51
|
Hefner M, Baliga V, Amphay K, Ramos D, Hegde V. Cardiometabolic Modification of Amyloid Beta in Alzheimer's Disease Pathology. Front Aging Neurosci 2021; 13:721858. [PMID: 34497507 PMCID: PMC8419421 DOI: 10.3389/fnagi.2021.721858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
In recent years, several studies have suggested that cardiometabolic disorders, such as diabetes, obesity, hypertension, and dyslipidemia, share strong connections with the onset of neurodegenerative disorders such as Parkinson's and Alzheimer's disease (AD). However, establishing a definitive link between medical disorders with coincident pathophysiologies is difficult due to etiological heterogeneity and underlying comorbidities. For this reason, amyloid β (Aβ), a physiological peptide derived from the sequential proteolysis of amyloid precursor protein (APP), serves as a crucial link that bridges the gap between cardiometabolic and neurodegenerative disorders. Aβ normally regulates neuronal synaptic function and repair; however, the intracellular accumulation of Aβ within the brain has been observed to play a critical role in AD pathology. A portion of Aβ is believed to originate from the brain itself and can readily cross the blood-brain barrier, while the rest resides in peripheral tissues that express APP required for Aβ generation such as the liver, pancreas, kidney, spleen, skin, and lungs. Consequently, numerous organs contribute to the body pool of total circulating Aβ, which can accumulate in the brain and facilitate neurodegeneration. Although the accumulation of Aβ corresponds with the onset of neurodegenerative disorders, the direct function of periphery born Aβ in AD pathophysiology is currently unknown. This review will highlight the contributions of individual cardiometabolic diseases including cardiovascular disease (CVD), type 2 diabetes (T2D), obesity, and non-alcoholic fatty liver disease (NAFLD) in elevating concentrations of circulating Aβ within the brain, as well as discuss the comorbid association of Aβ with AD pathology.
Collapse
Affiliation(s)
- Marleigh Hefner
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States
| | - Vineet Baliga
- College of Arts and Sciences, University of North Carolina, Chapel Hill, Chapel Hill, NC, United States
| | - Kailinn Amphay
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States
| | - Daniela Ramos
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States
| | - Vijay Hegde
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
52
|
Zhang Y, Ma H, Lv X, Han Q. Multimodal MRI Analysis of Brain Metabolism in Maintenance Hemodialysis Patients Based on Cognitive Computing. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:7231658. [PMID: 34422245 PMCID: PMC8371624 DOI: 10.1155/2021/7231658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/02/2021] [Indexed: 11/18/2022]
Abstract
This paper investigates cognitive computation of brain metabolism in maintenance hemodialysis patients with multimodal MRI therapy assessment. This paper constructs a cross-individual emotion recognition method using dynamic sample entropy pattern learning. The cross-individual emotion recognition was carried out on subjects using the EEG emotion dataset SEED. The experimental results show that the proposed dynamic sample entropy-based pattern learning has better performance in cross-individual emotion recognition and exhibits better generalization and generalization ability when compared with the results of existing related studies. The constructed cognitive computing method for cross-individual emotion state recognition achieves optimization and innovation of EEG emotion pattern recognition, which can effectively predict people's mental emotion state from EEG signals. We also explore the value of diffusion-weighted magnetic resonance imaging and dynamic enhanced magnetic resonance imaging-based volumetric measurements in assessing the efficacy of neoadjuvant therapy in maintenance hemodialysis patients. We analyze and compare the results of different studies to find the best multimodal MRI to assess the efficacy of neoadjuvant therapy in maintenance hemodialysis patients. The use of ADC value growth rates to assess neoadjuvant efficacy provides the best diagnostic efficacy and allows the screening of patients who respond well to neoadjuvant therapy while avoiding the impact of two different b-value combinations commonly used to assess neoadjuvant efficacy.
Collapse
Affiliation(s)
- Yan Zhang
- Magnetic Resonance Room of Imaging Department, Baoji Hospital of Traditional Chinese Medicine, Baoji, Shaanxi 721001, China
| | - Hui Ma
- Department of Radiology, Baoji Hi-Tech Hospital, Baoji, Shaanxi 721000, China
| | - Xinguang Lv
- Magnetic Resonance Room of Imaging Department, Baoji Hospital of Traditional Chinese Medicine, Baoji, Shaanxi 721001, China
| | - Qinjun Han
- Foreign College of Baoji University of Arts and Sciences, Baoji, Shaanxi 721000, China
| |
Collapse
|
53
|
Ojo JO, Reed JM, Crynen G, Vallabhaneni P, Evans J, Shackleton B, Eisenbaum M, Ringland C, Edsell A, Mullan M, Crawford F, Bachmeier C. APOE genotype dependent molecular abnormalities in the cerebrovasculature of Alzheimer's disease and age-matched non-demented brains. Mol Brain 2021; 14:110. [PMID: 34238312 PMCID: PMC8268468 DOI: 10.1186/s13041-021-00803-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022] Open
Abstract
Cerebrovascular dysfunction is a hallmark feature of Alzheimer's disease (AD). One of the greatest risk factors for AD is the apolipoprotein E4 (E4) allele. The APOE4 genotype has been shown to negatively impact vascular amyloid clearance, however, its direct influence on the molecular integrity of the cerebrovasculature compared to other APOE variants (APOE2 and APOE3) has been largely unexplored. To address this, we employed a 10-plex tandem isobaric mass tag approach in combination with an ultra-high pressure liquid chromatography MS/MS (Q-Exactive) method, to interrogate unbiased proteomic changes in cerebrovessels from AD and healthy control brains with different APOE genotypes. We first interrogated changes between healthy control cases to identify underlying genotype specific effects in cerebrovessels. EIF2 signaling, regulation of eIF4 and 70S6K signaling and mTOR signaling were the top significantly altered pathways in E4/E4 compared to E3/E3 cases. Oxidative phosphorylation, EIF2 signaling and mitochondrial dysfunction were the top significant pathways in E2E2 vs E3/E3cases. We also identified AD-dependent changes and their interactions with APOE genotype and found the highest number of significant proteins from this interaction was observed in the E3/E4 (192) and E4/E4 (189) cases. As above, EIF2, mTOR signaling and eIF4 and 70S6K signaling were the top three significantly altered pathways in E4 allele carriers (i.e. E3/E4 and E4/E4 genotypes). Of all the cerebrovascular cell-type specific markers identified in our proteomic analyses, endothelial cell, astrocyte, and smooth muscle cell specific protein markers were significantly altered in E3/E4 cases, while endothelial cells and astrocyte specific protein markers were altered in E4/E4 cases. These proteomic changes provide novel insights into the longstanding link between APOE4 and cerebrovascular dysfunction, implicating a role for impaired autophagy, ER stress, and mitochondrial bioenergetics. These APOE4 dependent changes we identified could provide novel cerebrovascular targets for developing disease modifying strategies to mitigate the effects of APOE4 genotype on AD pathogenesis.
Collapse
Affiliation(s)
- Joseph O Ojo
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA. .,James A. Haley Veterans' Hospital, Tampa, FL, USA. .,The Open University, Milton Keynes, UK.
| | - Jon M Reed
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA.,Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Gogce Crynen
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA
| | | | - James Evans
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA
| | - Benjamin Shackleton
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA.,The Open University, Milton Keynes, UK
| | - Maximillian Eisenbaum
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA.,The Open University, Milton Keynes, UK
| | - Charis Ringland
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA.,The Open University, Milton Keynes, UK
| | - Anastasia Edsell
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA
| | - Michael Mullan
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA.,The Open University, Milton Keynes, UK
| | - Fiona Crawford
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA.,James A. Haley Veterans' Hospital, Tampa, FL, USA.,The Open University, Milton Keynes, UK
| | - Corbin Bachmeier
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA.,The Open University, Milton Keynes, UK.,Bay Pines VA Healthcare System, Bay Pines, FL, USA
| |
Collapse
|
54
|
Kosyakovsky J. The neural economics of brain aging. Sci Rep 2021; 11:12167. [PMID: 34108560 PMCID: PMC8190309 DOI: 10.1038/s41598-021-91621-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/25/2021] [Indexed: 11/22/2022] Open
Abstract
Despite remarkable advances, research into neurodegeneration and Alzheimer Disease (AD) has nonetheless been dominated by inconsistent and conflicting theory. Basic questions regarding how and why the brain changes over time remain unanswered. In this work, we lay novel foundations for a consistent, integrated view of the aging brain. We develop neural economics—the study of the brain’s infrastructure, brain capital. Using mathematical modeling, we create ABC (Aging Brain Capital), a simple linear simultaneous-equation model that unites aspects of neuroscience, economics, and thermodynamics to explain the rise and fall of brain capital, and thus function, over the human lifespan. Solving and simulating this model, we show that in each of us, the resource budget constraints of our finite brains cause brain capital to reach an upper limit. The thermodynamics of our working brains cause persistent pathologies to inevitably accumulate. With time, the brain becomes damaged causing brain capital to depreciate and decline. Using derivative models, we suggest that this endogenous aging process underpins the pathogenesis and spectrum of neurodegenerative disease. We develop amyloid–tau interaction theory, a paradigm that bridges the unnecessary conflict between amyloid- and tau-centered hypotheses of AD. Finally, we discuss profound implications for therapeutic strategy and development.
Collapse
Affiliation(s)
- Jacob Kosyakovsky
- University of Virginia School of Medicine, 200 Jeanette Lancaster Way, Charlottesville, VA, 22903, USA.
| |
Collapse
|
55
|
Litke R, Garcharna LC, Jiwani S, Neugroschl J. Modifiable Risk Factors in Alzheimer Disease and Related Dementias: A Review. Clin Ther 2021; 43:953-965. [PMID: 34108080 DOI: 10.1016/j.clinthera.2021.05.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE Although Alzheimer disease and related dementias (ADRDs) have long been considered nonpreventable and even an inevitable consequence of aging, recent findings from longitudinal studies indicate a downtrend in age-adjusted incidence and prevalence of ADRDs in Western countries. This remarkable trend might be the result of improved management of so-called modifiable risk factors. The aim of this review is to present evidence of modifiable factors of ADRDs in a life-course approach. METHODS A PubMed database search was conducted between November and December 2020 to identify relevant studies evaluating the role of modifiable risk factors in the development of ADRDs. Key words (Alzheimer's disease and modifiable risk factors) were used and specific inclusion and exclusion criteria applied. FINDINGS This review identifies modifiable factors for ADRDs divided into early-life, middle-life, and late-life risk factors, depending on the available window of preventive action. According to life course exposure, factors can be protective or deleterious for ADRDs that participate in the underlying pathophysiologic complexity of these diseases as well as the complexity for public health measures implementations. IMPLICATIONS The available evidence derived from epidemiologic, preclinical, interventional studies suggest that modifiable risk factors for ADRDs offer opportunities for therapeutic and preventive actions.
Collapse
Affiliation(s)
- Rachel Litke
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York.
| | | | - Salima Jiwani
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Judith Neugroschl
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
56
|
Ojo JO, Reed JM, Crynen G, Vallabhaneni P, Evans J, Shackleton B, Eisenbaum M, Ringland C, Edsell A, Mullan M, Crawford F, Bachmeier C. Molecular Pathobiology of the Cerebrovasculature in Aging and in Alzheimers Disease Cases With Cerebral Amyloid Angiopathy. Front Aging Neurosci 2021; 13:658605. [PMID: 34079449 PMCID: PMC8166206 DOI: 10.3389/fnagi.2021.658605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Cerebrovascular dysfunction and cerebral amyloid angiopathy (CAA) are hallmark features of Alzheimer's disease (AD). Molecular damage to cerebrovessels in AD may result in alterations in vascular clearance mechanisms leading to amyloid deposition around blood vessels and diminished neurovascular-coupling. The sequelae of molecular events leading to these early pathogenic changes remains elusive. To address this, we conducted a comprehensive in-depth molecular characterization of the proteomic changes in enriched cerebrovessel fractions isolated from the inferior frontal gyrus of autopsy AD cases with low (85.5 ± 2.9 yrs) vs. high (81 ± 4.4 yrs) CAA score, aged-matched control (87.4 ± 1.5 yrs) and young healthy control (47 ± 3.3 yrs) cases. We employed a 10-plex tandem isobaric mass tag approach in combination with our ultra-high pressure liquid chromatography MS/MS (Q-Exactive) method. Enriched cerebrovascular fractions showed very high expression levels of proteins specific to endothelial cells, mural cells (pericytes and smooth muscle cells), and astrocytes. We observed 150 significantly regulated proteins in young vs. aged control cerebrovessels. The top pathways significantly modulated with aging included chemokine, reelin, HIF1α and synaptogenesis signaling pathways. There were 213 proteins significantly regulated in aged-matched control vs. high CAA cerebrovessels. The top three pathways significantly altered from this comparison were oxidative phosphorylation, Sirtuin signaling pathway and TCA cycle II. Comparison between low vs. high CAA cerebrovessels identified 84 significantly regulated proteins. Top three pathways significantly altered between low vs. high CAA cerebrovessels included TCA Cycle II, Oxidative phosphorylation and mitochondrial dysfunction. Notably, high CAA cases included more advanced AD pathology thus cerebrovascular effects may be driven by the severity of amyloid and Tangle pathology. These descriptive proteomic changes provide novel insights to explain the age-related and AD-related cerebrovascular changes contributing to AD pathogenesis. Particularly, disturbances in energy bioenergetics and mitochondrial biology rank among the top AD pathways altered in cerebrovessels. Targeting these failed mechanisms in endothelia and mural cells may provide novel disease modifying targets for developing therapeutic strategies against cerebrovascular deterioration and promoting cerebral perfusion in AD. Our future work will focus on interrogating and validating these novel targets and pathways and their functional significance.
