different phases. Second, we describe immunomodulatory therapies that attempt to target these immune cell aberrations by mitigating or diminishing their effects on the wound-healing response. Also discussed are adult stem/progenitor cell therapies, exosomes, and regulatory T cells, and their immunomodulatory effects in the post-MI setting. IMPLICATIONS An updated understanding into the importance of various inflammatory cell phenotypes, coupled with new technologies, may hold promise for a new era of immunomodulatory therapeutics. The implications of such therapies could dramatically improve patients' quality of life post-MI and reduce the incidence of progressive heart failure.
Collapse
Affiliation(s)
- Robert D Hume
- Centre for Heart Research, Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Rd, Westmead, NSW 2145, Australia
| | - James J H Chong
- Centre for Heart Research, Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Rd, Westmead, NSW 2145, Australia; Department of Cardiology, Westmead Hospital, Hawkesbury Rd, Westmead, NSW 2145, Australia.
| |
Collapse
|
89
|
Childs PG, Reid S, Salmeron-Sanchez M, Dalby MJ. Hurdles to uptake of mesenchymal stem cells and their progenitors in therapeutic products. Biochem J 2020; 477:3349-3366. [PMID: 32941644 PMCID: PMC7505558 DOI: 10.1042/bcj20190382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/15/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022]
Abstract
Twenty-five years have passed since the first clinical trial utilising mesenchymal stomal/stem cells (MSCs) in 1995. In this time academic research has grown our understanding of MSC biochemistry and our ability to manipulate these cells in vitro using chemical, biomaterial, and mechanical methods. Research has been emboldened by the promise that MSCs can treat illness and repair damaged tissues through their capacity for immunomodulation and differentiation. Since 1995, 31 therapeutic products containing MSCs and/or progenitors have reached the market with the level of in vitro manipulation varying significantly. In this review, we summarise existing therapeutic products containing MSCs or mesenchymal progenitor cells and examine the challenges faced when developing new therapeutic products. Successful progression to clinical trial, and ultimately market, requires a thorough understanding of these hurdles at the earliest stages of in vitro pre-clinical development. It is beneficial to understand the health economic benefit for a new product and the reimbursement potential within various healthcare systems. Pre-clinical studies should be selected to demonstrate efficacy and safety for the specific clinical indication in humans, to avoid duplication of effort and minimise animal usage. Early consideration should also be given to manufacturing: how cell manipulation methods will integrate into highly controlled workflows and how they will be scaled up to produce clinically relevant quantities of cells. Finally, we summarise the main regulatory pathways for these clinical products, which can help shape early therapeutic design and testing.
Collapse
Affiliation(s)
- Peter G. Childs
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Glasgow, Glasgow G12 8QQ, U.K
- Centre for the Cellular Microenvironment, SUPA Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1QE, U.K
| | - Stuart Reid
- Centre for the Cellular Microenvironment, SUPA Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1QE, U.K
| | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Matthew J. Dalby
- Centre for the Cellular Microenvironment, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| |
Collapse
|
90
|
Szabó L, Noverraz F, Gerber‐Lemaire S. Multicomponent Alginate‐Derived Hydrogel Microspheres Presenting Hybrid Ionic‐Covalent Network and Drug Eluting Properties. Helv Chim Acta 2020. [DOI: 10.1002/hlca.202000115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Luca Szabó
- Institute of Chemical Sciences and Engineering, Group for Functionalized Biomaterials Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC SCI-SB-SG Station 6 CH-1015 Lausanne Switzerland
