51
|
Molecular docking and biological studies of the Cu(II) and Ni(II) macroacyclic complexes with 1,4-bis(o-aminobenzyl)-1,4-diazacycloheptane, a ligand containing the homopiperazine moiety. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
52
|
Choińska R, Piasecka-Jóźwiak K, Woźniak Ł, Świder O, Bartosiak E, Bujak M, Roszko MŁ. Starter culture-related changes in free amino acids, biogenic amines profile, and antioxidant properties of fermented red beetroot grown in Poland. Sci Rep 2022; 12:20063. [PMID: 36414746 PMCID: PMC9681880 DOI: 10.1038/s41598-022-24690-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Fermentation of two red beet cultivars (Wodan and Alto) with single-strain starter cultures consisting of selected strains of lactic acid bacteria (LAB) of plant origin (Weissella cibaria KKP2058, Levilactobacillus brevis ZF165) and a multi-strain culture (containing W. cibaria KKP2058, L. brevis ZF165, Lactiplantibacillus plantarum KKP1822, Limosilactobacillus fermentum KKP1820, and Leuconostoc mesenteroides JEIIF) was performed to evaluate their impact on betalains, free amino acids, formation of biogenic amines, and antioxidative properties of the juice formed. Next-generation sequencing data analysis used to identify the microbial community revealed that the starter cultures promoted the dominance of the genus Lactobacillus, and decreased the proportion of spoilage bacteria compared to spontaneously fermented juices. Generally, the fermentation process significantly influenced the amount of the analyzed compounds, leading in most cases to their reduction. The observed changes in the studied parameters depended on the starter culture used, indicating different metabolic activities of the LAB strains towards bioactive compounds. The use of multi-strain starter cultures allowed to largely prevent the reduction of betacyanins and histamine formation.
Collapse
Affiliation(s)
- Renata Choińska
- grid.460348.d0000 0001 2286 1336Department of Fermentation Technology, Prof. W. Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka Str. 36, 02-532 Warsaw, Poland
| | - Katarzyna Piasecka-Jóźwiak
- grid.460348.d0000 0001 2286 1336Department of Fermentation Technology, Prof. W. Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka Str. 36, 02-532 Warsaw, Poland
| | - Łukasz Woźniak
- grid.460348.d0000 0001 2286 1336Department of Fruit and Vegetable Product Technology, Prof. W. Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka Str. 36, 02-532 Warsaw, Poland
| | - Olga Świder
- grid.460348.d0000 0001 2286 1336Department of Food Safety and Chemical Analysis, Prof. W. Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka Str. 36, 02-532 Warsaw, Poland
| | - Elżbieta Bartosiak
- grid.460348.d0000 0001 2286 1336Department of Fermentation Technology, Prof. W. Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka Str. 36, 02-532 Warsaw, Poland
| | - Marzena Bujak
- grid.460348.d0000 0001 2286 1336Department of Fermentation Technology, Prof. W. Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka Str. 36, 02-532 Warsaw, Poland
| | - Marek Łukasz Roszko
- grid.460348.d0000 0001 2286 1336Department of Food Safety and Chemical Analysis, Prof. W. Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka Str. 36, 02-532 Warsaw, Poland
| |
Collapse
|
53
|
Batchu P, Naldurtiker A, Kouakou B, Terrill TH, McCommon GW, Kannan G. Metabolomic exploration of the effects of habituation to livestock trailer and extended transportation in goats. Front Mol Biosci 2022; 9:1027069. [PMID: 36465562 PMCID: PMC9714579 DOI: 10.3389/fmolb.2022.1027069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/01/2022] [Indexed: 03/26/2024] Open
Abstract
Goats raised for meat production are often transported long distances. Twelve-month-old male Spanish goats were used to determine the effects of habituation to trailers on plasma metabolomic profiles when transported for extended periods. In a split-plot design, 168 goats were separated into two treatment (TRT; whole plot) groups and maintained on two different paddocks. Concentrate supplement was fed to one group inside two livestock trailers (habituated group, H), while the other group received the same quantity of concentrate, but not inside the trailers (non-habituated, NH). Goats were subjected to a 10-h transportation stress in 4 replicates (n = 21 goats/replicate/TRT) after 4 weeks of habituation period. Blood samples were collected prior to loading, 20 min after loading (0 h), and at 2, 4, 6, 8, and 10 h of transportation (Time; subplot). A targeted quantitative metabolomics approach was employed to analyze the samples. The data were analyzed using R software and MIXED procedures in SAS. Several amino acids (alanine, serine, glycine, histidine, glutamate, trans-hydroxyproline, asparagine, threonine, methylhistidine, ornithine, proline, leucine, tryptophan) were higher (p < 0.05) in the H group compared to the NH group. Six long-chain acylcarnitines were higher (p < 0.05), while free (C0) and short-chain (C3, C5) carnitines were lower (p < 0.05) in the NH goats compared to the H goats. In general, amino acid concentrations decreased and long-chain acylcarnitine (>C10) levels increased with transportation time (p < 0.05). Butyric acid, α-ketoglutaric acid, and α-aminoadipic acid concentrations were lower (p < 0.05) and β-hydroxybutyric acid concentrations were higher in the NH goats compared to the H goats. Plasma glucose, non-esterified fatty acid (NEFA) and urea nitrogen concentrations were significantly influenced by Time (p < 0.01). Plasma NEFA concentrations were significantly lower (p < 0.01) in the H group than the NH group. Habituation to trailers can be beneficial in enhancing stress coping abilities in goats due to higher concentrations of metabolites such as butyrate and certain amino acids that support antioxidant activities and immune function. Plasma long-chain acylcarnitines may be good indicators of stress during long-distance transportation in goats.
Collapse
Affiliation(s)
| | | | | | | | | | - Govind Kannan
- Agricultural Research Station, Fort Valley State University, Fort Valley, GA, United States
| |
Collapse
|
54
|
Afify N, Ferreiro-Rangel CA, Sweatman MB. Molecular Dynamics Investigation of Giant Clustering in Small-Molecule Solutions: The Case of Aqueous PEHA. J Phys Chem B 2022; 126:8882-8891. [PMID: 36282173 PMCID: PMC9639140 DOI: 10.1021/acs.jpcb.2c04489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/27/2022] [Indexed: 01/11/2023]
Abstract
The importance of the formation of giant clusters in solution, in nature and industry, is increasingly recognized. However, relatively little attention has been paid to the formation of giant clusters in solutions of small, relatively soluble but nonamphiphilic molecules. In this work, we present a general methodology based on molecular dynamics that can be used to investigate such systems. As a case study, we focus on the formation of apparently stable clusters of pentaethylenehexamine (PEHA) in water. These clusters have been used as templates for the construction of bioinspired silica nanoparticles. To better understand clustering in this system, we study the effect of PEHA protonation state (neutral, +1, and +2) and counterion type (chloride or acetate) on PEHA clustering in dilute aqueous solutions (200 and 400 mM) using large-scale classical molecular dynamics. We find that large stable clusters are formed by singly charged PEHA with chloride or acetate as the counterion, although it is not clear for the case with acetate whether bulk phase separation, that might lead to precipitation, would eventually occur. Large clusters also appear to be stable for doubly charged PEHA with acetate, the less soluble counterion. We attribute this behavior to a form of complex coacervation, observed here for relatively small and highly soluble molecules (PEHA + counterion) rather than the large polyions usually found to form such coacervates. We discuss whether this behavior might also be described by an effective SALR (short-range attraction, long-range repulsion) interaction. This work might help future studies of additives for the design of novel bioinspired templated nanomaterials and of giant clustering in small-molecule solutions more generally.
Collapse
Affiliation(s)
- Nasser
D. Afify
- School of Engineering, The University of Edinburgh, The King’s Buildings, Sanderson Building,
Mayfield Road, Edinburgh EH9 3JL, United Kingdom
| | - Carlos A. Ferreiro-Rangel
- School of Engineering, The University of Edinburgh, The King’s Buildings, Sanderson Building,
Mayfield Road, Edinburgh EH9 3JL, United Kingdom
| | - Martin B. Sweatman
- School of Engineering, The University of Edinburgh, The King’s Buildings, Sanderson Building,
Mayfield Road, Edinburgh EH9 3JL, United Kingdom
| |
Collapse
|
55
|
Ben Hsouna A, Michalak M, Kukula-Koch W, Ben Saad R, ben Romdhane W, Zeljković SĆ, Mnif W. Evaluation of Halophyte Biopotential as an Unused Natural Resource: The Case of Lobularia maritima. Biomolecules 2022; 12:1583. [PMID: 36358933 PMCID: PMC9687265 DOI: 10.3390/biom12111583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 10/15/2023] Open
Abstract
Halophytes are plant species widely distributed in saline habitats, such as beaches, postindustrial wastelands, irrigated lands, salt flats, and others. Excessive salt level, known to limit plant growth, is not harmful to halophytes, which have developed a variety of defense mechanisms allowing them to colonize harsh environments. Plants under stress are known to respond with several morpho-anatomical adaptations, but also to enhance the production of secondary metabolites to better cope with difficult conditions. Owing to these adaptations, halophytes are an interesting group of undemanding plants with a high potential for application in the food and pharmaceutical industries. Therefore, this review aims to present the characteristics of halophytes, describe changes in their gene expression, and discuss their synthesized metabolites of pharmacognostic and pharmacological significance. Lobularia maritima is characterized as a widely spread halophyte that has been shown to exhibit various pharmacological properties in vitro and in vivo. It is concluded that halophytes may become important sources of natural products for the treatment of various ailments and for supplementing the human diet with necessary non-nutrients and minerals. However, extensive studies are needed to deepen the knowledge of their biological potential in vivo, so that they can be introduced to the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, University of Sfax, Sfax 3018, Tunisia
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir-Tunisia, Monastir 5000, Tunisia
| | - Monika Michalak
- Collegium Medicum, Jan Kochanowski University, IX WiekówKielc 19, 35-317 Kielce, Poland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, University of Sfax, Sfax 3018, Tunisia
| | - Walid ben Romdhane
- Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sanja Ćavar Zeljković
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Wissem Mnif
- Department of Chemistry, Faculty of Sciences and Arts in Balgarn, University of Bisha, Bisha 61922, Saudi Arabia
- ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, University of Manouba, Ariana 2020, Tunisia
| |
Collapse
|
56
|
Shao J, Huang K, Batool M, Idrees F, Afzal R, Haroon M, Noushahi HA, Wu W, Hu Q, Lu X, Huang G, Aamer M, Hassan MU, El Sabagh A. Versatile roles of polyamines in improving abiotic stress tolerance of plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1003155. [PMID: 36311109 PMCID: PMC9606767 DOI: 10.3389/fpls.2022.1003155] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
In recent years, extreme environmental cues such as abiotic stresses, including frequent droughts with irregular precipitation, salinity, metal contamination, and temperature fluctuations, have been escalating the damage to plants' optimal productivity worldwide. Therefore, yield maintenance under extreme events needs improvement in multiple mechanisms that can minimize the influence of abiotic stresses. Polyamines (PAs) are pivotally necessary for a defensive purpose under adverse abiotic conditions, but their molecular interplay in this remains speculative. The PAs' accretion is one of the most notable metabolic responses of plants under stress challenges. Recent studies reported the beneficial roles of PAs in plant development, including metabolic and physiological processes, unveiling their potential for inducing tolerance against adverse conditions. This review presents an overview of research about the most illustrious and remarkable achievements in strengthening plant tolerance to drought, salt, and temperature stresses by the exogenous application of PAs. The knowledge of underlying processes associated with stress tolerance and PA signaling pathways was also summarized, focusing on up-to-date evidence regarding the metabolic and physiological role of PAs with exogenous applications that protect plants under unfavorable climatic conditions. Conclusively, the literature proposes that PAs impart an imperative role in abiotic stress tolerance in plants. This implies potentially important feedback on PAs and plants' stress tolerance under unfavorable cues.