Collapse
Affiliation(s)
- Joseph O. Ojo
- Roskamp Institute, Sarasota, FL, United States
- James A. Haley Veterans' Hospital, Tampa, FL, United States
- The Open University, Milton Keynes, United Kingdom
| | - Jon M. Reed
- Roskamp Institute, Sarasota, FL, United States
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | | | | | - James Evans
- Roskamp Institute, Sarasota, FL, United States
| | - Benjamin Shackleton
- Roskamp Institute, Sarasota, FL, United States
- The Open University, Milton Keynes, United Kingdom
| | - Maximillian Eisenbaum
- Roskamp Institute, Sarasota, FL, United States
- The Open University, Milton Keynes, United Kingdom
| | - Charis Ringland
- Roskamp Institute, Sarasota, FL, United States
- The Open University, Milton Keynes, United Kingdom
| | | | - Michael Mullan
- Roskamp Institute, Sarasota, FL, United States
- The Open University, Milton Keynes, United Kingdom
| | - Fiona Crawford
- Roskamp Institute, Sarasota, FL, United States
- James A. Haley Veterans' Hospital, Tampa, FL, United States
- The Open University, Milton Keynes, United Kingdom
| | - Corbin Bachmeier
- Roskamp Institute, Sarasota, FL, United States
- The Open University, Milton Keynes, United Kingdom
- Bay Pines VA Healthcare System, Bay Pines, FL, United States
| |
Collapse
|
57
|
Chen CH, Chen YF, Tsai PH, Chiou JM, Lai LC, Chen TF, Hung H, Chen JH, Chen YC. Impacts of Kidney Dysfunction and Cerebral Cortical Thinning on Cognitive Change in Elderly Population. J Alzheimers Dis 2021; 76:225-236. [PMID: 32444541 DOI: 10.3233/jad-200053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cerebral cortical thickness is a neuroimaging biomarker to predict cognitive decline, and kidney dysfunction (KD) is associated with cortical thinning. OBJECTIVE This study aimed to investigate the effects of KD and cortical thinning on cognitive change in a prospective cohort study. METHODS A total of 244 non-demented participants were recruited from elderly health checkup program and received cognitive exams including Montreal Cognitive Assessment (MoCA) and different cognitive domains at baseline and three biannual follow-ups afterwards. KD was defined as having either glomerular filtration rate <60 ml/min/1.73 m2 or proteinuria. Cortical thickness of global, lobar, and Alzheimer's disease (AD) signature area were derived from magnetic resonance imaging at baseline, and cortical thinning was defined as the lowest tertile of cortical thickness. Generalized linear mixed models were applied to evaluate the effects of KD and cortical thinning on cognitive changes. RESULTS KD was significantly associated with the decline in attention function (β= -0.29). Thinning of global (β= -0.06), AD signature area (β= -0.06), temporal (β= -0.06), and parietal lobes (β= -0.06) predicted poor verbal fluency over time, while temporal lobe thinning also predicted poor MoCA score (β= -0.19). KD modified the relationship between thinning of global, frontal, and limbic, and change of logical memory function (pinteraction < 0.05). When considering jointly, participants with both KD and cortical thinning had greatest decline in attention function compared with those without KD or cortical thinning (β= -0.51, ptrend = 0.008). CONCLUSIONS KD and cortical thinning have joint effect on cognitive decline, especially the attention function. Reverse associations may exist between cortical thinning and memory function in participants with KD, though the results should be interpreted cautiously as an exploratory analysis.
Collapse
Affiliation(s)
- Chih-Hao Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taiwan.,Department of Neurology, National Taiwan University Hospital, Taiwan
| | - Ya-Fang Chen
- Department of Medical Imaging, National Taiwan University Hospital, Taiwan
| | - Ping-Huan Tsai
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taiwan
| | - Jeng-Min Chiou
- Institute of Statistical Science, Academia Sinica, Taiwan
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ta-Fu Chen
- Department of Neurology, National Taiwan University Hospital, Taiwan
| | - Hung Hung
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taiwan
| | - Jen-Hau Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taiwan.,Department of Geriatrics and Gerontology, National Taiwan University Hospital, Taiwan
| | - Yen-Ching Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taiwan.,Department of Public Health, College of Public Health, National Taiwan University, Taiwan
| |
Collapse
|
58
|
Dunalska A, Pikul J, Schok K, Wiejak KA, Alster P. The Significance of Vascular Pathogenesis in the Examination of Corticobasal Syndrome. Front Aging Neurosci 2021; 13:668614. [PMID: 34017244 PMCID: PMC8129188 DOI: 10.3389/fnagi.2021.668614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/06/2021] [Indexed: 11/30/2022] Open
Abstract
Corticobasal syndrome (CBS) is a clinical entity, classified as an atypical Parkinsonism, characterized by both motor and higher cortical dysfunctions. The clinical manifestation of CBS is associated with several pathologies, among which corticobasal degeneration (CBD) is the most common. The aim of our study was to elaborate on the possible vascular pathogenesis of CBS and consider types of vascular lesions in these cases. Several cases of vascular CBS are described in the literature. The majority of presented patients were affected by internal carotid artery (ICA) stenosis and ischemic strokes; few cases were associated with vascular malformations or autoimmune diseases. Vascular CBS is preceded by an abrupt onset. The clinical manifestation does not significantly differ with non-vascular CBS. Patients with vascular CBS are usually elderly; often with coexistent hypertension, dyslipidemia and diabetes mellitus. Inferring from our observations, cerebral hypoperfusion can play a significant role in neuropathological changes in neurodegenerative diseases. To the best of our knowledge paper is the first comprehensive review of vascular CBS and we are positive that our observations show that further research concerning the vascular pathogenesis of tauopathy atypical Parkinsonism is required.
Collapse
Affiliation(s)
- Anna Dunalska
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Julia Pikul
- Students' Scientific Association of the Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Schok
- Students' Scientific Association of the Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Anna Wiejak
- Students' Scientific Association of the Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Alster
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
59
|
Pasha EP, Rutjes E, Tomoto T, Tarumi T, Stowe A, Claassen JAHR, Munro Cullum C, Zhu DC, Zhang R. Carotid Stiffness is Associated with Brain Amyloid-β Burden in Amnestic Mild Cognitive Impairment. J Alzheimers Dis 2021; 74:925-935. [PMID: 32083583 DOI: 10.3233/jad-191073] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Vascular dysfunction has been implicated in the onset and progression of Alzheimer's disease (AD), yet the relationship of arterial stiffening with brain amyloid-β (Aβ) burden in at risk patients is unclear. OBJECTIVE We aimed to determine the relationship of aortic and carotid arterial stiffening with Aβ burden in patients with amnestic mild cognitive impairment (aMCI), a proposed transitional stage between normal aging and AD. METHODS Thirty-two older adults with aMCI underwent 18Florbetapir PET amyloid imaging to ascertain Aβ burden via standardized uptake value ratio (SUVR). Carotid-femoral pulse wave velocity (cfPWV), which reflects aortic stiffness, and carotid β stiffness index and distensibility, which reflect local cerebral arterial stiffness, thus having direct impact on the cerebral circulation, were measured using applanation tonometry and ultrasonography. RESULTS Region-of-interest based analysis showed that precuneus and mean cortex Aβ SUVR were correlated positively with carotid β stiffness index and negatively with carotid distensibility after adjusting for age, sex, mean arterial pressure (MAP), pulse pressure (PP), and APOE4 status. Whole-brain voxel-wise analysis showed that Aβ SUVR was positively correlated with carotid β stiffness index, and negatively with carotid distensibility at the precuneus/cingulate gyrus after multiple comparison correction. cfPWV was not correlated with Aβ SUVR. CONCLUSIONS Carotid rather than aortic stiffening was independently associated with brain Aβ burden in patients with aMCI after adjusting for age, sex, MAP, PP, and APOE4 status. These findings provide evidence that arterial stiffening, particularly carotid artery stiffening, may contribute to AD pathology in patients with aMCI.
Collapse
Affiliation(s)
- Evan P Pasha
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, TX, USA.,The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elmer Rutjes
- Radboud University Medical Center, Nijmegen, Netherlands
| | - Tsubasa Tomoto
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, TX, USA.,The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Takashi Tarumi
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, TX, USA.,The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ann Stowe
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, TX, USA
| | | | - C Munro Cullum
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David C Zhu
- Michigan State University, East Lansing, MI, USA
| | - Rong Zhang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, TX, USA.,The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
60
|
Ribeiro VT, Cordeiro TME, Filha RDS, Perez LG, Caramelli P, Teixeira AL, de Souza LC, Simões E Silva AC. Circulating Angiotensin-(1-7) Is Reduced in Alzheimer's Disease Patients and Correlates With White Matter Abnormalities: Results From a Pilot Study. Front Neurosci 2021; 15:636754. [PMID: 33897352 PMCID: PMC8063113 DOI: 10.3389/fnins.2021.636754] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/12/2021] [Indexed: 11/29/2022] Open
Abstract
Introduction Alzheimer’s disease (AD) is the leading cause of dementia worldwide. Despite the extensive research, its pathophysiology remains largely unelucidated. Currently, more attention is being given to the disease’s vascular and inflammatory aspects. In this context, the renin-angiotensin system (RAS) emerges as a credible player in AD pathogenesis. The RAS has multiple physiological functions, conducted by its two opposing axes: the classical, led by Angiotensin II (Ang II), and the alternative, driven by Angiotensin-(1–7) [Ang-(1–7)]. These peptides were shown to interact with AD pathology in animal studies, but evidence from humans is scarce. Only 20 studies dosed RAS molecules in AD patients’ bloodstream, none of which assessed both axes simultaneously. Therefore, we conducted a cross-sectional, case-control exploratory study to compare plasma levels of Ang II and Ang-(1–7) in AD patients vs. age-matched controls. Within each group, we searched for correlations between RAS biomarkers and measures from magnetic resonance imaging (MRI). Methods We evaluated patients with AD (n = 14) and aged-matched controls (n = 14). Plasma Ang II and Ang-(1–7) were dosed using ELISA. Brain MRI was performed in a 3 Tesla scan, and a three-dimensional T1-weighted volumetric sequence was obtained. Images were then processed by FreeSurfer to calculate: (1) white matter hypointensities (WMH) volume; (2) volumes of hippocampus, medial temporal cortex, and precuneus. Statistical analyses used non-parametrical tests (Mann-Whitney and Spearman). Results Ang-(1–7) levels in plasma were significantly lower in the AD patients than in controls [median (25th–75th percentiles)]: AD [101.5 (62.43–126.4)] vs. controls [209.3 (72–419.1)], p = 0.014. There was no significant difference in circulating Ang II. In the AD patients, but not in controls, there was a positive and significant correlation between Ang-(1–7) values and WMH volumes (Spearman’s rho = 0.56, p = 0.038). Ang-(1–7) did not correlate with cortical volumes in AD or in controls. Ang II did not correlate with any MRI variable in none of the groups. Conclusion If confirmed, our results strengthen the hypothesis that RAS alternative axis is downregulated in AD, and points to a possible interaction between Ang-(1–7) and cerebrovascular lesions in AD.
