51
|
Gambaryan AS, Matrosovich TY, Boravleva EY, Lomakina NF, Yamnikova SS, Tuzikov AB, Pazynina GV, Bovin NV, Fouchier RA, Klenk HD, Matrosovich MN. Receptor-binding properties of influenza viruses isolated from gulls. Virology 2018; 522:37-45. [DOI: 10.1016/j.virol.2018.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 01/21/2023]
|
52
|
A Dual Motif in the Hemagglutinin of H5N1 Goose/Guangdong-Like Highly Pathogenic Avian Influenza Virus Strains Is Conserved from Their Early Evolution and Increases both Membrane Fusion pH and Virulence. J Virol 2018; 92:JVI.00778-18. [PMID: 29899102 DOI: 10.1128/jvi.00778-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/02/2018] [Indexed: 12/27/2022] Open
Abstract
Zoonotic highly pathogenic avian influenza viruses (HPAIV) have raised serious public health concerns of a novel pandemic. These strains emerge from low-pathogenic precursors by the acquisition of a polybasic hemagglutinin (HA) cleavage site, the prime virulence determinant. However, required coadaptations of the HA early in HPAIV evolution remained uncertain. To address this question, we generated several HA1/HA2 chimeras and point mutants of an H5N1 clade 2.2.2 HPAIV and an H5N1 low-pathogenic strain. Initial surveys of 3,385 HPAIV H5 HA sequences revealed frequencies of 0.5% for the single amino acids 123R and 124I but a frequency of 97.5% for the dual combination. This highly conserved dual motif is still retained in contemporary H5 HPAIV, including the novel H5NX reassortants carrying neuraminidases of different subtypes, like the H5N8 and the zoonotic H5N6 strains. Remarkably, the earliest Asian H5N1 HPAIV, the Goose/Guangdong strains from 1996/1997, carried 123R only, whereas 124I appeared later in 1997. Experimental reversion in the HPAIV HA to the two residues 123S and124T, characteristic of low-pathogenic strains, prevented virus rescue, while the single substitutions attenuated the virus in both chicken and mice considerably, accompanied by a decreased HA fusion pH. This increased pH sensitivity of H5 HPAIV enables HA-mediated membrane fusion at a higher endosomal pH. Therefore, this HA adaptation may permit infection of cells with less-acidic endosomes, e.g., within the respiratory tract, resulting in an extended organ tropism. Taken together, HA coadaptation to increased acid sensitivity promoted the early evolution of H5 Goose/Guangdong-like HPAIV strains and is still required for their zoonotic potential.IMPORTANCE Zoonotic highly pathogenic avian influenza viruses (HPAIV) have raised serious public health concerns of a novel pandemic. Their prime virulence determinant is the polybasic hemagglutinin (HA) cleavage site. However, required coadaptations in the HA (and other genes) remained uncertain. Here, we identified the dual motif 123R/124I in the HA head that increases the activation pH of HA-mediated membrane fusion, essential for virus genome release into the cytoplasm. This motif is extremely predominant in H5 HPAIV and emerged already in the earliest 1997 H5N1 HPAIV. Reversion to 123S or 124T, characteristic of low-pathogenic strains, attenuated the virus in chicken and mice, accompanied by a decreased HA activation pH. This increased pH sensitivity of H5 HPAIV extends the viral tropism to cells with less-acidic endosomes, e.g., within the respiratory tract. Therefore, early HA adaptation to increased acid sensitivity promoted the emergence of H5 Goose/Guangdong-like HPAIV strains and is required for their zoonotic potential.
