51
|
The role of peripheral monocytes and macrophages in ischemic stroke. Neurol Sci 2020; 41:3589-3607. [PMID: 33009963 DOI: 10.1007/s10072-020-04777-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023]
Abstract
After acute ischemic stroke (AIS), peripheral monocytes infiltrate into the lesion site within 24 h, peak at 3 to 7 days, and then differentiate into macrophages. Traditionally, monocytes/macrophages (MMs) are thought to play a deleterious role in AIS. Depletion of MMs in the acute phase can alleviate brain injury induced by ischemia. However, several studies have shown that MMs have anti-inflammatory functions, participate in angiogenesis, phagocytose necrotic neurons, and promote neurovascular repair. Therefore, MMs play dual roles in ischemic stroke, depending mainly upon the MM microenvironment and the window of time post-stroke. Because activated microglia and MMs are similar in morphology and function, previous studies have often investigated them together. However, recent studies have used special methods to distinguish MMs from microglia and have found that MMs have properties which differ from microglia. Here, we review the unique role of MMs and the interaction between MMs and neurovascular units, including neurons, astrocytes, microglia, and microvessels. Future therapeutics targeting MMs should regulate the polarization and subset transformation of the MMs at different stages of AIS rather than comprehensively suppressing MM infiltration and differentiation. In addition, more studies are needed to elucidate the cellular and molecular mechanisms of MM subsets and polarization during ischemic stroke.
Collapse
|
52
|
Han X, Vesely MD, Yang W, Sanmamed MF, Badri T, Alawa J, López-Giráldez F, Gaule P, Lee SW, Zhang JP, Nie X, Nassar A, Boto A, Flies DB, Zheng L, Kim TK, Moeckel GW, McNiff JM, Chen L. PD-1H (VISTA)-mediated suppression of autoimmunity in systemic and cutaneous lupus erythematosus. Sci Transl Med 2020; 11:11/522/eaax1159. [PMID: 31826980 DOI: 10.1126/scitranslmed.aax1159] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/21/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022]
Abstract
Systemic lupus erythematosus (SLE) and discoid lupus erythematosus (DLE) of the skin are autoimmune diseases characterized by inappropriate immune responses against self-proteins; the key elements that determine disease pathogenesis and progression are largely unknown. Here, we show that mice lacking immune inhibitory receptor VISTA or programmed death-1 homolog (PD-1H KO) on a BALB/c background spontaneously develop cutaneous and systemic autoimmune diseases resembling human lupus. Cutaneous lupus lesions of PD-1H KO mice have clustering of plasmacytoid dendritic cells (pDCs) similar to human DLE. Using mass cytometry, we identified proinflammatory neutrophils as critical early immune infiltrating cells within cutaneous lupus lesions of PD-1H KO mice. We also found that PD-1H is highly expressed on immune cells in human SLE, DLE lesions, and cutaneous lesions of MRL/lpr mice. A PD-1H agonistic monoclonal antibody in MRL/lpr mice reduces cutaneous disease, autoantibodies, inflammatory cytokines, chemokines, and immune cell expansion. Furthermore, PD-1H on both T cells and myeloid cells including neutrophils and pDCs could transmit inhibitory signals, resulting in reduced activation and function, establishing PD-1H as an inhibitory receptor on T cells and myeloid cells. On the basis of these findings, we propose that PD-1H is a critical element in the pathogenesis and progression of lupus, and PD-1H activation could be effective for treatment of systemic and cutaneous lupus.
Collapse
Affiliation(s)
- Xue Han
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Matthew D Vesely
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA.,Department of Dermatology, Yale University, New Haven, CT 06520, USA
| | - Wendy Yang
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Miguel F Sanmamed
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Ti Badri
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Jude Alawa
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Francesc López-Giráldez
- Department of Genetics, Yale University, New Haven, CT 06520, USA.,Yale Center for Genome Analysis, Yale University, New Haven, CT 06477, USA
| | - Patricia Gaule
- Department of Pathology, Yale University, New Haven, CT 06520, USA
| | - Sang Won Lee
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Jian-Ping Zhang
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Xinxin Nie
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Ala Nassar
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Agedi Boto
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA.,Department of Pathology, Yale University, New Haven, CT 06520, USA
| | - Dallas B Flies
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Linghua Zheng
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Tae Kon Kim
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA.,Department of Medicine, Yale University, New Haven, CT 06520, USA
| | | | - Jennifer M McNiff
- Department of Dermatology, Yale University, New Haven, CT 06520, USA.,Department of Pathology, Yale University, New Haven, CT 06520, USA
| | - Lieping Chen
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA. .,Department of Dermatology, Yale University, New Haven, CT 06520, USA.,Department of Medicine, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
53
|
Ilchmann-Diounou H, Menard S. Psychological Stress, Intestinal Barrier Dysfunctions, and Autoimmune Disorders: An Overview. Front Immunol 2020; 11:1823. [PMID: 32983091 PMCID: PMC7477358 DOI: 10.3389/fimmu.2020.01823] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Autoimmune disorders (ADs) are multifactorial diseases involving, genetic, epigenetic, and environmental factors characterized by an inappropriate immune response toward self-antigens. In the past decades, there has been a continuous rise in the incidence of ADs, which cannot be explained by genetic factors alone. Influence of psychological stress on the development or the course of autoimmune disorders has been discussed for a long time. Indeed, based on epidemiological studies, stress has been suggested to precede AD occurrence and to exacerbate symptoms. Furthermore, compiling data showed that most of ADs are associated with gastrointestinal symptoms, that is, microbiota dysbiosis, intestinal hyperpermeability, and intestinal inflammation. Interestingly, social stress (acute or chronic, in adult or in neonate) is a well-described intestinal disrupting factor. Taken together, those observations question a potential role of stress-induced defect of the intestinal barrier in the onset and/or the course of ADs. In this review, we aim to present evidences supporting the hypothesis for a role of stress-induced intestinal barrier disruption in the onset and/or the course of ADs. We will mainly focus on autoimmune type 1 diabetes, multiple sclerosis and systemic lupus erythematosus, ADs for which we could find sufficient circumstantial data to support this hypothesis. We excluded gastrointestinal (GI) ADs like coeliac disease to privilege ADs not focused on intestinal disorders to avoid confounding factors. Indeed, GIADs are characterized by antibodies directed against intestinal barrier actors.
Collapse
MESH Headings
- Animals
- Autoimmune Diseases/epidemiology
- Autoimmune Diseases/immunology
- Autoimmune Diseases/metabolism
- Autoimmune Diseases/microbiology
- Autoimmunity
- Diabetes Mellitus, Type 1/epidemiology
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/microbiology
- Dysbiosis
- Gastrointestinal Microbiome
- Host-Pathogen Interactions
- Humans
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/microbiology
- Lupus Erythematosus, Systemic/epidemiology
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Lupus Erythematosus, Systemic/microbiology
- Multiple Sclerosis/epidemiology
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/microbiology
- Permeability
- Risk Factors
- Stress, Psychological/epidemiology
- Stress, Psychological/immunology
- Stress, Psychological/metabolism
- Stress, Psychological/microbiology
Collapse
Affiliation(s)
| | - Sandrine Menard
- Neuro-Gastroenterology and Nutrition Team, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
54
|
Han S, Zhuang H, Lee PY, Li M, Yang L, Nigrovic PA, Reeves WH. NF-E2-Related Factor 2 Regulates Interferon Receptor Expression and Alters Macrophage Polarization in Lupus. Arthritis Rheumatol 2020; 72:1707-1720. [PMID: 32500632 DOI: 10.1002/art.41383] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 05/26/2020] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Pristane-induced lupus is associated with nonresolving inflammation and deficiency of proresolving macrophages. Proresolving nonclassic macrophages (NCMs) are less responsive to type I interferon (IFN) than classic macrophages (CMs; which are proinflammatory), reflecting their relative expression levels of the type I IFN receptor (IFNAR). This study was undertaken to investigate the regulation of IFNAR expression in macrophages. METHODS We carried out gene expression profiling of purified CMs and NCMs from mice treated with pristane (which develop lupus) or mineral oil (non-lupus controls). Macrophage differentiation and IFNAR expression were examined in mice treated with NF-E2-related factor 2 (Nrf2) activators and inhibitors and in Nrf2-deficient mice. Nrf2 activity was also assessed in blood cells from patients with systemic lupus erythematosus (SLE). Significant differences were determined by Student's t-test. RESULTS RNA sequencing revealed increased expression of genes regulated by the transcription factor Nrf2 in NCMs from mineral oil-treated versus pristane-treated mice and in NCMs versus CMs. The Nrf2 activator CDDO-imidazole (CDDO-Im) decreased CMs (P < 0.0001) and promoted the development of proresolving NCMs (P = 0.06), whereas the Nrf2 inhibitor brusatol increased CMs (P < 0.05) and decreased NCMs (P < 0.001). CDDO-Im decreased Ifnar1 (P < 0.001) and IFN-stimulated gene (ISG) expression in macrophages and alleviated oxidative stress (P < 0.05), whereas brusatol had the opposite effect (P < 0.01). Moreover, Ifnar1 and ISG expression levels were higher in Nrf2-knockout mice than controls (P < 0.05). As seen in mice with lupus, SLE patients showed evidence of low Nrf2 activity. CONCLUSION Our findings indicate that Nrf2 activation favors the resolution of chronic inflammation in lupus. Since autoantibody production and lupus nephritis depend on IFNAR signaling, the ability of Nrf2 activators to repolarize macrophages and reduce the INF signature suggests that these agents may warrant consideration for treating lupus.
Collapse
Affiliation(s)
| | | | - Pui Y Lee
- Boston Children's Hospital, Boston, Massachusetts
| | | | | | - Peter A Nigrovic
- Boston Children's Hospital and Brigham and Women's Hospital, Boston, Massachusetts
| | | |
Collapse
|
55
|
Miyagawa F, Tagaya Y, Ozato K, Horie K, Asada H. Inflammatory monocyte-derived dendritic cells mediate autoimmunity in murine model of systemic lupus erythematosus. J Transl Autoimmun 2020; 3:100060. [PMID: 32743540 PMCID: PMC7388367 DOI: 10.1016/j.jtauto.2020.100060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/18/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
Using a mouse model of systemic lupus erythematosus (SLE), we recently demonstrated that the two major manifestations of SLE are mechanistically independent because the type I IFN pathway leads to the autoantibody production whereas the NF-κB activation is sufficient for the development of glomerulonephritis. To further advance our understandings on the molecular pathways regulating the development of SLE, we studied the role of IRF8 because it controls both type I IFN and NF-κB pathways and saw that IRF8-deficient mice failed to develop either glomerulonephritis or the autoantibody production. Furthermore, these genetically engineered mice prompted us to realize the important role of Ly6Chigh inflammatory monocytes in the development of SLE. These monocytes migrate to the peritoneal cavity in WT and IRF7-deficient mice but not in IRF8-deficient mice, and there they produce both type I IFN and proinflammatory cytokines in WT mice, while in IRF7-deficient mice they only produce proinflammatory cytokines. Upon migration to the spleen, Ly6Chigh inflammatory monocytes differentiate into dendritic cells (DCs) which are capable of producing proinflammatory cytokines in response to dsDNA autoantigen. Collectively, type I IFN produced from inflammatory monocytes/monocyte-derived DCs might be essential for autoantibody production whereas proinflammatory cytokines produced from them might mediate tissue damages in this model. Our study reveals a specialized role for monocyte-derived antigen presenting cells in autoimmunity. Plasticity of monocyte might play an important role not only in the pathogenesis of the disease but also in flare-ups of the disease.
Collapse
Affiliation(s)
- Fumi Miyagawa
- Department of Dermatology, Nara Medical University School of Medicine, 840 Shijo, Kashihara, Nara, 634-8522, Japan
| | - Yutaka Tagaya
- Cell Biology Lab, Division of Infectious Agents and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Keiko Ozato
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kyoji Horie
- Department of Physiology II, Nara Medical University School of Medicine, 840 Shijo, Kashihara, Nara, 634-8522, Japan
| | - Hideo Asada
- Department of Dermatology, Nara Medical University School of Medicine, 840 Shijo, Kashihara, Nara, 634-8522, Japan
| |
Collapse
|
56
|
Evaluation of the Immunomodulatory Ability of Lactic Acid Bacteria Isolated from Feedlot Cattle Against Mastitis Using a Bovine Mammary Epithelial Cells In Vitro Assay. Pathogens 2020; 9:pathogens9050410. [PMID: 32466097 PMCID: PMC7281661 DOI: 10.3390/pathogens9050410] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/27/2022] Open
Abstract
Bovine mastitis, the inflammation of the mammary gland, affects the quality and quantity of milk yield. Mastitis control relies on single or multiple combinations of antibiotic therapy. Due to increasing antibiotic resistance in pathogens, the intramammary infusion of lactic acid bacteria (LAB) has been considered as a potential alternative to antibiotics for treating and preventing bovine mastitis through the improvement of the host immunity. Probiotic effects are a strain-dependent characteristic; therefore, candidate LAB strains have to be evaluated efficiently to find out the ones with the best potential. Here, we investigated LAB strains originally isolated from feedlot cattle’s environment regarding their ability in inducing the Toll-like receptor (TLR)-triggered inflammatory responses in bovine mammary epithelial (BME) cells in vitro. The BME cells were pre-stimulated with the LAB strains individually for 12, 24, and 48 h and then challenged with Escherichia coli-derived lipopolysaccharide (LPS) for 12 h. The mRNA expression of selected immune genes—interleukin 1 alpha (IL-1α), IL-1β, monocyte chemotactic protein 1 (MCP-1), IL-8, chemokine (C-X-C motif) ligand 2 (CXCL2), and CXCL3 were quantified by real-time quantitative PCR (RT-qPCR). Results indicated that pretreatment with some Lactobacillus strains were able to differentially regulate the LPS inflammatory response in BME cells; however, strain-dependent differences were found. The most remarkable effects were found for Lactobacillus acidophilus CRL2074, which reduced the expression of IL-1α, IL-1β, MCP-1, IL-8, and CXCL3, whereas Lactobacillus rhamnosus CRL2084 diminished IL-1β, MCP-1, and IL-8 expression. The pre-stimulation of BME cells with the CRL2074 strain resulted in the upregulated expression of three negative regulators of the TLRs, including the ubiquitin-editing enzyme A20 (also called tumor necrosis factor alpha-induced protein 3, TNFAIP3), single immunoglobin IL-1 single receptor (SIGIRR), and Toll interacting protein (Tollip) after the LPS challenge. The CRL2084 pre-stimulation upregulated only Tollip expression. Our results demonstrated that the L. acidophilus CRL2074 strain possess remarkable immunomodulatory abilities against LPS-induced inflammation in BME cells. This Lactobacillus strain could be used as candidate for in vivo testing due to its beneficial effects in bovine mastitis through intramammary infusion. Our findings also suggest that the BME cells immunoassay system could be of value for the in vitro evaluation of the immunomodulatory abilities of LAB against the inflammation resulting from the intramammary infection with mastitis-related pathogens.