Collapse
Affiliation(s)
- Victor Teatini Ribeiro
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Thiago Macedo E Cordeiro
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Roberta da Silva Filha
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Lucas Giandoni Perez
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Paulo Caramelli
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Antônio Lúcio Teixeira
- Neuropsychiatry Program and Immuno-Psychiatry Lab, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Leonardo Cruz de Souza
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.,Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ana Cristina Simões E Silva
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
61
|
Kim MS, Bang J, Kim BY, Jeon WK. Impaired Cognitive Flexibility Induced by Chronic Cerebral Hypoperfusion in the 5XFAD Transgenic Mouse Model of Mixed Dementia. J Gerontol A Biol Sci Med Sci 2021; 76:1169-1178. [PMID: 33709149 PMCID: PMC8202140 DOI: 10.1093/gerona/glab075] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Indexed: 12/27/2022] Open
Abstract
Cerebrovascular lesions are widely prevalent in patients with Alzheimer’s disease (AD), but their relationship to the pathophysiology of AD remains poorly understood. An improved understanding of the interaction of cerebrovascular damage with AD is crucial for the development of therapeutic approaches. Herein, we investigated the effects of chronic cerebral hypoperfusion (CCH) in a 5XFAD transgenic (Tg) mouse model of AD. We established CCH conditions in both Tg and non-Tg mice by inducing unilateral common carotid artery occlusion (UCCAO). Cognitive performance in mice was evaluated, and their brain tissue was examined for amyloid-beta (Aβ) pathology to elucidate possible mechanisms. We found that UCCAO-operated Tg mice showed impaired cognitive flexibility in the reversal phase of the hidden-platform water maze task compared to sham-operated Tg mice. Interestingly, UCCAO-operated Tg mice used fewer spatial cognitive strategies than sham-operated Tg mice during reversal learning. These cognitive deficits were accompanied by increased Aβ plaque burden and Aβ42 levels in the hippocampus and prefrontal cortex, 2 regions that play essential roles in the regulation of cognitive flexibility. Furthermore, changes in cognitive flexibility are strongly correlated with the expression levels of enzymes related to Aβ clearance, such as neprilysin and insulin-degrading enzymes. These findings suggest that, in 5XFAD mice, impaired cognitive flexibility is related to CCH, and that Aβ clearance might be involved in this process.
Collapse
Affiliation(s)
- Min-Soo Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea.,Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, South Korea
| | - Jihye Bang
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea.,Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, South Korea
| | - Bu-Yeo Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Won Kyung Jeon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea.,Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, South Korea
| |
Collapse
|
62
|
Clark AL, Weigand AJ, Bangen KJ, Merritt VC, Bondi MW, Delano-Wood L. Repetitive mTBI is associated with age-related reductions in cerebral blood flow but not cortical thickness. J Cereb Blood Flow Metab 2021; 41:431-444. [PMID: 32248731 PMCID: PMC8369996 DOI: 10.1177/0271678x19897443] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mild traumatic brain injury (mTBI) is a risk factor for Alzheimer's disease (AD), and evidence suggests cerebrovascular dysregulation initiates deleterious neurodegenerative cascades. We examined whether mTBI history alters cerebral blood flow (CBF) and cortical thickness in regions vulnerable to early AD-related changes. Seventy-four young to middle-aged Veterans (mean age = 34, range = 23-48) underwent brain scans. Participants were divided into: (1) Veteran Controls (n = 27), (2) 1-2 mTBIs (n = 26), and (2) 3+ mTBIs (n = 21) groups. Resting CBF was measured using MP-PCASL. T1 structural scans were processed with FreeSurfer. CBF and cortical thickness estimates were extracted from nine AD-vulnerable regions. Regression analyses examined whether mTBI moderated the association between age, CBF, and cortical thickness. Regressions adjusting for sex and posttraumatic stress revealed mTBI moderated the association between age and CBF of the precuneus as well as superior and inferior parietal cortices (p's < .05); increasing age was associated with lower CBF in the 3+ mTBIs group, but not in the VCs or 1-2 mTBIs groups. mTBI did not moderate associations between age and cortical thickness (p's >.05). Repetitive mTBI is associated with cerebrovascular dysfunction in AD-vulnerable regions and may accelerate pathological aging trajectories.
Collapse
Affiliation(s)
- Alexandra L Clark
- VA San Diego Healthcare System (VASDHS), San Diego, CA, USA.,School of Medicine, Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Alexandra J Weigand
- San Diego State University/University of California, San Diego (SDSU/UCSD) Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Katherine J Bangen
- VA San Diego Healthcare System (VASDHS), San Diego, CA, USA.,School of Medicine, Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Victoria C Merritt
- VA San Diego Healthcare System (VASDHS), San Diego, CA, USA.,School of Medicine, Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Mark W Bondi
- VA San Diego Healthcare System (VASDHS), San Diego, CA, USA.,School of Medicine, Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Lisa Delano-Wood
- VA San Diego Healthcare System (VASDHS), San Diego, CA, USA.,School of Medicine, Department of Psychiatry, University of California San Diego, San Diego, CA, USA.,Center of Excellence for Stress and Mental Health, VASDHS, San Diego, CA, USA
| |
Collapse
|
63
|
Sleep disorders and late-onset epilepsy of unknown origin: Understanding new trajectories to brain amyloidopathy. Mech Ageing Dev 2021; 194:111434. [PMID: 33444630 DOI: 10.1016/j.mad.2021.111434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 12/16/2022]
Abstract
The intertwining between epilepsy, sleep disorders and beta amyloid pathology has been progressively highlighted, as early identification and stratification of patients at high risk of cognitive decline is the need of the hour. Modification of the sleep-wake activity, such as sleep impairment or excessive daytime sleepiness, can critically affect cerebral beta amyloid levels. Both mice models and human studies have demonstrated a substantial increase in the burden of beta amyloid pathology after sleep-deprivation, with potential negative effects partially restored by sleep recovery. The accumulation of beta amyloid has been shown to be an early event in the course of Alzheimer's disease dementia. Beta amyloid accumulation has been linked to epileptic seizures epileptic seizures, with beta amyloid being itself pro-epileptogenic in mice models already at oligomeric stage, well before plaque deposition. Further supporting a potential relationship between beta amyloid and epilepsy: i) seizures happen in 1 out of oofut 10 patients with Alzheimer's disease in the prodromal stage, ii) epileptic activity accelerates cognitive decline in Alzheimer's disease, iii) people with late-onset epilepsy present a critically high risk of developing dementia. In this Review we highlight the role of beta amyloid as a potential shared mechanisms between sleep disorders, late-onset epilepsy, and cognitive decline.
Collapse
|
64
|
Badji A, Westman E. Cerebrovascular pathology in Alzheimer's disease: Hopes and gaps. Psychiatry Res Neuroimaging 2020; 306:111184. [PMID: 32950333 DOI: 10.1016/j.pscychresns.2020.111184] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 06/27/2020] [Accepted: 09/03/2020] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD) is recognized as multifactorial and heterogeneous disease with multiple contributors to its pathophysiology, including vascular dysfunction. Given that a revision of the AT(N) classification is expected in the near future, the present work supports the importance to add an additional vascular (V) category to the framework. In particular, we attempt to shed light on the vascular markers and risk factors that are currently ready-to-be-added to the framework: i) lacunes, ii) white matter hyperintensities and iii) microbleeds seen in Flair, T2* weighted imaging and susceptibility images (SWI). Next, we discuss the added value of other types of imaging, such as diffusion-based metrics and advanced perfusion sequences to encompass more subtle vascular dysfunction. Finally, we highlight the importance to add information about the following cardiovascular risk factors to the framework: history of hypertension, obesity, and diabetes. We believe that adding a V category to the AT(N) framework will improve AD classification and foster efforts to apply the right drug(s) at the right time in the right AD subgroups. Brief communication The present work supports the importance to add an additional vascular (V) category to the AT(N) framework and shed light on the vascular MRI markers and risk factors that are currently ready-to-be-added to the framework.
Collapse
Affiliation(s)
- Atef Badji
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montréal, QC, Canada; Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
65
|
Calabrò M, Rinaldi C, Santoro G, Crisafulli C. The biological pathways of Alzheimer disease: a review. AIMS Neurosci 2020; 8:86-132. [PMID: 33490374 PMCID: PMC7815481 DOI: 10.3934/neuroscience.2021005] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer disease is a progressive neurodegenerative disorder, mainly affecting older people, which severely impairs patients' quality of life. In the recent years, the number of affected individuals has seen a rapid increase. It is estimated that up to 107 million subjects will be affected by 2050 worldwide. Research in this area has revealed a lot about the biological and environmental underpinnings of Alzheimer, especially its correlation with β-Amyloid and Tau related mechanics; however, the precise molecular events and biological pathways behind the disease are yet to be discovered. In this review, we focus our attention on the biological mechanics that may lie behind Alzheimer development. In particular, we briefly describe the genetic elements and discuss about specific biological processes potentially associated with the disease.
Collapse
Affiliation(s)
| | | | | | - Concetta Crisafulli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy
| |
Collapse
|
66
|
Ribeiro VT, de Souza LC, Simões E Silva AC. Renin-Angiotensin System and Alzheimer's Disease Pathophysiology: From the Potential Interactions to Therapeutic Perspectives. Protein Pept Lett 2020; 27:484-511. [PMID: 31886744 DOI: 10.2174/0929866527666191230103739] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/27/2019] [Accepted: 11/16/2019] [Indexed: 12/21/2022]
Abstract
New roles of the Renin-Angiotensin System (RAS), apart from fluid homeostasis and Blood Pressure (BP) regulation, are being progressively unveiled, since the discoveries of RAS alternative axes and local RAS in different tissues, including the brain. Brain RAS is reported to interact with pathophysiological mechanisms of many neurological and psychiatric diseases, including Alzheimer's Disease (AD). Even though AD is the most common cause of dementia worldwide, its pathophysiology is far from elucidated. Currently, no treatment can halt the disease course. Successive failures of amyloid-targeting drugs have challenged the amyloid hypothesis and increased the interest in the inflammatory and vascular aspects of AD. RAS compounds, both centrally and peripherally, potentially interact with neuroinflammation and cerebrovascular regulation. This narrative review discusses the AD pathophysiology and its possible interaction with RAS, looking forward to potential therapeutic approaches. RAS molecules affect BP, cerebral blood flow, neuroinflammation, and oxidative stress. Angiotensin (Ang) II, via angiotensin type 1 receptors may promote brain tissue damage, while Ang-(1-7) seems to elicit neuroprotection. Several studies dosed RAS molecules in AD patients' biological material, with heterogeneous results. The link between AD and clinical conditions related to classical RAS axis overactivation (hypertension, heart failure, and chronic kidney disease) supports the hypothesized role of this system in AD. Additionally, RAStargeting drugs as Angiotensin Converting Enzyme inhibitors (ACEis) and Angiotensin Receptor Blockers (ARBs) seem to exert beneficial effects on AD. Results of randomized controlled trials testing ACEi or ARBs in AD are awaited to elucidate whether AD-RAS interaction has implications on AD therapeutics.
Collapse
Affiliation(s)
- Victor Teatini Ribeiro
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Leonardo Cruz de Souza
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil.,Department of Internal Medicine, Service of Neurology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
67
|
Pepperberg DR. Amyloid-β-Dependent Inactivation of the Mitochondrial Electron Transport Chain at Low Transmembrane Potential: An Ameliorating Process in Hypoxia-Associated Neurodegenerative Disease? J Alzheimers Dis 2020; 72:663-675. [PMID: 31640091 DOI: 10.3233/jad-190476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cerebral hypoperfusion-induced hypoxia, a condition that impairs oxygen utilization and thus ATP production by mitochondrial oxidative phosphorylation (oxphos), is thought to contribute to neural degeneration in Alzheimer's disease. However, hypoxia upregulates the generation of amyloid-β (Aβ), a group of peptides known to impair/inhibit the electron transport chain (ETC) of reactions that support oxphos in the inner mitochondrial membrane (IMM). This is a hypothesis paper that reconciles the hypoxia-induced upregulation of Aβ with Aβ's ETC-inhibiting action and, specifically, posits an oxphos-enhancing effect of this inhibition under conditions of newly developing or otherwise mild hypoxia. This effect is typically transient; that is, under conditions of prolonged or severe hypoxia, the oxphos-enhancing activity is overwhelmed by Aβ's well-known toxic actions on mitochondria and other cellular components. The hypothesis is motivated by evidence that the IMM transmembrane potential Ψm, an important determinant of ETC activity, exhibits heterogeneity, i.e., a range of values, among a given local population of mitochondria. It specifically proposes that during oxygen limitation, Aβ selectively inactivates ETC complexes in mitochondria that exhibit relatively low absolute values of Ψm, thereby suppressing oxygen binding and consumption by complex IV of the ETC in these mitochondria. This effect of Aβ on low-Ψm mitochondria is hypothesized to spare hypoxia-limited oxygen for oxphos-enabling utilization by the ETC of the remaining active, higher-Ψm local mitochondria, and thereby to increase overall ATP generated collectively by the local mitochondrial population, i.e., to ameliorate hypoxia-induced oxphos reduction. The protective action of Aβ hypothesized here may slow the early development of hypoxia-associated cellular deterioration/loss in Alzheimer's disease and perhaps other neurodegenerative diseases.
