51
|
Sha LK, Sha W, Kuchler L, Daiber A, Giegerich AK, Weigert A, Knape T, Snodgrass R, Schröder K, Brandes RP, Brüne B, von Knethen A. Loss of Nrf2 in bone marrow-derived macrophages impairs antigen-driven CD8(+) T cell function by limiting GSH and Cys availability. Free Radic Biol Med 2015; 83:77-88. [PMID: 25687825 DOI: 10.1016/j.freeradbiomed.2015.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 02/02/2015] [Accepted: 02/04/2015] [Indexed: 01/01/2023]
Abstract
NF-E2-related factor 2 (Nrf2), known to protect against reactive oxygen species, has recently been reported to resolve acute inflammatory responses in activated macrophages. Consequently, disruption of Nrf2 promotes a proinflammatory macrophage phenotype. In the current study, we addressed the impact of this macrophage phenotype on CD8(+) T cell activation by using an antigen-driven coculture model consisting of Nrf2(-/-) and Nrf2(+/+) bone marrow-derived macrophages (BMDMΦ) and transgenic OT-1 CD8(+) T cells. OT-1 CD8(+) T cells encode a T cell receptor that specifically recognizes MHC class I-presented ovalbumin OVA(257-264) peptide, thereby causing a downstream T cell activation. Interestingly, coculture of OVA(257-264)-pulsed Nrf2(-/-) BMDMΦ with transgenic OT-1 CD8(+) T cells attenuated CD8(+) T cell activation, proliferation, and cytotoxic function. Since the provision of low-molecular-weight thiols such as glutathione (GSH) or cysteine (Cys) by macrophages limits antigen-driven CD8(+) T cell activation, we quantified the amounts of intracellular and extracellular GSH and Cys in both cocultures. Indeed, GSH levels were strongly decreased in Nrf2(-/-) cocultures compared to wild-type counterparts. Supplementation of thiols in Nrf2(-/-) cocultures via addition of glutathione ester, N-acetylcysteine, β-mercaptoethanol, or cysteine itself restored T cell proliferation as well as cytotoxicity by increasing intracellular GSH. Mechanistically, we identified two potential Nrf2-regulated genes involved in thiol synthesis in BMDMΦ: the cystine transporter subunit xCT and the modulatory subunit of the GSH-synthesizing enzyme γ-GCS (GCLM). Pharmacological inhibition of γ-GCS-dependent GSH synthesis as well as knockdown of the cystine antiporter xCT in Nrf2(+/+) BMDMΦ mimicked the effect of Nrf2(-/-) BMDMΦ on CD8(+) T cell function. Our findings demonstrate that reduced levels of GCLM as well as xCT in Nrf2(-/-) BMDMΦ limit GSH availability, thereby inhibiting antigen-induced CD8(+) T cell function.
Collapse
MESH Headings
- Animals
- Antioxidants/metabolism
- Apoptosis
- Blotting, Western
- Bone Marrow/immunology
- Bone Marrow/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Proliferation
- Cells, Cultured
- Cystine/metabolism
- Flow Cytometry
- Glutathione/metabolism
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Immunoenzyme Techniques
- Macrophages/immunology
- Macrophages/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- NF-E2-Related Factor 2/physiology
- Ovalbumin/immunology
- Ovalbumin/metabolism
- Oxidative Stress
- RNA, Messenger/genetics
- Reactive Oxygen Species/metabolism
- Real-Time Polymerase Chain Reaction
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
Collapse
Affiliation(s)
- Lisa K Sha
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Weixiao Sha
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Laura Kuchler
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Andreas Daiber
- Department of Medicine II, University Medical Center, Johannes Gutenberg-University Mainz, 55116 Mainz, Germany
| | - Annika K Giegerich
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Andreas Weigert
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Tilo Knape
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine & Pharmacology TMP, and Goethe-University Frankfurt, 60596 Frankfurt am Main, Germany
| | - Ryan Snodgrass
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Katrin Schröder
- Institute of Cardiovascular Physiology-Physiology I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Ralf P Brandes
- Institute of Cardiovascular Physiology-Physiology I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Andreas von Knethen
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
52
|
Chen B, Lu Y, Chen Y, Cheng J. The role of Nrf2 in oxidative stress-induced endothelial injuries. J Endocrinol 2015; 225:R83-99. [PMID: 25918130 DOI: 10.1530/joe-14-0662] [Citation(s) in RCA: 303] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2015] [Indexed: 02/05/2023]
Abstract
Endothelial dysfunction is an important risk factor for cardiovascular disease, and it represents the initial step in the pathogenesis of atherosclerosis. Failure to protect against oxidative stress-induced cellular damage accounts for endothelial dysfunction in the majority of pathophysiological conditions. Numerous antioxidant pathways are involved in cellular redox homeostasis, among which the nuclear factor-E2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1)-antioxidant response element (ARE) signaling pathway is perhaps the most prominent. Nrf2, a transcription factor with a high sensitivity to oxidative stress, binds to AREs in the nucleus and promotes the transcription of a wide variety of antioxidant genes. Nrf2 is located in the cytoskeleton, adjacent to Keap1. Keap1 acts as an adapter for cullin 3/ring-box 1-mediated ubiquitination and degradation of Nrf2, which decreases the activity of Nrf2 under physiological conditions. Oxidative stress causes Nrf2 to dissociate from Keap1 and to subsequently translocate into the nucleus, which results in its binding to ARE and the transcription of downstream target genes. Experimental evidence has established that Nrf2-driven free radical detoxification pathways are important endogenous homeostatic mechanisms that are associated with vasoprotection in the setting of aging, atherosclerosis, hypertension, ischemia, and cardiovascular diseases. The aim of the present review is to briefly summarize the mechanisms that regulate the Nrf2/Keap1-ARE signaling pathway and the latest advances in understanding how Nrf2 protects against oxidative stress-induced endothelial injuries. Further studies regarding the precise mechanisms by which Nrf2-regulated endothelial protection occurs are necessary for determining whether Nrf2 can serve as a therapeutic target in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Bo Chen
- Key Laboratory of Transplant Engineering and ImmunologyMinistry of Health, Regenerative Medicine Research Center, West China Hospital, Sichuan University, No.1, Keyuan Road 4th, Wuhou District, Chengdu, Sichuan Province 610041, People's Republic of ChinaDepartment of Human AnatomySchool of Basic Medical Sciences, Luzhou Medicine College, Luzhou, People's Republic of China Key Laboratory of Transplant Engineering and ImmunologyMinistry of Health, Regenerative Medicine Research Center, West China Hospital, Sichuan University, No.1, Keyuan Road 4th, Wuhou District, Chengdu, Sichuan Province 610041, People's Republic of ChinaDepartment of Human AnatomySchool of Basic Medical Sciences, Luzhou Medicine College, Luzhou, People's Republic of China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and ImmunologyMinistry of Health, Regenerative Medicine Research Center, West China Hospital, Sichuan University, No.1, Keyuan Road 4th, Wuhou District, Chengdu, Sichuan Province 610041, People's Republic of ChinaDepartment of Human AnatomySchool of Basic Medical Sciences, Luzhou Medicine College, Luzhou, People's Republic of China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and ImmunologyMinistry of Health, Regenerative Medicine Research Center, West China Hospital, Sichuan University, No.1, Keyuan Road 4th, Wuhou District, Chengdu, Sichuan Province 610041, People's Republic of ChinaDepartment of Human AnatomySchool of Basic Medical Sciences, Luzhou Medicine College, Luzhou, People's Republic of China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and ImmunologyMinistry of Health, Regenerative Medicine Research Center, West China Hospital, Sichuan University, No.1, Keyuan Road 4th, Wuhou District, Chengdu, Sichuan Province 610041, People's Republic of ChinaDepartment of Human AnatomySchool of Basic Medical Sciences, Luzhou Medicine College, Luzhou, People's Republic of China
| |
Collapse
|
53
|
Bell KFS, Al-Mubarak B, Martel MA, McKay S, Wheelan N, Hasel P, Márkus NM, Baxter P, Deighton RF, Serio A, Bilican B, Chowdhry S, Meakin PJ, Ashford MLJ, Wyllie DJA, Scannevin RH, Chandran S, Hayes JD, Hardingham GE. Neuronal development is promoted by weakened intrinsic antioxidant defences due to epigenetic repression of Nrf2. Nat Commun 2015; 6:7066. [PMID: 25967870 PMCID: PMC4441249 DOI: 10.1038/ncomms8066] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 03/30/2015] [Indexed: 12/13/2022] Open