Collapse
|
53
|
Qin T, Zhu J, Ma R, Yin Y, Chen S, Peng D, Liu X. Compatibility between haemagglutinin and neuraminidase drives the recent emergence of novel clade 2.3.4.4 H5Nx avian influenza viruses in China. Transbound Emerg Dis 2018; 65:1757-1769. [PMID: 29999588 DOI: 10.1111/tbed.12949] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022]
Abstract
Genetic reassortments between highly pathogenic avian influenza (HPAI) H5 subtype viruses with different neuraminidase (NA) subtypes have increased in prevalence since 2010 in wild birds and poultry from China. The HA gene slightly evolved from clade 2.3.4 to clade 2.3.4.4, raising the question of whether novel clade 2.3.4.4 HA broke the balance with N1 but is matched well with NAx to drive viral epidemics. To clarify the role of compatibility between HA and NA on the prevalence of H5Nx subtypes, we constructed 10 recombinant viruses in which the clade 2.3.4 or clade 2.3.4.4 HA genes were matched with different NA (N1, N2 and N8) genes and evaluated viral characteristics and pathogenicity. Combinations between clade 2.3.4 HA and N1 or between clade 2.3.4.4 HA and NAx, but not between clade 2.3.4.4 HA and N1, or between clade 2.3.4 HA and NAx, promoted viral growth, NA activity, thermostability, low-pH stability and pathogenicity in chicken and mice. These findings suggest that both clade 2.3.4 HA/N1 and clade 2.3.4.4 HA/NAx displayed a better match, which could promote the increased prevalence of clade 2.3.4 H5N1 AIV (prior to 2010) and clade 2.3.4.4 H5Nx AIV (since 2010) in China, respectively.
Collapse
Affiliation(s)
- Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China.,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, China
| | - Jingjing Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China.,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, China
| | - Ruonan Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China.,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, China
| | - Yuncong Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China.,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China.,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China.,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China.,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, China
| |
Collapse
|
54
|
Dhingra MS, Artois J, Dellicour S, Lemey P, Dauphin G, Von Dobschuetz S, Van Boeckel TP, Castellan DM, Morzaria S, Gilbert M. Geographical and Historical Patterns in the Emergences of Novel Highly Pathogenic Avian Influenza (HPAI) H5 and H7 Viruses in Poultry. Front Vet Sci 2018; 5:84. [PMID: 29922681 PMCID: PMC5996087 DOI: 10.3389/fvets.2018.00084] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/03/2018] [Indexed: 01/28/2023] Open
Abstract
Over the years, the emergence of novel H5 and H7 highly pathogenic avian influenza viruses (HPAI) has been taking place through two main mechanisms: first, the conversion of a low pathogenic into a highly pathogenic virus, and second, the reassortment between different genetic segments of low and highly pathogenic viruses already in circulation. We investigated and summarized the literature on emerging HPAI H5 and H7 viruses with the aim of building a spatio-temporal database of all these recorded conversions and reassortments events. We subsequently mapped the spatio-temporal distribution of known emergence events, as well as the species and production systems that they were associated with, the aim being to establish their main characteristics. From 1959 onwards, we identified a total of 39 independent H7 and H5 LPAI to HPAI conversion events. All but two of these events were reported in commercial poultry production systems, and a majority of these events took place in high-income countries. In contrast, a total of 127 reassortments have been reported from 1983 to 2015, which predominantly took place in countries with poultry production systems transitioning from backyard to intensive production systems. Those systems are characterized by several co-circulating viruses, multiple host species, regular contact points in live bird markets, limited biosecurity within value chains, and frequent vaccination campaigns that impose selection pressures for emergence of novel reassortants. We conclude that novel HPAI emergences by these two mechanisms occur in different ecological niches, with different viral, environmental and host associated factors, which has implications in early detection and management and mitigation of the risk of emergence of novel HPAI viruses.
