51
|
Tarantino RM, Abreu GDM, Fonseca ACPD, Kupfer R, Pereira MDFC, Campos Júnior M, Zajdenverg L, Rodacki M. MODY probability calculator for GCK and HNF1A screening in a multiethnic background population. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2020; 64:17-23. [PMID: 31576961 PMCID: PMC10522291 DOI: 10.20945/2359-3997000000173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/19/2019] [Indexed: 11/23/2022]
Abstract
Objective We aimed to identify the frequency of monogenic diabetes, which is poorly studied in multiethnic populations, due to GCK or HNF1A mutations in patients with suggestive clinical characteristics from the Brazilian population, as well as investigate if the MODY probability calculator (MPC) could help patients with their selection. Subjects and methods Inclusion criteria were patients with DM diagnosed before 35 years; body mass index < 30 kg/m2; negative autoantibodies; and family history of DM in two or more generations. We sequenced HNF1A in 27 patients and GCK in seven subjects with asymptomatic mild fasting hyperglycemia. In addition, we calculated MODY probability with MPC. Results We identified 11 mutations in 34 patients (32.3%). We found three novel mutations. In the GCK group, six cases had mutations (85.7%), and their MODY probability on MPC was higher than 50%. In the HNF1A group, five of 27 individuals had mutations (18.5%). The MPC was higher than 75% in 11 subjects (including all five cases with HNF1A mutations). Conclusion Approximately one third of the studied patients have GCK or HNF1A mutations. Inclusion criteria included efficiency in detecting patients with GCK mutations but not for HNF1A mutations (< 20%). MPC was helpful in narrowing the number of candidates for HNF1A screening.
Collapse
Affiliation(s)
| | | | | | - Rosane Kupfer
- Instituto Estadual de Diabetes e Endocrinologia do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | | - Mario Campos Júnior
- Laboratório de Genética Humana, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Lenita Zajdenverg
- Departamento de Medicina Interna, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Melanie Rodacki
- Departamento de Medicina Interna, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
52
|
Carlsson A, Shepherd M, Ellard S, Weedon M, Lernmark Å, Forsander G, Colclough K, Brahimi Q, Valtonen-Andre C, Ivarsson SA, Elding Larsson H, Samuelsson U, Örtqvist E, Groop L, Ludvigsson J, Marcus C, Hattersley AT. Absence of Islet Autoantibodies and Modestly Raised Glucose Values at Diabetes Diagnosis Should Lead to Testing for MODY: Lessons From a 5-Year Pediatric Swedish National Cohort Study. Diabetes Care 2020; 43:82-89. [PMID: 31704690 PMCID: PMC6925576 DOI: 10.2337/dc19-0747] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/19/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Identifying maturity-onset diabetes of the young (MODY) in pediatric populations close to diabetes diagnosis is difficult. Misdiagnosis and unnecessary insulin treatment are common. We aimed to identify the discriminatory clinical features at diabetes diagnosis of patients with glucokinase (GCK), hepatocyte nuclear factor-1A (HNF1A), and HNF4A MODY in the pediatric population. RESEARCH DESIGN AND METHODS Swedish patients (n = 3,933) aged 1-18 years, diagnosed with diabetes May 2005 to December 2010, were recruited from the national consecutive prospective cohort Better Diabetes Diagnosis. Clinical data, islet autoantibodies (GAD insulinoma antigen-2, zinc transporter 8, and insulin autoantibodies), HLA type, and C-peptide were collected at diagnosis. MODY was identified by sequencing GCK, HNF1A, and HNF4A, through either routine clinical or research testing. RESULTS The minimal prevalence of MODY was 1.2%. Discriminatory factors for MODY at diagnosis included four islet autoantibody negativity (100% vs. 11% not-known MODY; P = 2 × 10-44), HbA1c (7.0% vs. 10.7% [53 vs. 93 mmol/mol]; P = 1 × 10-20), plasma glucose (11.7 vs. 26.7 mmol/L; P = 3 × 10-19), parental diabetes (63% vs. 12%; P = 1 × 10-15), and diabetic ketoacidosis (0% vs. 15%; P = 0.001). Testing 303 autoantibody-negative patients identified 46 patients with MODY (detection rate 15%). Limiting testing to the 73 islet autoantibody-negative patients with HbA1c <7.5% (58 mmol/mol) at diagnosis identified 36 out of 46 (78%) patients with MODY (detection rate 49%). On follow-up, the 46 patients with MODY had excellent glycemic control, with an HbA1c of 6.4% (47 mmol/mol), with 42 out of 46 (91%) patients not on insulin treatment. CONCLUSIONS At diagnosis of pediatric diabetes, absence of all islet autoantibodies and modest hyperglycemia (HbA1c <7.5% [58 mmol/mol]) should result in testing for GCK, HNF1A, and HNF4A MODY. Testing all 12% patients negative for four islet autoantibodies is an effective strategy for not missing MODY but will result in a lower detection rate. Identifying MODY results in excellent long-term glycemic control without insulin.
Collapse
Affiliation(s)
- Annelie Carlsson
- Department of Clinical Sciences, Lund University/Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - Maggie Shepherd
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K.,Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, U.K
| | - Michael Weedon
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - Gun Forsander
- The Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden.,Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Kevin Colclough
- Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, U.K
| | - Qefsere Brahimi
- Department of Clinical Sciences, Lund University/Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - Camilla Valtonen-Andre
- Department of Clinical Chemistry, University and Regional Laboratories Region Skåne, Malmö, Sweden
| | - Sten A Ivarsson
- Department of Clinical Sciences, Lund University/Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - Helena Elding Larsson
- Department of Clinical Sciences, Lund University/Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - Ulf Samuelsson
- Crown Princess Victoria's Children's and Youth Hospital, University Hospital, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Eva Örtqvist
- Pediatric Endocrinology Unit, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Leif Groop
- Finnish Institute for Molecular Medicine, Helsinki University, Helsinki, Finland
| | - Johnny Ludvigsson
- Crown Princess Victoria's Children's and Youth Hospital, University Hospital, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Claude Marcus
- Division of Pediatrics, Department of Clinical Science Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K.
| |
Collapse
|
53
|
Abstract
The American Diabetes Association (ADA) "Standards of Medical Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee (https://doi.org/10.2337/dc20-SPPC), a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations, please refer to the Standards of Care Introduction (https://doi.org/10.2337/dc20-SINT). Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
54
|
Peixoto-Barbosa R, Reis AF, Giuffrida FMA. Update on clinical screening of maturity-onset diabetes of the young (MODY). Diabetol Metab Syndr 2020; 12:50. [PMID: 32528556 PMCID: PMC7282127 DOI: 10.1186/s13098-020-00557-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Maturity-onset diabetes of the young (MODY) is the most common type of monogenic diabetes, being characterized by beta-cell disfunction, early onset, and autosomal dominant inheritance. Despite the rapid evolution of molecular diagnosis methods, many MODY cases are misdiagnosed as type 1 or type 2 diabetes. High costs of genetic testing and limited knowledge of MODY as a relevant clinical entity are some of the obstacles that hinder correct MODY diagnosis and treatment. We present a broad review of clinical syndromes related to most common MODY subtypes, emphasizing the role of biomarkers that can help improving the accuracy of clinical selection of candidates for molecular diagnosis. MAIN BODY To date, MODY-related mutations have been reported in at least 14 different genes. Mutations in glucokinase (GCK), hepatocyte nuclear factor-1 homeobox A (HNF1A), and hepatocyte nuclear factor-4 homeobox A (HNF4A) are the most common causes of MODY. Accurate etiological diagnosis can be challenging. Many biomarkers such as apolipoprotein-M (ApoM), aminoaciduria, complement components, and glycosuria have been tested, but have not translated into helpful diagnostic tools. High-sensitivity C-reactive protein (hs-CRP) levels are lower in HNF1A-MODY and have been tested in some studies to discriminate HNF1A-MODY from other types of diabetes, although more data are needed. Overall, presence of pancreatic residual function and absence of islet autoimmunity seem the most promising clinical instruments to select patients for further investigation. CONCLUSIONS The selection of diabetic patients for genetic testing is an ongoing challenge. Metabolic profiling, diabetes onset age, pancreatic antibodies, and C-peptide seem to be useful tools to better select patients for genetic testing. Further studies are needed to define cut-off values in different populations.
Collapse
Affiliation(s)
- Renata Peixoto-Barbosa
- Disciplina de Endocrinologia, Centro de Diabetes, Universidade Federal de São Paulo (UNIFESP), Rua Estado de Israel, 639–Vila Clementino, São Paulo, SP CEP: 04022-001 Brazil
- Departamento de Ciências da Vida, Universidade do Estado da Bahia (UNEB), Salvador, Brazil
| | - André F. Reis
- Disciplina de Endocrinologia, Centro de Diabetes, Universidade Federal de São Paulo (UNIFESP), Rua Estado de Israel, 639–Vila Clementino, São Paulo, SP CEP: 04022-001 Brazil
| | - Fernando M. A. Giuffrida
- Disciplina de Endocrinologia, Centro de Diabetes, Universidade Federal de São Paulo (UNIFESP), Rua Estado de Israel, 639–Vila Clementino, São Paulo, SP CEP: 04022-001 Brazil
- Departamento de Ciências da Vida, Universidade do Estado da Bahia (UNEB), Salvador, Brazil
| |
Collapse
|
55
|
Shidler KL, Letourneau LR, Novak LM. Uncommon Presentations of Diabetes: Zebras in the Herd. Clin Diabetes 2020; 38:78-92. [PMID: 31975755 PMCID: PMC6969666 DOI: 10.2337/cd19-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The majority of patients with diabetes are diagnosed as having either type 1 or type 2 diabetes. However, when encountered in clinical practice, some patients may not match the classic diagnostic criteria or expected clinical presentation for either type of the disease. Latent autoimmune, ketosis-prone, and monogenic diabetes are nonclassical forms of diabetes that are often misdiagnosed as either type 1 or type 2 diabetes. Recognizing the distinguishing clinical characteristics and understanding the diagnostic criteria for each will lead to appropriate treatment, facilitate personalized medicine, and improve patient outcomes.
