51
|
Nozal V, García‐Rubia A, Cuevas EP, Pérez C, Tosat‐Bitrián C, Bartolomé F, Carro E, Ramírez D, Palomo V, Martínez A. From Kinase Inhibitors to Multitarget Ligands as Powerful Drug Leads for Alzheimer's Disease using Protein-Templated Synthesis. Angew Chem Int Ed Engl 2021; 60:19344-19354. [PMID: 34169618 PMCID: PMC8457121 DOI: 10.1002/anie.202106295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/24/2021] [Indexed: 11/24/2022]
Abstract
Multitarget directed ligands (MTDLs) are arising as promising tools to tackle complex diseases. The main goal of this work is to create powerful modulating agents for neurodegenerative disorders. To achieve this aim, we have combined fragments that inhibit key protein kinases involved in the main pathomolecular pathways of Alzheimer's disease (AD) such as tau aggregation, neuroinflammation and decreased neurogenesis, whilst looking for a third action in beta-secretase (BACE1), responsible of β-amyloid production. We obtained well-balanced MTDLs with in vitro activity in three different relevant targets and efficacy in two cellular models of AD. Furthermore, computational studies confirmed how these compounds accommodate adequately into the long and rather narrow BACE1 catalytic site. Finally, we employed in situ click chemistry using BACE1 as protein template as a versatile synthetic tool that allowed us to obtain further MTDLs.
Collapse
Affiliation(s)
- Vanesa Nozal
- Structural and Chemical Biology DepartmentCentro de Investigaciones Biológicas-CSICRamiro de Maeztu 928040MadridSpain
| | - Alfonso García‐Rubia
- Structural and Chemical Biology DepartmentCentro de Investigaciones Biológicas-CSICRamiro de Maeztu 928040MadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos III28031MadridSpain
| | - Eva P. Cuevas
- Structural and Chemical Biology DepartmentCentro de Investigaciones Biológicas-CSICRamiro de Maeztu 928040MadridSpain
| | - Concepción Pérez
- Instituto de Química Médica-CSIC)Juan de la Cierva 328006MadridSpain
| | - Carlota Tosat‐Bitrián
- Structural and Chemical Biology DepartmentCentro de Investigaciones Biológicas-CSICRamiro de Maeztu 928040MadridSpain
| | - Fernando Bartolomé
- Hospital Universitario 12 de Octubre Research Institute (imas12)Group of Neurodegenerative DiseasesJuan de la Cierva 328006MadridSpain
| | - Eva Carro
- Hospital Universitario 12 de Octubre Research Institute (imas12)Group of Neurodegenerative DiseasesJuan de la Cierva 328006MadridSpain
| | - David Ramírez
- Instituto de Ciencias BiomédicasUniversidad Autónoma de ChileLlano Subercaseaux2801—piso 6SantiagoChile
| | - Valle Palomo
- Structural and Chemical Biology DepartmentCentro de Investigaciones Biológicas-CSICRamiro de Maeztu 928040MadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos III28031MadridSpain
| | - Ana Martínez
- Structural and Chemical Biology DepartmentCentro de Investigaciones Biológicas-CSICRamiro de Maeztu 928040MadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos III28031MadridSpain
| |
Collapse
|
52
|
Nozal V, García‐Rubia A, Cuevas EP, Pérez C, Tosat‐Bitrián C, Bartolomé F, Carro E, Ramírez D, Palomo V, Martínez A. From Kinase Inhibitors to Multitarget Ligands as Powerful Drug Leads for Alzheimer's Disease using Protein‐Templated Synthesis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vanesa Nozal
- Structural and Chemical Biology Department Centro de Investigaciones Biológicas-CSIC Ramiro de Maeztu 9 28040 Madrid Spain
| | - Alfonso García‐Rubia
- Structural and Chemical Biology Department Centro de Investigaciones Biológicas-CSIC Ramiro de Maeztu 9 28040 Madrid Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) Instituto de Salud Carlos III 28031 Madrid Spain
| | - Eva P. Cuevas
- Structural and Chemical Biology Department Centro de Investigaciones Biológicas-CSIC Ramiro de Maeztu 9 28040 Madrid Spain
| | - Concepción Pérez
- Instituto de Química Médica-CSIC) Juan de la Cierva 3 28006 Madrid Spain
| | - Carlota Tosat‐Bitrián
- Structural and Chemical Biology Department Centro de Investigaciones Biológicas-CSIC Ramiro de Maeztu 9 28040 Madrid Spain
| | - Fernando Bartolomé
- Hospital Universitario 12 de Octubre Research Institute (imas12) Group of Neurodegenerative Diseases Juan de la Cierva 3 28006 Madrid Spain
| | - Eva Carro
- Hospital Universitario 12 de Octubre Research Institute (imas12) Group of Neurodegenerative Diseases Juan de la Cierva 3 28006 Madrid Spain
| | - David Ramírez
- Instituto de Ciencias Biomédicas Universidad Autónoma de Chile Llano Subercaseaux 2801—piso 6 Santiago Chile
| | - Valle Palomo
- Structural and Chemical Biology Department Centro de Investigaciones Biológicas-CSIC Ramiro de Maeztu 9 28040 Madrid Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) Instituto de Salud Carlos III 28031 Madrid Spain
| | - Ana Martínez
- Structural and Chemical Biology Department Centro de Investigaciones Biológicas-CSIC Ramiro de Maeztu 9 28040 Madrid Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) Instituto de Salud Carlos III 28031 Madrid Spain
| |
Collapse
|
53
|
Ugbaja S, Lawal I, Kumalo H, Lawal M. Alzheimer's Disease and β-Secretase Inhibition: An Update With a Focus on Computer-Aided Inhibitor Design. Curr Drug Targets 2021; 23:266-285. [PMID: 34370634 DOI: 10.2174/1389450122666210809100050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is an intensifying neurodegenerative illness due to its irreversible nature. Identification of β-site amyloid precursor protein (APP) cleaving enzyme1 (BACE1) has been a significant medicinal focus towards AD treatment, and this has opened ground for several investigations. Despite the numerous works in this direction, no BACE1 inhibitor has made it to the final approval stage as an anti-AD drug. METHOD We provide an introductory background of the subject with a general overview of the pathogenesis of AD. The review features BACE1 inhibitor design and development with a focus on some clinical trials and discontinued drugs. Using the topical keywords BACE1, inhibitor design, and computational/theoretical study in the Web of Science and Scopus database, we retrieved over 49 relevant articles. The search years are from 2010 and 2020, with analysis conducted from May 2020 to March 2021. RESULTS AND DISCUSSION Researchers have employed computational methodologies to unravel potential BACE1 inhibitors with a significant outcome. The most used computer-aided approach in BACE1 inhibitor design and binding/interaction studies are pharmacophore development, quantitative structure-activity relationship (QSAR), virtual screening, docking, and molecular dynamics (MD) simulations. These methods, plus more advanced ones including quantum mechanics/molecular mechanics (QM/MM) and QM, have proven substantial in the computational framework for BACE1 inhibitor design. Computational chemists have embraced the incorporation of in vitro assay to provide insight into the inhibition performance of identified molecules with potential inhibition towards BACE1. Significant IC50 values up to 50 nM, better than clinical trial compounds, are available in the literature. CONCLUSION The continuous failure of potent BACE1 inhibitors at clinical trials is attracting many queries prompting researchers to investigate newer concepts necessary for effective inhibitor design. The considered properties for efficient BACE1 inhibitor design seem enormous and require thorough scrutiny. Lately, researchers noticed that besides appreciable binding affinity and blood-brain barrier (BBB) permeation, BACE1 inhibitor must show low or no affinity for permeability-glycoprotein. Computational modeling methods have profound applications in drug discovery strategy. With the volume of recent in silico studies on BACE1 inhibition, the prospect of identifying potent molecules that would reach the approved level is feasible. Investigators should try pushing many of the identified BACE1 compounds with significant anti-AD properties to preclinical and clinical trial stages. We also advise computational research on allosteric inhibitor design, exosite modeling, and multisite inhibition of BACE1. These alternatives might be a solution to BACE1 drug discovery in AD therapy.
Collapse
Affiliation(s)
- Samuel Ugbaja
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, Saudi Arabia
| | - Isiaka Lawal
- Chemistry Department, Faculty of Applied and Computer Science, Vaal University of Technology, Vanderbijlpark Campus, Boulevard, 1900, Vanderbijlpark, Saudi Arabia
| | - Hezekiel Kumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, Saudi Arabia
| | - Monsurat Lawal
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, Saudi Arabia
| |
Collapse
|
54
|
Vilela AFL, Narciso Dos Reis VE, Cardoso CL. Co-Immobilized Capillary Enzyme Reactor Based on Beta-Secretase1 and Acetylcholinesterase: A Model for Dual-Ligand Screening. Front Chem 2021; 9:708374. [PMID: 34307303 PMCID: PMC8295500 DOI: 10.3389/fchem.2021.708374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
We have developed a dual enzymatic system assay involving liquid chromatography-mass spectrometry (LC–MS) to screen AChE and BACE1 ligands. A fused silica capillary (30 cm × 0.1 mm i.d. × 0.362 mm e.d.) was used as solid support. The co-immobilization procedure encompassed two steps and random immobilization. The resulting huAChE+BACE1-ICER/MS was characterized by using acetylcholine (ACh) and JMV2236 as substrates. The best conditions for the dual enzymatic system assay were evaluated and compared to the conditions of the individual enzymatic system assays. Analysis was performed in series for each enzyme. The kinetic parameters (KMapp) and inhibition assays were evaluated. To validate the system, galantamine and a β-secretase inhibitor were employed as standard inhibitors, which confirmed that the developed screening assay was able to identify reference ligands and to provide quantitative parameters. The combination of these two enzymes in a single on-line system allowed possible multi-target inhibitors to be screened and identified. The innovative huAChE+BACE1-ICER/MS dual enzymatic system reported herein proved to be a reliable tool to identify and to characterize hit ligands for AChE and BACE1 in an enzymatic competitive environment. This innovative system assay involved lower costs; measured the product from enzymatic hydrolysis directly by MS; enabled immediate recovery of the enzymatic activity; showed specificity, selectivity, and sensitivity; and mimicked the cellular process.
Collapse
Affiliation(s)
- Adriana Ferreira Lopes Vilela
- Departamento de Química, Grupo de Cromatografia de Bioafinidade e Produtos Naturais, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vitor Eduardo Narciso Dos Reis
- Departamento de Química, Grupo de Cromatografia de Bioafinidade e Produtos Naturais, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Carmen Lúcia Cardoso
- Departamento de Química, Grupo de Cromatografia de Bioafinidade e Produtos Naturais, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
55
|
Bridging Cyanobacteria to Neurodegenerative Diseases: A New Potential Source of Bioactive Compounds against Alzheimer's Disease. Mar Drugs 2021; 19:md19060343. [PMID: 34208482 PMCID: PMC8235772 DOI: 10.3390/md19060343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 02/02/2023] Open
Abstract
Neurodegenerative diseases (NDs) represent a drawback in society given the ageing population. Dementias are the most prevalent NDs, with Alzheimer’s disease (AD) representing around 70% of all cases. The current pharmaceuticals for AD are symptomatic and with no effects on the progression of the disease. Thus, research on molecules with therapeutic relevance has become a major focus for the scientific community. Cyanobacteria are a group of photosynthetic prokaryotes rich in biomolecules with confirmed activity in pathologies such as cancer, and with feasible potential in NDs such as AD. In this review, we aimed to compile the research works focused in the anti-AD potential of cyanobacteria, namely regarding the inhibition of the enzyme β-secretase (BACE1) as a fundamental enzyme in the generation of β-amyloid (Aβ), the inhibition of the enzyme acetylcholinesterase (AChE) lead to an increase in the availability of the neurotransmitter acetylcholine in the synaptic cleft and the antioxidant and anti-inflammatory effects, as phenomena associated with neurodegeneration mechanisms.