| | - François Noverraz
- Institute of Chemical Sciences and Engineering, Group for Functionalized Biomaterials Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC SCI-SB-SG Station 6 CH-1015 Lausanne Switzerland
| | - Sandrine Gerber‐Lemaire
- Institute of Chemical Sciences and Engineering, Group for Functionalized Biomaterials Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC SCI-SB-SG Station 6 CH-1015 Lausanne Switzerland
| |
Collapse
|
91
|
Jossen V, Muoio F, Panella S, Harder Y, Tallone T, Eibl R. An Approach towards a GMP Compliant In-Vitro Expansion of Human Adipose Stem Cells for Autologous Therapies. Bioengineering (Basel) 2020; 7:bioengineering7030077. [PMID: 32698363 PMCID: PMC7552624 DOI: 10.3390/bioengineering7030077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023] Open
Abstract
Human Adipose Tissue Stem Cells (hASCs) are a valuable source of cells for clinical applications (e.g., treatment of acute myocardial infarction and inflammatory diseases), especially in the field of regenerative medicine. However, for autologous (patient-specific) and allogeneic (off-the-shelf) hASC-based therapies, in-vitro expansion is necessary prior to the clinical application in order to achieve the required cell numbers. Safe, reproducible and economic in-vitro expansion of hASCs for autologous therapies is more problematic because the cell material changes for each treatment. Moreover, cell material is normally isolated from non-healthy or older patients, which further complicates successful in-vitro expansion. Hence, the goal of this study was to perform cell expansion studies with hASCs isolated from two different patients/donors (i.e., different ages and health statuses) under xeno- and serum-free conditions in static, planar (2D) and dynamically mixed (3D) cultivation systems. Our primary aim was I) to compare donor variability under in-vitro conditions and II) to develop and establish an unstructured, segregated growth model as a proof-of-concept study. Maximum cell densities of between 0.49 and 0.65 × 105 hASCs/cm2 were achieved for both donors in 2D and 3D cultivation systems. Cell growth under static and dynamically mixed conditions was comparable, which demonstrated that hydrodynamic stresses (P/V = 0.63 W/m3, τnt = 4.96 × 10−3 Pa) acting at Ns1u (49 rpm for 10 g/L) did not negatively affect cell growth, even under serum-free conditions. However, donor-dependent differences in the cell size were found, which resulted in significantly different maximum cell densities for each of the two donors. In both cases, stemness was well maintained under static 2D and dynamic 3D conditions, as long as the cells were not hyperconfluent. The optimal point for cell harvesting was identified as between cell densities of 0.41 and 0.56 × 105 hASCs/cm2 (end of exponential growth phase). The growth model delivered reliable predictions for cell growth, substrate consumption and metabolite production in both types of cultivation systems. Therefore, the model can be used as a basis for future investigations in order to develop a robust MC-based hASC production process for autologous therapies.
Collapse
Affiliation(s)
- Valentin Jossen
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
- Correspondence: or ; Tel.: +41-58-934-5334
| | - Francesco Muoio
- Foundation for Cardiological Research and Education (FCRE), Cardiocentro Ticino Foundation, 6807 Taverne, Switzerland; (F.M.); (S.P.); (T.T.)
| | - Stefano Panella
- Foundation for Cardiological Research and Education (FCRE), Cardiocentro Ticino Foundation, 6807 Taverne, Switzerland; (F.M.); (S.P.); (T.T.)
| | - Yves Harder
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ente Ospedaliero Cantonale (EOC), 6900 Lugano, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Tiziano Tallone
- Foundation for Cardiological Research and Education (FCRE), Cardiocentro Ticino Foundation, 6807 Taverne, Switzerland; (F.M.); (S.P.); (T.T.)