Collapse
|
57
|
Pai RAL, Japp AS, Gonzalez M, Rasheed RF, Okumura M, Arenas D, Pierson SK, Powers V, Layman AAK, Kao C, Hakonarson H, van Rhee F, Betts MR, Kambayashi T, Fajgenbaum DC. Type I IFN response associated with mTOR activation in the TAFRO subtype of idiopathic multicentric Castleman disease. JCI Insight 2020; 5:135031. [PMID: 32376796 DOI: 10.1172/jci.insight.135031] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/08/2020] [Indexed: 12/31/2022] Open
Abstract
The TAFRO clinical subtype of idiopathic multicentric Castleman disease (iMCD-TAFRO) is a rare hematologic illness involving episodic disease flares of thrombocytopenia, anasarca, fever, reticulin myelofibrosis, renal dysfunction, and organomegaly (TAFRO) and progressive multiple organ dysfunction. We previously showed that the mTOR signaling pathway is elevated in lymph nodes of iMCD-TAFRO patients and that an mTOR inhibitor is effective in a small cohort of patients. However, the upstream mechanisms, cell types, and mediators involved in disease pathogenesis remain unknown. Here, we developed a targeted approach to identify candidate cellular drivers and mechanisms in iMCD-TAFRO through cellular and transcriptomic studies. Using paired iMCD-TAFRO PBMC samples collected during flare and remission, we identified T cell activation and alterations in NK cell and monocyte subset frequencies during iMCD-TAFRO flare. These changes were associated with increased Type I IFN (IFN-I) response gene signatures across CD8+ T cells, NK cells, and monocytes. Finally, we found that IFN-β stimulation of monocytes and T cells from iMCD-TAFRO patient remission samples induced increased mTOR activation compared with healthy donors, and this was abrogated with either mTORC1 or JAK1/2 inhibition. The data presented here support a potentially novel role for IFN-I signaling as a driver of increased mTOR signaling in iMCD-TAFRO.
Collapse
Affiliation(s)
| | - Alberto Sada Japp
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael Gonzalez
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Mariko Okumura
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | - Charlly Kao
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hakon Hakonarson
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Frits van Rhee
- University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Taku Kambayashi
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
58
|
Abstract
Laboratory animal models are beneficial when they recapitulate all or just some of the clinical and immunological manifestations of the disease. Various animals such as cats, rats, dogs, hamsters, guinea pigs, rabbits, horses, minks, pigs, and primates have been described lupus-like phenotype. However, a mouse has remained the preferable animal for scientific investigations as a result of their reduced lifespan, easy reproduction, markedly low costs, public acceptance, ease of genetic management, and the probability to stay under standardized conditions. It is highly challenging to establish a mouse model with all features of lupus because of the difficulty and the heterogeneity of the clinical features in systemic lupus erythematous (SLE). Additionally, due to the multiple differences between the mouse and human immune system, the direct translation usually fails. Each mouse model has specific characteristics and shares many subsets of aspects with the disease observed in humans, which gives researchers a tool to select their particular needs. Over 50 years, many mice models have been developed and used to dissect the pathogenesis of lupus, also to test novel drugs and therapies. In general, mice models that contribute considerably in SLE understanding can be divided into four groups: Spontaneous models, induced models, genetically modified models, along with humanizing mouse models that are the link between the mouse and human immune system. In this updated review, we will present what has been learned from different lupus mice models and how these models have contributed to a better understanding of lupus pathogenesis and treatment.
Collapse
Affiliation(s)
- Alya Halkom
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
59
|
Abdelhamid L, Cabana-Puig X, Swartwout B, Lee J, Li S, Sun S, Li Y, Ross AC, Cecere TE, LeRoith T, Werre SR, Wang H, Reilly CM, Luo XM. Retinoic Acid Exerts Disease Stage-Dependent Effects on Pristane-Induced Lupus. Front Immunol 2020; 11:408. [PMID: 32265909 PMCID: PMC7103630 DOI: 10.3389/fimmu.2020.00408] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/21/2020] [Indexed: 12/17/2022] Open
Abstract
We previously showed that all-trans-retinoic acid (tRA), an active metabolite of vitamin A, exacerbated pre-existing autoimmunity in lupus; however, its effects before the development of autoimmunity are unknown. Here, using a pristane-induced model, we show that tRA exerts differential effects when given at the initiation vs. continuation phase of lupus. Unlike tRA treatment during active disease, pre-pristane treatment with tRA aggravated glomerulonephritis through increasing renal expression of pro-fibrotic protein laminin β1, activating bone marrow conventional dendritic cells (cDCs), and upregulating the interaction of ICAM-1 and LFA-1 in the spleen, indicating an active process of leukocyte activation and trafficking. Transcriptomic analysis revealed that prior to lupus induction, tRA significantly upregulated the expression of genes associated with cDC activation and migration. Post-pristane tRA treatment, on the other hand, did not significantly alter the severity of glomerulonephritis; rather, it exerted immunosuppressive functions of decreasing circulatory and renal deposition of autoantibodies as well as suppressing the renal expression of proinflammatory cytokines and chemokines. Together, these findings suggest that tRA differentially modulate lupus-associated kidney inflammation depending on the time of administration. Interestingly, both pre- and post-pristane treatments with tRA reversed pristane-induced leaky gut and modulated the gut microbiota in a similar fashion, suggesting a gut microbiota-independent mechanism by which tRA affects the initiation vs. continuation phase of lupus.
Collapse
Affiliation(s)
- Leila Abdelhamid
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Xavier Cabana-Puig
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Brianna Swartwout
- Translational Biology, Medicine and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
| | - Jiyoung Lee
- Department of Crop and Soil Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Song Li
- Department of Crop and Soil Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Sha Sun
- Department of Development and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Yaqi Li
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States
| | - A Catharine Ross
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States
| | - Thomas E Cecere
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Stephen R Werre
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Haifeng Wang
- College of Animal Science, Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Christopher M Reilly
- Department of Cell Biology and Physiology, Edward via College of Osteopathic Medicine, Blacksburg, VA, United States
| | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
60
|
Dyevoich AM, Haas KM. Type I IFN, Ly6C + cells, and Phagocytes Support Suppression of Peritoneal Carcinomatosis Elicited by a TLR and CLR Agonist Combination. Mol Cancer Ther 2020; 19:1232-1242. [PMID: 32188623 DOI: 10.1158/1535-7163.mct-19-0885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 02/25/2020] [Accepted: 03/12/2020] [Indexed: 01/13/2023]
Abstract
Metastatic cancer involving spread to the peritoneal cavity is referred to as peritoneal carcinomatosis and has a very poor prognosis. Our previous study demonstrated a Toll-like receptor and C-type lectin receptor agonist pairing of monophosphoryl lipid A (MPL) and trehalose-6,6'-dicorynomycolate (TDCM) effectively inhibits tumor growth and ascites development following TA3-Ha and EL4 challenge through a mechanism dependent on B-1a cell-produced natural IgM and complement. In this study, we investigated additional players in the MPL/TDCM-elicited response. MPL/TDCM treatment rapidly increased type I IFN levels in the peritoneal cavity along with myeloid cell numbers, including macrophages and Ly6Chi monocytes. Type I IFN receptor (IFNAR1-/-) mice produced tumor-reactive IgM following MPL/TDCM treatment, but failed to recruit Ly6C+ monocytes and were not afforded protection during tumor challenges. Clodronate liposome depletion of phagocytic cells, as well as targeted depletion of Ly6C+ cells, also ablated MPL/TDCM-induced protection. Cytotoxic mediators known to be produced by these cells were required for effects. TNFα was required for effective TA3-Ha killing and nitric oxide was required for EL4 killing. Collectively, these data reveal a model whereby MPL/TDCM-elicited antitumor effects strongly depend on innate cell responses, with B-1a cell-produced tumor-reactive IgM and complement pairing with myeloid cell-produced cytotoxic mediators to effectively eradicate tumors in the peritoneal cavity.
Collapse
Affiliation(s)
- Allison M Dyevoich
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Karen M Haas
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina.
| |
Collapse
|
61
|
Fallah H, Sayad A, Ranjbaran F, Talebian F, Ghafouri-Fard S, Taheri M. IFNG/IFNG-AS1 expression level balance: implications for autism spectrum disorder. Metab Brain Dis 2020; 35:327-333. [PMID: 31728886 DOI: 10.1007/s11011-019-00510-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 10/17/2019] [Indexed: 12/23/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder associated with different epidemiological, genetic, epigenetic, and environmental factors. Although its etiology is not fully understood, immune dysfunction is implicated in this disease. Recently, a large number of genes encoding long noncoding RNAs (lncRNAs) were discovered which act as positive or negative regulators of neighboring target genes. The lncRNA, Interferon gamma-antisense RNA (IFNG-AS1), regulates expression levels of the Interferon gamma (IFNG) gene. In the present study, we investigated expression of IFNG and IFNG-AS1 in 50 children with ASD (15 females and 35 males, mean age: 6 ± 1.4 years) and 50 healthy controls (14 females and 36 males, mean age: 6 ± 1.74 years) by real time PCR technique. The results showed significant up-regulation of IFNG and down-regulation of IFNG-AS1 expression in children with ASD compared to controls (Fold change = 1.5, P < 0.0001; Fold change = -0.143, P = 0.013, respectively). The IFNG expression level increase was more pronounced in male ASD children (Fold change = 1.621; p < 0.0001). Our data reveal a functional disruption in the interactive network of IFNG/IFNG-AS1 regulation, which could be a contributing factor in the chronic inflammatory aspect of ASD. Our findings can help understanding the underlying contributors to ASD pathogenesis and find novel treatment options for children with ASD.
Collapse
Affiliation(s)
- Hamid Fallah
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezou Sayad
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | | | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
62
|
McCarthy MK, Reynoso GV, Winkler ES, Mack M, Diamond MS, Hickman HD, Morrison TE. MyD88-dependent influx of monocytes and neutrophils impairs lymph node B cell responses to chikungunya virus infection via Irf5, Nos2 and Nox2. PLoS Pathog 2020; 16:e1008292. [PMID: 31999809 PMCID: PMC7012455 DOI: 10.1371/journal.ppat.1008292] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/11/2020] [Accepted: 12/22/2019] [Indexed: 12/21/2022] Open
Abstract
Humoral immune responses initiate in the lymph node draining the site of viral infection (dLN). Some viruses subvert LN B cell activation; however, our knowledge of viral hindrance of B cell responses of important human pathogens is lacking. Here, we define mechanisms whereby chikungunya virus (CHIKV), a mosquito-transmitted RNA virus that causes outbreaks of acute and chronic arthritis in humans, hinders dLN antiviral B cell responses. Infection of WT mice with pathogenic, but not acutely cleared CHIKV, induced MyD88-dependent recruitment of monocytes and neutrophils to the dLN. Blocking this influx improved lymphocyte accumulation, dLN organization, and CHIKV-specific B cell responses. Both inducible nitric oxide synthase (iNOS) and the phagocyte NADPH oxidase (Nox2) contributed to impaired dLN organization and function. Infiltrating monocytes expressed iNOS through a local IRF5- and IFNAR1-dependent pathway that was partially TLR7-dependent. Together, our data suggest that pathogenic CHIKV triggers the influx and activation of monocytes and neutrophils in the dLN that impairs virus-specific B cell responses. Elucidating mechanisms by which viruses subvert B cell immunity and establish persistent infection is essential for the development of new therapeutic strategies against chronic viral infections. The humoral immune response initiates in the lymph node draining the site of viral infection. However, how persistent viruses evade B cell responses is poorly understood. In this study, we find that infection with pathogenic, persistent chikungunya virus triggers rapid recruitment of neutrophils and monocytes to the draining lymph node, which impair structural organization, lymphocyte accumulation, and downstream virus-specific B cell responses that are important for control of infection. This work enhances our understanding of the pathogenesis of acute and chronic CHIKV disease and highlights how local innate immune responses in draining lymphoid tissue dictate the effectiveness of downstream adaptive immunity.
