51
|
Xie X, Hu Y, Xu Y, Yin K, Li Y, Chen Y, Xia J, Xu L, Liu Z, Geng S, Li Q, Jiao X, Chen X, Pan Z. Genetic analysis of Salmonella enterica serovar Gallinarum biovar Pullorum based on characterization and evolution of CRISPR sequence. Vet Microbiol 2017; 203:81-87. [PMID: 28619172 DOI: 10.1016/j.vetmic.2017.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/20/2017] [Accepted: 02/20/2017] [Indexed: 11/19/2022]
Abstract
Salmonella enterica serovar Gallinarum biovar Pullorum (S. Pullorum) is the cause of pullorum disease, characterized by white diarrhea, which leads to high mortality in poultry. In this study, we aimed to assess the genetic diversity of 655 S. Pullorum strains from 1962 to 2015 in China, Europe, and South America. A sequence typing scheme based on clustered regularly interspaced short palindromic repeats (CRISPR) was used to reveal the genetic relationships among these strains in this study. Overall, a total of 20 Pullorum sequence types (PSTs) of CRISPR were identified in the 655 isolates with PST7 (74%, 486/655) and PST3 (13%, 86/655) to be the most two frequent PSTs belonging to two different lineages, which confirmed the genetic conservation of S. Pullorum strains isolated from six provinces and two direct-controlled municipalities (Beijing and Shanghai) in China. However, the identification of seven new PSTs distributed in strains isolated since 2001 implied that genetic variation continues to develop in S. Pullorum. Interestingly, the whole-genome single-nucleotide polymorphism typing (WGST) of 96 strains out of the 655 isolates divided them into four lineages based on SNP analysis of core genomic sequence and exhibit good correspondence with the CRISPR subtyping method. Notably, 22 out of 26 isolates from Europe and South America were distributed in five distinctive PSTs (with no Chinese strains). Additionally, CRISPR data of spacers and their arrangement exhibit subtle but distinct specificity between different strains, and the dynamic adaptive nature of CRISPR loci provides critical insights into the evolution of S. Pullorum as the bacteria are influenced by their environment.
Collapse
Affiliation(s)
- Xiaolei Xie
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yachen Hu
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yaohui Xu
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Henan, China
| | - Kequan Yin
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yang Li
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yun Chen
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jie Xia
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Lijuan Xu
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Zijian Liu
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Shizhong Geng
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Qiuchun Li
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.
| | - Xinan Jiao
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.
| | - Xiang Chen
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Zhiming Pan
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
52
|
Ogunremi D, Nadin-Davis S, Dupras AA, Márquez IG, Omidi K, Pope L, Devenish J, Burke T, Allain R, Leclair D. Evaluation of a Multiplex PCR Assay for the Identification of Salmonella Serovars Enteritidis and Typhimurium Using Retail and Abattoir Samples. J Food Prot 2017; 80:295-301. [PMID: 28221989 DOI: 10.4315/0362-028x.jfp-16-167] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A multiplex PCR was developed to identify the two most common serovars of Salmonella causing foodborne illness in Canada, namely, serovars Enteritidis and Typhimurium. The PCR was designed to amplify DNA fragments from four Salmonella genes, namely, invA gene (211-bp fragment), iroB gene (309-bp fragment), Typhimurium STM 4497 (523-bp fragment), and Enteritidis SE147228 (612-bp fragment). In addition, a 1,026-bp ribosomal DNA (rDNA) fragment universally present in bacterial species was included in the assay as an internal control fragment. The detection rate of the PCR was 100% among Salmonella Enteritidis (n = 92) and Salmonella Typhimurium (n = 33) isolates. All tested Salmonella isolates (n = 194) were successfully identified based on the amplification of at least one Salmonella -specific DNA fragment. None of the four Salmonella DNA amplicons were detected in any of the non- Salmonella isolates (n = 126), indicating an exclusivity rate of 100%. When applied to crude extracts of 2,001 field isolates of Salmonella obtained during the course of a national microbiological baseline study in broiler chickens and chicken products sampled from abattoir and retail outlets, 163 isolates, or 8.1%, tested positive for Salmonella Enteritidis and another 80 isolates, or 4.0%, tested as Salmonella Typhimurium. All isolates identified by serological testing as Salmonella Enteritidis in the microbiological study were also identified by using the multiplex PCR. The new test can be used to identify or confirm pure isolates of the two serovars and is also amenable for integration into existing culture procedures for accurate detection of Salmonella colonies.
