51
|
Fourcade G, Colombo BM, Grégoire S, Baeyens A, Rachdi L, Guez F, Goffin V, Scharfmann R, Salomon BL. Fetal pancreas transplants are dependent on prolactin for their development and prevent type 1 diabetes in syngeneic but not allogeneic mice. Diabetes 2013; 62:1646-55. [PMID: 23423564 PMCID: PMC3636635 DOI: 10.2337/db12-0448] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transplantation of adult pancreatic islets has been proposed to cure type 1 diabetes (T1D). However, it is rarely considered in the clinic because of its transient effect on disease, the paucity of donors, and the requirement for strong immunosuppressive treatment to prevent allogeneic graft rejection. Transplantation of fetal pancreases (FPs) may constitute an attractive alternative because of potential abundant donor sources, possible long-term effects due to the presence of stem cells maintaining tissue integrity, and their supposed low immunogenicity. In this work, we studied the capacity of early FPs from mouse embryos to develop into functional pancreatic islets producing insulin after transplantation in syngeneic and allogeneic recipients. We found that as few as two FPs were sufficient to control T1D in syngeneic mice. Surprisingly, their development into insulin-producing cells was significantly delayed in male compared with female recipients, which may be explained by lower levels of prolactin in males. Finally, allogeneic FPs were rapidly rejected, even in the context of minor histocompatibility disparities, with massive graft infiltration with T and myeloid cells. This work suggests that FP transplantation as a therapeutic option of T1D needs to be further assessed and would require immunosuppressive treatment.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Crosses, Genetic
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/prevention & control
- Embryo, Mammalian
- Female
- Fetus
- Insulin/metabolism
- Insulin Secretion
- Insulin-Secreting Cells/cytology
- Insulin-Secreting Cells/immunology
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/pathology
- Islets of Langerhans Transplantation/immunology
- Islets of Langerhans Transplantation/methods
- Islets of Langerhans Transplantation/pathology
- Kidney
- Male
- Mice
- Mice, Knockout
- Mice, Nude
- Mice, Transgenic
- Pancreas Transplantation/immunology
- Pancreas Transplantation/methods
- Pancreas Transplantation/pathology
- Prolactin/therapeutic use
- Sex Characteristics
- Specific Pathogen-Free Organisms
- Transplantation, Heterotopic/immunology
- Transplantation, Heterotopic/methods
- Transplantation, Heterotopic/pathology
- Transplantation, Homologous
- Transplantation, Isogeneic
Collapse
Affiliation(s)
- Gwladys Fourcade
- CNRS UMR7211, INSERM U959, Université Pierre et Marie Curie–Paris 6, Paris, France
| | - Bruno M. Colombo
- CNRS UMR7211, INSERM U959, Université Pierre et Marie Curie–Paris 6, Paris, France
- Biology Department, Evry-Val d’Essone University, Evry, France
| | - Sylvie Grégoire
- CNRS UMR7211, INSERM U959, Université Pierre et Marie Curie–Paris 6, Paris, France
| | - Audrey Baeyens
- CNRS UMR7211, INSERM U959, Université Pierre et Marie Curie–Paris 6, Paris, France
| | - Latif Rachdi
- INSERM U845, Research Center Growth and Signalling, Paris Descartes University, Necker Hospital, Paris, France
| | - Fanny Guez
- INSERM U845, Research Center Growth and Signalling, Paris Descartes University, Necker Hospital, Paris, France
| | - Vincent Goffin
- INSERM U845, Research Center Growth and Signalling, Paris Descartes University, Necker Hospital, Paris, France
| | - Raphael Scharfmann
- INSERM U845, Research Center Growth and Signalling, Paris Descartes University, Necker Hospital, Paris, France
| | - Benoît L. Salomon
- CNRS UMR7211, INSERM U959, Université Pierre et Marie Curie–Paris 6, Paris, France
- Corresponding author: Benoît L. Salomon,
| |
Collapse
|
52
|
Zertal-Zidani S, Busiah K, Edelman A, Polak M, Scharfmann R. Small-molecule inhibitors of the cystic fibrosis transmembrane conductance regulator increase pancreatic endocrine cell development in rat and mouse. Diabetologia 2013; 56. [PMID: 23178930 PMCID: PMC3536988 DOI: 10.1007/s00125-012-2778-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS The main objective of this work was to discover new drugs that can activate the differentiation of multipotent pancreatic progenitors into endocrine cells. METHODS In vitro experiments were performed using fetal pancreatic explants from rats and mice. In this assay, we examined the actions on pancreatic cell development of glibenclamide, a sulfonylurea derivative, and glycine hydrazide (GlyH-101), a small-molecule inhibitor of cystic fibrosis transmembrane conductance regulator (CFTR). We next tested the actions of GlyH-101 on in vivo pancreatic cell development. RESULTS Glibenclamide (10 nmol/l-100 μmol/l) did not alter the morphology or growth of the developing pancreas and exerted no deleterious effects on exocrine cell development in the pancreas. Unexpectedly, glibenclamide at its highest concentration promoted endocrine differentiation. This glibenclamide-induced promotion of the endocrine pathway could not be reproduced when other sulfonylureas were used, suggesting that glibenclamide had an off-target action. This high concentration of glibenclamide had previously been reported to inhibit CFTR. We found that the effects of glibenclamide on the developing pancreas could be mimicked both in vitro and in vivo by GlyH-101. CONCLUSIONS/INTERPRETATION Collectively, we demonstrate that two small-molecule inhibitors of the CFTR, glibenclamide and GlyH-101, increase the number of pancreatic endocrine cells by increasing the size of the pool of neurogenin 3-positive endocrine progenitors in the developing pancreas.
Collapse
Affiliation(s)
- S. Zertal-Zidani
- Inserm U845, Research Center Growth and Signalling, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Faculty Necker, 156 Rue de Vaugirard, 75015 Paris, France
| | - K. Busiah
- Inserm U845, Research Center Growth and Signalling, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Faculty Necker, 156 Rue de Vaugirard, 75015 Paris, France
| | - A. Edelman
- Inserm U845, Research Center Growth and Signalling, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Faculty Necker, 156 Rue de Vaugirard, 75015 Paris, France
| | - M. Polak
- Inserm U845, Research Center Growth and Signalling, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Faculty Necker, 156 Rue de Vaugirard, 75015 Paris, France
| | - R. Scharfmann
- Inserm U845, Research Center Growth and Signalling, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Faculty Necker, 156 Rue de Vaugirard, 75015 Paris, France
| |
Collapse
|
53
|
Scharfmann R, Rachdi L, Ravassard P. Concise review: in search of unlimited sources of functional human pancreatic beta cells. Stem Cells Transl Med 2012; 2:61-7. [PMID: 23283495 DOI: 10.5966/sctm.2012-0120] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
It is well-established that insulin-producing pancreatic beta cells are central in diabetes. In type 1 diabetes, beta cells are destroyed by an autoimmune mechanism, whereas in type 2 diabetes, there is a decrease in functional beta-cell mass. In this context, studying beta cells is of major importance. Beta cells represent only 1% of total pancreatic cells and are found dispersed in the pancreatic gland. During the past decades, many tools and approaches have been developed to study rodent beta cells that efficiently pushed the field forward. However, rodent and human beta cells are not identical, and our knowledge of human beta cells has not progressed as quickly as our understanding of rodent beta cells. We believe that one of the reasons for this inefficient progress is the difficulty of accessing unlimited sources of functional human pancreatic beta cells. The main focus of this review concerns recent strategies to generate new sources of human pancreatic beta cells.