Collapse
|
56
|
Decourt B, Boumelhem F, Pope ED, Shi J, Mari Z, Sabbagh MN. Critical Appraisal of Amyloid Lowering Agents in AD. Curr Neurol Neurosci Rep 2021; 21:39. [PMID: 34110536 PMCID: PMC8192384 DOI: 10.1007/s11910-021-01125-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW According to the amyloid cascade hypothesis, removing amyloid beta (Aβ) should cure Alzheimer's disease (AD). In the past three decades, many agents have been tested to try to lower Aβ production, prevent Aβ aggregation, and dissolve Aβ deposits. However, the paucity in definitive preventative or curative properties of these agents in clinical trials has resulted in more avant-garde approaches to therapeutic investigations. Immunotherapy has become an area of focus for research on disease-modifying therapies for neurodegenerative diseases. In this review, we highlight the current clinical development landscape of monoclonal antibody (mAb) therapies that target Aβ plaque formation and removal in AD. RECENT FINDINGS Multiple potential disease-modifying therapeutics for AD are in active development. Targeting Aβ with mAbs has the potential to treat various stages of AD: prodromal, prodromal to mild, mild, and mild to moderate. Monoclonal antibodies discussed here include aducanumab, lecanemab, solanezumab, crenezumab, donanemab, and gantenerumab. The final decision by the FDA regarding the approval of aducanumab will offer valuable insight into the trajectory of drug development for mAbs in AD and other neurodegenerative diseases. Future directions for improving the treatment of AD will include more inquiry into the efficacy of mAbs as disease-modifying agents that specifically target Aβ peptides and/or multimers. In addition, a more robust trial design for AD immunotherapy agents should improve outcomes such that objective measures of clinical efficacy will eventually lead to higher chances of drug approval.
Collapse
Affiliation(s)
- Boris Decourt
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Ave, Las Vegas, NV, 89106, USA
| | | | - Evans D Pope
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Ave, Las Vegas, NV, 89106, USA
| | - Jiong Shi
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Ave, Las Vegas, NV, 89106, USA
| | - Zoltan Mari
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Ave, Las Vegas, NV, 89106, USA
| | - Marwan Noel Sabbagh
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Ave, Las Vegas, NV, 89106, USA.
| |
Collapse
|
57
|
Resende R, Ferreira-Marques M, Moreira P, Coimbra JRM, Baptista SJ, Isidoro C, Salvador JAR, Dinis TCP, Pereira CF, Santos AE. New BACE1 Chimeric Peptide Inhibitors Selectively Prevent AβPP-β Cleavage Decreasing Amyloid-β Production and Accumulation in Alzheimer's Disease Models. J Alzheimers Dis 2021; 76:1317-1337. [PMID: 32597812 DOI: 10.3233/jad-200381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND A disease-modifying therapy for Alzheimer's disease (AD) is still an unmet clinical need. The formation of amyloid-β (Aβ) requires the initial cleavage of the amyloid-β protein precursor (AβPP) by BACE1 (beta-site AβPP cleaving enzyme 1), which is a prime therapeutic target for AD. OBJECTIVE We aimed to design and develop a selective BACE1 inhibitor suitable to AD treatment. METHODS The new BACE1 inhibitors consist on a chimeric peptide including a sequence related to the human Swedish mutant form of AβPP (AβPPswe) conjugated with the TAT carrier that facilitates cell membrane permeation and the crossing of the blood-brain barrier. Additionally to the chimeric peptide in the L-form, we developed a D-retroinverso chimeric peptide. The latter strategy, never used with BACE1 inhibitors, is considered to favor a significantly higher half-life and lower immunogenicity. RESULTS We found that both chimeric peptides inhibit recombinant BACE1 activity and decrease Aβ40/42 production in Neuro-2a (N2A) cells expressing AβPPswe without inducing cytotoxicity. The intraperitoneal administration of these peptides to 3xTg-AD mice decreased plasma and brain Aβ40/42 levels, as well as brain soluble AβPPβ production. Also, a reduction of insoluble Aβ was observed in the brain after chronic treatment. Noteworthy, the chimeric peptides selectively inhibited the AβPP-β cleavage relatively to the proteolysis of other BACE1 substrates such as close homologue of L1 (CHL1) and seizure-related gene 6 (SEZ6). CONCLUSIONS Overall these new BACE1 chimeric peptideshold promising potential as a selective disease-modifying therapy for AD.
Collapse
Affiliation(s)
- Rosa Resende
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal.,University of Coimbra, Institute for Interdisciplinary Research (IIIUC), Coimbra, Portugal
| | - Marisa Ferreira-Marques
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal.,University of Coimbra, Faculty of Pharmacy, Laboratory of Pharmacology, Coimbra, Portugal
| | - Patrícia Moreira
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal.,University of Coimbra, Faculty of Pharmacy, Laboratory of Pharmacology, Coimbra, Portugal
| | - Judite R M Coimbra
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal.,University of Coimbra, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Coimbra, Portugal
| | - Salete J Baptista
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal.,Chem4Pharma, Coimbra, Portugal
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Jorge A R Salvador
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal.,University of Coimbra, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Coimbra, Portugal
| | - Teresa C P Dinis
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal.,University of Coimbra, Faculty of Pharmacy, Laboratory of Biochemistry and Biology, Coimbra, Portugal
| | - Cláudia F Pereira
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal.,University of Coimbra, Faculty of Medicine, Institute of Biochemistry, Coimbra, Portugal
| | - Armanda E Santos
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal.,University of Coimbra, Faculty of Pharmacy, Laboratory of Biochemistry and Biology, Coimbra, Portugal
| |
Collapse
|
58
|
Amyloid-Beta Mediates Homeostatic Synaptic Plasticity. J Neurosci 2021; 41:5157-5172. [PMID: 33926999 PMCID: PMC8211553 DOI: 10.1523/jneurosci.1820-20.2021] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 03/02/2021] [Accepted: 03/28/2021] [Indexed: 12/25/2022] Open
Abstract
The physiological role of the amyloid-precursor protein (APP) is insufficiently understood. Recent work has implicated APP in the regulation of synaptic plasticity. Substantial evidence exists for a role of APP and its secreted ectodomain APPsα in Hebbian plasticity. Here, we addressed the relevance of APP in homeostatic synaptic plasticity using organotypic tissue cultures prepared from APP -/- mice of both sexes. In the absence of APP, dentate granule cells failed to strengthen their excitatory synapses homeostatically. Homeostatic plasticity is rescued by amyloid-β and not by APPsα, and it is neither observed in APP+/+ tissue treated with β- or γ-secretase inhibitors nor in synaptopodin-deficient cultures lacking the Ca2+-dependent molecular machinery of the spine apparatus. Together, these results suggest a role of APP processing via the amyloidogenic pathway in homeostatic synaptic plasticity, representing a function of relevance for brain physiology as well as for brain states associated with increased amyloid-β levels.
Collapse
|
59
|
Wang J, Ding Y, Zhuang L, Wang Z, Xiao W, Zhu J. Ginkgolide B‑induced AMPK pathway activation protects astrocytes by regulating endoplasmic reticulum stress, oxidative stress and energy metabolism induced by Aβ1‑42. Mol Med Rep 2021; 23:457. [PMID: 33880582 PMCID: PMC8072312 DOI: 10.3892/mmr.2021.12096] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Ginkgolide B (GB), the diterpenoid lactone compound isolated from the extracts of Ginkgo biloba leaves, significantly improves cognitive impairment, but its potential pharmacological effect on astrocytes induced by β-amyloid (Aβ)1-42 remains to be elucidated. The present study aimed to investigate the protective effect and mechanism of GB on astrocytes with Aβ1-42-induced apoptosis in Alzheimer's disease (AD). Astrocytes obtained from Sprague Dawley rats were randomly divided into control, Aβ, GB and GB + compound C groups. Cell viability and apoptosis were analyzed using Cell Counting Kit-8 and flow cytometry assays, respectively. Protein and mRNA expression levels were analyzed using western blotting and reverse transcription-quantitative PCR, respectively. The levels of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), reactive oxygen species (ROS) and ATP were determined using the corresponding commercial kits. The findings revealed that GB attenuated Aβ1-42-induced apoptosis and the 5′ adenosine monophosphate- activated protein kinase (AMPK) inhibitor compound C reversed the protective effects of GB. In addition, GB reversed Aβ1-42-induced oxidative damage and energy metabolism disorders, including decreases in the levels of SOD, GSH-Px and ATP and increased the levels of MDA and ROS in astrocytes, while compound C reversed the anti-oxidative effect and the involvement of GB in maintaining energy metabolism in astrocytes. Finally, GB decreased the expression levels of the endoplasmic reticulum stress (ERS) proteins and the apoptotic protein CHOP and increased both mRNA and protein expression of the components of the energy metabolism-related AMPK/peroxisome proliferator-activated receptor γ coactivator 1α/peroxisome proliferator-activated receptor α and anti-oxidation-related nuclear respiratory factor 2/heme oxygenase 1/NAD(P)H dehydrogenase (quinone 1) pathways and downregulated the expression of β-secretase 1. However, compound C could antagonize these effects. In conclusion, the findings demonstrated that GB protected against Aβ1-42-induced apoptosis by inhibiting ERS, oxidative stress, energy metabolism disorders and Aβ1-42 production probably by activating AMPK signaling pathways. The findings provided an innovative insight into the treatment using GB as a therapeutic in Aβ1-42-related AD.
Collapse
Affiliation(s)
- Jing Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, P.R. China
| | - Yan Ding
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, P.R. China
| | - Linwu Zhuang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, P.R. China
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, Jiangsu 222000, P.R. China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, Jiangsu 222000, P.R. China
| | - Jingbo Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, P.R. China
| |
Collapse
|
60
|
Erdogan MA, Yigitturk G, Erbas O, Taskıran D. Neuroprotective effects of dexpanthenol on streptozotocin-induced neuronal damage in rats. Drug Chem Toxicol 2021; 45:2160-2168. [PMID: 33874839 DOI: 10.1080/01480545.2021.1914464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
AIM Although the most common age-related neurodegenerative disease defined by memory loss is Alzheimer's disease (AD), only symptomatic therapies are present. A complex pathway for the AD pathogenesis that includes an increase in inflammation has recently been suggested. Since in previous animal experiments dexpanthenol has anti-inflammatory and neuroprotective activities, effects and role of dexpanthenol in an intracerebroventricular (ICV)-streptozotocin (STZ) induced sporadic-AD(memory impairment) animal model have been examined. DESIGN AND METHODS In total, 18 adult sprague-dawley rats were classified into 3 groups; control (n = 6), STZ + Saline (n = 6) and STZ + Dexpanthenol (n = 6). Twelve AD-induced rats through STZ-injection (3 mg/kg) into both lateral ventricles via stereotaxy were separated into two groups five days after STZ administration: one of these groups was treated with dexpanthenol (1000 mg/kg/day, i.p.) for 3 weeks and the other with saline. A passive avoidance learning (PAL) test was used after treatment, followed by brain tissue extraction in all subjects. Brain levels of tumor necrosis factor-alpha (TNF-α) and choline acetyl transferase (ChAT) were measured and Cresyl violet staining was used to count neurons in cornu ammonis-1 (CA1) and cornu ammonis-3 (CA3). RESULTS It was observed that ICV-STZ significantly shortened PAL latency, increased levels of TNF-α in brain, decreased activity of ChAT in brain, and number of hippocampal neurons. However, dexpanthenol significantly reduced all of those STZ-induced harmful effects. CONCLUSION Dexpanthenol significantly prevented the memory deficit induced by ICV-STZ through mitigating neuronal loss in hippocampus, cholinergic deficiency and neuroinflammation in rats. These findings suggest that dexpanthenol may be beneficial for treating memory impairment.
Collapse
Affiliation(s)
- Mumin Alper Erdogan
- Department of Physiology, Faculty of Medicine, Izmir Kâtip Çelebi University, Izmir, Turkey
| | - Gurkan Yigitturk
- Department of Histology, Faculty of Medicine, Mugla University, Mugla, Turkey
| | - Oytun Erbas
- Department of Physiology, Faculty of Medicine, Bilim University, Istanbul, Turkey
| | - Dilek Taskıran
- Department of Physiology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
61
|
Dekeryte R, Franklin Z, Hull C, Croce L, Kamli-Salino S, Helk O, Hoffmann PA, Yang Z, Riedel G, Delibegovic M, Platt B. The BACE1 inhibitor LY2886721 improves diabetic phenotypes of BACE1 knock-in mice. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166149. [PMID: 33892080 DOI: 10.1016/j.bbadis.2021.166149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/18/2021] [Accepted: 04/13/2021] [Indexed: 11/24/2022]
Abstract
AIM The β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) has been identified as the central initiator of amyloid β (Aβ) generation in the brain, the key hallmark of Alzheimer's disease (AD). However, recent studies provided evidence that BACE1 also plays a crucial role in metabolic regulation, and we have shown that neuronal human BACE1 knock-in mice (PLB4) display type 2 diabetes mellitus (T2DM)-like symptoms alongside AD-like impairments. Hence, we here investigated if targeted BACE1 inhibition using LY2886721, an active site BACE1 inhibitor, would improve glucose homeostasis, insulin sensitivity and motor performance in PLB4 mice. MATERIALS AND METHODS LY2886721 was administered as a dietary supplement (0.02% wt/wt) for six consecutive weeks. Physiological, metabolic and motor assessments were performed during the last two weeks of treatment, followed by molecular tissue analyses post-mortem. RESULTS LY2886721 treatment improved glucose homeostasis and hepatic gluconeogenesis in diabetic PLB4 mice, as determined by improvements in basal glucose and glucose/pyruvate tolerance tests. Furthermore, LY2886721 improved hepatic insulin sensitivity, as indicated by enhanced basal hyperphosphorylation of insulin receptors. In PLB4 brains, we detected altered basal conditions of APP expression and processing, with beneficial effects on APP processing achieved by LY2886721 treatment. No improvements in motor coordination were found. CONCLUSIONS Our data provide support for a role of BACE1 as a regulator of systemic glucose homeostasis and suggest BACE1 inhibitors for the treatment of T2DM-associated pathologies, especially in cases where diabetes is comorbid to AD.
