51
|
Improved gene delivery to adult mouse spinal cord through the use of engineered hybrid adeno-associated viral serotypes. Gene Ther 2017; 24:361-369. [PMID: 28440798 PMCID: PMC5472488 DOI: 10.1038/gt.2017.27] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 02/25/2017] [Accepted: 03/03/2017] [Indexed: 12/12/2022]
Abstract
Adeno-associated viral (AAV) vectors are often used in gene therapy for neurological disorders because of its safety profile and promising results in clinical trials. One challenge to AAV gene therapy is effective transduction of large numbers of the appropriate cell type, which can be overcome by modulating the viral capsid through DNA shuffling. Our previous study demonstrates that Rec2, among a family of novel engineered hybrid capsid serotypes (Rec1~4) transduces adipose tissue with far superior efficiency than naturally occurring AAV serotypes. Here we assessed the transduction of adult spinal cord at two different doses of AAV vectors expressing green fluorescent protein (2 × 109 or 4 × 108 viral particles) via intraparenchymal injection at the thoracic vertebral level T9. In comparison to an equal dose of the currently preferable AAV9 serotype, Rec3 serotype transduced a broader region of spinal cord up to approximately 1.5 cm longitudinally, and displayed higher transgene expression and increased maximal transduction rates of astrocytes at either dose and neurons at the lower dose. These novel engineered hybrid vectors could provide powerful tools at lower production costs to manipulate gene expression in spinal cord for mechanistic studies, or provide potent vehicles for gene therapy delivery, such as neurotrophins, to spinal cord.
Collapse
|
52
|
Rottiers V, Francisco A, Platov M, Zaltsman Y, Ruggiero A, Lee SS, Gross A, Libert S. MTCH2 is a conserved regulator of lipid homeostasis. Obesity (Silver Spring) 2017; 25:616-625. [PMID: 28127879 DOI: 10.1002/oby.21751] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/22/2016] [Accepted: 11/28/2016] [Indexed: 01/01/2023]
Abstract
OBJECTIVE More than one-third of U.S. adults have obesity, causing an alarming increase in obesity-related comorbidities such as type 2 diabetes. The functional role of mitochondrial carrier homolog 2 (MTCH2), a human obesity-associated gene, in lipid homeostasis was investigated in Caenorhabditis elegans, cell culture, and mice. METHODS In C. elegans, MTCH2/MTCH-1 was depleted, using RNAi and a genetic mutant, and overexpressed to assess its effect on lipid accumulation. In cells and mice, shRNAs against MTCH2 were used for knockdown and MTCH2 overexpression vectors were used for overexpression to study the role of this gene in fat accumulation. RESULTS MTCH2 knockdown reduced lipid accumulation in adipocyte-like cells in vitro and in C. elegans and mice in vivo. MTCH2 overexpression increased fat accumulation in cell culture, C. elegans, and mice. Acute MTCH2 inhibition reduced fat accumulation in animals subjected to a high-fat diet. Finally, MTCH2 influenced estrogen receptor 1 (ESR1) activity. CONCLUSIONS MTCH2 is a conserved regulator of lipid homeostasis. MTCH2 was found to be both required and sufficient for lipid homeostasis shifts, suggesting that pharmacological inhibition of MTCH2 could be therapeutic for treatment of obesity and related disorders. MTCH2 could influence lipid homeostasis through inhibition of ESR1 activity.
Collapse
Affiliation(s)
- Veerle Rottiers
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Adam Francisco
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Michael Platov
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Yehudit Zaltsman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Antonella Ruggiero
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Atan Gross
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Sergiy Libert
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
53
|
Genetic Manipulation with Viral Vectors to Assess Metabolism and Adipose Tissue Function. Methods Mol Biol 2017; 1566:109-124. [PMID: 28244045 DOI: 10.1007/978-1-4939-6820-6_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Viral vectors have become widely used tools for genetic manipulation of adipose tissues to understand the biology and function of adipocytes in metabolism. There are a number of different viral vectors commonly used: retrovirus, lentivirus, adenovirus, and adeno-associated virus (AAV). Here, we review examples from the literature and describe methods to transduce adipocytes and adipose tissues using retrovirus, lentivirus, adenovirus, and AAV to ascertain gene function in adipose biology.