Collapse
Affiliation(s)
- Mary K. McCarthy
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Glennys V. Reynoso
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Microbiology and Immunology, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, United States of America
| | - Emma S. Winkler
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Matthias Mack
- Regensburg University Medical Center, Regensburg, Germany
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Heather D. Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Microbiology and Immunology, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, United States of America
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
63
|
Han S, Zhuang H, Lee PY, Li M, Yang L, Nigrovic PA, Reeves WH. Differential Responsiveness of Monocyte and Macrophage Subsets to Interferon. Arthritis Rheumatol 2020; 72:100-113. [PMID: 31390156 PMCID: PMC6935410 DOI: 10.1002/art.41072] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Peripheral blood mononuclear cells (PBMCs) in systemic lupus erythematosus (SLE) patients exhibit a gene expression program (interferon [IFN] signature) that is attributed to overproduction of type I IFNs by plasmacytoid dendritic cells. Type I IFNs have been thought to play a role in the pathogenesis of SLE. This study was undertaken to examine an unexpected influence of monocyte/macrophages on the IFN signature. METHODS Proinflammatory (classic) and antiinflammatory (nonclassic) monocyte/macrophages were sorted from mice and analyzed by RNA sequencing and quantitative polymerase chain reaction (qPCR). Type I IFN-α/β/ω receptor (IFNAR-1) expression was determined by qPCR and flow cytometry. Macrophages were stimulated in vitro with IFNα, and pSTAT1was measured. RESULTS Transcriptional profiling of peritoneal macrophages from mice with pristane-induced SLE unexpectedly indicated a strong IFN signature in classic, but not nonclassic, monocyte/macrophages exposed to the same type I IFN concentrations. Ifnar1 messenger RNA and IFNAR surface staining were higher in classic monocyte/macrophages versus nonclassic monocyte/macrophages (P < 0.0001 and P < 0.05, respectively, by Student's t-test). Nonclassic monocyte/macrophages were also relatively insensitive to IFNα-driven STAT1 phosphorylation. Humans exhibited a similar pattern: higher IFNAR expression (P < 0.0001 by Student's t-test) and IFNα-stimulated gene expression (P < 0.01 by paired Wilcoxon's rank sum test) in classic monocyte/macrophages and lower levels in nonclassic monocyte/macrophages. CONCLUSION This study revealed that the relative abundance of different monocyte/macrophage subsets helps determine the magnitude of the IFN signature. Responsiveness to IFNα signaling reflects differences in IFNAR expression in classic (high IFNAR) compared to nonclassic (low IFNAR) monocyte/macrophages. Thus, the IFN signature depends on both type I IFN production and the responsiveness of monocyte/macrophages to IFNAR signaling.
Collapse
Affiliation(s)
| | | | - Pui Y Lee
- Boston Children's Hospital, Boston, Massachusetts
| | | | | | - Peter A Nigrovic
- Boston Children's Hospital and Brigham and Women's Hospital, Boston, Massachusetts
| | | |
Collapse
|
64
|
Read SA, Wijaya R, Ramezani-Moghadam M, Tay E, Schibeci S, Liddle C, Lam VWT, Yuen L, Douglas MW, Booth D, George J, Ahlenstiel G. Macrophage Coordination of the Interferon Lambda Immune Response. Front Immunol 2019; 10:2674. [PMID: 31798594 PMCID: PMC6878940 DOI: 10.3389/fimmu.2019.02674] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022] Open
Abstract
Lambda interferons (IFN-λs) are a major component of the innate immune defense to viruses, bacteria, and fungi. In human liver, IFN-λ not only drives antiviral responses, but also promotes inflammation and fibrosis in viral and non-viral diseases. Here we demonstrate that macrophages are primary responders to IFN-λ, uniquely positioned to bridge the gap between IFN-λ producing cells and lymphocyte populations that are not intrinsically responsive to IFN-λ. While CD14+ monocytes do not express the IFN-λ receptor, IFNLR1, sensitivity is quickly gained upon differentiation to macrophages in vitro. IFN-λ stimulates macrophage cytotoxicity and phagocytosis as well as the secretion of pro-inflammatory cytokines and interferon stimulated genes that mediate immune cell chemotaxis and effector functions. In particular, IFN-λ induced CCR5 and CXCR3 chemokines, stimulating T and NK cell migration, as well as subsequent NK cell cytotoxicity. Using immunofluorescence and cell sorting techniques, we confirmed that human liver macrophages expressing CD14 and CD68 are highly responsive to IFN-λ ex vivo. Together, these data highlight a novel role for macrophages in shaping IFN-λ dependent immune responses both directly through pro-inflammatory activity and indirectly by recruiting and activating IFN-λ unresponsive lymphocytes.
Collapse
Affiliation(s)
- Scott A Read
- Blacktown Medical School, Western Sydney University, Blacktown, NSW, Australia.,Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Ratna Wijaya
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Mehdi Ramezani-Moghadam
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Enoch Tay
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Steve Schibeci
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Christopher Liddle
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Vincent W T Lam
- Department of Upper Gastrointestinal Surgery, Westmead Hospital, Westmead, NSW, Australia.,Discipline of Surgery, University of Sydney, Sydney, NSW, Australia
| | - Lawrence Yuen
- Department of Upper Gastrointestinal Surgery, Westmead Hospital, Westmead, NSW, Australia.,Discipline of Surgery, University of Sydney, Sydney, NSW, Australia
| | - Mark W Douglas
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia.,Centre for Infectious Diseases and Microbiology, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney at Westmead Hospital, Westmead, NSW, Australia
| | - David Booth
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Golo Ahlenstiel
- Blacktown Medical School, Western Sydney University, Blacktown, NSW, Australia.,Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia.,Blacktown Hospital, Western Sydney Local Health District (WSLHD), Blacktown, NSW, Australia
| |
Collapse
|
65
|
Galectin-3 orchestrates the histology of mesentery and protects liver during lupus-like syndrome induced by pristane. Sci Rep 2019; 9:14620. [PMID: 31601823 PMCID: PMC6786989 DOI: 10.1038/s41598-019-50564-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Abstract
Galectin-3 (Gal-3) controls intercellular and cell-extracellular matrix interactions during immunological responses. In chronic inflammation, Gal-3 is associated with fibrotic events, regulates B cell differentiation and delays lupus progression. Gal-3 deficient mice (Lgals3−/−) have intense germinal center formation and atypical plasma cell generation correlated to high levels IgG, IgE, and IgA. Here, we used pristane (2,6,10,14-tetramethylpentadecane) to induce lupus-like syndrome in Lgals3−/− and Lgals3+/+ BALB/c mice. Mesentery and peritoneal cells were monitored because promptly react to pristane injected in the peritoneal cavity. For the first time, mesenteric tissues have been associated to the pathogenesis of experimental lupus-like syndrome. In Lgals3+/+ pristane-induced mice, mesentery was hallmarked by intense fibrogranulomatous reaction restricted to submesothelial regions and organized niches containing macrophages and B lymphocytes and plasma cells. In contrast, Lgals3−/− pristane-treated mice had diffuse mesenteric fibrosis affecting submesothelium and peripheral tissues, atypical M1/M2 macrophage polarization and significant DLL1+ cells expansion, suggesting possible involvement of Notch/Delta pathways in the disease. Early inflammatory reaction to pristane was characterized by significant disturbances on monocyte recruitment, macrophage differentiation and dendritic cell (DC) responses in the peritoneal cavity of pristane-induced Lgals3−/− mice. A correlative analysis showed that mesenteric damages in the absence of Gal-3 were directly associated with severe portal inflammation and hepatitis. In conclusion, it has suggested that Gal-3 orchestrates histological organization in the mesentery and prevents lupoid hepatitis in experimental lupus-like syndrome by controlling macrophage polarization, Notch signaling pathways and DC differentiation in mesenteric structures.
Collapse
|
66
|
Yu F, Le ZS, Chen LH, Qian H, Yu B, Chen WH. Identification of Biomolecular Information in Rotenone-Induced Cellular Model of Parkinson's Disease by Public Microarray Data Analysis. J Comput Biol 2019; 27:888-903. [PMID: 31593492 DOI: 10.1089/cmb.2019.0151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To explore the expression changes of genes and the pathological processes-related genetic information in Parkinson's disease (PD) model induced by rotenone. The microarray data set "GSE37178" was downloaded from Gene Expression Omnibus database. Differentially expression genes (DEGs) at different concentration and time points were examined and clustered using Mfuzz. Functional enrichment was analyzed with The Database for Annotation, Visualization and Integrated Discovery. Search Tool for the Retrieval of Interacting Genes was used to perform the protein-protein interaction (PPI) networks, and functional module analysis of PPI was constructed with Cytoscape. Moreover, transcription factors (TFs) and microRNA (miRNA) target were screened with TRRUST and WebGestalt GAST, respectively. In total, 680 DEGs were examined in the group with rotenone treatment. Clustering analysis revealed that 115 genes presented a consistent rising trend, and 138 genes presented a falling trend. Functional enrichment analysis uncovered that the upregulated genes associated with "type I interferon signaling pathway," and the downregulated genes were related to "proteasome-mediated ubiquitin-dependent protein catabolic process." The PPI network included 156 nodes and 298 interactions, and ISG15, RRM2, FBXW11, and FOXM1 were the hub genes. Meanwhile, 38 TF-target and 269 miRNA-target interactions were obtained; the mRNAs of the MIR-181 family have more target genes, such as TRIM13. Our study showed that aberrant expression of ISG15, RRM2, FBXW11, FOXM1, and MIR-181 family were associated with pathological processes in PD, and they could be the research focuses to further investigate the mechanism of PD.
Collapse
Affiliation(s)
- Fan Yu
- Department of Rehabilitation, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhong-Sen Le
- Department of Neurosurgery, Fuyang Hospital of Anhui Medical University, Fuyang, China
| | - Li-Hua Chen
- Department of Rehabilitation, Shanghai Fifth Rehabilitation Hospital, Shanghai, China
| | - Hong Qian
- Department of Rehabilitation, Shanghai Fifth Rehabilitation Hospital, Shanghai, China
| | - Bo Yu
- Department of Rehabilitation, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wen-Hua Chen
- Department of Rehabilitation, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
67
|
Alpha-1-Antitrypsin Ameliorates Pristane Induced Diffuse Alveolar Hemorrhage in Mice. J Clin Med 2019; 8:jcm8091341. [PMID: 31470606 PMCID: PMC6780888 DOI: 10.3390/jcm8091341] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022] Open
Abstract
Diffuse alveolar hemorrhage (DAH) is a fatal complication in patients with lupus. DAH can be induced in B6 mice by an intraperitoneal injection of pristane. Since human alpha-1-antitrypsin (hAAT) is an anti-inflammatory and immuno-regulatory protein, we investigated the protective effect of hAAT against pristane-induced DAH in B6 mice and hAAT transgenic (hAAT-Tg) mice. We first showed that hAAT Tg expression lowers TNF-α production in B cells, as well as CD4+ T cells in untreated mice. Conversely, the frequency of regulatory CD4+CD25+ and CD4+CD25-IL-10+ cells was significantly higher in hAAT-Tg than in B6 mice. This confirmed the anti-inflammatory effect of hAAT that was observed even at steady state. One week after a pristane injection, the frequency of peritoneal Ly6Chi inflammatory monocytes and neutrophils in hAAT-Tg mice was significantly lower than that in B6 mice. Importantly, pristane-induced DAH was completely prevented in hAAT-Tg mice and this was associated with a modulation of anti- to pro-inflammatory myeloid cell ratio/balance. We also showed that treatment with hAAT decreased the severity of DAH in B6 mice. These results showed for the first time that hAAT has a therapeutic potential for the treatment of DAH.
Collapse
|
68
|
Toxoplasma gondii effector TgIST blocks type I interferon signaling to promote infection. Proc Natl Acad Sci U S A 2019; 116:17480-17491. [PMID: 31413201 DOI: 10.1073/pnas.1904637116] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In contrast to the importance of type II interferon-γ (IFN-γ) in control of toxoplasmosis, the role of type I IFN is less clear. We demonstrate here that TgIST, a secreted effector previously implicated in blocking type II IFN-γ signaling, also blocked IFN-β responses by inhibiting STAT1/STAT2-mediated transcription in infected cells. Consistent with a role for type I IFN in cell intrinsic control, ∆Tgist mutants were more susceptible to growth inhibition by murine and human macrophages activated with IFN-β. Additionally, type I IFN was important for production of IFN-γ by natural killer (NK) cells and recruitment of inflammatory monocytes at the site of infection. Mice lacking type I IFN receptors (Ifnar1-/-) showed increased mortality following infection with wild-type parasites and decreased virulence of ∆Tgist parasites was restored in Ifnar1-/- mice. The findings highlight the importance of type I IFN in control of toxoplasmosis and illuminate a parasite mechanism to counteract the effects of both type I and II IFN-mediated host defenses.
Collapse
|
69
|
Lee PY, Nelson-Maney N, Huang Y, Levescot A, Wang Q, Wei K, Cunin P, Li Y, Lederer JA, Zhuang H, Han S, Kim EY, Reeves WH, Nigrovic PA. High-dimensional analysis reveals a pathogenic role of inflammatory monocytes in experimental diffuse alveolar hemorrhage. JCI Insight 2019; 4:129703. [PMID: 31391335 DOI: 10.1172/jci.insight.129703] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/27/2019] [Indexed: 12/24/2022] Open
Abstract
Diffuse alveolar hemorrhage (DAH) is a life-threatening pulmonary complication associated with systemic lupus erythematosus, vasculitis, and stem cell transplant. Little is known about the pathophysiology of DAH, and no targeted therapy is currently available. Pristane treatment in mice induces systemic autoimmunity and lung hemorrhage that recapitulates hallmark pathologic features of human DAH. Using this experimental model, we performed high-dimensional analysis of lung immune cells in DAH by mass cytometry and single-cell RNA sequencing. We found a large influx of myeloid cells to the lungs in DAH and defined the gene expression profile of infiltrating monocytes. Bone marrow-derived inflammatory monocytes actively migrated to the lungs and homed adjacent to blood vessels. Using 3 models of monocyte deficiency and complementary transfer studies, we established a central role of inflammatory monocytes in the development of DAH. We further found that the myeloid transcription factor interferon regulatory factor 8 is essential to the development of both DAH and type I interferon-dependent autoimmunity. These findings collectively reveal monocytes as a potential treatment target in DAH.
