51
|
Tavakol DN, Tratwal J, Bonini F, Genta M, Campos V, Burch P, Hoehnel S, Béduer A, Alessandrini M, Naveiras O, Braschler T. Injectable, scalable 3D tissue-engineered model of marrow hematopoiesis. Biomaterials 2019; 232:119665. [PMID: 31881380 DOI: 10.1016/j.biomaterials.2019.119665] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/02/2019] [Indexed: 01/13/2023]
Abstract
Modeling the interaction between the supportive stroma and the hematopoietic stem and progenitor cells (HSPC) is of high interest in the regeneration of the bone marrow niche in blood disorders. In this work, we present an injectable co-culture system to study this interaction in a coherent in vitro culture and in vivo transplantation model. We assemble a 3D hematopoietic niche in vitro by co-culture of supportive OP9 mesenchymal cells and HSPCs in porous, chemically defined collagen-coated carboxymethylcellulose microscaffolds (CCMs). Flow cytometry and hematopoietic colony forming assays demonstrate the stromal supportive capacity for in vitro hematopoiesis in the absence of exogenous cytokines. After in vitro culture, we recover a paste-like living injectable niche biomaterial from CCM co-cultures by controlled, partial dehydration. Cell viability and the association between stroma and HSPCs are maintained in this process. After subcutaneous injection of this living artificial niche in vivo, we find maintenance of stromal and hematopoietic populations over 12 weeks in immunodeficient mice. Indeed, vascularization is enhanced in the presence of HSPCs. Our approach provides a minimalistic, scalable, biomimetic in vitro model of hematopoiesis in a microcarrier format that preserves the HSPC progenitor function, while being injectable in vivo without disrupting the cell-cell interactions established in vitro.
Collapse
Affiliation(s)
- Daniel Naveed Tavakol
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research & Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Josefine Tratwal
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research & Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Fabien Bonini
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Martina Genta
- Laboratory of Microsystems Engineering 4, EPFL, Lausanne, Switzerland
| | - Vasco Campos
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research & Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Patrick Burch
- Volumina-Medical SA, Route de la Corniche 5, CH-1066, Epalinges, Switzerland
| | - Sylke Hoehnel
- Sun Bioscience, EPFL Innovation Park, Lausanne, Switzerland
| | - Amélie Béduer
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Volumina-Medical SA, Route de la Corniche 5, CH-1066, Epalinges, Switzerland
| | - Marco Alessandrini
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Olaia Naveiras
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research & Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Hematology Service, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland; Hematology Service, Department of Laboratory Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Thomas Braschler
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
52
|
The impact of parathyroid hormone treated mesenchymal stem cells on ex-vivo expansion of cord blood hematopoietic stem cells. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
53
|
Hira VVV, Breznik B, Vittori M, Loncq de Jong A, Mlakar J, Oostra RJ, Khurshed M, Molenaar RJ, Lah T, Van Noorden CJF. Similarities Between Stem Cell Niches in Glioblastoma and Bone Marrow: Rays of Hope for Novel Treatment Strategies. J Histochem Cytochem 2019; 68:33-57. [PMID: 31566074 DOI: 10.1369/0022155419878416] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma is the most aggressive primary brain tumor. Slowly dividing and therapy-resistant glioblastoma stem cells (GSCs) reside in protective peri-arteriolar niches and are held responsible for glioblastoma recurrence. Recently, we showed similarities between GSC niches and hematopoietic stem cell (HSC) niches in bone marrow. Acute myeloid leukemia (AML) cells hijack HSC niches and are transformed into therapy-resistant leukemic stem cells (LSCs). Current clinical trials are focussed on removal of LSCs out of HSC niches to differentiate and to become sensitized to chemotherapy. In the present study, we elaborated further on these similarities by immunohistochemical analyses of 17 biomarkers in paraffin sections of human glioblastoma and human bone marrow. We found all 17 biomarkers to be expressed both in hypoxic peri-arteriolar HSC niches in bone marrow and hypoxic peri-arteriolar GSC niches in glioblastoma. Our findings implicate that GSC niches are being formed in glioblastoma as a copy of HSC niches in bone marrow. These similarities between HSC niches and GSC niches provide a theoretic basis for the development of novel strategies to force GSCs out of their niches, in a similar manner as in AML, to induce GSC differentiation and proliferation to render them more sensitive to anti-glioblastoma therapies.
Collapse
Affiliation(s)
- Vashendriya V V Hira
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia.,Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Miloš Vittori
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Annique Loncq de Jong
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
| | - Jernej Mlakar
- Institute of Pathology, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Roelof-Jan Oostra
- Department of Medical Biology, Section Clinical Anatomy and Embryology, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
| | - Mohammed Khurshed
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands.,Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
| | - Remco J Molenaar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia.,Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands.,Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
| | - Tamara Lah
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Cornelis J F Van Noorden
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia.,Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
54
|
Constructing Three-Dimensional Microenvironments Using Engineered Biomaterials for Hematopoietic Stem Cell Expansion. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:312-329. [DOI: 10.1089/ten.teb.2018.0286] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
55
|
Pan Y, Zhao A, Zhong Z, Pan X, Cai S. Ganoderma spore lipid protects mouse bone marrow mesenchymal stem cells and hematopoiesis from the cytotoxicity of the chemotherapeutic agent. Biotechnol Prog 2019; 35:e2869. [PMID: 31207156 DOI: 10.1002/btpr.2869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/02/2019] [Accepted: 06/04/2019] [Indexed: 12/25/2022]
Abstract
Cancer chemotherapeutic agents are frequently toxic to bone marrow and impair bone marrow functions. It is unclear whether ganoderma spore lipid (GSL) can protect bone marrow cells from the cytotoxicity of chemotherapy. To investigate the protective effects of GSL on bone marrow mesenchymal stem cells (MSCs) and hematopoiesis, we examined the effects of GSL on MSCs in vitro and hematopoiesis in vivo after treatment with the chemotherapeutic agent cyclophosphamide. MSCs and peripheral blood cells were isolated and counted from the bone marrow of normal mice were pre-treated with GSL before CTX treatment or co-treated with GSL and CTX, followed by examining the changes in phenotype, morphology, proliferation, apoptosis, and differentiation potentials. The results showed that GSL could reduce the CTX-induced changes in the phenotype of MSCs and maintain the elongated fibroblast-like morphology. MTT and annexin V/propidium iodide (PI) analyses found that GSL pre-treatment and co-treatment increased the proliferation and decreased the apoptosis in CTX-treated MSCs. Furthermore, GSL improved the osteogenic and adipogenic differentiation potentials of CTX-treated MSCs. In vivo, GSL treatment increased the number of peripheral blood cells including white blood cells (WBC) and platelets (PLT) in the CTX-treated mice and enhanced the in vitro formation of hematopoietic lineage colonies (erythrocyte colony forming unit, CFU-E; erythroid burst-forming units, BFU-E; and granulocyte macrophage colony-forming units, CFU-GM) from bone marrow cells in these mice. These findings suggest GSL could protect MSCs and hematopoiesis from the cytotoxicity of CTX and might become an effective adjuvant to attenuate side effects of chemotherapy during cancer treatment.
Collapse
Affiliation(s)
- Yu Pan
- Department of Trauma and Orthopedics, The 2nd Affiliated Hospital of Shenzhen University, Shenzhen Baoan Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| | - Andong Zhao
- Department of Trauma and Orthopedics, The 2nd Affiliated Hospital of Shenzhen University, Shenzhen Baoan Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| | - Zhiqiang Zhong
- Department of Oncology, The 1st Affiliate Hospital of Dalian Medical University, Dalian, China
| | - Xiaohua Pan
- Department of Trauma and Orthopedics, The 2nd Affiliated Hospital of Shenzhen University, Shenzhen Baoan Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| | - Sa Cai
- Department of Trauma and Orthopedics, The 2nd Affiliated Hospital of Shenzhen University, Shenzhen Baoan Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
56
|
Nies C, Rubner T, Lorig H, Colditz V, Seelmann H, Müller A, Gottwald E. A Microcavity Array-Based 4D Cell Culture Platform. Bioengineering (Basel) 2019; 6:E50. [PMID: 31159244 PMCID: PMC6631836 DOI: 10.3390/bioengineering6020050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/14/2019] [Accepted: 05/27/2019] [Indexed: 12/25/2022] Open
Abstract
(1) Background: We describe a 4D cell culture platform with which we tried to detect and to characterize migration dynamics of single hematopoietic stem cells in polymer film microcavity arrays integrated into a microtiter plate. (2) Methods: The system was set up with CD34-expressing KG-1a cells as a surrogate for hematopoietic stem cells. We then evaluated the system as an artificial hematopoietic stem cell niche model comprised of a co-culture of human hematopoietic stem cells from cord blood (cord blood CD34+ cells, hHSCs) and human mesenchymal stromal cells (hMSCs) from bone marrow over a period of 21 days. We used a software-based cell detection method to count single hematopoietic stem cells (HSCs) in microcavities. (3) Results: It was possible to detect single HSCs and their migration behavior within single microcavities. The HSCs displayed a pronounced migration behavior with one population of CD34-expressing cells located at the bottom of the microcavities and one population located in the middle of the microcavities at day 14. However, at day 21 the two populations seemed to unite again so that no clear distinction between the two was possible anymore. (4) Conclusions: Single cell migration detection was possible but microscopy and flow cytometry delivered non-uniform data sets. Further optimization is currently being developed.
Collapse
Affiliation(s)
- Cordula Nies
- Karlsruhe Institute of Technology, Institute of Functional Interfaces, Hermann-von-Helmholtz-P1atz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Tobias Rubner
- Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Hanna Lorig
- Karlsruhe Institute of Technology, Institute of Functional Interfaces, Hermann-von-Helmholtz-P1atz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Vera Colditz
- Bayer AG, Dept. Engineering and Technology, Kaiser-Wilhelm-Allee 3, 51373 Leverkusen, Germany.
| | - Helen Seelmann
- Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany.
| | - Andreas Müller
- Städtisches Klinikum Karlsruhe, Frauenklinik, Moltkestr. 90, 76133 Karlsruhe, Germany.
| | - Eric Gottwald
- Karlsruhe Institute of Technology, Institute of Functional Interfaces, Hermann-von-Helmholtz-P1atz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
57
|
Vaidya A, Singh S, Limaye L, Kale V. Chimeric feeders of mesenchymal stromal cells and stromal cells modified with constitutively active AKT expand hematopoietic stem cells. Regen Med 2019; 14:535-553. [PMID: 31115264 DOI: 10.2217/rme-2018-0157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: To examine whether AKT-modified stromal cells expand human CD34+ hematopoietic stem cells (HSCs). Methods: Coculture, in vitro functional assays, immuno-fluorescence microscopy, flow cytometry. Results: M2-10B4 stromal cells (M2) modified with AKT1 (M2-AKT) expanded primitive CD34+38- HSCs, but affected their functionality. A chimeric feeder layer comprising naive human bone marrow-derived mesenchymal stromal cells and M2-AKT not only overcame the negative effects of M2-AKT, but, unexpectedly, also gave a synergistic effect on the growth and functionality of the HSCs. Conditioned medium of bone marrow stromal cells worked as effectively, but cell-cell contact between HSCs and M2-AKT cells was necessary for the synergistic effect of M2-AKT and bone marrow-derived mesenchymal stromal cells or their CM. Conclusion: Chimeric feeders expand HSCs.
Collapse
Affiliation(s)
- Anuradha Vaidya
- Stem Cell Lab, National Centre for Cell Science, Pune 411007, India.,Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune 412115, India.,Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune 412115, India
| | - Shweta Singh
- Stem Cell Lab, National Centre for Cell Science, Pune 411007, India
| | - Lalita Limaye
- Stem Cell Lab, National Centre for Cell Science, Pune 411007, India
| | - Vaijayanti Kale
- Stem Cell Lab, National Centre for Cell Science, Pune 411007, India.,Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune 412115, India
| |
Collapse
|
58
|
Sharma M, Ross C, Srivastava S. Ally to adversary: mesenchymal stem cells and their transformation in leukaemia. Cancer Cell Int 2019; 19:139. [PMID: 31139016 PMCID: PMC6530176 DOI: 10.1186/s12935-019-0855-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/11/2019] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSC) are the key regulators of hematopoiesis. Owing to their dynamic nature; MSC differentiate into various lineages that further constitute the niche which are required for maintenance of the hematopoietic stem cells (HSC). A plethora of growth factors and cytokines secreted by MSC are essential for regulating the homeostasis within the niche in terms of cycling and quiescence of HSC. Additionally, there is a strong evidence suggesting the role of MSC in transformation of the niche to favour survival of leukemic cells. Regulation of HSC by MSC via BMP, Wnt, Notch and Sonic Hedgehog signalling has been well elaborated, however the modulation of MSC by HSC/LSC is yet unresolved. The cross talk between the HSC and MSC via paracrine or autocrine mechanisms is essential for the transformation. There are some reports implicating cell adhesion molecules, growth factors and cytokines; in modulation of MSC function and differentiation. The role of exosome mediated modulation has also been reported in the context of MSC transformation however, much needs to be done to understand this phenomenon in the present context. Similarly, the role of circulating nucleic acids, a well-studied molecular phenomenon in other tumours, requires attention in their potential role in crosstalk between MSC and HSC. This review underlines the current understanding of the physiological and pathophysiological roles of MSC and its transformation in diseased state, laying stress on developing further understanding of MSC regulation for development of the latter as therapeutic targets.