Collapse
|
54
|
Albert V, Svensson K, Shimobayashi M, Colombi M, Muñoz S, Jimenez V, Handschin C, Bosch F, Hall MN. mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue. EMBO Mol Med 2016; 8:232-46. [PMID: 26772600 PMCID: PMC4772955 DOI: 10.15252/emmm.201505610] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Activation of non‐shivering thermogenesis (NST) in brown adipose tissue (BAT) has been proposed as an anti‐obesity treatment. Moreover, cold‐induced glucose uptake could normalize blood glucose levels in insulin‐resistant patients. It is therefore important to identify novel regulators of NST and cold‐induced glucose uptake. Mammalian target of rapamycin complex 2 (mTORC2) mediates insulin‐stimulated glucose uptake in metabolic tissues, but its role in NST is unknown. We show that mTORC2 is activated in brown adipocytes upon β‐adrenergic stimulation. Furthermore, mice lacking mTORC2 specifically in adipose tissue (AdRiKO mice) are hypothermic, display increased sensitivity to cold, and show impaired cold‐induced glucose uptake and glycolysis. Restoration of glucose uptake in BAT by overexpression of hexokinase II or activated Akt2 was sufficient to increase body temperature and improve cold tolerance in AdRiKO mice. Thus, mTORC2 in BAT mediates temperature homeostasis via regulation of cold‐induced glucose uptake. Our findings demonstrate the importance of glucose metabolism in temperature regulation.
Collapse
Affiliation(s)
| | | | | | | | - Sergio Muñoz
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Veronica Jimenez
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | | | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | | |
Collapse
|
55
|
Sharma P, Wimalawansa SM, Gould GC, Johnson RM, Excoffon KJDA. Adeno-Associated Virus 5 Transduces Adipose-Derived Stem Cells with Greater Efficacy Than Other Adeno-Associated Viral Serotypes. Hum Gene Ther Methods 2016; 27:219-227. [PMID: 27820963 DOI: 10.1089/hgtb.2016.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Adipose-derived stem cells (ASCs) have shown potential in the treatment of a myriad of diseases; however, infusion of cells alone is unlikely to provide the full range of potential therapeutic applications. Transient genetic manipulation of ASCs could increase their repair and regeneration characteristics in a disease-specific context, essentially transforming them into drug-eluting depots. The goal of this study was to determine the optimal parameters necessary to transduce ASCs with recombinant adeno-associated virus (rAAV), an approved gene therapy vector that has never been associated with disease. Transduction and duration of gene expression of the most common recombinant AAV vectors were tested in this study. Among all tested serotypes, rAAV5 resulted in both the highest and longest term expression. Furthermore, we determined the glycosylation profile of ASCs before and after neuraminidase treatment and demonstrate that rAAV5 transduction requires plasma membrane-associated sialic acid. Future studies will focus on the optimization of gene delivery to ASCs, using rAAV5 as the vector of choice, to drive biological drug delivery, engraftment, and disease correction.
Collapse
Affiliation(s)
- Priyanka Sharma
- 1 Department of Biological Sciences, Wright State University
| | - Sunishka M Wimalawansa
- 2 Department of Orthopedic Surgery, Sports Medicine and Rehabilitation, Boonshoft School of Medicine, Wright State University.,3 Wright State Physicians Plastic Surgery, Miami Valley Hospital, Dayton, Ohio
| | - Gregory C Gould
- 2 Department of Orthopedic Surgery, Sports Medicine and Rehabilitation, Boonshoft School of Medicine, Wright State University
| | - R Michael Johnson
- 2 Department of Orthopedic Surgery, Sports Medicine and Rehabilitation, Boonshoft School of Medicine, Wright State University.,3 Wright State Physicians Plastic Surgery, Miami Valley Hospital, Dayton, Ohio
| | - Katherine J D A Excoffon
- 1 Department of Biological Sciences, Wright State University.,2 Department of Orthopedic Surgery, Sports Medicine and Rehabilitation, Boonshoft School of Medicine, Wright State University
| |
Collapse
|
56
|
Villarroya F, Peyrou M, Giralt M. Transcriptional regulation of the uncoupling protein-1 gene. Biochimie 2016; 134:86-92. [PMID: 27693079 DOI: 10.1016/j.biochi.2016.09.017] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/25/2016] [Indexed: 02/08/2023]
Abstract
Regulated transcription of the uncoupling protein-1 (UCP1) gene, and subsequent UCP1 protein synthesis, is a hallmark of the acquisition of the differentiated, thermogenically competent status of brown and beige/brite adipocytes, as well as of the responsiveness of brown and beige/brite adipocytes to adaptive regulation of thermogenic activity. The 5' non-coding region of the UCP1 gene contains regulatory elements that confer tissue specificity, differentiation dependence, and neuro-hormonal regulation to UCP1 gene transcription. Two main regions-a distal enhancer and a proximal promoter region-mediate transcriptional regulation through interactions with a plethora of transcription factors, including nuclear hormone receptors and cAMP-responsive transcription factors. Co-regulators, such as PGC-1α, play a pivotal role in the concerted regulation of UCP1 gene transcription. Multiple interactions of transcription factors and co-regulators at the promoter region of the UCP1 gene result in local chromatin remodeling, leading to activation and increased accessibility of RNA polymerase II and subsequent gene transcription. Moreover, a commonly occurring A-to-G polymorphism in close proximity to the UCP1 gene enhancer influences the extent of UCP1 gene transcription. Notably, it has been reported that specific aspects of obesity and associated metabolic diseases are associated with human population variability at this site. On another front, the unique properties of the UCP1 promoter region have been exploited to develop brown adipose tissue-specific gene delivery tools for experimental purposes.