Collapse
Affiliation(s)
- Madhur S Dhingra
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium.,Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Jean Artois
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium
| | - Simon Dellicour
- Department of Microbiology and Immunology, Rega Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Philippe Lemey
- Department of Microbiology and Immunology, Rega Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Gwenaelle Dauphin
- Food and Agriculture Organization of the United Nations, Rome, Italy
| | | | - Thomas P Van Boeckel
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland.,Center for Disease Dynamics, Economics and Policy, Washington, DC, United States
| | | | - Subhash Morzaria
- Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Marius Gilbert
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium.,Fonds National de la Recherche Scientifique (FNRS), Brussels, Belgium
| |
Collapse
|
55
|
Gale P. Using thermodynamic parameters to calibrate a mechanistic dose-response for infection of a host by a virus. MICROBIAL RISK ANALYSIS 2018; 8:1-13. [PMID: 32289059 PMCID: PMC7103988 DOI: 10.1016/j.mran.2018.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/29/2017] [Accepted: 01/03/2018] [Indexed: 05/21/2023]
Abstract
Assessing the risk of infection from emerging viruses or of existing viruses jumping the species barrier into novel hosts is limited by the lack of dose response data. The initial stages of the infection of a host by a virus involve a series of specific contact interactions between molecules in the host and on the virus surface. The strength of the interaction is quantified in the literature by the dissociation constant (Kd) which is determined experimentally and is specific for a given virus molecule/host molecule combination. Here, two stages of the initial infection process of host intestinal cells are modelled, namely escape of the virus in the oral challenge dose from the innate host defenses (e.g. mucin proteins in mucus) and the subsequent binding of any surviving virus to receptor molecules on the surface of the host epithelial cells. The strength of virus binding to host cells and to mucins may be quantified by the association constants, Ka and Kmucin, respectively. Here, a mechanistic dose-response model for the probability of infection of a host by a given virus dose is constructed using Ka and Kmucin which may be derived from published Kd values taking into account the number of specific molecular interactions. It is shown that the effectiveness of the mucus barrier is determined not only by the amount of mucin but also by the magnitude of Kmucin. At very high Kmucin values, slight excesses of mucin over virus are sufficient to remove all the virus according to the model. At lower Kmucin values, high numbers of virus may escape even with large excesses of mucin. The output from the mechanistic model is the probability (p1) of infection by a single virion which is the parameter used in conventional dose-response models to predict the risk of infection of the host from the ingested dose. It is shown here how differences in Ka (due to molecular differences in an emerging virus strain or new host) affect p1, and how these differences in Ka may be quantified in terms of two thermodynamic parameters, namely enthalpy and entropy. This provides the theoretical link between sequencing data and risk of infection. Lack of data on entropy is a limitation at present and may also affect our interpretation of Kd in terms of infectivity. It is concluded that thermodynamic approaches have a major contribution to make in developing dose-response models for emerging viruses.
Collapse
Key Words
- Asp, aspartate
- CRD, carbohydrate-recognition domain
- Cr, host cell receptor
- Dose-response
- EBOV, Zaire ebolavirus
- Enthalpy
- Entropy
- G, Gibbs free energy
- GI, gastrointestinal
- GP, glycoprotein
- H, enthalpy
- HA, haemagglutinin
- HBGA, histoblood group antigen
- HeV, Hendra virus
- Ka, Kmucin, association constants
- Kd, dissociation constant for two molecules bound to each other
- L, Avogadro number
- M, molar (moles dm−3)
- MBP, mannose binding protein
- MERS-CoV, MERS coronavirus
- MRA, microbiological risk assessment
- Mucin
- NPC1, Niemann-Pick C1 protein
- NiV, Nipah virus
- NoV, norovirus
- PL, phospholipid
- PRR, pathogen recognition receptor
- Phe, phenylalanine
- R, ideal gas constant
- S, entropy
- SPR, surface plasmon resonance
- T, temperature
- TIM-1, T-cell immunoglobulin and mucin domain protein 1
- VSV, vesicular stomatitis virus
- Virus
- k, on/off rate constant
- n, number of GP/Cr molecular contacts per virus/host cell binding
- pfu, plaque-forming unit
- ΔGa, change in Gibbs free energy on association of virus and cell
- ΔHa, change in enthalpy on association of virus and cell
- ΔSa, change in entropy on association of virus and cell
- ΔΔHa, change in ΔHa
Collapse
|
56
|
Gao R, Gu M, Liu K, Li Q, Li J, Shi L, Li X, Wang X, Hu J, Liu X, Hu S, Chen S, Peng D, Jiao X, Liu X. T160A mutation-induced deglycosylation at site 158 in hemagglutinin is a critical determinant of the dual receptor binding properties of clade 2.3.4.4 H5NX subtype avian influenza viruses. Vet Microbiol 2018; 217:158-166. [PMID: 29615249 DOI: 10.1016/j.vetmic.2018.03.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
Abstract
