51
|
Identification, Quantification and Kinetic Study of Carotenoids and Lipids in Rhodotorula toruloides CBS 14 Cultivated on Wheat Straw Hydrolysate. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070300] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Production of carotenoids and lipids by Rhodotorula toruloides CBS 14 cultivated on wheat straw hydrolysate was investigated. An ultra-high-performance liquid chromatography (UHPLC) method for carotenoid quantification was developed and validated. Saponification effects on individual carotenoid quantification were identified, and lipid and carotenoid kinetics during cultivation were determined. The carotenoids β-carotene, γ-carotene, torularhodin, and torulene were identified; β-carotene was the major carotenoid, reaching a maximum of 1.48 mg/100 g dry weight. Recoveries of the carotenoids were between 66 and 76%, except torulene and torularhodin, which had lower recoveries due to saponification effects. Total carotenoid content in saponified and unsaponified yeast extract, respectively, determined by UHPLC or photometer, respectively, was 1.99 mg/100 g and 4.02 mg β-EQ/100 g dry weight. Growth kinetics showed a positive correlation between carotenoid content and lipid accumulation. β-carotene was the major carotenoid at all time points. At the end of the cultivation, triacylglycerols (TAGs) were the major lipid class, with 58.1 ± 3.32% of total lipids. There was also a high proportion of free fatty acids, reaching from 20.5 to 41.8% of total lipids. Oleic acid (C18:1) was the major fatty acid. The lipid yield at the end of the cultivation was 0.13 g/g of sugar consumed.
Collapse
|
52
|
Panchanawaporn S, Chutrakul C, Jeennor S, Anantayanon J, Rattanaphan N, Laoteng K. Potential of Aspergillus oryzae as a biosynthetic platform for indigoidine, a non-ribosomal peptide pigment with antioxidant activity. PLoS One 2022; 17:e0270359. [PMID: 35737654 PMCID: PMC9223385 DOI: 10.1371/journal.pone.0270359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
The growing demand for natural pigments in the industrial sector is a significant driving force in the development of production processes. The production of natural blue pigments, which have wide industrial applications, using microbial systems has been gaining significant attention. In this study, we used Aspergillus oryzae as a platform cell factory to produce the blue pigment indigoidine (InK), by genetic manipulation of its non-ribosomal peptide synthetase system to overexpress the indigoidine synthetase gene (AoinK). Phenotypic analysis showed that InK production from the engineered strain was growth associated, owing to the constitutive control of gene expression. Furthermore, the initial pH, temperature, and glutamine and MgSO4 concentrations were key factors affecting InK production by the engineered strain. The pigment secretion was enhanced by addition of 1% Tween 80 solution to the culture medium. The maximum titer of total InK was 1409.22 ± 95.33 mg/L, and the maximum productivity was 265.09 ± 14.74 mg/L·d. Moreover, the recombinant InK produced by the engineered strain exhibited antioxidant activity. These results indicate that A. oryzae has the potential to be used as a fungal platform for overproduction of extracellular non-ribosomal peptide pigments.
Collapse
Affiliation(s)
- Sarocha Panchanawaporn
- Functional Ingredients and Food Innovation Research Group (IFIG), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - Chanikul Chutrakul
- Functional Ingredients and Food Innovation Research Group (IFIG), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
- * E-mail:
| | - Sukanya Jeennor
- Functional Ingredients and Food Innovation Research Group (IFIG), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - Jutamas Anantayanon
- Functional Ingredients and Food Innovation Research Group (IFIG), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - Nakul Rattanaphan
- Functional Ingredients and Food Innovation Research Group (IFIG), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - Kobkul Laoteng
- Functional Ingredients and Food Innovation Research Group (IFIG), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| |
Collapse
|
53
|
Antipova TV, Zhelifonova V, Zaitsev KV, Zherebker A, Baskunov B, Oprunenko YF. Formation of Azaphilone Pigments and Monasnicotinic Acid by the Fungus Aspergillus cavernicola. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7122-7129. [PMID: 35649262 DOI: 10.1021/acs.jafc.2c01952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Due to the ever-increasing demand for healthy and safe food, much attention has been gained by natural food colorants. This study showed the culture fluid extract of the fungus Aspergillus cavernicola VKM F-906 to contain red pigment and monasnicotinic acid (MNA) in predominant amounts. The structure of the pigment corresponded to cis-cavernamine (red pigment, RP). Two tautomers, NH and OH forms, in rapid equilibrium were present in a solution of RP. The critical factors for RP to form were the presence of NH4+ salt and pH 6.3-6.5. In vitro experiments showed that MNA was synthesized from RP as a result of chemical transformations without the participation of enzymes. In this case, the main influence on the reaction rate is exerted by the pH of the medium, which is associated with the keto-enol tautomerism of RP in solution. The culture broth extract and MNA exhibited antifungal activity against Fusarium fungi.