Collapse
Affiliation(s)
- Francesc Villarroya
- Department of Biochemistry and Molecular Biomedicine, Institut de Biomedicina (IBUB), University of Barcelona, Barcelona, Catalonia, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain; Institut de Recerca Pediàtrica Sant Joan de Déu, Barcelona, Catalonia, Spain.
| | - Marion Peyrou
- Department of Biochemistry and Molecular Biomedicine, Institut de Biomedicina (IBUB), University of Barcelona, Barcelona, Catalonia, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain; Institut de Recerca Pediàtrica Sant Joan de Déu, Barcelona, Catalonia, Spain
| | - Marta Giralt
- Department of Biochemistry and Molecular Biomedicine, Institut de Biomedicina (IBUB), University of Barcelona, Barcelona, Catalonia, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain; Institut de Recerca Pediàtrica Sant Joan de Déu, Barcelona, Catalonia, Spain
| |
Collapse
|
57
|
Modica S, Straub LG, Balaz M, Sun W, Varga L, Stefanicka P, Profant M, Simon E, Neubauer H, Ukropcova B, Ukropec J, Wolfrum C. Bmp4 Promotes a Brown to White-like Adipocyte Shift. Cell Rep 2016; 16:2243-2258. [PMID: 27524617 DOI: 10.1016/j.celrep.2016.07.048] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/25/2016] [Accepted: 07/19/2016] [Indexed: 11/19/2022] Open
Abstract
While Bmp4 has a well-established role in the commitment of mesenchymal stem cells into the adipogenic lineage, its role in brown adipocyte formation and activity is not well defined. Here, we show that Bmp4 has a dual function in adipogenesis by inducing adipocyte commitment while inhibiting the acquisition of a brown phenotype during terminal differentiation. Selective brown adipose tissue overexpression of Bmp4 in mice induces a shift from a brown to a white-like adipocyte phenotype. This effect is mediated by Smad signaling and might be in part due to suppression of lipolysis, via regulation of hormone sensitive lipase expression linked to reduced Ppar activity. Given that we observed a strong correlation between BMP4 levels and adipocyte size, as well as insulin sensitivity in humans, we propose that Bmp4 is an important factor in the context of obesity and type 2 diabetes.
Collapse
MESH Headings
- Adipocytes, Brown/cytology
- Adipocytes, Brown/drug effects
- Adipocytes, Brown/metabolism
- Adipocytes, White/cytology
- Adipocytes, White/drug effects
- Adipocytes, White/metabolism
- Adipogenesis/drug effects
- Adipogenesis/genetics
- Adipose Tissue, Brown/cytology
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/cytology
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Animals
- Bone Morphogenetic Protein 4/genetics
- Bone Morphogenetic Protein 4/metabolism
- Bone Morphogenetic Protein 4/pharmacology
- Cell Differentiation
- Cell Line, Transformed
- Cyclic AMP/pharmacology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Gene Expression Regulation
- Humans
- Insulin Resistance
- Male
- Mesenchymal Stem Cells/cytology
- Mesenchymal Stem Cells/drug effects
- Mesenchymal Stem Cells/metabolism
- Mice
- Mice, Inbred C57BL
- Peroxisome Proliferator-Activated Receptors/genetics
- Peroxisome Proliferator-Activated Receptors/metabolism
- Rosiglitazone
- Signal Transduction
- Smad Proteins/genetics
- Smad Proteins/metabolism
- Sterol Esterase/genetics
- Sterol Esterase/metabolism
- Thiazolidinediones/pharmacology
Collapse
Affiliation(s)
- Salvatore Modica
- Swiss Federal Institute of Technology, Department of Health Science, Institute of Food Nutrition and Health, Laboratory of Translational Nutrition Biology, Schwerzenbach 8603, Switzerland
| | - Leon G Straub
- Swiss Federal Institute of Technology, Department of Health Science, Institute of Food Nutrition and Health, Laboratory of Translational Nutrition Biology, Schwerzenbach 8603, Switzerland
| | - Miroslav Balaz
- Swiss Federal Institute of Technology, Department of Health Science, Institute of Food Nutrition and Health, Laboratory of Translational Nutrition Biology, Schwerzenbach 8603, Switzerland