Collapse
|
54
|
Soggia A, Flosseau K, Ravassard P, Szinnai G, Scharfmann R, Guillemain G. Activation of the transcription factor carbohydrate-responsive element-binding protein by glucose leads to increased pancreatic beta cell differentiation in rats. Diabetologia 2012; 55:2713-2722. [PMID: 22760788 PMCID: PMC3433661 DOI: 10.1007/s00125-012-2623-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 05/17/2012] [Indexed: 01/05/2023]
Abstract
AIMS/HYPOTHESIS Pancreatic cell development is a tightly controlled process. Although information is available regarding the mesodermal signals that control pancreatic development, little is known about the role of environmental factors such as nutrients, including glucose, on pancreatic development. We previously showed that glucose and its metabolism through the hexosamine biosynthesis pathway (HBP) promote pancreatic endocrine cell differentiation. Here, we analysed the role of the transcription factor carbohydrate-responsive element-binding protein (ChREBP) in this process. This transcription factor is activated by glucose, and has been recently described as a target of the HBP. METHODS We used an in vitro bioassay in which pancreatic endocrine and exocrine cells develop from rat embryonic pancreas in a way that mimics in vivo pancreatic development. Using this model, gain-of-function and loss-of-function experiments were undertaken. RESULTS ChREBP was produced in the endocrine lineage during pancreatic development, its abundance increasing with differentiation. When rat embryonic pancreases were cultured in the presence of glucose or xylitol, the production of ChREBP targets was induced. Concomitantly, beta cell differentiation was enhanced. On the other hand, when embryonic pancreases were cultured with inhibitors decreasing ChREBP activity or an adenovirus producing a dominant-negative ChREBP, beta cell differentiation was reduced, indicating that ChREBP activity was necessary for proper beta cell differentiation. Interestingly, adenovirus producing a dominant-negative ChREBP also reduced the positive effect of N-acetylglucosamine, a substrate of the HBP acting on beta cell differentiation. CONCLUSIONS/INTERPRETATION Our work supports the idea that glucose, through the transcription factor ChREBP, controls beta cell differentiation from pancreatic progenitors.
Collapse
Affiliation(s)
- A Soggia
- INSERM U845, Research Center Growth and Signalling, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Hôpital Necker, Paris, France
| | - K Flosseau
- INSERM U845, Research Center Growth and Signalling, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Hôpital Necker, Paris, France
| | - P Ravassard
- CNRS - UMR 7225, CNRS - UMR 7225 Hôpital Pitié Salpêtrière, Paris, France
| | - G Szinnai
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - R Scharfmann
- INSERM U845, Research Center Growth and Signalling, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Hôpital Necker, Paris, France
| | - G Guillemain
- INSERM U845, Research Center Growth and Signalling, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Hôpital Necker, Paris, France.
| |
Collapse
|
55
|
Cleveland MH, Sawyer JM, Afelik S, Jensen J, Leach SD. Exocrine ontogenies: on the development of pancreatic acinar, ductal and centroacinar cells. Semin Cell Dev Biol 2012; 23:711-9. [PMID: 22743232 DOI: 10.1016/j.semcdb.2012.06.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 06/13/2012] [Indexed: 02/07/2023]
Abstract
This review summarizes our current understanding of exocrine pancreas development, including the formation of acinar, ductal and centroacinar cells. We discuss the transcription factors associated with various stages of exocrine differentiation, from multipotent progenitor cells to fully differentiated acinar and ductal cells. Within the branching epithelial tree of the embryonic pancreas, this involves the progressive restriction of multipotent pancreatic progenitor cells to either a central "trunk" domain giving rise to the islet and ductal lineages, or a peripheral "tip" domain giving rise to acinar cells. This review also discusses the soluble morphogens and other signaling pathways that influence these events. Finally, we examine centroacinar cells as an enigmatic pancreatic cell type whose lineage remains uncertain, and whose possible progenitor capacities continue to be explored.
Collapse
Affiliation(s)
- Megan H Cleveland
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21205, United States
| | | | | | | | | |
Collapse
|
56
|
Chen X, Rozance PJ, Hay WW, Limesand SW. Insulin-like growth factor and fibroblast growth factor expression profiles in growth-restricted fetal sheep pancreas. Exp Biol Med (Maywood) 2012; 237:524-9. [PMID: 22581814 DOI: 10.1258/ebm.2012.011375] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Placental insufficiency results in intrauterine growth restriction (IUGR), impaired fetal insulin secretion and less fetal pancreatic β-cell mass, partly due to lower β-cell proliferation rates. Insulin-like growth factors (IGFs) and fibroblast growth factors (FGFs) regulate fetal β-cell proliferation and pancreas development, along with transcription factors, such as pancreatic and duodenal homeobox 1 (PDX-1). We determined expression levels for these growth factors, their receptors and IGF binding proteins in ovine fetal pancreas and isolated islets. In the IUGR pancreas, relative mRNA expression levels of IGF-I, PDX-1, FGF7 and FGFR2IIIb were 64% (P < 0.01), 76% (P < 0.05), 76% (P < 0.05) and 52% (P < 0.01) lower, respectively, compared with control fetuses. Conversely, insulin-like growth factor binding protein 2 (IGFBP-2) mRNA and protein concentrations were 2.25- and 1.2-fold greater (P < 0.05) in the IUGR pancreas compared with controls. In isolated islets from IUGR fetuses, IGF-II and IGFBP-2 mRNA concentrations were 1.5- and 3.7-fold greater (P < 0.05), and insulin mRNA was 56% less (P < 0.05) than control islets. The growth factor expression profiles for IGF and FGF signaling pathways indicate that declines in β-cell mass are due to decreased growth factor signals for both pancreatic progenitor epithelial cell and mature β-cell replication.
Collapse
Affiliation(s)
- Xiaochuan Chen
- Agricultural Research Complex, Department of Animal Sciences, University of Arizona, 4101 N Campbell Ave, Tucson, AZ 85719, USA
| | | | | | | |
Collapse
|
57
|
Heinis M, Soggia A, Bechetoille C, Simon MT, Peyssonnaux C, Rustin P, Scharfmann R, Duvillié B. HIF1α and pancreatic β-cell development. FASEB J 2012; 26:2734-42. [PMID: 22426121 DOI: 10.1096/fj.11-199224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During early embryogenesis, the pancreas shows a paucity of blood flow, and oxygen tension, the partial pressure of oxygen (pO(2)), is low. Later, the blood flow increases as β-cell differentiation occurs. We have previously reported that pO(2) controls β-cell development in rats. Here, we checked that hypoxia inducible factor 1α (HIF1α) is essential for this control. First, we demonstrated that the effect of pO(2) on β-cell differentiation in vitro was independent of epitheliomesenchymal interactions and that neither oxidative nor energetic stress occurred. Second, the effect of pO(2) on pancreas development was shown to be conserved among species, since increasing pO(2) to 21 vs. 3% also induced β-cell differentiation in mouse (7-fold, P<0.001) and human fetal pancreas. Third, the effect of hypoxia was mediated by HIF1α, since the addition of an HIF1α inhibitor at 3% O(2) increased the number of NGN3-expressing progenitors as compared to nontreated controls (9.2-fold, P<0.001). In contrast, when we stabilized HIF1α by deleting ex vivo the gene encoding pVHL in E13.5 pancreas from Vhl floxed mice, Ngn3 expression and β-cell development decreased in such Vhl-deleted pancreas compared to controls (2.5 fold, P<0.05, and 6.6-fold, P<0.001, respectively). Taken together, these data demonstrate that HIF1α exerts a negative control over β-cell differentiation.