Collapse
Affiliation(s)
- Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA.,Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Nathan Nelson-Maney
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Yuelong Huang
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Anaïs Levescot
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Qiang Wang
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Kevin Wei
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Pierre Cunin
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Yi Li
- Division of Rheumatology, Beth Israel Deaconess Hospital, Boston, Massachusetts, USA
| | - James A Lederer
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Haoyang Zhuang
- Division of Rheumatology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Shuhong Han
- Division of Rheumatology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Edy Y Kim
- Department of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Westley H Reeves
- Division of Rheumatology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA.,Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
70
|
Kumaran Satyanarayanan S, El Kebir D, Soboh S, Butenko S, Sekheri M, Saadi J, Peled N, Assi S, Othman A, Schif-Zuck S, Feuermann Y, Barkan D, Sher N, Filep JG, Ariel A. IFN-β is a macrophage-derived effector cytokine facilitating the resolution of bacterial inflammation. Nat Commun 2019; 10:3471. [PMID: 31375662 PMCID: PMC6677895 DOI: 10.1038/s41467-019-10903-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 06/05/2019] [Indexed: 12/31/2022] Open
Abstract
The uptake of apoptotic polymorphonuclear cells (PMN) by macrophages is critical for timely resolution of inflammation. High-burden uptake of apoptotic cells is associated with loss of phagocytosis in resolution phase macrophages. Here, using a transcriptomic analysis of macrophage subsets, we show that non-phagocytic resolution phase macrophages express a distinct IFN-β-related gene signature in mice. We also report elevated levels of IFN-β in peritoneal and broncho-alveolar exudates in mice during the resolution of peritonitis and pneumonia, respectively. Elimination of endogenous IFN-β impairs, whereas treatment with exogenous IFN-β enhances, bacterial clearance, PMN apoptosis, efferocytosis and macrophage reprogramming. STAT3 signalling in response to IFN-β promotes apoptosis of human PMNs. Finally, uptake of apoptotic cells promotes loss of phagocytic capacity in macrophages alongside decreased surface expression of efferocytic receptors in vivo. Collectively, these results identify IFN-β produced by resolution phase macrophages as an effector cytokine in resolving bacterial inflammation.
Collapse
Affiliation(s)
| | - Driss El Kebir
- Department of Pathology and Cell Biology, University of Montreal, and Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, H1T 2M4, Canada
| | - Soaad Soboh
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838, Israel
| | - Sergei Butenko
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838, Israel
| | - Meriem Sekheri
- Department of Pathology and Cell Biology, University of Montreal, and Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, H1T 2M4, Canada
| | - Janan Saadi
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838, Israel
| | - Neta Peled
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838, Israel
| | - Simaan Assi
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838, Israel
| | - Amira Othman
- Department of Pathology and Cell Biology, University of Montreal, and Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, H1T 2M4, Canada
| | - Sagie Schif-Zuck
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838, Israel
| | | | - Dalit Barkan
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838, Israel
| | - Noa Sher
- Tauber Bioinformatics Center, University of Haifa, Haifa, 3498838, Israel
| | - János G Filep
- Department of Pathology and Cell Biology, University of Montreal, and Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, H1T 2M4, Canada.
| | - Amiram Ariel
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838, Israel.
| |
Collapse
|
71
|
Channappanavar R, Fehr AR, Zheng J, Wohlford-Lenane C, Abrahante JE, Mack M, Sompallae R, McCray PB, Meyerholz DK, Perlman S. IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes. J Clin Invest 2019; 129:3625-3639. [PMID: 31355779 DOI: 10.1172/jci126363] [Citation(s) in RCA: 428] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
Type 1 IFNs (IFN-I) generally protect mammalian hosts from virus infections, but in some cases, IFN-I is pathogenic. Because IFN-I is protective, it is commonly used to treat virus infections for which no specific approved drug or vaccine is available. The Middle East respiratory syndrome-coronavirus (MERS-CoV) is such an infection, yet little is known about the role of IFN-I in this setting. Here, we show that IFN-I signaling is protective during MERS-CoV infection. Blocking IFN-I signaling resulted in delayed virus clearance, enhanced neutrophil infiltration, and impaired MERS-CoV-specific T cell responses. Notably, IFN-I administration within 1 day after infection (before virus titers peak) protected mice from lethal infection, despite a decrease in IFN-stimulated gene (ISG) and inflammatory cytokine gene expression. In contrast, delayed IFN-β treatment failed to effectively inhibit virus replication, increased infiltration and activation of monocytes, macrophages, and neutrophils in the lungs, and enhanced proinflammatory cytokine expression, resulting in fatal pneumonia in an otherwise sublethal infection. Together, these results suggest that the relative timing of the IFN-I response and maximal virus replication is key in determining outcomes, at least in infected mice. By extension, IFN-αβ or combination therapy may need to be used cautiously to treat viral infections in clinical settings.
Collapse
Affiliation(s)
- Rudragouda Channappanavar
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA.,Department of Acute and Tertiary Care, and.,Department of Microbiology and Immunology, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Anthony R Fehr
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Jian Zheng
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | | | - Juan E Abrahante
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Matthias Mack
- Department of Internal Medicine, University Hospital Regensburg, Regensburg, Germany
| | | | - Paul B McCray
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA.,Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | | | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA.,Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
72
|
Hahn J, Euler M, Kilgus E, Kienhöfer D, Stoof J, Knopf J, Hahn M, Harrer T, Hultqvist M, Olofsson P, Mokhir A, Holmdahl R, Herrmann M, Schett G, Muñoz LE, Hoffmann MH. NOX2 mediates quiescent handling of dead cell remnants in phagocytes. Redox Biol 2019; 26:101279. [PMID: 31349119 PMCID: PMC6669319 DOI: 10.1016/j.redox.2019.101279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/09/2019] [Accepted: 07/19/2019] [Indexed: 12/13/2022] Open
Abstract
The phagocyte NADPH oxidase (the NOX2 complex) generates superoxide, the precursor to reactive oxygen species (ROS). ROS possess both antimicrobial and immunoregulatory function. Inactivating mutations in alleles of the NOX2 complex cause chronic granulomatous disease (CGD), characterized by an enhanced susceptibility to infections and autoimmune diseases such as Systemic lupus erythematosus (SLE). The latter is characterized by insufficient removal of dead cells, resulting in an autoimmune response against components of the cell's nucleus when non-cleared apoptotic cells lose their membrane integrity and present autoantigenic molecules in an inflammatory context. Here we aimed to shed light on the role of the NOX2 complex in handling of secondary necrotic cells (SNECs) and associated consequences for inflammation and autoimmunity during lupus. We show that individuals with SLE and CGD display accumulation of SNECs in blood monocytes and neutrophils. In a CGD phenotypic mouse strain (Ncf1** mice) build-up of SNECs in Ly6CHI blood monocytes was connected with a delayed degradation of the phagosomal cargo and accompanied by production of inflammatory mediators. Treatment with H2O2 or activators of ROS-formation reconstituted phagosomal abundance of SNECs to normal levels. Induction of experimental lupus further induced increased antibody-dependent uptake of SNECs into neutrophils. Lupus-primed Ncf1** neutrophils took up more SNECs than wild type neutrophils, whereas SNEC-accumulation in regulatory Ly6C−/LO monocytes was lower in Ncf1**mice. We deduce that the inflammatory rerouting of immune-stimulatory necrotic material into inflammatory phagocyte subsets contributes to the connection between low ROS production by the NOX2 complex and SLE.
Collapse
Affiliation(s)
- Jonas Hahn
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Maximilien Euler
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Emelie Kilgus
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Deborah Kienhöfer
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Julia Stoof
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jasmin Knopf
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Madelaine Hahn
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Thomas Harrer
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Peter Olofsson
- Redoxis/Pronoxis AB, Medicon Village Lund, Sweden; Section of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Andriy Mokhir
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rikard Holmdahl
- Section of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Martin Herrmann
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Luis E Muñoz
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Markus H Hoffmann
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
73
|
Abstract
Outbreaks of severe virus infections with the potential to cause global pandemics are increasing. In many instances these outbreaks have been newly emerging (SARS coronavirus), re-emerging (Ebola virus, Zika virus) or zoonotic (avian influenza H5N1) virus infections. In the absence of a targeted vaccine or a pathogen-specific antiviral, broad-spectrum antivirals would function to limit virus spread. Given the direct antiviral effects of type I interferons (IFNs) in inhibiting the replication of both DNA and RNA viruses at different stages of their replicative cycles, and the effects of type I IFNs on activating immune cell populations to clear virus infections, IFNs-α/β present as ideal candidate broad-spectrum antivirals.
Collapse
Affiliation(s)
- Ben X Wang
- Princess Margaret Cancer Center, Tumor Immunotherapy Program, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Eleanor N Fish
- Toronto General Hospital Research Institute, University Health Network, 67 College Street, Toronto, ON M5G 2M1, Canada; Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
74
|
Mustelin T, Lood C, Giltiay NV. Sources of Pathogenic Nucleic Acids in Systemic Lupus Erythematosus. Front Immunol 2019; 10:1028. [PMID: 31139185 PMCID: PMC6519310 DOI: 10.3389/fimmu.2019.01028] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/23/2019] [Indexed: 12/19/2022] Open
Abstract
A hallmark of systemic lupus erythematosus (SLE), and several related autoimmune diseases, is the presence of autoantibodies against nucleic acids and nucleic acid-binding proteins, as well as elevated type I interferons (IFNs), which appear to be instrumental in disease pathogenesis. Here we discuss the sources and proposed mechanisms by which a range of cellular RNA and DNA species can become pathogenic and trigger the nucleic acid sensors that drive type I interferon production. Potentially SLE-promoting DNA may originate from pieces of chromatin, from mitochondria, or from reverse-transcribed cellular RNA, while pathogenic RNA may arise from mis-localized, mis-processed, ancient retroviral, or transposable element-derived transcripts. These nucleic acids may leak out from dying cells to be internalized and reacted to by immune cells or they may be generated and remain to be sensed intracellularly in immune or non-immune cells. The presence of aberrant DNA or RNA is normally counteracted by effective counter-mechanisms, the loss of which result in a serious type I IFN-driven disease called Aicardi-Goutières Syndrome. However, in SLE it remains unclear which mechanisms are most critical in precipitating disease: aberrant RNA or DNA, overly sensitive sensor mechanisms, or faulty counter-acting defenses. We propose that the clinical heterogeneity of SLE may be reflected, in part, by heterogeneity in which pathogenic nucleic acid molecules are present and which sensors and pathways they trigger in individual patients. Elucidation of these events may result in the recognition of distinct "endotypes" of SLE, each with its distinct therapeutic choices.
Collapse
Affiliation(s)
- Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| | | | | |
Collapse
|
75
|
Liu C, Whitener RL, Lin A, Xu Y, Chen J, Savinov A, Leiding JW, Wallet MA, Mathews CE. Neutrophil Cytosolic Factor 1 in Dendritic Cells Promotes Autoreactive CD8 + T Cell Activation via Cross-Presentation in Type 1 Diabetes. Front Immunol 2019; 10:952. [PMID: 31118934 PMCID: PMC6504685 DOI: 10.3389/fimmu.2019.00952] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 04/12/2019] [Indexed: 12/30/2022] Open
Abstract
Aims: Reactive oxygen species (ROS) are critical in driving the onset of type 1 diabetes (T1D). Ablation of ROS derived from phagocytic NADPH oxidase 2 is protective against autoimmune diabetes in non-obese diabetic (NOD) mice. However, the mechanisms of NADPH oxidase 2-derived ROS in T1D pathogenesis need to be elucidated. Here, we have examined the role of Ncf1 (the regulatory subunit of NADPH oxidase 2) in dendritic cells (DC). Results:Ncf1-mutant DCs exhibit reduced ability to activate autoreactive CD8+ T cells despite no difference in co-stimulatory molecule expression or pro-inflammatory cytokine production. When provided with exogenous whole-protein antigen, Ncf1-mutant NOD DCs showed strong phagosome acidification and rapid antigen degradation, which lead to an absence of protein translocation into the cytoplasm and deficient antigenic peptide loading on MHC Class I molecules. Innovation: This study demonstrates that Ncf1 (p47phox) is required for activation and effector function of CD8+ T cells by acting both intrinsically within the T cell as well as within professional antigen presenting cells. Conclusion: ROS promote CD8+ T cell activation by facilitating autoantigen cross-presentation by DCs. ROS scavengers could potentially represent an important component of therapies aiming to disrupt autoantigen presentation and activation of CD8+ T cells in individuals at-risk for developing T1D.
Collapse
Affiliation(s)
- Chao Liu
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, United States
| | - Robert L Whitener
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, United States
| | - Andrea Lin
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, United States
| | - Yuan Xu
- Department of Medicine, University of Florida, Gainesville, FL, United States
| | - Jing Chen
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, United States
| | - Alexei Savinov
- Children's Health Research Center, Sanford Research, Sioux Falls, SD, United States
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins-All Children's Hospital, University of South Florida, St. Petersburg, FL, United States
| | - Mark A Wallet
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, United States
| | - Clayton E Mathews
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, United States
| |
Collapse
|
76
|
Biomarkers in Adult Dermatomyositis: Tools to Help the Diagnosis and Predict the Clinical Outcome. J Immunol Res 2019; 2019:9141420. [PMID: 30766892 PMCID: PMC6350546 DOI: 10.1155/2019/9141420] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/09/2018] [Indexed: 12/22/2022] Open
Abstract
Dermatomyositis pathophysiology is complex. In recent years, medical research has identified molecules associated with disease activity. Besides providing insights into the driving mechanisms of dermatomyositis, these findings could provide potential biomarkers. Activity markers can be used to monitor disease activity in clinical trials and may also be useful in daily practice. This article reviews molecules that could be used as biomarkers for diagnosis and monitoring dermatomyositis disease activity.