| | - Regine Eibl
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
| |
Collapse
|
92
|
Dashtimoghadam E, Fahimipour F, Tongas N, Tayebi L. Microfluidic fabrication of microcarriers with sequential delivery of VEGF and BMP-2 for bone regeneration. Sci Rep 2020; 10:11764. [PMID: 32678204 PMCID: PMC7366644 DOI: 10.1038/s41598-020-68221-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/26/2020] [Indexed: 12/21/2022] Open
Abstract
Wound instability and poor functional vascularization in bone tissue engineering lead to lack of tissue integration and ultimate failure of engineered grafts. In order to harness the regenerative potential of growth factors and stimulate bone healing, present study aims to design multifunctional cell therapy microcarriers with the capability of sequential delivery of essential growth factors, bone morphogenetic protein 2 (BMP-2) and vascular endothelial growth factor (VEGF). An on-chip double emulsion method was implemented to generate monodisperse VEGF encapsulated microcarriers. Bio-inspired poly(3,4-dihydroxyphenethylamine) (PDA) was then functionalized to the microcarriers surface for BMP-2 conjugation. The microcarriers were seeded with mesenchymal stem cells (MSCs) using a dynamic culture technique for cells expansion. Finally, the microcarriers were incorporated into an injectable alginate-RGD hydrogel laden with endothelial cells (ECs) for further analysis. The DNA and calcium content, as well as ALP activity of the construct were analyzed. The confocal fluorescent microscopy was employed to monitor the MSCs and tunneling structure of ECs. Eventually, the capability of developed microcarriers for bone tissue formation was examined in vivo. Microfluidic platform generated monodisperse VEGF-loaded PLGA microcarriers with size-dependent release patterns. Microcarriers generated with the on-chip technique showed more sustained VEGF release profiles compared to the conventional bulk mixing method. The PDA functionalization of microcarriers surface not only provided immobilization of BMP-2 with prolonged bioavailability, but also enhanced the attachment and proliferation of MSCs. Dynamic culturing of microcarriers showcased their great potential to boost MSCs population required for stem cell therapy of bone defects. ALP activity and calcium content analysis of MSCs-laden microcarriers loaded into injectable hydrogels revealed their capability of tunneling formation, vascular cell growth and osteogenic differentiation. The in vivo histology and real-time polymerase chain reaction analysis revealed that transplantation of MSC-laden microcarriers supports ectopic bone formation in the rat model. The presented approach to design bioactive microcarriers offer sustained sequential delivery of bone ECM chemical cues and offer an ideal stabilized 3D microenvironment for patient-specific cell therapy applications. The proposed methodology is readily expandable to integrate other cells and cytokines in a tuned spatiotemporal manner for personalized regenerative medicine.
Collapse
Affiliation(s)
| | - Farahnaz Fahimipour
- Marquette University School of Dentistry, Milwaukee, WI, USA
- Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nikita Tongas
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA.
| |
Collapse
|
93
|
Hunsberger J, Simon C, Zylberberg C, Ramamoorthy P, Tubon T, Bedi R, Gielen K, Hansen C, Fischer L, Johnson J, Baraniak P, Mahdavi B, Pereira T, Hadjisavas M, Eaker S, Miller C. Improving patient outcomes with regenerative medicine: How the Regenerative Medicine Manufacturing Society plans to move the needle forward in cell manufacturing, standards, 3D bioprinting, artificial intelligence-enabled automation, education, and training. Stem Cells Transl Med 2020; 9:728-733. [PMID: 32222115 PMCID: PMC7308637 DOI: 10.1002/sctm.19-0389] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
The Regenerative Medicine Manufacturing Society (RMMS) is the first and only professional society dedicated toward advancing manufacturing solutions for the field of regenerative medicine. RMMS's vision is to provide greater patient access to regenerative medicine therapies through innovative manufacturing solutions. Our mission is to identify unmet needs and gaps in regenerative medicine manufacturing and catalyze the generation of new ideas and solutions by working with private and public stakeholders. We aim to accomplish our mission through outreach and education programs and securing grants for public-private collaborations in regenerative medicine manufacturing. This perspective will cover four impact areas that the society's leadership team has identified as critical: (a) cell manufacturing and scale-up/out, respectively, for allogeneic and autologous cell therapies, (b) standards for regenerative medicine, (c) 3D bioprinting, and (d) artificial intelligence-enabled automation. In addition to covering these areas and ways in which the society intends to advance the field in a collaborative nature, we will also discuss education and training. Education and training is an area that is critical for communicating the current challenges, developing solutions to accelerate the commercialization of the latest technological advances, and growing the workforce in the rapidly expanding sector of regenerative medicine.