Collapse
Affiliation(s)
- Mylène Heinis
- Institut National de Santé et de Recherche Médicale (INSERM) U845, Research Center Growth and Signalling, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Rachdi L, Aïello V, Duvillié B, Scharfmann R. L-leucine alters pancreatic β-cell differentiation and function via the mTor signaling pathway. Diabetes 2012; 61:409-17. [PMID: 22210321 PMCID: PMC3266409 DOI: 10.2337/db11-0765] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Leucine (Leu) is an essential branched-chain amino acid, which activates the mammalian target of rapamycin (mTOR) signaling pathway. The effect of Leu on cell differentiation during embryonic development is unknown. Here, we show that Leu supplementation during pregnancy significantly increased fetal body weight, caused fetal hyperglycemia and hypoinsulinemia, and decreased the relative islet area. We also used rat embryonic pancreatic explant culture for elucidating the mechanism of Leu action on β-cell development. We found that in the presence of Leu, differentiation of pancreatic duodenal homeobox-1-positive progenitor cells into neurogenin3-positive endocrine progenitor cells was inefficient and resulted in decreased β-cell formation. Mechanistically, Leu increases the intracellular levels of hypoxia-inducible factor 1-α, a repressor of endocrine fate in the pancreas, by activating the mTOR complex 1 signaling pathway. Collectively, our findings indicate that Leu supplementation during pregnancy could potentially increase the risk of type 2 diabetes mellitus by inhibiting the differentiation of pancreatic endocrine progenitor cells during a susceptible period of fetal life.
Collapse
Affiliation(s)
- Latif Rachdi
- INSERM U845, Research Center Growth and Signaling, Paris Descartes University, Sorbonne Paris Cité, Necker Hospital, Paris, France.
| | | | | | | |
Collapse
|
59
|
In vitro morphogenesis of PANC-1 cells into islet-like aggregates using RGD-covered dextran derivative surfaces. Colloids Surf B Biointerfaces 2012; 89:117-25. [DOI: 10.1016/j.colsurfb.2011.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 08/31/2011] [Accepted: 09/04/2011] [Indexed: 11/17/2022]
|
60
|
Hald J, Galbo T, Rescan C, Radzikowski L, Sprinkel AE, Heimberg H, Ahnfelt-Rønne J, Jensen J, Scharfmann R, Gradwohl G, Kaestner KH, Stoeckert C, Jensen JN, Madsen OD. Pancreatic islet and progenitor cell surface markers with cell sorting potential. Diabetologia 2012; 55:154-65. [PMID: 21947380 DOI: 10.1007/s00125-011-2295-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 07/12/2011] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS The aim of the study was to identify surface bio-markers and corresponding antibody tools that can be used for the imaging and immunoisolation of the pancreatic beta cell and its progenitors. This may prove essential to obtain therapeutic grade human beta cells via stem cell differentiation. METHODS Using bioinformatics-driven data mining, we generated a gene list encoding putative plasma membrane proteins specifically expressed at distinct stages of the developing pancreas and islet beta cells. In situ hybridisation and immunohistochemistry were used to further prioritise and identify candidates. RESULTS In the developing pancreas seizure related 6 homologue like (SEZ6L2), low density lipoprotein receptor-related protein 11 (LRP11), dispatched homologue 2 (Drosophila) (DISP2) and solute carrier family 30 (zinc transporter), member 8 (SLC30A8) were found to be expressed in early islet cells, whereas discoidin domain receptor tyrosine kinase 1 (DDR1) and delta/notch-like EGF repeat containing (DNER) were expressed in early pancreatic progenitors. The expression pattern of DDR1 overlaps with the early pancreatic and duodenal homeobox 1 (PDX1)⁺/NK6 homeobox 1 (NKX6-1)⁺ multipotent progenitor cells from embryonic day 11, whereas DNER expression in part overlaps with neurogenin 3 (NEUROG3)⁺ cells. In the adult pancreas SEZ6L2, LRP11, DISP2 and SLC30A8, but also FXYD domain containing ion transport regulator 2 (FXYD2), tetraspanin 7 (TSPAN7) and transmembrane protein 27 (TMEM27), retain an islet-specific expression, whereas DDR1 is undetectable. In contrast, DNER is expressed at low levels in peripheral mouse and human islet cells. Re-expression of DDR1 and upregulation of DNER is observed in duct-ligated pancreas. Antibodies to DNER and DISP2 have been successfully used in cell sorting. CONCLUSIONS/INTERPRETATION Extracellular epitopes of SEZ6L2, LRP11, DISP2, DDR1 and DNER have been identified as useful tags by applying specific antibodies to visualise pancreatic cell types at specific stages of development. Furthermore, antibodies recognising DISP2 and DNER are suitable for FACS-mediated cell purification.
Collapse
Affiliation(s)
- J Hald
- Department of Beta-Cell Regeneration, Hagedorn Research Institute, Niels Steensens Vej 1, 2820 Gentofte, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Lim SM, Li X, Schiesser J, Holland AM, Elefanty AG, Stanley EG, Micallef SJ. Temporal restriction of pancreatic branching competence during embryogenesis is mirrored in differentiating embryonic stem cells. Stem Cells Dev 2011; 21:1662-74. [PMID: 22034992 DOI: 10.1089/scd.2011.0513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To develop methods for the generation of insulin-producing β-cells for the treatment of diabetes, we have used GFP-tagged embryonic stem cells (ESCs) to elucidate the process of pancreas development. Using the reporter Pdx1(GFP/w) ESC line, we have previously described a serum-free differentiation protocol in which Pdx1-GFP(+) cells formed GFP bright (GFP(br)) epithelial buds that resembled those present in the developing mouse pancreas. In this study we extend these findings to demonstrate that these cells can undergo a process of branching morphogenesis, similar to that seen during pancreatic development of the mid-gestation embryo. These partially disaggregated embryoid bodies containing GFP(br) buds initially form epithelial ring-like structures when cultured in Matrigel. After several days in culture, these rings undergo a process of proliferation and form a ramified network of epithelial branches. Comparative analysis of explanted dissociated pancreatic buds from E13.5 Pdx1(GFP/w) embryos and ESC-derived GFP(br) buds reveal a similar process of proliferation and branching, with both embryonic Pdx1(GFP/w) branching pancreatic epithelium and ESC-derived GFP(br) branching organoids expressing markers representing epithelial (EpCAM and E-Cadherin), ductal (Mucin1), exocrine (Amylase and Carboxypeptidase 1A), and endocrine cell types (Glucagon and Somatostatin). ESC-derived branching structures also expressed a suite of genes indicative of ongoing pancreatic differentiation, paralleling gene expression within similar structures derived from the E13.5 fetal pancreas. In summary, differentiating mouse ESCs can generate pancreatic material that has significant similarity to the fetal pancreatic anlagen, providing an in vitro platform for investigating the cellular and molecular mechanisms underpinning pancreatic development.