Collapse
Affiliation(s)
- Mugdha Sharma
- 1Department of Medicine, St. John's Medical College Hospital, Bangalore, India
| | - Cecil Ross
- 1Department of Medicine, St. John's Medical College Hospital, Bangalore, India
| | - Sweta Srivastava
- 2Department of Transfusion Medicine and Immunohematology, St. John's Medical College Hospital, Bangalore, India
| |
Collapse
|
59
|
Braham MVJ, Li Yim ASP, Garcia Mateos J, Minnema MC, Dhert WJA, Öner FC, Robin C, Alblas J. A Human Hematopoietic Niche Model Supporting Hematopoietic Stem and Progenitor Cells In Vitro. Adv Healthc Mater 2019; 8:e1801444. [PMID: 30941927 DOI: 10.1002/adhm.201801444] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/05/2019] [Indexed: 12/23/2022]
Abstract
Niches in the bone marrow regulate hematopoietic stem and progenitor cell (HSPC) fate and behavior through cell-cell interactions and soluble factor secretion. The niche-HSPC crosstalk is a very complex process not completely elucidated yet. To aid further investigation of this crosstalk, a functional in vitro 3D model that closely represents the main supportive compartments of the bone marrow is developed. Different combinations of human stromal cells and hydrogels are tested for their potential to maintain CD34+ HSPCs. Cell viability, clonogenic hematopoietic potential, and surface marker expression are assessed over time. Optimal HSPC support is obtained in presence of adipogenic and osteogenic cells, together with progenitor derived endothelial cells. When cultured in a bioactive hydrogel, the supportive cells self-assemble into a hypoxic stromal network, stimulating CD34+ CD38+ cell formation, while maintaining the pool of CD34+ 38- HSPCs. HSPC clusters colocalize with the stromal networks, in close proximity to sinusoidal clusters of CD31+ endothelial cells. Importantly, the primary in vitro niche model supports HSPCs with no cytokine addition. Overall, the engineered primary 3D bone marrow environment provides an easy and reliable model to further investigate interactions between HSPCs and their endosteal and perivascular niches, in the context of normal hematopoiesis or blood-related diseases.
Collapse
Affiliation(s)
- Maaike V. J. Braham
- Department of OrthopaedicsUniversity Medical Center Utrecht Heidelberglaan 100 3584 CX Utrecht The Netherlands
- Regenerative Medicine CenterUniversity Medical Center Utrecht Uppsalalaan 8 3584 CT Utrecht The Netherlands
| | - Amélie S. P. Li Yim
- Department of OrthopaedicsUniversity Medical Center Utrecht Heidelberglaan 100 3584 CX Utrecht The Netherlands
- Regenerative Medicine CenterUniversity Medical Center Utrecht Uppsalalaan 8 3584 CT Utrecht The Netherlands
| | - Jara Garcia Mateos
- Department of OrthopaedicsUniversity Medical Center Utrecht Heidelberglaan 100 3584 CX Utrecht The Netherlands
- Regenerative Medicine CenterUniversity Medical Center Utrecht Uppsalalaan 8 3584 CT Utrecht The Netherlands
| | - Monique C. Minnema
- Department of HematologyUniversity Medical Center Utrecht Cancer Center Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Wouter J. A. Dhert
- Faculty of Veterinary MedicineUtrecht University Yalelaan 7 3584 CL Utrecht The Netherlands
| | - F. Cumhur Öner
- Department of OrthopaedicsUniversity Medical Center Utrecht Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Catherine Robin
- Regenerative Medicine CenterUniversity Medical Center Utrecht Uppsalalaan 8 3584 CT Utrecht The Netherlands
- Hubrecht Institute‐KNAWUniversity Medical Center Utrecht Uppsalalaan 8 3584 CT Utrecht The Netherlands
| | - Jacqueline Alblas
- Department of OrthopaedicsUniversity Medical Center Utrecht Heidelberglaan 100 3584 CX Utrecht The Netherlands
- Regenerative Medicine CenterUniversity Medical Center Utrecht Uppsalalaan 8 3584 CT Utrecht The Netherlands
| |
Collapse
|
60
|
Li D, Chiu G, Lipe B, Hopkins RA, Lillis J, Ashton JM, Paul S, Aljitawi OS. Decellularized Wharton jelly matrix: a biomimetic scaffold for ex vivo hematopoietic stem cell culture. Blood Adv 2019; 3:1011-1026. [PMID: 30940636 PMCID: PMC6457237 DOI: 10.1182/bloodadvances.2018019315] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 02/10/2019] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem progenitor cells (HSPCs) reside in the bone marrow (BM) hematopoietic "niche," a special 3-dimensional (3D) microenvironment that regulates HSPC self-renewal and multipotency. In this study, we evaluated a novel 3D in vitro culture system that uses components of the BM hematopoietic niche to expand umbilical cord blood (UCB) CD34+ cells. We developed this model using decellularized Wharton jelly matrix (DWJM) as an extracellular matrix (ECM) scaffold and human BM mesenchymal stromal cells (MSCs) as supporting niche cells. To assess the efficacy of this model in expanding CD34+ cells, we analyzed UCB CD34+ cells, following culture in DWJM, for proliferation, viability, self-renewal, multilineage differentiation, and transmigration capability. We found that DWJM significantly expanded UCB HSPC subset. It promoted UCB CD34+ cell quiescence, while maintaining their viability, differentiation potential with megakaryocytic differentiation bias, and clonogenic capacity. DWJM induced an increase in the frequency of c-kit+ cells, a population with enhanced self-renewal ability, and in CXCR4 expression in CD34+ cells, which enhanced their transmigration capability. The presence of BM MSCs in DWJM, however, impaired UCB CD34+ cell transmigration and suppressed CXCR4 expression. Transcriptome analysis indicated that DWJM upregulates a set of genes that are specifically involved in megakaryocytic differentiation, cell mobility, and BM homing. Collectively, our results indicate that the DWJM-based 3D culture system is a novel in vitro model that supports the proliferation of UCB CD34+ cells with enhanced transmigration potential, while maintaining their differentiation potential. Our findings shed light on the interplay between DWJM and BM MSCs in supporting the ex vivo culture of human UCB CD34+ cells for use in clinical transplantation.
Collapse
Affiliation(s)
- Dandan Li
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Grace Chiu
- Hematology/Oncology and Bone Marrow Transplant Program, Department of Medicine, University of Rochester Medical Center, Rochester, NY
| | - Brea Lipe
- Hematology/Oncology and Bone Marrow Transplant Program, Department of Medicine, University of Rochester Medical Center, Rochester, NY
| | - Richard A Hopkins
- Cardiac Surgery Research Laboratories, Children's Mercy Hospital and Clinics, Kansas City, MO; and
| | - Jacquelyn Lillis
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY
| | - John M Ashton
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY
| | - Soumen Paul
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Omar S Aljitawi
- Hematology/Oncology and Bone Marrow Transplant Program, Department of Medicine, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
61
|
Lo Iacono M, Russo E, Anzalone R, Baiamonte E, Alberti G, Gerbino A, Maggio A, La Rocca G, Acuto S. Wharton's Jelly Mesenchymal Stromal Cells Support the Expansion of Cord Blood-derived CD34 + Cells Mimicking a Hematopoietic Niche in a Direct Cell-cell Contact Culture System. Cell Transplant 2019; 27:117-129. [PMID: 29562783 PMCID: PMC6434478 DOI: 10.1177/0963689717737089] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Wharton’s jelly mesenchymal stromal cells (WJ-MSCs) have been recently exploited as a feeder layer in coculture systems to expand umbilical cord blood–hematopoietic stem/progenitor cells (UCB-HSPCs). Here, we investigated the role of WJ-MSCs in supporting ex vivo UCB-HSPC expansion either when cultured in direct contact (DC) with WJ-MSCs or separated by a transwell system or in the presence of WJ-MSC–conditioned medium. We found, in short-term culture, a greater degree of expansion of UCB-CD34+ cells in a DC system (15.7 ± 4.1-fold increase) with respect to the other conditions. Moreover, in DC, we evidenced two different CD34+ cell populations (one floating and one adherent to WJ-MSCs) with different phenotypic and functional characteristics. Both multipotent CD34+/CD38− and lineage-committed CD34+/CD38+ hematopoietic progenitors were expanded in a DC system. The former were significantly more represented in the adherent cell fraction than in the floating one (18.7 ± 11.2% vs. 9.7 ± 7.9% over the total CD34+ cells). Short-term colony forming unit (CFU) assays showed that HSPCs adherent to the stromal layer were able to generate a higher frequency of immature colonies (CFU-granulocyte/macrophage and burst-forming unit erythroid/large colonies) with respect to the floating cells. In the attempt to identify molecules that may play a role in supporting the observed ex vivo HSPC growth, we performed secretome analyses. We found a number of proteins involved in the HSPC homing, self-renewal, and differentiation in all tested conditions. It is important to note that a set of sixteen proteins, which are only in part reported to be expressed in any hematopoietic niche, were exclusively found in the DC system secretome. In conclusion, WJ-MSCs allowed a significant ex vivo expansion of multipotent as well as committed HSPCs. This may be relevant for future clinical applications.
Collapse
Affiliation(s)
- Melania Lo Iacono
- 1 Campus of Hematology F. and P. Cutino, Villa Sofia-Cervello Hospital, Palermo, Italy
| | - Eleonora Russo
- 2 Section of Histology and Embryology, Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Rita Anzalone
- 3 Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy.,4 Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Elena Baiamonte
- 1 Campus of Hematology F. and P. Cutino, Villa Sofia-Cervello Hospital, Palermo, Italy
| | - Giusi Alberti
- 3 Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Aldo Gerbino
- 2 Section of Histology and Embryology, Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Aurelio Maggio
- 1 Campus of Hematology F. and P. Cutino, Villa Sofia-Cervello Hospital, Palermo, Italy
| | - Giampiero La Rocca
- 2 Section of Histology and Embryology, Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy.,3 Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Santina Acuto
- 1 Campus of Hematology F. and P. Cutino, Villa Sofia-Cervello Hospital, Palermo, Italy
| |
Collapse
|
62
|
Chramiec A, Vunjak-Novakovic G. Tissue engineered models of healthy and malignant human bone marrow. Adv Drug Deliv Rev 2019; 140:78-92. [PMID: 31002835 PMCID: PMC6663611 DOI: 10.1016/j.addr.2019.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 02/14/2019] [Accepted: 04/14/2019] [Indexed: 12/20/2022]
Abstract
Tissue engineering is becoming increasingly successful in providing in vitro models of human tissues that can be used for ex vivo recapitulation of functional tissues as well as predictive testing of drug efficacy and safety. From simple tissue models to microphysiological platforms comprising multiple tissue types connected by vascular perfusion, these "tissues on a chip" are emerging as a fast track application for tissue engineering, with great potential for modeling diseases and supporting the development of new drugs and therapeutic targets. We focus here on tissue engineering of the hematopoietic stem and progenitor cell compartment and the malignancies that can develop in the human bone marrow. Our overall goal is to demonstrate the utility and interconnectedness of improvements in bioengineering methods developed in one area of bone marrow studies for the remaining, seemingly disparate, bone marrow fields.
Collapse
|
63
|
Andreeva E, Andrianova I, Sotnezova E, Gornostaeva A, Khorkova S, Buravkova L. Hematopoiesis-supportive function of growth-arrested human adipose-tissue stromal cells under physiological hypoxia. J Biosci Bioeng 2018; 127:647-654. [PMID: 30503171 DOI: 10.1016/j.jbiosc.2018.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/05/2018] [Accepted: 10/15/2018] [Indexed: 12/22/2022]
Abstract
Ex vivo expansion of hematopoietic progenitors is considered as an attractive tool to increase the number of stem and progenitor cells (HSPCs) for cell therapy. The efficacy of ex vivo expansion is strongly depends on the feeder cell activity to mimic hematopoietic microenvironment. Here we demonstrated, that combination of mitomycin C-induced growth arrest and tissue-related O2 (physiological hypoxia) modulated stromal capacity of adipose tissue derived stromal cells (ASCs). Growth arrest did not affect viability, stromal phenotype and multilineage potential of ASCs permanently expanded at tissue-related O2. Meanwhile, the PCR analysis revealed an up-regulation of genes, encoded molecules of cell-cell (ICAM1, HCAM/CD44) and cell-matrix adhesion (ITGs), extracellular matrix production (COLs) and remodeling (MMPs, HAS1) in growth-arrested ASCs at physiological hypoxia in comparison with ambient O2 (20%). The number of ICAM-1 positive ASCs was increased under low O2 as well. These alterations contributed into the ex vivo expansion of cord blood HSPCs providing the preferential production of primitive HSPCs. The number of cobblestone area forming cell (CAFC) colonies was 1.5-fold higher at physiological hypoxia (p < 0.05). CAFCs considered as long-term culture-initiating cells (LTC-IC) known to support long-term hematopoiesis restoration in vivo. The presented data may be applicable in the development of upscale protocols of HSPC expansion.