Abstract
Forebrain neurons have weak intrinsic antioxidant defences compared with astrocytes, but the molecular basis and purpose of this is poorly understood. We show that early in mouse cortical neuronal development in vitro and in vivo, expression of the master-regulator of antioxidant genes, transcription factor NF-E2-related-factor-2 (Nrf2), is repressed by epigenetic inactivation of its promoter. Consequently, in contrast to astrocytes or young neurons, maturing neurons possess negligible Nrf2-dependent antioxidant defences, and exhibit no transcriptional responses to Nrf2 activators, or to ablation of Nrf2's inhibitor Keap1. Neuronal Nrf2 inactivation seems to be required for proper development: in maturing neurons, ectopic Nrf2 expression inhibits neurite outgrowth and aborization, and electrophysiological maturation, including synaptogenesis. These defects arise because Nrf2 activity buffers neuronal redox status, inhibiting maturation processes dependent on redox-sensitive JNK and Wnt pathways. Thus, developmental epigenetic Nrf2 repression weakens neuronal antioxidant defences but is necessary to create an environment that supports neuronal development.
Collapse
Affiliation(s)
- Karen F S Bell
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Bashayer Al-Mubarak
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Marc-André Martel
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Sean McKay
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Nicola Wheelan
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Philip Hasel
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Nóra M Márkus
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Paul Baxter
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Ruth F Deighton
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Andrea Serio
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Bilada Bilican
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Sudhir Chowdhry
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Paul J Meakin
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Michael L J Ashford
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - David J A Wyllie
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | | | - Siddharthan Chandran
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - John D Hayes
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Giles E Hardingham
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
54
|
Das L, Vinayak M. Long term effect of curcumin in restoration of tumour suppressor p53 and phase-II antioxidant enzymes via activation of Nrf2 signalling and modulation of inflammation in prevention of cancer. PLoS One 2015; 10:e0124000. [PMID: 25860911 PMCID: PMC4393109 DOI: 10.1371/journal.pone.0124000] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/24/2015] [Indexed: 01/14/2023] Open
Abstract
Inhibition of carcinogenesis may be a consequence of attenuation of oxidative stress via activation of antioxidant defence system, restoration and stabilization of tumour suppressor proteins along with modulation of inflammatory mediators. Previously we have delineated significant role of curcumin during its long term effect in regulation of glycolytic pathway and angiogenesis, which in turn results in prevention of cancer via modulation of stress activated genes. Present study was designed to investigate long term effect of curcumin in regulation of Nrf2 mediated phase-II antioxidant enzymes, tumour suppressor p53 and inflammation under oxidative tumour microenvironment in liver of T-cell lymphoma bearing mice. Inhibition of Nrf2 signalling observed during lymphoma progression, resulted in down regulation of phase II antioxidant enzymes, p53 as well as activation of inflammatory signals. Curcumin potentiated significant increase in Nrf2 activation. It restored activity of phase-II antioxidant enzymes like GST, GR, NQO1, and tumour suppressor p53 level. In addition, curcumin modulated inflammation via upregulation of TGF-β and reciprocal regulation of iNOS and COX2. The study suggests that during long term effect, curcumin leads to prevention of cancer by inducing phase-II antioxidant enzymes via activation of Nrf2 signalling, restoration of tumour suppressor p53 and modulation of inflammatory mediators like iNOS and COX2 in liver of lymphoma bearing mice.
Collapse
Affiliation(s)
- Laxmidhar Das
- Biochemistry and Molecular Biology Laboratory, Department of Zoology (Centre of Advanced Study), Banaras Hindu University, Varanasi-221005, India
| | - Manjula Vinayak
- Biochemistry and Molecular Biology Laboratory, Department of Zoology (Centre of Advanced Study), Banaras Hindu University, Varanasi-221005, India
- * E-mail:
| |
Collapse
|
55
|
Gęgotek A, Skrzydlewska E. The role of transcription factor Nrf2 in skin cells metabolism. Arch Dermatol Res 2015; 307:385-96. [PMID: 25708189 PMCID: PMC4469773 DOI: 10.1007/s00403-015-1554-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/06/2015] [Accepted: 02/12/2015] [Indexed: 12/22/2022]
Abstract
Skin, which is a protective layer of the body, is in constant contact with physical and chemical environmental factors. Exposure of the skin to highly adverse conditions often leads to oxidative stress. Moreover, it has been observed that skin cells are also exposed to reactive oxygen species generated during cell metabolism particularly in relation to the synthesis of melanin or the metabolism in immune system cells. However, skin cells have special features that protect them against oxidative modifications including transcription factor Nrf2, which is responsible for the transcription of the antioxidant protein genes such as antioxidant enzymes, small molecular antioxidant proteins or interleukins, and multidrug response protein. In the present study, the mechanisms of Nrf2 activation have been compared in the cells forming the various layers of the skin: keratinocytes, melanocytes, and fibroblasts. The primary mechanism of control of Nrf2 activity is its binding by cytoplasmic inhibitor Keap1, while cells have also other controlling mechanisms, such as phosphorylation of Nrf2 and modifications of its activators (e.g., Maf, IKKβ) or inhibitors (e.g., Bach1, caveolae, TGF-β). Moreover, there are a number of drugs (e.g., ketoconazole) used in the pharmacotherapy of skin diseases based on the activation of Nrf2, but they may also induce oxidative stress. Therefore, it is important to look for compounds that cause a selective activation of Nrf2 particularly natural substances such as curcumin, sulforaphane, or extracts from the broccoli leaves without side effects. These findings could be helpful in the searching for new drugs for people with vitiligo or even melanoma.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Departments of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland,
| | | |
Collapse
|
56
|
Baqader NO, Radulovic M, Crawford M, Stoeber K, Godovac-Zimmermann J. Nuclear cytoplasmic trafficking of proteins is a major response of human fibroblasts to oxidative stress. J Proteome Res 2014; 13:4398-423. [PMID: 25133973 PMCID: PMC4259009 DOI: 10.1021/pr500638h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have used a subcellular spatial razor approach based on LC-MS/MS-based proteomics with SILAC isotope labeling to determine changes in protein abundances in the nuclear and cytoplasmic compartments of human IMR90 fibroblasts subjected to mild oxidative stress. We show that response to mild tert-butyl hydrogen peroxide treatment includes redistribution between the nucleus and cytoplasm of numerous proteins not previously associated with oxidative stress. The 121 proteins with the most significant changes encompass proteins with known functions in a wide variety of subcellular locations and of cellular functional processes (transcription, signal transduction, autophagy, iron metabolism, TCA cycle, ATP synthesis) and are consistent with functional networks that are spatially dispersed across the cell. Both nuclear respiratory factor 2 and the proline regulatory axis appear to contribute to the cellular metabolic response. Proteins involved in iron metabolism or with iron/heme as a cofactor as well as mitochondrial proteins are prominent in the response. Evidence suggesting that nuclear import/export and vesicle-mediated protein transport contribute to the cellular response was obtained. We suggest that measurements of global changes in total cellular protein abundances need to be complemented with measurements of the dynamic subcellular spatial redistribution of proteins to obtain comprehensive pictures of cellular function.