Collapse
Affiliation(s)
- Sue Mei Lim
- Monash Immunology and Stem Cell Laboratories (MISCL), Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
62
|
Lenoir O, Flosseau K, Ma FX, Blondeau B, Mai A, Bassel-Duby R, Ravassard P, Olson EN, Haumaitre C, Scharfmann R. Specific control of pancreatic endocrine β- and δ-cell mass by class IIa histone deacetylases HDAC4, HDAC5, and HDAC9. Diabetes 2011; 60:2861-71. [PMID: 21953612 PMCID: PMC3198089 DOI: 10.2337/db11-0440] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Class IIa histone deacetylases (HDACs) belong to a large family of enzymes involved in protein deacetylation and play a role in regulating gene expression and cell differentiation. Previously, we showed that HDAC inhibitors modify the timing and determination of pancreatic cell fate. The aim of this study was to determine the role of class IIa HDACs in pancreas development. RESEARCH DESIGN AND METHODS We took a genetic approach and analyzed the pancreatic phenotype of mice lacking HDAC4, -5, and -9. We also developed a novel method of lentiviral infection of pancreatic explants and performed gain-of-function experiments. RESULTS We show that class IIa HDAC4, -5, and -9 have an unexpected restricted expression in the endocrine β- and δ-cells of the pancreas. Analyses of the pancreas of class IIa HDAC mutant mice revealed an increased pool of insulin-producing β-cells in Hdac5(-/-) and Hdac9(-/-) mice and an increased pool of somatostatin-producing δ-cells in Hdac4(-/-) and Hdac5(-/-) mice. Conversely, HDAC4 and HDAC5 overexpression showed a decreased pool of insulin-producing β-cells and somatostatin-producing δ-cells. Finally, treatment of pancreatic explants with the selective class IIa HDAC inhibitor MC1568 enhances expression of Pax4, a key factor required for proper β-and δ-cell differentiation and amplifies endocrine β- and δ-cells. CONCLUSIONS We conclude that HDAC4, -5, and -9 are key regulators to control the pancreatic β/δ-cell lineage. These results highlight the epigenetic mechanisms underlying the regulation of endocrine cell development and suggest new strategies for β-cell differentiation-based therapies.
Collapse
Affiliation(s)
- Olivia Lenoir
- Institut National de la Santé et de la Recherche Médicale (INSERM) U845, Research Center Growth and Signalling, Paris Descartes University, Sorbonne Paris Cité, Necker Hospital, Paris, France
| | - Kathleen Flosseau
- Institut National de la Santé et de la Recherche Médicale (INSERM) U845, Research Center Growth and Signalling, Paris Descartes University, Sorbonne Paris Cité, Necker Hospital, Paris, France
| | - Feng Xia Ma
- Institut National de la Santé et de la Recherche Médicale (INSERM) U845, Research Center Growth and Signalling, Paris Descartes University, Sorbonne Paris Cité, Necker Hospital, Paris, France
| | - Bertrand Blondeau
- INSERM Unité Mixte de Recherche (UMR)-S 872, Cordeliers Research Center, Paris, France
| | - Antonello Mai
- Pasteur Institute-Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Philippe Ravassard
- Institute of Brain and Spinal Cord Research Center, Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM UMR-S 975, Pierre and Marie Curie University, Pitié Salpêtrière Hospital, Paris, France
| | - Eric N. Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Cécile Haumaitre
- Institut National de la Santé et de la Recherche Médicale (INSERM) U845, Research Center Growth and Signalling, Paris Descartes University, Sorbonne Paris Cité, Necker Hospital, Paris, France
- Corresponding author: Cécile Haumaitre, , or Raphaël Scharfmann,
| | - Raphaël Scharfmann
- Institut National de la Santé et de la Recherche Médicale (INSERM) U845, Research Center Growth and Signalling, Paris Descartes University, Sorbonne Paris Cité, Necker Hospital, Paris, France
- Corresponding author: Cécile Haumaitre, , or Raphaël Scharfmann,
| |
Collapse
|
63
|
Abstract
OBJECTIVES The purpose of the present study was to compare the development of murine embryonic pancreas in vitro and in vivo. METHODS Murine embryonic pancreas at 12.5 days of gestation was dissected and cultured at the air-medium interface. At 1, 3, and 7 days of culture, the characteristics of cultured murine pancreas were assayed and compared with that of pancreas in vivo. RESULTS The percentage of pancreatic duodenal homeobox-1 (PDX-1) and neurogenin 3 (Ngn3)-positive cells in pancreas cultured for 1 and 3 days was higher than that of pancreas at 13.5 and 15.5 days of gestation. Importantly, in comparison with embryonic pancreas in vivo, more insulin and glucagon-producing cells were developed in cultured pancreas. Furthermore, insulin was released in a regulated manner in response to glucose. The expressional kinetics of pancreatic markers of cultured pancreas was coincident with that of pancreas in vivo. CONCLUSIONS The development of the murine pancreas cultured at the air-medium interface mimicked that of pancreas in vivo. Our simple culture system might offer the potential of a source of mature β cells.
Collapse
|
64
|
Landsman L, Nijagal A, Whitchurch TJ, VanderLaan RL, Zimmer WE, MacKenzie TC, Hebrok M. Pancreatic mesenchyme regulates epithelial organogenesis throughout development. PLoS Biol 2011; 9:e1001143. [PMID: 21909240 PMCID: PMC3167782 DOI: 10.1371/journal.pbio.1001143] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 07/28/2011] [Indexed: 01/10/2023] Open
Abstract
Genetic disruption of the pancreatic mesenchyme reveals that it is critical for the expansion of epithelial progenitors and for the proliferation of insulin-producing beta cells. The developing pancreatic epithelium gives rise to all endocrine and exocrine cells of the mature organ. During organogenesis, the epithelial cells receive essential signals from the overlying mesenchyme. Previous studies, focusing on ex vivo tissue explants or complete knockout mice, have identified an important role for the mesenchyme in regulating the expansion of progenitor cells in the early pancreas epithelium. However, due to the lack of genetic tools directing expression specifically to the mesenchyme, the potential roles of this supporting tissue in vivo, especially in guiding later stages of pancreas organogenesis, have not been elucidated. We employed transgenic tools and fetal surgical techniques to ablate mesenchyme via Cre-mediated mesenchymal expression of Diphtheria Toxin (DT) at the onset of pancreas formation, and at later developmental stages via in utero injection of DT into transgenic mice expressing the Diphtheria Toxin receptor (DTR) in this tissue. Our results demonstrate that mesenchymal cells regulate pancreatic growth and branching at both early and late developmental stages by supporting proliferation of precursors and differentiated cells, respectively. Interestingly, while cell differentiation was not affected, the expansion of both the endocrine and exocrine compartments was equally impaired. To further elucidate signals required for mesenchymal cell function, we eliminated β-catenin signaling and determined that it is a critical pathway in regulating mesenchyme survival and growth. Our study presents the first in vivo evidence that the embryonic mesenchyme provides critical signals to the epithelium throughout pancreas organogenesis. The findings are novel and relevant as they indicate a critical role for the mesenchyme during late expansion of endocrine and exocrine compartments. In addition, our results provide a molecular mechanism for mesenchymal expansion and survival by identifying β-catenin signaling as an essential mediator of this process. These results have implications for developing strategies to expand pancreas progenitors and β-cells for clinical transplantation. Embryonic development is a highly complex process that requires tight orchestration of cellular proliferation, differentiation, and migration as cells grow within loosely aggregated mesenchyme and more organized epithelial sheets to form organs and tissues. In addition to intrinsic cell-autonomous signals, these events are further regulated by environmental cues provided by neighboring cells. Prior work demonstrated a critical role for the surrounding mesenchyme in guiding epithelial growth during the early stages of pancreas development. However, it remained unclear whether the mesenchyme also guided the later stages of pancreas organogenesis when the functional exocrine and endocrine cells are formed. Here, we show that specific genetic ablation of the mesenchyme at distinct developmental stages in vivo results in the formation of a smaller, misshapen pancreas. Loss of the mesenchyme profoundly impairs the expansion of both endocrine and exocrine pancreatic progenitors, as well as the proliferative capacity of maturing cells, including insulin-producing beta-cells. Thus, our studies reveal unappreciated roles for the mesenchyme in guiding the formation of the epithelial pancreas throughout development. The results suggest that identifying the specific mesenchymal signals might help to optimize cell culture protocols that aim to achieve the differentiation of stem cells into insulin-producing beta cells.