Collapse
Affiliation(s)
- Karen L. Shidler
- North Central Indiana Area Health Education Center, Rochester, IN
| | | | - Lucia M. Novak
- Riverside Diabetes Center, Riverside Medical Associates, Riverdale, MD
| |
Collapse
|
56
|
Kasztura M, Richard A, Bempong NE, Loncar D, Flahault A. Cost-effectiveness of precision medicine: a scoping review. Int J Public Health 2019; 64:1261-1271. [PMID: 31650223 PMCID: PMC6867980 DOI: 10.1007/s00038-019-01298-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/19/2019] [Accepted: 09/04/2019] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Precision medicine (PM) aims to improve patient outcomes by stratifying or individualizing diagnosis and treatment decisions. Previous reviews found inconclusive evidence as to the cost-effectiveness of PM. The purpose of this scoping review was to describe current research findings on the cost-effectiveness of PM and to identify characteristics of cost-effective interventions. METHODS We searched PubMed with a combination of terms related to PM and economic evaluations and included studies published between 2014 and 2017. RESULTS A total of 83 articles were included, of which two-thirds were published in Europe and the USA. The majority of studies concluded that the PM intervention was at least cost-effective compared to usual care. However, the willingness-to-pay thresholds varied widely. Key factors influencing cost-effectiveness included the prevalence of the genetic condition in the target population, costs of genetic testing and companion treatment and the probability of complications or mortality. CONCLUSIONS This review may help inform decisions about reimbursement, research and development of PM interventions.
Collapse
Affiliation(s)
- Miriam Kasztura
- Department of Health Professions, Bern University of Applied Sciences, Bern, Switzerland.
| | - Aude Richard
- Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nefti-Eboni Bempong
- Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dejan Loncar
- Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Antoine Flahault
- Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
57
|
GoodSmith MS, Skandari MR, Huang ES, Naylor RN. The Impact of Biomarker Screening and Cascade Genetic Testing on the Cost-Effectiveness of MODY Genetic Testing. Diabetes Care 2019; 42:2247-2255. [PMID: 31558549 PMCID: PMC6868460 DOI: 10.2337/dc19-0486] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 09/10/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE In the U.S., genetic testing for maturity-onset diabetes of the young (MODY) is frequently delayed because of difficulty with insurance coverage. Understanding the economic implications of clinical genetic testing is imperative to advance precision medicine for diabetes. The objective of this article is to assess the cost-effectiveness of genetic testing, preceded by biomarker screening and followed by cascade genetic testing of first-degree relatives, for subtypes of MODY in U.S. pediatric patients with diabetes. RESEARCH DESIGN AND METHODS We used simulation models of distinct forms of diabetes to forecast the clinical and economic consequences of a systematic genetic testing strategy compared with usual care over a 30-year time horizon. In the genetic testing arm, patients with MODY received treatment changes (sulfonylureas for HNF1A- and HNF4A-MODY associated with a 1.0% reduction in HbA1c; no treatment for GCK-MODY). Study outcomes included costs, life expectancy (LE), and quality-adjusted life years (QALY). RESULTS The strategy of biomarker screening and genetic testing was cost-saving as it increased average quality of life (+0.0052 QALY) and decreased costs (-$191) per simulated patient relative to the control arm. Adding cascade genetic testing increased quality-of-life benefits (+0.0081 QALY) and lowered costs further (-$735). CONCLUSIONS A combined strategy of biomarker screening and genetic testing for MODY in the U.S. pediatric diabetes population is cost-saving compared with usual care, and the addition of cascade genetic testing accentuates the strategy's benefits. Widespread implementation of this strategy could improve the lives of patients with MODY while saving the health system money, illustrating the potential population health benefits of personalized medicine.
Collapse
Affiliation(s)
| | - M Reza Skandari
- Imperial College Business School, Imperial College London, London, U.K
| | - Elbert S Huang
- Section of General Internal Medicine, University of Chicago, Chicago, IL
| | - Rochelle N Naylor
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, University of Chicago, Chicago, IL
| |
Collapse
|
58
|
Hohendorff J, Zapala B, Ludwig-Slomczynska AH, Solecka I, Ucieklak D, Matejko B, Mrozinska S, Malecki MT, Szopa M. The utility of MODY Probability Calculator in probands of families with early-onset autosomal dominant diabetes from Poland. Minerva Med 2019; 110:499-506. [PMID: 31638358 DOI: 10.23736/s0026-4806.19.06053-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
BACKGROUND Maturity-onset diabetes of the young (MODY) accounts for 1-2% of all diabetes cases. Unfortunately, circa 90% of MODY cases are misdiagnosed as type 1 or type 2 diabetes. A proper genetic diagnosis based on automatic sequencing is crucial for the use of a tailored treatment. However, this method is still expensive and, thus, patients' selection for testing should be performed precisely. In 2012, an easy-to-use tool was developed in Exeter, UK, to support genetic testing for MODY in the British population. The aim of the study was to assess the utility of MODY Probability Calculator in probands from Polish families with early-onset autosomal dominant diabetes. METHODS We have performed a retrospective analysis of 155 probands who were qualified for genetic testing between 2006 and 2018. Probands were recruited for MODY testing based on the following criteria: 1) early age of diagnosis (≤35 years); 2) a positive, multigenerational family history of diabetes. Automatic sequencing, Sanger and, in case of initial negative results, new generation sequencing (NGS) of a set of 28 genes, were performed. MODY Probability was calculated on the website www.diabetesgenes.org. RESULTS The group of probands consisted of 64 GCK-, 37 HNF1A-, and three HNF4A-MODY patients and 51 NGS-negative subjects. The median positive predictive value (PPV) was 75.5% (95% CI: 75.5-75.5%), 49.4% (95% CI: 24.4-75.5%), 45.5% (95% CI: 21.0-75.5%) and 49.4% (95% CI: 32.9-75.5%) for GCK-, HNF1A-, HNF4A-MODY and NGS-negative, respectively. The discriminative accuracy, as expressed by AUC, of PPV between MODY and NGS negative groups was 0.62 (95% CI: 0.52-0.71) with the corresponding sensitivity of 71.2% and specificity of 51.0%. CONCLUSIONS In this highly pre-selected group of probands that were qualified for genetic testing based on clinical features, the use of MODY Probability Calculator would not substantially improve the patients' selection process for genetic testing. Further efforts to improve this tool are desirable.
Collapse
Affiliation(s)
- Jerzy Hohendorff
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- Krakow University Hospital, Krakow, Poland
| | - Barbara Zapala
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | | | - Iwona Solecka
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- Krakow University Hospital, Krakow, Poland
| | - Damian Ucieklak
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- Krakow University Hospital, Krakow, Poland
| | - Bartlomiej Matejko
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- Krakow University Hospital, Krakow, Poland
| | - Sandra Mrozinska
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- Krakow University Hospital, Krakow, Poland
| | - Maciej T Malecki
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- Krakow University Hospital, Krakow, Poland
| | - Magdalena Szopa
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland -
- Krakow University Hospital, Krakow, Poland
| |
Collapse
|
59
|
Vaxillaire M, Froguel P, Bonnefond A. How Recent Advances in Genomics Improve Precision Diagnosis and Personalized Care of Maturity-Onset Diabetes of the Young. Curr Diab Rep 2019; 19:79. [PMID: 31385057 DOI: 10.1007/s11892-019-1202-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Non-autoimmune monogenic diabetes (MD) in young people shows a broad spectrum of clinical presentations, which is largely explained by multiple genetic etiologies. This review discusses how the application of state-of-the-art genomics research to precision diagnosis of MD, particularly the various subtypes of maturity-onset diabetes of the young (MODY), has increasingly informed diabetes precision medicine and patient care throughout life. RECENT FINDINGS Due to extended genetic and clinical heterogeneity of MODY, diagnosis approaches based on next-generation sequencing have been worthwhile to better ascribe a specific subtype to each patient with young-onset diabetes. This guides the best appropriate treatment and clinical follow-up. Early etiological diagnosis of MD and individualized treatment are essential for achieving metabolic targets and avoiding long-term diabetes complications, as well as for drastically decreasing the financial and societal burden of diabetes-related healthcare. Genomic medicine-based practices help to optimize long-term clinical follow-up and patient care management.
Collapse
Affiliation(s)
- Martine Vaxillaire
- Univ. Lille, CNRS, CHU Lille, Institut Pasteur de Lille, UMR 8199 - European Genomic Institute for Diabetes (EGID), University Lille, F-59000, Lille, France.
- Faculty of Medicine, CNRS UMR 8199, 1 Place de Verdun, F-59045, Lille, France.
| | - Philippe Froguel
- Univ. Lille, CNRS, CHU Lille, Institut Pasteur de Lille, UMR 8199 - European Genomic Institute for Diabetes (EGID), University Lille, F-59000, Lille, France
- Department of Medicine, Section of Genomics of Common Disease, Imperial College London, London, UK
| | - Amélie Bonnefond
- Univ. Lille, CNRS, CHU Lille, Institut Pasteur de Lille, UMR 8199 - European Genomic Institute for Diabetes (EGID), University Lille, F-59000, Lille, France
- Department of Medicine, Section of Genomics of Common Disease, Imperial College London, London, UK
| |
Collapse
|
60
|
Abstract
PURPOSE OF REVIEW Monogenic diabetes is an uncommon but important form of diabetes, with the most common causes benefitting from management that accounts for the genetic mutation. This often results in decreased costs and treatment burden for affected individuals. Misdiagnosis as type 1 and type 2 diabetes is common. Given the significant burden of diabetes costs to the healthcare system, it is important to assess the economic impact of incorporating genetic testing for monogenic diabetes into clinical care through formal cost-effectiveness analyses (CEAs). This article briefly summarizes the barriers to timely monogenic diabetes diagnosis and then summarizes findings from CEAs on genetic testing for monogenic diabetes. RECENT FINDINGS CEAs have shown that routine genetic testing of all patients with a clinical diagnosis of type 1 diabetes can be cost-saving when applied to the scenarios of neonatal diabetes or in a pediatric population. Routine screening has not been shown to be cost-effective in adult populations. However, next-generation sequencing strategies and applying biomarkers to identify and limit genetic testing to people most likely to have monogenic diabetes are promising ways to make testing strategies cost-effective. CEAs have shown that genetic testing for monogenic diabetes diagnosis can be cost-effective or cost-saving and should guide insurers to consider broader coverage of these tests, which would lead to accurate and timely diagnosis and impact treatment and clinical outcomes.