Collapse
Affiliation(s)
- Noor O. Baqader
- Division of Medicine, Center for Nephrology, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| | - Marko Radulovic
- Division of Medicine, Center for Nephrology, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
- Insitute of Oncology and Radiology, Pasterova 14, 11000 Belgrade, Serbia
| | - Mark Crawford
- Division of Medicine, Center for Nephrology, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| | - Kai Stoeber
- Research Department of Pathology and UCL Cancer Institute, Rockefeller Building, University College London, University Street, London WC1E 6JJ, United Kingdom
| | - Jasminka Godovac-Zimmermann
- Division of Medicine, Center for Nephrology, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| |
Collapse
|
57
|
Nrf2 and cardiovascular defense. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:104308. [PMID: 23691261 PMCID: PMC3649703 DOI: 10.1155/2013/104308] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/15/2013] [Accepted: 03/19/2013] [Indexed: 11/29/2022]
Abstract
The cardiovascular system is susceptible to a group of diseases that are responsible for a larger proportion of morbidity and mortality than any other disease. Many cardiovascular diseases are associated with a failure of defenses against oxidative stress-induced cellular damage and/or death, leading to organ dysfunction. The pleiotropic transcription factor, nuclear factor-erythroid (NF-E) 2-related factor 2 (Nrf2), regulates the expression of antioxidant enzymes and proteins through the antioxidant response element. Nrf2 is an important component in antioxidant defenses in cardiovascular diseases such as atherosclerosis, hypertension, and heart failure. Nrf2 is also involved in protection against oxidant stress during the processes of ischemia-reperfusion injury and aging. However, evidence suggests that Nrf2 activity does not always lead to a positive outcome and may accelerate the pathogenesis of some cardiovascular diseases (e.g., atherosclerosis). The precise conditions under which Nrf2 acts to attenuate or stimulate cardiovascular disease processes are unclear. Further studies on the cellular environments related to cardiovascular diseases that influence Nrf2 pathways are required before Nrf2 can be considered a therapeutic target for the treatment of cardiovascular diseases.
Collapse
|
58
|
Weber MH, da Rocha RF, Schnorr CE, Schröder R, Moreira JCF. Changes in lymphocyte HSP70 levels in women handball players throughout 1 year of training: the role of estrogen levels. J Physiol Biochem 2013; 68:365-75. [PMID: 22294379 DOI: 10.1007/s13105-012-0148-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 01/19/2012] [Indexed: 01/24/2023]
Abstract
Heat shock protein 70 (HSP70) is a chaperone that maintains protein conformation during heat stress. It has recently been observed that HSP70 may be released from cells in response to increased energy demand (e.g., exercise) and/or oxidative stress. Since HSP70 levels should change in response to athletic training, we have investigated whether blood HSP70 levels in young women handball players change over a complete training season. Thirty women handball players (12-24 years old) were divided into low (≥30 pg mL(-1)) (LE) and normal (30-330 pg mL(-1)) (NE) estradiol groups. HSP70 levels in lymphocytes and plasma and blood redox parameters were evaluated over 1 year (2009), with sampling at the beginning, middle, and end of the season. We observed no changes in superoxide dismutase activity or protein carbonyl or extracellular HSP70 levels, while catalase activity increased at the middle of the season in the NE group, and the thiobarbituric acid species levels in both groups were higher at the beginning of the season than at the middle or end. The lymphocyte HSP70 content was higher at the middle and end than at the beginning of the season in the NE group and also higher in the LE group than in the NE group at the beginning of the season. These results suggest that plasma estradiol levels may play an important role in exercise training and that the intracellular HSP70 content, a biomarker for inflammation, is affected by both estradiol levels and exercise-induced oxidative stress.
Collapse
Affiliation(s)
- Maria Helena Weber
- Nutrition, Clinic, Institute of Health Sciences, Superior Teaching Establishment Federation University (Universidade FEEVALE), Novo Hamburgo, Rio Grande do Sul, Brazil.
| | | | | | | | | |
Collapse
|
59
|
Reddy PVB, Gandhi N, Samikkannu T, Saiyed Z, Agudelo M, Yndart A, Khatavkar P, Nair MPN. HIV-1 gp120 induces antioxidant response element-mediated expression in primary astrocytes: role in HIV associated neurocognitive disorder. Neurochem Int 2012; 61:807-14. [PMID: 21756955 PMCID: PMC3222741 DOI: 10.1016/j.neuint.2011.06.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/06/2011] [Accepted: 06/18/2011] [Indexed: 11/22/2022]
Abstract
HIV infection affects the central nervous system resulting in HIV associated neurocognitive disorder (HAND), which is characterized by depression, behavioral and motor dysfunctions. The HIV-1 viral envelope protein gp120 is known to induce the release of neurotoxic factors which lead to apoptotic cell death. Although the exact mechanisms involved in HIV-1 gp120-induced neurotoxicity are not completely understood, oxidative stress is suggested to play a vital role in the neuropathogenesis of HAND. Astrocytes represent major population of the non-neuronal cell type in the brain and play a critical role in the neuropathogenesis of HAND. Increased oxidative stress is known to induce nuclear factor erythroid derived 2-related factor 2 (Nrf2), a basic leucine zipper transcription factor which is known to regulate the antioxidant defensive mechanism. However, the role of Nrf2 in HAND has not been elucidated. We report that gp120 significantly upregulates Nrf2 in human astrocytes and is associated with stimulation of key antioxidant defensive enzymes Hemoxygenase (HO-1) and NAD(P)H dehydrogenase quinone1 (Nqo1). Pretreatment of the astrocytes with antioxidants or a specific calcium chelator BAPTA-AM, significantly blocked the upregulation of Nrf2, HO-1 and Nqo1. These results suggest a possible role of the intracellular calcium and oxidative stress in Nrf2 mediated antioxidant defense mechanism, which may have protective role in promoting cell survival.