Collapse
Affiliation(s)
- Limor Landsman
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Amar Nijagal
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Surgery, University of California, San Francisco, San Francisco, California, United States of America
| | - Theresa J. Whitchurch
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Renee L. VanderLaan
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Warren E. Zimmer
- Department of Systems Biology and Translational Medicine, Texas A&M Health Science Center, College Station, Texas, United States of America
| | - Tippi C. MacKenzie
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Surgery, University of California, San Francisco, San Francisco, California, United States of America
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
65
|
Ravassard P, Hazhouz Y, Pechberty S, Bricout-Neveu E, Armanet M, Czernichow P, Scharfmann R. A genetically engineered human pancreatic β cell line exhibiting glucose-inducible insulin secretion. J Clin Invest 2011; 121:3589-97. [PMID: 21865645 DOI: 10.1172/jci58447] [Citation(s) in RCA: 451] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 06/15/2011] [Indexed: 12/12/2022] Open
Abstract
Despite intense efforts over the past 30 years, human pancreatic β cell lines have not been available. Here, we describe a robust technology for producing a functional human β cell line using targeted oncogenesis in human fetal tissue. Human fetal pancreatic buds were transduced with a lentiviral vector that expressed SV40LT under the control of the insulin promoter. The transduced buds were then grafted into SCID mice so that they could develop into mature pancreatic tissue. Upon differentiation, the newly formed SV40LT-expressing β cells proliferated and formed insulinomas. The resulting β cells were then transduced with human telomerase reverse transcriptase (hTERT), grafted into other SCID mice, and finally expanded in vitro to generate cell lines. One of these cell lines, EndoC-βH1, expressed many β cell-specific markers without any substantial expression of markers of other pancreatic cell types. The cells secreted insulin when stimulated by glucose or other insulin secretagogues, and cell transplantation reversed chemically induced diabetes in mice. These cells represent a unique tool for large-scale drug discovery and provide a preclinical model for cell replacement therapy in diabetes. This technology could be generalized to generate other human cell lines when the cell type-specific promoter is available.
Collapse
Affiliation(s)
- Philippe Ravassard
- Université Pierre et Marie Curie-Paris 6, Biotechnology and Biotherapy Team, Centre de Recherche de l’Institut du Cerveau et de la Moelle épinière (CRICM), UMRS 975, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
66
|
Kim SY, Rane SG. The Cdk4-E2f1 pathway regulates early pancreas development by targeting Pdx1+ progenitors and Ngn3+ endocrine precursors. Development 2011; 138:1903-12. [PMID: 21490060 DOI: 10.1242/dev.061481] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell division and cell differentiation are intricately regulated processes vital to organ development. Cyclin-dependent kinases (Cdks) are master regulators of the cell cycle that orchestrate the cell division and differentiation programs. Cdk1 is essential to drive cell division and is required for the first embryonic divisions, whereas Cdks 2, 4 and 6 are dispensable for organogenesis but vital for tissue-specific cell development. Here, we illustrate an important role for Cdk4 in regulating early pancreas development. Pancreatic development involves extensive morphogenesis, proliferation and differentiation of the epithelium to give rise to the distinct cell lineages of the adult pancreas. The cell cycle molecules that specify lineage commitment within the early pancreas are unknown. We show that Cdk4 and its downstream transcription factor E2f1 regulate mouse pancreas development prior to and during the secondary transition. Cdk4 deficiency reduces embryonic pancreas size owing to impaired mesenchyme development and fewer Pdx1(+) pancreatic progenitor cells. Expression of activated Cdk4(R24C) kinase leads to increased Nkx2.2(+) and Nkx6.1(+) cells and a rise in the number and proliferation of Ngn3(+) endocrine precursors, resulting in expansion of the β cell lineage. We show that E2f1 binds and activates the Ngn3 promoter to modulate Ngn3 expression levels in the embryonic pancreas in a Cdk4-dependent manner. These results suggest that Cdk4 promotes β cell development by directing E2f1-mediated activation of Ngn3 and increasing the pool of endocrine precursors, and identify Cdk4 as an important regulator of early pancreas development that modulates the proliferation potential of pancreatic progenitors and endocrine precursors.
Collapse
Affiliation(s)
- So Yoon Kim
- Regenerative Biology Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
67
|
Limbert C, Ebert R, Schilling T, Path G, Benisch P, Klein-Hitpass L, Seufert J, Jakob F. Functional signature of human islet-derived precursor cells compared to bone marrow-derived mesenchymal stem cells. Stem Cells Dev 2010; 19:679-91. [PMID: 19895235 DOI: 10.1089/scd.2009.0241] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Pancreatic islet beta-cell replenishment can be driven by epithelial cells from exocrine pancreas via epithelial-mesenchymal transition (EMT) and the reverse process MET, while specified pancreatic mesenchymal cells control islet cell development and maintenance. The role of human islet-derived precursor cells (hIPCs) in regeneration and support of endocrine islets is under investigation. Here, we analyzed hIPCs as to their immunophenotype, multilineage differentiation capacity, and gene profiling, in comparison to human bone marrow-derived mesenchymal stem cells (hBM-MSCs). hIPCs and hBM-MSCs display a common mesenchymal character and express lineage-specific marker genes upon induction toward pancreatic endocrine and mesenchymal pathways of differentiation. hIPCs can go further along endocrine pathways while lacking some core mesenchymal differentiation attributes. Significance analysis of microarray (SAM) from 5 hBM-MSC and 3 hIPC donors mirrored such differences. Candidate gene cluster analysis disclosed differential expression of key lineage regulators, indicated a HoxA gene-associated positional memory in hIPCs and hBM-MSCs, and showed as well a clear transition state from mesenchyme to epithelium or vice versa in hIPCs. Our findings raise new research platforms to further clarify the potential of hIPCs to undergo complete MET thus contributing to islet cell replenishment, maintenance, and function.