Collapse
Affiliation(s)
- Dele Ogunremi
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, Ontario, Canada K2H 8P9
| | - Susan Nadin-Davis
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, Ontario, Canada K2H 8P9
| | - Andrée Ann Dupras
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, Ontario, Canada K2H 8P9
| | - Imelda Gálvan Márquez
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, Ontario, Canada K2H 8P9
| | - Katayoun Omidi
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, Ontario, Canada K2H 8P9
| | - Louise Pope
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, Ontario, Canada K2H 8P9
| | - John Devenish
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, Ontario, Canada K2H 8P9
| | - Teresa Burke
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, Ontario, Canada K2H 8P9
| | - Ray Allain
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, Ontario, Canada K2H 8P9
| | - Daniel Leclair
- Food Safety Science Division, Floor 5, 1400 Merivale Road, Tower 2, Ottawa, Ontario, Canada K1A 0Y9
| |
Collapse
|
53
|
Comparative Genomics Reveals the Diversity of Restriction-Modification Systems and DNA Methylation Sites in Listeria monocytogenes. Appl Environ Microbiol 2017; 83:AEM.02091-16. [PMID: 27836852 DOI: 10.1128/aem.02091-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/08/2016] [Indexed: 12/30/2022] Open
Abstract
Listeria monocytogenes is a bacterial pathogen that is found in a wide variety of anthropogenic and natural environments. Genome sequencing technologies are rapidly becoming a powerful tool in facilitating our understanding of how genotype, classification phenotypes, and virulence phenotypes interact to predict the health risks of individual bacterial isolates. Currently, 57 closed L. monocytogenes genomes are publicly available, representing three of the four phylogenetic lineages, and they suggest that L. monocytogenes has high genomic synteny. This study contributes an additional 15 closed L. monocytogenes genomes that were used to determine the associations between the genome and methylome with host invasion magnitude. In contrast to previous findings, large chromosomal inversions and rearrangements were detected in five isolates at the chromosome terminus and within rRNA genes, including a previously undescribed inversion within rRNA-encoding regions. Each isolate's epigenome contained highly diverse methyltransferase recognition sites, even within the same serotype and methylation pattern. Eleven strains contained a single chromosomally encoded methyltransferase, one strain contained two methylation systems (one system on a plasmid), and three strains exhibited no methylation, despite the occurrence of methyltransferase genes. In three isolates a new, unknown DNA modification was observed in addition to diverse methylation patterns, accompanied by a novel methylation system. Neither chromosome rearrangement nor strain-specific patterns of epigenome modification observed within virulence genes were correlated with serotype designation, clonal complex, or in vitro infectivity. These data suggest that genome diversity is larger than previously considered in L. monocytogenes and that as more genomes are sequenced, additional structure and methylation novelty will be observed in this organism. IMPORTANCE Listeria monocytogenes is the causative agent of listeriosis, a disease which manifests as gastroenteritis, meningoencephalitis, and abortion. Among Salmonella, Escherichia coli, Campylobacter, and Listeria-causing the most prevalent foodborne illnesses-infection by L. monocytogenes carries the highest mortality rate. The ability of L. monocytogenes to regulate its response to various harsh environments enables its persistence and transmission. Small-scale comparisons of L. monocytogenes focusing solely on genome contents reveal a highly syntenic genome yet fail to address the observed diversity in phenotypic regulation. This study provides a large-scale comparison of 302 L. monocytogenes isolates, revealing the importance of the epigenome and restriction-modification systems as major determinants of L. monocytogenes phylogenetic grouping and subsequent phenotypic expression. Further examination of virulence genes of select outbreak strains reveals an unprecedented diversity in methylation statuses despite high degrees of genome conservation.