Collapse
Affiliation(s)
- Tatiana V Antipova
- FSBIS FRC Pushchino Scientific Centre of Biological Research, Russian Academy of Sciences, G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino 142290, Russian Federation
| | - Valentina Zhelifonova
- FSBIS FRC Pushchino Scientific Centre of Biological Research, Russian Academy of Sciences, G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino 142290, Russian Federation
| | - Kirill V Zaitsev
- Department of Chemistry, Moscow State University, Moscow 119991, Russian Federation
| | - Alexander Zherebker
- Skolkovo Institute of Science and Technology, Moscow 121205, Russian Federation
| | - Boris Baskunov
- FSBIS FRC Pushchino Scientific Centre of Biological Research, Russian Academy of Sciences, G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino 142290, Russian Federation
| | - Yuri F Oprunenko
- Department of Chemistry, Moscow State University, Moscow 119991, Russian Federation
| |
Collapse
|
54
|
|
55
|
Ding J, Wu B, Chen L. Application of Marine Microbial Natural Products in Cosmetics. Front Microbiol 2022; 13:892505. [PMID: 35711762 PMCID: PMC9196241 DOI: 10.3389/fmicb.2022.892505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
As the market size of the cosmetics industry increases, the safety and effectiveness of new products face higher requirements. The marine environment selects for species of micro-organisms with metabolic pathways and adaptation mechanisms different from those of terrestrial organisms, resulting in their natural products exhibiting unique structures, high diversity, and significant biological activities. Natural products are usually safe and non-polluting. Therefore, considerable effort has been devoted to searching for cosmetic ingredients that are effective, safe, and natural for marine micro-organisms. However, marine micro-organisms can be difficult, or impossible, to culture because of their special environmental requirements. Metagenomics technology can help to solve this problem. Moreover, using marine species to produce more green and environmentally friendly products through biotransformation has become a new choice for cosmetic manufacturers. In this study, the natural products of marine micro-organisms are reviewed and evaluated with respect to various cosmetic applications.
Collapse
Affiliation(s)
- Jinwang Ding
- Institute of Applied Genomics, Fuzhou University, Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Baochuan Wu
- Institute of Applied Genomics, Fuzhou University, Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Liqun Chen
- Institute of Applied Genomics, Fuzhou University, Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- *Correspondence: Liqun Chen,
| |
Collapse
|
56
|
Bhatnagar S, Aoyagi H. Thermal and UV Degradation Kinetics of Water-Soluble Extracellular Pigment Produced by Talaromyces purpurogenus. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-021-02733-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
57
|
Sharma S, Meyer V. The colors of life: an interdisciplinary artist-in-residence project to research fungal pigments as a gateway to empathy and understanding of microbial life. Fungal Biol Biotechnol 2022; 9:1. [PMID: 35012670 PMCID: PMC8744264 DOI: 10.1186/s40694-021-00130-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/12/2021] [Indexed: 12/13/2022] Open
Abstract
Background Biological pigmentation is one of the most intriguing traits of many fungi. It holds significance to scientists, as a sign of biochemical metabolism and organism-environment interaction, and to artists, as the source of natural colors that capture the beauty of the microbial world. Furthermore, the functional roles and aesthetic appeal of biological pigmentation may be a path to inspiring human empathy for microorganisms, which is key to understanding and preserving microbial biodiversity. A project focused on cross-species empathy was initiated and conducted as part of an artist-in-residence program in 2021. The aim of this residency is to bridge the current divide between science and art through interdisciplinary practice focused on fungi. Results The