Collapse
Affiliation(s)
- Catarina Limbert
- Orthopedic Center for Musculoskeletal Research, Stem Cell Division, Orthopedic Department, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Ahnfelt-Rønne J, Ravassard P, Pardanaud-Glavieux C, Scharfmann R, Serup P. Mesenchymal bone morphogenetic protein signaling is required for normal pancreas development. Diabetes 2010; 59:1948-56. [PMID: 20522595 PMCID: PMC2911072 DOI: 10.2337/db09-1010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Pancreas organogenesis is orchestrated by interactions between the epithelium and the mesenchyme, but these interactions are not completely understood. Here we investigated a role for bone morphogenetic protein (BMP) signaling within the pancreas mesenchyme and found it to be required for the normal development of the mesenchyme as well as for the pancreatic epithelium. RESEARCH DESIGN AND METHODS We analyzed active BMP signaling by immunostaining for phospho-Smad1,5,8 and tested whether pancreas development was affected by BMP inhibition after expression of Noggin and dominant negative BMP receptors in chicken and mouse pancreas. RESULTS Endogenous BMP signaling is confined to the mesenchyme in the early pancreas and inhibition of BMP signaling results in severe pancreatic hypoplasia with reduced epithelial branching. Notably, we also observed an excessive endocrine differentiation when mesenchymal BMP signaling is blocked, presumably secondary to defective mesenchyme to epithelium signaling. CONCLUSIONS We conclude that BMP signaling plays a previously unsuspected role in the mesenchyme, required for normal development of the mesenchyme as well as for the epithelium.
Collapse
Affiliation(s)
| | - Philippe Ravassard
- Biotherapy and Biotechnology Laboratory, Centre de Recherche de l'Institut du Cerveau et de la Moelle, University Pierre et Marie Curie, Paris, France
| | - Corinne Pardanaud-Glavieux
- Biotherapy and Biotechnology Laboratory, Centre de Recherche de l'Institut du Cerveau et de la Moelle, University Pierre et Marie Curie, Paris, France
| | - Raphaél Scharfmann
- Centre de Recherche Croissance et Signalisation, Université Paris Descartes, Faculté de Médecine, Hôpital Necker, Paris, France
| | - Palle Serup
- Hagedorn Research Institute, Gentofte, Denmark
- Corresponding author: Palle Serup,
| |
Collapse
|
69
|
Abstract
The pancreas has been the subject of intense research due to the debilitating diseases that result from its dysfunction. In this review, we summarize current understanding of the critical tissue interactions and intracellular regulatory events that take place during formation of the pancreas from a small cluster of cells in the foregut domain of the mouse embryo. Importantly, an understanding of principles that govern the development of this organ has equipped us with the means to manipulate both embryonic and differentiated adult cells in the context of regenerative medicine. The emerging area of lineage modulation within the adult pancreas is of particular interest, and this review summarizes recent findings that exemplify how lessons learned from development are being applied to reveal the potential of fully differentiated cells to change fate.
Collapse
Affiliation(s)
- Sapna Puri
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA 94143, USA
| | | |
Collapse
|
70
|
Heinis M, Simon MT, Ilc K, Mazure NM, Pouysségur J, Scharfmann R, Duvillié B. Oxygen tension regulates pancreatic beta-cell differentiation through hypoxia-inducible factor 1alpha. Diabetes 2010; 59:662-9. [PMID: 20009089 PMCID: PMC2828660 DOI: 10.2337/db09-0891] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Recent evidence indicates that low oxygen tension (pO2) or hypoxia controls the differentiation of several cell types during development. Variations of pO2 are mediated through the hypoxia-inducible factor (HIF), a crucial mediator of the adaptative response of cells to hypoxia. The aim of this study was to investigate the role of pO2 in beta-cell differentiation. RESEARCH DESIGN AND METHODS We analyzed the capacity of beta-cell differentiation in the rat embryonic pancreas using two in vitro assays. Pancreata were cultured either in collagen or on a filter at the air/liquid interface with various pO2. An inhibitor of the prolyl hydroxylases, dimethyloxaloylglycine (DMOG), was used to stabilize HIF1alpha protein in normoxia. RESULTS When cultured in collagen, embryonic pancreatic cells were hypoxic and expressed HIF1alpha and rare beta-cells differentiated. In pancreata cultured on filter (normoxia), HIF1alpha expression decreased and numerous beta-cells developed. During pancreas development, HIF1alpha levels were elevated at early stages and decreased with time. To determine the effect of pO2 on beta-cell differentiation, pancreata were cultured in collagen at increasing concentrations of O2. Such conditions repressed HIF1alpha expression, fostered development of Ngn3-positive endocrine progenitors, and induced beta-cell differentiation by O2 in a dose-dependent manner. By contrast, forced expression of HIF1alpha in normoxia using DMOG repressed Ngn3 expression and blocked beta-cell development. Finally, hypoxia requires hairy and enhancer of split (HES)1 expression to repress beta-cell differentiation. CONCLUSIONS These data demonstrate that beta-cell differentiation is controlled by pO2 through HIF1alpha. Modifying pO2 should now be tested in protocols aiming to differentiate beta-cells from embryonic stem cells.
Collapse
Affiliation(s)
- Mylène Heinis
- INSERM U845, Research Center Growth and Signalling, Université Paris Descartes, Hôpital Necker, Paris, France
| | - Marie-Thérèse Simon
- INSERM U845, Research Center Growth and Signalling, Université Paris Descartes, Hôpital Necker, Paris, France
| | - Karine Ilc
- Institute of Developmental Biology and Cancer Research, University of Nice, Nice, France
| | - Nathalie M. Mazure
- Institute of Developmental Biology and Cancer Research, University of Nice, Nice, France
| | - Jacques Pouysségur
- Institute of Developmental Biology and Cancer Research, University of Nice, Nice, France
| | - Raphael Scharfmann
- INSERM U845, Research Center Growth and Signalling, Université Paris Descartes, Hôpital Necker, Paris, France
| | - Bertrand Duvillié
- INSERM U845, Research Center Growth and Signalling, Université Paris Descartes, Hôpital Necker, Paris, France
- Corresponding author: Bertrand Duvillié,
| |
Collapse
|
71
|
Leung PS. Current Research Concerning the RAS in Pancreatic Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 690:155-77. [DOI: 10.1007/978-90-481-9060-7_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
72
|
Filhoulaud G, Guillemain G, Scharfmann R. The hexosamine biosynthesis pathway is essential for pancreatic beta cell development. J Biol Chem 2009; 284:24583-94. [PMID: 19586915 DOI: 10.1074/jbc.m109.025288] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pancreatic exocrine and endocrine cells develop during embryonic life from endodermal progenitors. This process depends on activation of a hierarchy of transcription factors. Although information is available regarding the mesodermal signals controlling pancreas development, little is known about the role of environmental factors such as nutrients, including glucose, that also may impact development. Previously, we showed that glucose plays an important and specific role in beta cell development by activating the transition of Neurogenin3-positive endocrine progenitors into beta cells. Here, we examined the implication of glucose metabolism and more precisely the role of the hexosamine biosynthesis pathway (HBP) to understand the mechanisms by which glucose regulates beta cell development. We have established an in vitro model of endocrine and exocrine cells development from embryonic day 13.5 rat pancreases in a manner that replicates in vivo pancreas development perfectly. Using this model, we tested the effect of selective inhibitors and activators of the HBP and found that the HBP has a modest effect on cell proliferation and exocrine cell differentiation. On the other hand, beta cell development is tightly controlled by the HBP. Specifically, HBP activators increase beta cell development, whereas inhibitors repress such development. Importantly, both the HBP and glucose control the same steps in beta cell development.