Collapse
Affiliation(s)
- Ruta Dekeryte
- Institute of Medical Sciences, University of Aberdeen, Foresterhill Health Campus, Aberdeen AB25 2ZD, UK
| | - Zara Franklin
- Institute of Medical Sciences, University of Aberdeen, Foresterhill Health Campus, Aberdeen AB25 2ZD, UK
| | - Claire Hull
- Institute of Medical Sciences, University of Aberdeen, Foresterhill Health Campus, Aberdeen AB25 2ZD, UK
| | - Lorenzo Croce
- Institute of Medical Sciences, University of Aberdeen, Foresterhill Health Campus, Aberdeen AB25 2ZD, UK
| | - Sarah Kamli-Salino
- Institute of Medical Sciences, University of Aberdeen, Foresterhill Health Campus, Aberdeen AB25 2ZD, UK
| | - Oliver Helk
- Institute of Medical Sciences, University of Aberdeen, Foresterhill Health Campus, Aberdeen AB25 2ZD, UK
| | - Philip A Hoffmann
- Institute of Medical Sciences, University of Aberdeen, Foresterhill Health Campus, Aberdeen AB25 2ZD, UK
| | - Zhixiang Yang
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Gernot Riedel
- Institute of Medical Sciences, University of Aberdeen, Foresterhill Health Campus, Aberdeen AB25 2ZD, UK
| | - Mirela Delibegovic
- Institute of Medical Sciences, University of Aberdeen, Foresterhill Health Campus, Aberdeen AB25 2ZD, UK.
| | - Bettina Platt
- Institute of Medical Sciences, University of Aberdeen, Foresterhill Health Campus, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
62
|
Hinkaew J, Aursalung A, Sahasakul Y, Tangsuphoom N, Suttisansanee U. A Comparison of the Nutritional and Biochemical Quality of Date Palm Fruits Obtained Using Different Planting Techniques. Molecules 2021; 26:molecules26082245. [PMID: 33924574 PMCID: PMC8069938 DOI: 10.3390/molecules26082245] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 01/18/2023] Open
Abstract
Date palm fruit (Phoenix dactylifera L.) is commonly consumed around the world and has recently become an economical crop in Eastern Thailand, especially the Barhi cultivar that can be consumed as fresh fruit. To maintain genetic qualities, date palm is populated through cell culture. This leads to high production costs, while access to this technique is limited. Increasing date palm population by simple seed planting is currently of interest as an alternative for local farmers. Nevertheless, information on nutritive values, bioactive compounds, and health-promoting bioactivities of seed originating from date palm fruit is unavailable. Effects of different planting origins (cell culture origin (CO) and seed origin (SO)) of date palm fruits at the Khalal stage of Barhi cultivar were investigated for nutritive values, bioactive compounds, and in vitro health-promoting properties via key enzyme inhibitions against obesity (lipase), diabetes (α-amylase, α-glucosidase, and dipeptidyl peptidase-IV), Alzheimer's disease (cholinesterases and β-secretase), and hypertension (angiotensin-converting enzyme). Waste seeds as a by-product from date palm production were also examined regarding these properties to increase seed marketing opportunities for future food applications and other health-related products. CO and SO exhibited insignificant differences in energy, fat, and carbohydrate contents. SO had higher protein, dietary fiber, vitamin A, vitamin E, and calcium contents than CO, while CO contained higher contents of fructose, glucose and maltose. Higher phenolic contents in SO led to greater enzyme inhibitory activities than CO. Interestingly, seeds of date palm fruits mostly contained higher nutritive values than the flesh. No carotenoids were detected in seeds but higher phenolic contents resulted in greater enzyme inhibitory activities than recorded for fruit flesh. Results suggest that appropriate planting of date palm can support the development of novel date palm fruit products, leading to expansion of economic opportunities and investment in date palm fruit agriculture.
Collapse
Affiliation(s)
- Jeerawan Hinkaew
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (J.H.); (A.A.); (Y.S.); (N.T.)
| | - Amornrat Aursalung
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (J.H.); (A.A.); (Y.S.); (N.T.)
| | - Yuraporn Sahasakul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (J.H.); (A.A.); (Y.S.); (N.T.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Nattapol Tangsuphoom
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (J.H.); (A.A.); (Y.S.); (N.T.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Uthaiwan Suttisansanee
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (J.H.); (A.A.); (Y.S.); (N.T.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
- Correspondence: ; Tel.: +66-(0)-2800-2380 (ext. 422)
| |
Collapse
|
63
|
Pasieka A, Panek D, Jończyk J, Godyń J, Szałaj N, Latacz G, Tabor J, Mezeiova E, Chantegreil F, Dias J, Knez D, Lu J, Pi R, Korabecny J, Brazzolotto X, Gobec S, Höfner G, Wanner K, Więckowska A, Malawska B. Discovery of multifunctional anti-Alzheimer's agents with a unique mechanism of action including inhibition of the enzyme butyrylcholinesterase and γ-aminobutyric acid transporters. Eur J Med Chem 2021; 218:113397. [PMID: 33838585 DOI: 10.1016/j.ejmech.2021.113397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/31/2022]
Abstract
Looking for an effective anti-Alzheimer's agent is very challenging; however, a multifunctional ligand strategy may be a promising solution for the treatment of this complex disease. We herein present the design, synthesis and biological evaluation of novel hydroxyethylamine derivatives displaying unique, multiple properties that have not been previously reported. The original mechanism of action combines inhibitory activity against disease-modifying targets: β-secretase enzyme (BACE1) and amyloid β (Aβ) aggregation, along with an effect on targets associated with symptom relief - inhibition of butyrylcholinesterase (BuChE) and γ-aminobutyric acid transporters (GATs). Among the obtained molecules, compound 36 exhibited the most balanced and broad activity profile (eeAChE IC50 = 2.86 μM; eqBuChE IC50 = 60 nM; hBuChE IC50 = 20 nM; hBACE1 IC50 = 5.9 μM; inhibition of Aβ aggregation = 57.9% at 10 μM; mGAT1 IC50 = 10.96 μM; and mGAT2 IC50 = 19.05 μM). Moreover, we also identified 31 as the most potent mGAT4 and hGAT3 inhibitor (IC50 = 5.01 μM and IC50 = 2.95 μM, respectively), with high selectivity over other subtypes. Compounds 36 and 31 represent new anti-Alzheimer agents that can ameliorate cognitive decline and modify the progress of disease.
Collapse
Affiliation(s)
- Anna Pasieka
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Dawid Panek
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Jakub Jończyk
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Justyna Godyń
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Natalia Szałaj
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Julia Tabor
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Eva Mezeiova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Fabien Chantegreil
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223, Brétigny sur Orge, France
| | - José Dias
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223, Brétigny sur Orge, France
| | - Damijan Knez
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Junfeng Lu
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Rongbiao Pi
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223, Brétigny sur Orge, France
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Georg Höfner
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr, 5-13, 81377, Munich, Germany
| | - Klaus Wanner
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr, 5-13, 81377, Munich, Germany
| | - Anna Więckowska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland.
| |
Collapse
|
64
|
Vissers MFJM, Heuberger JAAC, Groeneveld GJ. Targeting for Success: Demonstrating Proof-of-Concept with Mechanistic Early Phase Clinical Pharmacology Studies for Disease-Modification in Neurodegenerative Disorders. Int J Mol Sci 2021; 22:1615. [PMID: 33562713 PMCID: PMC7915613 DOI: 10.3390/ijms22041615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/23/2022] Open
Abstract
The clinical failure rate for disease-modifying treatments (DMTs) that slow or stop disease progression has been nearly 100% for the major neurodegenerative disorders (NDDs), with many compounds failing in expensive and time-consuming phase 2 and 3 trials for lack of efficacy. Here, we critically review the use of pharmacological and mechanistic biomarkers in early phase clinical trials of DMTs in NDDs, and propose a roadmap for providing early proof-of-concept to increase R&D productivity in this field of high unmet medical need. A literature search was performed on published early phase clinical trials aimed at the evaluation of NDD DMT compounds using MESH terms in PubMed. Publications were selected that reported an early phase clinical trial with NDD DMT compounds between 2010 and November 2020. Attention was given to the reported use of pharmacodynamic (mechanistic and physiological response) biomarkers. A total of 121 early phase clinical trials were identified, of which 89 trials (74%) incorporated one or multiple pharmacodynamic biomarkers. However, only 65 trials (54%) used mechanistic (target occupancy or activation) biomarkers to demonstrate target engagement in humans. The most important categories of early phase mechanistic and response biomarkers are discussed and a roadmap for incorporation of a robust biomarker strategy for early phase NDD DMT clinical trials is proposed. As our understanding of NDDs is improving, there is a rise in potentially disease-modifying treatments being brought to the clinic. Further increasing the rational use of mechanistic biomarkers in early phase trials for these (targeted) therapies can increase R&D productivity with a quick win/fast fail approach in an area that has seen a nearly 100% failure rate to date.
Collapse
Affiliation(s)
- Maurits F. J. M. Vissers
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL Leiden, The Netherlands; (J.A.A.C.H.); (G.J.G.)
- Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Jules A. A. C. Heuberger
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL Leiden, The Netherlands; (J.A.A.C.H.); (G.J.G.)
| | - Geert Jan Groeneveld
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL Leiden, The Netherlands; (J.A.A.C.H.); (G.J.G.)
- Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
65
|
Xu XJ, Yang MS, Zhang B, Niu F, Dong JQ, Liu BY. Glucose metabolism: A link between traumatic brain injury and Alzheimer's disease. Chin J Traumatol 2021; 24:5-10. [PMID: 33358332 PMCID: PMC7878452 DOI: 10.1016/j.cjtee.2020.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 02/04/2023] Open
Abstract
Traumatic brain injury (TBI), a growing public health problem, is a leading cause of death and disability worldwide, although its prevention measures and clinical cares are substantially improved. Increasing evidence shows that TBI may increase the risk of mood disorders and neurodegenerative diseases, including Alzheimer's disease (AD). However, the complex relationship between TBI and AD remains elusive. Metabolic dysfunction has been the common pathology in both TBI and AD. On the one hand, TBI perturbs the glucose metabolism of the brain, and causes energy crisis and subsequent hyperglycolysis. On the other hand, glucose deprivation promotes amyloidogenesis via β-site APP cleaving enzyme-1 dependent mechanism, and triggers tau pathology and synaptic function. Recent findings suggest that TBI might facilitate Alzheimer's pathogenesis by altering metabolism, which provides clues to metabolic link between TBI and AD. In this review, we will explore how TBI-induced metabolic changes contribute to the development of AD.
Collapse
Affiliation(s)
- Xiao-Jian Xu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Meng-Shi Yang
- Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Bin Zhang
- Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Fei Niu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Jin-Qian Dong
- Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Bai-Yun Liu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China,Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China,Nerve Injury and Repair Center of Beijing Institute for Brain Disorders, Beijing, 100070, China,China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China,Corresponding author. Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
66
|
Lye S, Aust CE, Griffiths LR, Fernandez F. Exploring new avenues for modifying course of progression of Alzheimer's disease: The rise of natural medicine. J Neurol Sci 2021; 422:117332. [PMID: 33607542 DOI: 10.1016/j.jns.2021.117332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/07/2021] [Accepted: 01/22/2021] [Indexed: 12/01/2022]
Abstract
With a constantly growing elderly population worldwide, a focus on developing efficient prevention and therapy for Alzheimer's disease (AD) seems timely and topical. Emphasis on natural medicine is increasingly popular in the search for drug candidates that are capable of preventing and treating AD related pathology, particularly where suppression of amyloid accumulation, neurofibrillary tangle formation, neuroinflammation and oxidative stress are equally significant. A number of phytochemical compounds have been shown to collectively reduce these AD hallmarks with the progression of natural drug candidates into human clinical trials. This review focuses on current research surrounding the therapies emerging within natural medicines and their related therapeutic potential for AD treatment.