Collapse
Affiliation(s)
- Elena Andreeva
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse, 76a, 123007 Moscow, Russia.
| | - Irina Andrianova
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse, 76a, 123007 Moscow, Russia
| | - Elena Sotnezova
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse, 76a, 123007 Moscow, Russia
| | - Aleksandra Gornostaeva
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse, 76a, 123007 Moscow, Russia
| | - Svetlana Khorkova
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse, 76a, 123007 Moscow, Russia
| | - Ludmila Buravkova
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse, 76a, 123007 Moscow, Russia; Faculty of Basic Medicine, Moscow State University, Lomonosovsky Prospekt, 31-5, 117192 Moscow, Russia
| |
Collapse
|
64
|
Mesenchymal Stromal Cells: Role in the BM Niche and in the Support of Hematopoietic Stem Cell Transplantation. Hemasphere 2018; 2:e151. [PMID: 31723790 PMCID: PMC6745957 DOI: 10.1097/hs9.0000000000000151] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/21/2018] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are key elements in the bone marrow (BM) niche where they interact with hematopoietic stem progenitor cells (HSPCs) by offering physical support and secreting soluble factors, which control HSPC maintenance and fate. Although necessary for their maintenance, MSCs are a rare population in the BM, they are plastic adherent and can be ex vivo expanded to reach numbers adequate for clinical use. In light of HSPC supportive properties, MSCs have been employed in phase I/II clinical trials of hematopoietic stem cell transplantation (HSCT) to facilitate engraftment of hematopoietic stem cells (HSCs). Moreover, they have been utilized to expand ex vivo HSCs before clinical use. The available clinical evidence from these trials indicate that MSC administration is safe, as no acute and long-term adverse events have been registered in treated patients, and may be efficacious in promoting hematopoietic engraftment after HSCT. In this review, we critically discuss the role of MSCs as component of the BM niche, as recent advances in defining different mesenchymal populations in the BM have considerably increased our understanding of this complex environment. Moreover, we will revise published literature on the use of MSCs to support HSC engraftment and expansion, as well as consider potential new MSC application in the clinical context of ex vivo gene therapy with autologous HSC.
Collapse
|
65
|
Liu FD, Tam K, Pishesha N, Poon Z, Van Vliet KJ. Improving hematopoietic recovery through modeling and modulation of the mesenchymal stromal cell secretome. Stem Cell Res Ther 2018; 9:268. [PMID: 30352620 PMCID: PMC6199758 DOI: 10.1186/s13287-018-0982-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Efficient and sustained hematopoietic recovery after hematopoietic stem cell or bone marrow transplantation is supported by paracrine signaling from specific subpopulations of mesenchymal stromal cells (MSCs). Here, we considered whether in vitro mechanopriming of human MSCs could be administered to predictively and significantly improve in vivo hematopoietic recovery after irradiation injury. METHODS First, we implemented regression modeling to identify eight MSC-secreted proteins that correlated strongly with improved rescue from radiation damage, including hematopoietic recovery, in a murine model of hematopoietic failure. Using these partial least squares regression (PLSR) model parameters, we then predicted recovery potential of MSC populations that were culture expanded on substrata of varying mechanical stiffness. Lastly, we experimentally validated these predictions using an in vitro co-culture model of hematopoiesis and using new in vivo experiments for the same irradiation injury model used to generate survival predictions. RESULTS MSCs grown on the least stiff (elastic moduli ~ 1 kPa) of these polydimethylsiloxane (PDMS) substrata secreted high concentrations of key proteins identified in regression modeling, at concentrations comparable to those secreted by minor subpopulations of MSCs shown previously to be effective in supporting such radiation rescue. We confirmed that these MSCs expanded on PDMS could promote hematopoiesis in an in vitro co-culture model with hematopoietic stem and progenitor cells (HSPCs). Further, MSCs cultured on PDMS of highest stiffness (elastic moduli ~ 100 kPa) promoted expression of CD123+ HSPCs, indicative of myeloid differentiation. Systemic administration of mechanoprimed MSCs resulted in improved mouse survival and weight recovery after bone marrow ablation, as compared with both standard MSC expansion on stiffer materials and with biophysically sorted MSC subpopulations. Additionally, we observed recovery of white blood cells, platelets, and red blood cells, indicative of complete recovery of all hematopoietic lineages. CONCLUSIONS These results demonstrate that computational techniques to identify MSC biomarkers can be leveraged to predict and engineer therapeutically effective MSC phenotypes defined by mechanoprimed secreted factors, for translational applications including hematopoietic recovery.
Collapse
Affiliation(s)
- Frances D. Liu
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
- Biosystems and Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 Create Way, Singapore, 138602 Singapore
| | - Kimberley Tam
- Biosystems and Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 Create Way, Singapore, 138602 Singapore
| | - Novalia Pishesha
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02139 USA
| | - Zhiyong Poon
- Biosystems and Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 Create Way, Singapore, 138602 Singapore
| | - Krystyn J. Van Vliet
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
- Biosystems and Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 Create Way, Singapore, 138602 Singapore
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| |
Collapse
|
66
|
Mobilized Peripheral Blood versus Cord Blood: Insight into the Distinct Role of Proinflammatory Cytokines on Survival, Clonogenic Ability, and Migration of CD34 + Cells. Mediators Inflamm 2018; 2018:5974613. [PMID: 30116149 PMCID: PMC6079419 DOI: 10.1155/2018/5974613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/24/2018] [Accepted: 05/31/2018] [Indexed: 01/12/2023] Open
Abstract
Inflammation may play a role in cancer. However, the contribution of cytokine-mediated crosstalk between normal hemopoietic stem/progenitor cells (HSPCs) and their (inflammatory) microenvironment is largely elusive. Here we compared survival, phenotype, and function of neonatal (umbilical cord blood (CB)) and adult (normal G-CSF-mobilized peripheral blood (mPB)) CD34+ cells after in vitro exposure to combined crucial inflammatory factors such as interleukin- (IL-) 1β, IL-6, tumor necrosis factor- (TNF-) α, or tissue inhibitor of metalloproteinases-1 (TIMP-1). To mimic bone marrow (BM) niche, coculture experiments with normal BM stromal cells (BMSCs) were also performed. We found that combined inflammatory cytokines increased only the in vitro survival of CB-derived CD34+ cells by reducing apoptosis. Conversely, selected combinations of inflammatory cytokines (IL-1β + TNF-α, IL-6 + TNF-α, and IL-1β + TNF-α + TIMP-1) mainly enhanced the in vitro CXCR4-driven migration of mPB-derived CD34+ cells. TNF-α, alone or in combination, upregulated CD44 and CD13 expression in both sources. Finally, BMSCs alone increased survival/migration of CB- and mPB-derived CD34+ cells at the same extent of the combined inflammatory cytokines; importantly, their copresence did not show additive/synergistic effect. Taken together, these data indicate that combined proinflammatory stimuli promote distinct in vitro functional activation of neonatal or adult normal HSPCs.
Collapse
|
67
|
Pashoutan Sarvar D, Karimi MH, Movassaghpour A, Akbarzadehlaleh P, Aqmasheh S, Timari H, Shamsasenjan K. The Effect of Mesenchymal Stem Cell-Derived Microvesicles on Erythroid Differentiation of Umbilical Cord Blood-Derived CD34 + Cells. Adv Pharm Bull 2018; 8:291-296. [PMID: 30023331 PMCID: PMC6046427 DOI: 10.15171/apb.2018.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 05/14/2018] [Accepted: 05/20/2018] [Indexed: 12/11/2022] Open
Abstract
Purpose: Mesenchymal stem cells (MSCs) play an important role in the proliferation and differentiation of hematopoietic stem cells (HSCs) in the bone marrow via cell-to-cell contact, as well as secretion of cytokines and microvesicles (MVs). In this study, we investigated the effect of mesenchymal stem cell-derived microvesicles (MSC-MVs) on erythroid differentiation of umbilical cord blood-derived CD34+ cells. Methods: In this descriptive study, CD34+ cells were cultured with mixture of SCF (10 ng/ml) and rhEPO (5 U/ml) cytokines in complete IMDM medium as positive control group. Then, in MV1- and MV2-groups, microvesicles at 10 and 20 µg/ml concentration were added. After 72 hours, erythroid specific markers (CD71 and CD235a) and genes (HBG1, GATA1, FOG1 and NFE2) were assessed by flow cytometry and qRT-PCR, respectively. Results: The expression of specific markers of the erythroid lineages (CD71 and GPA) in the presence of different concentration of microvesicles were lower than that of the control group (P<0.001). Also, the expression of specific genes of the erythroid lineages (NFE2, FOG1, GATA1, and HBG1) was investigated in comparison to the internal control (GAPDH). Among all of them, HBG1 and FOG1 genes were significantly decreased to the control group (P<0.0001) but GATA1 and NFE2 gene expressions was not significant. Conclusion: The results of this study showed that MSC-MVs decrease the erythroid differentiation of umbilical cord blood-derived CD34+ cells. Therefore, MSC-MVs play a key role in the regulation of normal erythropoiesis.
Collapse
Affiliation(s)
| | | | - Aliakbar Movassaghpour
- Hematology & Blood Banking, Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Akbarzadehlaleh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Aqmasheh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamze Timari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasenjan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
68
|
Bourgine PE, Klein T, Paczulla AM, Shimizu T, Kunz L, Kokkaliaris KD, Coutu DL, Lengerke C, Skoda R, Schroeder T, Martin I. In vitro biomimetic engineering of a human hematopoietic niche with functional properties. Proc Natl Acad Sci U S A 2018; 115:E5688-E5695. [PMID: 29866839 PMCID: PMC6016789 DOI: 10.1073/pnas.1805440115] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In adults, human hematopoietic stem and progenitor cells (HSPCs) reside in the bone marrow (BM) microenvironment. Our understanding of human hematopoiesis and the associated niche biology remains limited, due to human material accessibility and limits of existing in vitro culture models. The establishment of an in vitro BM system would offer an experimentally accessible and tunable platform to study human hematopoiesis. Here, we develop a 3D engineered human BM analog by recapitulating some of the hematopoietic niche elements. This includes a bone-like scaffold, functionalized by human stromal and osteoblastic cells and by the extracellular matrix they deposited during perfusion culture in bioreactors. The resulting tissue exhibited compositional and structural features of human BM while supporting the maintenance of HSPCs. This was associated with a compartmentalization of phenotypes in the bioreactor system, where committed blood cells are released into the liquid phase and HSPCs preferentially reside within the engineered BM tissue, establishing physical interactions with the stromal compartment. Finally, we demonstrate the possibility to perturb HSPCs' behavior within our 3D niches by molecular customization or injury simulation. The developed system enables the design of advanced, tunable in vitro BM proxies for the study of human hematopoiesis.
Collapse
Affiliation(s)
- Paul E Bourgine
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, 4058 Basel, Switzerland
| | - Thibaut Klein
- Tissue Engineering, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Anna M Paczulla
- Stem Cells and Hematopoiesis, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Takafumi Shimizu
- Experimental Hematology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Leo Kunz
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, 4058 Basel, Switzerland
| | - Konstantinos D Kokkaliaris
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, 4058 Basel, Switzerland
| | - Daniel L Coutu
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, 4058 Basel, Switzerland
| | - Claudia Lengerke
- Stem Cells and Hematopoiesis, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Radek Skoda
- Experimental Hematology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, 4058 Basel, Switzerland;
| | - Ivan Martin
- Tissue Engineering, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland;
| |
Collapse
|
69
|
Mesenchymal stem cell-mediated Notch2 activation overcomes radiation-induced injury of the hematopoietic system. Sci Rep 2018; 8:9277. [PMID: 29915190 PMCID: PMC6006282 DOI: 10.1038/s41598-018-27666-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/16/2018] [Indexed: 12/12/2022] Open
Abstract
Radiation exposure severely damages the hematopoietic system. Although several radio-protectors have been proposed to prevent radiation-induced damage, most agents have limited efficacy. In the present study, we investigated whether mesenchymal stem cells (MSCs) could contribute to the expansion of hematopoietic cells and mitigate radiation-induced hematopoietic injury in vitro and in vivo. We found that co-culture with MSCs promoted hematopoietic progenitor/stem cell (HPSCs) maintenance by providing a bone marrow-like microenvironment. In addition, we showed that MSCs prevented radiation-induced damage to HPSCs, as evidenced by the lack of DNA damage and apoptosis. Intravenously injected MSCs rapidly migrated to the bone marrow (BM) and prevented loss of BM cellularity, which reduced lethality and ameliorated pancytopenia in the BM of whole body-irradiated mice. We demonstrated that MSC-derived Jagged1 attenuated radiation-induced cytotoxicity of HPSCs, and that this was mediated by Notch signaling and expression of downstream proteins Bcl2 and p63 in HPSCs. In addition, Notch2 depletion significantly reduced the MSC-mediated radio-protective effect in human- and mouse-derived HPSCs. Collectively, our data show that activation of Notch and its associated downstream signaling pathways prevent radiation-induced hematopoietic injury. Therefore, enhancing Jagged1-Notch2 signaling could provide therapeutic benefit by protecting the hematopoietic system against damage after radiation.