Most clade 2.3.4.4 H5NX subtype avian influenza viruses possess a T160A amino acid substitution in the hemagglutinin (HA) protein that has been shown to affect the receptor binding properties of a clade 2.3.4 H5N1 virus. However, the effect of this single site mutation on the HA backbone of clade 2.3.4.4 H5NX viruses remains unclear. In this study, two H5N6 field isolates possessing HA-160A with dual α-2,3 and α-2,6 receptor binding properties (Y6 virus) and HA-160T with α-2,3 receptor binding affinity (HX virus), respectively, were selected to generate HA mutants containing all of the internal genes from A/PR8/H1N1 virus for comparative investigation. We found that the Y6-P-160A and RHX-P-160A viruses each with 160A in the HA resulting in loss of glycosylation at site 158 exhibited binding to the two receptor types, whereas the RY6-P-160T and HX-P-160T viruses each with 160T in the HA displayed selective binding to α-2,3 receptors only. In addition, differences were noted in the replication of these four H5N6 recombinants in avian and mammalian cells, as well as in their pathogenicity in mice. The contribution of deglycosylation at site 158 to the acquisition of human-like receptors was further verified in H5N2, H5N5 and H5N8 reassortants. Therefore, we conclude that the lack of glycosylation at site 158 induced by the T160A mutation in HA is a critical determinant for the dual receptor binding properties of clade 2.3.4.4 H5NX viruses. This new insight may be helpful in assessing the pandemic potential of novel H5 isolates.
Collapse
Affiliation(s)
- Ruyi Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Min Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Kaituo Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qunhui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Juan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Liwei Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiuli Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaoquan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jiao Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaowen Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shunlin Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, Jiangsu 225009, China
| | - Xinan Jiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, Jiangsu 225009, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
57
|
Okamatsu M, Ozawa M, Soda K, Takakuwa H, Haga A, Hiono T, Matsuu A, Uchida Y, Iwata R, Matsuno K, Kuwahara M, Yabuta T, Usui T, Ito H, Onuma M, Sakoda Y, Saito T, Otsuki K, Ito T, Kida H. Characterization of Highly Pathogenic Avian Influenza Virus A(H5N6), Japan, November 2016. Emerg Infect Dis 2018; 23:691-695. [PMID: 28322695 PMCID: PMC5367431 DOI: 10.3201/eid2304.161957] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) A(H5N6) were concurrently introduced into several distant regions of Japan in November 2016. These viruses were classified into the genetic clade 2.3.4.4c and were genetically closely related to H5N6 HPAIVs recently isolated in South Korea and China. In addition, these HPAIVs showed further antigenic drift.
Collapse
|
58
|
Human Clade 2.3.4.4 A/H5N6 Influenza Virus Lacks Mammalian Adaptation Markers and Does Not Transmit via the Airborne Route between Ferrets. mSphere 2018; 3:mSphere00405-17. [PMID: 29299528 PMCID: PMC5750386 DOI: 10.1128/msphere.00405-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/04/2017] [Indexed: 11/20/2022] Open
Abstract
Since their emergence in 1997, A/H5N1 influenza viruses of the A/goose/Guangdong/1/96 lineage have diversified in multiple genetic and antigenic clades upon continued circulation in poultry in several countries in Eurasia and Africa. Since 2009, reassortant viruses carrying clade 2.3.4.4 hemagglutinin (HA) and internal and neuraminidase (NA) genes of influenza A viruses of different avian origin have been detected, yielding various HA-NA combinations, such as A/H5N1, A/H5N2, A/H5N3, A/H5N5, A/H5N6, and A/H5N8. Previous studies reported on the low pathogenicity and lack of airborne transmission of A/H5N2 and A/H5N8 viruses in the ferret model. However, although A/H5N6 viruses are the only clade 2.3.4.4 viruses that crossed the species barrier and infected humans, the risk they pose for human health remains poorly characterized. Here, the characterization of A/H5N6 A/Guangzhou/39715/2014 virus in vitro and in ferrets is described. This A/H5N6 virus possessed high polymerase activity, mediated by the E627K substitution in the PB2 protein, which corresponds to only one biological trait out of the three that were previously shown to confer airborne transmissibility to A/H5N1 viruses between ferrets. This might explain its lack of airborne transmission between ferrets. After intranasal inoculation, A/H5N6 virus replicated to high titers in the respiratory tracts of ferrets and was excreted for at least 6 days. Moreover, A/H5N6 virus caused severe pneumonia in ferrets upon intratracheal inoculation. Thus, A/H5N6 virus causes a more severe disease in ferrets than previously investigated clade 2.3.4.4 viruses, but our results demonstrate that the risk from airborne spread is currently low. IMPORTANCE Avian influenza A viruses are a threat to human health, as they cross the species barrier and infect humans occasionally, often with severe outcome. The antigenic and genetic diversity of A/H5 viruses from the A/goose/Guangdong/1/96 lineage is increasing, due to continued circulation and reassortment in poultry, posing a constant risk for public health and requiring regular risk assessments. Here we performed an in-depth characterization of the properties of the newly emerged zoonotic A/H5N6 virus in vitro and in ferrets. The lack of airborne transmission in the ferret model indicates that A/H5N6 virus does not pose a direct public health threat, despite the fact that it can replicate to high titers throughout the respiratory tracts of ferrets and cause more severe disease than other clade 2.3.4.4 viruses.