Collapse
Affiliation(s)
- Jinhua Shao
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
- China Guangxi Hydraulic Research Institute, Nanning, China
- Key Laboratory of Water Engineering Materials and Structures, Nanning, China
| | - Kai Huang
- China Guangxi Hydraulic Research Institute, Nanning, China
- Key Laboratory of Water Engineering Materials and Structures, Nanning, China
| | - Maria Batool
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fahad Idrees
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Rabail Afzal
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Haroon
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Weixiong Wu
- China Guangxi Hydraulic Research Institute, Nanning, China
- Key Laboratory of Water Engineering Materials and Structures, Nanning, China
| | - Qiliang Hu
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Xingda Lu
- China Guangxi Hydraulic Research Institute, Nanning, China
- Key Laboratory of Water Engineering Materials and Structures, Nanning, China
| | - Guoqin Huang
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Muhammad Aamer
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Ayman El Sabagh
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
- Department of Agronomy, Faculty of Agriculture, University of Kafrelsheikh, Kafr El Sheikh, Egypt
| |
Collapse
|
57
|
Rajarapu SP, Ben-Mahmoud S, Benoit JB, Ullman DE, Whitfield AE, Rotenberg D. Sex-biased proteomic response to tomato spotted wilt virus infection of the salivary glands of Frankliniella occidentalis, the western flower thrips. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 149:103843. [PMID: 36113709 DOI: 10.1016/j.ibmb.2022.103843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Successful transmission of tomato spotted wilt virus (TSWV) by Frankliniella occidentalis requires robust infection of the salivary glands (SGs) and virus delivery to plants during salivation. Feeding behavior and transmission efficiency are sexually-dimorphic traits of this thrips vector species. Proteins secreted from male and female SG tissues, and the effect of TSWV infection on the thrips SG proteome are unknown. To begin to discern thrips factors that facilitate virus infection of SGs and transmission by F. occidentalis, we used gel- and label-free quantitative and qualitative proteomics to address two hypotheses: (i) TSWV infection modifies the composition and/or abundance of SG-expressed proteins in adults; and (ii) TSWV has a differential effect on the male and female SG proteome and secreted saliva. Our study revealed a sex-biased SG proteome for F. occidentalis, and TSWV infection modulated the SG proteome in a sex-dependent manner as evident by the number, differential abundance, identities and generalized roles of the proteins. Male SGs exhibited a larger proteomic response to the virus than female SGs. Intracellular processes modulated by TSWV in males indicated perturbation of SG cytoskeletal networks and cell-cell interactions, i.e., basement membrane (BM) and extracellular matrix (ECM) proteins, and subcellular processes consistent with a metabolic slow-down under infection. Several differentially-abundant proteins in infected male SGs play critical roles in viral life cycles of other host-virus pathosystems. In females, TSWV modulated processes consistent with tissue integrity and active translational and transcriptional regulation. A core set of proteins known for their roles in plant cell-wall degradation and protein metabolism were identified in saliva of both sexes, regardless of virus infection status. Saliva proteins secreted by TSWV-infected adults indicated energy generation, consumption and protein turnover, with an enrichment of cytoskeletal/BM/ECM proteins and tricarboxylic acid cycle proteins in male and female saliva, respectively. The nonstructural TSWV protein NSs - a multifunctional viral effector protein reported to target plant defenses against TSWV and thrips - was identified in female saliva. This study represents the first description of the SG proteome and secretome of a thysanopteran and provides many candidate proteins to further unravel the complex interplay between the virus, insect vector, and plant host.
Collapse
Affiliation(s)
- Swapna Priya Rajarapu
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sulley Ben-Mahmoud
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Diane E Ullman
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
58
|
Fischerová L, Gemperlová L, Cvikrová M, Matušíková I, Moravčíková J, Gerši Z, Malbeck J, Kuderna J, Pavlíčková J, Motyka V, Eliášová K, Vondráková Z. The humidity level matters during the desiccation of Norway spruce somatic embryos. FRONTIERS IN PLANT SCIENCE 2022; 13:968982. [PMID: 35968100 PMCID: PMC9372446 DOI: 10.3389/fpls.2022.968982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
In Norway spruce, as in many other conifers, the germination capacity of somatic embryos is strongly influenced by the desiccation phase inserted after maturation. The intensity of drying during desiccation eminently affected the formation of emblings (i.e., seedlings developed from somatic embryos). Compared to non-desiccated embryos, the germination capacity of embryos desiccated at 100% relative humidity was about three times higher, but the reduction of relative humidity to 95 and 90% had a negative effect on the subsequent embryo development. The water loss observed in these embryos did not lead to an increase in lipid peroxidation, as shown by malondialdehyde levels. Another metabolic pathway in plants that mediates a response to abiotic stresses is directed toward the biosynthesis of polyamines (PAs). The activities of PA biosynthetic enzymes increased steadily in embryos during desiccation at 100% relative humidity, whereas they decreased at lower humidity. The total content of free PAs in the embryos gradually decreased throughout desiccation. The increase in free putrescine (Put) and perchloric acid-insoluble Put conjugates was observed in embryos desiccated at lower humidity. These changes were accompanied to some extent by the transcription of the genes for the PA biosynthesis enzymes. Desiccation at 100% relative humidity increased the activity of the cell wall-modifying enzymes β-1,3-glucanases and chitinases; the activities of these enzymes were also significantly suppressed at reduced humidity. The same pattern was observed in the transcription of some β-1,3-glucanase and chitinase genes. Desiccation treatments triggered metabolic processes that responded to water availability, suggesting an active response of the embryo to the reduction in humidity. A positive effect was demonstrated only for desiccation at high relative humidity. Some of the physiological characteristics described can be used as markers of inappropriate relative humidity during somatic embryo desiccation.
Collapse
Affiliation(s)
- Lucie Fischerová
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Lenka Gemperlová
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Milena Cvikrová
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Ildiko Matušíková
- Department of Ecochemistry and Radioecology, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Jana Moravčíková
- Department of Biotechnologies, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Zuzana Gerši
- Department of Biology, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Jiří Malbeck
- Laboratory of Mass Spectroscopy, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Jan Kuderna
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Jana Pavlíčková
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Václav Motyka
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Kateřina Eliášová
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Zuzana Vondráková
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
59
|
Yousuf M, Shamsi A, Mohammad T, Azum N, Alfaifi SYM, Asiri AM, Mohamed Elasbali A, Islam A, Hassan MI, Haque QMR. Inhibiting Cyclin-Dependent Kinase 6 by Taurine: Implications in Anticancer Therapeutics. ACS OMEGA 2022; 7:25844-25852. [PMID: 35910117 PMCID: PMC9330843 DOI: 10.1021/acsomega.2c03479] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Cyclin-dependent kinase 6 (CDK6) is linked with a cyclin partner and plays a crucial role in the early stages of cancer development. It is currently a potential drug target for developing therapeutic molecules targeting cancer therapy. Here, we have identified taurine as an inhibitor of CDK6 using combined in silico and experimental studies. We performed various experiments to find the binding affinity of taurine with CDK6. Molecular docking analysis revealed critical residues of CDK6 that are involved in taurine binding. Fluorescence measurement studies showed that taurine binds to CDK6 with a significant binding affinity, with a binding constant of K = 0.7 × 107 M-1 for the CDK6-taurine complex. Enzyme inhibition assay suggested taurine as a good inhibitor of CDK6 possessing an IC50 value of 4.44 μM. Isothermal titration calorimetry analysis further confirmed a spontaneous binding of taurine with CDK6 and delineated the thermodynamic parameters for the CDK6-taurine system. Altogether, this study established taurine as a CDK6 inhibitor, providing a base for using taurine and its derivatives in CDK6-associated cancer and other diseases.
Collapse
Affiliation(s)
- Mohd Yousuf
- Department
of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Anas Shamsi
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Centre
of
Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Taj Mohammad
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Naved Azum
- Center
of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Sulaiman Y. M. Alfaifi
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Abdullah M. Asiri
- Center
of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Abdelbaset Mohamed Elasbali
- Clinical
Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka 72388, Saudi Arabia
| | - Asimul Islam
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | | |
Collapse
|
60
|
Jung M, Pan X, Cunningham EL, Passmore AP, McGuinness B, McAuley DF, Beverland D, O’Brien S, Mawhinney T, Schott JM, Zetterberg H, Green BD. The Influence of Orthopedic Surgery on Circulating Metabolite Levels, and their Associations with the Incidence of Postoperative Delirium. Metabolites 2022; 12:616. [PMID: 35888740 PMCID: PMC9319890 DOI: 10.3390/metabo12070616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/05/2023] Open
Abstract
The mechanisms underlying the occurrence of postoperative delirium development are unclear and measurement of plasma metabolites may improve understanding of its causes. Participants (n = 54) matched for age and gender were sampled from an observational cohort study investigating postoperative delirium. Participants were ≥65 years without a diagnosis of dementia and presented for primary elective hip or knee arthroplasty. Plasma samples collected pre- and postoperatively were grouped as either control (n = 26, aged: 75.8 ± 5.2) or delirium (n = 28, aged: 76.2 ± 5.7). Widespread changes in plasma metabolite levels occurred following surgery. The only metabolites significantly differing between corresponding control and delirium samples were ornithine and spermine. In delirium cases, ornithine was 17.6% higher preoperatively, and spermine was 12.0% higher postoperatively. Changes were not associated with various perioperative factors. In binary logistic regression modeling, these two metabolites did not confer a significantly increased risk of delirium. These findings support the hypothesis that disturbed polyamine metabolism is an underlying factor in delirium that warrants further investigation.
Collapse
Affiliation(s)
- Mijin Jung
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 8 Malone Road, Belfast BT9 5BN, Northern Ireland, UK; (M.J.); (X.P.)
| | - Xiaobei Pan
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 8 Malone Road, Belfast BT9 5BN, Northern Ireland, UK; (M.J.); (X.P.)
| | - Emma L. Cunningham
- Centre for Public Health, Institute of Clinical Sciences, Queen’s University Belfast, Block B, Royal Victoria Hospital Site, Grosvenor Road, Belfast BT12 6BA, Northern Ireland, UK; (E.L.C.); (A.P.P.); (B.M.)
| | - Anthony P. Passmore
- Centre for Public Health, Institute of Clinical Sciences, Queen’s University Belfast, Block B, Royal Victoria Hospital Site, Grosvenor Road, Belfast BT12 6BA, Northern Ireland, UK; (E.L.C.); (A.P.P.); (B.M.)
| | - Bernadette McGuinness
- Centre for Public Health, Institute of Clinical Sciences, Queen’s University Belfast, Block B, Royal Victoria Hospital Site, Grosvenor Road, Belfast BT12 6BA, Northern Ireland, UK; (E.L.C.); (A.P.P.); (B.M.)
| | - Daniel F. McAuley
- Centre for Experimental Medicine, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK;
| | - David Beverland
- Outcomes Assessment Unit, Musgrave Park Hospital, Belfast Trust, Stockman’s Lane, Belfast BT9 7JB, Northern Ireland, UK;
| | - Seamus O’Brien
- Cardiac Surgical Intensive Care Unit, Belfast Trust, Royal Victoria Hospital, Grosvenor Road, Belfast BT12 6BA, Northern Ireland, UK; (S.O.); (T.M.)
| | - Tim Mawhinney
- Cardiac Surgical Intensive Care Unit, Belfast Trust, Royal Victoria Hospital, Grosvenor Road, Belfast BT12 6BA, Northern Ireland, UK; (S.O.); (T.M.)
| | - Jonathan M. Schott
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1E 6BT, UK; (J.M.S.); (H.Z.)
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1E 6BT, UK; (J.M.S.); (H.Z.)
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, House V, S-431 80 Mölndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Brian D. Green
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 8 Malone Road, Belfast BT9 5BN, Northern Ireland, UK; (M.J.); (X.P.)
| |
Collapse
|
61
|
Microbial-derived metabolites as a risk factor of age-related cognitive decline and dementia. Mol Neurodegener 2022; 17:43. [PMID: 35715821 PMCID: PMC9204954 DOI: 10.1186/s13024-022-00548-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
A consequence of our progressively ageing global population is the increasing prevalence of worldwide age-related cognitive decline and dementia. In the absence of effective therapeutic interventions, identifying risk factors associated with cognitive decline becomes increasingly vital. Novel perspectives suggest that a dynamic bidirectional communication system between the gut, its microbiome, and the central nervous system, commonly referred to as the microbiota-gut-brain axis, may be a contributing factor for cognitive health and disease. However, the exact mechanisms remain undefined. Microbial-derived metabolites produced in the gut can cross the intestinal epithelial barrier, enter systemic circulation and trigger physiological responses both directly and indirectly affecting the central nervous system and its functions. Dysregulation of this system (i.e., dysbiosis) can modulate cytotoxic metabolite production, promote neuroinflammation and negatively impact cognition. In this review, we explore critical connections between microbial-derived metabolites (secondary bile acids, trimethylamine-N-oxide (TMAO), tryptophan derivatives and others) and their influence upon cognitive function and neurodegenerative disorders, with a particular interest in their less-explored role as risk factors of cognitive decline.