Collapse
|
70
|
Khlusov IA, Dekhtyar Y, Sharkeev YP, Pichugin VF, Khlusova MY, Polyaka N, Tyulkin F, Vendinya V, Legostaeva EV, Litvinova LS, Shupletsova VV, Khaziakhmatova OG, Yurova KA, Prosolov KA. Nanoscale Electrical Potential and Roughness of a Calcium Phosphate Surface Promotes the Osteogenic Phenotype of Stromal Cells. MATERIALS 2018; 11:ma11060978. [PMID: 29890754 PMCID: PMC6024922 DOI: 10.3390/ma11060978] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/29/2018] [Accepted: 06/07/2018] [Indexed: 12/31/2022]
Abstract
Mesenchymal stem cells (MSCs) and osteoblasts respond to the surface electrical charge and topography of biomaterials. This work focuses on the connection between the roughness of calcium phosphate (CP) surfaces and their electrical potential (EP) at the micro- and nanoscales and the possible role of these parameters in jointly affecting human MSC osteogenic differentiation and maturation in vitro. A microarc CP coating was deposited on titanium substrates and characterized at the micro- and nanoscale. Human adult adipose-derived MSCs (hAMSCs) or prenatal stromal cells from the human lung (HLPSCs) were cultured on the CP surface to estimate MSC behavior. The roughness, nonuniform charge polarity, and EP of CP microarc coatings on a titanium substrate were shown to affect the osteogenic differentiation and maturation of hAMSCs and HLPSCs in vitro. The surface EP induced by the negative charge increased with increasing surface roughness at the microscale. The surface relief at the nanoscale had an impact on the sign of the EP. Negative electrical charges were mainly located within the micro- and nanosockets of the coating surface, whereas positive charges were detected predominantly at the nanorelief peaks. HLPSCs located in the sockets of the CP surface expressed the osteoblastic markers osteocalcin and alkaline phosphatase. The CP multilevel topography induced charge polarity and an EP and overall promoted the osteoblast phenotype of HLPSCs. The negative sign of the EP and its magnitude at the micro- and nanosockets might be sensitive factors that can trigger osteoblastic differentiation and maturation of human stromal cells.
Collapse
Affiliation(s)
- Igor A Khlusov
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia.
- Basic Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia.
| | - Yuri Dekhtyar
- Institute of Biomedical Engineering and Nanotechnologies, Riga Technical University, Riga LV-1658, Latvia.
| | - Yurii P Sharkeev
- Research School of High-Energy Physics, National Research Tomsk Polytechnic University, Tomsk 634050, Russia.
- Institute of Strength Physics and Materials Science of SB RAS, Tomsk 634055, Russia.
| | - Vladimir F Pichugin
- Research School of High-Energy Physics, National Research Tomsk Polytechnic University, Tomsk 634050, Russia.
| | - Marina Y Khlusova
- Department of Pathophysiology, Siberian State Medical University, Tomsk 634050, Russia.
| | - Nataliya Polyaka
- Institute of Biomedical Engineering and Nanotechnologies, Riga Technical University, Riga LV-1658, Latvia.
| | - Fedor Tyulkin
- Institute of Biomedical Engineering and Nanotechnologies, Riga Technical University, Riga LV-1658, Latvia.
| | - Viktorija Vendinya
- Institute of Biomedical Engineering and Nanotechnologies, Riga Technical University, Riga LV-1658, Latvia.
| | - Elena V Legostaeva
- Institute of Strength Physics and Materials Science of SB RAS, Tomsk 634055, Russia.
| | - Larisa S Litvinova
- Basic Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia.
| | - Valeria V Shupletsova
- Basic Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia.
| | - Olga G Khaziakhmatova
- Basic Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia.
| | - Kristina A Yurova
- Basic Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia.
| | - Konstantin A Prosolov
- Research School of High-Energy Physics, National Research Tomsk Polytechnic University, Tomsk 634050, Russia.
- Institute of Strength Physics and Materials Science of SB RAS, Tomsk 634055, Russia.
| |
Collapse
|
71
|
Zhang Q, Gerlach JC, Nettleship I, Schmelzer E. Calcium-Infiltrated Biphasic Hydroxyapatite Scaffolds for Human Hematopoietic Stem Cell Culture. Tissue Eng Part A 2018; 24:1563-1573. [PMID: 29724158 DOI: 10.1089/ten.tea.2018.0025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Long-term in vitro expansion of hematopoietic stem cells (HSCs), while maintaining their functionality and multilineage differentiation potential, is still challenging. In this study, three-dimensional (3D) high-porosity hydroxyapatite (HA) foams have been designed to closely mimic the chemistry and physical structure of cancellous bone. Furthermore, calcium oxide was distributed in the HA ceramics to provide surface calcium ion release, hypothesizing that a local surface calcium gradient supports HSC localization and maintenance. Primary human HSCs and osteoblasts were cocultured for 6 weeks. Controls were cultured in two-dimensional dishes, while scaffold cultures were performed with calcium nitrate-infiltrated HA scaffolds and untreated HA scaffolds. Cells were analyzed for surface markers by flow cytometry, metabolic activity, and hematopoietic multilineage differentiation potential. The release of calcium into culture medium was also determined. The implementation of HA scaffolds had a positive effect on erythrocyte colony formation capacity of HSCs, with an increased osteoblast fraction observed when compared to control cultures without scaffolds. The presentation of scaffolds did not affect metabolic turnover when compared to control cultures. In conclusion, 3D open-porous HA scaffolds provide a bone-like structure and enable the long-term maintenance of primary HSCs.
Collapse
Affiliation(s)
- Qinghao Zhang
- 1 Department of Mechanical Engineering and Materials Science, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Jörg C Gerlach
- 2 Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Ian Nettleship
- 1 Department of Mechanical Engineering and Materials Science, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Eva Schmelzer
- 2 Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
72
|
Lapostolle V, Chevaleyre J, Duchez P, Rodriguez L, Vlaski-Lafarge M, Sandvig I, Brunet de la Grange P, Ivanovic Z. Repopulating hematopoietic stem cells from steady-state blood before and after ex vivo culture are enriched in the CD34 +CD133 +CXCR4 low fraction. Haematologica 2018; 103:1604-1615. [PMID: 29858385 PMCID: PMC6165804 DOI: 10.3324/haematol.2017.183962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 05/24/2018] [Indexed: 12/12/2022] Open
Abstract
The feasibility of ex vivo expansion allows us to consider the steady-state peripheral blood as an alternative source of hematopoietic stem progenitor cells for transplantation when growth factor-induced cell mobilization is contraindicated or inapplicable. Ex vivo expansion dramatically enhances the in vivo reconstituting cell population from steady-state blood. In order to investigate phenotype and the expression of homing molecules, the expression of CD34, CD133, CD90, CD45RA, CD26 and CD9 was determined on sorted CD34+ cells according to CXCR4 (“neg”, “low” “bright”) and CD133 expression before and after ex vivo expansion. Hematopoietic stem cell activity was determined in vivo on the basis of hematopoietic repopulation of primary and secondary recipients - NSG immuno-deficient mice. In vivo reconstituting cells in the steady-state blood CD34+ cell fraction before expansion belong to the CD133+ population and are CXCR4low or, to a lesser extent, CXCR4neg, while after ex vivo expansion they are contained only in the CD133+CXCR4low cells. The failure of the CXCR4bright population to engraft is probably due to the exclusive expression of CD26 by these cells. The limiting-dilution analysis showed that both repopulating cell number and individual proliferative capacity were enhanced by ex vivo expansion. Thus, steady-state peripheral blood cells exhibit a different phenotype compared to mobilized and cord blood cells, as well as to those issued from the bone marrow. These data represent the first phenotypic characterization of steady-state blood cells exhibiting short- and long-term hematopoietic reconstituting potential, which can be expanded ex vivo, a sine qua non for their subsequent use for transplantation.
Collapse
Affiliation(s)
- Véronique Lapostolle
- Etablissement Français du Sang Nouvelle Aquitaine, Bordeaux, France.,U1035 INSERM/Bordeaux University, France
| | - Jean Chevaleyre
- Etablissement Français du Sang Nouvelle Aquitaine, Bordeaux, France.,U1035 INSERM/Bordeaux University, France
| | - Pascale Duchez
- Etablissement Français du Sang Nouvelle Aquitaine, Bordeaux, France.,U1035 INSERM/Bordeaux University, France
| | - Laura Rodriguez
- Etablissement Français du Sang Nouvelle Aquitaine, Bordeaux, France.,U1035 INSERM/Bordeaux University, France
| | - Marija Vlaski-Lafarge
- Etablissement Français du Sang Nouvelle Aquitaine, Bordeaux, France.,U1035 INSERM/Bordeaux University, France
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - Zoran Ivanovic
- Etablissement Français du Sang Nouvelle Aquitaine, Bordeaux, France .,U1035 INSERM/Bordeaux University, France
| |
Collapse
|
73
|
Goedhart M, Cornelissen AS, Kuijk C, Geerman S, Kleijer M, van Buul JD, Huveneers S, Raaijmakers MHGP, Young HA, Wolkers MC, Voermans C, Nolte MA. Interferon-Gamma Impairs Maintenance and Alters Hematopoietic Support of Bone Marrow Mesenchymal Stromal Cells. Stem Cells Dev 2018; 27:579-589. [PMID: 29649408 PMCID: PMC5934977 DOI: 10.1089/scd.2017.0196] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bone marrow (BM) mesenchymal stromal cells (MSCs) provide microenvironmental support to hematopoietic stem and progenitor cells (HSPCs). Culture-expanded MSCs are interesting candidates for cellular therapies due to their immunosuppressive and regenerative potential which can be further enhanced by pretreatment with interferon-gamma (IFN-γ). However, it remains unknown whether IFN-γ can also influence hematopoietic support by BM-MSCs. In this study, we elucidate the impact of IFN-γ on the hematopoietic support of BM-MSCs. We found that IFN-γ increases expression of interleukin (IL)-6 and stem cell factor by human BM-MSCs. IFN-γ-treated BM-MSCs drive HSPCs toward myeloid commitment in vitro, but impair subsequent differentiation of HSPC. Moreover, IFN-γ-ARE-Del mice with increased IFN-γ production specifically lose their BM-MSCs, which correlates with a loss of hematopoietic stem cells' quiescence. Although IFN-γ treatment enhances the immunomodulatory function of MSCs in a clinical setting, we conclude that IFN-γ negatively affects maintenance of BM-MSCs and their hematopoietic support in vitro and in vivo.