Collapse
Affiliation(s)
- Rochelle Naylor
- The University of Chicago Medicine, 5841 S Maryland Ave, MC 5053, Chicago, IL, 60637, USA.
| |
Collapse
|
61
|
Johnson SR, Carter HE, Leo P, Hollingworth SA, Davis EA, Jones TW, Conwell LS, Harris M, Brown MA, Graves N, Duncan EL. Cost-effectiveness Analysis of Routine Screening Using Massively Parallel Sequencing for Maturity-Onset Diabetes of the Young in a Pediatric Diabetes Cohort: Reduced Health System Costs and Improved Patient Quality of Life. Diabetes Care 2019; 42:69-76. [PMID: 30523035 DOI: 10.2337/dc18-0261] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 10/12/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Maturity-onset diabetes of the young (MODY) is an autosomal dominant form of diabetes, with multiple causative genes. Some MODY subtypes can be treated with sulfonylureas instead of insulin, improving glycemic control, complication rates, quality of life (QoL), and costs. Using massively parallel sequencing (MPS), we recently determined the prevalence of pathogenic/likely pathogenic MODY variants in an Australian pediatric diabetes cohort. Here, these data are used to estimate cost-effectiveness of using MPS for MODY in all pediatric diabetes cases compared with standard practice (sequencing limited to individuals with specific clinical features). RESEARCH DESIGN AND METHODS A Markov decision model was developed to estimate incremental costs and quality-adjusted life-years (QALYs) of MPS screening, modeled over 30 years. We used our observed prevalence of 2.14% compared with 0.7% for standard practice, based on published data. The probabilities and utility weightings of long-term diabetes complications were based on HbA1c and estimated from published data. A series of one-way sensitivity analyses were performed using the net monetary benefit framework. RESULTS Routine MPS screening for MODY was more effective and less costly than standard care screening, with 26 QALYs gained and 1,016,000 AUD (782,000 USD) saved per 1,000 patients. Cost of screening was fully offset within 10 years. Routine MPS screening remained dominant until MODY prevalence fell to <1.1%. CONCLUSIONS Routine MPS screening for MODY in the pediatric population with diabetes could reduce health system costs and improve patient QoL. Our results make a compelling argument for routine genetic screening in all children with presumed type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Stephanie R Johnson
- Department of Endocrinology and Diabetes, Lady Cilento Children's Hospital, South Brisbane, Queensland, Australia.,Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Translational Research Institute, Woolloongabba, Queensland, Australia.,University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia.,Faculty of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Hannah E Carter
- Australian Centre for Health Services Innovation, Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Paul Leo
- Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Translational Research Institute, Woolloongabba, Queensland, Australia
| | | | - Elizabeth A Davis
- Department of Diabetes and Endocrinology, Perth Children's Hospital, Perth, Western Australia, Australia.,Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia.,School of Paediatrics and Child Health, University of Western Australia, Perth, Western Australia, Australia
| | - Timothy W Jones
- Department of Diabetes and Endocrinology, Perth Children's Hospital, Perth, Western Australia, Australia.,Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia.,School of Paediatrics and Child Health, University of Western Australia, Perth, Western Australia, Australia
| | - Louise S Conwell
- Department of Endocrinology and Diabetes, Lady Cilento Children's Hospital, South Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Mark Harris
- Department of Endocrinology and Diabetes, Lady Cilento Children's Hospital, South Brisbane, Queensland, Australia.,University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia.,Faculty of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Matthew A Brown
- Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Nicholas Graves
- Australian Centre for Health Services Innovation, Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Emma L Duncan
- Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Translational Research Institute, Woolloongabba, Queensland, Australia .,Faculty of Medicine, University of Queensland, Herston, Queensland, Australia.,Department of Endocrinology, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| |
Collapse
|
62
|
Abstract
The American Diabetes Association (ADA) "Standards of Medical Care in Diabetes" includes ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations, please refer to the Standards of Care Introduction Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
63
|
Fitipaldi H, McCarthy MI, Florez JC, Franks PW. A Global Overview of Precision Medicine in Type 2 Diabetes. Diabetes 2018; 67:1911-1922. [PMID: 30237159 PMCID: PMC6152339 DOI: 10.2337/dbi17-0045] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/07/2018] [Indexed: 01/01/2023]
Abstract
The detailed characterization of human biology and behaviors is now possible at scale owing to innovations in biomarkers, bioimaging, and wearable technologies; "big data" from electronic medical records, health insurance databases, and other platforms becoming increasingly accessible; and rapidly evolving computational power and bioinformatics methods. Collectively, these advances are creating unprecedented opportunities to better understand diabetes and many other complex traits. Identifying hidden structures within these complex data sets and linking these structures to outcome data may yield unique insights into the risk factors and natural history of diabetes, which in turn may help optimize the prevention and management of the disease. This emerging area is broadly termed "precision medicine." In this Perspective, we give an overview of the evidence and barriers to the development and implementation of precision medicine in type 2 diabetes. We also discuss recently presented paradigms through which complex data might enhance our understanding of diabetes and ultimately our ability to tackle the disease more effectively than ever before.
Collapse
Affiliation(s)
- Hugo Fitipaldi
- Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, U.K
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
| | - Jose C Florez
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Paul W Franks
- Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, U.K
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
64
|
Hattersley AT, Greeley SAW, Polak M, Rubio-Cabezas O, Njølstad PR, Mlynarski W, Castano L, Carlsson A, Raile K, Chi DV, Ellard S, Craig ME. ISPAD Clinical Practice Consensus Guidelines 2018: The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes 2018; 19 Suppl 27:47-63. [PMID: 30225972 DOI: 10.1111/pedi.12772] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023] Open
Affiliation(s)
- Andrew T Hattersley
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Siri A W Greeley
- The University of Chicago Medicine, Comer Children's Hospital, Chicago, Illinois
| | - Michel Polak
- Hôpital Universitaire Necker-Enfants Malades, Université Paris Descartes, Paris, France
| | - Oscar Rubio-Cabezas
- Department of Paediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Pål R Njølstad
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Lodz, Poland
| | - Luis Castano
- Endocrinology and Diabetes Research Group, BioCruces Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| | - Annelie Carlsson
- Department of Clinical Sciences, Skåne University Hospital, Lund University, Lund, Sweden
| | - Klemens Raile
- Department of Paediatric Endocrinology and Diabetology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dung V Chi
- Department of Endocrinology, Metabolism & Genetics, National Children's Hospital, Hanoi, Vietnam.,Department of Pediatrics, Hanoi Medical University, Hanoi, Vietnam
| | - Sian Ellard
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Maria E Craig
- The Children's Hospital at Westmead and Discipline of Child Health and Adolescent Health, University of Sydney, Sydney, Australia.,School of Women's and Children's Health, University of New South Wales, Sydney, Australia
| |
Collapse
|
65
|
Rama Chandran S, Bhalshankar J, Farhad Vasanwala R, Zhao Y, Owen KR, Su-Lyn Gardner D. Traditional clinical criteria outperform high-sensitivity C-reactive protein for the screening of hepatic nuclear factor 1 alpha maturity-onset diabetes of the young among young Asians with diabetes. Ther Adv Endocrinol Metab 2018; 9:271-282. [PMID: 30181854 PMCID: PMC6116767 DOI: 10.1177/2042018818776167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 04/20/2018] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Young adults with diabetes in Asia represent a heterogeneous group. Using traditional clinical criteria to preselect individuals for testing for maturity-onset diabetes of the young (MODY) may exclude a large proportion from testing. High-sensitivity C-reactive protein (hs-CRP) has shown promise as a biomarker to differentiate hepatic nuclear factor 1 alpha (HNF1A)-MODY from type 2 diabetes. We aimed to compare the use of hs-CRP as a biomarker versus traditional criteria, to guide testing for HNF1A-MODY among a cohort of young adults with diabetes in Singapore. METHODS A total of 252 adults (age of onset ⩽45 years) and 20 children with diabetes were recruited. Using traditional criteria (family history of diabetes and onset of diabetes ⩽25 years) and an hs-CRP cut off of ⩽0.5 mg/l, 125 and 37 adults, respectively, were identified for HNF1A gene testing. All children underwent HNF1A gene testing. RESULTS Five adults (5/143, 3.5%) with HNF1A-MODY were identified. There were no HNF1A gene mutations among the children. Traditional criteria correctly identified all five HNF1A-MODY individuals (5/125, 4%), while applying an hs-CRP level of ⩽0.5 mg/l selected just 1 of these 5 for HNF1A gene testing (1/37, 2.7%). None of those with a positive GAD antibody or undetectable C-peptide level had HNF1A-MODY. CONCLUSION The use of hs-CRP to guide screening for HNF1A-MODY among Asian young adults with diabetes did not improve the diagnostic yield. Applying a combination of age of onset of diabetes under 25 years and a family history of diabetes alone could guide targeted HNF1A-MODY screening in Asians, with an expected yield of 4% diagnosed with HNF1A-MODY among those screened.
Collapse
Affiliation(s)
| | - Jaydutt Bhalshankar
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | | | - Yi Zhao
- Division of Clinical Research, Singapore General Hospital, Singapore
| | - Katharine R. Owen
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK Oxford National Institute for Health Research Biomedical Research Centre, The Churchill Hospital, Oxford, UK
| | | |
Collapse
|
66
|
Abstract
PURPOSE OF REVIEW Monogenic forms of diabetes have received increased attention and genetic testing is more widely available; however, many patients are still misdiagnosed as having type 1 (T1D) or type 2 diabetes. This review will address updates to monogenic diabetes prevalence, identification, treatment, and genetic testing. RECENT FINDINGS The creation of a T1D genetic risk score and the use of noninvasive urinary C-peptide creatinine ratios have provided new tools to aid in the discrimination of possible monogenic diabetes from likely T1D. Early, high-dose sulfonylurea treatment in infants with a KCNJ11 or ABCC8 mutation continues to be well tolerated and effective. As the field moves towards more comprehensive genetic testing methods, there is an increased opportunity to identify novel genetic causes. Genetic testing results continue to allow for personalized treatment but should provide patient information at an appropriate health literacy level. SUMMARY Although there have been clinical and genetic advances in monogenic diabetes, patients are still misdiagnosed. Improved insurance coverage of genetic testing is needed. The majority of data on monogenic diabetes has been collected from Caucasian populations, therefore, research studies should endeavor to include broader ethnic and racial diversity to provide comprehensive information for all populations.