Collapse
Affiliation(s)
- Joshua Hunsberger
- Regenerative Medicine Manufacturing SocietyWinston‐SalemNorth CarolinaUSA
| | - Carl Simon
- National Institute of Standards and TechnologyGaithersburgMarylandUSA
| | | | | | | | - Ram Bedi
- University of WashingtonSeattleWashingtonUSA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Patrick PS, Kolluri KK, Zaw Thin M, Edwards A, Sage EK, Sanderson T, Weil BD, Dickson JC, Lythgoe MF, Lowdell M, Janes SM, Kalber TL. Lung delivery of MSCs expressing anti-cancer protein TRAIL visualised with 89Zr-oxine PET-CT. Stem Cell Res Ther 2020; 11:256. [PMID: 32586403 PMCID: PMC7318529 DOI: 10.1186/s13287-020-01770-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/01/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND MSCTRAIL is a cell-based therapy consisting of human allogeneic umbilical cord-derived MSCs genetically modified to express the anti-cancer protein TRAIL. Though cell-based therapies are typically designed with a target tissue in mind, delivery is rarely assessed due to a lack of translatable non-invasive imaging approaches. In this preclinical study, we demonstrate 89Zr-oxine labelling and PET-CT imaging as a potential clinical solution for non-invasively tracking MSCTRAIL biodistribution. Future implementation of this technique should improve our understanding of MSCTRAIL during its evaluation as a therapy for metastatic lung adenocarcinoma. METHODS MSCTRAIL were radiolabelled with 89Zr-oxine and assayed for viability, phenotype, and therapeutic efficacy post-labelling. PET-CT imaging of 89Zr-oxine-labelled MSCTRAIL was performed in a mouse model of lung cancer following intravenous injection, and biodistribution was confirmed ex vivo. RESULTS MSCTRAIL retained the therapeutic efficacy and MSC phenotype in vitro at labelling amounts up to and above those required for clinical imaging. The effect of 89Zr-oxine labelling on cell proliferation rate was amount- and time-dependent. PET-CT imaging showed delivery of MSCTRAIL to the lungs in a mouse model of lung cancer up to 1 week post-injection, validated by in vivo bioluminescence imaging, autoradiography, and fluorescence imaging on tissue sections. CONCLUSIONS 89Zr-oxine labelling and PET-CT imaging present a potential method of evaluating the biodistribution of new cell therapies in patients, including MSCTRAIL. This offers to improve understanding of cell therapies, including mechanism of action, migration dynamics, and inter-patient variability.
Collapse
Affiliation(s)
- P Stephen Patrick
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK.
| | - Krishna K Kolluri
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - May Zaw Thin
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Adam Edwards
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Elizabeth K Sage
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Tom Sanderson
- Institute of Nuclear Medicine, University College London, London, UK
| | - Benjamin D Weil
- Centre for Cell, Gene & Tissue Therapeutics, Royal Free Hospital, London, UK
| | - John C Dickson
- Institute of Nuclear Medicine, University College London, London, UK
| | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Mark Lowdell
- Centre for Cell, Gene & Tissue Therapeutics, Royal Free Hospital, London, UK
- Department of Haematology, Cancer Institute, University College London, London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Tammy L Kalber
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK.
| |
Collapse
|
95
|
Laurent A, Lin P, Scaletta C, Hirt-Burri N, Michetti M, de Buys Roessingh AS, Raffoul W, She BR, Applegate LA. Bringing Safe and Standardized Cell Therapies to Industrialized Processing for Burns and Wounds. Front Bioeng Biotechnol 2020; 8:581. [PMID: 32637400 PMCID: PMC7317026 DOI: 10.3389/fbioe.2020.00581] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/13/2020] [Indexed: 01/28/2023] Open
Abstract
Cultured primary progenitor cell types are worthy therapeutic candidates for regenerative medicine. Clinical translation, industrial transposition, and commercial implementation of products based on such cell sources are mainly hindered by economic or technical barriers and stringent regulatory requirements. Applied research in allogenic cellular therapies in the Lausanne University Hospital focuses on cell source selection technique optimization. Use of fetal progenitor cell sources in Switzerland is regulated through Federal Transplantation Programs and associated Fetal Biobanks. Clinical applications of cultured primary progenitor dermal fibroblasts have been optimized since the 1990s as “Progenitor Biological Bandages” for pediatric burn patients and adults presenting chronic wounds. A single organ donation procured in 2009 enabled the establishment of a standardized cell source for clinical and industrial developments to date. Non-enzymatically isolated primary dermal progenitor fibroblasts (FE002-SK2 cell type) served for the establishment of a clinical-grade Parental Cell Bank, based on a patented method. Optimized bioprocessing methodology for the FE002-SK2 cell type has demonstrated that extensive and consistent progenitor cell banks can be established. In vitro mechanistic characterization and in vivo preclinical studies have confirmed potency, preliminary safety and efficacy of therapeutic progenitor cells. Most importantly, highly successful industrial transposition and up-scaling of biobanking enabled the establishment of tiered Master and Working Cell Banks using Good Manufacturing Practices. Successive and successful transfers of technology, know-how and materials to different countries around the world have been performed. Extensive developments based on the FE002-SK2 cell source have led to clinical trials for burns and wound dressing. Said trials were approved in Japan, Taiwan, USA and are continuing in Switzerland. The Swiss Fetal Transplantation Program and pioneer clinical experience in the Lausanne Burn Center over three decades constitute concrete indicators that primary progenitor dermal fibroblasts should be considered as therapeutic flagships in the domain of wound healing and for regenerative medicine in general. Indeed, one single organ donation potentially enables millions of patients to benefit from high-quality, safe and effective regenerative therapies. This work presents a technical and translational overview of the described progenitor cell technology harnessed in Switzerland as cellular therapies for treatment of burns and wounds around the globe.