Collapse
Affiliation(s)
- Marieke Goedhart
- 1 Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Academic Medical Center, University of Amsterdam , Amsterdam, Netherlands
| | - Anne S Cornelissen
- 1 Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Academic Medical Center, University of Amsterdam , Amsterdam, Netherlands
| | - Carlijn Kuijk
- 1 Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Academic Medical Center, University of Amsterdam , Amsterdam, Netherlands
| | - Sulima Geerman
- 1 Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Academic Medical Center, University of Amsterdam , Amsterdam, Netherlands
| | - Marion Kleijer
- 1 Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Academic Medical Center, University of Amsterdam , Amsterdam, Netherlands
| | - Jaap D van Buul
- 2 Sanquin Research and Landsteiner Laboratory, Department of Molecular Cell Biology, Academic Medical Center, University of Amsterdam , Amsterdam, Netherlands
| | - Stephan Huveneers
- 2 Sanquin Research and Landsteiner Laboratory, Department of Molecular Cell Biology, Academic Medical Center, University of Amsterdam , Amsterdam, Netherlands
| | - Marc H G P Raaijmakers
- 3 Department of Hematology and Erasmus Stem Cell Institute, Erasmus MC Cancer Institute , Rotterdam, Netherlands
| | - Howard A Young
- 4 Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute , Frederick, Maryland
| | - Monika C Wolkers
- 1 Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Academic Medical Center, University of Amsterdam , Amsterdam, Netherlands
| | - Carlijn Voermans
- 1 Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Academic Medical Center, University of Amsterdam , Amsterdam, Netherlands
| | - Martijn A Nolte
- 1 Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Academic Medical Center, University of Amsterdam , Amsterdam, Netherlands
| |
Collapse
|
74
|
Abarrategi A, Mian SA, Passaro D, Rouault-Pierre K, Grey W, Bonnet D. Modeling the human bone marrow niche in mice: From host bone marrow engraftment to bioengineering approaches. J Exp Med 2018; 215:729-743. [PMID: 29453226 PMCID: PMC5839768 DOI: 10.1084/jem.20172139] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/19/2018] [Accepted: 01/30/2018] [Indexed: 12/11/2022] Open
Abstract
Xenotransplantation of patient-derived samples in mouse models has been instrumental in depicting the role of hematopoietic stem and progenitor cells in the establishment as well as progression of hematological malignancies. The foundations for this field of research have been based on the development of immunodeficient mouse models, which provide normal and malignant human hematopoietic cells with a supportive microenvironment. Immunosuppressed and genetically modified mice expressing human growth factors were key milestones in patient-derived xenograft (PDX) models, highlighting the importance of developing humanized microenvironments. The latest major improvement has been the use of human bone marrow (BM) niche-forming cells to generate human-mouse chimeric BM tissues in PDXs, which can shed light on the interactions between human stroma and hematopoietic cells. Here, we summarize the methods used for human hematopoietic cell xenotransplantation and their milestones and review the latest approaches in generating humanized BM tissues in mice to study human normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Ander Abarrategi
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, England, UK
| | - Syed A Mian
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, England, UK
- Department of Haematological Medicine, King's College London School of Medicine, London, England, UK
| | - Diana Passaro
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, England, UK
| | - Kevin Rouault-Pierre
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, England, UK
- Department of Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, England, UK
| | - William Grey
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, England, UK
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, England, UK
| |
Collapse
|
75
|
Synergistic Integration of Mesenchymal Stem Cells and Hydrostatic Pressure in the Expansion and Maintenance of Human Hematopoietic/Progenitor Cells. Stem Cells Int 2018; 2018:4527929. [PMID: 29681947 PMCID: PMC5848107 DOI: 10.1155/2018/4527929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/31/2017] [Indexed: 01/03/2023] Open
Abstract
Ex vivo expansion of hematopoietic stem/progenitor cell (HSPC) has been investigated to improve the clinical outcome of HSPC transplantation. However, ex vivo expansion of HSPCs still faces a major obstacle in that HPSCs tend to differentiate when proliferating. Here, we cocultured HSPCs with mesenchymal stem cells (MSCs) and divided the HSPCs into two fractions according to whether they came into adherent to MSCs or not. Additionally, we used hydrostatic pressure (HP) to mimic the physical conditions in vivo. Even nonadherent cells expanded to yield a significantly larger number of total nucleated cells (TNCs), adherent cells maintained the HSPC phenotype (CD34+, CD34+CD38−, and CD133+CD38−) to a greater extent than nonadherent cells and had superior clonogenic potential. Moreover, applying HP significantly increased the number of TNCs, the frequency of the immature HSPC phenotype, and the clonogenic potential. Furthermore, the genetic markers for the HSPC niche were significantly increased under HP. Our data suggest that the nonadherent fraction is the predominant site of HSPC expansion, whereas the adherent fraction seems to mimic the HSPC niche for immature cells. Moreover, HP has a synergistic effect on expansion and functional maintenance. This first study utilizing HP has a potential of designing clinically applicable expansion systems.
Collapse
|
76
|
Evaluation of committed and primitive cord blood progenitors after expansion on adipose stromal cells. Cell Tissue Res 2018; 372:523-533. [DOI: 10.1007/s00441-017-2766-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023]
|
77
|
Timari H, Shamsasenjan K, Movassaghpour A, Akbarzadehlaleh P, Pashoutan Sarvar D, Aqmasheh S. The Effect of Mesenchymal Stem Cell-Derived Extracellular Vesicles on Hematopoietic Stem Cells Fate. Adv Pharm Bull 2017; 7:531-546. [PMID: 29399543 PMCID: PMC5788208 DOI: 10.15171/apb.2017.065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/25/2017] [Accepted: 11/28/2017] [Indexed: 12/16/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are multipotent stem cells, with self-renewal ability as well as ability to generate all blood cells. Mesenchymal stem cells (MSCs) are multipotent stem cells, with self-renewal ability, and capable of differentiating into a variety of cell types. MSCs have supporting effects on hematopoiesis; through direct intercellular communications as well as secreting cytokines, chemokines, and extracellular vesicles (EVs). Recent investigations demonstrated that some biological functions and effects of MSCs are mediated by their EVs. MSC-EVs are the cell membrane and endosomal membrane compartments, which are important mediators in the intercellular communications. MSC-EVs contain some of the molecules such as proteins, mRNA, siRNA, and miRNA from their parental cells. MSC-EVs are able to inhibit tumor, repair damaged tissue, and modulate immune system responses. MSC-EVs compared to their parental cells, may have the specific safety advantages such as the lower potential to trigger immune system responses and limited side effects. Recently some studies demonstrated the effect of MSC-EVs on the expansion, differentiation, and clinical applications of HSCs such as improvement of hematopoietic stem cell transplantation (HSCT) and inhibition of graft versus host disease (GVHD). HSCT may be the only therapeutic choice for patients who suffer from malignant and non-malignant hematological disorders. However, there are several severe side effects such GVHD that restricts the successfulness of HSCT. In this review, we will discuss the most important effects of MSCs and MSC-EVs on the improvement of HSCT, inhibition and treatment of GVHD, as well as, on the expansion of HSCs.
Collapse
Affiliation(s)
- Hamze Timari
- Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasenjan
- Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliakbar Movassaghpour
- Hematology Oncology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Akbarzadehlaleh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sara Aqmasheh
- Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
78
|
Li R, Zhou Y, Cao Z, Liu L, Wang J, Chen Z, Xing W, Chen S, Bai J, Yuan W, Cheng T, Xu M, Yang FC, Zhao Z. TET2 Loss Dysregulates the Behavior of Bone Marrow Mesenchymal Stromal Cells and Accelerates Tet2 -/--Driven Myeloid Malignancy Progression. Stem Cell Reports 2017; 10:166-179. [PMID: 29290626 PMCID: PMC5768963 DOI: 10.1016/j.stemcr.2017.11.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/25/2017] [Accepted: 11/27/2017] [Indexed: 12/26/2022] Open
Abstract
TET2 is a methylcytosine dioxygenase that regulates cytosine hydroxymethylation. Although there are extensive data implicating a pivotal role of TET2 in hematopoietic stem/progenitor cells (HSPCs), the importance of TET2 in bone marrow mesenchymal stromal cells (BMSCs) remains unknown. In this study, we show that loss of TET2 in BMSCs increases cell proliferation and self-renewal and enhances osteoblast differentiation potential of BMSCs, which may in turn alter their behavior in supporting HSPC proliferation and differentiation. In addition, Tet2 loss alters BMSCs in promoting Tet2-deficiency-mediated myeloid malignancy progression. Tet2 loss in BMSCs also dysregulates hydroxylation of 5-methylcytosine (5mC) and the expression of genes that are key for BMSC proliferation and osteoblast differentiation, leading to alteration of biological characteristics in vivo. These results highlight the critical role of TET2 in the maintenance of BMSC functions and osteoblast differentiation and provide evidence that dysregulation of epigenetic modifiers in BMSCs contributes to the progression of myeloid malignancies.
Collapse
Affiliation(s)
- Rong Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Zeng Cao
- Department of Hematology and Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Lin Liu
- Department of Hematology and Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Jinhuan Wang
- Department of Oncology, The Second Affiliated Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Zizhen Chen
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Wen Xing
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Shi Chen
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jie Bai
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Mingjiang Xu
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Feng-Chun Yang
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Zhigang Zhao
- Department of Hematology and Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.
| |
Collapse
|
79
|
Khong D, Li M, Singleton A, Chin LY, Mukundan S, Parekkadan B. Orthogonal potency analysis of mesenchymal stromal cell function during ex vivo expansion. Exp Cell Res 2017; 362:102-110. [PMID: 29137914 DOI: 10.1016/j.yexcr.2017.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/23/2017] [Accepted: 11/07/2017] [Indexed: 02/06/2023]
Abstract
Adult bone marrow mesenchymal stromal cells (MSCs) have cross-functional, intrinsic potency that is of therapeutic interest. Their ability to regenerate bone, fat, and cartilage, modulate the immune system, and nurture the growth and function of other bone marrow hematopoietic stem/progenitor cells have all been evaluated by transplant applications of MSCs. These applications require the isolation and expansion scaled cell production. To investigate biophysical properties of MSCs that can be feasibly utilized as predictors of bioactivity during biomanufacturing, we used a low-density seeding model to drive MSCs into proliferative stress and exhibit the hallmark characteristics of in vitro aging. A low-density seeding method was used to generate MSCs from passages 1-7 to simulate serial expansion of these cells to maximize yield from a single donor. MSCs were subjected to three bioactivity assays in parallel to ascertain whether patterns in MSC age, size, and shape were associated with the outcomes of the potency assays. MSC age was found to be a predictor of adipogenesis, while cell and nuclear shape was strongly associated to hematopoietic-supportive potency. Together, these data evaluate morphological changes associated with cell potency and highlight new strategies for purification or alternatives to assessing MSC quality.
Collapse
Affiliation(s)
- Danika Khong
- Department of Surgery, Center for Surgery, Innovation, & Bioengineering, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Matthew Li
- Department of Surgery, Center for Surgery, Innovation, & Bioengineering, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Amy Singleton
- Department of Surgery, Center for Surgery, Innovation, & Bioengineering, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Ling-Yee Chin
- Department of Surgery, Center for Surgery, Innovation, & Bioengineering, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Shilpaa Mukundan
- Department of Surgery, Center for Surgery, Innovation, & Bioengineering, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Biju Parekkadan
- Department of Surgery, Center for Surgery, Innovation, & Bioengineering, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospitals for Children, Boston, MA 02114, USA; Department of Biomedical Engineering, Rutgers University and the Department of Medicine, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
80
|
Litvinova LS, Shupletsova VV, Yurova KA, Khaziakhmatova OG, Todosenko NM, Khlusova MY, Slepchenko GB, Cherempey EG, Sharkeev YP, Komarova EG, Sedelnikova MB, Malashchenko VV, Melashchenko ES, Khlusov IA. Cell-IQ visualization of motility, cell mass, and osteogenic differentiation of multipotent mesenchymal stromal cells cultured with relief calcium phosphate coating. DOKL BIOCHEM BIOPHYS 2017; 476:310-315. [PMID: 29101741 DOI: 10.1134/s1607672917050076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Indexed: 01/15/2023]
Abstract
The Cell-IQ continuous surveillance system allowed us to establish the following changes in a 14- day culture in vitro: a twofold suppression of the directional migration of multipotent mesenchymal stromal cells of human adipose tissue (MMSC-AT) towards the samples with a microarc calcium phosphate (CP) coating from synthetic hydroxyapatite; a tenfold decrease in the cell mass on the interphase with the samples, which was accompanied by a slight reduction in the expression of membrane determinants of stromal stem cells; and an enhancement of their osteogenic differentiation (osteocalcin secretion and mineralized matrix formation) on the 21st day of the study. Calcium phosphate particles, but not the calcium and phosphorus ions, may trigger the phenotypic transformation of the MMSC-AT behavior in vitro.
Collapse
Affiliation(s)
- L S Litvinova
- Immanuel Kant Baltic Federal University, Kaliningrad, 236041, Russia.
| | - V V Shupletsova
- Immanuel Kant Baltic Federal University, Kaliningrad, 236041, Russia
| | - K A Yurova
- Immanuel Kant Baltic Federal University, Kaliningrad, 236041, Russia
| | | | - N M Todosenko
- Immanuel Kant Baltic Federal University, Kaliningrad, 236041, Russia
| | - M Yu Khlusova
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, 634050, Russia
| | | | | | - Yu P Sharkeev
- Tomsk Polytechnic University, Tomsk, 634050, Russia.,Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, Tomsk, 634055, Russia
| | - E G Komarova
- Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, Tomsk, 634055, Russia
| | - M B Sedelnikova
- Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, Tomsk, 634055, Russia
| | - V V Malashchenko
- Immanuel Kant Baltic Federal University, Kaliningrad, 236041, Russia
| | - E S Melashchenko
- Immanuel Kant Baltic Federal University, Kaliningrad, 236041, Russia
| | - I A Khlusov
- Immanuel Kant Baltic Federal University, Kaliningrad, 236041, Russia.,Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, 634050, Russia.,Tomsk Polytechnic University, Tomsk, 634050, Russia
| |
Collapse
|
81
|
Liu FD, Pishesha N, Poon Z, Kaushik T, Van Vliet KJ. Material Viscoelastic Properties Modulate the Mesenchymal Stem Cell Secretome for Applications in Hematopoietic Recovery. ACS Biomater Sci Eng 2017; 3:3292-3306. [DOI: 10.1021/acsbiomaterials.7b00644] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Frances D. Liu
- Department
of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- BioSystems
and Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore−MIT Alliance for Research and Technology, CREATE, Singapore 138602
| | - Novalia Pishesha
- Department
of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Zhiyong Poon
- BioSystems
and Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore−MIT Alliance for Research and Technology, CREATE, Singapore 138602
| | - Tanwi Kaushik
- BioSystems
and Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore−MIT Alliance for Research and Technology, CREATE, Singapore 138602
| | - Krystyn J. Van Vliet
- Department
of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- BioSystems
and Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore−MIT Alliance for Research and Technology, CREATE, Singapore 138602
- Department
of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
82
|
Arulmozhivarman G, Kräter M, Wobus M, Friedrichs J, Bejestani EP, Müller K, Lambert K, Alexopoulou D, Dahl A, Stöter M, Bickle M, Shayegi N, Hampe J, Stölzel F, Brand M, von Bonin M, Bornhäuser M. Zebrafish In-Vivo Screening for Compounds Amplifying Hematopoietic Stem and Progenitor Cells: - Preclinical Validation in Human CD34+ Stem and Progenitor Cells. Sci Rep 2017; 7:12084. [PMID: 28935977 PMCID: PMC5608703 DOI: 10.1038/s41598-017-12360-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/08/2017] [Indexed: 01/13/2023] Open
Abstract
The identification of small molecules that either increase the number and/or enhance the activity of human hematopoietic stem and progenitor cells (hHSPCs) during ex vivo expansion remains challenging. We used an unbiased in vivo chemical screen in a transgenic (c-myb:EGFP) zebrafish embryo model and identified histone deacetylase inhibitors (HDACIs), particularly valproic acid (VPA), as significant enhancers of the number of phenotypic HSPCs, both in vivo and during ex vivo expansion. The long-term functionality of these expanded hHSPCs was verified in a xenotransplantation model with NSG mice. Interestingly, VPA increased CD34+ cell adhesion to primary mesenchymal stromal cells and reduced their in vitro chemokine-mediated migration capacity. In line with this, VPA-treated human CD34+ cells showed reduced homing and early engraftment in a xenograft transplant model, but retained their long-term engraftment potential in vivo, and maintained their differentiation ability both in vitro and in vivo. In summary, our data demonstrate that certain HDACIs lead to a net expansion of hHSPCs with retained long-term engraftment potential and could be further explored as candidate compounds to amplify ex-vivo engineered peripheral blood stem cells.