Collapse
Affiliation(s)
- Sarah Lye
- School of Health and Behavioural Science, Faculty of Health Sciences, 1100 Nudgee Road, Australian Catholic University, Brisbane, QLD, Australia
| | - Caitlin E Aust
- School of Health and Behavioural Science, Faculty of Health Sciences, 1100 Nudgee Road, Australian Catholic University, Brisbane, QLD, Australia; Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Lyn R Griffiths
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Francesca Fernandez
- School of Health and Behavioural Science, Faculty of Health Sciences, 1100 Nudgee Road, Australian Catholic University, Brisbane, QLD, Australia; Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.
| |
Collapse
|
67
|
Kabir MT, Uddin MS, Mathew B, Das PK, Perveen A, Ashraf GM. Emerging Promise of Immunotherapy for Alzheimer's Disease: A New Hope for the Development of Alzheimer's Vaccine. Curr Top Med Chem 2021; 20:1214-1234. [PMID: 32321405 DOI: 10.2174/1568026620666200422105156] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the characteristics of this devastating disorder include the progressive and disabling deficits in the cognitive functions including reasoning, attention, judgment, comprehension, memory, and language. OBJECTIVE In this article, we have focused on the recent progress that has been achieved in the development of an effective AD vaccine. SUMMARY Currently, available treatment options of AD are limited to deliver short-term symptomatic relief only. A number of strategies targeting amyloid-beta (Aβ) have been developed in order to treat or prevent AD. In order to exert an effective immune response, an AD vaccine should contain adjuvants that can induce an effective anti-inflammatory T helper 2 (Th2) immune response. AD vaccines should also possess the immunogens which have the capacity to stimulate a protective immune response against various cytotoxic Aβ conformers. The induction of an effective vaccine's immune response would necessitate the parallel delivery of immunogen to dendritic cells (DCs) and their priming to stimulate a Th2-polarized response. The aforesaid immune response is likely to mediate the generation of neutralizing antibodies against the neurotoxic Aβ oligomers (AβOs) and also anti-inflammatory cytokines, thus preventing the AD-related inflammation. CONCLUSION Since there is an age-related decline in the immune functions, therefore vaccines are more likely to prevent AD instead of providing treatment. AD vaccines might be an effective and convenient approach to avoid the treatment-related huge expense.
Collapse
Affiliation(s)
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | | | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
68
|
miR-16-5p and miR-19b-3p prevent amyloid β-induced injury by targeting BACE1 in SH-SY5Y cells. Neuroreport 2021; 31:205-212. [PMID: 31876684 DOI: 10.1097/wnr.0000000000001379] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Alzheimer's disease is the most common neurodegenerative disease, characterized by accumulation of amyloid β peptides. MicroRNAs have been identified as significant regulators and therapeutic targets of Alzheimer's disease. However, the roles of miR-16-5p and miR-19b-3p and their mechanisms in Alzheimer's disease progression remain largely unknown. MATERIALS AND METHODS Amyloid β-treated SH-SY5Y cells were used to study Alzheimer's disease progression in vitro. Transfection was conducted into SH-SY5Y cells using Lipofectamine 2000. The expression levels of miR-16-5p, miR-19b-3p and beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) were measured by quantitative real-time PCR or western blot, respectively. Cell viability and apoptosis were detected in amyloid β-treated SH-SY5Y cells by MTT or flow cytometry, respectively. The interaction between BACE1 and miR-16-5p or miR-19b-3p was explored by luciferase reporter and RNA immunoprecipitation analyses. RESULTS The expression levels of miR-16-5p and miR-19b-3p were reduced but BACE1 protein expression was enhanced in SH-SY5Y cells after treatment of amyloid β. Overexpression of miR-16-5p or miR-19b-3p attenuated amyloid β-induced viability inhibition and apoptosis promotion in SH-SY5Y cells, while their knockdown exacerbated amyloid β-induced injury. BACE1 was confirmed as a target of miR-16-5p and miR-19b-3p and its overexpression aggravated amyloid β-induced loss of viability and production of apoptosis, while its depletion caused an opposite effect. Moreover, upregulation of BACE1 alleviated the regulatory effects of miR-16-5p and miR-19b-3p on amyloid β-induced injury. CONCLUSION MiR-16-5p and miR-19b-3p relieved amyloid β-induced injury by targeting BACE1 in SH-SY5Y cells, indicating miR-16-5p and miR-19b-3p as protective agents for treatment of Alzheimer's disease.
Collapse
|
69
|
Syeda T, Cannon JR. Environmental exposures and the etiopathogenesis of Alzheimer's disease: The potential role of BACE1 as a critical neurotoxic target. J Biochem Mol Toxicol 2021; 35:e22694. [PMID: 33393683 DOI: 10.1002/jbt.22694] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a major public health crisis due to devastating cognitive symptoms, a lack of curative treatments, and increasing prevalence. Most cases are sporadic (>95% of cases) after the age of 65 years, implicating an important role of environmental factors in disease pathogenesis. Environmental neurotoxicants have been implicated in neurodegenerative disorders including Parkinson's Disease and AD. Animal models of AD and in vitro studies have shed light on potential neuropathological mechanisms, yet the biochemical and molecular underpinnings of AD-relevant environmental neurotoxicity remain poorly understood. Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is a potentially critical pathogenic target of environmentally induced neurotoxicity. BACE1 clearly has a critical role in AD pathophysiology: It is required for amyloid beta production and expression and activity of BACE1 are increased in the AD brain. Though the literature on BACE1 in response to environmental insults is limited, current studies, along with extensive AD neurobiology literature suggest that BACE1 deserves attention as an important neurotoxic target. Here, we critically review research on environmental neurotoxicants such as metals, pesticides, herbicides, fungicides, polyfluoroalkyl substances, heterocyclic aromatic amines, advanced glycation end products, and acrolein that modulate BACE1 and potential mechanisms of action. Though more research is needed to clearly understand whether BACE1 is a critical mediator of AD-relevant neurotoxicity, available reports provide convincing evidence that BACE1 is altered by environmental risk factors associated with AD pathology, implying that BACE1 inhibition and its use as a biomarker should be considered in AD management and research.
Collapse
Affiliation(s)
- Tauqeerunnisa Syeda
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA.,Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana, USA
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA.,Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
70
|
Ramachandran AK, Das S, Joseph A, Gurupur Gautham S, Alex AT, Mudgal J. Neurodegenerative Pathways in Alzheimer's Disease: A Review. Curr Neuropharmacol 2021; 19:679-692. [PMID: 32851951 PMCID: PMC8573750 DOI: 10.2174/1570159x18666200807130637] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/26/2020] [Accepted: 07/31/2020] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease that leads to insidious deterioration of brain functions and is considered the sixth leading cause of death in the world. Alzheimer's patients suffer from memory loss, cognitive deficit and behavioral changes; thus, they eventually follow a low-quality life. AD is considered as a multifactorial disorder involving different neuropathological mechanisms. Recent research has identified more than 20 pathological factors that are promoting disease progression. Three significant hypotheses are said to be the root cause of disease pathology, which include acetylcholine deficit, the formation of amyloid-beta senile plaques and tau protein hyperphosphorylation. Apart from these crucial factors, pathological factors such as apolipoprotein E (APOE), glycogen synthase kinase 3β, notch signaling pathway, Wnt signaling pathway, etc., are considered to play a role in the advancement of AD and therefore could be used as targets for drug discovery and development. As of today, there is no complete cure or effective disease altering therapies for AD. The current therapy is assuring only symptomatic relief from the disease, and progressive loss of efficacy for these symptomatic treatments warrants the discovery of newer drugs by exploring these novel drug targets. A comprehensive understanding of these therapeutic targets and their neuropathological role in AD is necessary to identify novel molecules for the treatment of AD rationally.
Collapse
Affiliation(s)
- Anu Kunnath Ramachandran
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Shenoy, Gurupur Gautham
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Angel Treasa Alex
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| |
Collapse
|
71
|
Hrabinova M, Pejchal J, Kucera T, Jun D, Schmidt M, Soukup O. Is It the Twilight of BACE1 Inhibitors? Curr Neuropharmacol 2021; 19:61-77. [PMID: 32359337 PMCID: PMC7903497 DOI: 10.2174/1570159x18666200503023323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/23/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
β-secretase (BACE1) has been regarded as a prime target for the development of amyloid beta (Aβ) lowering drugs in the therapy of Alzheimer´s disease (AD). Although the enzyme was discovered in 1991 and helped to formulate the Aβ hypothesis as one of the very important features of AD etiopathogenesis, progress in AD treatment utilizing BACE1 inhibitors has remained limited. Moreover, in the last years, major pharmaceutical companies have discontinued clinical trials of five BACE1 inhibitors that had been strongly perceived as prospective. In our review, the Aβ hypothesis, the enzyme, its functions, and selected substrates are described. BACE1 inhibitors are classified into four generations. Those that underwent clinical trials displayed adverse effects, including weight loss, skin rashes, worsening of neuropsychiatric symptoms, etc. Some inhibitors could not establish a statistically significant risk-benefit ratio, or even scored worse than placebo. We still believe that drugs targeting BACE1 may still hide some potential, but a different approach to BACE1 inhibition or a shift of focus to modulation of its trafficking and/or post-translational modification should now be followed.
Collapse
Affiliation(s)
| | - Jaroslav Pejchal
- Address correspondence to this author at the Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence in Brno, Hradec Kralove, Czech Republic;E-mail:
| | | | | | | | | |
Collapse
|
72
|
Rationally designed peptide-based inhibitor of Aβ42 fibril formation and toxicity: a potential therapeutic strategy for Alzheimer's disease. Biochem J 2020; 477:2039-2054. [PMID: 32427336 PMCID: PMC7293109 DOI: 10.1042/bcj20200290] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022]
Abstract
Amyloid beta peptide (Aβ42) aggregation in the brain is thought to be responsible for the onset of Alzheimer's disease, an insidious condition without an effective treatment or cure. Hence, a strategy to prevent aggregation and subsequent toxicity is crucial. Bio-inspired peptide-based molecules are ideal candidates for the inhibition of Aβ42 aggregation, and are currently deemed to be a promising option for drug design. In this study, a hexapeptide containing a self-recognition component unique to Aβ42 was designed to mimic the β-strand hydrophobic core region of the Aβ peptide. The peptide is comprised exclusively of D-amino acids to enhance specificity towards Aβ42, in conjunction with a C-terminal disruption element to block the recruitment of Aβ42 monomers on to fibrils. The peptide was rationally designed to exploit the synergy between the recognition and disruption components, and incorporates features such as hydrophobicity, β-sheet propensity, and charge, that all play a critical role in the aggregation process. Fluorescence assays, native ion-mobility mass spectrometry (IM-MS) and cell viability assays were used to demonstrate that the peptide interacts with Aβ42 monomers and oligomers with high specificity, leading to almost complete inhibition of fibril formation, with essentially no cytotoxic effects. These data define the peptide-based inhibitor as a potentially potent anti-amyloid drug candidate for this hitherto incurable disease.
Collapse
|
73
|
Calabrò M, Rinaldi C, Santoro G, Crisafulli C. The biological pathways of Alzheimer disease: a review. AIMS Neurosci 2020; 8:86-132. [PMID: 33490374 PMCID: PMC7815481 DOI: 10.3934/neuroscience.2021005] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer disease is a progressive neurodegenerative disorder, mainly affecting older people, which severely impairs patients' quality of life. In the recent years, the number of affected individuals has seen a rapid increase. It is estimated that up to 107 million subjects will be affected by 2050 worldwide. Research in this area has revealed a lot about the biological and environmental underpinnings of Alzheimer, especially its correlation with β-Amyloid and Tau related mechanics; however, the precise molecular events and biological pathways behind the disease are yet to be discovered. In this review, we focus our attention on the biological mechanics that may lie behind Alzheimer development. In particular, we briefly describe the genetic elements and discuss about specific biological processes potentially associated with the disease.