Collapse
Affiliation(s)
- David R Pepperberg
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
68
|
Salminen A. Hypoperfusion is a potential inducer of immunosuppressive network in Alzheimer's disease. Neurochem Int 2020; 142:104919. [PMID: 33242538 DOI: 10.1016/j.neuint.2020.104919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/12/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease which causes a non-reversible cognitive impairment and dementia. The primary cause of late-onset AD remains unknown although its pathology was discovered over a century ago. Recently, the vascular hypothesis of AD has received backing from evidence emerging from neuroimaging studies which have revealed the presence of a significant hypoperfusion in the brain regions vulnerable to AD pathology. In fact, hypoxia can explain many of the pathological changes evident in AD pathology, e.g. the deposition of β-amyloid plaques and chronic low-grade inflammation. Hypoxia-inducible factor-1α (HIF-1α) stimulates inflammatory responses and modulates both innate and adaptive immunity. It is known that hypoxia-induced inflammation evokes compensatory anti-inflammatory response involving tissue-resident microglia/macrophages and infiltrated immune cells. Hypoxia/HIF-1α induce immunosuppression by (i) increasing the expression of immunosuppressive genes, (ii) stimulating adenosinergic signaling, (iii) enhancing aerobic glycolysis, i.e. lactate production, and (iv) augmenting the secretion of immunosuppressive exosomes. Interestingly, it seems that these common mechanisms are also involved in the pathogenesis of AD. In AD pathology, an enhanced immunosuppression appears, e.g. as a shift in microglia/macrophage phenotypes towards the anti-inflammatory M2 phenotype and an increase in the numbers of regulatory T cells (Treg). The augmented anti-inflammatory capacity promotes the resolution of acute inflammation but persistent inflammation has crucial effects not only on immune cells but also harmful responses to the homeostasis of AD brain. I will examine in detail the mechanisms of the hypoperfusion/hypoxia-induced immunosuppressive state in general and especially, in its association with AD pathogenesis. These immunological observations support the vascular hypothesis of AD pathology.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
69
|
Ristori E, Cicaloni V, Salvini L, Tinti L, Tinti C, Simons M, Corti F, Donnini S, Ziche M. Amyloid-β Precursor Protein APP Down-Regulation Alters Actin Cytoskeleton-Interacting Proteins in Endothelial Cells. Cells 2020; 9:cells9112506. [PMID: 33228083 PMCID: PMC7699411 DOI: 10.3390/cells9112506] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022] Open
Abstract
The amyloid-β precursor protein (APP) is a ubiquitous membrane protein often associated with Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA). Despite its role in the development of the pathogenesis, APP exerts several physiological roles that have been mainly investigated in neuronal tissue. To date, the role of APP in vasculature and endothelial cells has not been fully elucidated. In this study, we used molecular and proteomic approaches to identify and investigate major cellular targets of APP down-regulation in endothelial cells. We found that APP is necessary for endothelial cells proliferation, migration and adhesion. The loss of APP alters focal adhesion stability and cell-cell junctions' expression. Moreover, APP is necessary to mediate endothelial response to the VEGF-A growth factor. Finally, we document that APP propagates exogenous stimuli and mediates cellular response in endothelial cells by modulating the Scr/FAK signaling pathway. Thus, the intact expression and processing of APP is required for normal endothelial function. The identification of molecular mechanisms responsible for vasoprotective properties of endothelial APP may have an impact on clinical efforts to preserve and protect healthy vasculature in patients at risk of the development of cerebrovascular disease and dementia including AD and CAA.
Collapse
Affiliation(s)
- Emma Ristori
- Department of Life Science, University of Siena, 53100 Siena, Italy;
- Toscana Life Sciences Foundation, 53100 Siena, Italy; (V.C.); (L.S.); (L.T.); (C.T.)
| | - Vittoria Cicaloni
- Toscana Life Sciences Foundation, 53100 Siena, Italy; (V.C.); (L.S.); (L.T.); (C.T.)
| | - Laura Salvini
- Toscana Life Sciences Foundation, 53100 Siena, Italy; (V.C.); (L.S.); (L.T.); (C.T.)
| | - Laura Tinti
- Toscana Life Sciences Foundation, 53100 Siena, Italy; (V.C.); (L.S.); (L.T.); (C.T.)
| | - Cristina Tinti
- Toscana Life Sciences Foundation, 53100 Siena, Italy; (V.C.); (L.S.); (L.T.); (C.T.)
| | - Michael Simons
- Yale Cardiovascular Research Center, 300 George Street, New Haven, CT 06511, USA; (M.S.); (F.C.)
- Departments of Medicine (Cardiology) and Cell Biology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Federico Corti
- Yale Cardiovascular Research Center, 300 George Street, New Haven, CT 06511, USA; (M.S.); (F.C.)
| | - Sandra Donnini
- Department of Life Science, University of Siena, 53100 Siena, Italy;
- Toscana Life Sciences Foundation, 53100 Siena, Italy; (V.C.); (L.S.); (L.T.); (C.T.)
- Correspondence: (S.D.); (M.Z.); Tel.: +39-0577-235382 (S.D.)
| | - Marina Ziche
- Toscana Life Sciences Foundation, 53100 Siena, Italy; (V.C.); (L.S.); (L.T.); (C.T.)
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- Correspondence: (S.D.); (M.Z.); Tel.: +39-0577-235382 (S.D.)
| |
Collapse
|
70
|
Chételat G, Arbizu J, Barthel H, Garibotto V, Law I, Morbelli S, van de Giessen E, Agosta F, Barkhof F, Brooks DJ, Carrillo MC, Dubois B, Fjell AM, Frisoni GB, Hansson O, Herholz K, Hutton BF, Jack CR, Lammertsma AA, Landau SM, Minoshima S, Nobili F, Nordberg A, Ossenkoppele R, Oyen WJG, Perani D, Rabinovici GD, Scheltens P, Villemagne VL, Zetterberg H, Drzezga A. Amyloid-PET and 18F-FDG-PET in the diagnostic investigation of Alzheimer's disease and other dementias. Lancet Neurol 2020; 19:951-962. [PMID: 33098804 DOI: 10.1016/s1474-4422(20)30314-8] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 07/22/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022]
Abstract
Various biomarkers are available to support the diagnosis of neurodegenerative diseases in clinical and research settings. Among the molecular imaging biomarkers, amyloid-PET, which assesses brain amyloid deposition, and 18F-fluorodeoxyglucose (18F-FDG) PET, which assesses glucose metabolism, provide valuable and complementary information. However, uncertainty remains regarding the optimal timepoint, combination, and an order in which these PET biomarkers should be used in diagnostic evaluations because conclusive evidence is missing. Following an expert panel discussion, we reached an agreement on the specific use of the individual biomarkers, based on available evidence and clinical expertise. We propose a diagnostic algorithm with optimal timepoints for these PET biomarkers, also taking into account evidence from other biomarkers, for early and differential diagnosis of neurodegenerative diseases that can lead to dementia. We propose three main diagnostic pathways with distinct biomarker sequences, in which amyloid-PET and 18F-FDG-PET are placed at different positions in the order of diagnostic evaluations, depending on clinical presentation. We hope that this algorithm can support diagnostic decision making in specialist clinical settings with access to these biomarkers and might stimulate further research towards optimal diagnostic strategies.
Collapse
Affiliation(s)
- Gaël Chételat
- Normandie Université, Université de Caen, Institut National de la Santé et de la Recherche Médicale, Unité 1237, Groupement d'Intérêt Public Cyceron, Caen, France.
| | - Javier Arbizu
- Department of Nuclear Medicine, University of Navarra, Clinica Universidad de Navarra, Pamplona, Spain
| | - Henryk Barthel
- Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig, Germany
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and NIMTlab, Geneva University, Geneva, Switzerland
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Silvia Morbelli
- Nuclear Medicine Unit, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genova, Italy
| | - Elsmarieke van de Giessen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere, San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands; Institutes of Neurology and Healthcare Engineering, University College London, London, UK
| | - David J Brooks
- Institute of Neuroscience, Newcastle University, Newcastle, UK; Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | | | - Bruno Dubois
- Centre des Maladies Cognitives et Comportementales, University Hospital of Pitié Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne-Université, Paris, France
| | - Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway, Oslo; Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Giovanni B Frisoni
- Memory Clinic, Department of Rehabilitation and Geriatrics, Geneva University and University Hospitals, Geneva, Switzerland
| | - Oskar Hansson
- Clinical Memory Research Unit, Lund University, Malmö, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Karl Herholz
- Wolfson Molecular Imaging Centre, Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Brian F Hutton
- Institute of Nuclear Medicine, University College London, London, UK
| | | | - Adriaan A Lammertsma
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Susan M Landau
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Satoshi Minoshima
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Flavio Nobili
- UO Clinica Neurologica, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genova, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Child and Mother Health, University of Genoa, Genova, Italy
| | - Agneta Nordberg
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Rik Ossenkoppele
- Department of Neurology, Alzheimer Center, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands; Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Wim J G Oyen
- Humanitas University and Humanitas Clinical and Research Center, Department of Nuclear Medicine, Milan, Italy; Rijnstate, Department of Radiology and Nuclear Medicine, Arnhem, Netherlands; Radboud UMC, Department of Radiology and Nuclear Medicine, Nijmegen, Netherlands
| | - Daniela Perani
- Vita-Salute San Raffaele University, Nuclear Medicine Unit, San Raffaele Hospital, Division of Neuroscience San Raffaele Scientific Institute, Milan, Italy
| | - Gil D Rabinovici
- Departments of Neurology, Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Philip Scheltens
- Department of Neurology, Alzheimer Center, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Victor L Villemagne
- Department of Molecular Imaging & Therapy, Austin Health, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; UK Dementia Research Institute at University College London, London, UK
| | - Alexander Drzezga
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany; German Center for Neurodegenerative Diseases, Bonn-Cologne, Germany; Institute of Neuroscience and Medicine, Molecular Organization of the Brain, Forschungszentrum Jülich, Germany
| |
Collapse
|
71
|
Norby FL, Alonso A, Rooney MR, Maheshwari A, Koene RJ, Zhang M, Soliman EZ, Loehr LR, Mosley T, Gottesman RF, Coresh J, Chen LY. Association of Ventricular Arrhythmias With Dementia: The Atherosclerosis Risk in Communities (ARIC) Study. Neurology 2020; 96:e926-e936. [PMID: 33106393 DOI: 10.1212/wnl.0000000000011122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE We performed a cross-sectional analysis to determine whether nonsustained ventricular tachycardia (NSVT) and premature ventricular contractions (PVCs) were associated with dementia in a population-based study. METHODS We included 2,517 (mean age 79 years, 26% Black) participants who wore a 2-week ambulatory continuous ECG recording device in 2016 to 2017. NSVT was defined as a wide-complex tachycardia ≥4 beats with a rate >100 bpm. We calculated NSVT and PVC burden as the number of episodes per day. Dementia was adjudicated by experts. We used logistic regression to assess the associations of NSVT and PVCs with dementia. RESULTS The mean recording time of the Zio XT Patch was 12.6 ± 2.6 days. There were 768 (31%) participants with NSVT; prevalence was similar in White and Black participants. There were 134 (6.5%) dementia cases (5% in White, 10% in Black participants). After multivariable adjustment, there was no overall association between NSVT and dementia; however, there was a significant race interaction (p < 0.001). In Black participants, NSVT was associated with a 3.67 times higher adjusted odds of dementia (95% confidence interval [CI] 1.92-7.02) compared to those without NSVT, whereas in White participants NSVT was not associated with dementia (odds ratio [95% CI] 0.64 [0.37-1.10]). In Black participants only, a higher burden of PVCs was associated with dementia. CONCLUSIONS Presence of NSVT and a higher burden of NSVT and PVCs are associated with dementia in elderly Black people. Further research to confirm this novel finding and to elucidate the underlying mechanisms is warranted.