| | - Wenfei Sun
- Swiss Federal Institute of Technology, Department of Health Science, Institute of Food Nutrition and Health, Laboratory of Translational Nutrition Biology, Schwerzenbach 8603, Switzerland
| | - Lukas Varga
- Obesity section of Diabetes Laboratory, Institute of Experimental Endocrinology, Biomedical Research Center at the Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine and University Hospital, Comenius University, 811 02 Bratislava, Slovakia
| | - Patrik Stefanicka
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine and University Hospital, Comenius University, 811 02 Bratislava, Slovakia
| | - Milan Profant
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine and University Hospital, Comenius University, 811 02 Bratislava, Slovakia
| | - Eric Simon
- Target Discovery Research, Boehringer Ingelheim Pharma, 88400 Biberach/Riss, Germany
| | - Heike Neubauer
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma, 88400 Biberach/Riss, Germany
| | - Barbara Ukropcova
- Obesity section of Diabetes Laboratory, Institute of Experimental Endocrinology, Biomedical Research Center at the Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; Institute of Pathophysiology, Faculty of Medicine, Comenius University, 811 02 Bratislava, Slovakia
| | - Jozef Ukropec
- Obesity section of Diabetes Laboratory, Institute of Experimental Endocrinology, Biomedical Research Center at the Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Christian Wolfrum
- Swiss Federal Institute of Technology, Department of Health Science, Institute of Food Nutrition and Health, Laboratory of Translational Nutrition Biology, Schwerzenbach 8603, Switzerland.
| |
Collapse
|
58
|
Giroud M, Pisani DF, Karbiener M, Barquissau V, Ghandour RA, Tews D, Fischer-Posovszky P, Chambard JC, Knippschild U, Niemi T, Taittonen M, Nuutila P, Wabitsch M, Herzig S, Virtanen KA, Langin D, Scheideler M, Amri EZ. miR-125b affects mitochondrial biogenesis and impairs brite adipocyte formation and function. Mol Metab 2016; 5:615-625. [PMID: 27656399 PMCID: PMC5021678 DOI: 10.1016/j.molmet.2016.06.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 12/17/2022] Open
Abstract
Objective In rodents and humans, besides brown adipose tissue (BAT), islands of thermogenic adipocytes, termed “brite” (brown-in-white) or beige adipocytes, emerge within white adipose tissue (WAT) after cold exposure or β3-adrenoceptor stimulation, which may protect from obesity and associated diseases. microRNAs are novel modulators of adipose tissue development and function. The purpose of this work was to characterize the role of microRNAs in the control of brite adipocyte formation. Methods/Results Using human multipotent adipose derived stem cells, we identified miR-125b-5p as downregulated upon brite adipocyte formation. In humans and rodents, miR-125b-5p expression was lower in BAT than in WAT. In vitro, overexpression and knockdown of miR-125b-5p decreased and increased mitochondrial biogenesis, respectively. In vivo, miR-125b-5p levels were downregulated in subcutaneous WAT and interscapular BAT upon β3-adrenergic receptor stimulation. Injections of an miR-125b-5p mimic and LNA inhibitor directly into WAT inhibited and increased β3-adrenoceptor-mediated induction of UCP1, respectively, and mitochondrial brite adipocyte marker expression and mitochondriogenesis. Conclusion Collectively, our results demonstrate that miR-125b-5p plays an important role in the repression of brite adipocyte function by modulating oxygen consumption and mitochondrial gene expression. miR-125b-5p levels negatively correlate with UCP1 expression in rodent and human. miR125b levels in white adipose tissue are positively correlated with BMI. miR-125b-5p modulates oxygen consumption. Mitochondriogenesis is controlled by miR-125b-5p. In vivo modulation of miR-125b-5p controls brown and brite adipocyte formation.