Collapse
|
67
|
Abstract
PURPOSE OF REVIEW We provide a review of monogenic diabetes in young children and adolescents with a focus on recognition, management, and pharmacological treatment. RECENT FINDINGS Monogenic forms of diabetes account for approximately 1-2% of diabetes in children and adolescents, and its incidence has increased in recent years due to greater awareness and wider availability of genetic testing. Monogenic diabetes is due to single gene defects that primarily affect beta cell function with more than 30 different genes reported. Children with antibody-negative, C-peptide-positive diabetes should be evaluated and genetically tested for monogenic diabetes. Accurate genetic diagnosis impacts treatment in the most common types of monogenic diabetes, including the use of sulfonylureas in place of insulin or other glucose-lowering agents or discontinuing pharmacologic treatment altogether. Diagnosis of monogenic diabetes can significantly improve patient care by enabling prediction of the disease course and guiding appropriate management and treatment.
Collapse
Affiliation(s)
- May Sanyoura
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, 5841 S. Maryland Ave., MC 1027, Chicago, IL, 60637, USA
| | - Louis H Philipson
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, 5841 S. Maryland Ave., MC 1027, Chicago, IL, 60637, USA
| | - Rochelle Naylor
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, 5841 S. Maryland Ave., MC 1027, Chicago, IL, 60637, USA.
| |
Collapse
|
68
|
Letourneau LR, Greeley SAW. Congenital Diabetes: Comprehensive Genetic Testing Allows for Improved Diagnosis and Treatment of Diabetes and Other Associated Features. Curr Diab Rep 2018; 18:46. [PMID: 29896650 PMCID: PMC6341981 DOI: 10.1007/s11892-018-1016-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW The goal of this review is to provide updates on congenital (neonatal) diabetes from 2011 to present, with an emphasis on publications from 2015 to present. RECENT FINDINGS There has been continued worldwide progress in uncovering the genetic causes of diabetes presenting within the first year of life, including the recognition of nine new causes since 2011. Management has continued to be refined based on underlying molecular cause, and longer-term experience has provided better understanding of the effectiveness, safety, and sustainability of treatment. Associated conditions have been further clarified, such as neurodevelopmental delays and pancreatic insufficiency, including a better appreciation for how these "secondary" conditions impact quality of life for patients and their families. While continued research is essential to understand all forms of congenital diabetes, these cases remain a compelling example of personalized genetic medicine.
Collapse
Affiliation(s)
- Lisa R Letourneau
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Kovler Diabetes Center, The University of Chicago, MC 1027/N235; 5841 S. Maryland Ave., Chicago, IL, 60637, USA
| | - Siri Atma W Greeley
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Kovler Diabetes Center, The University of Chicago, MC 1027/N235; 5841 S. Maryland Ave., Chicago, IL, 60637, USA.
| |
Collapse
|
69
|
Kleinberger JW, Copeland KC, Gandica RG, Haymond MW, Levitsky LL, Linder B, Shuldiner AR, Tollefsen S, White NH, Pollin TI, for the TODAY Study Group. Monogenic diabetes in overweight and obese youth diagnosed with type 2 diabetes: the TODAY clinical trial. Genet Med 2018; 20:583-590. [PMID: 29758564 PMCID: PMC5955780 DOI: 10.1038/gim.2017.150] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 07/20/2017] [Indexed: 12/13/2022] Open
Abstract
PurposeMonogenic diabetes accounts for 1-2% of diabetes cases. It is often undiagnosed, which may lead to inappropriate treatment. This study was performed to estimate the prevalence of monogenic diabetes in a cohort of overweight/obese adolescents diagnosed with type 2 diabetes (T2D).MethodsSequencing using a custom monogenic diabetes gene panel was performed on a racially/ethnically diverse cohort of 488 overweight/obese adolescents with T2D in the Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) clinical trial. Associations between having a monogenic diabetes variant and clinical characteristics and time to treatment failure were analyzed.ResultsMore than 4% (22/488) had genetic variants causing monogenic diabetes (seven GCK, seven HNF4A, five HNF1A, two INS, and one KLF11). Patients with monogenic diabetes had a statistically, but not clinically, significant lower body mass index (BMI) z-score, lower fasting insulin, and higher fasting glucose. Most (6/7) patients with HNF4A variants rapidly failed TODAY treatment across study arms (hazard ratio = 5.03, P = 0.0002), while none with GCK variants failed treatment.ConclusionThe finding of 4.5% of patients with monogenic diabetes in an overweight/obese cohort of children and adolescents with T2D suggests that monogenic diabetes diagnosis should be considered in children and adolescents without diabetes-associated autoantibodies and maintained C-peptide, regardless of BMI, as it may direct appropriate clinical management.
Collapse
Affiliation(s)
- Jeffrey W. Kleinberger
- Division of Endocrinology, Diabetes, and Nutrition, Department of
Medicine, University of Maryland School of Medicine, Baltimore, MD
| | | | - Rachelle G. Gandica
- Naomi Berrie Diabetes Center, Columbia University Medical Center,
New York, NY
| | | | | | - Barbara Linder
- Division of Diabetes, Endocrinology and Metabolic Diseases, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of
Health, Bethesda, MD
| | - Alan R. Shuldiner
- Division of Endocrinology, Diabetes, and Nutrition, Department of
Medicine, University of Maryland School of Medicine, Baltimore, MD
- Regeneron Genetics Center, Regeneron, Tarrytown, NY
| | | | - Neil H. White
- Washington University School of Medicine, St. Louis, MO
| | - Toni I. Pollin
- Division of Endocrinology, Diabetes, and Nutrition, Department of
Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - for the TODAY Study Group
- Address for correspondence: Toni I. Pollin, M.S., Ph.D.,
University of Maryland School of Medicine, 660 West Redwood Street, Room 445C,
Baltimore, MD 21201.;
| |
Collapse
|
70
|
Abstract
Adult-onset, or type II diabetes mellitus (T2DM) has a complex genetic architecture, from hundreds of genes with low penetrance, common susceptibility variants (e.g., TCF7L2), to a set of more than ten genes that, when mutated, can cause a single-gene or Mendelian form of T2DM (e.g., GCK). It is a clinical challenge to identify patients with the uncommon (2-3%) form of T2DM, typically classified as maturity-onset diabetes of the young (MODY). Bansal et al. (BMC Med 15:213, 2017) used a gene panel test approach to test patients with diabetes for single-gene causes of MODY. They found that nearly 2% of younger patients had pathogenic variants in one of seven genes. These data confirm prior studies showing that Mendelian or single-gene MODY can masquerade as garden variety T2DM. The implications of these results for wider general medicine and the future implementation of clinical genome sequencing are discussed.Please see related article: https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-017-0977-3.
Collapse
|
71
|
Majidi S, Fouts A, Pyle L, Chambers C, Armstrong T, Wang Z, Batish SD, Klingensmith G, Steck AK. Can Biomarkers Help Target Maturity-Onset Diabetes of the Young Genetic Testing in Antibody-Negative Diabetes? Diabetes Technol Ther 2018; 20:106-112. [PMID: 29355436 PMCID: PMC6110120 DOI: 10.1089/dia.2017.0317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Maturity-onset diabetes of the young (MODY) is an antibody-negative, autosomal dominant form of diabetes. With the increasing prevalence of diabetes and the expense of MODY testing, markers to identify those who need further genetic testing would be beneficial. We investigated whether HLA genotypes, random C-peptide, and/or high-sensitivity C-reactive protein (hsCRP) levels could be helpful biomarkers for identifying MODY in antibody-negative diabetes. METHODS Subjects (N = 97) with diabetes onset ≤age 25, measurable C-peptide (≥0.1 ng/mL), and negative for all four diabetes autoantibodies were enrolled at a large academic center and tested for MODY 1-5 through Athena Diagnostics. A total of 22 subjects had a positive or very likely pathogenic mutation for MODY. RESULTS Random C-peptide levels were significantly different between MODY-positive and MODY-negative subjects (0.16 nmol/L vs. 0.02 nmol/L; P = 0.02). After adjusting for age and diabetes duration, hsCRP levels were significantly lower in MODY-positive subjects (0.37 mg/L vs. 0.87 mg/L; P = 0.02). Random C-peptide level ≥0.15 nmol/L obtained at ≥6 months after diagnosis had 83% sensitivity for diagnosis of MODY with a negative predictive value of 96%. Receiver operating characteristic curves showed that area under the curve for random C-peptide (0.75) was significantly better than hsCRP (0.54), high-risk HLA DR3/4-DQB1*0302 (0.59), and high-risk HLA/random C-peptide combined (0.54; P = 0.03). CONCLUSIONS Random C-peptide obtained at ≥6 months after diagnosis can be a useful biomarker to identify antibody-negative individuals who need further genetic testing for MODY, whereas hsCRP and HLA do not appear to improve this antibody/C-peptide-based approach.
Collapse
Affiliation(s)
- Shideh Majidi
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
- Address correspondence to:Shideh Majidi, MDBarbara Davis Center for Childhood DiabetesUniversity of Colorado Denver1775 Aurora Ct, A140,Aurora, CO 80045
| | - Alexandra Fouts
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| | - Laura Pyle
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Christina Chambers
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Taylor Armstrong
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| | | | | | - Georgeanna Klingensmith
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| | - Andrea K. Steck
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
72
|
Lebenthal Y, Fisch Shvalb N, Gozlan Y, Tenenbaum A, Tenenbaum-Rakover Y, Vaillant E, Froguel P, Vaxillaire M, Gat-Yablonski G. The unique clinical spectrum of maturity onset diabetes of the young type 3. Diabetes Res Clin Pract 2018; 135:18-22. [PMID: 29107759 DOI: 10.1016/j.diabres.2017.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 08/30/2017] [Accepted: 10/24/2017] [Indexed: 11/24/2022]
Abstract
Phenotypic variability in maturity-onset diabetes of the young (MODY) makes screening criteria for genomic analysis challenging. We describe the clinical spectrum in a large pedigree with HNF1A-MODY; as generations progressed, the course and outcome became poorer. Although uncommon, pancreatic autoantibodies and diabetes ketoacidosis should not exclude the diagnosis of MODY.