Collapse
Affiliation(s)
| | - Martin Kräter
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany
| | - Manja Wobus
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany
| | - Jens Friedrichs
- Institute of Biofunctional Polymer Materials, Leibniz Institute for Polymer Research, Max Bergmann Center of Biomaterials, Dresden, Germany
| | - Elham Pishali Bejestani
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Consortium for Translational Cancer Research (DKTK), partner site, Dresden, Germany
| | - Katrin Müller
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany
| | - Katrin Lambert
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany
| | - Dimitra Alexopoulou
- Deep Sequencing Group SFB655, Biotechnology Center, Technical University of Dresden, Dresden, Germany
| | - Andreas Dahl
- Deep Sequencing Group SFB655, Biotechnology Center, Technical University of Dresden, Dresden, Germany
| | - Martin Stöter
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marc Bickle
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Nona Shayegi
- Department of Hematology, University Hospital Essen, University of Duisburg, Essen, Germany
| | - Jochen Hampe
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany
| | - Friedrich Stölzel
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany
| | - Michael Brand
- DFG-Center for Regenerative Therapies Dresden (CRTD) - Cluster of Excellence, Technical University of Dresden, Dresden, Germany.
| | - Malte von Bonin
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Consortium for Translational Cancer Research (DKTK), partner site, Dresden, Germany
| | - Martin Bornhäuser
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany. .,DFG-Center for Regenerative Therapies Dresden (CRTD) - Cluster of Excellence, Technical University of Dresden, Dresden, Germany.
| |
Collapse
|
83
|
Winkler AL, Koenig M, Welle A, Trouillet V, Kratzer D, Hussal C, Lahann J, Lee-Thedieck C. Bioinstructive Coatings for Hematopoietic Stem Cell Expansion Based on Chemical Vapor Deposition Copolymerization. Biomacromolecules 2017; 18:3089-3098. [DOI: 10.1021/acs.biomac.7b00743] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | | | | | - Joerg Lahann
- Department
of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
84
|
Yuan YH, Zhao SS, Wang XL, Teng ZP, Li DS, Zeng Y. HIV-1 p55-gag protein induces senescence of human bone marrow mesenchymal stem cells and reduces their capacity to support expansion of hematopoietic stem cells in vitro. Cell Biol Int 2017; 41:969-981. [PMID: 28544005 DOI: 10.1002/cbin.10791] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/09/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Ya-hong Yuan
- College of Life Science and Bioengineering; Beijing University of Technology; Beijing 100124 China
- Hubei Key Laboratory of Embryonic Stem Cell Research; Taihe Hospital; Hubei University of Medicine; Shiyan 442000 Hubei China
| | - Shan-shan Zhao
- Hubei Key Laboratory of Embryonic Stem Cell Research; Taihe Hospital; Hubei University of Medicine; Shiyan 442000 Hubei China
| | - Xiao-li Wang
- College of Life Science and Bioengineering; Beijing University of Technology; Beijing 100124 China
- Hubei Key Laboratory of Embryonic Stem Cell Research; Taihe Hospital; Hubei University of Medicine; Shiyan 442000 Hubei China
| | - Zhi-ping Teng
- Institute of Virology; Chinese Academy of Preventive Medicine; Beijing China
| | - Dong-sheng Li
- Hubei Key Laboratory of Embryonic Stem Cell Research; Taihe Hospital; Hubei University of Medicine; Shiyan 442000 Hubei China
| | - Yi Zeng
- College of Life Science and Bioengineering; Beijing University of Technology; Beijing 100124 China
| |
Collapse
|
85
|
Liu B, Luo Y, Luo D, Zhou W, Zhang Y, He R, Li J, Wang Y, Wang Y, Chen W. Treatment effect of low intensity pulsed ultrasound on leukopenia induced by cyclophosphamide in rabbits. Am J Transl Res 2017; 9:3315-3325. [PMID: 28804549 PMCID: PMC5553881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE This study aims to examine the effects of low intensity pulsed ultrasound (LIPUS) on leukopenia induced by cyclophosphamide in a rabbit model. METHODS The leukopenia model in New Zealand rabbit was established by injecting cyclophosphamide into the ear vein. Forty leukopenia model rabbits were randomly allocated to control group (n = 20) and LIPUS group (n = 20). LIPUS group underwent 20 minutes of daily ultrasound treatment at femoral metaphysis for 7 days while control group received sham treatment. Diarrhea rate, mortality and blood cell count were calculated. IgA, IgG and IgM levels were measured by ELISA. Flow cytometry was used to detect CD44, CD49d, and PU.1. HE staining was performed to analyze bone marrow hyperplasia and changes of skin and muscle. RESULTS LIPUS treatment significantly promoted the proliferation of bone marrow nucleated cells, increased the number of WBC, IgA, IgG and IgM in the peripheral blood, and reduced the diarrhea rate and mortality. The irradiated skin and muscle tissues showed no obvious damages. LIPUS treatment promoted the migration of hematopoietic cells to peripheral blood by decreasing the expression of CD49d and CD44 on the surface of CD34 positive cells. It also promoted the differentiation of hematopoietic stem cells into granulocytes and lymphocytes by decreasing the expression of PU.1. CONCLUSION LIPUS can be used as a safe and effective clinical treatment for cyclophosphamide induced leukopenia.
Collapse
Affiliation(s)
- Baoru Liu
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and The Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical UniversityChongqing 400016, China
- Chongqing Collaborative Innovation Center for Minimally-Invasive and Noninvasive MedicineChongqing 400016, China
| | - Yueping Luo
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and The Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical UniversityChongqing 400016, China
- Chongqing Collaborative Innovation Center for Minimally-Invasive and Noninvasive MedicineChongqing 400016, China
| | - Dong Luo
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and The Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical UniversityChongqing 400016, China
- Chongqing Collaborative Innovation Center for Minimally-Invasive and Noninvasive MedicineChongqing 400016, China
| | - Weichen Zhou
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and The Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical UniversityChongqing 400016, China
- Chongqing Collaborative Innovation Center for Minimally-Invasive and Noninvasive MedicineChongqing 400016, China
| | - Yu Zhang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and The Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical UniversityChongqing 400016, China
- Chongqing Collaborative Innovation Center for Minimally-Invasive and Noninvasive MedicineChongqing 400016, China
| | - Ruixin He
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and The Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical UniversityChongqing 400016, China
- Chongqing Collaborative Innovation Center for Minimally-Invasive and Noninvasive MedicineChongqing 400016, China
| | - Junshu Li
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and The Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical UniversityChongqing 400016, China
- Chongqing Collaborative Innovation Center for Minimally-Invasive and Noninvasive MedicineChongqing 400016, China
| | - Yong Wang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and The Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical UniversityChongqing 400016, China
- Chongqing Collaborative Innovation Center for Minimally-Invasive and Noninvasive MedicineChongqing 400016, China
| | - Yan Wang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and The Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical UniversityChongqing 400016, China
- Chongqing Collaborative Innovation Center for Minimally-Invasive and Noninvasive MedicineChongqing 400016, China
| | - Wenzhi Chen
- Chongqing Collaborative Innovation Center for Minimally-Invasive and Noninvasive MedicineChongqing 400016, China
- Clinical Center for Tumor Therapy, The 2 Affiliated Hospital of Chongqing Medical UniversityChongqing 400010, China
| |
Collapse
|
86
|
Abstract
INTRODUCTION Over the past decade, it has become clear that long-term engraftment of any ex vivo expanded cell product transplanted into injured myocardium is modest and all therapeutic regeneration is mediated by stimulation of endogenous repair rather than differentiation of transplanted cells into working myocardium. Given that increasing the retention of transplanted cells boosts myocardial function, focus on the fundamental mechanisms limiting retention and survival of transplanted cells may enable strategies to help to restore normal cardiac function. Areas covered: This review outlines the challenges confronting cardiac engraftment of ex vivo expanded cells and explores means of enhancing cell-mediated repair of injured myocardium. Expert opinion: Stem cell therapy has already come a long way in terms of regenerating damaged hearts though the poor retention of transplanted cells limits the full potential of truly cardiotrophic cell products. Multifaceted strategies directed towards fundamental mechanisms limiting the long-term survival of transplanted cells will be needed to enhance transplanted cell retention and cell-mediated repair of damaged myocardium for cardiac cell therapy to reach its full potential.
Collapse
Affiliation(s)
| | - Darryl R Davis
- a University of Ottawa Heart Institute , Ottawa , ON , Canada
| |
Collapse
|
87
|
Chen L, Ran Q, Xiang Y, Xiang L, Chen L, Li F, Wu J, Wu C, Li Z. Co-Activation of PKC-δ by CRIF1 Modulates Oxidative Stress in Bone Marrow Multipotent Mesenchymal Stromal Cells after Irradiation by Phosphorylating NRF2 Ser40. Theranostics 2017; 7:2634-2648. [PMID: 28819452 PMCID: PMC5558558 DOI: 10.7150/thno.17853] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 04/19/2017] [Indexed: 12/26/2022] Open
Abstract
The high mortality associated with pancytopenia and multi-organ failure resulting from hematopoietic disorders of acute radiation syndrome (h-ARS) creates an urgent need for developing more effective treatment strategies. Here, we showed that bone marrow multipotent mesenchymal stromal cells (BMMSCs) effectively regulate oxidative stress following radiative injury, which might be on account of irradiation-induced elevation of protein levels of CR6-interacting factor 1(CRIF1) and nuclear factor E2-related factor 2(NRF2). Crif1-knockdown BMMSCs presented increased oxidative stress and apoptosis after irradiation, which were partially due to a suppressed antioxidant response mediated by decreased NRF2 nuclear translocation. Co-immunoprecipitation (Co-IP) experiments indicated that CRIF1 interacted with protein kinase C-δ (PKC-δ). NRF2 Ser40 phosphorylation was inhibited in Crif1-deficient BMMSCs even in the presence of three kinds of PKC agonists, suggesting that CRIF1 might co-activate PKC-δ to phosphorylate NRF2 Ser40. After radiative injury, the supporting effect of BMMSCs for the colony forming ability of HSCs in vitro was reduced, and the deficiency of CRIF1 aggravated such damage. Thus, CRIF1 plays an essential role in PKC-δ/NRF2 pathway modulation to alleviate oxidative stress in BMMSCs after irradiative injury, and at some level it may maintain the HSCs-supporting effect of BMMSCs after radiative injuries.
Collapse
|
88
|
Kräter M, Jacobi A, Otto O, Tietze S, Müller K, Poitz DM, Palm S, Zinna VM, Biehain U, Wobus M, Chavakis T, Werner C, Guck J, Bornhauser M. Bone marrow niche-mimetics modulate HSPC function via integrin signaling. Sci Rep 2017; 7:2549. [PMID: 28566689 PMCID: PMC5451425 DOI: 10.1038/s41598-017-02352-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/10/2017] [Indexed: 12/25/2022] Open
Abstract
The bone marrow (BM) microenvironment provides critical physical cues for hematopoietic stem and progenitor cell (HSPC) maintenance and fate decision mediated by cell-matrix interactions. However, the mechanisms underlying matrix communication and signal transduction are less well understood. Contrary, stem cell culture is mainly facilitated in suspension cultures. Here, we used bone marrow-mimetic decellularized extracellular matrix (ECM) scaffolds derived from mesenchymal stromal cells (MSCs) to study HSPC-ECM interaction. Seeding freshly isolated HSPCs adherent (AT) and non-adherent (SN) cells were found. We detected enhanced expansion and active migration of AT-cells mediated by ECM incorporated stromal derived factor one. Probing cell mechanics, AT-cells displayed naïve cell deformation compared to SN-cells indicating physical recognition of ECM material properties by focal adhesion. Integrin αIIb (CD41), αV (CD51) and β3 (CD61) were found to be induced. Signaling focal contacts via ITGβ3 were identified to facilitate cell adhesion, migration and mediate ECM-physical cues to modulate HSPC function.