Collapse
|
62
|
Anticancer Cytotoxic Activity of Bispidine Derivatives Associated with the Increasing Catabolism of Polyamines. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123872. [PMID: 35744995 PMCID: PMC9229528 DOI: 10.3390/molecules27123872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 12/21/2022]
Abstract
Polyamine (PA) catabolism is often reduced in cancer cells. The activation of this metabolic pathway produces cytotoxic substances that might cause apoptosis in cancer cells. Chemical compounds able to restore the level of PA catabolism in tumors could become potential antineoplastic agents. The search for activators of PA catabolism among bicyclononan-9-ones is a promising strategy for drug development. The aim of the study was to evaluate the biological activity of new 3,7-diazabicyclo[3.3.1]nonan-9-one derivatives that have antiproliferative properties by accelerating PA catabolism. Eight bispidine derivatives were synthetized and demonstrated the ability to activate PA catabolism in regenerating rat liver homogenates. However, only three of them demonstrated a potent ability to decrease the viability of cancer cells in the MTT assay. Compounds 4c and 4e could induce apoptosis more effectively in cancer HepG2 cells rather than in normal WI-38 fibroblasts. The lead compound 4e could significantly enhance cancer cell death, but not the death of normal cells if PAs were added to the cell culture media. Thus, the bispidine derivative 4e 3-(3-methoxypropyl)-7-[3-(1H-piperazin-1-yl)ethyl]-3,7-diazabicyclo[3.3.1]nonane could become a potential anticancer drug substance whose mechanism relies on the induction of PA catabolism in cancer cells.
Collapse
|
63
|
Paiva CL, Netto DA, Queiroz VA, Gloria MBA. Germinated sorghum (Sorghum bicolor L.) and seedlings show expressive contents of putrescine. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
64
|
Zhang Y, Zhang TT, Gao L, Tan YN, Li YT, Tan XY, Huang TX, Li HH, Bai F, Zou C, Pei XH, Tan BB, Fu L. Downregulation of MTAP promotes Tumor Growth and Metastasis by regulating ODC Activity in Breast Cancer. Int J Biol Sci 2022; 18:3034-3047. [PMID: 35541910 PMCID: PMC9066107 DOI: 10.7150/ijbs.67149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
5'-Methylthioadenosine phosphorylase (MTAP) is a key enzyme in the methionine salvage pathway and has been reported to suppress tumorigenesis. The MTAP gene is located at 9p21, a chromosome region often deleted in breast cancer (BC). However, the clinical and biological significance of MTAP in BC is still unclear. Here, we reported that MTAP was frequently downregulated in 41% (35/85) of primary BCs and 89% (8/9) of BC cell lines. Low expression of MTAP was significantly correlated with a poor survival of BC patients (P=0.0334). Functional studies showed that MTAP was able to suppress both in vitro and in vivo tumorigenic ability of BC cells, including migration, invasion, angiogenesis, tumor growth and metastasis in nude mice with orthotopic xenograft tumor of BC. Mechanistically, we found that downregulation of MTAP could increase the polyamine levels by activating ornithine decarboxylase (ODC). By treating the MTAP-repressing BC cells with specific ODC inhibitor Difluoromethylornithine (DFMO) or treating the MTAP-overexpressing BC cells with additional putrescine, metastasis-promoting or -suppressing phenotype of these MTAP-manipulated cells was significantly reversed, respectively. Taken together, our data suggested that MTAP has a critical metastasis-suppressive role by tightly regulating ODC activity in BC cells, which may serve as a prominent novel therapeutic target for advanced breast cancer treatment.
Collapse
Affiliation(s)
- Ying Zhang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China
| | - Tian-Tian Zhang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China
| | - Lin Gao
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Ya-Nan Tan
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Yu-Ting Li
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China
| | - Xiang-Yu Tan
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China
| | - Tu-Xiong Huang
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Hua-Hui Li
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China
| | - Feng Bai
- Department of Pathology, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China
| | - Chang Zou
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Xin-Hai Pei
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China
| | - Bin-Bin Tan
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China
| |
Collapse
|
65
|
Jia D, Liu H, Zhang J, Wan W, Wang Z, Zhang X, Chen Q, Wei T. Polyamine-metabolizing enzymes are activated to promote the proper assembly of rice stripe mosaic virus in insect vectors. STRESS BIOLOGY 2022; 2:10. [PMID: 37676339 PMCID: PMC10441986 DOI: 10.1007/s44154-021-00032-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/30/2021] [Indexed: 09/08/2023]
Abstract
Both viruses and host cells compete for intracellular polyamines for efficient propagation. Currently, how the key polyamine-metabolizing enzymes, including ornithine decarboxylase 1 (ODC1) and its antizyme 1 (OAZ1), are activated to co-ordinate viral propagation and polyamine biosynthesis remains unknown. Here, we report that the matrix protein of rice stripe mosaic virus (RSMV), a cytorhabdovirus, directly hijacks OAZ1 to ensure the proper assembly of rigid bacilliform non-enveloped virions in leafhopper vector. Viral matrix protein effectively competes with ODC1 to bind to OAZ1, and thus, the ability of OAZ1 to target and mediate the degradation of ODC1 is significantly inhibited during viral propagation, which finally promotes polyamines production. Thus, OAZ1 and ODC1 are activated to synergistically promote viral persistent propagation and polyamine biosynthesis in viruliferous vectors. Our data suggest that it is a novel mechanism for rhabdovirus to exploit OAZ1 for facilitating viral assembly.
Collapse
Affiliation(s)
- Dongsheng Jia
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Huan Liu
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Jian Zhang
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Wenqiang Wan
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Zongwen Wang
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Xiaofeng Zhang
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Qian Chen
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China.
| |
Collapse
|
66
|
Yu Z, Jiao Y, Zhang J, Xu Q, Xu J, Li R, Yuan W, Guo H, Sun Z, Zheng L. Effect of Serum Spermidine on the Prognosis in Patients with Acute Myocardial Infarction: A Cohort Study. Nutrients 2022; 14:nu14071394. [PMID: 35406007 PMCID: PMC9002946 DOI: 10.3390/nu14071394] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Spermidine, a natural polyamine, was found critically involved in cardioprotection and lifespan extension from both animal experiments and human studies. Aims: This study aimed to evaluate the effect of serum spermidine levels on the prognosis in patients with acute myocardial infarction (AMI) and investigate the potential mediation effect of oxidative stress in the above relationship. Methods: We included 377 patients with AMI in a prospective cohort study and measured serum spermidine and oxidative stress indexes (superoxide dismutase enzymes, glutathione peroxidase, and Malondialdehyde) using high-performance liquid chromatography with fluorescence detector and enzyme-linked immunosorbent assay, respectively. The associations of spermidine with AMI outcomes were evaluated using Cox proportional hazards models. Results: 84 (22.3%) major adverse cardiac events (MACE) were documented during a mean follow-up of 12.3 ± 4.2 months. After multivariable adjustment, participants with serum spermidine levels of ≥15.38 ng/mL (T3) and 7.59–5.38 ng/mL (T2) had hazard ratio (HR) for recurrent AMI of 0.450 [95% confidence interval (CI): 0.213–0.984] and 0.441 (95% CI: 0.215–0.907) compared with the ≤7.59 ng/mL (T1), respectively. Participants in T3 and T2 had HR for MACE of 0.566 (95% CI: 0.329–0.947) and 0.516 (95% CI: 0.298–0.893) compared with T1. A faint J-shaped association was observed between serum spermidine levels and the risk of MACE (p-nonlinearity = 0.036). Comparisons of areas under receiver operator characteristics curves confirmed that a model including serum spermidine levels had greater predictive power than the one without it (0.733 versus 0.701, p = 0.041). A marginal statistically significant mediation effect of superoxide dismutase was shown on the association between spermidine and MACE (p = 0.091). Conclusions: Serum spermidine was associated with an improved prognosis in individuals with AMI, whereas the underlying mechanism mediated by oxidative stress was not found.
Collapse
Affiliation(s)
- Zhecong Yu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, China; (Z.Y.); (Y.J.); (Q.X.); (J.X.)
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yundi Jiao
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, China; (Z.Y.); (Y.J.); (Q.X.); (J.X.)
| | - Jin Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China;
| | - Qianyi Xu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, China; (Z.Y.); (Y.J.); (Q.X.); (J.X.)
| | - Jiahui Xu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, China; (Z.Y.); (Y.J.); (Q.X.); (J.X.)
| | - Ruixue Li
- School of Public Health, China Medical University, Shenyang 110122, China; (R.L.); (W.Y.); (H.G.)
| | - Wei Yuan
- School of Public Health, China Medical University, Shenyang 110122, China; (R.L.); (W.Y.); (H.G.)
| | - Hui Guo
- School of Public Health, China Medical University, Shenyang 110122, China; (R.L.); (W.Y.); (H.G.)
| | - Zhaoqing Sun
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, China; (Z.Y.); (Y.J.); (Q.X.); (J.X.)
- Correspondence: (Z.S.); (L.Z.); Tel.: +86-24-83282688 (Z.S. & L.Z.); Fax: +86-24-83282346 (Z.S. & L.Z.)
| | - Liqiang Zheng
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, China; (Z.Y.); (Y.J.); (Q.X.); (J.X.)
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence: (Z.S.); (L.Z.); Tel.: +86-24-83282688 (Z.S. & L.Z.); Fax: +86-24-83282346 (Z.S. & L.Z.)
| |
Collapse
|
67
|
Rieck J, Skatchkov SN, Derst C, Eaton MJ, Veh RW. Unique Chemistry, Intake, and Metabolism of Polyamines in the Central Nervous System (CNS) and Its Body. Biomolecules 2022; 12:biom12040501. [PMID: 35454090 PMCID: PMC9025450 DOI: 10.3390/biom12040501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
Polyamines (PAs) are small, versatile molecules with two or more nitrogen-containing positively charged groups and provide widespread biological functions. Most of these aspects are well known and covered by quite a number of excellent surveys. Here, the present review includes novel aspects and questions: (1) It summarizes the role of most natural and some important synthetic PAs. (2) It depicts PA uptake from nutrition and bacterial production in the intestinal system following loss of PAs via defecation. (3) It highlights the discrepancy between the high concentrations of PAs in the gut lumen and their low concentration in the blood plasma and cerebrospinal fluid, while concentrations in cellular cytoplasm are much higher. (4) The present review provides a novel and complete scheme for the biosynthesis of Pas, including glycine, glutamate, proline and others as PA precursors, and provides a hypothesis that the agmatine pathway may rescue putrescine production when ODC knockout seems to be lethal (solving the apparent contradiction in the literature). (5) It summarizes novel data on PA transport in brain glial cells explaining why these cells but not neurons preferentially accumulate PAs. (6) Finally, it provides a novel and complete scheme for PA interconversion, including hypusine, putreanine, and GABA (unique gliotransmitter) as end-products. Altogether, this review can serve as an updated contribution to understanding the PA mystery.
Collapse
Affiliation(s)
- Julian Rieck
- Institut für Zell- und Neurobiologie, Centrum 2, Charité—Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany;
| | - Serguei N. Skatchkov
- Department of Physiology, Universidad Central del Caribe, Bayamón, PR 00956, USA
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA;
- Correspondence: (S.N.S.); (R.W.V.)
| | - Christian Derst
- Institut für Integrative Neuroanatomie, Centrum 2, Charité—Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany;
| | - Misty J. Eaton
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA;
| | - Rüdiger W. Veh
- Institut für Zell- und Neurobiologie, Centrum 2, Charité—Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany;
- Correspondence: (S.N.S.); (R.W.V.)
| |
Collapse
|
68
|
DeFelice BC, Fiehn O, Belafsky P, Ditterich C, Moore M, Abouyared M, Beliveau AM, Farwell DG, Bewley AF, Clayton SM, Archard JA, Pavlic J, Rao S, Kuhn M, Deng P, Halmai J, Fink KD, Birkeland AC, Anderson JD. Polyamine Metabolites as Biomarkers in Head and Neck Cancer Biofluids. Diagnostics (Basel) 2022; 12:diagnostics12040797. [PMID: 35453845 PMCID: PMC9024570 DOI: 10.3390/diagnostics12040797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Novel, non-invasive diagnostic biomarkers that facilitate early intervention in head and neck cancer are urgently needed. Polyamine metabolites have been observed to be elevated in numerous cancer types and correlated with poor prognosis. The aim of this study was to assess the concentration of polyamines in the saliva and urine from head and neck cancer (HNC) patients, compared to healthy controls. Methods: Targeted metabolomic analysis was performed on saliva and urine from 39 HNC patient samples and compared to 89 healthy controls using a quantitative, targeted liquid chromatography mass spectrometry approach. Results: The metabolites N1-acetylspermine (ASP), N8-acetylspermidine (ASD) and N1,N12-diacetylspermine (DAS) were detected at significantly different concentrations in the urine of HNC patients as compared to healthy controls. Only ASP was detected at elevated levels in HNC saliva as compared to healthy controls. Conclusion: These data suggest that assessment of polyamine-based metabolite biomarkers within the saliva and urine warrants further investigation as a potential diagnostic in HNC patients.