Collapse
Affiliation(s)
- Yael Lebenthal
- The Jesse Z. and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva 49202, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Naama Fisch Shvalb
- The Jesse Z. and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva 49202, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yael Gozlan
- Felsenstein Medical Research Center, Petah Tikva 49100, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ariel Tenenbaum
- The Jesse Z. and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva 49202, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yardena Tenenbaum-Rakover
- Pediatric Endocrine Unit, Ha'Emek Medical Center, Afula 18341, Israel; The Rappaport Faculty of Medicine, Technion, Haifa 32000, Israel
| | - Emmanuel Vaillant
- CNRS-UMR 8199, Integrative Genomics and Modelling of Metabolic Diseases, Pasteur Institute of Lille, Lille 59000, France; Lille University, Lille 59655, France; European Genomic Institute for Diabetes (EGID), FR-3508 Lille, France
| | - Phillipe Froguel
- CNRS-UMR 8199, Integrative Genomics and Modelling of Metabolic Diseases, Pasteur Institute of Lille, Lille 59000, France; Lille University, Lille 59655, France; European Genomic Institute for Diabetes (EGID), FR-3508 Lille, France; Department of Genomics of Common Diseases, School of Public Health, Imperial College London, Hammersmith Hospital, London W12 0HS, United Kingdom
| | - Martine Vaxillaire
- CNRS-UMR 8199, Integrative Genomics and Modelling of Metabolic Diseases, Pasteur Institute of Lille, Lille 59000, France; Lille University, Lille 59655, France; European Genomic Institute for Diabetes (EGID), FR-3508 Lille, France
| | - Galia Gat-Yablonski
- The Jesse Z. and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva 49202, Israel; Felsenstein Medical Research Center, Petah Tikva 49100, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
73
|
Abstract
The American Diabetes Association (ADA) "Standards of Medical Care in Diabetes" includes ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations, please refer to the Standards of Care Introduction Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
74
|
Prudente S, Ludovico O, Trischitta V. Familial diabetes of adulthood: A bin of ignorance that needs to be addressed. Nutr Metab Cardiovasc Dis 2017; 27:1053-1059. [PMID: 29174219 DOI: 10.1016/j.numecd.2017.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/29/2017] [Accepted: 10/15/2017] [Indexed: 01/15/2023]
Abstract
AIMS The aim of this article was to share with a wide readership some data and related reasoning about a multigenerational form of diabetes mellitus of adulthood. DATA SYNTHESIS We have recently described a familial form of diabetes mellitus, which in the routine clinical setting of adult individuals is simplistically diagnosed as type 2 diabetes. Such misdiagnosis involves as much as 3% of adult unrelated diabetic patients with no evidence of autoimmune disease. More recent data, obtained by means of a next-generation sequencing, indicate that approximately 25% of such patients carry mutations in the genes involved in monogenic diabetes, thus leaving unraveled the molecular causes of the remaining 75% individuals. CONCLUSIONS Our proposal is to define the latter patients as being affected by familial diabetes of adulthood (FDA), a clear admission of ignorance and a limbo where adult patients with multigenerational diabetes with no genetic definition of their hyperglycemia have to wait for better times.
Collapse
Affiliation(s)
- S Prudente
- Research Unit of Metabolic and Cardiovascular Diseases, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| | - O Ludovico
- Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - V Trischitta
- Research Unit of Metabolic and Cardiovascular Diseases, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy; Department of Experimental Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
75
|
|
76
|
Sheu C, Paramithiotis E. Towards a personalized assessment of pancreatic function in diabetes. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2017. [DOI: 10.1080/23808993.2017.1385391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Carey Sheu
- Caprion Biosciences Inc - Translational Research, Montreal, Canada
| | | |
Collapse
|
77
|
Nguyen HV, Finkelstein EA, Mital S, Gardner DSL. Incremental cost-effectiveness of algorithm-driven genetic testing versus no testing for Maturity Onset Diabetes of the Young (MODY) in Singapore. J Med Genet 2017; 54:747-753. [PMID: 28835481 DOI: 10.1136/jmedgenet-2017-104670] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 11/04/2022]
Abstract
BACKGROUND Offering genetic testing for Maturity Onset Diabetes of the Young (MODY) to all young patients with type 2 diabetes has been shown to be not cost-effective. This study tests whether a novel algorithm-driven genetic testing strategy for MODY is incrementally cost-effective relative to the setting of no testing. METHODS A decision tree was constructed to estimate the costs and effectiveness of the algorithm-driven MODY testing strategy and a strategy of no genetic testing over a 30-year time horizon from a payer's perspective. The algorithm uses glutamic acid decarboxylase (GAD) antibody testing (negative antibodies), age of onset of diabetes (<45 years) and body mass index (<25 kg/m2 if diagnosed >30 years) to stratify the population of patients with diabetes into three subgroups, and testing for MODY only among the subgroup most likely to have the mutation. Singapore-specific costs and prevalence of MODY obtained from local studies and utility values sourced from the literature are used to populate the model. RESULTS The algorithm-driven MODY testing strategy has an incremental cost-effectiveness ratio of US$93 663 per quality-adjusted life year relative to the no testing strategy. If the price of genetic testing falls from US$1050 to US$530 (a 50% decrease), it will become cost-effective. CONCLUSION Our proposed algorithm-driven testing strategy for MODY is not yet cost-effective based on established benchmarks. However, as genetic testing prices continue to fall, this strategy is likely to become cost-effective in the near future.
Collapse
Affiliation(s)
- Hai Van Nguyen
- School of Pharmacy, Memorial University of Newfoundland, St. John's, Canada
| | | | - Shweta Mital
- Health Services and Systems Research, Duke NUS Medical School, Singapore
| | | |
Collapse
|
78
|
Kocova M, Elblova L, Pruhova S, Lebl J, Dusatkova P. Novel glucokinase gene mutation in the first Macedonian family tested for MODY. Diabetes Res Clin Pract 2017; 130:86-89. [PMID: 28575730 DOI: 10.1016/j.diabres.2017.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/03/2017] [Indexed: 01/27/2023]
Abstract
We present a boy with mild hyperglycemia detected during an upper respiratory infection. Novel splicing mutation in the intron 1 of the GCK gene (c.45+1G>A) was detected, and was subsequently confirmed in his father. This is the first case of genetically confirmed Macedonian family with MODY.
Collapse
Affiliation(s)
- M Kocova
- University Pediatric Clinic, Skopje, The Former Yugolav Republic of Macedonia.
| | - L Elblova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, Prague, Czech Republic
| | - S Pruhova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, Prague, Czech Republic
| | - J Lebl
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, Prague, Czech Republic
| | - P Dusatkova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, Prague, Czech Republic
| |
Collapse
|
79
|
Abstract
The precision medicine approach of tailoring treatment to the individual characteristics of each patient or subgroup has been a great success in monogenic diabetes subtypes, MODY and neonatal diabetes. This review examines what has led to the success of a precision medicine approach in monogenic diabetes (precision diabetes) and outlines possible implications for type 2 diabetes. For monogenic diabetes, the molecular genetics can define discrete aetiological subtypes that have profound implications on diabetes treatment and can predict future development of associated clinical features, allowing early preventative or supportive treatment. In contrast, type 2 diabetes has overlapping polygenic susceptibility and underlying aetiologies, making it difficult to define discrete clinical subtypes with a dramatic implication for treatment. The implementation of precision medicine in neonatal diabetes was simple and rapid as it was based on single clinical criteria (diagnosed <6 months of age). In contrast, in MODY it was more complex and slow because of the lack of single criteria to identify patients, but it was greatly assisted by the development of a diagnostic probability calculator and associated smartphone app. Experience in monogenic diabetes suggests that successful adoption of a precision diabetes approach in type 2 diabetes will require simple, quick, easily accessible stratification that is based on a combination of routine clinical data, rather than relying on newer technologies. Analysing existing clinical data from routine clinical practice and trials may provide early success for precision medicine in type 2 diabetes.
Collapse
Affiliation(s)
- Andrew T Hattersley
- The Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Level 3, Royal Devon and Exeter Hospital, Barrack Road, Exeter, EX2 5DW, UK.
| | - Kashyap A Patel
- The Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Level 3, Royal Devon and Exeter Hospital, Barrack Road, Exeter, EX2 5DW, UK
| |
Collapse
|
80
|
Urrutia I, Martínez R, López-Euba T, Velayos T, Martínez de LaPiscina I, Bilbao JR, Rica I, Castaño L, on behalf of The Spanish Group for the Study of MODY and Type 1 diabetes. Lower Frequency of HLA-DRB1 Type 1 Diabetes Risk Alleles in Pediatric Patients with MODY. PLoS One 2017; 12:e0169389. [PMID: 28052112 PMCID: PMC5214860 DOI: 10.1371/journal.pone.0169389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 12/15/2016] [Indexed: 12/04/2022] Open
Abstract
Objective The aim of this study was to determine the frequency of susceptible HLA-DRB1 alleles for type 1 diabetes in a cohort of pediatric patients with a confirmed genetic diagnosis of MODY. Materials and Methods 160 families with a proband diagnosed with type 1 diabetes and 74 families with a molecular diagnosis of MODY (61 GCK-MODY and 13 HNF1A-MODY) were categorized at high definition for HLA-DRB1 locus. According to the presence or absence of the susceptible HLA-DRB1 alleles for type 1 diabetes, we considered three different HLA-DRB1 genotypes: 0 risk alleles (no DR3 no DR4); 1 risk allele (DR3 or DR4); 2 risk alleles (DR3 and/or DR4). Results Compared with type 1 diabetes, patients with MODY carried higher frequency of 0 risk alleles, OR 22.7 (95% CI: 10.7–48.6) and lower frequency of 1 or 2 risk alleles, OR 0.53 (95% CI: 0.29–0.96) and OR 0.06 (95% CI: 0.02–0.18), respectively. Conclusions The frequency of HLA-DRB1 risk alleles for type 1 diabetes is significantly lower in patients with MODY. In children and adolescents with diabetes, the presence of 2 risk alleles (DR3 and/or DR4) reduces the probability of MODY diagnosis, whereas the lack of risk alleles increases it. Therefore, we might consider that HLA-DRB1 provides additional information for the selection of patients with high probability of monogenic diabetes.