Collapse
|
54
|
Haley BJ, Kim SW, Pettengill J, Luo Y, Karns JS, Van Kessel JAS. Genomic and Evolutionary Analysis of Two Salmonella enterica Serovar Kentucky Sequence Types Isolated from Bovine and Poultry Sources in North America. PLoS One 2016; 11:e0161225. [PMID: 27695032 PMCID: PMC5047448 DOI: 10.1371/journal.pone.0161225] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 08/02/2016] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica subsp. enterica serovar Kentucky is frequently isolated from healthy poultry and dairy cows and is occasionally isolated from people with clinical disease. A genomic analysis of 119 isolates collected in the United States from dairy cows, ground beef, poultry and poultry products, and human clinical cases was conducted. Results of the analysis demonstrated that the majority of poultry and bovine-associated S. Kentucky were sequence type (ST) 152. Several bovine-associated (n = 3) and food product isolates (n = 3) collected from the United States and the majority of human clinical isolates were ST198, a sequence type that is frequently isolated from poultry and occasionally from human clinical cases in Northern Africa, Europe and Southeast Asia. A phylogenetic analysis indicated that both STs are more closely related to other Salmonella serovars than they are to each other. Additionally, there was strong evidence of an evolutionary divergence between the poultry-associated and bovine-associated ST152 isolates that was due to polymorphisms in four core genome genes. The ST198 isolates recovered from dairy farms in the United States were phylogenetically distinct from those collected from human clinical cases with 66 core genome SNPs differentiating the two groups, but more isolates are needed to determine the significance of this distinction. Identification of S. Kentucky ST198 from dairy animals in the United States suggests that the presence of this pathogen should be monitored in food-producing animals.
Collapse
Affiliation(s)
- Bradd J. Haley
- Environmental Microbial and Food Safety Laboratory, Beltsville Area Research Center, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD, United States of America
| | - Seon Woo Kim
- Environmental Microbial and Food Safety Laboratory, Beltsville Area Research Center, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD, United States of America
| | - James Pettengill
- Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States of America
| | - Yan Luo
- Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States of America
| | - Jeffrey S. Karns
- Environmental Microbial and Food Safety Laboratory, Beltsville Area Research Center, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD, United States of America
| | - Jo Ann S. Van Kessel
- Environmental Microbial and Food Safety Laboratory, Beltsville Area Research Center, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD, United States of America
- * E-mail:
| |
Collapse
|
55
|
Feasey NA, Hadfield J, Keddy KH, Dallman TJ, Jacobs J, Deng X, Wigley P, Barquist L, Langridge GC, Feltwell T, Harris SR, Mather AE, Fookes M, Aslett M, Msefula C, Kariuki S, Maclennan CA, Onsare RS, Weill FX, Le Hello S, Smith AM, McClelland M, Desai P, Parry CM, Cheesbrough J, French N, Campos J, Chabalgoity JA, Betancor L, Hopkins KL, Nair S, Humphrey TJ, Lunguya O, Cogan TA, Tapia MD, Sow SO, Tennant SM, Bornstein K, Levine MM, Lacharme-Lora L, Everett DB, Kingsley RA, Parkhill J, Heyderman RS, Dougan G, Gordon MA, Thomson NR. Distinct Salmonella Enteritidis lineages associated with enterocolitis in high-income settings and invasive disease in low-income settings. Nat Genet 2016; 48:1211-1217. [PMID: 27548315 PMCID: PMC5047355 DOI: 10.1038/ng.3644] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 07/15/2016] [Indexed: 11/15/2022]
Abstract
An epidemiological paradox surrounds Salmonella enterica serovar Enteritidis. In high-income settings, it has been responsible for an epidemic of poultry-associated, self-limiting enterocolitis, whereas in sub-Saharan Africa it is a major cause of invasive nontyphoidal Salmonella disease, associated with high case fatality. By whole-genome sequence analysis of 675 isolates of S. Enteritidis from 45 countries, we show the existence of a global epidemic clade and two new clades of S. Enteritidis that are geographically restricted to distinct regions of Africa. The African isolates display genomic degradation, a novel prophage repertoire, and an expanded multidrug resistance plasmid. S. Enteritidis is a further example of a Salmonella serotype that displays niche plasticity, with distinct clades that enable it to become a prominent cause of gastroenteritis in association with the industrial production of eggs and of multidrug-resistant, bloodstream-invasive infection in Africa.