Collapse
Affiliation(s)
- Pichili Vijaya Bhaskar Reddy
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Nimisha Gandhi
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Thangavel Samikkannu
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Zainulabedin Saiyed
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Marisela Agudelo
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Adriana Yndart
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Pradnya Khatavkar
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Madhavan PN Nair
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| |
Collapse
|
60
|
Curtis JM, Hahn WS, Long EK, Burrill JS, Arriaga EA, Bernlohr DA. Protein carbonylation and metabolic control systems. Trends Endocrinol Metab 2012; 23:399-406. [PMID: 22742812 PMCID: PMC3408802 DOI: 10.1016/j.tem.2012.05.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/15/2012] [Accepted: 05/21/2012] [Indexed: 12/16/2022]
Abstract
Oxidative stress is linked to the production of reactive lipid aldehydes that non-enzymatically alkylate cysteine, histidine, or lysine residues in a reaction termed protein carbonylation. Reactive lipid aldehydes and their derivatives are detoxified via a variety of phase I and phase II systems, and when antioxidant defenses are compromised or oxidative conditions are increased, protein carbonylation is increased. The resulting modification has been implicated as causative in a variety of metabolic states including neurodegeneration, muscle wasting, insulin resistance, and aging. Although such modifications usually result in loss of protein function, protein carbonylation may be regulatory and activate signaling pathways involved in antioxidant biology and cellular homeostasis.
Collapse
Affiliation(s)
- Jessica M. Curtis
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN 55455
| | - Wendy S. Hahn
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN 55455
| | - Eric K. Long
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN 55455
| | - Joel S. Burrill
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN 55455
| | - Edgar A. Arriaga
- Department of Chemistry, The University of Minnesota-Twin Cities, Minneapolis, MN 55455
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN 55455
| |
Collapse
|
61
|
Bhaskaran N, Shukla S, Kanwal R, Srivastava JK, Gupta S. Induction of heme oxygenase-1 by chamomile protects murine macrophages against oxidative stress. Life Sci 2012; 90:1027-33. [PMID: 22683429 DOI: 10.1016/j.lfs.2012.05.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/23/2012] [Accepted: 05/25/2012] [Indexed: 01/05/2023]
Abstract
AIMS Protection of cells from oxidative insult may be possible through direct scavenging of reactive oxygen species, or through stimulation of intracellular antioxidant defense mechanisms by induction of antioxidant gene expression. In this study we investigated the cytoprotective effect of chamomile and elucidated the underlying mechanisms. MAIN METHODS The cytoprotective effect of chamomile was examined on H(2)O(2)-induced cellular stress in RAW 264.7 murine macrophages. KEY FINDINGS RAW 264.7 murine macrophages treated with chamomile were protected from cell death caused by H(2)O(2). Treatment with 50μM H(2)O(2) for 6h caused significant increase in cellular stress accompanied by cell death in RAW 264.7 macrophages. Pretreatment with chamomile at 10-20μg/mL for 16h followed by H(2)O(2) treatment protected the macrophages against cell death. Chamomile exposure significantly increased the expression of antioxidant enzymes viz. heme oxygenase-1 (HO-1), peroxiredoxin-1 (Prx-1), and thioredoxin-1 (Trx-1) in a dose-dependent manner, compared with their respective controls. Chamomile increased nuclear translocation of Nrf2 with increased phosphorylated Nrf2 levels, and binding to the antioxidant response element in the nucleus. SIGNIFICANCE These molecular findings for the first time provide insights into the mechanisms underlying the induction of phase 2 enzymes through the Keap1-Nrf2 signaling pathway by chamomile, and provide evidence that chamomile possesses antioxidant and cytoprotective properties.
Collapse
Affiliation(s)
- Natarajan Bhaskaran
- Department of Urology, Case Western Reserve University, Cleveland, OH 44106, United States
| | | | | | | | | |
Collapse
|
62
|
Gatbonton-Schwager TN, Letterio JJ, Tochtrop GP. Bryonolic acid transcriptional control of anti-inflammatory and antioxidant genes in macrophages in vitro and in vivo. JOURNAL OF NATURAL PRODUCTS 2012; 75:591-598. [PMID: 22339499 PMCID: PMC4089864 DOI: 10.1021/np200823p] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Bryonolic acid (BA) (1) is a naturally occurring triterpenoid with pleiotropic properties. This study characterizes the mechanisms mediating the anti-inflammatory and antioxidant activities of BA and validates the utility of BA as a tool to explore the relationships between triterpenoid structure and activity. BA reduces the inflammatory mediator NO by suppressing the expression of the inflammatory enzyme inducible nitric oxide synthase (iNOS) in LPS-activated RAW 264.7 macrophage cells. In addition, BA robustly induces the antioxidant protein heme oxygenase-1 (HO-1) in vitro and in vivo in an Nrf2-dependent manner. Further analyses of Nrf2 target genes reveal selectivity for the timing and level of gene induction by BA in treated macrophages with distinct patterns for Nrf2-regulated antioxidant genes. Additionally, the distinct expression profile of BA on Nrf2 target genes relative to oleanolic acid suggests the importance of the triterpenoid scaffold in dictating the pleiotropic effects exerted by these molecules.
Collapse
Affiliation(s)
| | - John J. Letterio
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106
- Department of Pediatrics and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106
| | - Gregory P. Tochtrop
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
63
|
Kesic MJ, Meyer M, Bauer R, Jaspers I. Exposure to ozone modulates human airway protease/antiprotease balance contributing to increased influenza A infection. PLoS One 2012; 7:e35108. [PMID: 22496898 PMCID: PMC3322171 DOI: 10.1371/journal.pone.0035108] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 03/12/2012] [Indexed: 12/11/2022] Open
Abstract
Exposure to oxidant air pollution is associated with increased respiratory morbidities and susceptibility to infections. Ozone is a commonly encountered oxidant air pollutant, yet its effects on influenza infections in humans are not known. The greater Mexico City area was the primary site for the spring 2009 influenza A H1N1 pandemic, which also coincided with high levels of environmental ozone. Proteolytic cleavage of the viral membrane protein hemagglutinin (HA) is essential for influenza virus infectivity. Recent studies suggest that HA cleavage might be cell-associated and facilitated by the type II transmembrane serine proteases (TTSPs) human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2), whose activities are regulated by antiproteases, such as secretory leukocyte protease inhibitor (SLPI). Based on these observations, we sought to determine how acute exposure to ozone may modulate cellular protease/antiprotease expression and function, and to define their roles in a viral infection. We utilized our in vitro model of differentiated human nasal epithelial cells (NECs) to determine the effects of ozone on influenza cleavage, entry, and replication. We show that ozone exposure disrupts the protease/antiprotease balance within the airway liquid. We also determined that functional forms of HAT, TMPRSS2, and SLPI are secreted from human airway epithelium, and acute exposure to ozone inversely alters their expression levels. We also show that addition of antioxidants significantly reduces virus replication through the induction of SLPI. In addition, we determined that ozone-induced cleavage of the viral HA protein is not cell-associated and that secreted endogenous proteases are sufficient to activate HA leading to a significant increase in viral replication. Our data indicate that pre-exposure to ozone disrupts the protease/antiprotease balance found in the human airway, leading to increased influenza susceptibility.