Collapse
|
59
|
Brown I, Kuiken T, Mulatti P, Smietanka K, Staubach C, Stroud D, Therkildsen OR, Willeberg P, Baldinelli F, Verdonck F, Adlhoch C. Avian influenza overview September - November 2017. EFSA J 2017; 15:e05141. [PMID: 32625395 PMCID: PMC7010192 DOI: 10.2903/j.efsa.2017.5141] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Between 1 September and 15 November 2017, 48 A(H5N8) highly pathogenic avian influenza (HPAI) outbreaks in poultry holdings and 9 H5 HPAI wild bird events were reported within Europe. A second epidemic HPAI A(H5N8) wave started in Italy on the third week of July and is still ongoing on 15 November 2017. The Italian epidemiological investigations indicated that sharing of vehicles, sharing of personnel and close proximity to infected holdings are the more likely sources of secondary spread in a densely populated poultry area. Despite the ongoing human exposures to infected poultry during the outbreaks, no transmission to humans has been identified in the EU. The report includes an update of the list of wild bird target species for passive surveillance activities that is based on reported AI-infected wild birds since 2006. The purpose of this list is to provide information on which bird species to focus in order to achieve the most effective testing of dead birds for detection of H5 HPAI viruses. Monitoring the avian influenza situation in other continents revealed the same risks as in the previous report (October 2016-August 2017): the recent human case of HPAI A(H5N6) in China underlines the continuing threat of this avian influenza virus to human health and possible introduction via migratory wild birds into Europe. Close monitoring is required of the situation in Africa with regards to HPAI of the subtypes A(H5N1) and A(H5N8), given the rapidity of the evolution and the uncertainty on the geographical distribution of these viruses. Interactions between EFSA and member states have taken place to initiate discussions on improving the quality of data collections and to find a step-wise approach to exchange relevant (denominator) data without causing an additional resource burden.
Collapse
|
60
|
Brown I, Mulatti P, Smietanka K, Staubach C, Willeberg P, Adlhoch C, Candiani D, Fabris C, Zancanaro G, Morgado J, Verdonck F. Avian influenza overview October 2016-August 2017. EFSA J 2017; 15:e05018. [PMID: 32625308 PMCID: PMC7009863 DOI: 10.2903/j.efsa.2017.5018] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The A(H5N8) highly pathogenic avian influenza (HPAI) epidemic occurred in 29 European countries in 2016/2017 and has been the largest ever recorded in the EU in terms of number of poultry outbreaks, geographical extent and number of dead wild birds. Multiple primary incursions temporally related with all major poultry sectors affected but secondary spread was most commonly associated with domestic waterfowl species. A massive effort of all the affected EU Member States (MSs) allowed a descriptive epidemiological overview of the cases in poultry, captive birds and wild birds, providing also information on measures applied at the individual MS level. Data on poultry population structure are required to facilitate data and risk factor analysis, hence to strengthen science-based advice to risk managers. It is suggested to promote common understanding and application of definitions related to control activities and their reporting across MSs. Despite a large number of human exposures to infected poultry occurred during the ongoing outbreaks, no transmission to humans has been identified. Monitoring the avian influenza (AI) situation in other continents indicated a potential risk of long-distance spread of HPAI virus (HPAIV) A(H5N6) from Asia to wintering grounds towards Western Europe, similarly to what happened with HPAIV A(H5N8) and HPAIV A(H5N1) in previous years. Furthermore, the HPAI situation in Africa with A(H5N8) and A(H5N1) is rapidly evolving. Strengthening collaborations at National, EU and Global levels would allow close monitoring of the AI situation, ultimately helping to increase preparedness. No human case was reported in the EU due to AIVs subtypes A(H5N1), A(H5N6), A(H7N9) and A(H9N2). Direct transmission of these viruses to humans has only been reported in areas, mainly in Asia and Egypt, with a substantial involvement of wild bird and/or poultry populations. It is suggested to improve the collection and reporting of exposure events of people to AI.