Collapse
Affiliation(s)
| | | | | | - Concetta Crisafulli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy
| |
Collapse
|
74
|
Rahman MA, Rahman MS, Uddin MJ, Mamum-Or-Rashid ANM, Pang MG, Rhim H. Emerging risk of environmental factors: insight mechanisms of Alzheimer's diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44659-44672. [PMID: 32201908 DOI: 10.1007/s11356-020-08243-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Neurodegenerative disorders are typically sporadic in nature in addition to usually influenced through an extensive range of environmental factors, lifestyle, and genetic elements. Latest observations have hypothesized that exposure of environmental factors may increase the prospective risk of Alzheimer's diseases (AD). However, the role of environmental factors as a possible dangerous issue has extended importance concerned in AD pathology, although actual etiology of the disorder is still not yet clear. Thus, the aim of this review is to highlight the possible correlation between environmental factors and AD, based on the present literature view. Environmental risk factors might play an important role in decelerating or accelerating AD progression. Among well-known environmental risk factors, prolonged exposure to several heavy metals, for example, aluminum, arsenic, cadmium, lead, and mercury; particulate air, and some pesticides as well as metal-containing nanoparticles have been participated to cause AD. These heavy metals have the capacity to enhance amyloid β (Aβ) peptide along with tau phosphorylation, initiating amyloid/senile plaques, as well as neurofibrillary tangle formation; therefore, neuronal cell death has been observed. Furthermore, particulate air, pesticides, and heavy metal exposure have been recommended to lead AD susceptibility and phenotypic diversity though epigenetic mechanisms. Therefore, this review deliberates recent findings detailing the mechanisms for a better understanding the relationship between AD and environmental risk factors along with their mechanisms of action on the brain functions.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
- Department of Biotechnology and Genetic Engineering, Global Biotechnology & Biomedical Research Network (GBBRN), Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh.
| | - Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, 456-756, Republic of Korea
| | - Md Jamal Uddin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea
- ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh
| | - A N M Mamum-Or-Rashid
- Anti-Aging Medical Research Center and Glycation Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, 456-756, Republic of Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
75
|
Mahmood R, Kayani WK, Ahmed T, Malik F, Hussain S, Ashfaq M, Ali H, Rubnawaz S, Green BD, Calderwood D, Kenny O, Rivera GA, Mirza B, Rasheed F. Assessment of antidiabetic potential and phytochemical profiling of Rhazya stricta root extracts. BMC Complement Med Ther 2020; 20:293. [PMID: 32993632 PMCID: PMC7523044 DOI: 10.1186/s12906-020-03035-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022] Open
Abstract
Background Diabetes mellitus is a chronic disease characterized by hyperglycemia that may occur due to genetic, environmental or lifestyle factors. Natural remedies have been used to treat diabetes since long and many antidiabetic compounds of varied efficacies have been isolated from medicinal plants. Rhazya stricta has been used for decades for the treatment of diabetes mellitus and associated ailments. Considering the folkloric use of R. stricta against diabetes, it was aimed to investigate the effectiveness of its root extracts against diabetes through in vitro assays and in vivo studies using animal model along with phytochemical profiling through GCMS. Methods Various fractions of Rhazya stricta obtained through column chromatography were evaluated for a variety of assays including α-glucosidase, Dipeptidyl peptidase-IV (DPP-IV), β-secretase and Glucagon-like peptide-1 (GLP-1) secretion studies. For the in vivo studies the alloxan-induced diabetic mice were treated with root extracts and blood glucose levels, HbA1C, and other biochemical markers along with the histological study of the liver were done. The phytochemical identification was performed using an Agilent 7890B GC coupled to a 7010 Triple Quadrupole (MS/MS) system. GraphPad Prism software version 5.01 was used for statistical analysis. Results Majority of the extract fractions showed excellent results against diabetes by inhibiting enzymes DPP-IV (Up to 61%) and β-secretase (Up to 83%) with IC50s 979 μg/ml and 169 μg/ml respectively with increase in the GLP1 secretion. The results of in vivo studies indicated a marked reduction in blood glucose and HbA1c levels along with positive effects on other parameters like lipid profile, liver functions and renal functions of extract-treated mice as compared to control. The histological examination of the liver demonstrated hepatoprotective effects against diabetes led changes and various classes of phytochemicals were also identified through GCMS in different fractions. Conclusion The results revealed strong antidiabetic activity of R. stricta root with the potential to protect body organs against diabetic changes. Moreover, a variety of phytochemicals has also been identified through GCMS that might be responsible for the antidiabetic potential of Rhazya stricta root. Graphical abstract ![]()
Collapse
Affiliation(s)
- Rashid Mahmood
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Drugs Control & Traditional Medicines Division, National Institute of Health, Islamabad, Pakistan
| | - Waqas Khan Kayani
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, SE-230 53 Alnarp, Uppsala, Sweden
| | - Tanveer Ahmed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Farnaz Malik
- Drugs Control & Traditional Medicines Division, National Institute of Health, Islamabad, Pakistan
| | - Shahzad Hussain
- Drugs Control & Traditional Medicines Division, National Institute of Health, Islamabad, Pakistan
| | - Muhammad Ashfaq
- Drugs Control & Traditional Medicines Division, National Institute of Health, Islamabad, Pakistan
| | - Hussain Ali
- Animal House, National Institute of Health, Islamabad, Pakistan
| | - Samina Rubnawaz
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Brian D Green
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Danielle Calderwood
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Owen Kenny
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Gerardo A Rivera
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Bushra Mirza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Faiza Rasheed
- KTH Royal Institute of Technology, School of Chemical Science and Engineering, SE-100 44, Stockholm, Sweden.
| |
Collapse
|
76
|
Ali AM, Kunugi H. Royal Jelly as an Intelligent Anti-Aging Agent-A Focus on Cognitive Aging and Alzheimer's Disease: A Review. Antioxidants (Basel) 2020; 9:E937. [PMID: 33003559 PMCID: PMC7601550 DOI: 10.3390/antiox9100937] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 02/08/2023] Open
Abstract
The astronomical increase of the world's aged population is associated with the increased prevalence of neurodegenerative diseases, heightened disability, and extremely high costs of care. Alzheimer's Disease (AD) is a widespread, age-related, multifactorial neurodegenerative disease that has enormous social and financial drawbacks worldwide. The unsatisfactory outcomes of available AD pharmacotherapy necessitate the search for alternative natural resources that can target various the underlying mechanisms of AD pathology and reduce disease occurrence and/or progression. Royal jelly (RJ) is the main food of bee queens; it contributes to their fertility, long lifespan, and memory performance. It represents a potent nutraceutical with various pharmacological properties, and has been used in a number of preclinical studies to target AD and age-related cognitive deterioration. To understand the mechanisms through which RJ affects cognitive performance both in natural aging and AD, we reviewed the literature, elaborating on the metabolic, molecular, and cellular mechanisms that mediate its anti-AD effects. Preclinical findings revealed that RJ acts as a multidomain cognitive enhancer that can restore cognitive performance in aged and AD models. It promotes brain cell survival and function by targeting multiple adversities in the neuronal microenvironment such as inflammation, oxidative stress, mitochondrial alterations, impaired proteostasis, amyloid-β toxicity, Ca excitotoxicity, and bioenergetic challenges. Human trials using RJ in AD are limited in quantity and quality. Here, the limitations of RJ-based treatment strategies are discussed, and directions for future studies examining the effect of RJ in cognitively impaired subjects are noted.
Collapse
Affiliation(s)
- Amira Mohammed Ali
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-0031, Japan;
- Department of Psychiatric Nursing and Mental Health, Faculty of Nursing, Alexandria University, Alexandria 21527, Egypt
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-0031, Japan;
- Department of Psychiatry, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| |
Collapse
|
77
|
Dey M, Gunn-Moore FJ, Platt B, Smith TK. Brain region-specific lipid alterations in the PLB4 hBACE1 knock-in mouse model of Alzheimer's disease. Lipids Health Dis 2020; 19:201. [PMID: 32867761 PMCID: PMC7457777 DOI: 10.1186/s12944-020-01367-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/10/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lipid dysregulation is associated with several key characteristics of Alzheimer's disease (AD), including amyloid-β and tau neuropathology, neurodegeneration, glucose hypometabolism, as well as synaptic and mitochondrial dysfunction. The β-site amyloid precursor protein cleavage enzyme 1 (BACE1) is associated with increased amyloidogenesis, and has been affiliated with diabetes via its role in metabolic regulation. METHODS The research presented herein investigates the role of hBACE1 in lipid metabolism and whether specific brain regions show increased vulnerability to lipid dysregulation. By utilising advanced mass spectrometry techniques, a comprehensive, quantitative lipidomics analysis was performed to investigate the phospholipid, sterol, and fatty acid profiles of the brain from the well-known PLB4 hBACE1 knock-in mouse model of AD, which also shows a diabetic phenotype, to provide insight into regional alterations in lipid metabolism. RESULTS Results show extensive region - specific lipid alterations in the PLB4 brain compared to the wild-type, with decreases in the phosphatidylethanolamine content of the cortex and triacylglycerol content of the hippocampus and hypothalamus, but increases in the phosphatidylcholine, phosphatidylinositol, and diacylglycerol content of the hippocampus. Several sterol and fatty acids were also specifically decreased in the PLB4 hippocampus. CONCLUSION Collectively, the lipid alterations observed in the PLB4 hBACE1 knock-in AD mouse model highlights the regional vulnerability of the brain, in particular the hippocampus and hypothalamus, to lipid dysregulation, hence supports the premise that metabolic abnormalities have a central role in both AD and diabetes.
Collapse
Affiliation(s)
- Madhurima Dey
- School of Biology, University of St. Andrews, Medical & Biological Sciences Building, St. Andrews, Fife, Scotland
| | - Frank J Gunn-Moore
- School of Biology, University of St. Andrews, Medical & Biological Sciences Building, St. Andrews, Fife, Scotland
| | - Bettina Platt
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Institute of Medical Sciences, Aberdeen, Scotland
| | - Terry K Smith
- Biomedical Science Research Complex, University of St. Andrews, St. Andrews, Fife, Scotland.
| |
Collapse
|
78
|
Temviriyanukul P, Sritalahareuthai V, Promyos N, Thangsiri S, Pruesapan K, Srinuanchai W, Nuchuchua O, Siriwan D, On-nom N, Suttisansanee U. The Effect of Sacred Lotus ( Nelumbo nucifera) and Its Mixtures on Phenolic Profiles, Antioxidant Activities, and Inhibitions of the Key Enzymes Relevant to Alzheimer's Disease. Molecules 2020; 25:E3713. [PMID: 32824050 PMCID: PMC7463813 DOI: 10.3390/molecules25163713] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 11/16/2022] Open
Abstract
Sacred lotus (Nelumbo nucifera) has long been used as a food source and ingredient for traditional herbal remedies. Plant parts contain neuroprotective agents that interact with specific targets to inhibit Alzheimer's disease (AD). Organic solvents including methanol, ethyl acetate, hexane, and n-butanol, are widely employed for extraction of sacred lotus but impact food safety. Seed embryo, flower stalk, stamen, old leaf, petal, and leaf stalk of sacred lotus were extracted using hot water (aqueous extraction). The extractions were analyzed for their bioactive constituents, antioxidant and anti-AD properties as key enzyme inhibitory activities toward acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-secretase 1 (BACE-1). Results showed that the sacred lotus stamen exhibited significant amounts of phenolics, including phenolic acids and flavonoids, that contributed to high antioxidant activity via both single electron transfer (SET) and hydrogen atom transfer (HAT) mechanisms, with anti-AChE, anti-BChE, and anti-BACE-1 activities. To enhance utilization of other sacred lotus parts, a combination of stamen, old leaf and petal as the three sacred lotus plant components with the highest phenolic contents, antioxidant activities, and enzyme inhibitory properties was analyzed. Antagonist interaction was observed, possibly from flavonoids-flavonoids interaction. Further in-depth elucidation of this issue is required. Findings demonstrated that an aqueous extract of the stamen has potential for application as a functional food to mitigate the onset of Alzheimer's disease.