Collapse
Affiliation(s)
- Brian C. DeFelice
- West Coast Metabolomics Center, University of California, Davis, CA 95616, USA; (B.C.D.); (O.F.)
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, CA 95616, USA; (B.C.D.); (O.F.)
| | - Peter Belafsky
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis, CA 95616, USA; (P.B.); (C.D.); (M.M.); (M.A.); (A.M.B.); (D.G.F.); (A.F.B.); (S.M.C.); (J.A.A.); (J.P.); (M.K.)
| | - Constanze Ditterich
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis, CA 95616, USA; (P.B.); (C.D.); (M.M.); (M.A.); (A.M.B.); (D.G.F.); (A.F.B.); (S.M.C.); (J.A.A.); (J.P.); (M.K.)
| | - Michael Moore
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis, CA 95616, USA; (P.B.); (C.D.); (M.M.); (M.A.); (A.M.B.); (D.G.F.); (A.F.B.); (S.M.C.); (J.A.A.); (J.P.); (M.K.)
| | - Marianne Abouyared
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis, CA 95616, USA; (P.B.); (C.D.); (M.M.); (M.A.); (A.M.B.); (D.G.F.); (A.F.B.); (S.M.C.); (J.A.A.); (J.P.); (M.K.)
| | - Angela M. Beliveau
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis, CA 95616, USA; (P.B.); (C.D.); (M.M.); (M.A.); (A.M.B.); (D.G.F.); (A.F.B.); (S.M.C.); (J.A.A.); (J.P.); (M.K.)
| | - D. Gregory Farwell
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis, CA 95616, USA; (P.B.); (C.D.); (M.M.); (M.A.); (A.M.B.); (D.G.F.); (A.F.B.); (S.M.C.); (J.A.A.); (J.P.); (M.K.)
| | - Arnaud F. Bewley
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis, CA 95616, USA; (P.B.); (C.D.); (M.M.); (M.A.); (A.M.B.); (D.G.F.); (A.F.B.); (S.M.C.); (J.A.A.); (J.P.); (M.K.)
| | - Shannon M. Clayton
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis, CA 95616, USA; (P.B.); (C.D.); (M.M.); (M.A.); (A.M.B.); (D.G.F.); (A.F.B.); (S.M.C.); (J.A.A.); (J.P.); (M.K.)
| | - Joehleen A. Archard
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis, CA 95616, USA; (P.B.); (C.D.); (M.M.); (M.A.); (A.M.B.); (D.G.F.); (A.F.B.); (S.M.C.); (J.A.A.); (J.P.); (M.K.)
| | - Jordan Pavlic
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis, CA 95616, USA; (P.B.); (C.D.); (M.M.); (M.A.); (A.M.B.); (D.G.F.); (A.F.B.); (S.M.C.); (J.A.A.); (J.P.); (M.K.)
| | - Shyam Rao
- Department of Radiation Oncology, University of California, Davis, CA 95616, USA;
| | - Maggie Kuhn
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis, CA 95616, USA; (P.B.); (C.D.); (M.M.); (M.A.); (A.M.B.); (D.G.F.); (A.F.B.); (S.M.C.); (J.A.A.); (J.P.); (M.K.)
| | - Peter Deng
- Department of Neurology, University of California, Davis, CA 95616, USA; (P.D.); (J.H.); (K.D.F.)
| | - Julian Halmai
- Department of Neurology, University of California, Davis, CA 95616, USA; (P.D.); (J.H.); (K.D.F.)
| | - Kyle D. Fink
- Department of Neurology, University of California, Davis, CA 95616, USA; (P.D.); (J.H.); (K.D.F.)
| | - Andrew C. Birkeland
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis, CA 95616, USA; (P.B.); (C.D.); (M.M.); (M.A.); (A.M.B.); (D.G.F.); (A.F.B.); (S.M.C.); (J.A.A.); (J.P.); (M.K.)
- Correspondence: (A.C.B.); (J.D.A.)
| | - Johnathon D. Anderson
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis, CA 95616, USA; (P.B.); (C.D.); (M.M.); (M.A.); (A.M.B.); (D.G.F.); (A.F.B.); (S.M.C.); (J.A.A.); (J.P.); (M.K.)
- Correspondence: (A.C.B.); (J.D.A.)
| |
Collapse
|
69
|
Alves da Silva A, Oliveira Silva C, do Rosario Rosa V, Silva Santos MF, Naomi Kuki K, Dal-Bianco M, Delmond Bueno R, Alves de Oliveira J, Santos Brito D, Costa AC, Ribeiro C. Metabolic adjustment and regulation of gene expression are essential for increased resistance to severe water deficit and resilience post-stress in soybean. PeerJ 2022; 10:e13118. [PMID: 35321407 PMCID: PMC8935993 DOI: 10.7717/peerj.13118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/23/2022] [Indexed: 01/12/2023] Open
Abstract
Background Soybean is the main oilseed crop grown in the world; however, drought stress affects its growth and physiology, reducing its yield. The objective of this study was to characterize the physiological, metabolic, and genetic aspects that determine differential resistance to water deficit in soybean genotypes. Methods Three soybean genotypes were used in this study, two lineages (L11644 and L13241), and one cultivar (EMBRAPA 48-C48). Plants were grown in pots containing 8 kg of a mixture of soil and sand (2:1) in a greenhouse under sunlight. Soil moisture in the pots was maintained at field capacity until the plants reached the stage of development V4 (third fully expanded leaf). At this time, plants were subjected to three water treatments: Well-Watered (WW) (plants kept under daily irrigation); Water Deficit (WD) (withholding irrigation until plants reached the leaf water potential at predawn of -1.5 ± 0.2 MPa); Rewatered (RW) (plants rehydrated for three days after reached the water deficit). The WW and WD water treatments were evaluated on the eighth day for genotypes L11644 and C48, and on the tenth day for L13241, after interruption of irrigation. For the three genotypes, the treatment RW was evaluated after three days of resumption of irrigation. Physiological, metabolic and gene expression analyses were performed. Results Water deficit inhibited growth and gas exchange in all genotypes. The accumulation of osmolytes and the concentrations of chlorophylls and abscisic acid (ABA) were higher in L13241 under stress. The metabolic adjustment of lineages in response to WD occurred in order to accumulate amino acids, carbohydrates, and polyamines in leaves. The expression of genes involved in drought resistance responses was more strongly induced in L13241. In general, rehydration provided recovery of plants to similar conditions of control treatment. Although the C48 and L11644 genotypes have shown some tolerance and resilience responses to severe water deficit, greater efficiency was observed in the L13241 genotype through adjustments in morphological, physiological, genetic and metabolic characteristics that are combined in the same plant. This study contributes to the advancement in the knowledge about the resistance to drought in cultivated plants and provides bases for the genetic improvement of the soybean culture.
Collapse
Affiliation(s)
- Adinan Alves da Silva
- Ecophysiology and Plant Productivity Laboratory, Instituto Federal Goiano-Campus Rio Verde, Rio Verde, Goiás, Brazil
| | - Cíntia Oliveira Silva
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | - Kacilda Naomi Kuki
- Department of Agronomy, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Maximiller Dal-Bianco
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Rafael Delmond Bueno
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Danielle Santos Brito
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Alan Carlos Costa
- Ecophysiology and Plant Productivity Laboratory, Instituto Federal Goiano-Campus Rio Verde, Rio Verde, Goiás, Brazil
| | - Cleberson Ribeiro
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
70
|
Putrescine: A Key Metabolite Involved in Plant Development, Tolerance and Resistance Responses to Stress. Int J Mol Sci 2022; 23:ijms23062971. [PMID: 35328394 PMCID: PMC8955586 DOI: 10.3390/ijms23062971] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
Putrescine (Put) is the starting point of the polyamines (PAs) pathway and the most common PA in higher plants. It is synthesized by two main pathways (from ornithine and arginine), but recently a third pathway from citrulline was reported in sesame plants. There is strong evidence that Put may play a crucial role not only in plant growth and development but also in the tolerance responses to the major stresses affecting crop production. The main strategies to investigate the involvement of PA in plant systems are based on the application of competitive inhibitors, exogenous PAs treatments, and the most efficient approaches based on mutant and transgenic plants. Thus, in this article, the recent advances in understanding the role of this metabolite in plant growth promotion and protection against abiotic and biotic stresses will be discussed to provide an overview for future research.
Collapse
|
71
|
Navakoudis E, Kotzabasis K. Polyamines: Α bioenergetic smart switch for plant protection and development. JOURNAL OF PLANT PHYSIOLOGY 2022; 270:153618. [PMID: 35051689 DOI: 10.1016/j.jplph.2022.153618] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 05/27/2023]
Abstract
The present review highlights the bioenergetic role of polyamines in plant protection and development and proposes a universal model for describing polyamine-mediated stress responses. Any stress condition induces an excitation pressure on photosystem II by reforming the photosynthetic apparatus. To control this phenomenon, polyamines act directly on the molecular structure and function of the photosynthetic apparatus as well as on the components of the chemiosmotic proton-motive force (ΔpH/Δψ), thus regulating photochemical (qP) and non-photochemical quenching (NPQ) of energy. The review presents the mechanistic characteristics that underline the key role of polyamines in the structure, function, and bioenergetics of the photosynthetic apparatus upon light adaptation and/or under stress conditions. By following this mechanism, it is feasible to make stress-sensitive plants to be tolerant by simply altering their polyamine composition (especially the ratio of putrescine to spermine), either chemically or by light regulation.
Collapse
Affiliation(s)
- Eleni Navakoudis
- Department of Biology, University of Crete, Voutes University Campus, 70013, Heraklion, Greece; Department of Chemical Engineering, Cyprus University of Technology, 3603, Limassol, Cyprus
| | - Kiriakos Kotzabasis
- Department of Biology, University of Crete, Voutes University Campus, 70013, Heraklion, Greece.
| |
Collapse
|
72
|
Bag S, Mondal A, Majumder A, Banik A. Tea and its phytochemicals: Hidden health benefits & modulation of signaling cascade by phytochemicals. Food Chem 2022; 371:131098. [PMID: 34634647 DOI: 10.1016/j.foodchem.2021.131098] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022]
Abstract
Tea, one of the most widely consumed beverages, is prepared from the leaves of the Camellia sinensis. The promising health recompenses of tea have been linked to its different phenolic components, which have diverse biological characteristics. Tea also contains several flavonoids, alkaloids, phenolic, theanine, etc., which are associated with anti-oxidant characteristics and a variety of health benefits. It can also lower the pervasiveness of neurological disorders as well as prevent different types of cancer, metabolic syndromes, cardiovascular diseases, urinary stone, obesity, type 2 diabetes. Keeping in mind that tea helps to improve health and prevents many diseases, its consumption has been regarded as a "health-promoting habit" and current medical investigators have established the scientific basis for this concept over time. The current review provides new updated information and perspectives on the tea phytochemicals and their overall health benefits based on molecular processes, experimental studies, and clinical trials.