Collapse
Affiliation(s)
- Matthew J Kesic
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina Chapel Hill, North Carolina, United States of America.
| | | | | | | |
Collapse
|
64
|
Wang D, Taylor EW, Wang Y, Wan X, Zhang J. Encapsulated nanoepigallocatechin-3-gallate and elemental selenium nanoparticles as paradigms for nanochemoprevention. Int J Nanomedicine 2012; 7:1711-21. [PMID: 22619522 PMCID: PMC3356175 DOI: 10.2147/ijn.s29341] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chemoprevention that impedes one or more steps in carcinogenesis, via long-term administration of naturally occurring or synthetic compounds, is widely considered to be a crucial strategy for cancer control. Selenium (Se) has chemopreventive effects, but its application is limited due to a low therapeutic index as shown in numerous animal experiments. In contrast to Se, which was known for its toxicity prior to the discovery of its beneficial effects, the natural compound epigallocatechin-3-gallate (EGCG) was originally considered to be nontoxic. Due to its preventive effects on many types of cancer in various animal models, EGCG has been regarded as a prime example of a promising chemopreventive agent without major toxicity concerns. However, very recently, evidence has accumulated showing that efficacious doses of EGCG used in health promotion may not be far from its toxic dose level. Therefore, both Se and EGCG need to be modified by novel pharmaceutical technologies to attain enhanced efficacy and/or reduced toxicity. Nanotechnology may be one of these technologies. In support of this hypothesis, the characteristics of polylactic acid and polyethylene glycol-encapsulated nano-EGCG and elemental Se nanoparticles dispersed by bovine serum albumin are reviewed in this article. Encapsulation of EGCG to form nano-EGCG leads to its enhanced stability in plasma and remarkably superior chemopreventive effects, with more than tenfold dose advantages in inducing apoptosis and inhibition of both angiogenesis and tumor growth. Se at nanoparticle size (“Nano-Se”), compared with Se compounds commonly used in dietary supplements, has significantly lower toxicity, without compromising its ability to upregulate selenoenzymes at nutritional levels and induce phase II enzymes at supranutritional levels.
Collapse
Affiliation(s)
- Dongxu Wang
- Key Laboratory of Tea Biochemistry and Biotechnology, School of Tea and Food Science, Anhui Agricultural University, Hefei, Anhui, People's Republic of China
| | | | | | | | | |
Collapse
|
65
|
Tomobe K, Shinozuka T, Kuroiwa M, Nomura Y. Age-related changes of Nrf2 and phosphorylated GSK-3β in a mouse model of accelerated aging (SAMP8). Arch Gerontol Geriatr 2012; 54:e1-7. [DOI: 10.1016/j.archger.2011.06.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 01/28/2023]
|
66
|
Strobel NA, Peake JM, Matsumoto A, Marsh SA, Coombes JS, Wadley GD. Antioxidant supplementation reduces skeletal muscle mitochondrial biogenesis. Med Sci Sports Exerc 2011; 43:1017-24. [PMID: 21085043 DOI: 10.1249/mss.0b013e318203afa3] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Exercise increases the production of reactive oxygen species (ROS) in skeletal muscle, and athletes often consume antioxidant supplements in the belief they will attenuate ROS-related muscle damage and fatigue during exercise. However, exercise-induced ROS may regulate beneficial skeletal muscle adaptations, such as increased mitochondrial biogenesis. We therefore investigated the effects of long-term antioxidant supplementation with vitamin E and α-lipoic acid on changes in markers of mitochondrial biogenesis in the skeletal muscle of exercise-trained and sedentary rats. METHODS Male Wistar rats were divided into four groups: 1) sedentary control diet, 2) sedentary antioxidant diet, 3) exercise control diet, and 4) exercise antioxidant diet. Animals ran on a treadmill 4 d · wk at ∼ 70%VO2max for up to 90 min · d for 14 wk. RESULTS Consistent with the augmentation of skeletal muscle mitochondrial biogenesis and antioxidant defenses, after training there were significant increases in peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) messenger RNA (mRNA) and protein, cytochrome C oxidase subunit IV (COX IV) and cytochrome C protein abundance, citrate synthase activity, Nfe2l2, and SOD2 protein (P < 0.05). Antioxidant supplementation reduced PGC-1α mRNA, PGC-1α and COX IV protein, and citrate synthase enzyme activity (P < 0.05) in both sedentary and exercise-trained rats. CONCLUSIONS Vitamin E and α-lipoic acid supplementation suppresses skeletal muscle mitochondrial biogenesis, regardless of training status.
Collapse
Affiliation(s)
- Natalie A Strobel
- School of Human Movement Studies, The University of Queensland, St Lucia, Queensland, Australia.
| | | | | | | | | | | |
Collapse
|
67
|
Tighe RM, Li Z, Potts EN, Frush S, Liu N, Gunn MD, Foster WM, Noble PW, Hollingsworth JW. Ozone inhalation promotes CX3CR1-dependent maturation of resident lung macrophages that limit oxidative stress and inflammation. THE JOURNAL OF IMMUNOLOGY 2011; 187:4800-8. [PMID: 21930959 PMCID: PMC3197861 DOI: 10.4049/jimmunol.1101312] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inhalation of ambient ozone alters populations of lung macrophages. However, the impact of altered lung macrophage populations on the pathobiology of ozone is poorly understood. We hypothesized that subpopulations of macrophages modulate the response to ozone. We exposed C57BL/6 mice to ozone (2 ppm × 3 h) or filtered air. At 24 h after exposure, the lungs were harvested and digested and the cells underwent flow cytometry. Analysis revealed a novel macrophage subset present in ozone-exposed mice, which were distinct from resident alveolar macrophages and identified by enhanced Gr-1(+) expression [Gr-1 macrophages (Gr-1 Macs)]. Further analysis showed that Gr-1(+) Macs exhibited high expression of MARCO, CX3CR1, and NAD(P)H:quinone oxioreductase 1. Gr-1(+) Macs were present in the absence of CCR2, suggesting that they were not derived from a CCR2-dependent circulating intermediate. Using PKH26-PCL to label resident phagocytic cells, we demonstrated that Gr-1 Macs were derived from resident lung cells. This new subset was diminished in the absence of CX3CR1. Interestingly, CX3CR1-null mice exhibited enhanced responses to ozone, including increased airway hyperresponsiveness, exacerbated neutrophil influx, accumulation of 8-isoprostanes and protein carbonyls, and increased expression of cytokines (CXCL2, IL-1β, IL-6, CCL2, and TNF-α). Our results identify a novel subset of lung macrophages, which are derived from a resident intermediate, are dependent upon CX3CR1, and appear to protect the host from the biological response to ozone.
Collapse
Affiliation(s)
- Robert M Tighe
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Zhang L, Gavin T, Barber DS, LoPachin RM. Role of the Nrf2-ARE pathway in acrylamide neurotoxicity. Toxicol Lett 2011; 205:1-7. [PMID: 21540084 PMCID: PMC3149808 DOI: 10.1016/j.toxlet.2011.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 04/13/2011] [Accepted: 04/14/2011] [Indexed: 10/18/2022]
Abstract
Acrylamide (ACR) intoxication is associated with selective nerve terminal damage in the central and peripheral nervous systems. As a soft electrophile, ACR could form adducts with nucleophilic sulfhydryl groups on cysteine residues of kelch-like erythroid cell-derived protein with CNS homology-associated protein 1 (Keap1) leading to dissociation of the transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 activation of the antioxidant-responsive element (ARE) and subsequent upregulated gene expression of phase II detoxification enzymes and anitoxidant proteins might provide protection in neuronal regions with transcriptional capabilities (e.g., cell body). In contrast, non-transcriptional cell regions (axons, nerve terminals) might be vulnerable to electrophile-induced damage. To test this possibility, immunoblot analysis was used to measure protein products of Nrf2-activated ARE genes in nerve terminals and in cytosolic/nuclear factions of neuronal cell bodies isolated from rats intoxicated at two different ACR dose-rates; i.e., 50mg/kg/d×10 days, 21mg/kg/d×38 days. To detect possible differences in cell-specific induction, the cytoprotective response to ACR intoxication was determined in hepatic cells. Results show that control brain and hepatic cell fractions exhibited distinct subcellular distributions of Nrf2, Keap1 and several ARE protein products. ACR intoxication, however, did not alter the levels of these proteins in synaptosomal, brain cytoplasm or liver cell fractions. These data indicate that ACR was an insufficient electrophilic signal for ARE induction in all subcellular fractions tested. Because a cytoprotective response was not induced in any fraction, nerve terminal vulnerability to ACR cannot be ascribed to the absence of transcription-based defense mechanisms in this neuronal region.