Collapse
Affiliation(s)
- Piya Temviriyanukul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.T.); (V.S.); (N.P.); (S.T.); (N.O.-n.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Varittha Sritalahareuthai
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.T.); (V.S.); (N.P.); (S.T.); (N.O.-n.)
| | - Natnicha Promyos
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.T.); (V.S.); (N.P.); (S.T.); (N.O.-n.)
| | - Sirinapa Thangsiri
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.T.); (V.S.); (N.P.); (S.T.); (N.O.-n.)
| | - Kanchana Pruesapan
- Plant Varieties Protection Division, Department of Agriculture, Ministry of Agriculture and Cooperatives, Bangkok 10900, Thailand;
| | - Wanwisa Srinuanchai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency(NSTDA), Klong Luang, Pathum Thani 12120, Thailand; (W.S.); (O.N.)
| | - Onanong Nuchuchua
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency(NSTDA), Klong Luang, Pathum Thani 12120, Thailand; (W.S.); (O.N.)
| | - Dalad Siriwan
- Institute of Food Research and Product Development, Kasetsart University, Chatuchak, Bangkok 10900, Thailand;
| | - Nattira On-nom
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.T.); (V.S.); (N.P.); (S.T.); (N.O.-n.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Uthaiwan Suttisansanee
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.T.); (V.S.); (N.P.); (S.T.); (N.O.-n.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| |
Collapse
|
79
|
Mycroft-West CJ, Devlin AJ, Cooper LC, Procter P, Miller GJ, Fernig DG, Guerrini M, Guimond SE, Lima MA, Yates EA, Skidmore MA. Inhibition of BACE1, the β-secretase implicated in Alzheimer's disease, by a chondroitin sulfate extract from Sardina pilchardus. Neural Regen Res 2020; 15:1546-1553. [PMID: 31997821 PMCID: PMC7059579 DOI: 10.4103/1673-5374.274341] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/23/2019] [Accepted: 10/26/2019] [Indexed: 12/24/2022] Open
Abstract
The pharmaceutical and anticoagulant agent heparin, a member of the glycosaminoglycan family of carbohydrates, has previously been identified as a potent inhibitor of a key Alzheimer's disease drug target, the primary neuronal β-secretase, β-site amyloid precursor protein cleaving enzyme 1 (BACE1). The anticoagulant activity of heparin has, however, precluded the repurposing of this widely used pharmaceutical as an Alzheimer's disease therapeutic. Here, a glycosaminoglycan extract, composed predominantly of 4-sulfated chondroitin sulfate, has been isolated from Sardina pilchardus, which possess the ability to inhibit BACE1 (IC50 [half maximal inhibitory concentration] = 4.8 μg/mL), while displaying highly attenuated anticoagulant activities (activated partial thromboplastin time EC50 [median effective concentration] = 403.8 μg/mL, prothrombin time EC50 = 1.3 mg/mL). The marine-derived, chondroitin sulfate extract destabilizes BACE1, determined via differential scanning fluorimetry (ΔTm -5°C), to a similar extent as heparin, suggesting that BACE1 inhibition by glycosaminoglycans may occur through a common mode of action, which may assist in the screening of glycan-based BACE1 inhibitors for Alzheimer's disease.
Collapse
Affiliation(s)
- Courtney J. Mycroft-West
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - Anthony J. Devlin
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - Lynsay C. Cooper
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - Patricia Procter
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - Gavin J. Miller
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - David G. Fernig
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Via G. Colombo 81, 20133 Milan, Italy
| | - Scott E. Guimond
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
- School of Medicine, Keele, Staffordshire, ST5 5BG, UK
| | - Marcelo A. Lima
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - Edwin A. Yates
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Mark Andrew Skidmore
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
- School of Medicine, Keele, Staffordshire, ST5 5BG, UK
| |
Collapse
|
80
|
Bhat A, Ray B, Mahalakshmi AM, Tuladhar S, Nandakumar DN, Srinivasan M, Essa MM, Chidambaram SB, Guillemin GJ, Sakharkar MK. Phosphodiesterase-4 enzyme as a therapeutic target in neurological disorders. Pharmacol Res 2020; 160:105078. [PMID: 32673703 DOI: 10.1016/j.phrs.2020.105078] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 02/08/2023]
Abstract
Phosphodiesterases (PDE) are a diverse family of enzymes (11 isoforms so far identified) responsible for the degradation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) which are involved in several cellular and biochemical functions. Phosphodiesterase 4 (PDE4) is the major isoform within this group and is highly expressed in the mammalian brain. An inverse association between PDE4 and cAMP levels is the key mechanism in various pathophysiological conditions like airway inflammatory diseases-chronic obstruction pulmonary disease (COPD), asthma, psoriasis, rheumatoid arthritis, and neurological disorders etc. In 2011, roflumilast, a PDE4 inhibitor (PDE4I) was approved for the treatment of COPD. Subsequently, other PDE4 inhibitors (PDE4Is) like apremilast and crisaborole were approved by the Food and Drug Administration (FDA) for psoriasis, atopic dermatitis etc. Due to the adverse effects like unbearable nausea and vomiting, dose intolerance and diarrhoea, PDE4 inhibitors have very less clinical compliance. Efforts are being made to develop allosteric modulation with high specificity to PDE4 isoforms having better efficacy and lesser adverse effects. Interestingly, repositioning PDE4Is towards neurological disorders including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS) and sleep disorders, is gaining attention. This review is an attempt to summarize the data on the effects of PDE4 overexpression in neurological disorders and the use of PDE4Is and newer allosteric modulators as therapeutic options. We have also compiled a list of on-going clinical trials on PDE4 inhibitors in neurological disorders.
Collapse
Affiliation(s)
- Abid Bhat
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Bipul Ray
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | | | - Sunanda Tuladhar
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - D N Nandakumar
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Malathi Srinivasan
- Department of Lipid Science, CSIR - Central Food Technological Research Institute (CFTRI), CFTRI Campus, Mysuru, 570020, India
| | - Musthafa Mohamed Essa
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman; Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman.
| | - Saravana Babu Chidambaram
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India; Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India.
| | - Gilles J Guillemin
- Neuroinflammation group, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia.
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, 107, Wiggins Road, Saskatoon, SK, S7N 5C9, Canada
| |
Collapse
|
81
|
Multitarget Therapeutic Strategies for Alzheimer's Disease: Review on Emerging Target Combinations. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5120230. [PMID: 32714977 PMCID: PMC7354643 DOI: 10.1155/2020/5120230] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/12/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases represent nowadays one of the major health problems. Despite the efforts made to unveil the mechanism leading to neurodegeneration, it is still not entirely clear what triggers this phenomenon and what allows its progression. Nevertheless, it is accepted that neurodegeneration is a consequence of several detrimental processes, such as protein aggregation, oxidative stress, and neuroinflammation, finally resulting in the loss of neuronal functions. Starting from these evidences, there has been a wide search for novel agents able to address more than a single event at the same time, the so-called multitarget-directed ligands (MTDLs). These compounds originated from the combination of different pharmacophoric elements which endowed them with the ability to interfere with different enzymatic and/or receptor systems, or to exert neuroprotective effects by modulating proteins and metal homeostasis. MTDLs have been the focus of the latest strategies to discover a new treatment for Alzheimer's disease (AD), which is considered the most common form of dementia characterized by neurodegeneration and cognitive dysfunctions. This review is aimed at collecting the latest and most interesting target combinations for the treatment of AD, with a detailed discussion on new agents with favorable in vitro properties and on optimized structures that have already been assessed in vivo in animal models of dementia.
Collapse
|
82
|
Al-Awadhi FH, Luesch H. Targeting eukaryotic proteases for natural products-based drug development. Nat Prod Rep 2020; 37:827-860. [PMID: 32519686 PMCID: PMC7406119 DOI: 10.1039/c9np00060g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: up to April 2020 Proteases are involved in the regulation of many physiological processes. Their overexpression and dysregulated activity are linked to diseases such as hypertension, diabetes, viral infections, blood clotting disorders, respiratory diseases, and cancer. Therefore, they represent an important class of therapeutic targets. Several protease inhibitors have reached the market and >60% of them are directly related to natural products, even when excluding synthetic natural product mimics. Historically, natural products have been a valuable and validated source of therapeutic agents, as over half of the marketed drugs across targets and diseases are inspired by natural product structures. In the past two decades the number of new protease inhibitors discovered from nature has sharply increased. Additionally, the availability of 3D structural information for proteases has permitted structure-based design and accelerated the synthesis of optimized lead structures with improved potency and selectivity profiles, resulting in some of the most-potent-in-class inhibitors. These discoveries were oftentimes maximized by in-depth biological assessments of lead inhibitors, linking them to a relevant disease state. This review will discuss some of the current and emerging drug targets and their involvement in various disease processes, highlighting selected success stories behind several FDA-approved protease inhibitors that have natural products scaffolds as well as recent selected pharmacologically well-characterized inhibitors derived from marine or terrestrial sources.
Collapse
Affiliation(s)
- Fatma H Al-Awadhi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait.
| | - Hendrik Luesch
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, USA.
| |
Collapse
|
83
|
Alzheimer's disease; a review of the pathophysiological basis and therapeutic interventions. Life Sci 2020; 256:117996. [PMID: 32585249 DOI: 10.1016/j.lfs.2020.117996] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/14/2020] [Accepted: 06/14/2020] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder and is identified as the most common cause for dementia. Despite huge global economic burden and the impact on the close family of the patients, there is no definitive cure and thus, improved treatment methods are of need. While memory and cognition are severely affected in AD, exact etiology is yet unknown. The β-Amyloid plaque formation and aggregation hypothesis is among the well-known hypotheses used to explain disease pathogenesis. Currently there are five Food and Drug Administration (FDA) approved drugs as treatment options. All these drugs are used for symptomatic treatment of AD. Thus, disease modifying therapies which can directly address the pathological changes in AD, are needed. Such therapies could be designed based on inhibiting key steps of pathogenesis. Currently there are novel AD drug candidates with various therapeutic mechanisms, undergoing different stages of drug development. Extensive research is being done globally to broaden understanding of the exact mechanisms involved in AD and to develop therapeutic agents that can successfully hinder the occurrence and progression of the disease. In this review, a comprehensive approach to understanding AD and suggestions to be considered in the development of therapeutics for it are presented.
Collapse
|
84
|
Coneys R, Wood IC. Alzheimer's disease: the potential of epigenetic treatments and current clinical candidates. Neurodegener Dis Manag 2020; 10:543-558. [PMID: 32552286 DOI: 10.2217/nmt-2019-0034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease is a progressive and fatal neurodegenerative disease affecting 50 million people worldwide, characterized by memory loss and neuronal degeneration. Current treatments have limited efficacy and there is no cure. Alzheimer's is likely caused by a combination of factors, providing several potential therapeutic targets. One area of interest is the epigenetic regulation of gene expression within the brain. Epigenetic marks, including DNA methylation and histone modifications, show consistent changes with age and in those with Alzheimer's. Some epigenetic regulation has been linked to disease pathology and progression and are the focus of current research. Epigenetic regulators might make promising therapeutic targets yet challenges need to be overcome to generate an efficacious drug lacking deleterious side effects.
Collapse
Affiliation(s)
- Rachel Coneys
- Leonard Wolfson Experimental Neurology Centre, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Ian C Wood
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
85
|
Gupta SP, Patil VM. Recent Studies on Design and Development of Drugs Against Alzheimer's Disease (AD) Based on Inhibition of BACE-1 and Other AD-causative Agents. Curr Top Med Chem 2020; 20:1195-1213. [PMID: 32297584 DOI: 10.2174/1568026620666200416091623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the neurodegenerative diseases and has been hypothesized to be a protein misfolding disease. In the generation of AD, β-secretase, γ-secretase, and tau protein play an important role. A literature search reflects ever increasing interest in the design and development of anti-AD drugs targeting β-secretase, γ-secretase, and tau protein. OBJECTIVE The objective is to explore the structural aspects and role of β-secretase, γ-secretase, and tau protein in AD and the efforts made to exploit them for the design of effective anti-AD drugs. METHODS The manuscript covers the recent studies on design and development of anti-AD drugs exploiting amyloid and cholinergic hypotheses. RESULTS Based on amyloid and cholinergic hypotheses, effective anti-AD drugs have been searched out in which non-peptidic BACE1 inhibitors have been most prominent. CONCLUSION Further exploitation of the structural aspects and the inhibition mechanism for β-secretase, γ-secretase, and tau protein and the use of cholinergic hypothesis may lead still more potent anti-AD drugs.
Collapse
Affiliation(s)
- Satya P Gupta
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut-250005, India
| | - Vaishali M Patil
- Computer Aided Drug Design Lab, Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad-201206, Uttar Pradesh, India
| |
Collapse
|
86
|
Multitarget Approach to Drug Candidates against Alzheimer's Disease Related to AChE, SERT, BACE1 and GSK3β Protein Targets. Molecules 2020; 25:molecules25081846. [PMID: 32316402 PMCID: PMC7221701 DOI: 10.3390/molecules25081846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/14/2020] [Indexed: 01/22/2023] Open
Abstract
Alzheimer’s disease is a neurodegenerative condition for which currently there are no drugs that can cure its devastating impact on human brain function. Although there are therapeutics that are being used in contemporary medicine for treatment against Alzheimer’s disease, new and more effective drugs are in great demand. In this work, we proposed three potential drug candidates which may act as multifunctional compounds simultaneously toward AChE, SERT, BACE1 and GSK3β protein targets. These candidates were discovered by using state-of-the-art methods as molecular calculations (molecular docking and molecular dynamics), artificial neural networks and multilinear regression models. These methods were used for virtual screening of the publicly available library containing more than twenty thousand compounds. The experimental testing enabled us to confirm a multitarget drug candidate active at low micromolar concentrations against two targets, e.g., AChE and BACE1.