Collapse
Affiliation(s)
- Inés Urrutia
- BioCruces Health Research Institute, Cruces University Hospital, UPV-EHU, CIBERDEM, CIBERER, Barakaldo, Spain
| | - Rosa Martínez
- BioCruces Health Research Institute, Cruces University Hospital, UPV-EHU, CIBERDEM, CIBERER, Barakaldo, Spain
| | - Tamara López-Euba
- BioCruces Health Research Institute, Cruces University Hospital, UPV-EHU, CIBERDEM, CIBERER, Barakaldo, Spain
| | - Teresa Velayos
- BioCruces Health Research Institute, Cruces University Hospital, UPV-EHU, CIBERDEM, CIBERER, Barakaldo, Spain
| | - Idoia Martínez de LaPiscina
- BioCruces Health Research Institute, Cruces University Hospital, UPV-EHU, CIBERDEM, CIBERER, Barakaldo, Spain
| | - José Ramón Bilbao
- BioCruces Health Research Institute, Cruces University Hospital, UPV-EHU, CIBERDEM, CIBERER, Barakaldo, Spain
| | - Itxaso Rica
- BioCruces Health Research Institute, Cruces University Hospital, UPV-EHU, CIBERDEM, CIBERER, Barakaldo, Spain
| | - Luis Castaño
- BioCruces Health Research Institute, Cruces University Hospital, UPV-EHU, CIBERDEM, CIBERER, Barakaldo, Spain
- * E-mail:
| | | |
Collapse
|
81
|
|
82
|
Brahm AJ, Wang G, Wang J, McIntyre AD, Cao H, Ban MR, Hegele RA. Genetic Confirmation Rate in Clinically Suspected Maturity-Onset Diabetes of the Young. Can J Diabetes 2016; 40:555-560. [DOI: 10.1016/j.jcjd.2016.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/29/2016] [Accepted: 05/12/2016] [Indexed: 12/30/2022]
|
83
|
Bishay RH, Greenfield JR. A review of maturity onset diabetes of the young (MODY) and challenges in the management of glucokinase‐MODY. Med J Aust 2016; 205:480-485. [DOI: 10.5694/mja16.00458] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/27/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Ramy H Bishay
- Saint Vincent's Hospital Sydney, Sydney, NSW
- University of New South Wales, Sydney, NSW
- Garvan Institute of Medical Research, Sydney, NSW
- University of Notre Dame Australia, Sydney, NSW
| | - Jerry R Greenfield
- Saint Vincent's Hospital Sydney, Sydney, NSW
- University of New South Wales, Sydney, NSW
- Garvan Institute of Medical Research, Sydney, NSW
| |
Collapse
|
84
|
Vaxillaire M, Froguel P. Monogenic diabetes: Implementation of translational genomic research towards precision medicine. J Diabetes 2016; 8:782-795. [PMID: 27390143 DOI: 10.1111/1753-0407.12446] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/13/2016] [Accepted: 06/29/2016] [Indexed: 12/18/2022] Open
Abstract
Various forms of early onset non-autoimmune diabetes are recognized as monogenic diseases, each subtype being caused by a single highly penetrant gene defect at the individual level. Monogenic diabetes (MD) is clinically and genetically heterogeneous, including maturity onset diabetes of the young and infancy-onset and neonatal diabetes mellitus, which are characterized by functional defects of insulin-producing pancreatic β-cells and hyperglycemia early in life. Depending on the genetic cause, MD differs in the age at diabetes onset, the severity of hyperglycemia, long-term diabetic complications, and extrapancreatic manifestations. In this review we discuss the many challenges of molecular genetic diagnosis of MD in the face of a substantial genetic heterogeneity, as well as the clinical benefit and cost-effectiveness of an early genetic diagnosis, as demonstrated by simulation models based on lifetime complications and treatment costs. We also discuss striking examples of proof-of-concept of genomic medicine, which have enabled marked improvement in patient care and long-term clinical management. Recent advances in genome editing and pluripotent stem cell reprogramming technologies provide new opportunities for in vitro diabetes modeling and the discovery of novel drug targets and cell-based diabetes therapies. A review of these future directions makes the case for exciting translational research to further our understanding of the pathophysiology of early onset diabetes.
Collapse
Affiliation(s)
- Martine Vaxillaire
- CNRS-UMR 8199, Integrative Genomics and Modelling of Metabolic Diseases, Pasteur Institute of Lille, Lille, France.
- Lille University, Lille, France.
- European Genomic Institute for Diabetes (EGID), Lille, France.
| | - Philippe Froguel
- CNRS-UMR 8199, Integrative Genomics and Modelling of Metabolic Diseases, Pasteur Institute of Lille, Lille, France
- Lille University, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
- Department of Genomics of Common Diseases, School of Public Health, Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
85
|
Carmody D, Naylor RN, Bell CD, Berry S, Montgomery JT, Tadie EC, Hwang JL, Greeley SAW, Philipson LH. GCK-MODY in the US National Monogenic Diabetes Registry: frequently misdiagnosed and unnecessarily treated. Acta Diabetol 2016; 53:703-8. [PMID: 27106716 PMCID: PMC5016218 DOI: 10.1007/s00592-016-0859-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/19/2016] [Indexed: 12/29/2022]
Abstract
AIMS GCK-MODY leads to mildly elevated blood glucose typically not requiring therapy. It has been described in all ethnicities, but mainly in Caucasian Europeans. Here we describe our US cohort of GCK-MODY. METHODS We examined the rates of detection of heterozygous mutations in the GCK gene in individuals referred to the US Monogenic Diabetes Registry with a phenotype consistent with GCK-MODY. We also assessed referral patterns, treatment and demography, including ethnicity, of the cohort. RESULTS Deleterious heterozygous GCK mutations were found in 54.7 % of Registry probands selected for GCK sequencing for this study. Forty-nine percent were previously unnecessarily treated with glucose-lowering agents, causing hypoglycemia and other adverse effects in some of the subjects. The proportion of probands found to have a GCK mutation through research-based testing was similar across each ethnic group. However, together African-American, Latino and Asian subjects represented only 20.5 % of screened probands and 17.2 % of those with GCK-MODY, despite higher overall diabetes prevalence in these groups. CONCLUSIONS Our data show that a high detection rate of GCK-MODY is possible based on clinical phenotype and that prior to genetic diagnosis, a large percentage are inappropriately treated with glucose-lowering therapies. We also find low minority representation in our Registry, which may be due to disparities in diagnostic diabetes genetic testing and is an area needing further investigation.
Collapse
Affiliation(s)
- David Carmody
- Address correspondence to: Rochelle Naylor MD, Department of Pediatrics, The University of Chicago, 5841 S Maryland Ave, MC 5053, Chicago, Illinois 60637, , 773-702-6309
| | - Rochelle N Naylor
- Address correspondence to: Rochelle Naylor MD, Department of Pediatrics, The University of Chicago, 5841 S Maryland Ave, MC 5053, Chicago, Illinois 60637, , 773-702-6309
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Ang SF, Lim SC, Tan CS, Fong JC, Kon WY, Lian JX, Subramanium T, Sum CF. A preliminary study to evaluate the strategy of combining clinical criteria and next generation sequencing (NGS) for the identification of monogenic diabetes among multi-ethnic Asians. Diabetes Res Clin Pract 2016; 119:13-22. [PMID: 27420379 DOI: 10.1016/j.diabres.2016.06.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 05/05/2016] [Accepted: 06/06/2016] [Indexed: 11/18/2022]
Abstract
AIMS Diabetes is increasing globally and Asia is the epicenter. Among those with young-onset diabetes (<45years), the prevalence of monogenic diabetes is estimated to be non-trivial (∼5%). An accurate diagnosis of monogenic diabetes is important to inform treatment, prognosis and genetic counseling. Therefore, a robust clinical algorithm to identify probands for testing is needed. Our aims are (1) to select probands for genetic testing and variant identification based on their clinical phenotype and (2) to evaluate the MODY probability calculator in our multi-ethnic Asian population. METHODS Eighty-four potential probands, identified in accordance with clinical practice guidelines, were subjected to re-sequencing of 16 monogenic diabetes genes and targeted genotyping for mitochondrial 3243A>G point-mutation. Variants, confirmed by bi-directional Sanger sequencing, were classified as pathogenic if they fulfilled the criteria adapted from American College of Medical Genetics. Performance of MODY calculator (with positive-predictive threshold set at >62.4%) for those with diabetes-onset ⩽35years (data input-limit) (n=71) was also evaluated. RESULTS Thirteen subjects (15.5%) harbored likely pathogenic/pathogenic variants: 6 (2 novel) in HNF1A (1 subject concomitantly had another HNF4A variant), 1 in HNF4A, 2 in mt3243A>G and 1 each in GCK, KCNJ11 (novel), ABCC8 (novel) and PAX4 (novel). Performance of the MODY calculator was: sensitivity 0.769, specificity 0.603 and negative predictive value 0.921. When analysis was restricted to MODY1-3, the performance was: 0.875, 0.587 and 0.974, respectively. CONCLUSIONS The prevalence of MODY is non-trivial (∼15%) among Asians with young-onset diabetes. MODY calculator performs well in our population in nominating probands for genetic testing.
Collapse
Affiliation(s)
- Su Fen Ang
- Clinical Research Unit, Khoo Teck Puat Hospital (KTPH), Singapore
| | - Su Chi Lim
- Diabetes Center, Khoo Teck Puat Hospital (KTPH), Singapore.
| | - Clara Sh Tan
- Clinical Research Unit, Khoo Teck Puat Hospital (KTPH), Singapore
| | - Jessie Cw Fong
- Clinical Research Unit, Khoo Teck Puat Hospital (KTPH), Singapore
| | - Winston Yc Kon
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
| | - Joyce X Lian
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
| | | | - Chee Fang Sum
- Diabetes Center, Khoo Teck Puat Hospital (KTPH), Singapore
| |
Collapse
|
87
|
Chambers C, Fouts A, Dong F, Colclough K, Wang Z, Batish SD, Jaremko M, Ellard S, Hattersley AT, Klingensmith G, Steck AK. Characteristics of maturity onset diabetes of the young in a large diabetes center. Pediatr Diabetes 2016; 17:360-7. [PMID: 26059258 PMCID: PMC4934136 DOI: 10.1111/pedi.12289] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/07/2015] [Accepted: 05/11/2015] [Indexed: 12/16/2022] Open
Abstract
Maturity onset diabetes of the young (MODY) is a monogenic form of diabetes caused by a mutation in a single gene, often not requiring insulin. The aim of this study was to estimate the frequency and clinical characteristics of MODY at the Barbara Davis Center. A total of 97 subjects with diabetes onset before age 25, a random C-peptide ≥0.1 ng/mL, and negative for all diabetes autoantibodies (GADA, IA-2, ZnT8, and IAA) were enrolled, after excluding 21 subjects with secondary diabetes or refusal to participate. Genetic testing for MODY 1-5 was performed through Athena Diagnostics, and all variants of unknown significance were further analyzed at Exeter, UK. A total of 22 subjects [20 (21%) when excluding two siblings] were found to have a mutation in hepatocyte nuclear factor 4A (n = 4), glucokinase (n = 8), or hepatocyte nuclear factor 1A (n = 10). Of these 22 subjects, 13 had mutations known to be pathogenic and 9 (41%) had novel mutations, predicted to be pathogenic. Only 1 of the 22 subjects had been given the appropriate MODY diagnosis prior to testing. Compared with MODY-negative subjects, the MODY-positive subjects had lower hemoglobin A1c level and no diabetic ketoacidosis at onset; however, these characteristics are not specific for MODY. In summary, this study found a high frequency of MODY mutations with the majority of subjects clinically misdiagnosed. Clinicians should have a high index of suspicion for MODY in youth with antibody-negative diabetes.