Collapse
Affiliation(s)
- Sagar Bag
- Laboratory of Microbial Interaction, School of Biotechnology, Presidency University, Kolkata, West Bengal, India
| | - Anupam Mondal
- Laboratory of Microbial Interaction, School of Biotechnology, Presidency University, Kolkata, West Bengal, India
| | - Anusha Majumder
- Laboratory of Microbial Interaction, School of Biotechnology, Presidency University, Kolkata, West Bengal, India
| | - Avishek Banik
- Laboratory of Microbial Interaction, School of Biotechnology, Presidency University, Kolkata, West Bengal, India.
| |
Collapse
|
73
|
Blagden M, Harrison JL, Minocha R, Sanders‐DeMott R, Long S, Templer PH. Climate change influences foliar nutrition and metabolism of red maple (
Acer rubrum
) trees in a northern hardwood forest. Ecosphere 2022. [DOI: 10.1002/ecs2.3859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Megan Blagden
- Department of Biology Boston University, 5 Cummington Mall Boston Massachusetts 02215 USA
| | - Jamie L. Harrison
- Department of Biology Boston University, 5 Cummington Mall Boston Massachusetts 02215 USA
| | - Rakesh Minocha
- USDA Forest Service Northeastern Research Station Durham New Hampshire 03824 USA
| | - Rebecca Sanders‐DeMott
- Department of Biology Boston University, 5 Cummington Mall Boston Massachusetts 02215 USA
- Woods Hole Coastal and Marine Science Center Woods Hole Massachusetts 02543 USA
| | - Stephanie Long
- USDA Forest Service Northeastern Research Station Durham New Hampshire 03824 USA
| | - Pamela H. Templer
- Department of Biology Boston University, 5 Cummington Mall Boston Massachusetts 02215 USA
| |
Collapse
|
74
|
Korimerla N, Wahl DR. Interactions between Radiation and One-Carbon Metabolism. Int J Mol Sci 2022; 23:1919. [PMID: 35163841 PMCID: PMC8836916 DOI: 10.3390/ijms23031919] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/29/2022] [Accepted: 02/04/2022] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming is a hallmark of cancer. Cancer cells rewire one-carbon metabolism, a central metabolic pathway, to turn nutritional inputs into essential biomolecules required for cancer cell growth and maintenance. Radiation therapy, a common cancer therapy, also interacts and alters one-carbon metabolism. This review discusses the interactions between radiation therapy, one-carbon metabolism and its component metabolic pathways.
Collapse
Affiliation(s)
- Navyateja Korimerla
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA;
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel R. Wahl
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA;
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
75
|
Billiet B, Chao de la Barca JM, Ferré M, Muller J, Vautier A, Assad S, Blanchet O, Tessier L, Wetterwald C, Faure J, Urbanski G, Simard G, Mirebeau-Prunier D, Rodien P, Gohier P, Reynier P. A Tear Metabolomic Profile Showing Increased Ornithine Decarboxylase Activity and Spermine Synthesis in Thyroid-Associated Orbitopathy. J Clin Med 2022; 11:jcm11020404. [PMID: 35054098 PMCID: PMC8779711 DOI: 10.3390/jcm11020404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
About half of patients with Graves’ disease develop an orbitopathy related to an inflammatory expansion of the periorbital adipose tissue and muscles. We used a targeted metabolomic approach measuring 188 metabolites by mass spectrometry to compare the metabolic composition of tears in patients with active (n = 21) versus inactive (n = 24) thyroid-associated orbitopathy. Among the 44 metabolites accurately measured, 8 showed a significant alteration of their concentrations between the two groups. Two short-chain acylcarnitines, propionylcarnitine and butyrylcarnitine, and spermine showed increased concentrations in the tears of patients with active orbitopathy, whereas ornithine, glycine, serine, citrulline and histidine showed decreased concentrations in this group. In addition, the ratio putrescine/ornithine, representing the activity of ornithine decarboxylase, was significantly increased in patients with active compared to inactive orbitopathy (p = 0.0011, fold change 3.75). The specificity of this candidate biomarker was maintained when compared to a control group with unclassified dry eye disease. Our results suggest that the stimulation of ornithine decarboxylase by TSH receptor autoantibodies in orbital fibroblasts could lead to increased synthesis of spermine, through the increased activity of ornithine decarboxylase, that may contribute to periorbital expansion in Graves’ ophthalmopathy.
Collapse
Affiliation(s)
- Benjamin Billiet
- Département d’Ophtalmologie, Centre Hospitalier Universitaire (CHU), F-49000 Angers, France; (B.B.); (J.M.); (A.V.); (S.A.); (P.G.)
| | - Juan Manuel Chao de la Barca
- Service de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire (CHU), F-49000 Angers, France; (J.M.C.d.l.B.); (L.T.); (C.W.); (J.F.); (G.S.); (D.M.-P.)
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université d’Angers, F-49000 Angers, France; (M.F.); (G.U.); (P.R.)
| | - Marc Ferré
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université d’Angers, F-49000 Angers, France; (M.F.); (G.U.); (P.R.)
| | - Jeanne Muller
- Département d’Ophtalmologie, Centre Hospitalier Universitaire (CHU), F-49000 Angers, France; (B.B.); (J.M.); (A.V.); (S.A.); (P.G.)
| | - Anaïs Vautier
- Département d’Ophtalmologie, Centre Hospitalier Universitaire (CHU), F-49000 Angers, France; (B.B.); (J.M.); (A.V.); (S.A.); (P.G.)
| | - Sophie Assad
- Département d’Ophtalmologie, Centre Hospitalier Universitaire (CHU), F-49000 Angers, France; (B.B.); (J.M.); (A.V.); (S.A.); (P.G.)
| | - Odile Blanchet
- Centre de Ressources Biologiques, BB-0033-00038, Centre Hospitalier Universitaire (CHU), F-49000 Angers, France;
| | - Lydie Tessier
- Service de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire (CHU), F-49000 Angers, France; (J.M.C.d.l.B.); (L.T.); (C.W.); (J.F.); (G.S.); (D.M.-P.)
| | - Céline Wetterwald
- Service de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire (CHU), F-49000 Angers, France; (J.M.C.d.l.B.); (L.T.); (C.W.); (J.F.); (G.S.); (D.M.-P.)
| | - Justine Faure
- Service de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire (CHU), F-49000 Angers, France; (J.M.C.d.l.B.); (L.T.); (C.W.); (J.F.); (G.S.); (D.M.-P.)
| | - Geoffrey Urbanski
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université d’Angers, F-49000 Angers, France; (M.F.); (G.U.); (P.R.)
- Service de Médecine Interne et d’Immunologie Clinique, Centre Hospitalier Universitaire (CHU), F-49000 Angers, France
| | - Gilles Simard
- Service de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire (CHU), F-49000 Angers, France; (J.M.C.d.l.B.); (L.T.); (C.W.); (J.F.); (G.S.); (D.M.-P.)
| | - Delphine Mirebeau-Prunier
- Service de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire (CHU), F-49000 Angers, France; (J.M.C.d.l.B.); (L.T.); (C.W.); (J.F.); (G.S.); (D.M.-P.)
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université d’Angers, F-49000 Angers, France; (M.F.); (G.U.); (P.R.)
| | - Patrice Rodien
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université d’Angers, F-49000 Angers, France; (M.F.); (G.U.); (P.R.)
- Service d’Endocrinologie, Centre Hospitalier Universitaire (CHU), F-49000 Angers, France
| | - Philippe Gohier
- Département d’Ophtalmologie, Centre Hospitalier Universitaire (CHU), F-49000 Angers, France; (B.B.); (J.M.); (A.V.); (S.A.); (P.G.)
| | - Pascal Reynier
- Service de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire (CHU), F-49000 Angers, France; (J.M.C.d.l.B.); (L.T.); (C.W.); (J.F.); (G.S.); (D.M.-P.)
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université d’Angers, F-49000 Angers, France; (M.F.); (G.U.); (P.R.)
- Correspondence:
| |
Collapse
|
76
|
Sheng S, Wu C, Xiang Y, Pu W, Duan S, Huang P, Cheng X, Gong Y, Liang Y, Liu L. Polyamine: A Potent Ameliorator for Plant Growth Response and Adaption to Abiotic Stresses Particularly the Ammonium Stress Antagonized by Urea. FRONTIERS IN PLANT SCIENCE 2022; 13:783597. [PMID: 35401587 PMCID: PMC8988247 DOI: 10.3389/fpls.2022.783597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/10/2022] [Indexed: 05/14/2023]
Abstract
Polyamine(s) (PA, PAs), a sort of N-containing and polycationic compound synthesized in almost all organisms, has been recently paid considerable attention due to its multifarious actions in the potent modulation of plant growth, development, and response to abiotic/biotic stresses. PAs in cells/tissues occur mainly in free or (non- or) conjugated forms by binding to various molecules including DNA/RNA, proteins, and (membrane-)phospholipids, thus regulating diverse molecular and cellular processes as shown mostly in animals. Although many studies have reported that an increase in internal PA may be beneficial to plant growth under abiotic conditions, leading to a suggestion of improving plant stress adaption by the elevation of endogenous PA via supply or molecular engineering of its biosynthesis, such achievements focus mainly on PA homeostasis/metabolism rather than PA-mediated molecular/cellular signaling cascades. In this study, to advance our understanding of PA biological actions important for plant stress acclimation, we gathered some significant research data to succinctly describe and discuss, in general, PA synthesis/catabolism, as well as PA as an internal ameliorator to regulate stress adaptions. Particularly, for the recently uncovered phenomenon of urea-antagonized NH4 +-stress, from a molecular and physiological perspective, we rationally proposed the possibility of the existence of PA-facilitated signal transduction pathways in plant tolerance to NH4 +-stress. This may be a more interesting issue for in-depth understanding of PA-involved growth acclimation to miscellaneous stresses in future studies.
Collapse
Affiliation(s)
- Song Sheng
- Key Laboratory of Plant-Soil Interaction of MOE, Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Changzheng Wu
- Key Laboratory of Plant-Soil Interaction of MOE, Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Yucheng Xiang
- Key Laboratory of Plant-Soil Interaction of MOE, Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Wenxuan Pu
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Shuhui Duan
- Hunan Tobacco Science Institute, Changsha, China
| | - Pingjun Huang
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Xiaoyuan Cheng
- College of Marine Resources and Environment, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yuanyong Gong
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua, China
| | - Yilong Liang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Laihua Liu
- Key Laboratory of Plant-Soil Interaction of MOE, Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
- *Correspondence: Laihua Liu,
| |
Collapse
|
77
|
Makletsova MG, Rikhireva GT, Kirichenko EY, Trinitatsky IY, Vakulenko MY, Ermakov AM. The Role of Polyamines in the Mechanisms of Cognitive Impairment. NEUROCHEM J+ 2022; 16. [PMCID: PMC9575633 DOI: 10.1134/s1819712422030059] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Abstract—As the population ages, age-related cognitive impairments are becoming an increasingly pressing problem. Currently, the role of polyamines (putrescine, spermidine, and spermine) in the pathogenesis of cognitive impairments of various origin is actively discussed. It was shown that the content of polyamines in the brain tissue decreases with age. Exogenous administration of polyamines makes it possible to avoid cognitive impairment and/or influence the pathogenetic processes associated with disease progression. There are 3 known ways that polyamines can enter the human body: food, synthesis by intestinal bacteria, and biosynthesis in the body. Currently, one of the most promising approaches to the prevention of cognitive impairment is the use of foods with a high content of polyamines, as well as the use of various probiotics that affect intestinal bacteria that synthesize polyamines. Since 2018, in a number of European countries projects have been launched aimed at evaluation of the impact of a diet high in polyamines on cognitive processes. The review, based on analysis of modern scientific literature and the authors' own data, presents material on the effect of polyamines on cognitive processes and the role of polyamines in the regulation of neurotransmitter processes, and discusses the role of polyamines in cognitive disorders in mental and neurological diseases.
Collapse
Affiliation(s)
| | - G. T. Rikhireva
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | - A. M. Ermakov
- Don State Technical University, Rostov-on-Don, Russia
| |
Collapse
|
78
|
Ivanov AV, Khomutov AR. Biogenic Polyamines and Related Metabolites. Biomolecules 2021; 12:14. [PMID: 35053162 PMCID: PMC8773558 DOI: 10.3390/biom12010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
The specific regulation of cell metabolism is one of cornerstones of biochemistry [...].