Collapse
|
87
|
Coimbra JRM, Baptista SJ, Dinis TCP, Silva MMC, Moreira PI, Santos AE, Salvador JAR. Combining Virtual Screening Protocol and In Vitro Evaluation towards the Discovery of BACE1 Inhibitors. Biomolecules 2020; 10:biom10040535. [PMID: 32244832 PMCID: PMC7226079 DOI: 10.3390/biom10040535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
The treatment options for a patient diagnosed with Alzheimer’s disease (AD) are currently limited. The cerebral accumulation of amyloid-β (Aβ) is a critical molecular event in the pathogenesis of AD. When the amyloidogenic β-secretase (BACE1) is inhibited, the production of Aβ peptide is reduced. Henceforth, the main goal of this study is the discovery of new small bioactive molecules that potentially reach the brain and inhibit BACE1. The work was conducted by a customized molecular modelling protocol, including pharmacophore-based and molecular docking-based virtual screening (VS). Structure-based (SB) and ligand-based (LB) pharmacophore models were designed to accurately screen several drug-like compound databases. The retrieved hits were subjected to molecular docking and in silico filtered to predict their ability to cross the blood–brain barrier (BBB). Additionally, 34 high-scoring compounds structurally distinct from known BACE1 inhibitors were selected for in vitro screening assay, which resulted in 13 novel hit-compounds for this relevant therapeutic target. This study disclosed new BACE1 inhibitors, proving the utility of combining computational and in vitro approaches for effectively predicting anti-BACE1 agents in the early drug discovery process.
Collapse
Affiliation(s)
- Judite R. M. Coimbra
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (J.R.M.C.); (M.M.C.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal; (S.J.B.); (T.C.P.D.); (P.I.M.); (A.E.S.)
| | - Salete J. Baptista
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal; (S.J.B.); (T.C.P.D.); (P.I.M.); (A.E.S.)
- Chem4Pharma, Edifício IPN Incubadora, 3030-199 Coimbra, Portugal
| | - Teresa C. P. Dinis
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal; (S.J.B.); (T.C.P.D.); (P.I.M.); (A.E.S.)
- Laboratory of Biochemistry and Biology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria M. C. Silva
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (J.R.M.C.); (M.M.C.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal; (S.J.B.); (T.C.P.D.); (P.I.M.); (A.E.S.)
| | - Paula I. Moreira
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal; (S.J.B.); (T.C.P.D.); (P.I.M.); (A.E.S.)
- Laboratory of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Armanda E. Santos
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal; (S.J.B.); (T.C.P.D.); (P.I.M.); (A.E.S.)
- Laboratory of Biochemistry and Biology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Jorge A. R. Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (J.R.M.C.); (M.M.C.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal; (S.J.B.); (T.C.P.D.); (P.I.M.); (A.E.S.)
- Correspondence: ; Tel.: +351-239-488-479
| |
Collapse
|
88
|
Xu M, Zhang L, Li P, Wang C, Shi Y. Network pharmacology used to decode potential active ingredients in Ferula assafoetida and mechanisms for the application to Alzheimer’s disease. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2020. [DOI: 10.1016/j.jtcms.2020.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
89
|
Galanis C, Vlachos A. Hebbian and Homeostatic Synaptic Plasticity-Do Alterations of One Reflect Enhancement of the Other? Front Cell Neurosci 2020; 14:50. [PMID: 32256317 PMCID: PMC7093376 DOI: 10.3389/fncel.2020.00050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/21/2020] [Indexed: 01/07/2023] Open
Abstract
During the past 50 years, the cellular and molecular mechanisms of synaptic plasticity have been studied in great detail. A plethora of signaling pathways have been identified that account for synaptic changes based on positive and negative feedback mechanisms. Yet, the biological significance of Hebbian synaptic plasticity (= positive feedback) and homeostatic synaptic plasticity (= negative feedback) remains a matter of debate. Specifically, it is unclear how these opposing forms of plasticity, which share common downstream mechanisms, operate in the same networks, neurons, and synapses. Based on the observation that rapid and input-specific homeostatic mechanisms exist, we here discuss a model that is based on signaling pathways that may adjust a balance between Hebbian and homeostatic synaptic plasticity. Hence, “alterations” in Hebbian plasticity may, in fact, resemble “enhanced” homeostasis, which rapidly returns synaptic strength to baseline. In turn, long-lasting experience-dependent synaptic changes may require attenuation of homeostatic mechanisms or the adjustment of homeostatic setpoints at the single-synapse level. In this context, we propose a role for the proteolytic processing of the amyloid precursor protein (APP) in setting a balance between the ability of neurons to express Hebbian and homeostatic synaptic plasticity.
Collapse
Affiliation(s)
- Christos Galanis
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
90
|
Cavalcante SFDA, Simas ABC, Barcellos MC, de Oliveira VGM, Sousa RB, Cabral PADM, Kuča K, França TCC. Acetylcholinesterase: The "Hub" for Neurodegenerative Diseases and Chemical Weapons Convention. Biomolecules 2020; 10:E414. [PMID: 32155996 PMCID: PMC7175162 DOI: 10.3390/biom10030414] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
This article describes acetylcholinesterase (AChE), an enzyme involved in parasympathetic neurotransmission, its activity, and how its inhibition can be pharmacologically useful for treating dementia, caused by Alzheimer's disease, or as a warfare method due to the action of nerve agents. The chemical concepts related to the irreversible inhibition of AChE, its reactivation, and aging are discussed, along with a relationship to the current international legislation on chemical weapons.
Collapse
Affiliation(s)
- Samir F. de A. Cavalcante
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
- Walter Mors Institute of Research on Natural Products (IPPN), Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, Rio de Janeiro 21941-902, Brazil
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic
| | - Alessandro B. C. Simas
- Walter Mors Institute of Research on Natural Products (IPPN), Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, Rio de Janeiro 21941-902, Brazil
| | - Marcos C. Barcellos
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
| | - Victor G. M. de Oliveira
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
| | - Roberto B. Sousa
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
| | - Paulo A. de M. Cabral
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic
| | - Tanos C. C. França
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic
- Laboratory of Molecular Modelling Applied to Chemical and Biological Defense (LMACBD), Military Institute of Engineering (IME), Praça General Tibúrcio 80, Rio de Janeiro 22290-270, Brazil
| |
Collapse
|
91
|
Arakawa R, Takano A, Stenkrona P, Stepanov V, Nag S, Jahan M, Grybäck P, Bolin M, Chen L, Zhang L, He P, Villalobos A, McCarthy TJ, Halldin C, Varrone A. PET imaging of beta-secretase 1 in the human brain: radiation dosimetry, quantification, and test-retest examination of [ 18F]PF-06684511. Eur J Nucl Med Mol Imaging 2020; 47:2429-2439. [PMID: 32140803 PMCID: PMC7396399 DOI: 10.1007/s00259-020-04739-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/20/2020] [Indexed: 11/29/2022]
Abstract
Purpose Beta-secretase 1 (BACE1) enzyme is implicated in the pathophysiology of Alzheimer’s disease. [18F]PF-06684511 is a positron emission tomography (PET) radioligand for imaging BACE1. Despite favorable brain kinetic properties, the effective dose (ED) of [18F]PF-06684511 estimated in non-human primates was relatively high. This study was therefore designed to evaluate the whole-body distribution, dosimetry, quantification, and test-retest reliability of imaging brain BACE1 with [18F]PF-06684511 in healthy volunteers. Methods Five subjects were studied for the dosimetry study. Whole-body PET was performed for 366 min with 4 PET-CT sessions. Estimates of the absorbed radiation dose were calculated using the male adult model. Eight subjects participated in the test-retest study. Brain PET measurements were conducted for 123 min with an interval of 5 to 19 days between test and retest conditions. The total distribution volume (VT) was estimated with one-tissue (1T), two-tissue (2T), compartment model (CM), and graphical analysis. Test-retest variability (TRV) and intraclass correlation coefficient (ICC) of VT were calculated as reliability measures. Results In the dosimetry study, the highest uptake was found in the liver (25.2 ± 2.3 %ID at 0.5 h) and the largest dose was observed in the pancreas (92.9 ± 52.2 μSv/MBq). The calculated ED was 24.7 ± 0.8 μSv/MBq. In the test-retest study, 2TCM described the time-activity curves well. VT (2TCM) was the highest in the anterior cingulate cortex (6.28 ± 1.09 and 6.85 ± 0.81) and the lowest in the cerebellum (4.23 ± 0.88 and 4.20 ± 0.75). Mean TRV and ICC of VT (2TCM) were 16.5% (12.4–20.5%) and 0.496 (0.291–0.644). Conclusion The ED of [18F]PF-06684511 was similar to other 18F radioligands, allowing repeated PET measurements. 2TCM was the most appropriate quantification method. TRV of VT was similar to other radioligands without a reference region, albeit with lower ICC. These data indicated that [18F]PF-06684511 is a suitable radioligand to measure BACE1 level in the human brain. Trial registration EudraCT 2016-001110-19 (registered 2016-08-08)
Collapse
Affiliation(s)
- Ryosuke Arakawa
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.
| | - Akihiro Takano
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Per Stenkrona
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Vladimir Stepanov
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Sangram Nag
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Mahabuba Jahan
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Per Grybäck
- Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Bolin
- Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Laigao Chen
- Worldwide Research & Development, Pfizer Inc., Cambridge, MA, USA
| | - Lei Zhang
- Worldwide Research & Development, Pfizer Inc., Cambridge, MA, USA
| | - Ping He
- Worldwide Research & Development, Pfizer Inc., Cambridge, MA, USA
| | | | | | - Christer Halldin
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Andrea Varrone
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| |
Collapse
|
92
|
Houštecká R, Hadzima M, Fanfrlík J, Brynda J, Pallová L, Hánová I, Mertlíková-Kaiserová H, Lepšík M, Horn M, Smrčina M, Majer P, Mareš M. Biomimetic Macrocyclic Inhibitors of Human Cathepsin D: Structure-Activity Relationship and Binding Mode Analysis. J Med Chem 2020; 63:1576-1596. [PMID: 32003991 DOI: 10.1021/acs.jmedchem.9b01351] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Human cathepsin D (CatD), a pepsin-family aspartic protease, plays an important role in tumor progression and metastasis. Here, we report the development of biomimetic inhibitors of CatD as novel tools for regulation of this therapeutic target. We designed a macrocyclic scaffold to mimic the spatial conformation of the minimal pseudo-dipeptide binding motif of pepstatin A, a microbial oligopeptide inhibitor, in the CatD active site. A library of more than 30 macrocyclic peptidomimetic inhibitors was employed for scaffold optimization, mapping of subsite interactions, and profiling of inhibitor selectivity. Furthermore, we solved high-resolution crystal structures of three macrocyclic inhibitors with low nanomolar or subnanomolar potency in complex with CatD and determined their binding mode using quantum chemical calculations. The study provides a new structural template and functional profile that can be exploited for design of potential chemotherapeutics that specifically inhibit CatD and related aspartic proteases.
Collapse
Affiliation(s)
- Radka Houštecká
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nám. 2 , 16610 Praha 6 , Czech Republic.,First Faculty of Medicine , Charles University , Kateřinská 32 , 12108 Praha 2 , Czech Republic
| | - Martin Hadzima
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nám. 2 , 16610 Praha 6 , Czech Republic.,Department of Organic Chemistry, Faculty of Science , Charles University , Albertov 6 , 12800 Praha 2 , Czech Republic
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nám. 2 , 16610 Praha 6 , Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nám. 2 , 16610 Praha 6 , Czech Republic
| | - Lenka Pallová
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nám. 2 , 16610 Praha 6 , Czech Republic
| | - Iva Hánová
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nám. 2 , 16610 Praha 6 , Czech Republic.,Department of Biochemistry, Faculty of Science , Charles University , Albertov 6 , 12800 Praha 2 , Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nám. 2 , 16610 Praha 6 , Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nám. 2 , 16610 Praha 6 , Czech Republic
| | - Martin Horn
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nám. 2 , 16610 Praha 6 , Czech Republic
| | - Martin Smrčina
- Tucson Research Center , Icagen Inc. , 2090 E. Innovation Park Drive , Oro Valley , Arizona 85755 , United States
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nám. 2 , 16610 Praha 6 , Czech Republic
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nám. 2 , 16610 Praha 6 , Czech Republic
| |
Collapse
|
93
|
Xie J, Liang R, Wang Y, Huang J, Cao X, Niu B. Progress in Target Drug Molecules for Alzheimer's Disease. Curr Top Med Chem 2020; 20:4-36. [DOI: 10.2174/1568026619666191203113745] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/20/2019] [Accepted: 10/31/2019] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease that 4 widespread in the elderly.
The etiology of AD is complicated, and its pathogenesis is still unclear. Although there are many
researches on anti-AD drugs, they are limited to reverse relief symptoms and cannot treat diseases.