Collapse
|
61
|
Hiono T, Okamatsu M, Matsuno K, Haga A, Iwata R, Nguyen LT, Suzuki M, Kikutani Y, Kida H, Onuma M, Sakoda Y. Characterization of H5N6 highly pathogenic avian influenza viruses isolated from wild and captive birds in the winter season of 2016-2017 in Northern Japan. Microbiol Immunol 2017; 61:387-397. [DOI: 10.1111/1348-0421.12506] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/20/2017] [Accepted: 08/12/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Takahiro Hiono
- Laboratory of Microbiology; Department of Disease Control; Faculty of Veterinary Medicine; Japan
| | - Masatoshi Okamatsu
- Laboratory of Microbiology; Department of Disease Control; Faculty of Veterinary Medicine; Japan
| | - Keita Matsuno
- Laboratory of Microbiology; Department of Disease Control; Faculty of Veterinary Medicine; Japan
- Global Station for Zoonosis Control; Global Institution for Collaborative Research and Education (GI-CoRE); Japan
| | - Atsushi Haga
- National Institute for Environmental Studies; Tsukuba; Ibaraki 305-8506 Japan
| | - Ritsuko Iwata
- National Institute for Environmental Studies; Tsukuba; Ibaraki 305-8506 Japan
| | - Lam Thanh Nguyen
- Laboratory of Microbiology; Department of Disease Control; Faculty of Veterinary Medicine; Japan
| | - Mizuho Suzuki
- Laboratory of Microbiology; Department of Disease Control; Faculty of Veterinary Medicine; Japan
| | - Yuto Kikutani
- Laboratory of Microbiology; Department of Disease Control; Faculty of Veterinary Medicine; Japan
| | - Hiroshi Kida
- Global Station for Zoonosis Control; Global Institution for Collaborative Research and Education (GI-CoRE); Japan
- Research Center for Zoonosis Control; Hokkaido University; Sapporo Hokkaido 001-0020 Japan
| | - Manabu Onuma
- National Institute for Environmental Studies; Tsukuba; Ibaraki 305-8506 Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology; Department of Disease Control; Faculty of Veterinary Medicine; Japan
- Global Station for Zoonosis Control; Global Institution for Collaborative Research and Education (GI-CoRE); Japan
| |
Collapse
|
62
|
Takemae N, Tsunekuni R, Sharshov K, Tanikawa T, Uchida Y, Ito H, Soda K, Usui T, Sobolev I, Shestopalov A, Yamaguchi T, Mine J, Ito T, Saito T. Five distinct reassortants of H5N6 highly pathogenic avian influenza A viruses affected Japan during the winter of 2016-2017. Virology 2017; 512:8-20. [PMID: 28892736 DOI: 10.1016/j.virol.2017.08.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 01/05/2023]
Abstract
To elucidate the evolutionary pathway, we sequenced the entire genomes of 89 H5N6 highly pathogenic avian influenza viruses (HPAIVs) isolated in Japan during winter 2016-2017 and 117 AIV/HPAIVs isolated in Japan and Russia. Phylogenetic analysis showed that at least 5 distinct genotypes of H5N6 HPAIVs affected poultry and wild birds during that period. Japanese H5N6 isolates shared a common genetic ancestor in 6 of 8 genomic segments, and the PA and NS genes demonstrated 4 and 2 genetic origins, respectively. Six gene segments originated from a putative ancestral clade 2.3.4.4 H5N6 virus that was a possible genetic reassortant among Chinese clade 2.3.4.4 H5N6 HPAIVs. In addition, 2 NS clusters and a PA cluster in Japanese H5N6 HPAIVs originated from Chinese HPAIVs, whereas 3 distinct AIV-derived PA clusters were evident. These results suggest that migratory birds were important in the spread and genetic diversification of clade 2.3.4.4 H5 HPAIVs.