Collapse
Affiliation(s)
- Christina Chambers
- Barbara Davis Center for Childhood DiabetesUniversity of Colorado DenverAuroraCOUSA
| | - Alexandra Fouts
- Barbara Davis Center for Childhood DiabetesUniversity of Colorado DenverAuroraCOUSA
| | - Fran Dong
- Barbara Davis Center for Childhood DiabetesUniversity of Colorado DenverAuroraCOUSA
| | - Kevin Colclough
- Department of Genetics, Institute of Biomedical and Clinical ScienceUniversity of Exeter Medical SchoolExeterUK
| | | | | | | | - Sian Ellard
- Department of Genetics, Institute of Biomedical and Clinical ScienceUniversity of Exeter Medical SchoolExeterUK
| | - Andrew T Hattersley
- Department of Genetics, Institute of Biomedical and Clinical ScienceUniversity of Exeter Medical SchoolExeterUK
| | | | - Andrea K Steck
- Barbara Davis Center for Childhood DiabetesUniversity of Colorado DenverAuroraCOUSA
| |
Collapse
|
88
|
Ağladıoğlu SY, Aycan Z, Çetinkaya S, Baş VN, Önder A, Peltek Kendirci HN, Doğan H, Ceylaner S. Maturity onset diabetes of youth (MODY) in Turkish children: sequence analysis of 11 causative genes by next generation sequencing. J Pediatr Endocrinol Metab 2016; 29:487-96. [PMID: 26669242 DOI: 10.1515/jpem-2015-0039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 10/19/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Maturity-onset diabetes of the youth (MODY), is a genetically and clinically heterogeneous group of diseasesand is often misdiagnosed as type 1 or type 2 diabetes. The aim of this study is to investigate both novel and proven mutations of 11 MODY genes in Turkish children by using targeted next generation sequencing. METHODS A panel of 11 MODY genes were screened in 43 children with MODY diagnosed by clinical criterias. Studies of index cases was done with MISEQ-ILLUMINA, and family screenings and confirmation studies of mutations was done by Sanger sequencing. RESULTS We identified 28 (65%) point mutations among 43 patients. Eighteen patients have GCK mutations, four have HNF1A, one has HNF4A, one has HNF1B, two have NEUROD1, one has PDX1 gene variations and one patient has both HNF1A and HNF4A heterozygote mutations. CONCLUSIONS This is the first study including molecular studies of 11 MODY genes in Turkish children. GCK is the most frequent type of MODY in our study population. Very high frequency of novel mutations (42%) in our study population, supports that in heterogenous disorders like MODY sequence analysis provides rapid, cost effective and accurate genetic diagnosis.
Collapse
|
89
|
Lachance CH. Practical Aspects of Monogenic Diabetes: A Clinical Point of View. Can J Diabetes 2016; 40:368-375. [PMID: 26897468 DOI: 10.1016/j.jcjd.2015.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/20/2015] [Accepted: 11/10/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Carl-Hugo Lachance
- CHU de Québec-Hôpital Saint-François d'Assise, Québec City, Québec, Canada.
| |
Collapse
|
90
|
Abstract
Maturity-onset diabetes of the young (MODY) is a monogenic form of diabetes that accounts for at least 1 % of all cases of diabetes mellitus. MODY classically presents as non-insulin-requiring diabetes in lean individuals typically younger than 25 with evidence of autosomal dominant inheritance, but these criteria do not capture all cases and can also overlap with other diabetes types. Genetic diagnosis of MODY is important for selecting the right treatment, yet ~95 % of MODY cases in the USA are misdiagnosed. MODY prevalence and characteristics have been well-studied in some populations, such as the UK and Norway, while other ethnicities, like African and Latino, need much more study. Emerging next-generation sequencing methods are making more widespread study and clinical diagnosis increasingly feasible; at the same time, they are detecting other mutations in the same genes of unknown clinical significance. This review will cover the current epidemiological studies of MODY and barriers and opportunities for moving toward a goal of access to an appropriate diagnosis for all affected individuals.
Collapse
Affiliation(s)
- Jeffrey W Kleinberger
- Division of Endocrinology, Diabetes, and Nutrition and Program in Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, 660 West Redwood Street, Room 445C, Baltimore, MD, 21201, USA.
| | - Toni I Pollin
- Division of Endocrinology, Diabetes, and Nutrition and Program in Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, 660 West Redwood Street, Room 445C, Baltimore, MD, 21201, USA.
- University of Maryland School of Medicine, 660 West Redwood Street, Room 464, Baltimore, MD, 21201, USA.
| |
Collapse
|
91
|
Philippe J, Derhourhi M, Durand E, Vaillant E, Dechaume A, Rabearivelo I, Dhennin V, Vaxillaire M, De Graeve F, Sand O, Froguel P, Bonnefond A. What Is the Best NGS Enrichment Method for the Molecular Diagnosis of Monogenic Diabetes and Obesity? PLoS One 2015; 10:e0143373. [PMID: 26599467 PMCID: PMC4657897 DOI: 10.1371/journal.pone.0143373] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 11/04/2015] [Indexed: 11/18/2022] Open
Abstract
Molecular diagnosis of monogenic diabetes and obesity is of paramount importance for both the patient and society, as it can result in personalized medicine associated with a better life and it eventually saves health care spending. Genetic clinical laboratories are currently switching from Sanger sequencing to next-generation sequencing (NGS) approaches but choosing the optimal protocols is not easy. Here, we compared the sequencing coverage of 43 genes involved in monogenic forms of diabetes and obesity, and variant detection rates, resulting from four enrichment methods based on the sonication of DNA (Agilent SureSelect, RainDance technologies), or using enzymes for DNA fragmentation (Illumina Nextera, Agilent HaloPlex). We analyzed coding exons and untranslated regions of the 43 genes involved in monogenic diabetes and obesity. We found that none of the methods achieves yet full sequencing of the gene targets. Nonetheless, the RainDance, SureSelect and HaloPlex enrichment methods led to the best sequencing coverage of the targets; while the Nextera method resulted in the poorest sequencing coverage. Although the sequencing coverage was high, we unexpectedly found that the HaloPlex method missed 20% of variants detected by the three other methods and Nextera missed 10%. The question of which NGS technique for genetic diagnosis yields the highest diagnosis rate is frequently discussed in the literature and the response is still unclear. Here, we showed that the RainDance enrichment method as well as SureSelect, which are both based on the sonication of DNA, resulted in a good sequencing quality and variant detection, while the use of enzymes to fragment DNA (HaloPlex or Nextera) might not be the best strategy to get an accurate sequencing.
Collapse
Affiliation(s)
- Julien Philippe
- CNRS-UMR8199, Lille Pasteur Institute, Lille, France
- Lille University, Lille, France
- European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
| | - Mehdi Derhourhi
- CNRS-UMR8199, Lille Pasteur Institute, Lille, France
- Lille University, Lille, France
- European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
| | - Emmanuelle Durand
- CNRS-UMR8199, Lille Pasteur Institute, Lille, France
- Lille University, Lille, France
- European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
| | - Emmanuel Vaillant
- CNRS-UMR8199, Lille Pasteur Institute, Lille, France
- Lille University, Lille, France
- European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
| | - Aurélie Dechaume
- CNRS-UMR8199, Lille Pasteur Institute, Lille, France
- Lille University, Lille, France
- European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
| | - Iandry Rabearivelo
- CNRS-UMR8199, Lille Pasteur Institute, Lille, France
- Lille University, Lille, France
- European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
| | - Véronique Dhennin
- CNRS-UMR8199, Lille Pasteur Institute, Lille, France
- Lille University, Lille, France
- European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
| | - Martine Vaxillaire
- CNRS-UMR8199, Lille Pasteur Institute, Lille, France
- Lille University, Lille, France
- European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
| | - Franck De Graeve
- CNRS-UMR8199, Lille Pasteur Institute, Lille, France
- Lille University, Lille, France
- European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
| | - Olivier Sand
- CNRS-UMR8199, Lille Pasteur Institute, Lille, France
- Lille University, Lille, France
- European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
| | - Philippe Froguel
- CNRS-UMR8199, Lille Pasteur Institute, Lille, France
- Lille University, Lille, France
- European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, London, United Kingdom
- * E-mail: (PF); (AB)
| | - Amélie Bonnefond
- CNRS-UMR8199, Lille Pasteur Institute, Lille, France
- Lille University, Lille, France
- European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
- * E-mail: (PF); (AB)
| |
Collapse
|
92
|
Carmody D, Lindauer KL, Naylor RN. Adolescent non-adherence reveals a genetic cause for diabetes. Diabet Med 2015; 32:e20-3. [PMID: 25494859 PMCID: PMC4640698 DOI: 10.1111/dme.12669] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/08/2014] [Indexed: 01/04/2023]
Abstract
BACKGROUND Glucokinase related maturity-onset diabetes of the young (GCK-MODY) is a form of monogenic diabetes characterized by mildly elevated fasting blood sugars and HbA(1c) typically ranging from 38 to 60 mmol/mol (5.6-7.6%). It is frequently unrecognized or misdiagnosed as Type 1 or Type 2 diabetes, resulting in unnecessary pharmacologic therapy. CASE REPORT Two brothers were initially diagnosed with Type 1 diabetes mellitus. The brothers were maintained on a total daily insulin dose of 0.3-0.5 units/kg/day and had HbA(1c) values of 40-51 mmol/mol (5.8-6.8%) throughout childhood. After over 10 years of insulin treatment, the younger brother chose to discontinue his insulin therapy without informing his family or his clinician. Following cessation of insulin treatment, he did not experience any change in overall glycaemic control. Subsequent research-based genetic testing revealed a deleterious mutation in GCK in both brothers (p.Val182Met). The older brother subsequently discontinued insulin therapy and both have remained off all pharmacological therapy with good glycaemic control (HbA(1c) < 53 mmol/mol, < 7%) and no adverse complications. The family was advised to seek confirmatory genetic testing in the father and other relatives with hyperglycaemia. CONCLUSION The family described above exemplifies the rationale behind considering a genetic cause when evaluating every person with new-onset hyperglycaemia or those with atypical diabetes. The cost of genetic testing for the most common MODY causing genes may be offset by savings made in therapeutic costs. It is important that all clinicians supervising diabetes care recognize the cardinal features that distinguish GCK-MODY from other forms of diabetes.