Therefore, the development of high-efficiency anti-AD drugs with no side effects has become an urgent
need. Based on the published literature, this paper summarizes the main targets of AD and their drugs,
and focuses on the research and development progress of these drugs in recent years.
Collapse
Affiliation(s)
- Jiayang Xie
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Ruirui Liang
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yajiang Wang
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Junyi Huang
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Xin Cao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai, China
| | - Bing Niu
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
94
|
Sun DY, Cheng C, Moschke K, Huang J, Fang WS. Extensive Structure Modification on Luteolin-Cinnamic Acid Conjugates Leading to BACE1 Inhibitors with Optimal Pharmacological Properties. Molecules 2019; 25:molecules25010102. [PMID: 31888099 PMCID: PMC6982702 DOI: 10.3390/molecules25010102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 01/23/2023] Open
Abstract
BACE1 inhibitory conjugates derived from two natural products, luteolin (1) and p-hydroxy-cinnamic acid (2), were subjected to systematic structure modifications, including various positions in luteolin segment for conjugation, different linkers (length, bond variation), as well as various substitutions in cinnamic acid segment (various substituents on benzene, and replacement of benzene by heteroaromatics and cycloalkane). Optimal conjugates such as 7c and 7k were chosen on the basis of a series of bioassay data for further investigation.
Collapse
Affiliation(s)
- De-Yang Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A Nan Wei Road, Beijing 100050, China;
| | - Chen Cheng
- College of Life Science, Wuhan University, Wuhan 430072, Hubei, China; (C.C.); (J.H.)
| | - Katrin Moschke
- German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for Systems Neurology (SyNergy), Technical University of Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany;
- Neuroproteomics, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Jian Huang
- College of Life Science, Wuhan University, Wuhan 430072, Hubei, China; (C.C.); (J.H.)
| | - Wei-Shuo Fang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A Nan Wei Road, Beijing 100050, China;
- Correspondence: ; Tel.: +86-10-6316-5229
| |
Collapse
|
95
|
Feng F, Li Y, Huang N, Luo Y. Icaritin, an inhibitor of beta-site amyloid cleaving enzyme-1, inhibits secretion of amyloid precursor protein in APP-PS1-HEK293 cells by impeding the amyloidogenic pathway. PeerJ 2019; 7:e8219. [PMID: 31844591 PMCID: PMC6910110 DOI: 10.7717/peerj.8219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/15/2019] [Indexed: 01/21/2023] Open
Abstract
Background Icaritin (ICT) is a prenylflavonoid derivative from Epimedium brevicornum Maxim. ICT has been shown to have neuroprotective effects. We investigate how ICT affects secretion of amyloid precursor protein (APP). Methods We exposed APP-PS1-HEK293 cells to ICT to investigate its effect on beta-site amyloid cleaving enzyme (BACE)1. Cell viability was evaluated by MTT and lactate dehydrogenase (LDH) assays. The half-maximal inhibitory concentration (IC50) of ICT for BACE1 was measured using fluorescence resonance energy transfer. Effects of ICT on the mRNA expression of APP were assessed by quantitative polymerase chain reaction, and protein expression was measured by western blotting and immunofluorescence. Results Icaritin inhibited BACE1 activity and IC50 was 5.70 ± 1.09 μM. Compared with the control group, at ICT concentrations of 5 μM and 10 μM, the viability increased and LDH leakage decreased in APP-PS1-293 cells. Also, mRNA expression of A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) increased, while that of BACE1 and presenilin-1 (PS1) decreased, upon ICT treatment. Western blotting and immunofluorescence confirmed that protein expression of ADAM10, BACE1 and PS1 showed the same trend. Expression of the APP fragments sAPPβ and C-terminal fragment β decreased, while that of sAPPα increased, upon ICT treatment. Expression of amyloid β peptides in APP-PS1-HEK293 cells was lower in ICT-treated groups compared with that in the control group. Conclusions Icaritin, as a BACE1 inhibitor, inhibits APP secretion in APP-PS1-HEK293 cells by impeding the amyloidogenic pathway.
Collapse
Affiliation(s)
- Fei Feng
- Department of Neurology, The First People's Hospital of Zunyi and Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yuanyuan Li
- National Drug Clinical Trial Institution, The First People's Hospital of Zunyi and Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Nanqu Huang
- National Drug Clinical Trial Institution, The First People's Hospital of Zunyi and Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yong Luo
- Department of Neurology, The First People's Hospital of Zunyi and Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
96
|
Meilandt WJ, Maloney JA, Imperio J, Lalehzadeh G, Earr T, Crowell S, Bainbridge TW, Lu Y, Ernst JA, Fuji RN, Atwal JK. Characterization of the selective in vitro and in vivo binding properties of crenezumab to oligomeric Aβ. ALZHEIMERS RESEARCH & THERAPY 2019; 11:97. [PMID: 31787113 PMCID: PMC6886224 DOI: 10.1186/s13195-019-0553-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/06/2019] [Indexed: 02/01/2023]
Abstract
Background Accumulation of amyloid β (Aβ) in the brain is proposed as a cause of Alzheimer’s disease (AD), with Aβ oligomers hypothesized to be the primary mediators of neurotoxicity. Crenezumab is a humanized immunoglobulin G4 monoclonal antibody that has been shown to bind to synthetic monomeric and aggregated Aβ in vitro; however, less is known about the binding characteristic in vivo. In this study, we evaluated the binding patterns of crenezumab to synthetic and native forms of Aβ both in vitro and in vivo. Methods Crenezumab was used to immunoprecipitate Aβ from synthetic Aβ preparations or brain homogenates from a PS2APP mouse model of AD to determine the forms of Aβ that crenezumab interacts with. Following systemic dosing in PS2APP or nontransgenic control mice, immunohistochemistry was used to localize crenezumab and assess its relative distribution in the brain, compared with amyloid plaques and markers of neuritic dystrophies (BACE1; LAMP1). Pharmacodynamic correlations were performed to investigate the relationship between peripheral and central target engagement. Results In vitro, crenezumab immunoprecipitated Aβ oligomers from both synthetic Aβ preparations and endogenous brain homogenates from PS2APP mice. In vivo studies in the PS2APP mouse showed that crenezumab localizes to regions surrounding the periphery of amyloid plaques in addition to the hippocampal mossy fibers. These regions around the plaques are reported to be enriched in oligomeric Aβ, actively incorporate soluble Aβ, and contribute to Aβ-induced neurotoxicity and axonal dystrophy. In addition, crenezumab did not appear to bind to the dense core region of plaques or vascular amyloid. Conclusions Crenezumab binds to multiple forms of amyloid β (Aβ), particularly oligomeric forms, and localizes to brain areas rich in Aβ oligomers, including the halo around plaques and hippocampal mossy fibers, but not to vascular Aβ. These insights highlight a unique mechanism of action for crenezumab of engaging Aβ oligomers.
Collapse
Affiliation(s)
- William J Meilandt
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Janice A Maloney
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jose Imperio
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Guita Lalehzadeh
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Tim Earr
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Susan Crowell
- Department of Preclinical and Translational Pharmacokinetics/Pharmacodynamics, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Travis W Bainbridge
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Yanmei Lu
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - James A Ernst
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Reina N Fuji
- Department of Safety Assessment Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Jasvinder K Atwal
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
97
|
Abstract
A diverse range of N-terminally truncated and modified forms of amyloid-β (Aβ) oligomers have been discovered in Alzheimer’s disease brains, including the pyroglutamate-Aβ (AβpE3). AβpE3 species are shown to be more neurotoxic when compared with the full-length Aβ peptide. Findings visibly suggest that glutaminyl cyclase (QC) catalyzed the generation of cerebral AβpE3, and therapeutic effects are achieved by reducing its activity. In recent years, efforts to effectively develop QC inhibitors have been pursued worldwide. The inhibitory activity of current QC inhibitors is mainly triggered by zinc-binding groups that coordinate Zn2+ ion in the active site and other common features. Herein, we summarized the current state of discovery and evolution of QC inhibitors as a potential Alzheimer’s disease-modifying strategy.
Collapse
|
98
|
Traxler L, Edenhofer F, Mertens J. Next-generation disease modeling with direct conversion: a new path to old neurons. FEBS Lett 2019; 593:3316-3337. [PMID: 31715002 PMCID: PMC6907729 DOI: 10.1002/1873-3468.13678] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/20/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
Within just over a decade, human reprogramming-based disease modeling has developed from a rather outlandish idea into an essential part of disease research. While iPSCs are a valuable tool for modeling developmental and monogenetic disorders, their rejuvenated identity poses limitations for modeling age-associated diseases. Direct cell-type conversion of fibroblasts into induced neurons (iNs) circumvents rejuvenation and preserves hallmarks of cellular aging. iNs are thus advantageous for modeling diseases that possess strong age-related and epigenetic contributions and can complement iPSC-based strategies for disease modeling. In this review, we provide an overview of the state of the art of direct iN conversion and describe the key epigenetic, transcriptomic, and metabolic changes that occur in converting fibroblasts. Furthermore, we summarize new insights into this fascinating process, particularly focusing on the rapidly changing criteria used to define and characterize in vitro-born human neurons. Finally, we discuss the unique features that distinguish iNs from other reprogramming-based neuronal cell models and how iNs are relevant to disease modeling.
Collapse
Affiliation(s)
- Larissa Traxler
- Department of GenomicsStem Cell Biology & Regenerative MedicineInstitute of Molecular Biology & CMBILeopold‐Franzens‐University InnsbruckInnsbruckAustria
- Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaCAUSA
| | - Frank Edenhofer
- Department of GenomicsStem Cell Biology & Regenerative MedicineInstitute of Molecular Biology & CMBILeopold‐Franzens‐University InnsbruckInnsbruckAustria
| | - Jerome Mertens
- Department of GenomicsStem Cell Biology & Regenerative MedicineInstitute of Molecular Biology & CMBILeopold‐Franzens‐University InnsbruckInnsbruckAustria
- Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaCAUSA
| |
Collapse
|
99
|
Webers A, Heneka MT, Gleeson PA. The role of innate immune responses and neuroinflammation in amyloid accumulation and progression of Alzheimer's disease. Immunol Cell Biol 2019; 98:28-41. [PMID: 31654430 DOI: 10.1111/imcb.12301] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/20/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is characterized by amyloid beta (Aβ) accumulation, tau pathology and neuroinflammation. Recently, there has been considerable interest in the role of neuroinflammation in directly contributing to the progression of AD. Studies in mice and humans have identified a role for microglial cells, the resident innate immune cells of the central nervous system, in AD. Activated microglia are a key hallmark of the disease and the secretion of proinflammatory cytokines by microglia may result in a positive feedback loop between neurons and microglia, resulting in ongoing low-grade inflammation. Traditionally, the pathways of Aβ production and neuroinflammation have been considered independently; however, recent studies suggest that these processes may converge to promote the pathology associated with AD. Here we review the importance of inflammation and microglia in AD development and effects of inflammatory responses on cellular pathways of neurons, including Aβ generation.
Collapse
Affiliation(s)
- Alessandra Webers
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia.,Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn, Bonn, Germany
| | - Michael T Heneka
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Paul A Gleeson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
100
|
Imbimbo BP, Watling M. Investigational BACE inhibitors for the treatment of Alzheimer's disease. Expert Opin Investig Drugs 2019; 28:967-975. [PMID: 31661331 DOI: 10.1080/13543784.2019.1683160] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: The amyloid hypothesis of Alzheimer's disease (AD) states that brain accumulation of amyloid-β (Aβ) oligomers and soluble aggregates represents the major causal event of the disease. Several small organic molecules have been synthesized and developed to inhibit the enzyme (β-site amyloid precursor protein cleaving enzyme-1 or BACE1) whose action represents the rate-limiting step in Aβ production.Areas covered: We reviewed the pharmacology and clinical trials of major BACE1 inhibitors.Expert opinion: In transgenic mouse models of AD, BACE1 inhibitors dose-dependently lower Aβ levels in brain and cerebrospinal fluid (CSF) but the evidence for attenuation or reversal cognitive or behavioral deficits is very scanty. In AD patients, BACE1 inhibitors robustly lower plasma and CSF Aβ levels and reduce brain plaques but without cognitive, clinical, or functional benefit. To date, seventeen BACE1 inhibitors have failed in double-blind, placebo-controlled clinical trials in patients with mild-to-moderate or prodromal AD, or in cognitively normal subjects at risk of developing AD. Several of these studies were prematurely interrupted due to toxicity or cognitive and behavioral worsening compared to placebo-treated patients. Elenbecestat, the last BACE1 inhibitor remaining in late clinical testing for AD, was recently discontinued due to safety concerns.
Collapse
Affiliation(s)
| | - Mark Watling
- CNS & Pain Department, TranScrip Partners, Reading, UK
| |
Collapse
|