Collapse
Affiliation(s)
- Alexis Laurent
- Tec-Pharma SA, Bercher, Switzerland.,Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Epalinges, Switzerland
| | - Poyin Lin
- Transwell Biotech Co. Ltd., Hsinchu, Taiwan
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Epalinges, Switzerland
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Epalinges, Switzerland
| | - Murielle Michetti
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Epalinges, Switzerland
| | | | - Wassim Raffoul
- Plastic, Reconstructive & Hand Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Bin-Ru She
- Transwell Biotech Co. Ltd., Hsinchu, Taiwan
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Epalinges, Switzerland.,Oxford Suzhou Center for Advanced Research, Science and Technology Co. Ltd., Oxford University, Suzhou, China.,Competence Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
96
|
Guillot AJ, Cordeiro AS, Donnelly RF, Montesinos MC, Garrigues TM, Melero A. Microneedle-Based Delivery: An Overview of Current Applications and Trends. Pharmaceutics 2020; 12:pharmaceutics12060569. [PMID: 32575392 PMCID: PMC7355570 DOI: 10.3390/pharmaceutics12060569] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022] Open
Abstract
Microneedle arrays (MNA) are considered as one of the most promising resources to achieve systemic effects by transdermal delivery of drugs. They are designed as a minimally invasive, painless system which can bypass the stratum corneum, overcoming the potential drawbacks of subcutaneous injections and other transdermal delivery systems such as chemical enhancers, nano and microparticles, or physical treatments. As a trendy field in pharmaceutical and biomedical research, its applications are constantly evolving, even though they are based on very well-established techniques. The number of molecules administered by MNA are also increasing, with insulin and vaccines administration being the most investigated. Furthermore, MNA are being used to deliver cells and applied in other organs and tissues like the eyes and buccal mucosae. This review intends to offer a general overview of the current state of MNA research, focusing on the strategies, applications, and types of molecules delivered recently by these systems. In addition, some information about the materials and manufacturing processes is presented and safety data is discussed.
Collapse
Affiliation(s)
- Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vincent Andrés Estellés s/n, 46100 Burjassot, Spain; (A.J.G.); (A.M.)
| | - Ana Sara Cordeiro
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; (A.S.C.); (R.F.D.)
| | - Ryan F. Donnelly
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; (A.S.C.); (R.F.D.)
| | - M. Carmen Montesinos
- Department of Pharmacology, Faculty of Pharmacy, University of Valencia, Avda. Vincent Andrés Estellés s/n, 46100 Burjassot, Spain
- Center of Molecular Recognition and Technological Development (IDM), 46100 Burjassot, Spain
- Correspondence: (M.C.M.); (T.M.G.)
| | - Teresa M. Garrigues
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vincent Andrés Estellés s/n, 46100 Burjassot, Spain; (A.J.G.); (A.M.)
- Correspondence: (M.C.M.); (T.M.G.)