Collapse
Affiliation(s)
- Gaëlle Filhoulaud
- INSERM U845, Centre de Recherche Croissance et Signalisation, Université Paris Descartes, Faculté de Médecine, Hôpital Necker, 75015 Paris, France
| | | | | |
Collapse
|
73
|
Embryonic pig pancreatic tissue for the treatment of diabetes in a nonhuman primate model. Proc Natl Acad Sci U S A 2009; 106:8659-64. [PMID: 19433788 DOI: 10.1073/pnas.0812253106] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Xenotransplantation of pig tissues has great potential to overcome the shortage of organ donors. One approach to address the vigorous immune rejection associated with xenotransplants is the use of embryonic precursor tissue, which induces and utilizes host vasculature upon its growth and development. Recently, we showed in mice that embryonic pig pancreatic tissue from embryonic day 42 (E42) exhibits optimal properties as a beta cell replacement therapy. We now demonstrate the proof of concept in 2 diabetic Cynomolgus monkeys, followed for 393 and 280 days, respectively. A marked reduction of exogenous insulin requirement was noted by the fourth month after transplantation, reaching complete independence from exogenous insulin during the fifth month after transplantation, with full physiological control of blood glucose levels. The porcine origin of insulin was documented by a radioimmunoassay specific for porcine C-peptide. Furthermore, the growing tissue was found to be predominantly vascularized with host blood vessels, thereby evading hyperacute or acute rejection, which could potentially be mediated by preexisting anti-pig antibodies. Durable graft protection was achieved, and most of the late complications could be attributed to the immunosuppressive protocol. While fine tuning of immune suppression, tissue dose, and implantation techniques are still required, our results demonstrate that porcine E-42 embryonic pancreatic tissue can normalize blood glucose levels in primates. Its long-term proliferative capacity, its revascularization by host endothelium, and its reduced immunogenicity, strongly suggest that this approach could offer an attractive replacement therapy for diabetes.
Collapse
|
74
|
Abstract
Understanding pancreatic development is important for at least three reasons: first, from a cognitive point of view, to understand the development of a complex organ, the pancreas; next, because it is now clear that abnormal pancreatic development can give rise to specific forms of diabetes in humans; and finally, because, if we want to define new treatments for diabetes based on cell therapy or regenerative medicine, we will have to understand in detail how beta-cells develop. In the present paper, we summarize what we currently know concerning pancreatic development and concentrate on some intercellular and environmental signals controlling pancreatic development.
Collapse
|
75
|
Scharfmann R, Duvillie B, Stetsyuk V, Attali M, Filhoulaud G, Guillemain G. Beta-cell development: the role of intercellular signals. Diabetes Obes Metab 2008; 10 Suppl 4:195-200. [PMID: 18834447 DOI: 10.1111/j.1463-1326.2008.00953.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding in detail how pancreatic endocrine cells develop is important for many reasons. From a scientific point of view, elucidation of such a complex process is a major challenge. From a more applied point of view, this may help us to better understand and treat specific forms of diabetes. Although a variety of therapeutic approaches are well validated, no cure for diabetes is available. Many arguments indicate that the development of new strategies to cure diabetic patients will require precise understanding of the way beta-cells form during development. This is obvious for a future cell therapy using beta-cells produced from embryonic stem cells. This also holds true for therapeutic approaches based on regenerative medicine. In this review, we summarize our current knowledge concerning pancreatic development and focus on the role of extracellular signals implicated in beta-cell development from pancreatic progenitors.
Collapse
Affiliation(s)
- R Scharfmann
- INSERM U845, Research Center Growth and Signaling, Université Paris Descartes, Paris, France.
| | | | | | | | | | | |
Collapse
|
76
|
Gittes GK. Developmental biology of the pancreas: a comprehensive review. Dev Biol 2008; 326:4-35. [PMID: 19013144 DOI: 10.1016/j.ydbio.2008.10.024] [Citation(s) in RCA: 317] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Revised: 10/09/2008] [Accepted: 10/13/2008] [Indexed: 02/06/2023]
Abstract
Pancreatic development represents a fascinating process in which two morphologically distinct tissue types must derive from one simple epithelium. These two tissue types, exocrine (including acinar cells, centro-acinar cells, and ducts) and endocrine cells serve disparate functions, and have entirely different morphology. In addition, the endocrine tissue must become disconnected from the epithelial lining during its development. The pancreatic development field has exploded in recent years, and numerous published reviews have dealt specifically with only recent findings, or specifically with certain aspects of pancreatic development. Here I wish to present a more comprehensive review of all aspects of pancreatic development, though still there is not a room for discussion of stem cell differentiation to pancreas, nor for discussion of post-natal regeneration phenomena, two important fields closely related to pancreatic development.
Collapse
Affiliation(s)
- George K Gittes
- Children's Hospital of Pittsburgh and the University of Pittsburgh School of Medicine, Department of Pediatric Surgery, 3705 Fifth Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
77
|
Beta cells within single human islets originate from multiple progenitors. PLoS One 2008; 3:e3559. [PMID: 18958289 PMCID: PMC2571119 DOI: 10.1371/journal.pone.0003559] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 10/09/2008] [Indexed: 11/19/2022] Open
Abstract
Background In both humans and rodents, glucose homeostasis is controlled by micro-organs called islets of Langerhans composed of beta cells, associated with other endocrine cell types. Most of our understanding of islet cell differentiation and morphogenesis is derived from rodent developmental studies. However, little is known about human islet formation. The lack of adequate experimental models has restricted the study of human pancreatic development to the histological analysis of different stages of pancreatic development. Our objective was to develop a new experimental model to (i) transfer genes into developing human pancreatic cells and (ii) validate gene transfer by defining the clonality of developing human islets. Methods and Findings In this study, a unique model was developed combining ex vivo organogenesis from human fetal pancreatic tissue and cell type-specific lentivirus-mediated gene transfer. Human pancreatic progenitors were transduced with lentiviruses expressing GFP under the control of an insulin promoter and grafted to severe combined immunodeficient mice, allowing human beta cell differentiation and islet morphogenesis. By performing gene transfer at low multiplicity of infection, we created a chimeric graft with a subpopulation of human beta cells expressing GFP and found both GFP-positive and GFP-negative beta cells within single islets. Conclusion The detection of both labeled and unlabeled beta cells in single islets demonstrates that beta cells present in a human islet are derived from multiple progenitors thus providing the first dynamic analysis of human islet formation during development. This human transgenic-like tool can be widely used to elucidate dynamic genetic processes in human tissue formation.
Collapse
|
78
|
Histone deacetylase inhibitors modify pancreatic cell fate determination and amplify endocrine progenitors. Mol Cell Biol 2008; 28:6373-83. [PMID: 18710955 DOI: 10.1128/mcb.00413-08] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During pancreas development, transcription factors play critical roles in exocrine and endocrine differentiation. Transcriptional regulation in eukaryotes occurs within chromatin and is influenced by posttranslational histone modifications (e.g., acetylation) involving histone deacetylases (HDACs). Here, we show that HDAC expression and activity are developmentally regulated in the embryonic rat pancreas. We discovered that pancreatic treatment with different HDAC inhibitors (HDACi) modified the timing and determination of pancreatic cell fate. HDACi modified the exocrine lineage via abolition and enhancement of acinar and ductal differentiation, respectively. Importantly, HDACi treatment promoted the NGN3 proendocrine lineage, leading to an increased pool of endocrine progenitors and modified endocrine subtype lineage choices. Interestingly, treatments with trichostatin A and sodium butyrate, two inhibitors of both class I and class II HDACs, enhanced the pool of beta cells. These results highlight the roles of HDACs at key points in exocrine and endocrine differentiation. They show the powerful use of HDACi to switch pancreatic cell determination and amplify specific cellular subtypes, with potential applications in cell replacement therapies in diabetes.