Collapse
Affiliation(s)
- Maude Giroud
- Univ. Nice Sophia Antipolis, CNRS, Inserm, iBV, 06100 Nice, France
| | - Didier F Pisani
- Univ. Nice Sophia Antipolis, CNRS, Inserm, iBV, 06100 Nice, France
| | - Michael Karbiener
- Department of Phoniatrics, ENT University Hospital, Medical University Graz, Graz, Austria
| | - Valentin Barquissau
- Inserm, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | | | - Daniel Tews
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, D-89075 Ulm, Germany
| | - Pamela Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, D-89075 Ulm, Germany
| | | | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University Surgery Center, D-89075 Ulm, Germany
| | - Tarja Niemi
- Department of Endocrinology, Turku University Hospital, Turku, 20521, Finland
| | - Markku Taittonen
- Department of Endocrinology, Turku University Hospital, Turku, 20521, Finland
| | - Pirjo Nuutila
- Department of Endocrinology, Turku University Hospital, Turku, 20521, Finland; Turku University Hospital, Turku, Finland
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, D-89075 Ulm, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany; Molecular Metabolic Control, Medical Faculty, Technical University Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Kirsi A Virtanen
- Department of Endocrinology, Turku University Hospital, Turku, 20521, Finland; Turku PET Centre, University of Turku, Turku, Finland
| | - Dominique Langin
- Inserm, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France; Toulouse University Hospitals, Department of Clinical Biochemistry, Toulouse, France
| | - Marcel Scheideler
- Institute for Diabetes and Cancer (IDC), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany; Molecular Metabolic Control, Medical Faculty, Technical University Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Ez-Zoubir Amri
- Univ. Nice Sophia Antipolis, CNRS, Inserm, iBV, 06100 Nice, France.
| |
Collapse
|
59
|
Qiang G, Kong HW, Fang D, McCann M, Yang X, Du G, Blüher M, Zhu J, Liew CW. The obesity-induced transcriptional regulator TRIP-Br2 mediates visceral fat endoplasmic reticulum stress-induced inflammation. Nat Commun 2016; 7:11378. [PMID: 27109496 PMCID: PMC4848483 DOI: 10.1038/ncomms11378] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 03/21/2016] [Indexed: 12/16/2022] Open
Abstract
The intimate link between location of fat accumulation and metabolic disease risk and depot-specific differences is well established, but how these differences between depots are regulated at the molecular level remains largely unclear. Here we show that TRIP-Br2 mediates endoplasmic reticulum (ER) stress-induced inflammatory responses in visceral fat. Using in vitro, ex vivo and in vivo approaches, we demonstrate that obesity-induced circulating factors upregulate TRIP-Br2 specifically in visceral fat via the ER stress pathway. We find that ablation of TRIP-Br2 ameliorates both chemical and physiological ER stress-induced inflammatory and acute phase response in adipocytes, leading to lower circulating levels of inflammatory cytokines. Using promoter assays, as well as molecular and pharmacological experiments, we show that the transcription factor GATA3 is responsible for the ER stress-induced TRIP-Br2 expression in visceral fat. Taken together, our study identifies molecular regulators of inflammatory response in visceral fat that—given that these pathways are conserved in humans—might serve as potential therapeutic targets in obesity. Visceral and subcutaneous fat are associated with different metabolic risk, but mediators of such depot specific effects are not very well known. Here the authors identify the transcriptional regulator, TRIP-Br2, as a regulator of endoplasmic reticulum (ER) stress-induced inflammatory responses specifically in visceral fat.
Collapse
Affiliation(s)
- Guifen Qiang
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott Avenue, M/C901, MSB E-202, Chicago, 60612 Illinois, USA
| | - Hyerim Whang Kong
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott Avenue, M/C901, MSB E-202, Chicago, 60612 Illinois, USA
| | - Difeng Fang
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, 10 Center Drive, Bethesda, 20892 Maryland, USA
| | - Maximilian McCann
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott Avenue, M/C901, MSB E-202, Chicago, 60612 Illinois, USA
| | - Xiuying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Liebigstrasse 18, Leipzig 04103, Germany
| | - Jinfang Zhu
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, 10 Center Drive, Bethesda, 20892 Maryland, USA
| | - Chong Wee Liew
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott Avenue, M/C901, MSB E-202, Chicago, 60612 Illinois, USA
| |
Collapse
|
60
|
Telomerase gene therapy rescues telomere length, bone marrow aplasia, and survival in mice with aplastic anemia. Blood 2016; 127:1770-9. [PMID: 26903545 DOI: 10.1182/blood-2015-08-667485] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/27/2016] [Indexed: 11/20/2022] Open
Abstract
Aplastic anemia is a fatal bone marrow disorder characterized by peripheral pancytopenia and marrow hypoplasia. The disease can be hereditary or acquired and develops at any stage of life. A subgroup of the inherited form is caused by replicative impairment of hematopoietic stem and progenitor cells due to very short telomeres as a result of mutations in telomerase and other telomere components. Abnormal telomere shortening is also described in cases of acquired aplastic anemia, most likely secondary to increased turnover of bone marrow stem and progenitor cells. Here, we test the therapeutic efficacy of telomerase activation by using adeno-associated virus (AAV)9 gene therapy vectors carrying the telomerase Tert gene in 2 independent mouse models of aplastic anemia due to short telomeres (Trf1- and Tert-deficient mice). We find that a high dose of AAV9-Tert targets the bone marrow compartment, including hematopoietic stem cells. AAV9-Tert treatment after telomere attrition in bone marrow cells rescues aplastic anemia and mouse survival compared with mice treated with the empty vector. Improved survival is associated with a significant increase in telomere length in peripheral blood and bone marrow cells, as well as improved blood counts. These findings indicate that telomerase gene therapy represents a novel therapeutic strategy to treat aplastic anemia provoked or associated with short telomeres.