Collapse
Affiliation(s)
- Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alex R. Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
79
|
Bernstein HG, Keilhoff G, Laube G, Dobrowolny H, Steiner J. Polyamines and polyamine-metabolizing enzymes in schizophrenia: Current knowledge and concepts of therapy. World J Psychiatry 2021; 11:1177-1190. [PMID: 35070769 PMCID: PMC8717027 DOI: 10.5498/wjp.v11.i12.1177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/30/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
Polyamines play preeminent roles in a variety of cellular functions in the central nervous system and other organs. A large body of evidence suggests that the polyamine pathway is prominently involved in the etiology and pathology of schizophrenia. Alterations in the expression and activity of polyamine metabolizing enzymes, as well as changes in the levels of the individual polyamines, their precursors and derivatives, have been measured in schizophrenia and animal models of the disease. Additionally, neuroleptic treatment has been shown to influence polyamine concentrations in brain and blood of individuals with schizophrenia. Thus, the polyamine system may appear to be a promising target for neuropharmacological treatment of schizophrenia. However, for a number of practical reasons there is currently only limited hope for a polyamine-based schizophrenia therapy.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry, University of Magdeburg, Magdeburg D-39116, Saxony-Anhalt, Germany
| | - Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, University of Magdeburg, Magdeburg D-39116, Saxony-Anhalt, Germany
| | - Gregor Laube
- Department of Anatomy, Charite, Berlin D-10117, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry, University of Magdeburg, Magdeburg D-39116, Saxony-Anhalt, Germany
| | - Johann Steiner
- Department of Psychiatry, University of Magdeburg, Magdeburg D-39116, Saxony-Anhalt, Germany
| |
Collapse
|
80
|
Rajakkani P, Alagarraj A, Gurusamy Thangavelu SA. Tetraaza macrocyclic Schiff base metal complexes bearing pendant groups: Synthesis, characterization and bioactivity studies. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
81
|
Differences in Polyamine Content between Human Milk and Infant Formulas. Foods 2021; 10:foods10112866. [PMID: 34829148 PMCID: PMC8620792 DOI: 10.3390/foods10112866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022] Open
Abstract
Human milk is the gold standard for nutrition during the first months of life, but when breastfeeding is not possible, it may be replaced by infant formulas, either partially or totally. Polyamines, which play an important role in intestinal maturation and the development of the immune system, are found both in human milk and infant formulas, the first exogenous source of these compounds for the newborn. The aim of this study was to evaluate the occurrence and evolution of polyamines in human milk during the first semester of lactation and to compare the polyamine content with that of infant formulas. In total, 30 samples of human milk provided by six mothers during the first five months of lactation as well as 15 different types of infant formulas were analyzed using UHPLC-FL. Polyamines were detected in all human milk samples but with great variation among mothers. Spermidine and spermine levels tended to decrease during the lactation period, while putrescine remained practically unchanged. Considerable differences were observed in the polyamine contents and profiles between human milk and infant formulas, with concentrations being up to 30 times lower in the latter. The predominant polyamines in human milk were spermidine and spermine, and putrescine in infant formulas.
Collapse
|
82
|
Sim SI, von Bülow S, Hummer G, Park E. Structural basis of polyamine transport by human ATP13A2 (PARK9). Mol Cell 2021; 81:4635-4649.e8. [PMID: 34715013 DOI: 10.1016/j.molcel.2021.08.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/17/2021] [Accepted: 08/11/2021] [Indexed: 02/03/2023]
Abstract
Polyamines are small, organic polycations that are ubiquitous and essential to all forms of life. Currently, how polyamines are transported across membranes is not understood. Recent studies have suggested that ATP13A2 and its close homologs, collectively known as P5B-ATPases, are polyamine transporters at endo-/lysosomes. Loss-of-function mutations of ATP13A2 in humans cause hereditary early-onset Parkinson's disease. To understand the polyamine transport mechanism of ATP13A2, we determined high-resolution cryoelectron microscopy (cryo-EM) structures of human ATP13A2 in five distinct conformational intermediates, which together, represent a near-complete transport cycle of ATP13A2. The structural basis of the polyamine specificity was revealed by an endogenous polyamine molecule bound to a narrow, elongated cavity within the transmembrane domain. The structures show an atypical transport path for a water-soluble substrate, in which polyamines may exit within the cytosolic leaflet of the membrane. Our study provides important mechanistic insights into polyamine transport and a framework to understand the functions and mechanisms of P5B-ATPases.
Collapse
Affiliation(s)
- Sue Im Sim
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Sören von Bülow
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany; Institute for Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Eunyong Park
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
83
|
Li QZ, Zuo ZW, Zhou ZR, Ji Y. Polyamine homeostasis-based strategies for cancer: The role of combination regimens. Eur J Pharmacol 2021; 910:174456. [PMID: 34464603 DOI: 10.1016/j.ejphar.2021.174456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/14/2021] [Accepted: 08/26/2021] [Indexed: 01/07/2023]
Abstract
Spermine, spermidine and putrescine polyamines are naturally occurring ubiquitous positively charged amines and are essential metabolites for biological functions in our life. These compounds play a crucial role in many cell processes, including cellular proliferation, growth, and differentiation. Intracellular levels of polyamines depend on their biosynthesis, transport and degradation. Polyamine levels are high in cancer cells, which leads to the promotion of tumor growth, invasion and metastasis. Targeting polyamine metabolism as an anticancer strategy is considerably rational. Due to compensatory mechanisms, a single strategy does not achieve satisfactory clinical effects when using a single agent. Combination regimens are more clinically promising for cancer chemoprevention because they work synergistically with causing little or no adverse effects due to each individual agent being used at lower doses. Moreover, bioactive substances have advantages over single chemical agents because they can affect multiple targets. In this review, we discuss anticancer strategies targeting polyamine metabolism and describe how combination treatments and effective natural active ingredients are promising therapies. The existing research suggests that polyamine metabolic enzymes are important therapeutic targets and that combination therapies can be more effective than monotherapies based on polyamine depletion.
Collapse
Affiliation(s)
- Qi-Zhang Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China.
| | - Zan-Wen Zuo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Ze-Rong Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Yan Ji
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| |
Collapse
|
84
|
Trofimenko E, Homma Y, Fukuda M, Widmann C. The endocytic pathway taken by cationic substances requires Rab14 but not Rab5 and Rab7. Cell Rep 2021; 37:109945. [PMID: 34731620 DOI: 10.1016/j.celrep.2021.109945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/23/2021] [Accepted: 10/13/2021] [Indexed: 02/01/2023] Open
Abstract
Endocytosis and endosome dynamics are controlled by proteins of the small GTPase Rab family. Besides possible recycling routes to the plasma membrane and various organelles, previously described endocytic pathways (e.g., clathrin-mediated endocytosis, macropinocytosis, CLIC/GEEC pathway) all appear to funnel the endocytosed material to Rab5-positive early endosomes that then mature into Rab7-positive late endosomes/lysosomes. By studying the uptake of a series of cell-penetrating peptides (CPPs), we identify an endocytic pathway that moves material to nonacidic Lamp1-positive late endosomes. Trafficking via this endocytic route is fully independent of Rab5 and Rab7 but requires the Rab14 protein. The pathway taken by CPPs differs from the conventional Rab5-dependent endocytosis at the stage of vesicle formation already, as it is not affected by a series of compounds that inhibit macropinocytosis or clathrin-mediated endocytosis. The Rab14-dependent pathway is also used by physiological cationic molecules such as polyamines and homeodomains found in homeoproteins.
Collapse
Affiliation(s)
- Evgeniya Trofimenko
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Yuta Homma
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Christian Widmann
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
85
|
Upadhyay RK, Shao J, Mattoo AK. Genomic analysis of the polyamine biosynthesis pathway in duckweed Spirodela polyrhiza L.: presence of the arginine decarboxylase pathway, absence of the ornithine decarboxylase pathway, and response to abiotic stresses. PLANTA 2021; 254:108. [PMID: 34694486 PMCID: PMC8545783 DOI: 10.1007/s00425-021-03755-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Identification of the polyamine biosynthetic pathway genes in duckweed S. polyrhiza reveals presence of prokaryotic as well as land plant-type ADC pathway but absence of ODC encoding genes. Their differential gene expression and transcript abundance is shown modulated by exogenous methyl jasmonate, salinity, and acidic pH. Genetic components encoding for polyamine (PA) biosynthetic pathway are known in several land plant species; however, little is known about them in aquatic plants. We utilized recently sequenced three duckweed (Spirodela polyrhiza) genome assemblies to map PA biosynthetic pathway genes in S. polyrhiza. PA biosynthesis in most higher plants except for Arabidopsis involves two pathways, via arginine decarboxylase (ADC) and ornithine decarboxylase (ODC). ADC-mediated PA biosynthetic pathway genes, namely, one arginase (SpARG1), two arginine decarboxylases (SpADC1, SpADC2), one agmatine iminohydrolase/deiminase (SpAIH), one N-carbamoyl putrescine amidase (SpCPA), three S-adenosylmethionine decarboxylases (SpSAMDc1, 2, 3), one spermidine synthase (SpSPDS1) and one spermine synthase (SpSPMS1) in S. polyrhiza genome were identified here. However, no locus was found for ODC pathway genes in this duckweed. Hidden Markov Model protein domain analysis established that SpADC1 is a prokaryotic/biodegradative type ADC and its molecular phylogenic classification fell in a separate prokaryotic origin ADC clade with SpADC2 as a biosynthetic type of arginine decarboxylase. However, thermospermine synthase (t-SPMS)/Aculis5 genes were not found present. Instead, one of the annotated SPDS may also function as SPMS, since it was found associated with the SPMS phylogenetic clade along with known SPMS genes. Moreover, we demonstrate that S. polyrhiza PA biosynthetic gene transcripts are differentially expressed in response to unfavorable conditions, such as exogenously added salt, methyl jasmonate, or acidic pH environment as well as in extreme temperature regimes. Thus, S. polyrhiza genome encodes for complete polyamine biosynthesis pathway and the genes are transcriptionally active in response to changing environmental conditions suggesting an important role of polyamines in this aquatic plant.
Collapse
Affiliation(s)
- Rakesh K Upadhyay
- Sustainable Agricultural Systems Laboratory, United States Department of Agriculture, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD, 20705-2350, USA.
| | - Jonathan Shao
- Bioinformatics-North East Area Office, United States Department of Agriculture, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD, 20705-2350, USA
| | - Autar K Mattoo
- Sustainable Agricultural Systems Laboratory, United States Department of Agriculture, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD, 20705-2350, USA.
| |
Collapse
|
86
|
Upadhyay RK, Fatima T, Handa AK, Mattoo AK. Differential Association of Free, Conjugated, and Bound Forms of Polyamines and Transcript Abundance of Their Biosynthetic and Catabolic Genes During Drought/Salinity Stress in Tomato ( Solanum lycopersicum L.) Leaves. FRONTIERS IN PLANT SCIENCE 2021; 12:743568. [PMID: 34721469 PMCID: PMC8555666 DOI: 10.3389/fpls.2021.743568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/13/2021] [Indexed: 05/04/2023]
Abstract
Polyamines have been implicated in ameliorating the detrimental effects of drought and saline conditions on plant growth and development. The independent impact of these two abiotic stresses on polyamine (PA) biosynthesis, catabolism, and homeostasis, as well as on their transcript abundance in tomato leaves, is presented here. We show that the total levels of putrescine (PUT), spermidine (SPD), and spermine (SPM) increase up to 72 h during drought and up to 48 h during salinity stress before their precipitable drop thereafter. Thus, tomato plants maintain survivability to drought as well as salinity stress for up to 3 and 2 days, respectively. Independent multivariant analyses of drought and salinity stress kinetic data separately showed a closer association with levels of free, conjugated, and bound forms of SPD and SPM, but not with free or bound PUT. However, combined multivariant analyses showed a closer association of free SPD, conjugated SPD, and bound SPD with both stresses; SPD-bound and SPM conjugated with drought; and free SPM and conjugated PUT with salinity stress, respectively. PA biosynthesis genes, ARG1, SPDS1, and SAMDc3, segregated with drought and SPDS2 with salinity stress. PA catabolic genes CuAO4-like and PAO4 were associated with drought and salinity stresses, respectively, suggesting differential involvement of PA biosynthesis and catabolic genes in drought and salinity stresses. Pearson correlation indicated mostly positive correlations between the levels of free, conjugated, and bound forms of PUT, SPD, and SPM under drought and salinity stress. However, negative correlations were mostly seen between the levels of various forms of the PAs and their biosynthesis/catabolic genes. Levels of different PA forms had a twofold higher negative correlation during drought as compared to salinity stress (66 vs. 32) and with transcript levels of PA biosynthesis and catabolic genes. Transcripts of light-harvesting chlorophyll a/b-binding genes were generally positively associated with different forms of PAs but negatively to carbon flow genes. Most of the PA biosynthesis genes were coordinately regulated under both stresses. Collectively, these results indicate that PAs are distinctly regulated under drought and salinity stress with different but specific homologs of PA biosynthesis and catabolic genes contributing to the accumulation of free, conjugated, and bound forms of PAs.