Collapse
Affiliation(s)
- Lihai Zhang
- Department of Anesthesiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx NY 10467-2490
| | - Terrence Gavin
- Department of Chemistry, Iona College, New Rochelle, NY 10804
| | - David S. Barber
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32611-0885
| | - Richard M. LoPachin
- Department of Anesthesiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx NY 10467-2490
| |
Collapse
|
69
|
Tsai PY, Ka SM, Chang JM, Chen HC, Shui HA, Li CY, Hua KF, Chang WL, Huang JJ, Yang SS, Chen A. Epigallocatechin-3-gallate prevents lupus nephritis development in mice via enhancing the Nrf2 antioxidant pathway and inhibiting NLRP3 inflammasome activation. Free Radic Biol Med 2011; 51:744-54. [PMID: 21641991 DOI: 10.1016/j.freeradbiomed.2011.05.016] [Citation(s) in RCA: 219] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/29/2011] [Accepted: 05/13/2011] [Indexed: 01/02/2023]
Abstract
Patients with lupus nephritis show an impaired oxidative status and increased levels of interleukin (IL)-1β and IL-18, which are closely linked to inflammation and correlated with disease activity. Although epigallocatechin-3-gallate (EGCG), the major bioactive polyphenol present in green tea with antioxidant and free radical scavenging activities, has been reported to have anti-inflammatory effects by inhibiting nuclear factor-kappa B (NF-κB)-mediated inflammatory responses in vivo, its effectiveness for the treatment of lupus nephritis is still unknown. In the present study, 12-week-old New Zealand black/white (NZB/W) F1 lupus-prone mice were treated daily with EGCG by gavage until sacrificed at 34 weeks old for clinical, pathological, and mechanistic evaluation. We found that the administration (1) prevented proteinuria, renal function impairment, and severe renal lesions; (2) increased renal nuclear factor E2-related factor 2 (Nrf2) and glutathione peroxidase activity; (3) reduced renal oxidative stress, NF-κB activation, and NLRP3 mRNA/protein expression and protein levels of mature caspase-1, IL-1β, and IL-18; and (4) enhanced splenic regulatory T (Treg) cell activity. Our data clearly demonstrate that EGCG has prophylactic effects on lupus nephritis in these mice that are highly associated with its effects of enhancing the Nrf2 antioxidant signaling pathway, decreasing renal NLRP3 inflammasome activation, and increasing systemic Treg cell activity.
Collapse
Affiliation(s)
- Pei-Yi Tsai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Dworski R, Han W, Blackwell TS, Hoskins A, Freeman ML. Vitamin E prevents NRF2 suppression by allergens in asthmatic alveolar macrophages in vivo. Free Radic Biol Med 2011; 51:516-21. [PMID: 21605660 PMCID: PMC3439844 DOI: 10.1016/j.freeradbiomed.2011.04.040] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 04/21/2011] [Accepted: 04/25/2011] [Indexed: 11/25/2022]
Abstract
Asthma is a chronic inflammatory airway disease associated with increased generation of reactive oxidant species and disturbed antioxidant defenses. NRF2 is the master transcription factor that regulates the expression of Phase II antioxidant and detoxifying enzymes. Disruption of NRF2 augments oxidative stress and inflammation in a mouse model of asthma, suggesting a protective role for NRF2 in the lungs in vivo. Yet, little is known about the regulation and function of NRF2 in human asthmatics. Using segmental allergen challenge, a well-established experimental model of IgE-mediated asthma exacerbation in human atopic asthmatics, we investigated the effects of a specific allergen and the modulatory role of vitamin E on NRF2 and a NRF2-target gene, superoxide dismutase, in alveolar macrophages recovered from the airways at 24h after allergen instillation in vivo. Allergen-provoked airway inflammation in sensitive asthmatics caused a profound inhibition of macrophage NRF2 activity and superoxide dismutase, rendering them incapable of responding to the NRF2 inducers. Prolonged treatment with high doses of the antioxidant vitamin E lessened this allergen-induced drop in alveolar macrophage NRF2. These results are the first to demonstrate that NRF2 expression in human asthmatics is compromised upon allergen challenge but can be rescued by vitamin E in vivo.
Collapse
Affiliation(s)
- Ryszard Dworski
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, TN 37232, USA.
| | | | | | | | | |
Collapse
|
71
|
Tsai PY, Ka SM, Chao TK, Chang JM, Lin SH, Li CY, Kuo MT, Chen P, Chen A. Antroquinonol reduces oxidative stress by enhancing the Nrf2 signaling pathway and inhibits inflammation and sclerosis in focal segmental glomerulosclerosis mice. Free Radic Biol Med 2011; 50:1503-16. [PMID: 21376112 DOI: 10.1016/j.freeradbiomed.2011.02.029] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 02/24/2011] [Indexed: 12/24/2022]
Abstract
Oxidative stress, inflammation, and fibrosis are involved in the development and progression of focal segmental glomerulosclerosis (FSGS), a common form of idiopathic nephrotic syndrome that represents a therapeutic challenge because it has a poor response to steroids. Antroquinonol (Antroq), a purified compound, is a major active component of a mushroom, namely Antrodia camphorata, that grows in the camphor tree in Taiwan, and it has inhibitory effects on nitric oxide production and inflammatory reactions. We hypothesized that Antroq might ameliorate FSGS renal lesions by modulating the pathogenic pathways of oxidative stress, inflammation, and glomerular sclerosis in the kidney. We demonstrate that Antroq significantly (1) attenuates proteinuria, renal dysfunction, and glomerulopathy, including epithelial hyperplasia lesions and podocyte injury; (2) reduces oxidative stress, leukocyte infiltration, and expression of fibrosis-related proteins in the kidney; (3) increases renal nuclear factor E2-related factor 2 (Nrf2) and glutathione peroxidase activity; and (4) inhibits renal nuclear factor-κB (NF-κB) activation and decreases levels of transforming growth factor (TGF)-β1 in serum and kidney tissue in a mouse FSGS model. Our data suggest that Antroq might be a potential therapeutic agent for FSGS, acting by boosting Nrf2 activation and suppressing NF-κB-dependent inflammatory and TGF-β1-mediated fibrosis pathways in the kidney.