Collapse
Affiliation(s)
- Martin Kräter
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany
| | - Angela Jacobi
- Biotechnology Center, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
| | - Oliver Otto
- Centre for Innovation Competence - Humoral Immune Reactions in Cardiovascular Diseases, University of Greifswald, Greifswald, Mecklenburg-Western Pomerania, 17489, Germany
| | - Stefanie Tietze
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
| | - Katrin Müller
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany
| | - David M Poitz
- Department of Internal Medicine and Cardiology, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
| | - Sandra Palm
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany
| | - Valentina M Zinna
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany
| | - Ulrike Biehain
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany
| | - Manja Wobus
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Dresden, Saxony, 01307, Germany
| | - Jochen Guck
- Biotechnology Center, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
| | - Martin Bornhauser
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany.
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Saxony, 01307, Germany.
| |
Collapse
|
89
|
Expression of Surface Molecules in Human Mesenchymal Stromal Cells Co-Cultured with Nucleated Umbilical Cord Blood Cells. Bull Exp Biol Med 2017; 162:578-582. [DOI: 10.1007/s10517-017-3662-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Indexed: 12/20/2022]
|
90
|
Houshmand M, Soleimani M, Atashi A, Saglio G, Abdollahi M, Nikougoftar Zarif M. Mimicking the Acute Myeloid Leukemia Niche for Molecular Study and Drug Screening. Tissue Eng Part C Methods 2017; 23:72-85. [PMID: 28007011 DOI: 10.1089/ten.tec.2016.0404] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bone marrow niche is a major contributing factor in leukemia development and drug resistance in acute myeloid leukemia (AML) patients. Although mimicking leukemic bone marrow niche relies on two-dimensional (2D) culture conditions, it cannot recapitulate complex bone marrow structure that causes introduction of different three-dimensional (3D) scaffolds. Simultaneously, microfluidic platform by perfusing medium culture mimic interstitial fluid flow, along with 3D scaffold would help for mimicking bone marrow microenvironment. In this study TF-1 cells were cocultured with bone marrow mesenchymal stem cells (BM-MSCs) in 2D and 3D microfluidic devices. Phenotype maintenance during cell culture and proliferation rate was assayed and confirmed by cell cycle analysis. Morphology of cells in 2D and 3D culture conditions was demonstrated by scanning electron microscopy. After these experiments, drug screening was performed by applying azacitidine and cytarabine and cytotoxicity assay and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for B cell lymphoma 2 (BCL2) were done to compare drug resistance in 2D and 3D culture conditions. Our result shows leukemic cells in 3D microfluidic device retaining their phenotype and proliferation rate was significantly higher in 3D culture condition in comparison to 2D culture condition (p < 0.05), which was confirmed by cell cycle analysis. Cytotoxicity assay also illustrated drug resistance in 3D culture condition and qRT-PCR demonstrated higher BCL2 expression in 3D microfluidic device in contrast to 2D microfluidic device (p < 0.05). On balance, mimicking bone marrow niche would help the target therapy and specify the role of niche in development of leukemia in AML patients.
Collapse
Affiliation(s)
- Mohammad Houshmand
- 1 Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine , Tehran, Iran
| | - Masoud Soleimani
- 2 Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran, Iran
| | - Amir Atashi
- 3 Stem cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences , Shahroud, Iran
| | - Giuseppe Saglio
- 4 Department of Clinical and Biological Sciences, "S. Luigi Gonzaga" Hospital, University of Turin , Orbassano, Italy
| | - Mohammad Abdollahi
- 2 Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran, Iran
| | - Mahin Nikougoftar Zarif
- 1 Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine , Tehran, Iran
| |
Collapse
|
91
|
Magnetic stromal layers for enhanced and unbiased recovery of co-cultured hematopoietic cells. Anal Biochem 2016; 509:146-155. [DOI: 10.1016/j.ab.2016.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 12/15/2022]
|
92
|
Tunneling nanotubes mediate the transfer of stem cell marker CD133 between hematopoietic progenitor cells. Exp Hematol 2016; 44:1092-1112.e2. [PMID: 27473566 DOI: 10.1016/j.exphem.2016.07.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 07/15/2016] [Accepted: 07/16/2016] [Indexed: 12/24/2022]
Abstract
Deciphering all mechanisms of intercellular communication used by hematopoietic progenitors is important, not only for basic stem cell research, but also in view of their therapeutic relevance. Here, we investigated whether these cells can produce the thin F-actin-based plasma membrane protrusions referred to as tunneling nanotubes (TNTs), which are known to bridge cells over long distances without contact with the substratum and transfer cargo molecules along them in various biological processes. We found that human primary CD34+ hematopoietic progenitors and leukemic KG1a cells develop such structures upon culture on primary mesenchymal stromal cells or specific extracellular-matrix-based substrata. Time-lapse video microscopy revealed that cell dislodgement is the primary mechanism responsible for TNT biogenesis. Surprisingly, we found that, among various cluster of differentiation (CD) markers, only the stem cell antigen CD133 is transferred between cells. It is selectively and directionally transported along the surface of TNTs in small clusters, such as cytoplasmic phospho-myosin light chain 2, suggesting that the latter actin motor protein might be implicated in this process. Our data provide new insights into the biology of hematopoietic progenitors that can contribute to our understanding of all facets of intercellular communication in the bone marrow microenvironment under healthy or cancerous conditions.
Collapse
|
93
|
Pleyer L, Valent P, Greil R. Mesenchymal Stem and Progenitor Cells in Normal and Dysplastic Hematopoiesis-Masters of Survival and Clonality? Int J Mol Sci 2016; 17:ijms17071009. [PMID: 27355944 PMCID: PMC4964385 DOI: 10.3390/ijms17071009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/20/2016] [Accepted: 06/08/2016] [Indexed: 02/07/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are malignant hematopoietic stem cell disorders that have the capacity to progress to acute myeloid leukemia (AML). Accumulating evidence suggests that the altered bone marrow (BM) microenvironment in general, and in particular the components of the stem cell niche, including mesenchymal stem cells (MSCs) and their progeny, play a pivotal role in the evolution and propagation of MDS. We here present an overview of the role of MSCs in the pathogenesis of MDS, with emphasis on cellular interactions in the BM microenvironment and related stem cell niche concepts. MSCs have potent immunomodulatory capacities and communicate with diverse immune cells, but also interact with various other cellular components of the microenvironment as well as with normal and leukemic stem and progenitor cells. Moreover, compared to normal MSCs, MSCs in MDS and AML often exhibit altered gene expression profiles, an aberrant phenotype, and abnormal functional properties. These alterations supposedly contribute to the “reprogramming” of the stem cell niche into a disease-permissive microenvironment where an altered immune system, abnormal stem cell niche interactions, and an impaired growth control lead to disease progression. The current article also reviews molecular targets that play a role in such cellular interactions and possibilities to interfere with abnormal stem cell niche interactions by using specific targeted drugs.
Collapse
Affiliation(s)
- Lisa Pleyer
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria.
- Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute, 5020 Salzburg, Austria.
- 3rd Medical Department, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology & Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Richard Greil
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria.
- Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute, 5020 Salzburg, Austria.
- 3rd Medical Department, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| |
Collapse
|
94
|
Sohrabi Akhkand S, Amirizadeh N, Nikougoftar M, Alizadeh J, Zaker F, Sarveazad A, Joghataei MT, Faramarzi M. Evaluation of umbilical cord blood CD34+ hematopoietic stem cells expansion with inhibition of TGF-β receptorII in co-culture with bone marrow mesenchymal stromal cells. Tissue Cell 2016; 48:305-11. [PMID: 27344285 DOI: 10.1016/j.tice.2016.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 06/05/2016] [Accepted: 06/07/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Umbilical cord blood (UCB) is an important source of hematopoietic stem cells (HSCs). However, low number of HSCs in UCB has been an obstacle for adult hematopoietic stem cell transplantation. The expansion of HSCs in culture is one approach to overcome this problem. In this study, we investigated the expansion of UCB-HSCs by using human bone marrow mesenchymal stromal cells (MSCs) as feeder layer as well as inhibiting the TGF-β signaling pathway through reduction of TGF-βRII expression. MATERIALS AND METHODS CD34(+) cells were isolated from UCB and transfected by SiRNA targeting TGF-βRII mRNA. CD34(+) cells were expanded in four culture media with different conditions, including 1) expansion of CD34(+) cells in serum free medium containing growth factors, 2) expansion of cells transfected with SiRNA targeting TGF-βRII in medium containing growth factors, 3) expansion of cells in presence of growth factors and MSCs, 4) expansion of cells transfected with SiRNA targeting TGF-βRII on MSCs feeder layer in medium containing growth factors. These culture conditions were evaluated for the number of total nucleated cells (TNCs), CD34 surface marker as well as using CFU assay on 8th day after culture. RESULTS The fold increase in CD34(+) cells, TNCs, and colony numbers (71.8±6.9, 93.2±10.2 and 128±10, respectively) was observed to be highest in fourth culture medium compared to other culture conditions. The difference between number of cells in four culture media in 8th day compared to unexpanded cells (0day) before expansion was statistically significant (P<0.05). CONCLUSION The results showed that transfection of CD34(+) cells with SiRNA targeting TGF-βRII and their co-culture with MSCs could considerably increase the number of progenitors. Therefore, this method could be useful for UCB-HSCs expansion.
Collapse
Affiliation(s)
- Saman Sohrabi Akhkand
- Department of Hematology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Naser Amirizadeh
- Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine, Tehran, Iran
| | - Mahin Nikougoftar
- Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine, Tehran, Iran
| | - Javad Alizadeh
- Department of Human Anatomy and Cell Science, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Farhad Zaker
- Cellular and Molecular Research Center, Department of Hematology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Arash Sarveazad
- Colorectal Research center, Rasoul-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Faramarzi
- Research Center of Pediatric Infectious Diseases, Rasoul-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
95
|
Vasko T, Frobel J, Lubberich R, Goecke TW, Wagner W. iPSC-derived mesenchymal stromal cells are less supportive than primary MSCs for co-culture of hematopoietic progenitor cells. J Hematol Oncol 2016; 9:43. [PMID: 27098268 PMCID: PMC4839158 DOI: 10.1186/s13045-016-0273-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/13/2016] [Indexed: 02/11/2023] Open
Abstract
In vitro culture of hematopoietic stem and progenitor cells (HPCs) is supported by a suitable cellular microenvironment, such as mesenchymal stromal cells (MSCs)-but MSCs are heterogeneous and poorly defined. In this study, we analyzed whether MSCs derived from induced pluripotent stem cells (iPS-MSCs) provide a suitable cellular feeder layer too. iPS-MSCs clearly supported proliferation of HPCs, maintenance of a primitive immunophenotype (CD34(+), CD133(+), CD38(-)), and colony-forming unit (CFU) potential of CD34(+) HPCs. However, particularly long-term culture-initiating cell (LTC-IC) frequency was lower with iPS-MSCs as compared to primary MSCs. Relevant genes for cell-cell interaction were overall expressed at similar level in MSCs and iPS-MSCs, whereas VCAM1 was less expressed in the latter. In conclusion, our iPS-MSCs support in vitro culture of HPCs; however, under the current differentiation and culture conditions, they are less suitable than primary MSCs from bone marrow.