Collapse
Affiliation(s)
- Nobuhiro Takemae
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok 10900, Thailand
| | - Ryota Tsunekuni
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok 10900, Thailand
| | - Kirill Sharshov
- Research Institute of Experimental and Clinical Medicine, 2, Timakova street, Novosibirsk 630117, Russia
| | - Taichiro Tanikawa
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok 10900, Thailand
| | - Yuko Uchida
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok 10900, Thailand
| | - Hiroshi Ito
- The Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, Tottori 680-8550, Japan
| | - Kosuke Soda
- The Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, Tottori 680-8550, Japan
| | - Tatsufumi Usui
- The Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, Tottori 680-8550, Japan
| | - Ivan Sobolev
- Research Institute of Experimental and Clinical Medicine, 2, Timakova street, Novosibirsk 630117, Russia
| | - Alexander Shestopalov
- Research Institute of Experimental and Clinical Medicine, 2, Timakova street, Novosibirsk 630117, Russia
| | - Tsuyoshi Yamaguchi
- The Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, Tottori 680-8550, Japan
| | - Junki Mine
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok 10900, Thailand
| | - Toshihiro Ito
- The Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, Tottori 680-8550, Japan
| | - Takehiko Saito
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok 10900, Thailand; United Graduate School of Veterinary Sciences, Gifu University, 1-1, Yanagito, Gifu, Gifu 501-1112, Japan.
| |
Collapse
|
63
|
Virulence of an H5N8 highly pathogenic avian influenza is enhanced by the amino acid substitutions PB2 E627K and HA A149V. INFECTION GENETICS AND EVOLUTION 2017; 54:347-354. [PMID: 28750900 DOI: 10.1016/j.meegid.2017.07.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/05/2017] [Accepted: 07/24/2017] [Indexed: 11/23/2022]
Abstract
A novel reassortant H5N8 highly pathogenic avian influenza (HPAI) virus was recently identified in Asia, Europe, and North America. The H5N8 HPAI virus has raised serious concerns regarding the potential risk for human infection. However, the molecular changes responsible for allowing mammalian infection in H5N8 HPAI viruses are not clear. The objective of this study was to identify amino acid substitutions that are potentially associated with the adaptation of H5N8 HPAI viruses to mammals. In this study, an avian-origin H5N8 virus was adapted to mice through serial lung-to-lung passage. The virulence of mouse-adapted virus was increased and adaptive mutations, HA (A149V) and PB2 (E627K), were detected after the ninth passage in each series of mice. Reverse genetics were used to generate reassortants of the wild type and mouse-adapted viruses. Substitutions in the HA (A149V) and PB2 (E627K) proteins led to enhanced viral virulence in mice, the viruses displayed expanded tissue tropism, and increased replication kinetics in mammalian cells. Continued surveillance in poultry for amino acid changes that might indicate H5N8 HPAI viruses pose a threat to human health is required.
Collapse
|
64
|
Barr IG. Assessing the potential pandemic risk of recent avian influenza viruses. Eur Respir J 2017; 49:49/3/1602517. [PMID: 28275178 DOI: 10.1183/13993003.02517-2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, Doherty Institute, Melbourne, Australia .,Dept of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
65
|
Taubenberger JK, Morens DM. H5Nx Panzootic Bird Flu—Influenza’s Newest Worldwide Evolutionary Tour. Emerg Infect Dis 2017. [DOI: 10.3201/eid2303.161963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
66
|
Taubenberger JK, Morens DM. H5Nx Panzootic Bird Flu—Influenza’s Newest Worldwide Evolutionary Tour. Emerg Infect Dis 2017. [PMCID: PMC5324820 DOI: 10.3201/eid2302.161963] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|