Collapse
Affiliation(s)
- Rakesh K Upadhyay
- Sustainable Agricultural Systems Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
- Center of Plant Biology, Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Tahira Fatima
- Center of Plant Biology, Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Avtar K Handa
- Center of Plant Biology, Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Autar K Mattoo
- Sustainable Agricultural Systems Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
| |
Collapse
|
87
|
Sanchiz-Calvo M, Bentea E, Baekelandt V. Rodent models based on endolysosomal genes involved in Parkinson's disease. Curr Opin Neurobiol 2021; 72:55-62. [PMID: 34628360 DOI: 10.1016/j.conb.2021.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/07/2021] [Indexed: 11/03/2022]
Abstract
Genes associated with endolysosomal function have been recently associated with familial Parkinson's disease and described as risk factors for sporadic cases. This indicates that deficits in this pathway predispose to parkinsonism. To better understand the role of these genes in disease development, rodent models have been created by targeting genes playing a role in endolysosomal function, such as LRRK2, DNAJC6, SYNJ1, VPS35, GBA1, ATP13A2 and TMEM175. Here, we review the latest findings describing parkinsonian features in these animal models secondary to endolysosomal dysfunction. Also, we provide suggestions for further development and application of these animal models to better understand the contribution of endolysosomal dysfunction in Parkinson's disease and provide novel models for testing therapeutic approaches.
Collapse
Affiliation(s)
- María Sanchiz-Calvo
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Eduard Bentea
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
88
|
Contents of Polyamines and Biogenic Amines in Canned Pet (Dogs and Cats) Food on the Austrian Market. Foods 2021; 10:foods10102365. [PMID: 34681414 PMCID: PMC8535367 DOI: 10.3390/foods10102365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 12/11/2022] Open
Abstract
Biogenic amines accumulate in proteinaceous raw materials used for pet food production. In canned, sterilized food, amine levels of the ingredients are preserved and may both be indicative of hygiene deficiencies in the ingredients as well as for potential adverse effects to the animals feeding on it. We determined the contents of biogenic amines and polyamines (dansyl derivatives, high performance liquid chromatography) in a variety of canned food for dogs (n = 72) and cats (n = 114) on the Austrian market and compared the results with common quality indices. Contents of putrescine, cadaverine, and tyramine were below the limit of detection in >70% of samples (maximum values: 21.5, 98.4 and 32.5 mg/kg wet weight, respectively). Median contents of histamine, spermidine, and spermine were 14.5, 12.7, and 29.4 mg/kg, and maximum values were 61.6, 28.2, and 53.6 mg/kg wet weight, respectively. The sum of (putrescine + cadaverine + histamine + tyramine) was >50 mg/kg in 22.6% of samples. The biogenic amine index exceeded “1” in 26.7% of samples. Whilst cat food contained significantly higher amounts of tyramine, dog food contained significantly higher amounts of histamine and spermine. In canned cat food, the ingredient “fish” was identified as a statistically significant risk factor for a biogenic amine index > 1 (relative risk = 3.0 (95% confidence interval: 1.8–5.5)) and for (putrescine + cadaverine + histamine + tyramine) exceeding 50 mg/kg (relative risk = 2.4 (95% confidence interval: 1.2–4.6)), due to higher contents of cadaverine in food samples containing fish. While all samples met the limits suggested in pet food production, we could demonstrate that the inclusion of fish in the formulation bears a significant risk for higher cadaverine contents.
Collapse
|
89
|
Serafini-Fracassini D, Della Mea M, Parrotta L, Faleri C, Cai G, Del Duca S, Aloisi I. AtPng1 knockout mutant of Arabidopsis thaliana shows a juvenile phenotype, morpho-functional changes, altered stress response and cell wall modifications. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:11-21. [PMID: 34325356 DOI: 10.1016/j.plaphy.2021.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/01/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
In order to ascertain the role of plant transglutaminases (TGase) in growth and abiotic stress response, the AtPng1 knock out (KO) line of A. thaliana has been analyzed during plant development and under heat and wound stress. Comparing wild type (WT) and KO lines a 58-kDa band was immunodetected by anti-AtPng1p antibody in the cell wall and chloroplasts only in the WT line. A residual TGase activity, not showing correlation with development nor stress response, was still present in the KO line. The KO line was less developed, with a juvenile phenotype characterized by fewer, smaller and less differentiated cells. Chloroplast TGase activity was insensitive to mutation. Data on stressed plants showed that (i) KO plants under heat stress were more juvenile compared to WT, (ii) different responses between WT and KO lines after wounding took place. TGase activity was not completely absent in the KO line, presenting high activity in the plastidial fraction. In general, the mutation affected A. thaliana growth and development, causing less differentiated cytological and anatomical features.
Collapse
Affiliation(s)
- D Serafini-Fracassini
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università Degli Studi di Bologna, Via Irnerio, Bologna, 40126, Italy
| | - M Della Mea
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università Degli Studi di Bologna, Via Irnerio, Bologna, 40126, Italy
| | - L Parrotta
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università Degli Studi di Bologna, Via Irnerio, Bologna, 40126, Italy
| | - C Faleri
- Dipartimento di Scienze Della Vita, Università Degli Studi di Siena, Via Mattioli 4, Siena, 53100, Italy
| | - G Cai
- Dipartimento di Scienze Della Vita, Università Degli Studi di Siena, Via Mattioli 4, Siena, 53100, Italy
| | - S Del Duca
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università Degli Studi di Bologna, Via Irnerio, Bologna, 40126, Italy.
| | - I Aloisi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università Degli Studi di Bologna, Via Irnerio, Bologna, 40126, Italy
| |
Collapse
|
90
|
Sun C, Cui L, Zhou B, Wang X, Guo L, Liu W. Visualizing the spatial distribution and alteration of metabolites in continuously cropped Salvia miltiorrhiza Bge using MALDI-MSI. J Pharm Anal 2021; 12:719-724. [DOI: 10.1016/j.jpha.2021.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/30/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022] Open
|
91
|
Occurrence of Polyamines in Foods and the Influence of Cooking Processes. Foods 2021; 10:foods10081752. [PMID: 34441529 PMCID: PMC8392025 DOI: 10.3390/foods10081752] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022] Open
Abstract
Dietary polyamines are involved in different aspects of human health and play an important role in the prevention of certain chronic conditions such as cardiovascular diseases and diabetes. Different polyamines can be found in all foods in variable amounts. Moreover, several culinary practices have been reported to modify the content and profile of these bioactive compounds in food although experimental data are still scarce and even contradictory. Therefore, the aim of this study was to evaluate the occurrence of polyamines in a large range of foods and to assess the effect of different cooking processes on the polyamine content of a few of them. The highest level of polyamines was found in wheat germ (440.6 mg/kg). Among foods of a plant origin, high levels of total polyamines over 90 mg/kg were determined in mushrooms, green peppers, peas, citrus fruit, broad beans and tempeh with spermidine being predominant (ranging from 54 to 109 mg/kg). In foods of an animal origin, the highest levels of polyamines, above all putrescine (42-130 mg/kg), were found in raw milk, hard and blue cheeses and in dry-fermented sausages. Regarding the influence of different domestic cooking processes, polyamine levels in food were reduced by up to 64% by boiling and grilling but remained practically unmodified by microwave and sous-vide cooking.
Collapse
|
92
|
Dobrovolskaite A, Madan M, Pandey V, Altomare DA, Phanstiel O. The discovery of indolone GW5074 during a comprehensive search for non-polyamine-based polyamine transport inhibitors. Int J Biochem Cell Biol 2021; 138:106038. [PMID: 34252566 DOI: 10.1016/j.biocel.2021.106038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 01/15/2023]
Abstract
The native polyamines putrescine, spermidine, and spermine are essential for cell development and proliferation. Polyamine levels are often increased in cancer tissues and polyamine depletion is a validated anticancer strategy. Cancer cell growth can be inhibited by the polyamine biosynthesis inhibitor difluoromethylornithine (DFMO), which inhibits ornithine decarboxylase (ODC), the rate-limiting enzyme in the polyamine biosynthesis pathway. Unfortunately, cells treated with DFMO often replenish their polyamine pools by importing polyamines from their environment. Several polyamine-based molecules have been developed to work as polyamine transport inhibitors (PTIs) and have been successfully used in combination with DFMO in several cancer models. Here, we present the first comprehensive search for potential non-polyamine based PTIs that work in human pancreatic cancer cells in vitro. After identifying and testing five different categories of compounds, we have identified the c-RAF inhibitor, GW5074, as a novel non-polyamine based PTI. GW5074 inhibited the uptake of all three native polyamines and a fluorescent-polyamine probe into human pancreatic cancer cells. GW5074 significantly reduced pancreatic cancer cell growth in vitro when treated in combination with DFMO and a rescuing dose of spermidine. Moreover, GW5074 alone reduced tumor growth when tested in a murine pancreatic cancer mouse model in vivo. In summary, GW5074 is a novel non-polyamine-based PTI that potentiates the anticancer activity of DFMO in pancreatic cancers.
Collapse
Affiliation(s)
- Aiste Dobrovolskaite
- Department of Medical Education, College of Medicine, University of Central Florida, Orlando, 32827, United States
| | - Meenu Madan
- Department of Medical Education, College of Medicine, University of Central Florida, Orlando, 32827, United States
| | - Veethika Pandey
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, 32827, United States
| | - Deborah A Altomare
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, 32827, United States
| | - Otto Phanstiel
- Department of Medical Education, College of Medicine, University of Central Florida, Orlando, 32827, United States.
| |
Collapse
|
93
|
Bratchikov OI, Tyuzikov IA, Dubonos PA. Nutritional supplementation of the pharmacotherapy of prostate diseases. RESEARCH RESULTS IN PHARMACOLOGY 2021. [DOI: 10.3897/rrpharmacology.7.67465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Nutritional supplementation is an integral part of modern pharmacotherapeutic strategies for prostate diseases with different levels of evidence for specific nutrients.
Provitamin A (beta-carotene), vitamin A (retinol) and prostate diseases. Their effects have not been sufficiently studied, and the available data are conflicting to recommend them as a nutritional supplement.
Vitamin E (tocopherol) and prostate diseases. Its effects have not been sufficiently studied, and the available data are conflicting to recommend it as a nutritional supplement.
Vitamin C (ascorbic acid) and prostate diseases. Its effects have not been sufficiently studied, and the available data are conflicted to recommend it as a nutritional supplement.
Vitamin K and prostate diseases. Its effects have not been sufficiently studied, and the available data are conflicted to recommend it as a nutritional supplement.
Vitamin D and prostate diseases. The evidence base of the vitamin D prostatotropic effects has been accumulated, which allows us to consider its deficiency replacement as an effective nutritional supplement in prostate diseases.
Omega-3 PUFAs and prostate diseases. They have universal physiological effects; however, the evidence base for their recommendation as a nutritional supplement for prostate diseases is still insufficient.
Zinc and prostate diseases. Positive effects of zinc on the prostate gland are known for a fact and allow us to recommend it as a nutritional supplement for prostate diseases.
Selenium and prostate diseases. The reliably proven positive effects of selenium on the prostate gland allow us to recommend it as a nutritional supplement for prostate diseases.
Magnesium and prostate diseases. Its effects have not been sufficiently studied, and the available data are conflicting to recommend it as a nutritional supplement.
Collapse
|
94
|
Nilson R, Lübbers O, Weiß L, Singh K, Scharffetter-Kochanek K, Rojewski M, Schrezenmeier H, Zeplin PH, Funk W, Krutzke L, Kochanek S, Kritzinger A. Transduction Enhancers Enable Efficient Human Adenovirus Type 5-Mediated Gene Transfer into Human Multipotent Mesenchymal Stromal Cells. Viruses 2021; 13:v13061136. [PMID: 34204818 PMCID: PMC8231506 DOI: 10.3390/v13061136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022] Open
Abstract
Human multipotent mesenchymal stromal cells (hMSCs) are currently developed as cell therapeutics for different applications, including regenerative medicine, immune modulation, and cancer treatment. The biological properties of hMSCs can be further modulated by genetic engineering. Viral vectors based on human adenovirus type 5 (HAdV-5) belong to the most frequently used vector types for genetic modification of human cells in vitro and in vivo. However, due to a lack of the primary attachment receptor coxsackievirus and adenovirus receptor (CAR) in hMSCs, HAdV-5 vectors are currently not suitable for transduction of this cell type without capsid modification. Here we present several transduction enhancers that strongly enhance HAdV-5-mediated gene transfer into both bone marrow- and adipose tissue-derived hMSCs. Polybrene, poly-l-lysine, human lactoferrin, human blood coagulation factor X, spermine, and spermidine enabled high eGFP expression levels in hMSCs. Importantly, hMSCs treated with enhancers were not affected in their migration behavior, which is a key requisite for many therapeutic applications. Exemplary, strongly increased expression of tumor necrosis factor (TNF)-stimulated gene 6 (TSG-6) (a secreted model therapeutic protein) was achieved by enhancer-facilitated HAdV-5 transduction. Thus, enhancer-mediated HAdV-5 vector transduction is a valuable method for the engineering of hMSCs, which can be further exploited for the development of innovative hMSC therapeutics.