Collapse
Affiliation(s)
- Nicholas A Feasey
- Liverpool School of Tropical Medicine, Liverpool, UK
- Wellcome Trust Sanger Institute, Cambridge, UK
- Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | | | - Karen H Keddy
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Timothy J Dallman
- Gastrointestinal Bacteria Reference Unit, Public Health England, Colindale, UK
| | - Jan Jacobs
- Institute of Tropical Medicine, Antwerp, Belgium
- Department of Microbiology and Immunology, University of Leuven, Belgium
| | - Xiangyu Deng
- Center for Food Safety, Department of Food Science and Technology, University of Georgia
- Centers for Disease Control and Prevention, Atlanta, USA
| | - Paul Wigley
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Lars Barquist
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | - Chisomo Msefula
- Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- University of Malawi, The College of Medicine, Blantyre, Malawi
| | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Calman A Maclennan
- Wellcome Trust Sanger Institute, Cambridge, UK
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Robert S Onsare
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | | | | | - Anthony M Smith
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
| | - Prerak Desai
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
| | - Christopher M Parry
- Liverpool School of Tropical Medicine, Liverpool, UK
- London School of Hygiene & Tropical Medicine, London, UK
| | - John Cheesbrough
- Department of Epidemiology and Population Health, University of Liverpool, Liverpool, UK
| | - Neil French
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Josefina Campos
- Enteropathogen Division, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) Carlos G. Malbran Institute, Buenos Aires, Argentina
| | - Jose A Chabalgoity
- Instituto de Higiene, Facultad de Medicina, Universidad de la Republica, Uruguay
| | - Laura Betancor
- Instituto de Higiene, Facultad de Medicina, Universidad de la Republica, Uruguay
| | - Katie L Hopkins
- Antimicrobial Resistance and Healthcare-Associated Infections Reference Unit, Public Health England, Colindale, UK
| | - Satheesh Nair
- Gastrointestinal Bacteria Reference Unit, Public Health England, Colindale, UK
| | | | - Octavie Lunguya
- National Institute of Biomedical Research, Kinshasa, the Democratic Republic of the Congo
- University Hospital of Kinshasa, Kinshasa, the Democratic Republic of the Congo
| | - Tristan A Cogan
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | - Milagritos D Tapia
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Samba O Sow
- Centre pour le Développement des Vaccins, Bamako, Mali
| | - Sharon M Tennant
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kristin Bornstein
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Myron M Levine
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lizeth Lacharme-Lora
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Dean B Everett
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Robert A Kingsley
- Wellcome Trust Sanger Institute, Cambridge, UK
- Institute of Food Research, Colney, Norwich, UK
| | | | - Robert S Heyderman
- Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Division of Infection and Immunity, University College London, London, UK
| | | | - Melita A Gordon
- Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Nicholas R Thomson
- Wellcome Trust Sanger Institute, Cambridge, UK
- London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
56
|
Whole-Genome Sequencing Analysis of Salmonella enterica Serovar Enteritidis Isolates in Chile Provides Insights into Possible Transmission between Gulls, Poultry, and Humans. Appl Environ Microbiol 2016; 82:6223-6232. [PMID: 27520817 PMCID: PMC5068155 DOI: 10.1128/aem.01760-16] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/08/2016] [Indexed: 01/02/2023] Open
Abstract
Salmonella enterica subsp. enterica serotype Enteritidis is a major cause of human salmonellosis worldwide; however, little is known about the genetic relationships between S. Enteritidis clinical strains and S. Enteritidis strains from other sources in Chile. We compared the whole genomes of 30 S. Enteritidis strains isolated from gulls, domestic chicken eggs, and humans in Chile, to investigate their phylogenetic relationships and to establish their relatedness to international strains. Core genome multilocus sequence typing (cgMLST) analysis showed that only 246/4,065 shared loci differed among these Chilean strains, separating them into two clusters (I and II), with cluster II being further divided into five subclusters. One subcluster (subcluster 2) contained strains from all surveyed sources that differed at 1 to 18 loci (of 4,065 loci) with 1 to 18 single-nucleotide polymorphisms (SNPs), suggesting interspecies transmission of S. Enteritidis in Chile. Moreover, clusters were formed by strains that were distant geographically, which could imply that gulls might be spreading the pathogen throughout the country. Our cgMLST analysis, using other S. Enteritidis genomes available in the National Center for Biotechnology Information (NCBI) database, showed that S. Enteritidis strains from Chile and the United States belonged to different lineages, which suggests that S. Enteritidis regional markers might exist and could be used for trace-back investigations.