Collapse
Affiliation(s)
- Pei-Yi Tsai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Facchini A, Stanic I, Cetrullo S, Borzì RM, Filardo G, Flamigni F. Sulforaphane protects human chondrocytes against cell death induced by various stimuli. J Cell Physiol 2011; 226:1771-9. [DOI: 10.1002/jcp.22506] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
73
|
Zrelli H, Matsuoka M, Kitazaki S, Zarrouk M, Miyazaki H. Hydroxytyrosol reduces intracellular reactive oxygen species levels in vascular endothelial cells by upregulating catalase expression through the AMPK-FOXO3a pathway. Eur J Pharmacol 2011; 660:275-82. [PMID: 21497591 DOI: 10.1016/j.ejphar.2011.03.045] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 03/03/2011] [Accepted: 03/22/2011] [Indexed: 12/14/2022]
Abstract
Reactive oxygen species are critically involved in the endothelial dysfunction that contributes to atherosclerosis development. Hydroxytyrosol (HT), a main phenolic compound in olive oil and leaves from Olea europaea L., has antiatherogenic properties with powerful antioxidant activity. The present study verifies the antioxidant activity of HT on H2O2-induced intracellular reactive oxygen species in porcine pulmonary artery endothelial cells (VECs) and the involved molecular mechanisms. Incubation of VECs with HT prevented the increase in intracellular reactive oxygen species levels in the presence of H2O2. HT increased catalase mRNA, protein and activity. Catalase siRNA suppressed HT-dependent reduction of intracellular reactive oxygen species. HT increased both cytosolic and nuclear protein levels of forkhead transcription factor 3a (FOXO3a), as well as the phosphorylation of AMP-activated protein kinase (AMPK) that translocates FOXO3a to the nucleus. AMPK siRNA and a specific inhibitor suppressed HT-induced FOXO3a upregulation and catalase expression. Moreover, FOXO3a siRNA blocked HT-dependent increase in catalase expression. Taken together, our findings strongly demonstrate that HT positively regulates the antioxidant defense system in VECs by inducing the phosphorylation of AMPK with subsequent activation of FOXO3a and catalase expression, and provides a molecular basis for the prevention of cardiovascular diseases by HT.
Collapse
Affiliation(s)
- Houda Zrelli
- Graduate School of Life and Environment Sciences, Alliance for Research on North Africa, University of Tsukuba, Ibaraki, 305-8572, Japan
| | | | | | | | | |
Collapse
|
74
|
Kim KC, Kim JS, Ah Kang K, Kim JM, Won Hyun J. Cytoprotective effects of catechin 7-O-β-D glucopyranoside against mitochondrial dysfunction damaged by streptozotocin in RINm5F cells. Cell Biochem Funct 2010; 28:651-60. [DOI: 10.1002/cbf.1703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 09/02/2010] [Accepted: 09/02/2010] [Indexed: 11/12/2022]
|
75
|
The Nrf2 system as a potential target for the development of indirect antioxidants. Molecules 2010; 15:7266-91. [PMID: 20966874 PMCID: PMC6259123 DOI: 10.3390/molecules15107266] [Citation(s) in RCA: 363] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 10/18/2010] [Accepted: 10/20/2010] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress causes damage to multiple cellular components such as DNA, proteins, and lipids, and is implicated in various human diseases including cancer, neurodegeneration, inflammatory diseases, and aging. In response to oxidative attack, cells have developed an antioxidant defense system to maintain cellular redox homeostasis and to protect cells from damage. The thiol-containing small molecules (e.g. glutathione), reactive oxygen species-inactivating enzymes (e.g. glutathione peroxidase), and phase 2 detoxifying enzymes (e.g. NAD(P)H: quinine oxidoreductase 1 and glutathione-S-transferases) are members of this antioxidant system. NF-E2-related factor 2 (Nrf2) is a CNC-bZIP transcription factor which regulates the basal and inducible expression of a wide array of antioxidant genes. Following dissociation from the cytosolic protein Keap1, a scaffolding protein which binds Nrf2 and Cul3 ubiquitin ligase for proteasome degradation, Nrf2 rapidly accumulates in the nucleus and transactivates the antioxidant response element in the promoter region of many antioxidant genes. The critical role of Nrf2 has been demonstrated by various animal studies showing that mice with a targeted disruption of the nrf2 gene are prone to develop lesions in response to environmental toxicants/carcinogens, drugs, and inflammatory insults. In this review, we discuss the role of the Nrf2 system, with particular focus on Nrf2-controlled target genes and the potential pleiotropic effects of Nrf2 activation of indirect antioxidants.
Collapse
|
76
|
Tkachev VO, Menshchikova EB, Zenkov NK, Kandalintseva NV, Volsky NN. Synthetic water-soluble phenolic antioxidant regulates l-arginine metabolism in macrophages: a possible role of Nrf2/ARE. BIOCHEMISTRY (MOSCOW) 2010; 75:549-53. [PMID: 20632932 DOI: 10.1134/s0006297910050020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Synthetic water-soluble phenolic antioxidant TS-13 exhibits pronounced anti-inflammatory properties in vivo and induces intracellular signal system Nrf2/ARE. At concentrations 150-1000 microM it inhibits nitric oxide (NO) production in mouse peritoneal macrophages. However, this compound at low concentrations (1-100 microM) paradoxically increases NO production and decreases activity of arginase. These results are indicative of an ambiguous role of NO and its metabolites in the mechanism of development of inflammatory reaction.
Collapse
Affiliation(s)
- V O Tkachev
- Research Center of Clinical and Experimental Medicine, Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk, 630117, Russia.
| | | | | | | | | |
Collapse
|
77
|
Reduced cellular redox status induces 4-hydroxynonenal-mediated caspase 3 activation leading to erythrocyte death during chronic arsenic exposure in rats. Toxicol Appl Pharmacol 2010; 244:315-27. [DOI: 10.1016/j.taap.2010.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 01/01/2010] [Accepted: 01/19/2010] [Indexed: 02/07/2023]
|
78
|
Bogaard HJ, Natarajan R, Henderson SC, Long CS, Kraskauskas D, Smithson L, Ockaili R, McCord JM, Voelkel NF. Chronic Pulmonary Artery Pressure Elevation Is Insufficient to Explain Right Heart Failure. Circulation 2009; 120:1951-60. [DOI: 10.1161/circulationaha.109.883843] [Citation(s) in RCA: 397] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
The most important determinant of longevity in pulmonary arterial hypertension is right ventricular (RV) function, but in contrast to experimental work elucidating the pathobiology of left ventricular failure, there is a paucity of data on the cellular and molecular mechanisms of RV failure.
Methods and Results—
A mechanical animal model of chronic progressive RV pressure overload (pulmonary artery banding, not associated with structural alterations of the lung circulation) was compared with an established model of angioproliferative pulmonary hypertension associated with fatal RV failure. Isolated RV pressure overload induced RV hypertrophy without failure, whereas in the context of angioproliferative pulmonary hypertension, RV failure developed that was associated with myocardial apoptosis, fibrosis, a decreased RV capillary density, and a decreased vascular endothelial growth factor mRNA and protein expression despite increased nuclear stabilization of hypoxia-induced factor-1α. Induction of myocardial nuclear factor E2-related factor 2 and heme-oxygenase 1 with a dietary supplement (Protandim) prevented fibrosis and capillary loss and preserved RV function despite continuing pressure overload.
Conclusion—
These data brought into question the commonly held concept that RV failure associated with pulmonary hypertension is due strictly to the increased RV afterload.