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vincent Andrés Estellés s/n, 46100 Burjassot, Spain; (A.J.G.); (A.M.)
| |
Collapse
|
97
|
Enriquez-Ochoa D, Robles-Ovalle P, Mayolo-Deloisa K, Brunck MEG. Immobilization of Growth Factors for Cell Therapy Manufacturing. Front Bioeng Biotechnol 2020; 8:620. [PMID: 32637403 PMCID: PMC7317031 DOI: 10.3389/fbioe.2020.00620] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
Cell therapy products exhibit great therapeutic potential but come with a deterring price tag partly caused by their costly manufacturing processes. The development of strategies that lead to cost-effective cell production is key to expand the reach of cell therapies. Growth factors are critical culture media components required for the maintenance and differentiation of cells in culture and are widely employed in cell therapy manufacturing. However, they are expensive, and their common use in soluble form is often associated with decreased stability and bioactivity. Immobilization has emerged as a possible strategy to optimize growth factor use in cell culture. To date, several immobilization techniques have been reported for attaching growth factors onto a variety of biomaterials, but these have been focused on tissue engineering. This review briefly summarizes the current landscape of cell therapy manufacturing, before describing the types of chemistry that can be used to immobilize growth factors for cell culture. Emphasis is placed to identify strategies that could reduce growth factor usage and enhance bioactivity. Finally, we describe a case study for stem cell factor.
Collapse
Affiliation(s)
| | | | - Karla Mayolo-Deloisa
- Tecnologico de Monterrey, School of Engineering and Science, FEMSA Biotechnology Center, Monterrey, Mexico
| | - Marion E. G. Brunck
- Tecnologico de Monterrey, School of Engineering and Science, FEMSA Biotechnology Center, Monterrey, Mexico
| |
Collapse
|
98
|
Ma S, Yang M, Zhou W, Dai L, Ding Y, Guo X, Yuan Y, Tang J, Li D, Wang X. An Efficient and Footprint-Free Protocol for the Transdifferentiation of Hepatocytes Into Insulin-Producing Cells With IVT mRNAs. Front Genet 2020; 11:575. [PMID: 32655618 PMCID: PMC7325981 DOI: 10.3389/fgene.2020.00575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/11/2020] [Indexed: 12/30/2022] Open
Abstract
Background Direct transdifferentiation of adult somatic cells into insulin-producing cells (IPCs) is a promising approach for cell-based therapies for type 1 diabetes mellitus. Liver cells are an ideal source for generating IPCs because they have regenerative ability and a developmental process similar to that of the pancreas. Pancreas versus liver fate is regulated by TALE homeoprotein (TGIF2) during development. Here, we wanted to investigate whether TGIF2 could enhance the efficiency of transdifferentiation of hepatocytes into IPCs induced by three pancreatic transcription factors (pTFs), i.e., Pdx1, NeuroD, and Mafa, which are crucial for pancreatic development in the embryo. Methods The in vitro transcribed (IVT) mRNAs of TGIF2 and the three pTFs were synthesized in vitro and sequentially supplemented in hepatocytes. On day 6, the expression of transcription factors was assessed by quantitative real-time polymerase chain reaction (qRT-PCR), and insulin expression was detected by immunofluorescence. Glucose-stimulated insulin secretion was assessed by enzyme-linked immunosorbent assay (ELISA). The key genes controlling cell polarity and the Wnt/PCP signaling pathway were assayed by qRT-PCR, and the level of JNK protein phosphorylation, which regulates the Wnt/PCP signaling pathway, was detected by western blotting. Results IVT mRNAs could be efficiently transfected into hepatocytes. Quantitative real-time polymerase chain reaction results revealed that compared with ectopic expression of the three pTFs alone, ectopic expression of the three pTFs plus TGIF2 could strongly reduce hepatic gene expression and subsequently improve the induction of a set of pancreatic genes. Immunofluorescence analysis showed that TGIF2 expression could double the transdifferentiation yield; 30% of the cells were insulin positive if induced by TGIF2 plus the 3 pTFs, while only 15% of the cells were insulin positive if induced by the three pTFs alone. ELISA analysis confirmed that glucose-stimulated insulin secretion was less efficient after transfection with the three pTFs alone. The differentiated cells derived from the addition of TGIF2 mRNA could form islet-like clusters. By contrast, the cells differentiated with the three pTFs did not form clusters under the same conditions. Tgif2 induced transdifferentiation more efficiently by remodeling the expression of genes in the Wnt/PCP pathway. Overexpression of TGIF2 in hepatocytes could activate the expression of key genes controlling cell polarity and genes in the Wnt/PCP signaling pathway, increasing the level of JNK protein phosphorylation. Conclusions Our study established a novel footprint-free protocol for efficient transdifferentiation of hepatocytes into IPCs using IVT mRNAs of TGIF2 and 3 pTFs, which paved the way toward a clinical application.