IMPORTANCE This study highlights the importance of gulls in the spread of Salmonella Enteritidis in Chile. We revealed a close genetic relationship between some human and gull S. Enteritidis strains (with as few as 2 of 4,065 genes being different), and we also found that gull strains were present in clusters formed by strains isolated from other sources or distant locations. Together with previously published evidence, this suggests that gulls might be spreading this pathogen between different regions in Chile and that some of those strains have been transmitted to humans. Moreover, we discovered that Chilean S. Enteritidis strains clustered separately from most of S. Enteritidis strains isolated throughout the world (in the GenBank database) and thus it might be possible to distinguish the geographical origins of strains based on specific genomic features. This could be useful for trace-back investigations of foodborne illnesses throughout the world.
Collapse
|
57
|
Dallman T, Inns T, Jombart T, Ashton P, Loman N, Chatt C, Messelhaeusser U, Rabsch W, Simon S, Nikisins S, Bernard H, le Hello S, Jourdan da-Silva N, Kornschober C, Mossong J, Hawkey P, de Pinna E, Grant K, Cleary P. Phylogenetic structure of European Salmonella Enteritidis outbreak correlates with national and international egg distribution network. Microb Genom 2016; 2:e000070. [PMID: 28348865 PMCID: PMC5320589 DOI: 10.1099/mgen.0.000070] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/26/2016] [Indexed: 01/01/2023] Open
Abstract
Outbreaks of Salmonella Enteritidis have long been associated with contaminated poultry and eggs. In the summer of 2014 a large multi-national outbreak of Salmonella Enteritidis phage type 14b occurred with over 350 cases reported in the United Kingdom, Germany, Austria, France and Luxembourg. Egg supply network investigation and microbiological sampling identified the source to be a Bavarian egg producer. As part of the international investigation into the outbreak, over 400 isolates were sequenced including isolates from cases, implicated UK premises and eggs from the suspected source producer. We were able to show a clear statistical correlation between the topology of the UK egg distribution network and the phylogenetic network of outbreak isolates. This correlation can most plausibly be explained by different parts of the egg distribution network being supplied by eggs solely from independent premises of the Bavarian egg producer (Company X). Microbiological sampling from the source premises, traceback information and information on the interventions carried out at the egg production premises all supported this conclusion. The level of insight into the outbreak epidemiology provided by whole-genome sequencing (WGS) would not have been possible using traditional microbial typing methods.