Collapse
|
77
|
Ford J, Hughson A, Lim K, Bardina SV, Lu W, Charo IF, Lim JK, Fowell DJ. CCL7 Is a Negative Regulator of Cutaneous Inflammation Following Leishmania major Infection. Front Immunol 2019; 9:3063. [PMID: 30671055 PMCID: PMC6331479 DOI: 10.3389/fimmu.2018.03063] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/11/2018] [Indexed: 12/24/2022] Open
Abstract
The chemokine CCL7 (MCP3) is known to promote the recruitment of many innate immune cell types including monocytes and neutrophils to sites of bacterial and viral infection and eosinophils and basophils to sites of allergic inflammation. CCL7 upregulation has been associated with many inflammatory settings including infection, cardiovascular disease, and the tumor microenvironment. CCL7's pleotropic effects are due in part to its ability to bind numerous chemokine receptors, namely CCR1, CCR2, CCR3, CCR5, and CCR10. CCL7-blockade or CCL7-deficiency is often marked by decreased inflammation and poor pathogen control. In the context of Leishmania major infection, CCL7 is specifically upregulated in the skin one-2 weeks after infection but its role in L. major control is unclear. To determine CCL7's impact on the response to L. major we infected WT and CCL7-/- C57BL/6 mice. L. major infection of CCL7-deficient mice led to an unexpected increase in inflammation in the infected skin 2 weeks post-infection. A broad increase in immune cell subsets was observed but was dominated by enhanced neutrophilic infiltration. Increased neutrophil recruitment was associated with an enhanced IL-17 gene profile in the infected skin. CCL7 was shown to directly antagonize neutrophil migration in vitro and CCL7 add-back in vivo specifically reduced neutrophil influx into the infected skin revealing an unexpected role for CCL7 in limiting neutrophil recruitment during L. major infection. Enhanced neutrophilic infiltration in CCL7-deficient mice changed the balance of L. major infected host cells with an increase in the ratio of infected neutrophils over monocytes/macrophages. To determine the consequence of CCL7 deficiency on L. major control we analyzed parasite load cutaneously at the site of infection and viscerally in the draining LN and spleen. The CCL7-/- mice supported robust cutaneous parasite control similar to their WT C57BL/6 counterparts. In contrast, CCL7-deficiency led to greater parasite dissemination and poor parasite control in the spleen. Our studies reveal a novel role for CCL7 in negatively regulating cutaneous inflammation, specifically neutrophils, early during L. major infection. We propose that CCL7-mediated dampening of the early immune response in the skin may limit the ability of the parasite to disseminate without compromising cutaneous control.
Collapse
Affiliation(s)
- Jill Ford
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY, United States
| | - Angela Hughson
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY, United States
| | - Kihong Lim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY, United States
| | - Susana V Bardina
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Wuyuan Lu
- Department of Biochemistry and Molecular Biology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Israel F Charo
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Deborah J Fowell
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY, United States
| |
Collapse
|
78
|
Tong Y, Zhou L, Yang L, Guo P, Cao Y, Qin FXF, Liu J. Concomitant type I IFN and M-CSF signaling reprograms monocyte differentiation and drives pro-tumoral arginase production. EBioMedicine 2018; 39:132-144. [PMID: 30528455 PMCID: PMC6354658 DOI: 10.1016/j.ebiom.2018.11.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/19/2018] [Accepted: 11/28/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Type I IFN-based therapies against solid malignancies have yielded only limited success. How IFN affects tumor-associated macrophage (TAM) compartment to impact the therapeutic outcomes are not well understood. METHODS The effect of an IFN-inducer poly(I:C) on tumor-infiltrating monocytes and TAMs were analyzed using a transplantable mouse tumor model (LLC). In vitro culture systems were utilized to study the direct actions by poly(I:C)-IFN on differentiating monocytes. RESULTS We found that poly(I:C)-induced IFN targets Ly6C+ monocytes and impedes their transition into TAMs. Such an effect involves miR-155-mediated suppression of M-CSF receptor expression, contributing to restricting tumor growth. Remarkably, further analyses of gene expression profile of IFN-treated differentiating monocytes reveal a strong induction of Arg1 (encoding arginase-1) in addition to other classical IFN targets. Mechanistically, the unexpected Arg1 arm of IFN action is mediated by a prolonged STAT3 signaling in monocytes, in conjunction with elevated macrophage colony-stimulating factor (M-CSF) signaling. Functionally, induction of ARG1 limited the therapeutic effect of IFN, as inhibition of arginase activity could strongly synergize with poly(I:C) to enhance CD8+ T cell responses to thwart tumor growth in mice. CONCLUSIONS Taken together, we have uncovered two functionally opposing actions by IFN on the TAM compartment. Our work provides significant new insights on IFN-mediated immunoregulation that may have implications in cancer therapies.
Collapse
Affiliation(s)
- Yuanyuan Tong
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Luyang Zhou
- Department of Anesthesiology, Nanjing Gulou Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Limin Yang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Panpan Guo
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Yanlan Cao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - F Xiao-Feng Qin
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; Suzhou Institute of Systems Medicine, Suzhou, Jiangsu 215123, China
| | - Jianghuai Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China.
| |
Collapse
|
79
|
Watanabe T, Minaga K, Kamata K, Kudo M, Strober W. Mechanistic Insights into Autoimmune Pancreatitis and IgG4-Related Disease. Trends Immunol 2018; 39:874-889. [PMID: 30401468 DOI: 10.1016/j.it.2018.09.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/15/2022]
Abstract
Autoimmune pancreatitis (AIP) is a pancreatic manifestation of a recently defined disease form known as IgG4-related disease (AIP/IgG4-RD). AIP/IgG4-RD is characterized by elevated systemic IgG4 antibody concentrations and lesional tissues infiltrated by IgG4-expressing plasmacytes. In addition, recent studies have revealed that, in common with other autoimmune diseases, such as systemic lupus erythematosus (SLE) and psoriasis, AIP/IgG4-RD is associated with increased type I IFN (IFN-I) production by plasmacytoid dendritic cells (pDCs). However, unlike SLE, AIP/IgG4-RD is characterized by elevated IFN-I-dependent IL-33 production, the latter emerging as an important contributor to inflammation and fibrotic responses characterizing this disease. On this basis, we propose that blockade of the IFN-I/IL-33 axis might constitute a successful approach to treating this unique type of autoimmunity.
Collapse
Affiliation(s)
- Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan; Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| | - Ken Kamata
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| | - Warren Strober
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
80
|
Pan F, Tang W, Zhou Z, Gilkeson G, Lang R, Jiang W. Intestinal macrophages in mucosal immunity and their role in systemic lupus erythematosus disease. Lupus 2018; 27:1898-1902. [PMID: 30223707 PMCID: PMC6398158 DOI: 10.1177/0961203318797417] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Monocytes play an important role in inducing host systemic immunity against invading pathogens and inflammatory responses. After activation, monocytes migrate to tissue sites, where they initiate both innate and adaptive immune responses, and become macrophages. Although mucosal macrophages produce inflammatory cytokines in response to pathogens, the perturbations in innate immune signaling pathway have been implicated in autoimmune diseases such as systemic lupus erythematosus (SLE). In this review, we focus on the role of human macrophages in intestinal innate immune responses, homeostasis, and SLE disease. We further discuss sex differences in the intestinal macrophages and their role in the physiology and pathogenesis of SLE.
Collapse
Affiliation(s)
- Fei Pan
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Wei Tang
- The First Affiliated Hospital, Harbin Medical University, Nangang, Harbin, China
| | - Zejun Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Human Normal University, Changsha, China
| | - Gary Gilkeson
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Divison of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
81
|
Pilch Z, Tonecka K, Braniewska A, Sas Z, Skorzynski M, Boon L, Golab J, Meyaard L, Rygiel TP. Antitumor Activity of TLR7 Is Potentiated by CD200R Antibody Leading to Changes in the Tumor Microenvironment. Cancer Immunol Res 2018; 6:930-940. [PMID: 30021725 DOI: 10.1158/2326-6066.cir-17-0454] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 03/13/2018] [Accepted: 05/04/2018] [Indexed: 11/16/2022]
Abstract
Stimulation of Toll-like receptor 7 (TLR7) activates myeloid cells and boosts the immune response. Previously, we have shown that stimulation of the inhibitory CD200 receptor (CD200R) suppresses TLR7 signaling and that the absence of CD200R signaling leads to a decreased number of papillomas in mice. Here, we investigated the effects of agonistic anti-CD200R on the antitumor activity of a TLR7 agonist (R848) in a syngeneic mouse tumor model. Intratumoral administration of R848 inhibited the growth of the CT26 colon carcinoma and simultaneously decreased CD200R expression in tumor-infiltrating immune cells. The antitumor effects of R848 were potentiated by anti-CD200R. Successfully treated mice were resistant to rechallenge with the same tumor cells. However, the immediate antitumor effects were independent of lymphocytes, because treatment efficacy was similar in wild-type and Rag1tm1Mom mice. Administration of R848, particularly in combination with anti-CD200R, changed the phenotype of intratumoral myeloid cells. The infiltration with immature MHC-II+ macrophages decreased and in parallel monocytes and immature MHC-II- macrophages increased. Combined treatment decreased the expression of the macrophage markers F4/80, CD206, CD86, CD115, and the ability to produce IL1β, suggesting a shift in the composition of intratumor myeloid cells. Adoptively transferred CD11b+ myeloid cells, isolated from the tumors of mice treated with R848 and anti-CD200R, inhibited tumor outgrowth in recipient mice. We conclude that administration of agonistic anti-CD200R improves the antitumor effects of TLR7 signaling and changes the local tumor microenvironment, which becomes less supportive of tumor progression. Cancer Immunol Res; 6(8); 930-40. ©2018 AACR.
Collapse
Affiliation(s)
- Zofia Pilch
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Tonecka
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Agata Braniewska
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland.,School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Zuzanna Sas
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland.,School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Skorzynski
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | | | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland.,Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Linde Meyaard
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.,Oncode Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Tomasz P Rygiel
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
82
|
Li Y, Wu J, Xu L, Wu Q, Wan Z, Li L, Yu H, Li X, Li K, Zhang Q, Hou Z, Sun X, Chen H. Regulation of Leukocyte Recruitment to the Spleen and Peritoneal Cavity during Pristane-Induced Inflammation. J Immunol Res 2017; 2017:9891348. [PMID: 29201923 PMCID: PMC5671734 DOI: 10.1155/2017/9891348] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/20/2017] [Accepted: 08/27/2017] [Indexed: 02/05/2023] Open
Abstract
Chronic inflammation is associated with an increased number of leukocytes in the spleen, which are then redirected to the site of inflammation. However, it remains unknown how leukocyte recruitment is regulated. Herein, chronic inflammation was induced by intraperitoneal injection of pristane into mice. Leukocytes in the spleen or in the peritoneal cavity were quantified by flow cytometry. We found that the loss of IL-6 decreased macrophage recruitment to the spleen and the peritoneal cavity during pristane-induced inflammation. The loss of TNFα delayed the recruitment of neutrophils and macrophages to the spleen and inhibited the recruitment of neutrophils, macrophages, B cells, and T cells. The recruitment of neutrophils and macrophages into the spleen or peritoneal cavity was largely inhibited in the absence of LTα. The loss of TNFα receptor 1/2 resulted in reduced recruitment of neutrophils, macrophages, and dendritic cells into the spleen, but only neutrophil recruitment was inhibited in the peritoneal cavity. Similarly, a lack of B cells significantly impeded the recruitment of neutrophils, macrophages, and dendritic cells to the spleen. However, only macrophage recruitment was inhibited in the absence of T cells in the spleen. These data provide insight into the development of chronic inflammation induced by noninfectious substances.
Collapse
Affiliation(s)
- Yu Li
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin, China
| | - Junping Wu
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin 300350, China
- Department of Respiratory Medicine, Tianjin Haihe Hospital, Tianjin 300350, China
| | - Long Xu
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin 300350, China
| | - Qi Wu
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin 300350, China
| | - Zhen Wan
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin, China
| | - Li Li
- Department of Respiratory Medicine, Tianjin Haihe Hospital, Tianjin 300350, China
| | - Hongzhi Yu
- Department of Respiratory Medicine, Tianjin Haihe Hospital, Tianjin 300350, China
| | - Xue Li
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin, China
| | - Kuan Li
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin, China
| | - Qiuyang Zhang
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin, China
| | - Zhili Hou
- Department of Tuberculosis, Tianjin Haihe Hospital, Tianjin 300350, China
| | - Xin Sun
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin, China
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin 300350, China
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin, China
| |
Collapse
|
83
|
Dehn S, Thorp EB. Myeloid receptor CD36 is required for early phagocytosis of myocardial infarcts and induction of Nr4a1-dependent mechanisms of cardiac repair. FASEB J 2017; 32:254-264. [PMID: 28860151 DOI: 10.1096/fj.201700450r] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/21/2017] [Indexed: 12/20/2022]
Abstract
Phagocytosis after myocardial infarction (MI) is a prerequisite to cardiac repair. Recruited monocytes clear necrotic cardiomyocytes and differentiate into cardiac macrophages. Some studies have linked apoptotic cell receptors on cardiac macrophages to tissue repair; however, the contribution of precursor monocyte phagocytic receptors, which are the first to interact with the cardiac parenchyma, is unclear. The scavenger receptor cluster of differentiation (CD)36 protein was detected on cardiac Ly6cHI monocytes, and bone marrow-derived Cd36 was essential for both early phagocytosis of dying cardiomyocytes and for smaller infarct sizes in female and male mice after permanent coronary ligation. Cd36 deficiency led to reduced expression of phagocytosis receptor Mertk and nuclear receptor Nr4a1 in cardiac macrophages, the latter previously shown to be required for phagocyte survival. Nr4a1 was required for phagocytosis-induced Mertk expression, and Nr4a1 protein directly bound to Mertk gene regulatory elements. To test the overall contribution of the Cd36-Mertk axis, MI was induced in Cd36-/- Mertk-/- double-knockout mice and led to increases in myocardial rupture. These data implicate monocyte CD36 in the mitigation of early infarct size and transition to Mertk-dependent macrophage function. Increased myocardial rupture in the absence of both Cd36 and Mertk underscore the physiologic significance of phagocytosis during tissue injury.-Dehn, S., Thorp, E. B. Myeloid receptor CD36 is required for early phagocytosis of myocardial infarcts and induction of Nr4a1-dependent mechanisms of cardiac repair.