Collapse
Affiliation(s)
- Shinan Ma
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Mengjie Yang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Department of Medical, Southeast University, Nanjing, China
| | - Wenhui Zhou
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Longjun Dai
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Yan Ding
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xingrong Guo
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yahong Yuan
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Junming Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Dongsheng Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiaoli Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
99
|
Paul K, Darzi S, Werkmeister JA, Gargett CE, Mukherjee S. Emerging Nano/Micro-Structured Degradable Polymeric Meshes for Pelvic Floor Reconstruction. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1120. [PMID: 32517067 PMCID: PMC7353440 DOI: 10.3390/nano10061120] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
Abstract
Pelvic organ prolapse (POP) is a hidden women's health disorder that impacts 1 in 4 women across all age groups. Surgical intervention has been the only treatment option, often involving non-degradable meshes, with variable results. However, recent reports have highlighted the adverse effects of meshes in the long term, which involve unacceptable rates of erosion, chronic infection and severe pain related to mesh shrinkage. Therefore, there is an urgent unmet need to fabricate of new class of biocompatible meshes for the treatment of POP. This review focuses on the causes for the downfall of commercial meshes, and discusses the use of emerging technologies such as electrospinning and 3D printing to design new meshes. Furthermore, we discuss the impact and advantage of nano-/microstructured alternative meshes over commercial meshes with respect to their tissue integration performance. Considering the key challenges of current meshes, we discuss the potential of cell-based tissue engineering strategies to augment the new class of meshes to improve biocompatibility and immunomodulation. Finally, this review highlights the future direction in designing the new class of mesh to overcome the hurdles of foreign body rejection faced by the traditional meshes, in order to have safe and effective treatment for women in the long term.
Collapse
Affiliation(s)
- Kallyanashis Paul
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (K.P.); (S.D.); (J.A.W.); (C.E.G.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
| | - Saeedeh Darzi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (K.P.); (S.D.); (J.A.W.); (C.E.G.)
| | - Jerome A. Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (K.P.); (S.D.); (J.A.W.); (C.E.G.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
| | - Caroline E. Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (K.P.); (S.D.); (J.A.W.); (C.E.G.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
| | - Shayanti Mukherjee
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (K.P.); (S.D.); (J.A.W.); (C.E.G.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
| |
Collapse
|
100
|
Ashmore-Harris C, Iafrate M, Saleem A, Fruhwirth GO. Non-invasive Reporter Gene Imaging of Cell Therapies, including T Cells and Stem Cells. Mol Ther 2020; 28:1392-1416. [PMID: 32243834 PMCID: PMC7264441 DOI: 10.1016/j.ymthe.2020.03.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/15/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Cell therapies represent a rapidly emerging class of new therapeutics. They are intended and developed for the treatment of some of the most prevalent human diseases, including cancer, diabetes, and for regenerative medicine. Currently, they are largely developed without precise assessment of their in vivo distribution, efficacy, or survival either clinically or preclinically. However, it would be highly beneficial for both preclinical cell therapy development and subsequent clinical use to assess these parameters in situ to enable enhancements in efficacy, applicability, and safety. Molecular imaging can be exploited to track cells non-invasively on the whole-body level and can enable monitoring for prolonged periods in a manner compatible with rapidly expanding cell types. In this review, we explain how in vivo imaging can aid the development and clinical translation of cell-based therapeutics. We describe the underlying principles governing non-invasive in vivo long-term cell tracking in the preclinical and clinical settings, including available imaging technologies, reporter genes, and imaging agents as well as pitfalls related to experimental design. Our emphasis is on adoptively transferred T cell and stem cell therapies.
Collapse
Affiliation(s)
- Candice Ashmore-Harris
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK; Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, King's College London, London SE1 9RT, UK
| | - Madeleine Iafrate
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Adeel Saleem
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK; Department of Haematological Medicine, King's College Hospital, London SE5 9RS, UK
| | - Gilbert O Fruhwirth
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.
| |
Collapse
|