Collapse
|
61
|
Genetic Manipulation of Brown Fat Via Oral Administration of an Engineered Recombinant Adeno-associated Viral Serotype Vector. Mol Ther 2016; 24:1062-1069. [PMID: 26857843 DOI: 10.1038/mt.2016.34] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 01/27/2016] [Indexed: 12/24/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors are attractive vehicles for gene therapy. Gene delivery to the adipose tissue using naturally occurring AAV serotypes is less successful compared to liver and muscle. Here, we demonstrate that oral administration of an engineered serotype Rec2 led to preferential transduction of brown fat with absence of transduction in the gastrointestinal track. Among the six natural and engineered serotypes being compared, Rec2 was the most efficient serotype achieving high level transduction at a dose 1~2 orders lower than reported doses for systemic administration. Overexpressing vascular endothelial growth factor (VEGF) in brown fat via oral administration of Rec2-VEGF vector increased the brown fat mass and enhanced thermogenesis. In contrast, knockdown VEGF in brown fat of VEGF (loxP) mice via Rec2-Cre vector hampered cold response and decreased brown fat mass. Oral administration of Rec2 vector provides a novel tool to genetically manipulate brown fat for research and therapeutic applications.
Collapse
|
62
|
Lagarrigue S, Lopez-Mejia IC, Denechaud PD, Escoté X, Castillo-Armengol J, Jimenez V, Chavey C, Giralt A, Lai Q, Zhang L, Martinez-Carreres L, Delacuisine B, Annicotte JS, Blanchet E, Huré S, Abella A, Tinahones FJ, Vendrell J, Dubus P, Bosch F, Kahn CR, Fajas L. CDK4 is an essential insulin effector in adipocytes. J Clin Invest 2016; 126:335-48. [PMID: 26657864 PMCID: PMC4701556 DOI: 10.1172/jci81480] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 11/06/2015] [Indexed: 12/11/2022] Open
Abstract
Insulin resistance is a fundamental pathogenic factor that characterizes various metabolic disorders, including obesity and type 2 diabetes. Adipose tissue contributes to the development of obesity-related insulin resistance through increased release of fatty acids, altered adipokine secretion, and/or macrophage infiltration and cytokine release. Here, we aimed to analyze the participation of the cyclin-dependent kinase 4 (CDK4) in adipose tissue biology. We determined that white adipose tissue (WAT) from CDK4-deficient mice exhibits impaired lipogenesis and increased lipolysis. Conversely, lipolysis was decreased and lipogenesis was increased in mice expressing a mutant hyperactive form of CDK4 (CDK4(R24C)). A global kinome analysis of CDK4-deficient mice following insulin stimulation revealed that insulin signaling is impaired in these animals. We determined that insulin activates the CCND3-CDK4 complex, which in turn phosphorylates insulin receptor substrate 2 (IRS2) at serine 388, thereby creating a positive feedback loop that maintains adipocyte insulin signaling. Furthermore, we found that CCND3 expression and IRS2 serine 388 phosphorylation are increased in human obese subjects. Together, our results demonstrate that CDK4 is a major regulator of insulin signaling in WAT.