Collapse
Affiliation(s)
- Shirley Dehn
- Department of Pathology and.,Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Edward B Thorp
- Department of Pathology and .,Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
84
|
Zhuang H, Han S, Li Y, Kienhöfer D, Lee P, Shumyak S, Meyerholz R, Rosadzinski K, Rosner D, Chan A, Xu Y, Segal M, Sobel E, Yang LJ, Hoffmann MH, Reeves WH. A Novel Mechanism for Generating the Interferon Signature in Lupus: Opsonization of Dead Cells by Complement and IgM. Arthritis Rheumatol 2017; 68:2917-2928. [PMID: 27274010 DOI: 10.1002/art.39781] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 06/01/2016] [Indexed: 01/05/2023]
Abstract
OBJECTIVE In vitro studies suggest that the type I interferon (IFN) signature seen in most lupus patients results from Fcγ receptor-mediated uptake of nucleic acid-containing immune complexes by plasmacytoid dendritic cells and engagement of endosomal Toll-like receptors. The aim of this study was to reexamine the pathogenesis of the IFN signature in vivo. METHODS Lupus was induced in mice by injecting pristane. Some mice were treated with normal immunoglobulin or with cobra venom factor to deplete complement. The IFN signature was evaluated by polymerase chain reaction. The IFN signature also was determined in C4-deficient patients and control subjects. RESULTS Wild-type C57BL/6 mice with pristane-induced lupus developed a strong IFN signature, which was absent in immunoglobulin-deficient (μMT), C3-/- , and CD18-/- mice. Intravenous infusion of normal IgM, but not IgG, restored the IFN signature in μMT mice, and the IFN signature in wild-type mice was inhibited by depleting complement, suggesting that opsonization by IgM and complement is involved in IFN production. Consistent with that possibility, the levels of "natural" IgM antibodies reactive with dead cells were increased in pristane-treated wild-type mice compared with untreated controls, and in vivo phagocytosis of dead cells was impaired in C3-deficient mice. To examine the clinical relevance of these findings, we identified 10 C4-deficient patients with lupus-like disease and compared them with 152 C4-intact patients and 21 healthy controls. In comparison with C4-intact patients, C4-deficient patients had a different clinical/serologic phenotype and lacked the IFN signature. CONCLUSION These studies define previously unrecognized roles of natural IgM, complement, and complement receptors in generating the IFN signature in lupus.
Collapse
Affiliation(s)
| | | | - Yi Li
- University of Florida, Gainesville
| | | | - Pui Lee
- Boston Children's Hospital, Boston, Massachusetts
| | | | | | | | | | | | - Yuan Xu
- University of Florida, Gainesville
| | | | | | | | | | | |
Collapse
|
85
|
Zhuang H, Han S, Lee PY, Khaybullin R, Shumyak S, Lu L, Chatha A, Afaneh A, Zhang Y, Xie C, Nacionales D, Moldawer L, Qi X, Yang LJ, Reeves WH. Pathogenesis of Diffuse Alveolar Hemorrhage in Murine Lupus. Arthritis Rheumatol 2017; 69:1280-1293. [PMID: 28217966 DOI: 10.1002/art.40077] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/14/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Diffuse alveolar hemorrhage (DAH) in lupus patients confers >50% mortality, and the cause is unknown. We undertook this study to examine the pathogenesis of DAH in C57BL/6 mice with pristane-induced lupus, a model of human lupus-associated DAH. METHODS Clinical/pathologic and immunologic manifestations of DAH in pristane-induced lupus were compared with those of DAH in humans. Tissue distribution of pristane was examined by mass spectrometry. Cell types responsible for disease were determined by in vivo depletion using clodronate liposomes and antineutrophil monoclonal antibodies (anti-Ly-6G). The effect of complement depletion with cobra venom factor (CVF) was examined. RESULTS After intraperitoneal injection, pristane migrated to the lung, causing cell death, small vessel vasculitis, and alveolar hemorrhage similar to that seen in DAH in humans. B cell-deficient mice were resistant to induction of DAH, but susceptibility was restored by infusing IgM. C3-/- and CD18-/- mice were also resistant, and DAH was prevented in wild-type mice by CVF. Induction of DAH was independent of Toll-like receptors, inflammasomes, and inducible nitric oxide. Mortality was increased in interleukin-10 (IL-10)-deficient mice, and pristane treatment decreased IL-10 receptor expression in monocytes and STAT-3 phosphorylation in lung macrophages. In vivo neutrophil depletion was not protective, while treatment with clodronate liposomes prevented DAH, which suggests that macrophage activation is central to DAH pathogenesis. CONCLUSION The pathogenesis of DAH involves opsonization of dead cells by natural IgM and complement followed by complement receptor-mediated lung inflammation. The disease is macrophage dependent, and IL-10 is protective. Complement inhibition and/or macrophage-targeted therapies may reduce mortality in lupus-associated DAH.
Collapse
Affiliation(s)
| | | | - Pui Y Lee
- Boston Children's Hospital, Boston, Massachusetts
| | | | | | - Li Lu
- University of Florida, Gainesville
| | | | | | | | - Chao Xie
- University of Florida, Gainesville
| | | | | | - Xin Qi
- University of Florida, Gainesville
| | | | | |
Collapse
|
86
|
Bulgari O, Dong X, Roca AL, Caroli AM, Loor JJ. Innate immune responses induced by lipopolysaccharide and lipoteichoic acid in primary goat mammary epithelial cells. J Anim Sci Biotechnol 2017; 8:29. [PMID: 28396748 PMCID: PMC5379715 DOI: 10.1186/s40104-017-0162-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 03/21/2017] [Indexed: 12/24/2022] Open
Abstract
Background Innate immune responses induced by in vitro stimulation of primary mammary epithelial cells (MEC) using Gram-negative lipopolysaccharide (LPS) and Gram-positive lipoteichoic acid (LTA) bacterial cell wall components are well- characterized in bovine species. The objective of the current study was to characterize the downstream regulation of the inflammatory response induced by Toll-like receptors in primary goat MEC (pgMEC). We performed quantitative real-time RT-PCR (qPCR) to measure mRNA levels of 9 genes involved in transcriptional regulation or antibacterial activity: Toll-like receptor 2 (TLR2), Toll-like receptor 4 (TLR4), prostaglandin-endoperoxide synthase 2 (PTGS2), interferon induced protein with tetratricopeptide repeats 3 (IFIT3), interferon regulatory factor 3 (IRF3), myeloid differentiation primary response 88 (MYD88), nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NFKB1), Toll interacting protein (TOLLIP), and lactoferrin (LTF). Furthermore, we analyzed 7 cytokines involved in Toll-like receptor signaling pathways: C-C motif chemokine ligand 2 (CCL2), C-C motif chemokine ligand 5 (CCL5), C-X-C motif chemokine ligand 6 (CXCL6), interleukin 8 (CXCL8), interleukin 1 beta (IL1B), interleukin 6 (IL6), and tumor necrosis factor alpha (TNF). Results Stimulation of pgMEC with LPS for 3 h led to an increase in expression of CCL2, CXCL6, IL6, CXCL8, PTGS2, IFIT3, MYD88, NFKB1, and TLR4 (P < 0.05). Except for IL6, and PTGS2, the same genes had greater expression than controls at 6 h post-LPS (P < 0.05). Expression of CCL5, PTGS2, IFIT3, NFKB1, TLR4, and TOLLIP was greater than controls after 3 h of incubation with LTA (P < 0.05). Compared to controls, stimulation with LTA for 6 h led to greater expression of PTGS2, IFIT3, NFKB1, and TOLLIP (P < 0.05) whereas the expression of CXCL6, CXCL8, and TLR4 was lower (P < 0.05). At 3 h incubation with both toxins compared to controls a greater expression (P < 0.05) of CCL2, CCL5, CXCL6, CXCL8, IL6, PTGS2, IFIT3, IRF3, MYD88, and NFKB1 was detected. After 6 h of incubation with both toxins, the expression of CCL2, CXCL6, IFIT3, MYD88, NFKB1, and TLR4 was higher than the controls (P < 0.05). Conclusions Data indicate that in the goat MEC, LTA induces a weaker inflammatory response than LPS. This may be related to the observation that gram-positive bacteria cause chronic mastitis more often than gram-negative infections. Electronic supplementary material The online version of this article (doi:10.1186/s40104-017-0162-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Omar Bulgari
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123 Italy
| | - Xianwen Dong
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA.,Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 China
| | - Alfred L Roca
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Anna M Caroli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123 Italy
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| |
Collapse
|
87
|
Smith S, Fernando T, Wu PW, Seo J, Ní Gabhann J, Piskareva O, McCarthy E, Howard D, O'Connell P, Conway R, Gallagher P, Molloy E, Stallings RL, Kearns G, Forbess L, Ishimori M, Venuturupalli S, Wallace D, Weisman M, Jefferies CA. MicroRNA-302d targets IRF9 to regulate the IFN-induced gene expression in SLE. J Autoimmun 2017; 79:105-111. [PMID: 28318807 DOI: 10.1016/j.jaut.2017.03.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 11/19/2022]
Abstract
Systemic lupus erythematosus (SLE) is a complex disease targeting multiple organs as a result of overactivation of the type I interferon (IFN) system, a feature currently being targeted by multiple biologic therapies against IFN-α. We have identified an estrogen-regulated microRNA, miR-302d, whose expression is decreased in SLE patient monocytes and identify its target as interferon regulatory factor (IRF)-9, a critical component of the transcriptional complex that regulates expression of interferon-stimulated genes (ISGs). In keeping with the reduced expression of miR-302d in SLE patient monocytes, IRF9 levels were increased, as was expression of a number of ISGs including MX1 and OAS1. In vivo evaluation revealed that miR-302d protects against pristane-induced inflammation in mice by targeting IRF9 and hence ISG expression. Importantly, patients with enhanced disease activity have markedly reduced expression of miR-302d and enhanced IRF9 and ISG expression, with miR-302d negatively correlating with IFN score. Together these findings identify miR-302d as a key regulator of type I IFN driven gene expression via its ability to target IRF9 and regulate ISG expression, underscoring the importance of non-coding RNA in regulating the IFN pathway in SLE.
Collapse
Affiliation(s)
- Siobhán Smith
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Thilini Fernando
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Centre, 8700 Beverly Blvd, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Centre, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Pei Wen Wu
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Centre, 8700 Beverly Blvd, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Centre, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Jane Seo
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Centre, 8700 Beverly Blvd, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Centre, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Joan Ní Gabhann
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Olga Piskareva
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Eoghan McCarthy
- Department of Rheumatology, Beaumont Hospital, Dublin 9, Ireland
| | - Donough Howard
- Department of Rheumatology, Beaumont Hospital, Dublin 9, Ireland
| | - Paul O'Connell
- Department of Rheumatology, St. Vincent's University Hospital, Dublin 4, Ireland
| | - Richard Conway
- Department of Rheumatology, St. Vincent's University Hospital, Dublin 4, Ireland
| | - Phil Gallagher
- Department of Rheumatology, St. Vincent's University Hospital, Dublin 4, Ireland
| | - Eamonn Molloy
- Department of Rheumatology, St. Vincent's University Hospital, Dublin 4, Ireland
| | - Raymond L Stallings
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Grainne Kearns
- Department of Biomedical Sciences, Cedars-Sinai Medical Centre, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Lindsy Forbess
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Centre, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Mariko Ishimori
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Centre, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Swamy Venuturupalli
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Centre, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Daniel Wallace
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Centre, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Michael Weisman
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Centre, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Caroline A Jefferies
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Centre, 8700 Beverly Blvd, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Centre, 8700 Beverly Blvd, Los Angeles, CA 90048, USA.
| |
Collapse
|
88
|
Munroe ME, Young KA, Kamen DL, Guthridge JM, Niewold TB, Costenbader KH, Weisman MH, Ishimori ML, Wallace DJ, Gilkeson GS, Karp DR, Harley JB, Norris JM, James JA. Discerning Risk of Disease Transition in Relatives of Systemic Lupus Erythematosus Patients Utilizing Soluble Mediators and Clinical Features. Arthritis Rheumatol 2017; 69:630-642. [PMID: 27863174 PMCID: PMC5329053 DOI: 10.1002/art.40004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 11/15/2016] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) and other autoimmune diseases cause significant morbidity. Identifying populations at risk of developing SLE is essential for curtailing irreversible inflammatory damage. The aim of this study was to identify factors associated with transition to classified disease that would inform our understanding of the risk of SLE. METHODS Previously identified blood relatives of patients with SLE, who had <4 American College of Rheumatology (ACR) classification criteria for SLE at baseline, were enrolled in this follow-up study (n = 409 unaffected relatives). Participants provided detailed family, demographic, and clinical information, including the SLE-specific portion of the Connective Tissue Disease Screening Questionnaire (SLE-CSQ). Serum and plasma samples were tested for the presence of lupus-associated autoantibodies and 52 soluble mediators. Generalized estimating equations (GEEs) were applied to identify factors predictive of disease transition. RESULTS Of the 409 unaffected relatives of SLE patients, 45 (11%) had transitioned to classified SLE at follow-up (mean time to follow-up 6.4 years). Relatives who transitioned to SLE displayed more lupus-associated autoantibody specificities and higher SLE-CSQ scores (P < 0.0001) at baseline than did relatives who did not transition. Importantly, those who had developed SLE during the follow-up period also had elevated baseline plasma levels of inflammatory mediators, including B lymphocyte stimulator, stem cell factor (SCF), and interferon-associated chemokines (P ≤ 0.02), with concurrent decreases in the levels of regulatory mediators, transforming growth factor β (TGFβ), and interleukin-10 (P ≤ 0.03). GEE analyses revealed that baseline SLE-CSQ scores or ACR scores (number of ACR criteria satisfied) and plasma levels of SCF and TGFβ, but not autoantibodies, were significant and independent predictors of SLE transition (P ≤ 0.03). CONCLUSION Preclinical alterations in levels of soluble mediators may predict transition to classified disease in relatives of SLE patients. Thus, immune perturbations precede SLE classification and can help identify high-risk relatives for rheumatology referral and potential enrollment in prevention trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - David R. Karp
- University of Texas Southwestern Medical Center, Dallas, TX
| | - John B. Harley
- Cincinnati Children’s Hospital Medical Center and US Department of Veterans Affairs Medical Center, Cincinnati, OH
| | | | - Judith A. James
- Oklahoma Medical Research Foundation, Oklahoma City, OK
- University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
89
|
Immunopathogenesis of pancreatitis. Mucosal Immunol 2017; 10:283-298. [PMID: 27848953 DOI: 10.1038/mi.2016.101] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/06/2016] [Indexed: 02/04/2023]
Abstract
The conventional view of the pathogenesis of acute and chronic pancreatitis is that it is due to a genetic- or environment-based abnormality of intracellular acinar trypsinogen activation and thus to the induction of acinar cell injury that, in turn, sets in motion an intra-pancreatic inflammatory process. More recent studies, reviewed here, present strong evidence that while such trypsinogen activation is likely a necessary first step in the inflammatory cascade underlying pancreatitis, sustained pancreatic inflammation is dependent on damage-associated molecular patterns-mediated cytokine activation causing the translocation of commensal (gut) organisms into the circulation and their induction of innate immune responses in acinar cells. Quite unexpectedly, these recent studies reveal that the innate responses involve activation of responses by an innate factor, nucleotide-binding oligomerization domain 1 (NOD1), and that such NOD1 responses have a critical role in the activation/production of nuclear factor-kappa B and type I interferon. In addition, they reveal that chronic inflammation and its accompanying fibrosis are dependent on the generation of IL-33 by injured acinar cells and its downstream induction of T cells producing IL-13. These recent studies thus establish that pancreatitis is quite a unique form of inflammation and one susceptible to newer, more innovative therapy.