Collapse
Affiliation(s)
- Faye L Norby
- From the Division of Epidemiology and Community Health (F.L.N.), School of Public Health, University of Minnesota, Minneapolis; Department of Epidemiology (A.A.), Rollins School of Public Health, Emory University, Atlanta, GA; Department of Epidemiology (M.R.R., J.C.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Penn State Heart and Vascular Institute (A.M.), Penn State College of Medicine, Hershey, PA; Aultman Medical Group (R.J.K.), Aultman Hospital, Canton, OH; Cardiac Arrhythmia Center (M.Z., L.Y.C.), Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis; Department of Epidemiology (E.Z.S.), Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC; Department of Medicine (L.R.L.), School of Medicine, University of North Carolina at Chapel Hill; Department of Medicine (T.M.), University of Mississippi Medical Center, Jackson; and Departments of Neurology and Epidemiology (R.F.G.), Johns Hopkins University, Baltimore, MD
| | - Alvaro Alonso
- From the Division of Epidemiology and Community Health (F.L.N.), School of Public Health, University of Minnesota, Minneapolis; Department of Epidemiology (A.A.), Rollins School of Public Health, Emory University, Atlanta, GA; Department of Epidemiology (M.R.R., J.C.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Penn State Heart and Vascular Institute (A.M.), Penn State College of Medicine, Hershey, PA; Aultman Medical Group (R.J.K.), Aultman Hospital, Canton, OH; Cardiac Arrhythmia Center (M.Z., L.Y.C.), Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis; Department of Epidemiology (E.Z.S.), Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC; Department of Medicine (L.R.L.), School of Medicine, University of North Carolina at Chapel Hill; Department of Medicine (T.M.), University of Mississippi Medical Center, Jackson; and Departments of Neurology and Epidemiology (R.F.G.), Johns Hopkins University, Baltimore, MD
| | - Mary R Rooney
- From the Division of Epidemiology and Community Health (F.L.N.), School of Public Health, University of Minnesota, Minneapolis; Department of Epidemiology (A.A.), Rollins School of Public Health, Emory University, Atlanta, GA; Department of Epidemiology (M.R.R., J.C.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Penn State Heart and Vascular Institute (A.M.), Penn State College of Medicine, Hershey, PA; Aultman Medical Group (R.J.K.), Aultman Hospital, Canton, OH; Cardiac Arrhythmia Center (M.Z., L.Y.C.), Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis; Department of Epidemiology (E.Z.S.), Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC; Department of Medicine (L.R.L.), School of Medicine, University of North Carolina at Chapel Hill; Department of Medicine (T.M.), University of Mississippi Medical Center, Jackson; and Departments of Neurology and Epidemiology (R.F.G.), Johns Hopkins University, Baltimore, MD
| | - Ankit Maheshwari
- From the Division of Epidemiology and Community Health (F.L.N.), School of Public Health, University of Minnesota, Minneapolis; Department of Epidemiology (A.A.), Rollins School of Public Health, Emory University, Atlanta, GA; Department of Epidemiology (M.R.R., J.C.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Penn State Heart and Vascular Institute (A.M.), Penn State College of Medicine, Hershey, PA; Aultman Medical Group (R.J.K.), Aultman Hospital, Canton, OH; Cardiac Arrhythmia Center (M.Z., L.Y.C.), Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis; Department of Epidemiology (E.Z.S.), Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC; Department of Medicine (L.R.L.), School of Medicine, University of North Carolina at Chapel Hill; Department of Medicine (T.M.), University of Mississippi Medical Center, Jackson; and Departments of Neurology and Epidemiology (R.F.G.), Johns Hopkins University, Baltimore, MD
| | - Ryan J Koene
- From the Division of Epidemiology and Community Health (F.L.N.), School of Public Health, University of Minnesota, Minneapolis; Department of Epidemiology (A.A.), Rollins School of Public Health, Emory University, Atlanta, GA; Department of Epidemiology (M.R.R., J.C.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Penn State Heart and Vascular Institute (A.M.), Penn State College of Medicine, Hershey, PA; Aultman Medical Group (R.J.K.), Aultman Hospital, Canton, OH; Cardiac Arrhythmia Center (M.Z., L.Y.C.), Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis; Department of Epidemiology (E.Z.S.), Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC; Department of Medicine (L.R.L.), School of Medicine, University of North Carolina at Chapel Hill; Department of Medicine (T.M.), University of Mississippi Medical Center, Jackson; and Departments of Neurology and Epidemiology (R.F.G.), Johns Hopkins University, Baltimore, MD
| | - Michael Zhang
- From the Division of Epidemiology and Community Health (F.L.N.), School of Public Health, University of Minnesota, Minneapolis; Department of Epidemiology (A.A.), Rollins School of Public Health, Emory University, Atlanta, GA; Department of Epidemiology (M.R.R., J.C.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Penn State Heart and Vascular Institute (A.M.), Penn State College of Medicine, Hershey, PA; Aultman Medical Group (R.J.K.), Aultman Hospital, Canton, OH; Cardiac Arrhythmia Center (M.Z., L.Y.C.), Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis; Department of Epidemiology (E.Z.S.), Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC; Department of Medicine (L.R.L.), School of Medicine, University of North Carolina at Chapel Hill; Department of Medicine (T.M.), University of Mississippi Medical Center, Jackson; and Departments of Neurology and Epidemiology (R.F.G.), Johns Hopkins University, Baltimore, MD
| | - Elsayed Z Soliman
- From the Division of Epidemiology and Community Health (F.L.N.), School of Public Health, University of Minnesota, Minneapolis; Department of Epidemiology (A.A.), Rollins School of Public Health, Emory University, Atlanta, GA; Department of Epidemiology (M.R.R., J.C.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Penn State Heart and Vascular Institute (A.M.), Penn State College of Medicine, Hershey, PA; Aultman Medical Group (R.J.K.), Aultman Hospital, Canton, OH; Cardiac Arrhythmia Center (M.Z., L.Y.C.), Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis; Department of Epidemiology (E.Z.S.), Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC; Department of Medicine (L.R.L.), School of Medicine, University of North Carolina at Chapel Hill; Department of Medicine (T.M.), University of Mississippi Medical Center, Jackson; and Departments of Neurology and Epidemiology (R.F.G.), Johns Hopkins University, Baltimore, MD
| | - Laura R Loehr
- From the Division of Epidemiology and Community Health (F.L.N.), School of Public Health, University of Minnesota, Minneapolis; Department of Epidemiology (A.A.), Rollins School of Public Health, Emory University, Atlanta, GA; Department of Epidemiology (M.R.R., J.C.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Penn State Heart and Vascular Institute (A.M.), Penn State College of Medicine, Hershey, PA; Aultman Medical Group (R.J.K.), Aultman Hospital, Canton, OH; Cardiac Arrhythmia Center (M.Z., L.Y.C.), Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis; Department of Epidemiology (E.Z.S.), Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC; Department of Medicine (L.R.L.), School of Medicine, University of North Carolina at Chapel Hill; Department of Medicine (T.M.), University of Mississippi Medical Center, Jackson; and Departments of Neurology and Epidemiology (R.F.G.), Johns Hopkins University, Baltimore, MD
| | - Thomas Mosley
- From the Division of Epidemiology and Community Health (F.L.N.), School of Public Health, University of Minnesota, Minneapolis; Department of Epidemiology (A.A.), Rollins School of Public Health, Emory University, Atlanta, GA; Department of Epidemiology (M.R.R., J.C.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Penn State Heart and Vascular Institute (A.M.), Penn State College of Medicine, Hershey, PA; Aultman Medical Group (R.J.K.), Aultman Hospital, Canton, OH; Cardiac Arrhythmia Center (M.Z., L.Y.C.), Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis; Department of Epidemiology (E.Z.S.), Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC; Department of Medicine (L.R.L.), School of Medicine, University of North Carolina at Chapel Hill; Department of Medicine (T.M.), University of Mississippi Medical Center, Jackson; and Departments of Neurology and Epidemiology (R.F.G.), Johns Hopkins University, Baltimore, MD
| | - Rebecca F Gottesman
- From the Division of Epidemiology and Community Health (F.L.N.), School of Public Health, University of Minnesota, Minneapolis; Department of Epidemiology (A.A.), Rollins School of Public Health, Emory University, Atlanta, GA; Department of Epidemiology (M.R.R., J.C.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Penn State Heart and Vascular Institute (A.M.), Penn State College of Medicine, Hershey, PA; Aultman Medical Group (R.J.K.), Aultman Hospital, Canton, OH; Cardiac Arrhythmia Center (M.Z., L.Y.C.), Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis; Department of Epidemiology (E.Z.S.), Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC; Department of Medicine (L.R.L.), School of Medicine, University of North Carolina at Chapel Hill; Department of Medicine (T.M.), University of Mississippi Medical Center, Jackson; and Departments of Neurology and Epidemiology (R.F.G.), Johns Hopkins University, Baltimore, MD
| | - Josef Coresh
- From the Division of Epidemiology and Community Health (F.L.N.), School of Public Health, University of Minnesota, Minneapolis; Department of Epidemiology (A.A.), Rollins School of Public Health, Emory University, Atlanta, GA; Department of Epidemiology (M.R.R., J.C.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Penn State Heart and Vascular Institute (A.M.), Penn State College of Medicine, Hershey, PA; Aultman Medical Group (R.J.K.), Aultman Hospital, Canton, OH; Cardiac Arrhythmia Center (M.Z., L.Y.C.), Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis; Department of Epidemiology (E.Z.S.), Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC; Department of Medicine (L.R.L.), School of Medicine, University of North Carolina at Chapel Hill; Department of Medicine (T.M.), University of Mississippi Medical Center, Jackson; and Departments of Neurology and Epidemiology (R.F.G.), Johns Hopkins University, Baltimore, MD
| | - Lin Y Chen
- From the Division of Epidemiology and Community Health (F.L.N.), School of Public Health, University of Minnesota, Minneapolis; Department of Epidemiology (A.A.), Rollins School of Public Health, Emory University, Atlanta, GA; Department of Epidemiology (M.R.R., J.C.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Penn State Heart and Vascular Institute (A.M.), Penn State College of Medicine, Hershey, PA; Aultman Medical Group (R.J.K.), Aultman Hospital, Canton, OH; Cardiac Arrhythmia Center (M.Z., L.Y.C.), Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis; Department of Epidemiology (E.Z.S.), Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC; Department of Medicine (L.R.L.), School of Medicine, University of North Carolina at Chapel Hill; Department of Medicine (T.M.), University of Mississippi Medical Center, Jackson; and Departments of Neurology and Epidemiology (R.F.G.), Johns Hopkins University, Baltimore, MD
| |
Collapse
|
72
|
Common Brain Structural Alterations Associated with Cardiovascular Disease Risk Factors and Alzheimer's Dementia: Future Directions and Implications. Neuropsychol Rev 2020; 30:546-557. [PMID: 33011894 DOI: 10.1007/s11065-020-09460-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/24/2020] [Indexed: 01/18/2023]
Abstract
Recent reports suggest declines in the age-specific risk of Alzheimer's dementia in higher income Western countries. At the same time, investigators believe that worldwide trends of increasing mid-life modifiable risk factors [e.g., cardiovascular disease (CVD) risk factors] coupled with the growth of the world's oldest age groups may nonetheless lead to an increase in Alzheimer's dementia. Thus, understanding the overlap in neuroanatomical profiles associated with CVD risk factors and AD may offer more relevant targets for investigating ways to reduce the growing dementia epidemic than current targets specific to isolated AD-related neuropathology. We hypothesized that a core group of common brain structural alterations exist between CVD risk factors and Alzheimer's dementia. Two co-authors conducted independent literature reviews in PubMed using search terms for CVD risk factor burden (separate searches for 'cardiovascular disease risk factors', 'hypertension', and 'Type 2 diabetes') and 'aging' or 'Alzheimer's dementia' with either 'grey matter volumes' or 'white matter'. Of studies that reported regionally localized results, we found support for our hypothesis, determining 23 regions commonly associated with both CVD risk factors and Alzheimer's dementia. Within this context, we outline future directions for research as well as larger cerebrovascular implications for these commonalities. Overall, this review supports previous as well as more recent calls for the consideration that both vascular and neurodegenerative factors contribute to the pathogenesis of dementia.
Collapse
|
73
|
Ristori E, Donnini S, Ziche M. New Insights Into Blood-Brain Barrier Maintenance: The Homeostatic Role of β-Amyloid Precursor Protein in Cerebral Vasculature. Front Physiol 2020; 11:1056. [PMID: 32973564 PMCID: PMC7481479 DOI: 10.3389/fphys.2020.01056] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
Cerebrovascular homeostasis is maintained by the blood-brain barrier (BBB), a highly selective structure that separates the peripheral blood circulation from the brain and protects the central nervous system (CNS). Dysregulation of BBB function is the precursor of several neurodegenerative diseases including Alzheimer’s disease (AD) and cerebral amyloid angiopathy (CAA), both related to β-amyloid (Aβ) accumulation and deposition. The origin of BBB dysfunction before and/or during CAA and AD onset is not known. Several studies raise the possibility that vascular dysfunction could be an early step in these diseases and could even precede significant Aβ deposition. Though accumulation of neuron-derived Aβ peptides is considered the primary influence driving AD and CAA pathogenesis, recent studies highlighted the importance of the physiological role of the β-amyloid precursor protein (APP) in endothelial cell homeostasis, suggesting a potential role of this protein in maintaining vascular stability. In this review, we will discuss the physiological function of APP and its cleavage products in the vascular endothelium. We further suggest how loss of APP homeostatic regulation in the brain vasculature could lead toward pathological outcomes in neurodegenerative disorders.