Collapse
Affiliation(s)
- D Carmody
- Departments of Medicine and Pediatrics, Section of Adult and Pediatric Endocrinology, Diabetes, & Metabolism, University of Chicago, Illinois, USA
| | - K L Lindauer
- Departments of Medicine and Pediatrics, Section of Adult and Pediatric Endocrinology, Diabetes, & Metabolism, University of Chicago, Illinois, USA
| | - R N Naylor
- Departments of Medicine and Pediatrics, Section of Adult and Pediatric Endocrinology, Diabetes, & Metabolism, University of Chicago, Illinois, USA
| |
Collapse
|
93
|
Chapla A, Mruthyunjaya MD, Asha HS, Varghese D, Varshney M, Vasan SK, Venkatesan P, Nair V, Mathai S, Paul TV, Thomas N. Maturity onset diabetes of the young in India - a distinctive mutation pattern identified through targeted next-generation sequencing. Clin Endocrinol (Oxf) 2015; 82:533-42. [PMID: 25041077 DOI: 10.1111/cen.12541] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/01/2014] [Accepted: 06/30/2014] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To establish and utilize a Next-Generation Sequencing (NGS)-based strategy to screen for maturity onset diabetes of the young (MODY) gene mutations in subjects with early-onset diabetes. PATIENTS AND METHODS Maturity onset diabetes of the young (MODY) genetic testing was carried out in 80 subjects of Asian Indian origin with young onset diabetes to identify mutations in a comprehensive panel of ten MODY genes. A novel multiplex polymerase chain reaction (PCR)-based target enrichment was established, followed by NGS on the Ion Torrent Personal Genome Machine (PGM). All the mutations and rare variants were confirmed by Sanger sequencing. RESULTS We identified mutations in 11 (19%) of the 56 clinically diagnosed MODY subjects and seven of these mutations were novel. The identified mutations include p.H241Q, p.E59Q, c.-162G>A 5' UTR in NEUROD1, p.V169I cosegregating with c.493-4G>A and c.493-20C>T, p.E271K in HNF4A, p.A501S in HNF1A, p.E440X in GCK, p.V177M in PDX1, p.L92F in HNF1B and p.R31L in PAX4 genes. Interestingly, two patients with NEUROD1 mutation were also positive for the p.E224K mutation in PDX1 gene. These patients with coexisting NEUROD1-PDX1 mutations showed a marked reduction in glucose-induced insulin secretion. All 24 subjects who had not met the clinical criteria of MODY were negative for the mutations. To the best of our knowledge, this is the first report of PDX1, HNF1B, NEUROD1 and PAX4 mutations from India. CONCLUSIONS Multiplex PCR coupled with NGS provides a rapid, cost-effective and accurate method for comprehensive parallelized genetic testing of MODY. When compared to earlier reports, we have identified a higher frequency and a novel digenic mutation pattern involving NEUROD1 and PDX1 genes.
Collapse
Affiliation(s)
- Aaron Chapla
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Sargis RM. Metabolic disruption in context: Clinical avenues for synergistic perturbations in energy homeostasis by endocrine disrupting chemicals. ENDOCRINE DISRUPTORS (AUSTIN, TEX.) 2015; 3:e1080788. [PMID: 27011951 PMCID: PMC4801233 DOI: 10.1080/23273747.2015.1080788] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The global epidemic of metabolic disease is a clear and present danger to both individual and societal health. Understanding the myriad factors contributing to obesity and diabetes is essential for curbing their decades-long expansion. Emerging data implicate environmental endocrine disrupting chemicals (EDCs) in the pathogenesis of metabolic diseases such as obesity and diabetes. The phenylsulfamide fungicide and anti-fouling agent tolylfluanid (TF) was recently added to the list of EDCs promoting metabolic dysfunction. Dietary exposure to this novel metabolic disruptor promoted weight gain, increased adiposity, and glucose intolerance as well as systemic and cellular insulin resistance. Interestingly, the increase in body weight and adipose mass was not a consequence of increased food consumption; rather, it may have resulted from disruptions in diurnal patterns of energy intake, raising the possibility that EDCs may promote metabolic dysfunction through alterations in circadian rhythms. While these studies provide further evidence that EDCs may promote the development of obesity and diabetes, many questions remain regarding the clinical factors that modulate patient-specific consequences of EDC exposure, including the impact of genetics, diet, lifestyle, underlying disease, pharmacological treatments, and clinical states of fat redistribution. Currently, little is known regarding the impact of these factors on an individual's susceptibility to environmentally-mediated metabolic disruption. Advances in these areas will be critical for translating EDC science into the clinic to enable physicians to stratify an individual's risk of developing EDC-induced metabolic disease and to provide direction for treating exposed patients.
Collapse
Affiliation(s)
- Robert M Sargis
- Committee on Molecular Metabolism and Nutrition; Kovler Diabetes Center; Section of Endocrinology, Diabetes, and Metabolism; Department of Medicine; University of Chicago; Chicago, IL USA
| |
Collapse
|
95
|
Alkorta-Aranburu G, Carmody D, Cheng Y, Nelakuditi V, Ma L, Dickens JT, Das S, Greeley S, del Gaudio D. Phenotypic heterogeneity in monogenic diabetes: the clinical and diagnostic utility of a gene panel-based next-generation sequencing approach. Mol Genet Metab 2014; 113:315-320. [PMID: 25306193 PMCID: PMC4756642 DOI: 10.1016/j.ymgme.2014.09.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 12/20/2022]
Abstract
Single gene mutations that primarily affect pancreatic β-cell function account for approximately 1-2% of all cases of diabetes. Overlapping clinical features with common forms of diabetes makes diagnosis of monogenic diabetes challenging. A genetic diagnosis often leads to significant alterations in treatment, allows better prediction of disease prognosis and progression, and has implications for family members. Currently, genetic testing for monogenic diabetes relies on selection of appropriate individual genes for analysis based on the availability of often-limited phenotypic information, decreasing the likelihood of making a genetic diagnosis. We thus developed a targeted next-generation sequencing (NGS) assay for the detection of mutations in 36 genes known to cause monogenic forms of diabetes, including transient or permanent neonatal diabetes mellitus (TNDM or PNDM), maturity-onset diabetes of the young (MODY) and rare syndromic forms of diabetes. A total of 95 patient samples were analyzed: 19 with known causal mutations and 76 with a clinically suggestive phenotype but lacking a genetic diagnosis. All previously identified mutations were detected, validating our assay. Pathogenic sequence changes were identified in 19 out of 76 (25%) patients: 7 of 32 (22%) NDM cases, and 12 of 44 (27%) MODY cases. In 2 NDM patients the causal mutation was not expected as consanguinity was not reported and there were no clinical features aside from diabetes. A 3 year old patient with NDM diagnosed at 3 months of age, who previously tested negative for INS, KCNJ11 and ABCC8 mutations, was found to carry a novel homozygous mutation in EIF2AK3 (associated with Wolcott-Rallison syndrome), a gene not previously suspected because consanguinity, delayed growth, abnormal bone development and hepatic complications had not been reported. Similarly, another infant without a history of consanguinity was found to have a homozygous GCK mutation causing PNDM at birth. This study demonstrates the effectiveness of multi-gene panel analysis in uncovering molecular diagnoses in patients with monogenic forms of diabetes.
Collapse
Affiliation(s)
| | - D. Carmody
- Department of Medicine, Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, The University of Chicago, Chicago, IL, USA
- Department of Pediatrics, Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, The University of Chicago, Chicago, IL, USA
| | - Y.W. Cheng
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - V. Nelakuditi
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - L. Ma
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Jazzmyne T. Dickens
- Department of Medicine, Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, The University of Chicago, Chicago, IL, USA
- Department of Pediatrics, Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, The University of Chicago, Chicago, IL, USA
| | - S. Das
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - S.A.W. Greeley
- Department of Medicine, Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, The University of Chicago, Chicago, IL, USA
- Department of Pediatrics, Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, The University of Chicago, Chicago, IL, USA
| | - D. del Gaudio
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
- Corresponding author at: University of Chicago, 5841 S. Maryland Ave. MC.0077, Chicago, IL 60637, USA. Fax: +1 773 834 0556. (D. del Gaudio)
| |
Collapse
|
96
|
van der Zwaag AM, Weinreich SS, Bosma AR, Rigter T, Losekoot M, Henneman L, Cornel MC. Current and best practices of genetic testing for maturity onset diabetes of the young: views of professional experts. Public Health Genomics 2014; 18:52-9. [PMID: 25341961 DOI: 10.1159/000367963] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/29/2014] [Indexed: 11/19/2022] Open
Abstract
AIMS Currently, many patients with maturity onset diabetes of the young (MODY) are undiagnosed or misdiagnosed with type 1 or 2 diabetes. This study aims to assess professional experts' views on factors which may influence the current practice of genetic testing for MODY and to explore next steps toward best practice. METHODS Twelve semistructured interviews were conducted with professional experts. These experts included physicians with potential or actual experience with genetic testing for MODY, representatives of (para)medical professional associations and a staff member of a diabetes patients' organization. RESULTS Participants differed in their valuation of genetic testing for MODY. While most considered the test useful, not all were convinced of its clinical utility. Other factors mentioned to influence current practice were: (perceived lack of) possibilities for treatment and prevention, patients' perspectives and perceived barriers, such as costs and a lack of knowledge and awareness. Participants agreed that guidelines would be helpful to facilitate expedient testing. CONCLUSIONS This study identified next steps that should be taken to improve genetic diagnosis and care for patients with MODY. Besides the development of a consensus guideline, other suggestions included more education of healthcare professionals, a clearer allocation of responsibilities with regard to genetic testing for MODY and further research.
Collapse
Affiliation(s)
- Angeli M van der Zwaag
- Section of Community Genetics, Department of Clinical Genetics, EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
97
|
Rubio-Cabezas O, Hattersley AT, Njølstad PR, Mlynarski W, Ellard S, White N, Chi DV, Craig ME. ISPAD Clinical Practice Consensus Guidelines 2014. The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes 2014; 15 Suppl 20:47-64. [PMID: 25182307 DOI: 10.1111/pedi.12192] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 12/18/2022] Open
Affiliation(s)
- Oscar Rubio-Cabezas
- Department of Paediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|