Collapse
|
90
|
Galbas T, Raymond M, Sabourin A, Bourgeois-Daigneault MC, Guimont-Desrochers F, Yun TJ, Cailhier JF, Ishido S, Lesage S, Cheong C, Thibodeau J. MARCH1 E3 Ubiquitin Ligase Dampens the Innate Inflammatory Response by Modulating Monocyte Functions in Mice. THE JOURNAL OF IMMUNOLOGY 2016; 198:852-861. [PMID: 27940660 DOI: 10.4049/jimmunol.1601168] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/09/2016] [Indexed: 12/15/2022]
Abstract
Ubiquitination was recently identified as a central process in the pathogenesis and development of numerous inflammatory diseases, such as obesity, atherosclerosis, and asthma. Treatment with proteasomal inhibitors led to severe side effects because ubiquitination is heavily involved in a plethora of cellular functions. Thus, new players regulating ubiquitination processes must be identified to improve therapies for inflammatory diseases. In addition to their role in adaptive immunity, endosomal MHC class II (MHCII) molecules were shown to modulate innate immune responses by fine tuning the TLR4 signaling pathway. However, the role of MHCII ubiquitination by membrane associated ring-CH-type finger 1 (MARCH1) E3 ubiquitin ligase in this process remains to be assessed. In this article, we demonstrate that MARCH1 is a key inhibitor of innate inflammation in response to bacterial endotoxins. The higher mortality of March1-/- mice challenged with a lethal dose of LPS was associated with significantly stronger systemic production of proinflammatory cytokines and splenic NK cell activation; however, we did not find evidence that MARCH1 modulates LPS or IL-10 signaling pathways. Instead, the mechanism by which MARCH1 protects against endotoxic shock rests on its capacity to promote the transition of monocytes from Ly6CHi to Ly6C+/- Moreover, in competitive bone marrow chimeras, March1-/- monocytes and polymorphonuclear neutrophils outcompeted wild-type cells with regard to bone marrow egress and homing to peripheral organs. We conclude that MARCH1 exerts MHCII-independent effects that regulate the innate arm of immunity. Thus, MARCH1 might represent a potential new target for emerging therapies based on ubiquitination reactions in inflammatory diseases.
Collapse
Affiliation(s)
- Tristan Galbas
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montreal, Montreal, Quebec H3T 1J4, Canada.,Laboratoire d'Immunologie Moléculaire, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Maxime Raymond
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montreal, Montreal, Quebec H3T 1J4, Canada.,Laboratoire d'Immunologie Moléculaire, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Antoine Sabourin
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montreal, Montreal, Quebec H3T 1J4, Canada.,Laboratoire d'Immunologie Moléculaire, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Marie-Claude Bourgeois-Daigneault
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montreal, Montreal, Quebec H3T 1J4, Canada.,Laboratoire d'Immunologie Moléculaire, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Fanny Guimont-Desrochers
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montreal, Montreal, Quebec H3T 1J4, Canada.,Immunology-Oncology Section, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
| | - Tae Jin Yun
- Laboratoire de Physiologie Cellulaire et Immunologie, Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Jean-François Cailhier
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H2X 0A9, Canada; and
| | - Satoshi Ishido
- Department of Microbiology, Hyogo College of Medicine 1-1, Mukogawa-cho, Nishinomiya 663-8501, Japan
| | - Sylvie Lesage
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montreal, Montreal, Quebec H3T 1J4, Canada.,Immunology-Oncology Section, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
| | - Cheolho Cheong
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montreal, Montreal, Quebec H3T 1J4, Canada.,Laboratoire de Physiologie Cellulaire et Immunologie, Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Jacques Thibodeau
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montreal, Montreal, Quebec H3T 1J4, Canada; .,Laboratoire d'Immunologie Moléculaire, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| |
Collapse
|
91
|
Inoue R, Sakaue Y, Sawai C, Sawai T, Ozeki M, Romero-Pérez GA, Tsukahara T. A preliminary investigation on the relationship between gut microbiota and gene expressions in peripheral mononuclear cells of infants with autism spectrum disorders. Biosci Biotechnol Biochem 2016; 80:2450-2458. [DOI: 10.1080/09168451.2016.1222267] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Fecal and blood samples of infants with autism spectrum disorders (ASD) and healthy infants were analyzed to investigate the association of altered gut microbiota and ASD development. 16S rRNA gene-based sequencing found that, unlike those of healthy infants, feces of ASD infants had significantly higher and lower abundance of genera Faecalibacterium and Blautia, respectively. Moreover, DNA microarray analysis of peripheral blood mononuclear cells (PBMC) detected more highly than low expressed genes in ASD infants than in healthy infants. Gene Ontology analysis revealed that differentially expressed genes between ASD and healthy infants were involved in interferon (IFN)-γ and type-I IFN signaling pathways. Finally, strong positive correlations between expression of IFN signaling-associated genes in PBMC and fecal abundance of Faecalibacterium were found. Our results strongly suggested that altered gut microbiota in infants resulted from ASD development and was associated with systemic immunity dysregulation, especially chronic inflammation.
Collapse
Affiliation(s)
- Ryo Inoue
- Laboratory of Animal Science, Department of Agricultural and Life Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Yuko Sakaue
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
| | - Chihiro Sawai
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
| | - Toshihiro Sawai
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
| | - Motoyuki Ozeki
- Department of Informatics and Mediology, Mukogawa Women’s University, Nishinomiya, Japan
| | | | - Takamitsu Tsukahara
- Laboratory of Animal Science, Department of Agricultural and Life Sciences, Kyoto Prefectural University, Kyoto, Japan
- Kyoto Institute of Nutrition and Pathology, Kyoto, Japan
| |
Collapse
|
92
|
Zhou Z, Ding M, Huang L, Gilkeson G, Lang R, Jiang W. Toll-like receptor-mediated immune responses in intestinal macrophages; implications for mucosal immunity and autoimmune diseases. Clin Immunol 2016; 173:81-86. [PMID: 27620642 PMCID: PMC5148676 DOI: 10.1016/j.clim.2016.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/04/2016] [Accepted: 09/07/2016] [Indexed: 12/21/2022]
Abstract
Monocytes are precursors of macrophages and key players during inflammation and pathogen challenge in the periphery, whereas intestinal resident macrophages act as innate effector cells to engulf and clear bacteria, secrete cytokines, and maintain intestinal immunity and homeostasis. However, perturbation of toll-like receptor signaling pathway in intestinal macrophages has been associated with tolerance breakdown in autoimmune diseases. In the present review, we have summarized and discussed the role of toll-like receptor signals in human intestinal macrophages, and the role of human intestinal macrophages in keeping human intestinal immunity, homeostasis, and autoimmune diseases.
Collapse
Affiliation(s)
- Zejun Zhou
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston 29425, USA
| | - Miao Ding
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston 29425, USA
| | - Lei Huang
- The 302 Hospital of PLA, Treatment and Research Center for Infectious Diseases, Beijing 100039, China
| | - Gary Gilkeson
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston 29425, SC, USA
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 10020, China.
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston 29425, USA; Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston 29425, USA.
| |
Collapse
|
93
|
Nucleotide-binding oligomerization domain 1 acts in concert with the cholecystokinin receptor agonist, cerulein, to induce IL-33-dependent chronic pancreatitis. Mucosal Immunol 2016; 9:1234-49. [PMID: 26813347 DOI: 10.1038/mi.2015.144] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 12/05/2015] [Indexed: 02/04/2023]
Abstract
Nucleotide-binding oligomerization domain 1 (NOD1) fulfills important host-defense functions via its responses to a variety of gut pathogens. Recently, however, we showed that in acute pancreatitis caused by administration of cholecystokinin receptor (CCKR) agonist (cerulein) NOD1 also has a role in inflammation via its responses to gut commensal organisms. In the present study, we explored the long-term outcome of such NOD1 responsiveness in a new model of chronic pancreatitis induced by repeated administration of low doses of cerulein in combination with NOD1 ligand. We found that the development of chronic pancreatitis in this model requires intact NOD1 and type I IFN signaling and that such signaling mediates a macrophage-mediated inflammatory response that supports interleukin (IL)-33 production by acinar cells. The IL-33, in turn, has a necessary role in the induction of IL-13 and TGF-β1, factors causing the fibrotic reaction characteristic of chronic pancreatitis. Interestingly, the Th2 effects of IL-33 were attenuated by the concomitant type I IFN response since the inflammation was marked by clear increases in IFN-γ and TNF-α production but only marginal increases in IL-4 production. These studies establish chronic pancreatitis as an IL-33-dependent inflammation resulting from synergistic interactions between the NOD1 and CCKR signaling pathways.
Collapse
|
94
|
pH-degradable imidazoquinoline-ligated nanogels for lymph node-focused immune activation. Proc Natl Acad Sci U S A 2016; 113:8098-103. [PMID: 27382168 DOI: 10.1073/pnas.1600816113] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Agonists of Toll-like receptors (TLRs) are potent activators of the innate immune system and hold promise as vaccine adjuvant and for anticancer immunotherapy. Unfortunately, in soluble form they readily enter systemic circulation and cause systemic inflammatory toxicity. Here we demonstrate that by covalent ligation of a small-molecule imidazoquinoline-based TLR7/8 agonist to 50-nm-sized degradable polymeric nanogels the potency of the agonist to activate TLR7/8 in in vitro cultured dendritic cells is largely retained. Importantly, imidazoquinoline-ligated nanogels focused the in vivo immune activation on the draining lymph nodes while dramatically reducing systemic inflammation. Mechanistic studies revealed a prevalent passive diffusion of the nanogels to the draining lymph node. Moreover, immunization studies in mice have shown that relative to soluble TLR7/8 agonist, imidazoquinoline-ligated nanogels induce superior antibody and T-cell responses against a tuberculosis antigen. This approach opens possibilities to enhance the therapeutic benefit of small-molecule TLR agonist for a variety of applications.
Collapse
|
95
|
Miró-Mur F, Pérez-de-Puig I, Ferrer-Ferrer M, Urra X, Justicia C, Chamorro A, Planas AM. Immature monocytes recruited to the ischemic mouse brain differentiate into macrophages with features of alternative activation. Brain Behav Immun 2016; 53:18-33. [PMID: 26275369 DOI: 10.1016/j.bbi.2015.08.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/29/2015] [Accepted: 08/10/2015] [Indexed: 12/18/2022] Open
Abstract
Acute stroke induces a local inflammatory reaction causing leukocyte infiltration. Circulating monocytes are recruited to the ischemic brain and become tissue macrophages morphologically indistinguishable from reactive microglia. However, monocytes are a heterogeneous population of cells with different functions. Herein, we investigated the infiltration and fate of the monocyte subsets in a mouse model of focal brain ischemia by permanent occlusion of the distal portion of the middle cerebral artery. We separated two main subtypes of CD11b(hi) monocytes according to their expression of the surface markers Ly6C and CD43. Using adoptive transfer of reporter monocytes and monocyte depletion, we identified the pro-inflammatory Ly6C(hi)CD43(lo)CCR2(+) subset as the predominant monocytes recruited to the ischemic tissue. Monocytes were seen in the leptomeninges from where they entered the cortex along the penetrating arterioles. Four days post-ischemia, they had invaded the infarcted core, where they were often located adjacent to blood vessels. At this time, Iba-1(-) and Iba-1(+) cells in the ischemic tissue incorporated BrdU, but BrdU incorporation was rare in the reporter monocytes. The monocyte phenotype progressively changed by down-regulating Ly6C, up-regulating F4/80, expressing low or intermediate levels of Iba-1, and developing macrophage morphology. Moreover, monocytes progressively acquired the expression of typical markers of alternatively activated macrophages, like arginase-1 and YM-1. Collectively, the results show that stroke mobilized immature pro-inflammatory Ly6C(hi)CD43(lo) monocytes that acutely infiltrated the ischemic tissue reaching the core of the lesion. Monocytes differentiated to macrophages with features of alternative activation suggesting possible roles in tissue repair during the sub-acute phase of stroke.