Collapse
Affiliation(s)
- Emma Ristori
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Sandra Donnini
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Marina Ziche
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
74
|
Fülöp T, Munawara U, Larbi A, Desroches M, Rodrigues S, Catanzaro M, Guidolin A, Khalil A, Bernier F, Barron AE, Hirokawa K, Beauregard PB, Dumoulin D, Bellenger JP, Witkowski JM, Frost E. Targeting Infectious Agents as a Therapeutic Strategy in Alzheimer's Disease. CNS Drugs 2020; 34:673-695. [PMID: 32458360 PMCID: PMC9020372 DOI: 10.1007/s40263-020-00737-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent dementia in the world. Its cause(s) are presently largely unknown. The most common explanation for AD, now, is the amyloid cascade hypothesis, which states that the cause of AD is senile plaque formation by the amyloid β peptide, and the formation of neurofibrillary tangles by hyperphosphorylated tau. A second, burgeoning theory by which to explain AD is based on the infection hypothesis. Much experimental and epidemiological data support the involvement of infections in the development of dementia. According to this mechanism, the infection either directly or via microbial virulence factors precedes the formation of amyloid β plaques. The amyloid β peptide, possessing antimicrobial properties, may be beneficial at an early stage of AD, but becomes detrimental with the progression of the disease, concomitantly with alterations to the innate immune system at both the peripheral and central levels. Infection results in neuroinflammation, leading to, and sustained by, systemic inflammation, causing eventual neurodegeneration, and the senescence of the immune cells. The sources of AD-involved microbes are various body microbiome communities from the gut, mouth, nose, and skin. The infection hypothesis of AD opens a vista to new therapeutic approaches, either by treating the infection itself or modulating the immune system, its senescence, or the body's metabolism, either separately, in parallel, or in a multi-step way.
Collapse
Affiliation(s)
- Tamàs Fülöp
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada.
| | - Usma Munawara
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore, Singapore
- Department of Biology, Faculty of Science, University Tunis El Manar, Tunis, Tunisia
| | - Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, Valbonne, France
- Université Côte d'Azur, Nice, France
| | - Serafim Rodrigues
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
- BCAM, The Basque Center for Applied Mathematics, Bilbao, Spain
| | - Michele Catanzaro
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Andrea Guidolin
- BCAM, The Basque Center for Applied Mathematics, Bilbao, Spain
| | - Abdelouahed Khalil
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - François Bernier
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | - Annelise E Barron
- Department of Bioengineering, Stanford School of Medicine, Stanford, CA, USA
| | - Katsuiku Hirokawa
- Department of Pathology, Institute of Health and Life Science, Tokyo and Nito-memory Nakanosogo Hospital, Tokyo Med. Dent. University, Tokyo, Japan
| | - Pascale B Beauregard
- Department of Biology, Faculty of Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - David Dumoulin
- Department of Biology, Faculty of Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Philippe Bellenger
- Department of Chemistry, Faculty of Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Eric Frost
- Department of Microbiology and Infectious diseases, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
75
|
Zhang S, Yan ML, Yang L, An XB, Zhao HM, Xia SN, Jin Z, Huang SY, Qu Y, Ai J. MicroRNA-153 impairs hippocampal synaptic vesicle trafficking via downregulation of synapsin I in rats following chronic cerebral hypoperfusion. Exp Neurol 2020; 332:113389. [PMID: 32580014 DOI: 10.1016/j.expneurol.2020.113389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/02/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023]
Abstract
Chronic cerebral hypoperfusion (CCH) promotes the development of Alzheimer's pathology. However, whether and how CCH impairs the synaptic vesicle trafficking is still unclear. In the present study, we found that the hippocampal glutamatergic vesicle trafficking was impaired as indicated by a significant shortened delayed response enhancement (DRE) phase in CA3-CA1 circuit and decreased synapsin I in CCH rats suffering from bilateral common carotid artery occlusion (2VO). Further study showed an upregulated miR-153 in the hippocampus of 2VO rats. In vitro, overexpression of miR-153 downregulated synapsin I by binding the 3'UTRs of SYN1 mRNAs, which was prevented by its antisense AMO-153 and miRNA-masking antisense oligodeoxynucleotides (SYN1-ODN). In vivo, the upregulation of miR-153 elicited similar reduced DRE phase and synapsin I deficiency as CCH. Furthermore, miR-153 knockdown rescued the downregulated synapsin I and shortened DRE phase in 2VO rats. Our results demonstrate that CCH impairs hippocampal glutamatergic vesicle trafficking by upregulating miR-153, which suppresses the expression of synapsin I at the post-transcriptional level. These results will provide important references for drug research and treatment of vascular dementia.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Mei-Ling Yan
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Lin Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Xiao-Bin An
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Hong-Mei Zhao
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Sheng-Nan Xia
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Zhuo Jin
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Si-Yu Huang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Yang Qu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Jing Ai
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China.
| |
Collapse
|
76
|
Béjot Y, Duloquin G, Crespy V, Durier J, Garnier L, Graber M, Giroud M. Influence of Preexisting Cognitive Impairment on Clinical Severity of Ischemic Stroke. Stroke 2020; 51:1667-1673. [DOI: 10.1161/strokeaha.119.028845] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
The ongoing ageing population is associated with an increasing number of patients with stroke who have preexisting cognitive impairment. This study aimed to evaluate clinical severity in patients with ischemic stroke according to prestroke cognitive status.
Methods—
Patients with ischemic stroke were prospectively identified among residents of Dijon, France using a population-based registry (2013–2017). Prestroke cognitive status (no impairment, mild cognitive impairment [MCI], or dementia) was recorded, and severity at stroke onset was measured using the National Institutes of Health Stroke Scale (NIHSS) score. Association between prestroke cognitive status and severity was evaluated using ordinal regression analysis models in which the NIHSS score was considered as a categorical variable.
Results—
Among the 1048 patients (mean age, 76.3±15.2 years; 54.0% women), a greater severity was observed in those with MCI (n=132; median NIHSS: 6; interquartile range, 2–15), and those with dementia (n=164; median NIHSS: 7; interquartile range, 3–16), than in patients without cognitive impairment (n=752; median NIHSS: 3; interquartile range, 1–9). MCI (odds ratio [OR], 1.70 [95% CI, 1.21–2.38];
P
=0.002) and dementia (OR, 2.24 [95% CI, 1.65–3.04];
P
<0.001) were both associated with a greater severity at onset. The association was still observed after adjustment for clinical variables and proximal arterial occlusion (OR, 1.52 [95% CI, 1.02–2.28];
P
=0.04 for MCI; OR, 2.16 [95% CI, 1.45–3.22];
P
<0.001 dementia). Further adjustment for prestroke handicap slightly reduced the magnitude of the association (OR, 1.49 [95% CI, 0.98–2.25];
P
=0.06 for MCI, and OR, 1.98 [95% CI, 1.26–3.12];
P
=0.02 for dementia). The greater severity in patients with prestroke cognitive impairment was not specifically driven by a more severe impairment of either motor or language function.
Conclusions—
Patients with preexisting cognitive impairment suffered more severe ischemic stroke. This result could reflect a lower brain tolerance of acute ischemia. Further studies are needed to explore the underlying mechanisms that could be targeted from therapeutic perspectives focusing on neuroprotection.
Collapse
Affiliation(s)
- Yannick Béjot
- From the Dijon Stroke Registry, EA7460, Pathophysiology and Epidemiology of Cerebro-Cardiovascular diseases (PEC2), University Hospital of Dijon, University of Burgundy, France
| | - Gauthier Duloquin
- From the Dijon Stroke Registry, EA7460, Pathophysiology and Epidemiology of Cerebro-Cardiovascular diseases (PEC2), University Hospital of Dijon, University of Burgundy, France
| | - Valentin Crespy
- From the Dijon Stroke Registry, EA7460, Pathophysiology and Epidemiology of Cerebro-Cardiovascular diseases (PEC2), University Hospital of Dijon, University of Burgundy, France
| | - Jérôme Durier
- From the Dijon Stroke Registry, EA7460, Pathophysiology and Epidemiology of Cerebro-Cardiovascular diseases (PEC2), University Hospital of Dijon, University of Burgundy, France
| | - Lucie Garnier
- From the Dijon Stroke Registry, EA7460, Pathophysiology and Epidemiology of Cerebro-Cardiovascular diseases (PEC2), University Hospital of Dijon, University of Burgundy, France
| | - Mathilde Graber
- From the Dijon Stroke Registry, EA7460, Pathophysiology and Epidemiology of Cerebro-Cardiovascular diseases (PEC2), University Hospital of Dijon, University of Burgundy, France
| | - Maurice Giroud
- From the Dijon Stroke Registry, EA7460, Pathophysiology and Epidemiology of Cerebro-Cardiovascular diseases (PEC2), University Hospital of Dijon, University of Burgundy, France
| |
Collapse
|
77
|
Auchter AM, Barrett DW, Monfils MH, Gonzalez-Lima F. Methylene Blue Preserves Cytochrome Oxidase Activity and Prevents Neurodegeneration and Memory Impairment in Rats With Chronic Cerebral Hypoperfusion. Front Cell Neurosci 2020; 14:130. [PMID: 32508596 PMCID: PMC7251060 DOI: 10.3389/fncel.2020.00130] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 04/20/2020] [Indexed: 01/01/2023] Open
Abstract
Chronic cerebral hypoperfusion in neurocognitive disorders diminishes cytochrome oxidase activity leading to neurodegenerative effects and impairment of learning and memory. Methylene blue at low doses stimulates cytochrome oxidase activity and may thus counteract the adverse effects of cerebral hypoperfusion. However, the effects of methylene blue on cytochrome oxidase activity during chronic cerebral hypoperfusion have not been described before. To test this hypothesis, rats underwent bilateral carotid artery occlusion or sham surgery, received daily 4 mg/kg methylene blue or saline injections, and learned a visual water task. Brain mapping of cytochrome oxidase activity was done by quantitative enzyme histochemistry. Permanent carotid occlusion for 1 month resulted in decreased cytochrome oxidase activity in visual cortex, prefrontal cortex, perirhinal cortex, hippocampus and amygdala, and weaker interregional correlation of cytochrome oxidase activity between these regions. Methylene blue preserved cytochrome oxidase activity in regions affected by carotid occlusion and strengthened their interregional correlations of cytochrome oxidase activity, which prevented neurodegenerative effects and facilitated task-specific learning and memory. Brain-behavior correlations revealed positive correlations between performance and brain regions in which cytochrome oxidase activity was preserved by methylene blue. These results are the first to demonstrate that methylene blue prevents neurodegeneration and memory impairment by preserving cytochrome oxidase activity and interregional correlation of cytochrome oxidase activity in brain regions susceptible to chronic hypoperfusion. This demonstration provides further support for the hypothesis that lower cerebral blood flow results in an Alzheimer's-like syndrome and that stimulating cytochrome oxidase activity with low-dose methylene blue is neuroprotective.
Collapse
Affiliation(s)
| | | | | | - F. Gonzalez-Lima
- Department of Psychology, Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
78
|
Yan ML, Zhang S, Zhao HM, Xia SN, Jin Z, Xu Y, Yang L, Qu Y, Huang SY, Duan MJ, Mao M, An XB, Mishra C, Zhang XY, Sun LH, Ai J. MicroRNA-153 impairs presynaptic plasticity by blocking vesicle release following chronic brain hypoperfusion. Cell Commun Signal 2020; 18:57. [PMID: 32252776 PMCID: PMC7137307 DOI: 10.1186/s12964-020-00551-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/11/2020] [Indexed: 12/20/2022] Open
Abstract
Background Chronic brain hypoperfusion (CBH) is closely related to Alzheimer’s disease (AD) and vascular dementia (VaD). Meanwhile, synaptic pathology plays a prominent role in the initial stage of AD and VaD. However, whether and how CBH impairs presynaptic plasticity is currently unclear. Methods In the present study, we performed a battery of techniques, including primary neuronal culture, patch clamp, stereotaxic injection of the lentiviral vectors, morris water maze (MWM), dual luciferase reporter assay, FM1–43 fluorescence dye evaluation, qRT-PCR and western blot, to investigate the regulatory effect of miR-153 on hippocampal synaptic vesicle release both in vivo and in vitro. The CBH rat model was generated by bilateral common carotid artery ligation (2VO). Results Compared to sham rats, 2VO rats presented decreased field excitatory postsynaptic potential (fEPSP) amplitude and increased paired-pulse ratios (PPRs) in the CA3-CA1 pathway, as well as significantly decreased expression of multiple vesicle fusion-related proteins, including SNAP-25, VAMP-2, syntaxin-1A and synaptotagmin-1, in the hippocampi. The levels of microRNA-153 (miR-153) were upregulated in the hippocampi of rats following 2VO surgery, and in the plasma of dementia patients. The expression of the vesicle fusion-related proteins affected by 2VO was inhibited by miR-153, elevated by miR-153 inhibition, and unchanged by binding-site mutation or miR masks. FM1–43 fluorescence images showed that miR-153 blunted vesicle exocytosis, but this effect was prevented by either 2′-O-methyl antisense oligoribonucleotides to miR-153 (AMO-153) and miR-masking of the miR-153 binding site in the 3′ untranslated region (3’UTR) of the Snap25, Vamp2, Stx1a and Syt1 genes. Overexpression of miR-153 by lentiviral vector-mediated miR-153 mimics (lenti-pre-miR-153) decreased the fEPSP amplitude and elevated the PPR in the rat hippocampus, whereas overexpression of the antisense molecule (lenti-AMO-153) reversed these changes triggered by 2VO. Furthermore, lenti-AMO-153 attenuated the cognitive decline of 2VO rats. Conclusions Overexpression of miR-153 controls CBH-induced presynaptic vesicle release impairment by posttranscriptionally regulating the expression of four vesicle release-related proteins by targeting the 3’UTRs of the Stx1a, Snap25, Vamp2 and Syt1 genes. These findings identify a novel mechanism of presynaptic plasticity impairment during CBH, which may be a new drug target for prevention or treatment of AD and VaD. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Mei-Ling Yan
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Shuai Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Hong-Mei Zhao
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Sheng-Nan Xia
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Zhuo Jin
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Yi Xu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Lin Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Yang Qu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Si-Yu Huang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Ming-Jing Duan
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Meng Mao
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Xiao-Bin An
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Chandan Mishra
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Xin-Yu Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Li-Hua Sun
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Jing Ai
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China.