Collapse
Affiliation(s)
| | | | - Thibaut Jombart
- 2Department of Infectious Disease Epidemiology, Imperial College, London, UK
| | | | - Nicolas Loman
- 3Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | | | | | - Wolfgang Rabsch
- 5Robert Koch Institute, Division for Enteropathogenic Bacteria and Legionella, Wernigerode, Germany
| | - Sandra Simon
- 5Robert Koch Institute, Division for Enteropathogenic Bacteria and Legionella, Wernigerode, Germany
| | - Sergejs Nikisins
- 6Department for Infectious Disease Epidemiology at the Robert Koch Institute, Berlin, Germany
| | - Helen Bernard
- 6Department for Infectious Disease Epidemiology at the Robert Koch Institute, Berlin, Germany
| | - Simon le Hello
- 7Institut Pasteur, Centre national de reference des E. coli, Shigella et Salmonella, Paris, France
| | | | - Christian Kornschober
- 9Austrian Agency for Health and Food Safety, National Reference Centre for Salmonella, Graz, Austria
| | - Joel Mossong
- 10Surveillance & epidemiology of infectious diseases, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Peter Hawkey
- 3Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | | | | | | |
Collapse
|
58
|
Ågren ECC, Wahlström H, Vesterlund-Carlson C, Lahti E, Melin L, Söderlund R. Comparison of whole genome sequencing typing results and epidemiological contact information from outbreaks of Salmonella Dublin in Swedish cattle herds. Infect Ecol Epidemiol 2016; 6:31782. [PMID: 27396609 PMCID: PMC4938893 DOI: 10.3402/iee.v6.31782] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/10/2016] [Accepted: 06/14/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Whole genome sequencing (WGS) is becoming a routine tool for infectious disease outbreak investigations. The Swedish situation provides an excellent opportunity to test the usefulness of WGS for investigation of outbreaks with Salmonella Dublin (S. Dublin) as epidemiological investigations are always performed when Salmonella is detected in livestock production, and index isolates from all detected herds are stored and therefore available for analysis. This study was performed to evaluate WGS as a tool in forward and backward tracings from herds infected with S. Dublin. MATERIAL AND METHODS In this study, 28 isolates from 26 cattle herds were analysed and the WGS results were compared with results from the epidemiological investigations, for example, information on contacts between herds. The isolates originated from herds in three different outbreaks separated geographically and to some extent also in time, and from the only region in Sweden where S. Dublin is endemic (Öland). RESULTS The WGS results of isolates from the three non-endemic regions were reliably separated from each other and from the endemic isolates. Within the outbreaks, herds with known epidemiological contacts generally showed smaller differences between isolates as compared to when there were no known epidemiological contacts. CONCLUSION The results indicate that WGS can provide valuable supplemental information in S. Dublin outbreak investigations. The resolution of the WGS was sufficient to distinguish isolates from the different outbreaks and provided additional information to the investigations within an outbreak.
Collapse
Affiliation(s)
- Estelle C C Ågren
- Department of Disease Control and Epidemiology, National Veterinary Institute, Uppsala, Sweden;
| | - Helene Wahlström
- Department of Disease Control and Epidemiology, National Veterinary Institute, Uppsala, Sweden
| | | | - Elina Lahti
- Department of Disease Control and Epidemiology, National Veterinary Institute, Uppsala, Sweden
| | - Lennart Melin
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Robert Söderlund
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| |
Collapse
|
59
|
Genomic Analysis of Salmonella enterica Serovar Typhimurium Characterizes Strain Diversity for Recent U.S. Salmonellosis Cases and Identifies Mutations Linked to Loss of Fitness under Nitrosative and Oxidative Stress. mBio 2016; 7:e00154. [PMID: 26956590 PMCID: PMC4810482 DOI: 10.1128/mbio.00154-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is one of the most common S. enterica serovars associated with U.S. foodborne outbreaks. S. Typhimurium bacteria isolated from humans exhibit wide-ranging virulence phenotypes in inbred mice, leading to speculation that some strains are more virulent in nature. However, it is unclear whether increased virulence in humans is related to organism characteristics or initial treatment failure due to antibiotic resistance. Strain diversity and genetic factors contributing to differential human pathogenicity remain poorly understood. We reconstructed phylogeny, resolved genetic population structure, determined gene content and nucleotide variants, and conducted targeted phenotyping assays for S. Typhimurium strains collected between 1946 and 2012 from humans and animals in the United States and abroad. Strains from recent U.S. salmonellosis cases were associated with five S. Typhimurium lineages distributed within three phylogenetic clades, which are not restricted by geography, year of acquisition, or host. Notably, two U.S. strains and four Mexican strains are more closely related to strains associated with human immunodeficiency virus (HIV)-infected individuals in sub-Saharan Africa than to other North American strains. Phenotyping studies linked variants specific to these strains in hmpA and katE to loss of fitness under nitrosative and oxidative stress, respectively. These results suggest that U.S. salmonellosis is caused by diverse S. Typhimurium strains circulating worldwide. One lineage has mutations in genes affecting fitness related to innate immune system strategies for fighting pathogens and may be adapting to immunocompromised humans by a reduction in virulence capability, possibly due to a lack of selection for its maintenance as a result of the worldwide HIV epidemic. Nontyphoidal Salmonella bacteria cause an estimated 1.2 million illnesses annually in the United States, 80 million globally, due to ingestion of contaminated food or water. Salmonella Typhimurium is one of the most common serovars associated with foodborne illness, causing self-limiting gastroenteritis and, in approximately 5% of infected patients, systemic infection. Although some S. Typhimurium strains are speculated to be more virulent than others, it is unknown how strain diversity and genetic factors contribute to differential human pathogenicity. Ours is the first study to examine the diversity of S. Typhimurium associated with recent cases of U.S. salmonellosis and to provide some initial correlation between observed genotypes and phenotypes. Definition of specific S. Typhimurium lineages based on such phenotype/genotype correlations may identify strains with greater capability of associating with specific food sources, allowing outbreaks to be more quickly identified. Additionally, defining simple correlates of pathogenesis may have predictive value for patient outcome.