Collapse
Affiliation(s)
- Francesc Miró-Mur
- Àrea de Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Isabel Pérez-de-Puig
- Àrea de Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Departament d'Isquèmia Cerebral i Neurodegeneració, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain
| | - Maura Ferrer-Ferrer
- Àrea de Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Departament d'Isquèmia Cerebral i Neurodegeneració, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain
| | - Xabier Urra
- Àrea de Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Functional Stroke Unit of Cerebrovascular Diseases, Hospital Clínic, 08036 Barcelona, Spain
| | - Carles Justicia
- Àrea de Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Departament d'Isquèmia Cerebral i Neurodegeneració, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain
| | - Angel Chamorro
- Àrea de Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Functional Stroke Unit of Cerebrovascular Diseases, Hospital Clínic, 08036 Barcelona, Spain
| | - Anna M Planas
- Àrea de Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Departament d'Isquèmia Cerebral i Neurodegeneració, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain.
| |
Collapse
|
96
|
Diao Y, Mohandas R, Lee P, Liu Z, Sautina L, Mu W, Li S, Wen X, Croker B, Segal MS. Effects of Long-Term Type I Interferon on the Arterial Wall and Smooth Muscle Progenitor Cells Differentiation. Arterioscler Thromb Vasc Biol 2016; 36:266-73. [DOI: 10.1161/atvbaha.115.306767] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 11/11/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Yanpeng Diao
- From the Division of Nephrology, Hypertension, and Renal Transplantation (Y.D., R.M., P.L., L.S., W.M., S.L., X.W., M.S.S.) and Department of Pathology (B.C.), University of Florida, Gainesville; North Florida/South Georgia Veterans Health System, Gainesville (R.M., B.C., M.S.S.); and Division of Urology, Department of Surgery, The 2nd Teaching Hospital of Dalian Medical University, Dalian, China (Z.L.)
| | - Rajesh Mohandas
- From the Division of Nephrology, Hypertension, and Renal Transplantation (Y.D., R.M., P.L., L.S., W.M., S.L., X.W., M.S.S.) and Department of Pathology (B.C.), University of Florida, Gainesville; North Florida/South Georgia Veterans Health System, Gainesville (R.M., B.C., M.S.S.); and Division of Urology, Department of Surgery, The 2nd Teaching Hospital of Dalian Medical University, Dalian, China (Z.L.)
| | - Pui Lee
- From the Division of Nephrology, Hypertension, and Renal Transplantation (Y.D., R.M., P.L., L.S., W.M., S.L., X.W., M.S.S.) and Department of Pathology (B.C.), University of Florida, Gainesville; North Florida/South Georgia Veterans Health System, Gainesville (R.M., B.C., M.S.S.); and Division of Urology, Department of Surgery, The 2nd Teaching Hospital of Dalian Medical University, Dalian, China (Z.L.)
| | - Zhiyu Liu
- From the Division of Nephrology, Hypertension, and Renal Transplantation (Y.D., R.M., P.L., L.S., W.M., S.L., X.W., M.S.S.) and Department of Pathology (B.C.), University of Florida, Gainesville; North Florida/South Georgia Veterans Health System, Gainesville (R.M., B.C., M.S.S.); and Division of Urology, Department of Surgery, The 2nd Teaching Hospital of Dalian Medical University, Dalian, China (Z.L.)
| | - Larysa Sautina
- From the Division of Nephrology, Hypertension, and Renal Transplantation (Y.D., R.M., P.L., L.S., W.M., S.L., X.W., M.S.S.) and Department of Pathology (B.C.), University of Florida, Gainesville; North Florida/South Georgia Veterans Health System, Gainesville (R.M., B.C., M.S.S.); and Division of Urology, Department of Surgery, The 2nd Teaching Hospital of Dalian Medical University, Dalian, China (Z.L.)
| | - Wei Mu
- From the Division of Nephrology, Hypertension, and Renal Transplantation (Y.D., R.M., P.L., L.S., W.M., S.L., X.W., M.S.S.) and Department of Pathology (B.C.), University of Florida, Gainesville; North Florida/South Georgia Veterans Health System, Gainesville (R.M., B.C., M.S.S.); and Division of Urology, Department of Surgery, The 2nd Teaching Hospital of Dalian Medical University, Dalian, China (Z.L.)
| | - Shiyu Li
- From the Division of Nephrology, Hypertension, and Renal Transplantation (Y.D., R.M., P.L., L.S., W.M., S.L., X.W., M.S.S.) and Department of Pathology (B.C.), University of Florida, Gainesville; North Florida/South Georgia Veterans Health System, Gainesville (R.M., B.C., M.S.S.); and Division of Urology, Department of Surgery, The 2nd Teaching Hospital of Dalian Medical University, Dalian, China (Z.L.)
| | - Xuerong Wen
- From the Division of Nephrology, Hypertension, and Renal Transplantation (Y.D., R.M., P.L., L.S., W.M., S.L., X.W., M.S.S.) and Department of Pathology (B.C.), University of Florida, Gainesville; North Florida/South Georgia Veterans Health System, Gainesville (R.M., B.C., M.S.S.); and Division of Urology, Department of Surgery, The 2nd Teaching Hospital of Dalian Medical University, Dalian, China (Z.L.)
| | - Byron Croker
- From the Division of Nephrology, Hypertension, and Renal Transplantation (Y.D., R.M., P.L., L.S., W.M., S.L., X.W., M.S.S.) and Department of Pathology (B.C.), University of Florida, Gainesville; North Florida/South Georgia Veterans Health System, Gainesville (R.M., B.C., M.S.S.); and Division of Urology, Department of Surgery, The 2nd Teaching Hospital of Dalian Medical University, Dalian, China (Z.L.)
| | - Mark S. Segal
- From the Division of Nephrology, Hypertension, and Renal Transplantation (Y.D., R.M., P.L., L.S., W.M., S.L., X.W., M.S.S.) and Department of Pathology (B.C.), University of Florida, Gainesville; North Florida/South Georgia Veterans Health System, Gainesville (R.M., B.C., M.S.S.); and Division of Urology, Department of Surgery, The 2nd Teaching Hospital of Dalian Medical University, Dalian, China (Z.L.)
| |
Collapse
|
97
|
Ortiz A, Fuchs SY. Anti-metastatic functions of type 1 interferons: Foundation for the adjuvant therapy of cancer. Cytokine 2016; 89:4-11. [PMID: 26822709 DOI: 10.1016/j.cyto.2016.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 01/08/2023]
Abstract
The anti-tumorigenic effects that type 1 interferons (IFN1) elicited in the in vitro studies prompted consideration of IFN1 as a potent candidate for clinical treatment. Though not all patients responded to IFN1, clinical trials have shown that patients with high risk melanoma, a highly refractory solid malignancy, benefit greatly from intermediate IFN1 treatment in regards to relapse-free and distant-metastasis-free survival. The mechanisms by which IFN1 treatment at early stages of disease suppress tumor recurrence or metastatic incidence are not fully understood. Intracellular IFN1 signaling is known to affect cell differentiation, proliferation, and apoptosis. Moreover, recent studies have revealed specific IFN1-regulated genes that may contribute to IFN1-mediated suppression of cancer progression and metastasis. In concert, expression of these different IFN1 stimulated genes may impede numerous mechanisms that mediate metastatic process. Though, IFN1 treatment is still utilized as part of standard care for metastatic melanoma (alone or in combination with other therapies), cancers find the ways to develop insensitivity to IFN1 treatment allowing for unconstrained disease progression. To determine how and when IFN1 treatment would be most efficacious during disease progression, we must understand how IFN1 signaling affects different metastasis steps. Here, we specifically focus on the anti-metastatic role of endogenous IFN1 and parameters that may help to use pharmaceutical IFN1 in the adjuvant treatment to prevent cancer recurrence and metastatic disease.
Collapse
Affiliation(s)
- Angélica Ortiz
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Serge Y Fuchs
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
98
|
Stifter SA, Bhattacharyya N, Pillay R, Flórido M, Triccas JA, Britton WJ, Feng CG. Functional Interplay between Type I and II Interferons Is Essential to Limit Influenza A Virus-Induced Tissue Inflammation. PLoS Pathog 2016; 12:e1005378. [PMID: 26731100 PMCID: PMC4701664 DOI: 10.1371/journal.ppat.1005378] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/09/2015] [Indexed: 01/28/2023] Open
Abstract
Host control of influenza A virus (IAV) is associated with exuberant pulmonary inflammation characterized by the influx of myeloid cells and production of proinflammatory cytokines including interferons (IFNs). It is unclear, however, how the immune system clears the virus without causing lethal immunopathology. Here, we demonstrate that in addition to its known anti-viral activity, STAT1 signaling coordinates host inflammation during IAV infection in mice. This regulatory mechanism is dependent on both type I IFN and IFN-γ receptor signaling and, importantly, requires the functional interplay between the two pathways. The protective function of type I IFNs is associated with not only the recruitment of classical inflammatory Ly6Chi monocytes into IAV-infected lungs, but also the prevention of excessive monocyte activation by IFN-γ. Unexpectedly, type I IFNs preferentially regulate IFN-γ signaling in Ly6Clo rather than inflammatory Ly6Chi mononuclear cell populations. In the absence of type I IFN signaling, Ly6Clo monocytes/macrophages, become phenotypically and functionally more proinflammatory than Ly6Chi cells, revealing an unanticipated function of the Ly6Clo mononuclear cell subset in tissue inflammation. In addition, we show that type I IFNs employ distinct mechanisms to regulate monocyte and neutrophil trafficking. Type I IFN signaling is necessary, but not sufficient, for preventing neutrophil recruitment into the lungs of IAV-infected mice. Instead, the cooperation of type I IFNs and lymphocyte-produced IFN-γ is required to regulate the tissue neutrophilic response to IAV. Our study demonstrates that IFN interplay links innate and adaptive anti-viral immunity to orchestrate tissue inflammation and reveals an additional level of complexity for IFN-dependent regulatory mechanisms that function to prevent excessive immunopathology while preserving anti-microbial functions. Influenza A virus (IAV) is a leading cause of respiratory infection and induces a strong acute inflammation manifested by the recruitment of monocytes and neutrophils as well as the production of proinflammatory cytokines in infected lungs. The interferons (IFNs) are strongly induced by IAV and are known to mediate host resistance to the infection. However, in contrast to their well-studied inhibitory effect on viral replication, the effects of IFNs on host inflammatory responses are less well understood. In this manuscript, we demonstrate that anti-viral IFN signaling is also required for the orchestration of a tissue response associated with the protection against IAV infection in mice. Importantly, we identify that type I IFNs cross-regulate and cooperate with IFN-γ to inhibit monocyte activation and neutrophil infiltration, respectively. This study also demonstrates that Ly6Clo monocytes/macrophages can potentially mediate influenza virus-induced inflammation, suggesting that IFNs dictate the homeostasis versus inflammatory function of mononuclear phagocytes in viral infection. Our study reveals a novel IFN-dependent regulatory mechanism designed to prevent the excessive immunopathology while preserving its anti-microbial functions. Moreover, these observations have particular relevance for understanding the mechanisms underlying the strong inflammatory response associated with lethal IAV strains and have implications for the development of new immunotherapies to treat influenza.
Collapse
Affiliation(s)
- Sebastian A. Stifter
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Mycobacterial Research Program, The Centenary Institute, Camperdown, New South Wales, Australia
| | - Nayan Bhattacharyya
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Roman Pillay
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Manuela Flórido
- Mycobacterial Research Program, The Centenary Institute, Camperdown, New South Wales, Australia
| | - James A. Triccas
- Mycobacterial Research Program, The Centenary Institute, Camperdown, New South Wales, Australia
- Microbial Pathogenesis and Immunity Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Warwick J. Britton
- Mycobacterial Research Program, The Centenary Institute, Camperdown, New South Wales, Australia
- Discipline of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Department of Medicine, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Carl G. Feng
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Mycobacterial Research Program, The Centenary Institute, Camperdown, New South Wales, Australia
- * E-mail:
| |
Collapse
|
99
|
Cho H, Hartsock MJ, Xu Z, He M, Duh EJ. Monomethyl fumarate promotes Nrf2-dependent neuroprotection in retinal ischemia-reperfusion. J Neuroinflammation 2015; 12:239. [PMID: 26689280 PMCID: PMC4687295 DOI: 10.1186/s12974-015-0452-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/04/2015] [Indexed: 12/15/2022] Open
Abstract
Background Retinal ischemia results in neuronal degeneration and contributes to the pathogenesis of multiple blinding diseases. Recently, the fumaric acid ester dimethyl fumarate (DMF) has been FDA-approved for the treatment of multiple sclerosis, based on its neuroprotective and anti-inflammatory effects. Its potential role as a neuroprotective agent for retinal diseases has received little attention. In addition, DMF’s mode of action remains elusive, although studies have suggested nuclear factor erythroid 2-related factor 2 (Nrf2) activation as an important mechanism. Here we investigated the neuroprotective role of monomethyl fumarate (MMF), the biologically active metabolite of DMF, in retinal ischemia-reperfusion (I/R) injury, and examined the role of Nrf2 in mediating MMF action. Methods Wild-type C57BL/6J and Nrf2 knockout (KO) mice were subjected to 90 min of retinal ischemia followed by reperfusion. Mice received daily intraperitoneal injection of MMF. Inflammatory gene expression was measured using quantitative reverse transcription PCR (qRT-PCR) at 48 h after I/R injury. Seven days after I/R, qRT-PCR for Nrf2 target gene expression, immunostaining for Müller cell gliosis and cell loss in the ganglion cell layer (GCL), and electroretinography for retinal function were performed. Results The results of this study confirmed that MMF reduces retinal neurodegeneration in an Nrf2-dependent manner. MMF treatment significantly increased the expression of Nrf2-regulated antioxidative genes, suppressed inflammatory gene expression, reduced Müller cell gliosis, decreased neuronal cell loss in the GCL, and improved retinal function measured by electroretinogram (ERG) after retinal I/R injury in wild-type mice. Importantly, these MMF-mediated beneficial effects were not observed in Nrf2 KO mice. Conclusions These results indicate that fumaric acid esters (FAEs) exert a neuronal protective function in the retinal I/R model and further validate Nrf2 modulation as a major mode of action of FAEs. This suggests that DMF and FAEs could be a potential therapeutic agent for activation of the Nrf2 pathway in retinal and possibly systemic diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0452-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongkwan Cho
- Department of Ophthalmology, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD, 21287, USA.
| | - Matthew J Hartsock
- Department of Ophthalmology, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD, 21287, USA.
| | - Zhenhua Xu
- Department of Ophthalmology, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD, 21287, USA.
| | - Meihua He
- Department of Ophthalmology, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD, 21287, USA.
| | - Elia J Duh
- Department of Ophthalmology, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD, 21287, USA.
| |
Collapse
|
100
|
The anti-atherogenic effects of eicosapentaenoic and docosahexaenoic acid are dependent on the stage of THP-1 macrophage differentiation. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.12.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|