| |
Collapse
|
79
|
Igartúa DE, Martinez CS, del V. Alonso S, Prieto MJ. Combined Therapy for Alzheimer's Disease: Tacrine and PAMAM Dendrimers Co-Administration Reduces the Side Effects of the Drug without Modifying its Activity. AAPS PharmSciTech 2020; 21:110. [PMID: 32215751 DOI: 10.1208/s12249-020-01652-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease has become a public health priority, so an investigation of new therapies is required. Tacrine (TAC) was licensed for treatments; however, its oral administration caused hepatotoxicity, so it is essential to reduce the side effects. PAMAM dendrimer generation 4.0 and 4.5 (DG4.0 and DG4.5) can be used as drug delivery systems and as nanodrugs per se. Our work aims to propose a combined therapy based on TAC and PAMAM dendrimer co-administration. TAC and dendrimer interactions were studied by in vitro drug release, drug stability, and FTIR. The toxicity profile of co-administration was evaluated in human red blood cells, in Neuro-2a cell culture, and in zebrafish larvae. Also, the anti-acetylcholinesterase activity was studied in cell culture. It was possible to obtain DG4.0-TAC and DG4.5-TAC suspensions, without reducing the drug solubility and stability. FTIR and in vitro release studies confirmed that interaction between TAC and DG4.5 was of the electrostatic type. No toxicity effects on human red blood cells were observed, whereas the co-administration with DG4.5 reduced cytotoxicity of TAC on the Neuro-2a cell line. Moreover, in vivo co-administration of both DG4.0-TAC and DG4.5-TAC reduced the morphological and hepatotoxic effects of TAC in zebrafish larvae. The reduction of TAC toxicity was not accompanied by a reduction in its activity since the anti-acetylcholinesterase activity remains when it is co-administrated with dendrimers. In conclusion, the co-administration of TAC with both DG4.0 and DG4.5 is a novel therapy since it was less-toxic, was more biocompatible, and has the same effectiveness than the free drug. Graphical abstract.
Collapse
|
80
|
Qian C, Yuan C, Li C, Liu H, Wang X. Multifunctional nano-enabled delivery systems in Alzheimer's disease management. Biomater Sci 2020; 8:5538-5554. [DOI: 10.1039/d0bm00756k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This review discusses the recent advances in multifunctional nano-enabled delivery systems (NDS) for Alzheimer's disease management, including multitherapeutics, multimodal imaging-guided diagnostics, and theranostics.
Collapse
Affiliation(s)
- Chengyuan Qian
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Chengyi Yuan
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Changhong Li
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Hao Liu
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Xiaohui Wang
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
- State Key Laboratory of Coordination Chemistry
| |
Collapse
|
81
|
Solis E, Hascup KN, Hascup ER. Alzheimer's Disease: The Link Between Amyloid-β and Neurovascular Dysfunction. J Alzheimers Dis 2020; 76:1179-1198. [PMID: 32597813 PMCID: PMC7483596 DOI: 10.3233/jad-200473] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
While prevailing evidence supports that the amyloid cascade hypothesis is a key component of Alzheimer's disease (AD) pathology, many recent studies indicate that the vascular system is also a major contributor to disease progression. Vascular dysfunction and reduced cerebral blood flow (CBF) occur prior to the accumulation and aggregation of amyloid-β (Aβ) plaques and hyperphosphorylated tau tangles. Although research has predominantly focused on the cellular processes involved with Aβ-mediated neurodegeneration, effects of Aβ on CBF and neurovascular coupling are becoming more evident. This review will describe AD vascular disturbances as they relate to Aβ, including chronic cerebral hypoperfusion, hypertension, altered neurovascular coupling, and deterioration of the blood-brain barrier. In addition, we will describe recent findings about the relationship between these vascular defects and Aβ accumulation with emphasis on in vivo studies utilizing rodent AD models.
Collapse
Affiliation(s)
- Ernesto Solis
- Department of Neurology, Neuroscience Institute, Center for Alzheimer’s Disease and Related Disorders, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Kevin N. Hascup
- Department of Neurology, Neuroscience Institute, Center for Alzheimer’s Disease and Related Disorders, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Erin R. Hascup
- Department of Neurology, Neuroscience Institute, Center for Alzheimer’s Disease and Related Disorders, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
82
|
Kundu S, Lukemire J, Wang Y, Guo Y. A Novel Joint Brain Network Analysis Using Longitudinal Alzheimer's Disease Data. Sci Rep 2019; 9:19589. [PMID: 31863067 PMCID: PMC6925181 DOI: 10.1038/s41598-019-55818-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022] Open
Abstract
There is well-documented evidence of brain network differences between individuals with Alzheimer's disease (AD) and healthy controls (HC). To date, imaging studies investigating brain networks in these populations have typically been cross-sectional, and the reproducibility of such findings is somewhat unclear. In a novel study, we use the longitudinal ADNI data on the whole brain to jointly compute the brain network at baseline and one-year using a state of the art approach that pools information across both time points to yield distinct visit-specific networks for the AD and HC cohorts, resulting in more accurate inferences. We perform a multiscale comparison of the AD and HC networks in terms of global network metrics as well as at the more granular level of resting state networks defined under a whole brain parcellation. Our analysis illustrates a decrease in small-worldedness in the AD group at both the time points and also identifies more local network features and hub nodes that are disrupted due to the progression of AD. We also obtain high reproducibility of the HC network across visits. On the other hand, a separate estimation of the networks at each visit using standard graphical approaches reveals fewer meaningful differences and lower reproducibility.
Collapse
Affiliation(s)
- Suprateek Kundu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Ga, 30322, USA.
| | - Joshua Lukemire
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Ga, 30322, USA
| | - Yikai Wang
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Ga, 30322, USA
| | - Ying Guo
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Ga, 30322, USA
| |
Collapse
|
83
|
Yao X, Risacher SL, Nho K, Saykin AJ, Wang Z, Shen L. Targeted genetic analysis of cerebral blood flow imaging phenotypes implicates the INPP5D gene. Neurobiol Aging 2019; 81:213-221. [PMID: 31319229 PMCID: PMC6732252 DOI: 10.1016/j.neurobiolaging.2019.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/05/2019] [Accepted: 06/08/2019] [Indexed: 12/22/2022]
Abstract
The vascular hypothesis of Alzheimer's disease (AD) has proposed the involvement of brain hypoperfusion in AD pathogenesis, where cognitive decline and dysfunction result from dwindling cerebral blood flow (CBF). Based on the vascular hypothesis of Alzheimer's disease, we focused on exploring how genetic factors influence AD pathogenesis via the cerebrovascular system. To investigate the role of CBF endophenotypes in AD pathogenesis, we performed a targeted genetic analysis of 258 subjects from the Alzheimer's Disease Neuroimaging Initiative cohort to examine associations between 4033 single-nucleotide polymorphisms of 24 AD genes and CBF measures in 4 brain regions. A novel association with CBF measure in the left angular gyrus was identified in an INPP5D single-nucleotide polymorphism (i.e., rs61068452; p = 1.48E-7; corrected p = 2.39E-3). The gene-based analysis discovered both INPP5D and CD2AP associated with the left angular gyrus CBF. Further analyses on nonoverlapping samples revealed that rs61068452-G was associated with lower CSF t-tau/Aβ1-42 ratio. Our findings suggest a protective role of rs61068452-G in an AD-relevant cerebrovascular endophenotype, which has the potential to provide novel insights for better mechanistic understanding of AD.
Collapse
Affiliation(s)
- Xiaohui Yao
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shannon L Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ze Wang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
84
|
Badji A, Sabra D, Bherer L, Cohen-Adad J, Girouard H, Gauthier CJ. Arterial stiffness and brain integrity: A review of MRI findings. Ageing Res Rev 2019; 53:100907. [PMID: 31063866 DOI: 10.1016/j.arr.2019.05.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/30/2019] [Accepted: 05/02/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Given the increasing incidence of vascular diseases and dementia, a better understanding of the cerebrovascular changes induced by arterial stiffness is important for early identification of white and gray matter abnormalities that might antedate the appearance of clinical cognitive symptoms. Here, we review the evidence from neuroimaging demonstrating the impact of arterial stiffness on the aging brain. METHOD This review presents findings from recent studies examining the association between arterial stiffness, cognitive function, cerebral hypoperfusion, and markers of neuronal fiber integrity using a variety of MRI techniques. RESULTS Overall, changes associated with arterial stiffness indicates that the corpus callosum, the internal capsule and the corona radiata may be the most vulnerable regions to microvascular damage. In addition, the microstructural integrity of these regions appears to be associated with cognitive performance. Changes in gray matter structure have also been found to be associated with arterial stiffness and are present as early as the 5th decade. Moreover, low cerebral perfusion has been associated with arterial stiffness as well as lower cognitive performance in age-sensitive tasks such as executive function. CONCLUSION Considering the established relationship between arterial stiffness, brain and cognition, this review highlights the need for future studies of brain structure and function in aging to implement measurements of arterial stiffness in parallel with quantitative imaging.
Collapse
Affiliation(s)
- Atef Badji
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montréal, QC, Canada; Neuroimaging Functional Unit (UNF), Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada; Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Dalia Sabra
- Neuroimaging Functional Unit (UNF), Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada; Department of Biomedical Science, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Louis Bherer
- Neuroimaging Functional Unit (UNF), Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada; Research Center, Montreal Heart Institute, Montréal, QC, Canada; Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montréal, QC, Canada; Neuroimaging Functional Unit (UNF), Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada; Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Hélène Girouard
- Neuroimaging Functional Unit (UNF), Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada; Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Claudine J Gauthier
- Physics Department, Concordia University, Montréal, QC, Canada; PERFORM Centre, Concordia University, Montréal, QC, Canada; Research Center, Montreal Heart Institute, Montréal, QC, Canada.
| |
Collapse
|
85
|
Edwards III GA, Gamez N, Escobedo Jr. G, Calderon O, Moreno-Gonzalez I. Modifiable Risk Factors for Alzheimer's Disease. Front Aging Neurosci 2019; 11:146. [PMID: 31293412 PMCID: PMC6601685 DOI: 10.3389/fnagi.2019.00146] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 05/31/2019] [Indexed: 01/03/2023] Open
Abstract
Since first described in the early 1900s, Alzheimer's disease (AD) has risen exponentially in prevalence and concern. Research still drives to understand the etiology and pathogenesis of this disease and what risk factors can attribute to AD. With a majority of AD cases being of sporadic origin, the increasing exponential growth of an aged population and a lack of treatment, it is imperative to discover an easy accessible preventative method for AD. Some risk factors can increase the propensity of AD such as aging, sex, and genetics. Moreover, there are also modifiable risk factors-in terms of treatable medical conditions and lifestyle choices-that play a role in developing AD. These risk factors have their own biological mechanisms that may contribute to AD etiology and pathological consequences. In this review article, we will discuss modifiable risk factors and discuss the current literature of how each of these factors interplay into AD development and progression and if strategically analyzed and treated, could aid in protection against this neurodegenerative disease.
Collapse
Affiliation(s)
- George A. Edwards III
- The Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, The University of Texas Houston Health Science Center at Houston, Houston, TX, United States
| | - Nazaret Gamez
- The Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, The University of Texas Houston Health Science Center at Houston, Houston, TX, United States
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Department of Cell Biology, Facultad Ciencias, Universidad de Malaga, Malaga, Spain
| | - Gabriel Escobedo Jr.