Collapse
Affiliation(s)
- Harm J. Bogaard
- From the Divisions of Pulmonary and Critical Care (H.J.B., R.N., D.K., L.S., N.F.V.) and Cardiology (R.O.), Department of Medicine, and Department of Anatomy and Neurobiology (S.C.H.), Virginia Commonwealth University, Richmond; Department of Pulmonary Medicine, VU University Medical Center, Amsterdam, the Netherlands (H.J.B.); and Divisions of Cardiology (C.S.L.) and Pulmonary Sciences (J.M.M.), Department of Medicine, University of Colorado at Denver and Health Sciences Center, Aurora
| | - Ramesh Natarajan
- From the Divisions of Pulmonary and Critical Care (H.J.B., R.N., D.K., L.S., N.F.V.) and Cardiology (R.O.), Department of Medicine, and Department of Anatomy and Neurobiology (S.C.H.), Virginia Commonwealth University, Richmond; Department of Pulmonary Medicine, VU University Medical Center, Amsterdam, the Netherlands (H.J.B.); and Divisions of Cardiology (C.S.L.) and Pulmonary Sciences (J.M.M.), Department of Medicine, University of Colorado at Denver and Health Sciences Center, Aurora
| | - Scott C. Henderson
- From the Divisions of Pulmonary and Critical Care (H.J.B., R.N., D.K., L.S., N.F.V.) and Cardiology (R.O.), Department of Medicine, and Department of Anatomy and Neurobiology (S.C.H.), Virginia Commonwealth University, Richmond; Department of Pulmonary Medicine, VU University Medical Center, Amsterdam, the Netherlands (H.J.B.); and Divisions of Cardiology (C.S.L.) and Pulmonary Sciences (J.M.M.), Department of Medicine, University of Colorado at Denver and Health Sciences Center, Aurora
| | - Carlin S. Long
- From the Divisions of Pulmonary and Critical Care (H.J.B., R.N., D.K., L.S., N.F.V.) and Cardiology (R.O.), Department of Medicine, and Department of Anatomy and Neurobiology (S.C.H.), Virginia Commonwealth University, Richmond; Department of Pulmonary Medicine, VU University Medical Center, Amsterdam, the Netherlands (H.J.B.); and Divisions of Cardiology (C.S.L.) and Pulmonary Sciences (J.M.M.), Department of Medicine, University of Colorado at Denver and Health Sciences Center, Aurora
| | - Donatas Kraskauskas
- From the Divisions of Pulmonary and Critical Care (H.J.B., R.N., D.K., L.S., N.F.V.) and Cardiology (R.O.), Department of Medicine, and Department of Anatomy and Neurobiology (S.C.H.), Virginia Commonwealth University, Richmond; Department of Pulmonary Medicine, VU University Medical Center, Amsterdam, the Netherlands (H.J.B.); and Divisions of Cardiology (C.S.L.) and Pulmonary Sciences (J.M.M.), Department of Medicine, University of Colorado at Denver and Health Sciences Center, Aurora
| | - Lisa Smithson
- From the Divisions of Pulmonary and Critical Care (H.J.B., R.N., D.K., L.S., N.F.V.) and Cardiology (R.O.), Department of Medicine, and Department of Anatomy and Neurobiology (S.C.H.), Virginia Commonwealth University, Richmond; Department of Pulmonary Medicine, VU University Medical Center, Amsterdam, the Netherlands (H.J.B.); and Divisions of Cardiology (C.S.L.) and Pulmonary Sciences (J.M.M.), Department of Medicine, University of Colorado at Denver and Health Sciences Center, Aurora
| | - Ramzi Ockaili
- From the Divisions of Pulmonary and Critical Care (H.J.B., R.N., D.K., L.S., N.F.V.) and Cardiology (R.O.), Department of Medicine, and Department of Anatomy and Neurobiology (S.C.H.), Virginia Commonwealth University, Richmond; Department of Pulmonary Medicine, VU University Medical Center, Amsterdam, the Netherlands (H.J.B.); and Divisions of Cardiology (C.S.L.) and Pulmonary Sciences (J.M.M.), Department of Medicine, University of Colorado at Denver and Health Sciences Center, Aurora
| | - Joe M. McCord
- From the Divisions of Pulmonary and Critical Care (H.J.B., R.N., D.K., L.S., N.F.V.) and Cardiology (R.O.), Department of Medicine, and Department of Anatomy and Neurobiology (S.C.H.), Virginia Commonwealth University, Richmond; Department of Pulmonary Medicine, VU University Medical Center, Amsterdam, the Netherlands (H.J.B.); and Divisions of Cardiology (C.S.L.) and Pulmonary Sciences (J.M.M.), Department of Medicine, University of Colorado at Denver and Health Sciences Center, Aurora
| | - Norbert F. Voelkel
- From the Divisions of Pulmonary and Critical Care (H.J.B., R.N., D.K., L.S., N.F.V.) and Cardiology (R.O.), Department of Medicine, and Department of Anatomy and Neurobiology (S.C.H.), Virginia Commonwealth University, Richmond; Department of Pulmonary Medicine, VU University Medical Center, Amsterdam, the Netherlands (H.J.B.); and Divisions of Cardiology (C.S.L.) and Pulmonary Sciences (J.M.M.), Department of Medicine, University of Colorado at Denver and Health Sciences Center, Aurora
| |
Collapse
|
79
|
Paupe V, Dassa EP, Goncalves S, Auchère F, Lönn M, Holmgren A, Rustin P. Impaired nuclear Nrf2 translocation undermines the oxidative stress response in Friedreich ataxia. PLoS One 2009; 4:e4253. [PMID: 19158945 PMCID: PMC2617762 DOI: 10.1371/journal.pone.0004253] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 12/15/2008] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Friedreich ataxia originates from a decrease in mitochondrial frataxin, which causes the death of a subset of neurons. The biochemical hallmarks of the disease include low activity of the iron sulfur cluster-containing proteins (ISP) and impairment of antioxidant defense mechanisms that may play a major role in disease progression. METHODOLOGY/PRINCIPAL FINDINGS We thus investigated signaling pathways involved in antioxidant defense mechanisms. We showed that cultured fibroblasts from patients with Friedreich ataxia exhibited hypersensitivity to oxidative insults because of an impairment in the Nrf2 signaling pathway, which led to faulty induction of antioxidant enzymes. This impairment originated from previously reported actin remodeling by hydrogen peroxide. CONCLUSIONS/SIGNIFICANCE Thus, the defective machinery for ISP synthesis by causing mitochondrial iron dysmetabolism increases hydrogen peroxide production that accounts for the increased susceptibility to oxidative stress.
Collapse
Affiliation(s)
- Vincent Paupe
- Inserm, U676, Hôpital Robert Debré, Bât. Ecran, Paris, France
| | | | | | | | | | | | | |
Collapse
|
80
|
Zhu H, Jia Z, Strobl JS, Ehrich M, Misra HP, Li Y. Potent Induction of Total Cellular and Mitochondrial Antioxidants and Phase 2 Enzymes by Cruciferous Sulforaphane in Rat Aortic Smooth Muscle Cells: Cytoprotection Against Oxidative and Electrophilic Stress. Cardiovasc Toxicol 2008; 8:115-25. [DOI: 10.1007/s12012-008-9020-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Accepted: 04/15/2008] [Indexed: 10/21/2022]
|