Collapse
Affiliation(s)
- Robin Nilson
- Department of Gene Therapy, University Medical Center Ulm, 89081 Ulm, Germany; (R.N.); (O.L.); (L.W.); (L.K.); (A.K.)
| | - Olivia Lübbers
- Department of Gene Therapy, University Medical Center Ulm, 89081 Ulm, Germany; (R.N.); (O.L.); (L.W.); (L.K.); (A.K.)
| | - Linus Weiß
- Department of Gene Therapy, University Medical Center Ulm, 89081 Ulm, Germany; (R.N.); (O.L.); (L.W.); (L.K.); (A.K.)
| | - Karmveer Singh
- Department of Dermatology and Allergology, University Medical Center Ulm, 89081 Ulm, Germany; (K.S.); (K.S.-K.)
| | - Karin Scharffetter-Kochanek
- Department of Dermatology and Allergology, University Medical Center Ulm, 89081 Ulm, Germany; (K.S.); (K.S.-K.)
| | - Markus Rojewski
- Institute for Transfusion Medicine, University Medical Center Ulm, 89081 Ulm, Germany; (M.R.); (H.S.)
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service, 89081 Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, University Medical Center Ulm, 89081 Ulm, Germany; (M.R.); (H.S.)
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service, 89081 Ulm, Germany
| | - Philip Helge Zeplin
- Schlosspark Klinik Ludwigsburg, Privatklinik für Plastische und Ästhetische Chirurgie, 71638 Ludwigsburg, Germany;
| | | | - Lea Krutzke
- Department of Gene Therapy, University Medical Center Ulm, 89081 Ulm, Germany; (R.N.); (O.L.); (L.W.); (L.K.); (A.K.)
| | - Stefan Kochanek
- Department of Gene Therapy, University Medical Center Ulm, 89081 Ulm, Germany; (R.N.); (O.L.); (L.W.); (L.K.); (A.K.)
- Correspondence: ; Tel.: +49-73150046103
| | - Astrid Kritzinger
- Department of Gene Therapy, University Medical Center Ulm, 89081 Ulm, Germany; (R.N.); (O.L.); (L.W.); (L.K.); (A.K.)
| |
Collapse
|
95
|
Sagar NA, Tarafdar S, Agarwal S, Tarafdar A, Sharma S. Polyamines: Functions, Metabolism, and Role in Human Disease Management. Med Sci (Basel) 2021; 9:44. [PMID: 34207607 PMCID: PMC8293435 DOI: 10.3390/medsci9020044] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Putrescine, spermine, and spermidine are the important polyamines (PAs), found in all living organisms. PAs are formed by the decarboxylation of amino acids, and they facilitate cell growth and development via different cellular responses. PAs are the integrated part of the cellular and genetic metabolism and help in transcription, translation, signaling, and post-translational modifications. At the cellular level, PA concentration may influence the condition of various diseases in the body. For instance, a high PA level is detrimental to patients suffering from aging, cognitive impairment, and cancer. The levels of PAs decline with age in humans, which is associated with different health disorders. On the other hand, PAs reduce the risk of many cardiovascular diseases and increase longevity, when taken in an optimum quantity. Therefore, a controlled diet is an easy way to maintain the level of PAs in the body. Based on the nutritional intake of PAs, healthy cell functioning can be maintained. Moreover, several diseases can also be controlled to a higher extend via maintaining the metabolism of PAs. The present review discusses the types, important functions, and metabolism of PAs in humans. It also highlights the nutritional role of PAs in the prevention of various diseases.
Collapse
Affiliation(s)
- Narashans Alok Sagar
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131028, Haryana, India
- Food Microbiology Lab, Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India
| | - Swarnava Tarafdar
- Department of Radiodiagnosis and Imaging, All India Institute of Medical Science, Rishikesh 249203, Uttarakhand, India;
| | - Surbhi Agarwal
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India;
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India;
| | - Sunil Sharma
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131028, Haryana, India
| |
Collapse
|
96
|
|
97
|
Plant Copper Amine Oxidases: Key Players in Hormone Signaling Leading to Stress-Induced Phenotypic Plasticity. Int J Mol Sci 2021; 22:ijms22105136. [PMID: 34066274 PMCID: PMC8152075 DOI: 10.3390/ijms22105136] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Polyamines are ubiquitous, low-molecular-weight aliphatic compounds, present in living organisms and essential for cell growth and differentiation. Copper amine oxidases (CuAOs) oxidize polyamines to aminoaldehydes releasing ammonium and hydrogen peroxide, which participates in the complex network of reactive oxygen species acting as signaling molecules involved in responses to biotic and abiotic stresses. CuAOs have been identified and characterized in different plant species, but the most extensive study on a CuAO gene family has been carried out in Arabidopsis thaliana. Growing attention has been devoted in the last years to the investigation of the CuAO expression pattern during development and in response to an array of stress and stress-related hormones, events in which recent studies have highlighted CuAOs to play a key role by modulation of a multilevel phenotypic plasticity expression. In this review, the attention will be focused on the involvement of different AtCuAOs in the IAA/JA/ABA signal transduction pathways which mediate stress-induced phenotypic plasticity events.
Collapse
|
98
|
Heilmann M, Knezevic M, Piccini G, Tiefenbacher K. Understanding the binding properties of phosphorylated glycoluril-derived molecular tweezers and selective nanomolar binding of natural polyamines in aqueous solution. Org Biomol Chem 2021; 19:3628-3633. [PMID: 33908553 DOI: 10.1039/d1ob00379h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A modular synthetic platform for the construction of flexible glycoluril-derived molecular tweezers was developed. The binding properties of four exemplary supramolecular hosts obtained via this approach towards 16 organic amines were investigated by means of 1H NMR titration. In this work, we compare the Ka values obtained this way with those of three structurally related molecular tweezers and provide a computational approach towards an explanation of the observed behavior of those novel hosts. The results showcase that certain structural modifications lead to very potent and selective binders of natural polyamines, with observed binding of spermine below 10 nM.
Collapse
Affiliation(s)
- Michael Heilmann
- University of Basel, Department of Chemistry, Mattenstrasse 24a, 4058 Basel, Switzerland.
| | - Melina Knezevic
- University of Basel, Department of Chemistry, Mattenstrasse 24a, 4058 Basel, Switzerland.
| | - GiovanniMaria Piccini
- ETH Zurich, Department of Chemistry and Applied Biosciences, c/o USI campus, Via Guiseppe Buffi 13, 6900 Lugano, Switzerland
| | - Konrad Tiefenbacher
- University of Basel, Department of Chemistry, Mattenstrasse 24a, 4058 Basel, Switzerland. and ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
99
|
Szabó Z, Péter M, Héja L, Kardos J. Dual Role for Astroglial Copper-Assisted Polyamine Metabolism during Intense Network Activity. Biomolecules 2021; 11:604. [PMID: 33921742 PMCID: PMC8073386 DOI: 10.3390/biom11040604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/29/2022] Open
Abstract
Astrocytes serve essential roles in human brain function and diseases. Growing evidence indicates that astrocytes are central players of the feedback modulation of excitatory Glu signalling during epileptiform activity via Glu-GABA exchange. The underlying mechanism results in the increase of tonic inhibition by reverse operation of the astroglial GABA transporter, induced by Glu-Na+ symport. GABA, released from astrocytes, is synthesized from the polyamine (PA) putrescine and this process involves copper amino oxidase. Through this pathway, putrescine can be considered as an important source of inhibitory signaling that counterbalances epileptic discharges. Putrescine, however, is also a precursor for spermine that is known to enhance gap junction channel communication and, consequently, supports long-range Ca2+ signaling and contributes to spreading of excitatory activity through the astrocytic syncytium. Recently, we presented the possibility of neuron-glia redox coupling through copper (Cu+/Cu2+) signaling and oxidative putrescine catabolism. In the current work, we explore whether the Cu+/Cu2+ homeostasis is involved in astrocytic control on neuronal excitability by regulating PA catabolism. We provide supporting experimental data underlying this hypothesis. We show that the blockade of copper transporter (CTR1) by AgNO3 (3.6 µM) prevents GABA transporter-mediated tonic inhibitory currents, indicating causal relationship between copper (Cu+/Cu2+) uptake and the catabolism of putrescine to GABA in astrocytes. In addition, we show that MnCl2 (20 μM), an inhibitor of the divalent metal transporter DMT1, also prevents the astrocytic Glu-GABA exchange. Furthermore, we observed that facilitation of copper uptake by added CuCl2 (2 µM) boosts tonic inhibitory currents. These findings corroborate the hypothesis that modulation of neuron-glia coupling by copper uptake drives putrescine → GABA transformation, which leads to subsequent Glu-GABA exchange and tonic inhibition. Findings may in turn highlight the potential role of copper signaling in fine-tuning the activity of the tripartite synapse.
Collapse
Affiliation(s)
- Zsolt Szabó
- Functional Pharmacology Research Group, Research Centre for Natural Sciences, Institute of Organic Chemistry, H-1117 Budapest, Hungary; (Z.S.); (M.P.); (J.K.)
| | - Márton Péter
- Functional Pharmacology Research Group, Research Centre for Natural Sciences, Institute of Organic Chemistry, H-1117 Budapest, Hungary; (Z.S.); (M.P.); (J.K.)
- Hevesy György Ph.D. School of Chemistry, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
| | - László Héja
- Functional Pharmacology Research Group, Research Centre for Natural Sciences, Institute of Organic Chemistry, H-1117 Budapest, Hungary; (Z.S.); (M.P.); (J.K.)
| | - Julianna Kardos
- Functional Pharmacology Research Group, Research Centre for Natural Sciences, Institute of Organic Chemistry, H-1117 Budapest, Hungary; (Z.S.); (M.P.); (J.K.)
| |
Collapse
|
100
|
Polis B, Karasik D, Samson AO. Alzheimer's disease as a chronic maladaptive polyamine stress response. Aging (Albany NY) 2021; 13:10770-10795. [PMID: 33811757 PMCID: PMC8064158 DOI: 10.18632/aging.202928] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/27/2021] [Indexed: 12/21/2022]
Abstract
Polyamines are nitrogen-rich polycationic ubiquitous bioactive molecules with diverse evolutionary-conserved functions. Their activity interferes with numerous genes' expression resulting in cell proliferation and signaling modulation. The intracellular levels of polyamines are precisely controlled by an evolutionary-conserved machinery. Their transient synthesis is induced by heat stress, radiation, and other traumatic stimuli in a process termed the polyamine stress response (PSR). Notably, polyamine levels decline gradually with age; and external supplementation improves lifespan in model organisms. This corresponds to cytoprotective and reactive oxygen species scavenging properties of polyamines. Paradoxically, age-associated neurodegenerative disorders are characterized by upsurge in polyamines levels, indicating polyamine pleiotropic, adaptive, and pathogenic roles. Specifically, arginase overactivation and arginine brain deprivation have been shown to play an important role in Alzheimer's disease (AD) pathogenesis. Here, we assert that a universal short-term PSR associated with acute stimuli is beneficial for survival. However, it becomes detrimental and maladaptive following chronic noxious stimuli, especially in an aging organism. Furthermore, we regard cellular senescence as an adaptive response to stress and suggest that PSR plays a central role in age-related neurodegenerative diseases' pathogenesis. Our perspective on AD proposes an inclusive reassessment of the causal relationships between the classical hallmarks and clinical manifestation. Consequently, we offer a novel treatment strategy predicated upon this view and suggest fine-tuning of arginase activity with natural inhibitors to preclude or halt the development of AD-related dementia.
Collapse
Affiliation(s)
- Baruh Polis
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - David Karasik
- Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA 02131, USA
- Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Abraham O. Samson
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|