- The Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, The University of Texas Houston Health Science Center at Houston, Houston, TX, United States
| | - Olivia Calderon
- The Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, The University of Texas Houston Health Science Center at Houston, Houston, TX, United States
| | - Ines Moreno-Gonzalez
- The Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, The University of Texas Houston Health Science Center at Houston, Houston, TX, United States
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Department of Cell Biology, Facultad Ciencias, Universidad de Malaga, Malaga, Spain
| |
Collapse
|
86
|
de Jong DLK, de Heus RAA, Rijpma A, Donders R, Olde Rikkert MGM, Günther M, Lawlor BA, van Osch MJP, Claassen JAHR. Effects of Nilvadipine on Cerebral Blood Flow in Patients With Alzheimer Disease. Hypertension 2019; 74:413-420. [PMID: 31203725 DOI: 10.1161/hypertensionaha.119.12892] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cerebrovascular changes, including reduced cerebral blood flow (CBF), occur early in the development of Alzheimer disease and may accelerate disease progression. This randomized, double-blind, placebo-controlled study investigated how 6 months of treatment with the calcium antagonist nilvadipine would affect CBF in patients with mild-to-moderate Alzheimer disease. CBF was measured with magnetic resonance arterial spin labeling in whole-brain gray matter and in a priori defined regions of interest including the hippocampus. Fifty-eight patients were randomly assigned (29 in each group), of whom 22 in both groups had no magnetic resonance exclusion criteria and were medication compliant over 6 months. Mean age was 72.8±6.2 years, mean mini-mental state examination was 20.4±3.4. Nilvadipine treatment lowered systolic blood pressure (Δ=-11.5 [95% CI, -19.7 to -3.2] mm Hg; P<0.01), while whole-brain gray-matter CBF remained stable (Δ=5.4 [95% CI, -6.4 to 17.2] mL/100 g per minute; P=0.36). CBF in the hippocampus increased (left: Δ=24.4 [95% CI, 4.3-44.5] mL/100 g per minute; P=0.02; right: Δ=20.1 [95% CI, -0.6 to 40.8] mL/100 g per minute; P=0.06). There was no significant change in CBF in the posterior cingulate cortex (Δ=5.2 [95% CI, -16.5 to 27.0] mL/100 g per minute; P=0.63) or other regions of interest. In conclusion, nilvadipine reduced blood pressure and increased CBF in the hippocampus, whereas other regions showed stable or small nonsignificant increases in CBF. These findings not only indicate preserved cerebral autoregulation in Alzheimer disease but also point toward beneficial cerebrovascular effects of antihypertensive treatment. Clinical Trial Registration- URL: http://www.clinicaltrials.gov . Unique identifier: NCT02017340.
Collapse
Affiliation(s)
- Daan L K de Jong
- From the Department of Geriatric Medicine, Donders Institute for Brain Cognition and Behaviour (D.L.K.d.J., R.A.A.d.H., A.R., M.G.M.O.R., J.A.H.R.C.), Radboud University Medical Center, Nijmegen, the Netherlands.,Radboudumc Alzheimer Center, Nijmegen, the Netherlands (D.L.K.d.J., R.A.A.d.H., A.R., M.G.M.O.R., J.A.H.R.C.)
| | - Rianne A A de Heus
- From the Department of Geriatric Medicine, Donders Institute for Brain Cognition and Behaviour (D.L.K.d.J., R.A.A.d.H., A.R., M.G.M.O.R., J.A.H.R.C.), Radboud University Medical Center, Nijmegen, the Netherlands.,Radboudumc Alzheimer Center, Nijmegen, the Netherlands (D.L.K.d.J., R.A.A.d.H., A.R., M.G.M.O.R., J.A.H.R.C.)
| | - Anne Rijpma
- From the Department of Geriatric Medicine, Donders Institute for Brain Cognition and Behaviour (D.L.K.d.J., R.A.A.d.H., A.R., M.G.M.O.R., J.A.H.R.C.), Radboud University Medical Center, Nijmegen, the Netherlands.,Radboudumc Alzheimer Center, Nijmegen, the Netherlands (D.L.K.d.J., R.A.A.d.H., A.R., M.G.M.O.R., J.A.H.R.C.)
| | - Rogier Donders
- Department of Health Evidence (R.D.), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marcel G M Olde Rikkert
- From the Department of Geriatric Medicine, Donders Institute for Brain Cognition and Behaviour (D.L.K.d.J., R.A.A.d.H., A.R., M.G.M.O.R., J.A.H.R.C.), Radboud University Medical Center, Nijmegen, the Netherlands.,Radboudumc Alzheimer Center, Nijmegen, the Netherlands (D.L.K.d.J., R.A.A.d.H., A.R., M.G.M.O.R., J.A.H.R.C.)
| | - Matthias Günther
- Frauenhofer Institute for Medical Imaging Computing MEVIS, Bremen, Germany (M.G.)
| | - Brian A Lawlor
- Trinity College Institute of Neuroscience, Dublin, Ireland (B.A.L.)
| | - Matthias J P van Osch
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, the Netherlands (M.J.P.v.O.)
| | - Jurgen A H R Claassen
- From the Department of Geriatric Medicine, Donders Institute for Brain Cognition and Behaviour (D.L.K.d.J., R.A.A.d.H., A.R., M.G.M.O.R., J.A.H.R.C.), Radboud University Medical Center, Nijmegen, the Netherlands.,Radboudumc Alzheimer Center, Nijmegen, the Netherlands (D.L.K.d.J., R.A.A.d.H., A.R., M.G.M.O.R., J.A.H.R.C.)
| |
Collapse
|
87
|
Govindpani K, McNamara LG, Smith NR, Vinnakota C, Waldvogel HJ, Faull RL, Kwakowsky A. Vascular Dysfunction in Alzheimer's Disease: A Prelude to the Pathological Process or a Consequence of It? J Clin Med 2019; 8:E651. [PMID: 31083442 PMCID: PMC6571853 DOI: 10.3390/jcm8050651] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia. Despite decades of research following several theoretical and clinical lines, all existing treatments for the disorder are purely symptomatic. AD research has traditionally been focused on neuronal and glial dysfunction. Although there is a wealth of evidence pointing to a significant vascular component in the disease, this angle has been relatively poorly explored. In this review, we consider the various aspects of vascular dysfunction in AD, which has a significant impact on brain metabolism and homeostasis and the clearance of β-amyloid and other toxic metabolites. This may potentially precede the onset of the hallmark pathophysiological and cognitive symptoms of the disease. Pathological changes in vessel haemodynamics, angiogenesis, vascular cell function, vascular coverage, blood-brain barrier permeability and immune cell migration may be related to amyloid toxicity, oxidative stress and apolipoprotein E (APOE) genotype. These vascular deficits may in turn contribute to parenchymal amyloid deposition, neurotoxicity, glial activation and metabolic dysfunction in multiple cell types. A vicious feedback cycle ensues, with progressively worsening neuronal and vascular pathology through the course of the disease. Thus, a better appreciation for the importance of vascular dysfunction in AD may open new avenues for research and therapy.
Collapse
Affiliation(s)
- Karan Govindpani
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Laura G McNamara
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Nicholas R Smith
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Chitra Vinnakota
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Richard Lm Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
88
|
Harch PG, Fogarty EF. Hyperbaric oxygen therapy for Alzheimer's dementia with positron emission tomography imaging: a case report. Med Gas Res 2019; 8:181-184. [PMID: 30713673 PMCID: PMC6352566 DOI: 10.4103/2045-9912.248271] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/22/2018] [Indexed: 12/25/2022] Open
Abstract
A 58-year-old female was diagnosed with Alzheimer's dementia (AD) which was rapidly progressive in the 8 months prior to initiation of hyperbaric oxygen therapy (HBOT). 18Fluorodeoxyglucose (18FDG) positron emission tomography (PET) brain imaging demonstrated global and typical metabolic deficits in AD (posterior temporal-parietal watershed and cingulate areas). An 8-week course of HBOT reversed the patient's symptomatic decline. Repeat PET imaging demonstrated a corresponding 6.5-38% regional and global increase in brain metabolism, including increased metabolism in the typical AD diagnostic areas of the brain. Continued HBOT in conjunction with standard pharmacotherapy maintained the patient's symptomatic level of function over an ensuing 22 months. This is the first reported case of simultaneous HBOT-induced symptomatic and 18FDG PET documented improvement of brain metabolism in AD and suggests an effect on global pathology in AD.
Collapse
Affiliation(s)
- Paul G Harch
- Department of Medicine, Section of Emergency and Hyperbaric Medicine, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Edward F Fogarty
- Department of Radiology, University of North Dakota School of Medicine and Health Sciences, Bismarck, ND, USA
| |
Collapse
|
89
|
Mendelevich EG. Alzheimer's disease: some pharmacological and non-pharmacological approaches to correcting neuropsychiatric disorders. NEUROLOGY, NEUROPSYCHIATRY, PSYCHOSOMATICS 2018. [DOI: 10.14412/2074-2711-2018-3-129-134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Today, there is no reliable pharmacological correction of dementia, despite its high prevalence worldwide. The clinical presentation of Alzheimer's disease at one or another stage is accompanied by neuropsychiatric disorders (NPDs) in addition to cognitive defect. The intensity and range of NPDs are different. The possibilities of drug therapy for NPDs are demonstrated. The role of akatinol memantine in correcting a number of psychological and behavioral disorders is highlighted. Biological, psychological, social, and environmental factors are identified among those that contribute to or provoke the development of NPDs. Knowledge of the triggers of mental disorders makes it possible to prevent and thereby reduce or eliminate NPDs. Special emphasis is laid on the patient-caregiver relationship. In recent years, non-pharmacological interventions have been increasingly used as priority-line therapy for NPDs. There are data on main methods for non-pharmacological correction and on the efficiency of their application.
Collapse
Affiliation(s)
- E. G. Mendelevich
- Kazan State Medical University, Kazan, Republic of Tatarstan, Russia 49, Butlerov St., Kazan, Republic of Tatarstan
| |
Collapse
|
90
|
Questions concerning the role of amyloid-β in the definition, aetiology and diagnosis of Alzheimer's disease. Acta Neuropathol 2018; 136:663-689. [PMID: 30349969 PMCID: PMC6208728 DOI: 10.1007/s00401-018-1918-8] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/28/2018] [Accepted: 09/30/2018] [Indexed: 12/29/2022]
Abstract
The dominant hypothesis of Alzheimer’s disease (AD) aetiology, the neuropathological guidelines for diagnosing AD and the majority of high-profile therapeutic efforts, in both research and in clinical practice, have been built around one possible causal factor, amyloid-β (Aβ). However, the causal link between Aβ and AD remains unproven. Here, in the context of a detailed assessment of historical and contemporary studies, we raise critical questions regarding the role of Aβ in the definition, diagnosis and aetiology of AD. We illustrate that a holistic view of the available data does not support an unequivocal conclusion that Aβ has a central or unique role in AD. Instead, the data suggest alternative views of AD aetiology are potentially valid, at this time. We propose that an unbiased way forward for the field, beyond the current Aβ-centric approach, without excluding a role for Aβ, is required to come to an accurate understanding of AD dementia and, ultimately, an effective treatment.
Collapse
|
91
|
Impaired Cerebral Vasomotor Reactivity in Alzheimer's Disease. Int J Alzheimers Dis 2018; 2018:9328293. [PMID: 30271632 PMCID: PMC6151226 DOI: 10.1155/2018/9328293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/30/2018] [Accepted: 07/26/2018] [Indexed: 12/30/2022] Open
Abstract
Background Recent studies have shown that cerebral vascularity may be impaired in Alzheimer's disease. Cerebral vasomotor reactivity could be an important biomarker for this pathology. Aims The aim of this study was to investigate the alterations in cerebral vascular motor reactivity in Alzheimer's disease subjects and to associate these changes with their cognitive scores. Methods We recruited subjects with a diagnosis of Alzheimer's disease and healthy controls. Demographic, clinical, imaging, and cognitive test were obtained. Then all participants performed a cerebral vascular motor reactivity test with 7% CO2 and cerebral blood flow velocities (CBFV) were recorded with transcranial doppler ultrasound before and after the test. Results We recruited 45 subjects, 26 (21 female) Alzheimer's disease participants and 19 (15 female) healthy controls. There were no differences in baseline cerebral blood flow velocities between the groups. After the cerebral vasomotor reactivity test, absolute mean difference in mean CBFV (ΔCBFV-m) was 8.70±4.14 versus 4.81±6.96 (p<0.01), respectively. Calculated percentage of change (%CVMR) was lower in the AD group 7.45±18.25 versus 23.29±17.48, and there was a positive but weak correlation with mini-mental scores (ρ=0.337, p=0.023). Conclusions In this study, Alzheimer's disease subjects showed significant changes in all absolute cerebral blood flow velocities after the cerebral vasomotor reactivity test with CO2, but only diastolic phase responses were statistically significant. There was a positive but weak correlation between cerebral vasomotor reactivity and cognitive scores. Further studies are needed to investigate these effects in larger Latin-American samples.
Collapse
|