Collapse
Affiliation(s)
- Sylviane Lagarrigue
- Department of Physiology, Université de Lausanne, Lausanne, Switzerland
- Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, Montpellier, France
| | | | | | - Xavier Escoté
- Department of Physiology, Université de Lausanne, Lausanne, Switzerland
| | | | - Veronica Jimenez
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - Carine Chavey
- Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, Montpellier, France
| | - Albert Giralt
- Department of Physiology, Université de Lausanne, Lausanne, Switzerland
| | - Qiuwen Lai
- Department of Physiology, Université de Lausanne, Lausanne, Switzerland
| | - Lianjun Zhang
- Translational Tumor Immunology, Ludwig Center for Cancer Research, Université de Lausanne, Epalinges, Switzerland
| | | | | | - Jean-Sébastien Annicotte
- Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, Montpellier, France
- European Genomic Institute for Diabetes, Université Lille Nord de France, UMR 8199 CNRS, Lille, France
| | - Emilie Blanchet
- Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, Montpellier, France
| | - Sébastien Huré
- Department of Physiology, Université de Lausanne, Lausanne, Switzerland
- Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, Montpellier, France
| | | | - Francisco J. Tinahones
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y la Nutrición (CIBERobn CB06/003), Instituto de Salud Carlos III, Madrid, Spain
| | - Joan Vendrell
- CIBERDEM, Institut d’Investigació Pere Virgili, Universitat Rovira i Virgili, Hospital Universitari Joan XXIII, Tarragona, Spain
| | - Pierre Dubus
- EA2406, Histologie et pathologie moléculaire des tumeurs, Université de Bordeaux, Bordeaux, France
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - C. Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Lluis Fajas
- Department of Physiology, Université de Lausanne, Lausanne, Switzerland
- Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, Montpellier, France
| |
Collapse
|
63
|
HMGA1 overexpression in adipose tissue impairs adipogenesis and prevents diet-induced obesity and insulin resistance. Sci Rep 2015; 5:14487. [PMID: 26411793 PMCID: PMC4585969 DOI: 10.1038/srep14487] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/12/2015] [Indexed: 01/14/2023] Open
Abstract
High-Mobility-Group-A1 (HMGA1) proteins are non-histone proteins that regulate chromatin structure and gene expression during embryogenesis, tumourigenesis and immune responses. In vitro studies suggest that HMGA1 proteins may be required to regulate adipogenesis. To examine the role of HMGA1 in vivo, we generated transgenic mice overexpressing HMGA1 in adipose tissues. HMGA1 transgenic mice showed a marked reduction in white and brown adipose tissue mass that was associated with downregulation of genes involved in adipogenesis and concomitant upregulation of preadipocyte markers. Reduced adipogenesis and decreased fat mass were not associated with altered glucose homeostasis since HMGA1 transgenic mice fed a regular-chow diet exhibited normal glucose tolerance and insulin sensitivity. However, when fed a high-fat diet, overexpression of HMGA1 resulted in decreased body-weight gain, reduced fat mass, but improved insulin sensitivity and glucose tolerance. Although HMGA1 transgenic mice exhibited impaired glucose uptake in adipose tissue due to impaired adipogenesis, the increased glucose uptake observed in skeletal muscle may account for the improved glucose homeostasis. Our results indicate that HMGA1 plays an important function in the regulation of white and brown adipogenesis in vivo and suggests that impaired adipocyte differentiation and decreased fat mass is not always associated with impaired whole-body glucose homeostasis.
Collapse
|
64
|
Unser AM, Tian Y, Xie Y. Opportunities and challenges in three-dimensional brown adipogenesis of stem cells. Biotechnol Adv 2015; 33:962-79. [PMID: 26231586 DOI: 10.1016/j.biotechadv.2015.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/07/2015] [Accepted: 07/23/2015] [Indexed: 12/21/2022]
Abstract
The formation of brown adipose tissue (BAT) via brown adipogenesis has become a notable process due to its ability to expend energy as heat with implications in the treatment of metabolic disorders and obesity. With the advent of complexity within white adipose tissue (WAT) along with inducible brown adipocytes (also known as brite and beige), there has been a surge in deciphering adipocyte biology as well as in vivo adipogenic microenvironments. A therapeutic outcome would benefit from understanding early events in brown adipogenesis, which can be accomplished by studying cellular differentiation. Pluripotent stem cells are an efficient model for differentiation and have been directed towards both white adipogenic and brown adipogenic lineages. The stem cell microenvironment greatly contributes to terminal cell fate and as such, has been mimicked extensively by various polymers including those that can form 3D hydrogel constructs capable of biochemical and/or mechanical modifications and modulations. Using bioengineering approaches towards the creation of 3D cell culture arrangements is more beneficial than traditional 2D culture in that it better recapitulates the native tissue biochemically and biomechanically. In addition, such an approach could potentially protect the tissue formed from necrosis and allow for more efficient implantation. In this review, we highlight the promise of brown adipocytes with a focus on brown adipogenic differentiation of stem cells using bioengineering approaches, along with potential challenges and opportunities that arise when considering the energy expenditure of BAT for prospective therapeutics.