Collapse
Affiliation(s)
- Theresa Vasko
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstrasse 20, 52074, Aachen, Germany.,Institute for Biomedical Engineering-Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Joana Frobel
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstrasse 20, 52074, Aachen, Germany.,Institute for Biomedical Engineering-Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Richard Lubberich
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstrasse 20, 52074, Aachen, Germany.,Institute for Biomedical Engineering-Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Tamme W Goecke
- Department of Obstetrics and Gynecology, RWTH Aachen University Hospital, Aachen, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstrasse 20, 52074, Aachen, Germany. .,Institute for Biomedical Engineering-Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany.
| |
Collapse
|
96
|
Comparison of capacities to maintain hematopoietic stem cells among different types of stem cells derived from the placenta and umbilical cord. Regen Ther 2016; 4:48-61. [PMID: 31245487 PMCID: PMC6581804 DOI: 10.1016/j.reth.2015.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 10/29/2015] [Accepted: 12/28/2015] [Indexed: 11/21/2022] Open
Abstract
Introduction Cord blood is utilized as a useful source of cells for hematopoietic stem cell transplantation, but this can be problematic because there is a high rate of graft failure compared to when other graft sources are used. A previous study successfully avoided graft failure by simultaneously grafting cord blood and bone marrow mesenchymal stem cells (MSCs) that are considered to function in the hematopoietic stem cell niche of the bone marrow. Organs of the fetal life support system such as the placenta and umbilical cord, which are discarded after delivery, contain an abundance of MSCs as well as cells that function in the hematopoietic stem cell niche. By identifying and collecting such cells and subsequently co-transplanting them with cord blood, an improvement in graft survival can be anticipated. Methods Three types of stem cells, amnion epithelial stem cells (AM-Epi), amnion mesenchymal stem cells (AM-Mes), and Wharton's jelly (WJ)-MSCs, all of which can be isolated and cultured from the placenta amnion or umbilical cord WJ, were investigated for the expression of hematopoietic stem cell niche markers and for their capabilities to maintain hematopoietic stem cells when co-cultured with cord blood hematopoietic stem cells. Results All types of isolated cells showed profiles that met the MSC minimal criteria according to surface marker analysis. In addition, all cell types expressed the hematopoietic stem cell niche marker stromal cell-derived factor-1 (SDF-1) (in order: AM-Epi > WJ-MSCs ≫ AM-Mes), although the expression declined with further passaging. After 5 days of co-culturing with cord blood CD34+ cells, the percentages of CD34+, CD45− cells were: AM-Epi 37.8%, AM-Mes 38.8%, WJ-MSCs 27.3%, and fibroblasts 27.4%; and the number of CFU-GM colonies were: AM-Epi 255.5 ± 21.6, AM-Mes 246.3 ± 28.5, WJ-MSCs 118.3 ± 11.8, fibroblasts 147.8 ± 19.0, and NC 121.3 ± 6.5. Statistical analyses demonstrated that AM-Epi and AM-Mes produced significantly greater numbers of CFU-GM compared to WJ-MSC, fibroblasts, or NC (p < 0.05). Conclusions These findings indicated that cells derived from the fetal life support system such as AM-Epi and AM-Mes can be anticipated as potential cell sources for clinical application in cell therapies for the purpose of enhancing graft survival during hematopoietic stem cell transplantation. Three types of stem cells were isolated from human placenta and umbilical cord. All types of isolated cells showed the same surface marker profiles of the MSC. Amnion epithelial stem cells showed capacities to maintain hematopoietic stem cells.
Collapse
|
97
|
Deynoux M, Sunter N, Hérault O, Mazurier F. Hypoxia and Hypoxia-Inducible Factors in Leukemias. Front Oncol 2016; 6:41. [PMID: 26955619 PMCID: PMC4767894 DOI: 10.3389/fonc.2016.00041] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/08/2016] [Indexed: 01/10/2023] Open
Abstract
Despite huge improvements in the treatment of leukemia, the percentage of patients suffering relapse still remains significant. Relapse most often results from a small number of leukemic stem cells (LSCs) within the bone marrow, which are able to self-renew, and therefore reestablish the full tumor. The marrow microenvironment contributes considerably in supporting the protection and development of leukemic cells. LSCs share specific niches with normal hematopoietic stem cells with the niche itself being composed of a variety of cell types, including mesenchymal stem/stromal cells, bone cells, immune cells, neuronal cells, and vascular cells. A hallmark of the hematopoietic niche is low oxygen partial pressure, indeed this hypoxia is necessary for the long-term maintenance of hematopoietic stem/progenitor cells. Hypoxia is a strong signal, principally maintained by members of the hypoxia-inducible factor (HIF) family. In solid tumors, it has been well established that hypoxia triggers intrinsic metabolic changes and microenvironmental modifications, such as the stimulation of angiogenesis, through activation of HIFs. As leukemia is not considered a “solid” tumor, the role of oxygen in the disease was presumed to be inconsequential and remained long overlooked. This view has now been revised since hypoxia has been shown to influence leukemic cell proliferation, differentiation, and resistance to chemotherapy. However, the role of HIF proteins remains controversial with HIFs being considered as either oncogenes or tumor suppressor genes, depending on the study and model. The purpose of this review is to highlight our knowledge of hypoxia and HIFs in leukemic development and therapeutic resistance and to discuss the recent hypoxia-based strategies proposed to eradicate leukemias.
Collapse
Affiliation(s)
- Margaux Deynoux
- Génétique, Immunothérapie, Chimie et Cancer (GICC) UMR 7292, CNRS, UFR de Médecine, Université François-Rabelais de Tours , Tours , France
| | - Nicola Sunter
- Génétique, Immunothérapie, Chimie et Cancer (GICC) UMR 7292, CNRS, UFR de Médecine, Université François-Rabelais de Tours , Tours , France
| | - Olivier Hérault
- Génétique, Immunothérapie, Chimie et Cancer (GICC) UMR 7292, CNRS, UFR de Médecine, Université François-Rabelais de Tours, Tours, France; Service d'Hématologie Biologique, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Frédéric Mazurier
- Génétique, Immunothérapie, Chimie et Cancer (GICC) UMR 7292, CNRS, UFR de Médecine, Université François-Rabelais de Tours , Tours , France
| |
Collapse
|
98
|
Slone WL, Moses BS, Evans R, Piktel D, Martin KH, Petros W, Craig M, Gibson LF. Modeling Chemotherapy Resistant Leukemia In Vitro. J Vis Exp 2016:e53645. [PMID: 26891147 DOI: 10.3791/53645] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
It is well established that the bone marrow microenvironment provides a unique site of sanctuary for hematopoietic diseases that both initiate and progress in this site. The model presented in the current report utilizes human primary bone marrow stromal cells and osteoblasts as two representative cell types from the marrow niche that influence tumor cell phenotype. The in vitro co-culture conditions described for human leukemic cells with these primary niche components support the generation of a chemoresistant subpopulation of tumor cells that can be efficiently recovered from culture for analysis by diverse techniques. A strict feeding schedule to prevent nutrient fluxes followed by gel type 10 cross-linked dextran (G10) particles recovery of the population of tumor cells that have migrated beneath the adherent bone marrow stromal cells (BMSC) or osteoblasts (OB) generating a "phase dim" (PD) population of tumor cells, provides a consistent source of purified therapy resistant leukemic cells. This clinically relevant population of tumor cells can be evaluated by standard methods to investigate apoptotic, metabolic, and cell cycle regulatory pathways as well as providing a more rigorous target in which to test novel therapeutic strategies prior to pre-clinical investigations targeted at minimal residual disease.
Collapse
Affiliation(s)
- William L Slone
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of the Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine
| | - Blake S Moses
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of the Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine
| | - Rebecca Evans
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of the Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine
| | - Debbie Piktel
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of the Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine
| | - Karen H Martin
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of the Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine; Department of Neurobiology and Anatomy, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine
| | - William Petros
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of the Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine
| | - Michael Craig
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of the Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine
| | - Laura F Gibson
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of the Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine; Department of Microbiology, Immunology and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine;
| |
Collapse
|
99
|
Wuchter P, Saffrich R, Giselbrecht S, Nies C, Lorig H, Kolb S, Ho AD, Gottwald E. Microcavity arrays as an in vitro model system of the bone marrow niche for hematopoietic stem cells. Cell Tissue Res 2016; 364:573-584. [PMID: 26829941 DOI: 10.1007/s00441-015-2348-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/10/2015] [Indexed: 12/28/2022]
Abstract
In previous studies human mesenchymal stromal cells (MSCs) maintained the "stemness" of human hematopoietic progenitor cells (HPCs) through direct cell-cell contact in two-dimensional co-culture systems. We establish a three-dimensional (3D) co-culture system based on a custom-made chip, the 3(D)-KITChip, as an in vitro model system of the human hematopoietic stem cell niche. This array of up to 625 microcavities, with 300 μm size in each orientation, was inserted into a microfluidic bioreactor. The microcavities of the 3(D)-KITChip were inoculated with human bone marrow MSCs together with umbilical cord blood HPCs. MSCs used the microcavities as a scaffold to build a complex 3D mesh. HPCs were distributed three-dimensionally inside this MSC network and formed ß-catenin- and N-cadherin-based intercellular junctions to the surrounding MSCs. Using RT(2)-PCR and western blots, we demonstrate that a proportion of HPCs maintained the expression of CD34 throughout a culture period of 14 days. In colony-forming unit assays, the hematopoietic stem cell plasticity remained similar after 14 days of bioreactor co-culture, whereas monolayer co-cultures showed increasing signs of HPC differentiation and loss of stemness. These data support the notion that the 3D microenvironment created within the microcavity array preserves vital stem cell functions of HPCs more efficiently than conventional co-culture systems.
Collapse
Affiliation(s)
- Patrick Wuchter
- Department of Medicine V, Heidelberg University, 69120, Heidelberg, Germany. .,HEiKA - Heidelberg Karlsruhe Research Partnership, Heidelberg University and Karlsruhe Institute of Technology, Heidelberg and Karlsruhe, Germany.
| | - Rainer Saffrich
- Department of Medicine V, Heidelberg University, 69120, Heidelberg, Germany.,HEiKA - Heidelberg Karlsruhe Research Partnership, Heidelberg University and Karlsruhe Institute of Technology, Heidelberg and Karlsruhe, Germany
| | - Stefan Giselbrecht
- HEiKA - Heidelberg Karlsruhe Research Partnership, Heidelberg University and Karlsruhe Institute of Technology, Heidelberg and Karlsruhe, Germany.,Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Cordula Nies
- Institute for Biological Interfaces-5, Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Karlsruhe, Germany.,HEiKA - Heidelberg Karlsruhe Research Partnership, Heidelberg University and Karlsruhe Institute of Technology, Heidelberg and Karlsruhe, Germany
| | - Hanna Lorig
- Institute for Biological Interfaces-5, Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Karlsruhe, Germany.,HEiKA - Heidelberg Karlsruhe Research Partnership, Heidelberg University and Karlsruhe Institute of Technology, Heidelberg and Karlsruhe, Germany
| | - Stephanie Kolb
- Institute for Biological Interfaces-5, Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Karlsruhe, Germany.,HEiKA - Heidelberg Karlsruhe Research Partnership, Heidelberg University and Karlsruhe Institute of Technology, Heidelberg and Karlsruhe, Germany
| | - Anthony D Ho
- Department of Medicine V, Heidelberg University, 69120, Heidelberg, Germany.,HEiKA - Heidelberg Karlsruhe Research Partnership, Heidelberg University and Karlsruhe Institute of Technology, Heidelberg and Karlsruhe, Germany
| | - Eric Gottwald
- Institute for Biological Interfaces-5, Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Karlsruhe, Germany. .,HEiKA - Heidelberg Karlsruhe Research Partnership, Heidelberg University and Karlsruhe Institute of Technology, Heidelberg and Karlsruhe, Germany.
| |
Collapse
|
100
|
Moses BS, Slone WL, Thomas P, Evans R, Piktel D, Angel PM, Walsh CM, Cantrell PS, Rellick SL, Martin KH, Simpkins JW, Gibson LF. Bone marrow microenvironment modulation of acute lymphoblastic leukemia phenotype. Exp Hematol 2016; 44:50-9.e1-2. [PMID: 26407636 PMCID: PMC4684957 DOI: 10.1016/j.exphem.2015.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/11/2015] [Accepted: 09/12/2015] [Indexed: 01/25/2023]
Abstract
Acute lymphoblastic leukemia (ALL) treatment regimens have dramatically improved the survival of ALL patients. However, chemoresistant minimal residual disease that persists following cessation of therapy contributes to aggressive relapse. The bone marrow microenvironment (BMM) is an established "site of sanctuary" for ALL, as well as myeloid-lineage hematopoietic disease, with signals in this unique anatomic location contributing to drug resistance. Several models have been developed to recapitulate the interactions between the BMM and ALL cells. However, many in vitro models fail to accurately reflect the level of protection afforded to the most resistant subset of leukemic cells during coculture with BMM elements. Preclinical in vivo models have advantages, but can be costly, and are often not fully informed by optimal in vitro studies. We describe an innovative extension of 2-D coculture wherein ALL cells uniquely interact with bone marrow-derived stromal cells. Tumor cells in this model bury beneath primary human bone marrow-derived stromal cells or osteoblasts, termed "phase dim" ALL, and exhibit a unique phenotype characterized by altered metabolism, distinct protein expression profiles, increased quiescence, and pronounced chemotherapy resistance. Investigation focused on the phase dim subpopulation may more efficiently inform preclinical design and investigation of the minimal residual disease and relapse that arise from BMM-supported leukemic tumor cells.
Collapse
Affiliation(s)
- Blake S Moses
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of the Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV
| | - William L Slone
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of the Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV
| | - Patrick Thomas
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of the Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV
| | - Rebecca Evans
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of the Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV
| | - Debbie Piktel
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of the Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV
| | | | | | | | - Stephanie L Rellick
- Department of Physiology & Pharmacology, West Virginia University School of Medicine, Morgantown, WV
| | - Karen H Martin
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of the Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV; Department of Neurobiology and Anatomy, West Virginia University School of Medicine, Morgantown, WV
| | - James W Simpkins
- Department of Physiology & Pharmacology, West Virginia University School of Medicine, Morgantown, WV; Center for Basic and Translational Stroke Research, West Virginia University School of Medicine, Morgantown, WV; Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV
| | - Laura F Gibson
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of the Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV; Department of Microbiology, Immunology and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morganstown, WV.
| |
Collapse
|