Collapse
|
79
|
Jonckheere N, Mayes E, Shih HP, Li B, Lioubinski O, Dai X, Sander M. Analysis of mPygo2 mutant mice suggests a requirement for mesenchymal Wnt signaling in pancreatic growth and differentiation. Dev Biol 2008; 318:224-35. [PMID: 18452912 PMCID: PMC2478757 DOI: 10.1016/j.ydbio.2008.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 02/10/2008] [Accepted: 03/03/2008] [Indexed: 10/22/2022]
Abstract
Pygopus has recently been identified in Drosophila as an essential component of the nuclear complex required for canonical Wnt signaling. Here, we have investigated the role of the mammalian pygopus ortholog, mPygo2, in pancreas development. We show that a null mutation of mPygo2 in mice causes pancreas hypoplasia due to decreased progenitor cell proliferation after embryonic day (e) 12.5. During the same time window, mPygo2-deficient embryos begin to display a reduction in endocrine progenitors and consequently a decrease in islet endocrine cell mass. Consistent with its function after e12.5, late-developing endocrine cell types, such as beta, delta and PP cells, are specifically reduced, while the earlier-forming alpha cells develop normally. We find canonical Wnt signaling to be predominantly active in the mesenchyme at the time when mPygo2 is required and demonstrate the dependence of Wnt signal transduction on mPygo2. Furthermore, conditional deletion of mPygo2(flox) allele in the pancreatic epithelium does not phenocopy the defects in mPygo2-null mutants. Since mPygo2 is expressed in the pancreatic mesenchyme and the role of the mesenchyme in epithelial progenitor cell expansion is well documented, our findings suggest an indirect role for mPygo2 in epithelial growth and differentiation through regulation of mesenchymal signals. Together, our data suggest a previously unappreciated role for mesenchymal Wnt signaling in regulating pancreatic organ growth and cell differentiation.
Collapse
Affiliation(s)
- Nicolas Jonckheere
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697-2300, U.S.A
| | - Erin Mayes
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697-2300, U.S.A
| | - Hung-Ping Shih
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697-2300, U.S.A
| | - Boan Li
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697-1700, U.S.A
| | - Oleg Lioubinski
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697-2300, U.S.A
| | - Xing Dai
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697-1700, U.S.A
| | - Maike Sander
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697-2300, U.S.A
| |
Collapse
|
80
|
Heinis M, Duvillié B. [Stem cells in diabetes treatment]. ANNALES D'ENDOCRINOLOGIE 2008; 69:143-6. [PMID: 18420179 DOI: 10.1016/j.ando.2008.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- M Heinis
- INSERM U845, faculté Necker-René-Descartes, 156 rue de Vaugirard, Paris, France
| | | |
Collapse
|
81
|
Chung WS, Stainier DYR. Intra-endodermal interactions are required for pancreatic beta cell induction. Dev Cell 2008; 14:582-93. [PMID: 18410733 PMCID: PMC2396532 DOI: 10.1016/j.devcel.2008.02.012] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 12/18/2007] [Accepted: 02/04/2008] [Indexed: 11/19/2022]
Abstract
The cellular origin of signals that regulate pancreatic beta cell induction is not clearly defined. Here, we investigate the seeming paradox that Hedgehog/Smoothened signaling functions during gastrulation to promote pancreatic beta cell development in zebrafish, yet has an inhibitory role during later stages of pancreas development in amniotes. Our cell transplantation experiments reveal that in zebrafish, Smoothened function is not required in beta cell precursors. At early somitogenesis stages, when the zebrafish endoderm first forms a sheet, pancreatic beta cell precursors lie closest to the midline; however, the requirement for Smoothened lies in their lateral neighbors, which ultimately give rise to the exocrine pancreas and intestine. Thus, pancreatic beta cell induction requires Smoothened function cell-nonautonomously during gastrulation, to allow subsequent intra-endodermal interactions. These results clarify the function of Hedgehog signaling in pancreas development, identify an unexpected cellular source of factors that regulate beta cell specification, and uncover complex patterning and signaling interactions within the endoderm.
Collapse
Affiliation(s)
- Won-Suk Chung
- Department of Biochemistry and Biophysics, and the Diabetes Center, University of California, San Francisco, 1550 4th Street, San Francisco, CA 94158, USA
| | | |
Collapse
|
82
|
Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J, Agulnick AD, D'Amour KA, Carpenter MK, Baetge EE. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 2008; 26:443-52. [PMID: 18288110 DOI: 10.1038/nbt1393] [Citation(s) in RCA: 1297] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 02/12/2008] [Indexed: 02/06/2023]
Abstract
Development of a cell therapy for diabetes would be greatly aided by a renewable supply of human beta-cells. Here we show that pancreatic endoderm derived from human embryonic stem (hES) cells efficiently generates glucose-responsive endocrine cells after implantation into mice. Upon glucose stimulation of the implanted mice, human insulin and C-peptide are detected in sera at levels similar to those of mice transplanted with approximately 3,000 human islets. Moreover, the insulin-expressing cells generated after engraftment exhibit many properties of functional beta-cells, including expression of critical beta-cell transcription factors, appropriate processing of proinsulin and the presence of mature endocrine secretory granules. Finally, in a test of therapeutic potential, we demonstrate that implantation of hES cell-derived pancreatic endoderm protects against streptozotocin-induced hyperglycemia. Together, these data provide definitive evidence that hES cells are competent to generate glucose-responsive, insulin-secreting cells.
Collapse
Affiliation(s)
- Evert Kroon
- Novocell, Inc., 3550 General Atomics Ct., San Diego, California 92121, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Jørgensen MC, Ahnfelt-Rønne J, Hald J, Madsen OD, Serup P, Hecksher-Sørensen J. An illustrated review of early pancreas development in the mouse. Endocr Rev 2007; 28:685-705. [PMID: 17881611 DOI: 10.1210/er.2007-0016] [Citation(s) in RCA: 263] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pancreas morphogenesis and cell differentiation are highly conserved among vertebrates during fetal development. The pancreas develops through simple budlike structures on the primitive gut tube to a highly branched organ containing many specialized cell types. This review presents an overview of key molecular components and important signaling sources illustrated by an extensive three-dimensional (3D) imaging of the developing mouse pancreas at single cell resolution. The 3D documentation covers the time window between embryonic days 8.5 and 14.5 in which all the pancreatic cell types become specified and therefore includes gene expression patterns of pancreatic endocrine hormones, exocrine gene products, and essential transcription factors. The 3D perspective provides valuable insight into how a complex organ like the pancreas is formed and a perception of ventral and dorsal pancreatic growth that is otherwise difficult to uncover. We further discuss how this global analysis of the developing pancreas confirms and extends previous studies, and we envisage that this type of analysis can be instrumental for evaluating mutant phenotypes in the future.
Collapse
Affiliation(s)
- Mette Christine Jørgensen
- Hagedorn Research Institute, Department of Developmental Biology, Niels Steensens Vej 6, DK-2820 Gentofte, Denmark.
| | | | | | | | | | | |
Collapse
|