Collapse
|
60
|
Moreau MR, Wijetunge DSS, Bailey ML, Gongati SR, Goodfield LL, Hewage EMKK, Kennett MJ, Fedorchuk C, Ivanov YV, Linder JE, Jayarao BM, Kariyawasam S. Growth in Egg Yolk Enhances Salmonella Enteritidis Colonization and Virulence in a Mouse Model of Human Colitis. PLoS One 2016; 11:e0150258. [PMID: 26939126 PMCID: PMC4777358 DOI: 10.1371/journal.pone.0150258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/05/2016] [Indexed: 01/08/2023] Open
Abstract
Salmonella Enteritidis (SE) is one of the most common causes of bacterial food-borne illnesses in the world. Despite the SE's ability to colonize and infect a wide-range of host, the most common source of infection continues to be the consumption of contaminated shell eggs and egg-based products. To date, the role of the source of SE infection has not been studied as it relates to SE pathogenesis and resulting disease. Using a streptomycin-treated mouse model of human colitis, this study examined the virulence of SE grown in egg yolk and Luria Bertani (LB) broth, and mouse feces collected from mice experimentally infected with SEE1 (SEE1 passed through mice). Primary observations revealed that the mice infected with SE grown in egg yolk displayed greater illness and disease markers than those infected with SE passed through mice or grown in LB broth. Furthermore, the SE grown in egg yolk achieved higher rates of colonization in the mouse intestines and extra-intestinal organs of infected mice than the SE from LB broth or mouse feces. Our results here indicate that the source of SE infection may contribute to the overall pathogenesis of SE in a second host. These results also suggest that reservoir-pathogen dynamics may be critical for SE's ability to establish colonization and priming for virulence potential.
Collapse
Affiliation(s)
- Matthew R. Moreau
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States of America
| | - Dona Saumya S. Wijetunge
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States of America
| | - Megan L. Bailey
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States of America
| | - Sudharsan R. Gongati
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States of America
| | - Laura L. Goodfield
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States of America
| | | | - Mary J. Kennett
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States of America
- Animal Resource Program, The Pennsylvania State University, University Park, PA, United States of America
| | - Christine Fedorchuk
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States of America
| | - Yury V. Ivanov
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States of America
| | - Jessica E. Linder
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States of America
| | - Bhushan M. Jayarao
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States of America
- Animal Diagnostic Laboratory, The Pennsylvania State University, University Park, PA, United States of America
| | - Subhashinie Kariyawasam
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States of America
- Animal Diagnostic Laboratory, The Pennsylvania State University, University Park, PA, United States of America
| |
Collapse
|
61
|
Deng X, den Bakker HC, Hendriksen RS. Genomic Epidemiology: Whole-Genome-Sequencing-Powered Surveillance and Outbreak Investigation of Foodborne Bacterial Pathogens. Annu Rev Food Sci Technol 2016; 7:353-74. [PMID: 26772415 DOI: 10.1146/annurev-food-041715-033259] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As we are approaching the twentieth anniversary of PulseNet, a network of public health and regulatory laboratories that has changed the landscape of foodborne illness surveillance through molecular subtyping, public health microbiology is undergoing another transformation brought about by so-called next-generation sequencing (NGS) technologies that have made whole-genome sequencing (WGS) of foodborne bacterial pathogens a realistic and superior alternative to traditional subtyping methods. Routine, real-time, and widespread application of WGS in food safety and public health is on the horizon. Technological, operational, and policy challenges are still present and being addressed by an international and multidisciplinary community of researchers, public health practitioners, and other stakeholders.