Collapse
Affiliation(s)
- Andrea M Unser
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road Albany, NY 12203, USA
| | - Yangzi Tian
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road Albany, NY 12203, USA
| | - Yubing Xie
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road Albany, NY 12203, USA.
| |
Collapse
|
65
|
Morró M, Teichenne J, Jimenez V, Kratzer R, Marletta S, Maggioni L, Mallol C, Ruberte J, Kochanek S, Bosch F, Ayuso E. Pancreatic transduction by helper-dependent adenoviral vectors via intraductal delivery. Hum Gene Ther 2015; 25:824-36. [PMID: 25046147 DOI: 10.1089/hum.2013.182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pancreatic gene transfer could be useful to treat several diseases, such as diabetes mellitus, cystic fibrosis, chronic pancreatitis, or pancreatic cancer. Helper-dependent adenoviral vectors (HDAds) are promising tools for gene therapy because of their large cloning capacity, high levels of transgene expression, and long-term persistence in immunocompetent animals. Nevertheless, the ability of HDAds to transduce the pancreas in vivo has not been investigated yet. Here, we have generated HDAds carrying pancreas-specific expression cassettes, that is, driven either by the elastase or insulin promoter, using a novel and convenient plasmid family and homologous recombination in bacteria. These HDAds were delivered to the pancreas of immunocompetent mice via intrapancreatic duct injection. HDAds, encoding a CMV-GFP reporter cassette, were able to transduce acinar and islet cells, but transgene expression was lost 15 days postinjection in correlation with severe lymphocytic infiltration. When HDAds encoding GFP under the control of the specific elastase promoter were used, expression was detected in acinar cells, but similarly, the expression almost disappeared 30 days postinjection and lymphocytic infiltration was also observed. In contrast, long-term transgene expression (>8 months) was achieved with HDAds carrying the insulin promoter and the secretable alkaline phosphatase as the reporter gene. Notably, transduction of the liver, the preferred target for adenovirus, was minimal by this route of delivery. These data indicate that HDAds could be used for pancreatic gene therapy but that selection of the expression cassette is of critical importance to achieve long-term expression of the transgene in this tissue.
Collapse
Affiliation(s)
- Meritxell Morró
- 1 Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona , Bellaterra 08193, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Uhrig-Schmidt S, Geiger M, Luippold G, Birk G, Mennerich D, Neubauer H, Grimm D, Wolfrum C, Kreuz S. Gene delivery to adipose tissue using transcriptionally targeted rAAV8 vectors. PLoS One 2014; 9:e116288. [PMID: 25551639 PMCID: PMC4281237 DOI: 10.1371/journal.pone.0116288] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/08/2014] [Indexed: 02/02/2023] Open
Abstract
In recent years, the increasing prevalence of obesity and obesity-related co-morbidities fostered intensive research in the field of adipose tissue biology. To further unravel molecular mechanisms of adipose tissue function, genetic tools enabling functional studies in vitro and in vivo are essential. While the use of transgenic animals is well established, attempts using viral and non-viral vectors to genetically modify adipocytes in vivo are rare. Therefore, we here characterized recombinant Adeno-associated virus (rAAV) vectors regarding their potency as gene transfer vehicles for adipose tissue. Our results demonstrate that a single dose of systemically applied rAAV8-CMV-eGFP can give rise to remarkable transgene expression in murine adipose tissues. Upon transcriptional targeting of the rAAV8 vector to adipocytes using a 2.2 kb fragment of the murine adiponectin (mAP2.2) promoter, eGFP expression was significantly decreased in off-target tissues while efficient transduction was maintained in subcutaneous and visceral fat depots. Moreover, rAAV8-mAP2.2-mediated expression of perilipin A – a lipid-droplet-associated protein – resulted in significant changes in metabolic parameters only three weeks post vector administration. Taken together, our findings indicate that rAAV vector technology is applicable as a flexible tool to genetically modify adipocytes for functional proof-of-concept studies and the assessment of putative therapeutic targets in vivo.
Collapse
Affiliation(s)
| | - Matthias Geiger
- Swiss Federal Institute of Technology, ETH Zurich, SLA C92, Institute of Food Nutrition and Health, Schwerzenbach, Switzerland
| | - Gerd Luippold
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Gerald Birk
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Detlev Mennerich
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Heike Neubauer
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Dirk Grimm
- Centre for Infectious Diseases/Virology, Heidelberg University Hospital and Cluster of Excellence CellNetworks, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg, Germany
| | - Christian Wolfrum
- Swiss Federal Institute of Technology, ETH Zurich, SLA C92, Institute of Food Nutrition and Health, Schwerzenbach, Switzerland
| | - Sebastian Kreuz
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
- * E-mail:
| |
Collapse
|