Collapse
Affiliation(s)
- Xiangyu Deng
- Center for Food Safety and Department of Food Science and Technology, University of Georgia, Griffin, Georgia 30269;
| | - Henk C den Bakker
- International Center for Food Industry Excellence, Department of Animal and Food Sciences, Texas Tech University, Lubbock, Texas 79409
| | - Rene S Hendriksen
- National Food Institute, Research Group of Genomic Epidemiology, Technical University of Denmark, Kongens Lyngby, DK-2800 Denmark
| |
Collapse
|
62
|
|
63
|
Salmonella serotype determination utilizing high-throughput genome sequencing data. J Clin Microbiol 2015; 53:1685-92. [PMID: 25762776 DOI: 10.1128/jcm.00323-15] [Citation(s) in RCA: 308] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/08/2015] [Indexed: 11/20/2022] Open
Abstract
Serotyping forms the basis of national and international surveillance networks for Salmonella, one of the most prevalent foodborne pathogens worldwide (1-3). Public health microbiology is currently being transformed by whole-genome sequencing (WGS), which opens the door to serotype determination using WGS data. SeqSero (www.denglab.info/SeqSero) is a novel Web-based tool for determining Salmonella serotypes using high-throughput genome sequencing data. SeqSero is based on curated databases of Salmonella serotype determinants (rfb gene cluster, fliC and fljB alleles) and is predicted to determine serotype rapidly and accurately for nearly the full spectrum of Salmonella serotypes (more than 2,300 serotypes), from both raw sequencing reads and genome assemblies. The performance of SeqSero was evaluated by testing (i) raw reads from genomes of 308 Salmonella isolates of known serotype; (ii) raw reads from genomes of 3,306 Salmonella isolates sequenced and made publicly available by GenomeTrakr, a U.S. national monitoring network operated by the Food and Drug Administration; and (iii) 354 other publicly available draft or complete Salmonella genomes. We also demonstrated Salmonella serotype determination from raw sequencing reads of fecal metagenomes from mice orally infected with this pathogen. SeqSero can help to maintain the well-established utility of Salmonella serotyping when integrated into a platform of WGS-based pathogen subtyping and characterization.
Collapse
|
64
|
Comparative analysis of subtyping methods against a whole-genome-sequencing standard for Salmonella enterica serotype Enteritidis. J Clin Microbiol 2014; 53:212-8. [PMID: 25378576 DOI: 10.1128/jcm.02332-14] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A retrospective investigation was performed to evaluate whole-genome sequencing as a benchmark for comparing molecular subtyping methods for Salmonella enterica serotype Enteritidis and survey the population structure of commonly encountered S. enterica serotype Enteritidis outbreak isolates in the United States. A total of 52 S. enterica serotype Enteritidis isolates representing 16 major outbreaks and three sporadic cases collected between 2001 and 2012 were sequenced and subjected to subtyping by four different methods: (i) whole-genome single-nucleotide-polymorphism typing (WGST), (ii) multiple-locus variable-number tandem-repeat (VNTR) analysis (MLVA), (iii) clustered regularly interspaced short palindromic repeats combined with multi-virulence-locus sequence typing (CRISPR-MVLST), and (iv) pulsed-field gel electrophoresis (PFGE). WGST resolved all outbreak clusters and provided useful robust phylogenetic inference results with high epidemiological correlation. While both MLVA and CRISPR-MVLST yielded higher discriminatory power than PFGE, MLVA outperformed the other methods in delineating outbreak clusters whereas CRISPR-MVLST showed the potential to trace major lineages and ecological origins of S. enterica serotype Enteritidis. Our results suggested that whole-genome sequencing makes a viable platform for the evaluation and benchmarking of molecular subtyping methods.
Collapse
|