residency resulted in multiple products that are designed for artistic and scientific audiences with the central theme of biological pigmentation in fungi and other microorganisms. The first product is a video artwork that focuses on Aspergillus niger as a model organism that produces melanin pigment in a biosynthetic process similar to that of humans. The growth and morphology of this commonplace organism are displayed through video, photo, animation, and time-lapse footage, inviting the viewer to examine the likenesses and overlaps between humans and fungi. The second product is The Living Color Database, an online compendium of biological colors for scientists, artists, and designers. It links organisms across the tree of life, focusing on fungi, bacteria, and archaea, and the colors they express through biological pigmentation. Each pigment is represented in terms of its chemistry, its related biosynthesis, and its color expressions according to different indices: HEX, RGB, and Pantone. It is available at color.bio. Conclusions As fungal biotechnology continues to mature into new application areas, it is as important as ever that there is human empathy for these organisms to promote the preservation and appreciation of fungal biodiversity. The products presented here provide paths for artists, scientists, and designers to understand microorganisms through the lens of color, promoting interspecies empathy through research, teaching, and practice.
Collapse
Affiliation(s)
- Sunanda Sharma
- Chair of Applied and Molecular Microbiology, Technische Universität Berlin, Str. des 17. Juni 135, 10623, Berlin, Germany.
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Technische Universität Berlin, Str. des 17. Juni 135, 10623, Berlin, Germany.
| |
Collapse
|
58
|
Lagashetti AC, Singh SK, Dufossé L, Srivastava P, Singh PN. Antioxidant, Antibacterial and Dyeing Potential of Crude Pigment Extract of Gonatophragmium triuniae and Its Chemical Characterization. Molecules 2022; 27:393. [PMID: 35056708 PMCID: PMC8779394 DOI: 10.3390/molecules27020393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/01/2022] [Accepted: 01/05/2022] [Indexed: 11/24/2022] Open
Abstract
Filamentous fungi synthesize natural products as an ecological function. In this study, an interesting indigenous fungus producing orange pigment exogenously was investigated in detail as it possesses additional attributes along with colouring properties. An interesting fungus was isolated from a dicot plant, Maytenus rothiana. After a detailed study, the fungal isolate turned out to be a species of Gonatophragmium belonging to the family Acrospermaceae. Based on the morphological, cultural, and sequence-based phylogenetic analysis, the identity of this fungus was confirmed as Gonatophragmium triuniae. Although this fungus grows moderately, it produces good amounts of pigment on an agar medium. The fermented crude extract isolated from G. triuniae has shown antioxidant activity with an IC50 value of 0.99 mg/mL and antibacterial activity against Gram-positive bacteria (with MIC of 3.91 μg/mL against Bacillus subtilis, and 15.6 μg/mL and 31.25 μg/mL for Staphylococcus aureus and Micrococcus luteus, respectively). Dyeing of cotton fabric mordanted with FeSO4 using crude pigment was found to be satisfactory based on visual observation, suggesting its possible use in the textile industry. The orange pigment was purified from the crude extract by preparative HP-TLC. In addition, UV-Vis, FTIR, HRMS and NMR (1H NMR, 13C NMR), COSY, and DEPT analyses revealed the orange pigment to be "1,2-dimethoxy-3H-phenoxazin-3-one" (C14H11NO4, m/z 257). To our understanding, the present study is the first comprehensive report on Gonatophragmium triuniae as a potential pigment producer, reporting "1,2-dimethoxy-3H-phenoxazin-3-one" as the main pigment from the crude hexane extract. Moreover, this is the first study reporting antioxidant, antibacterial, and dyeing potential of crude extract of G. triuniae, suggesting possible potential applications of pigments and other bioactive secondary metabolites of the G. triuniae in textile and pharmaceutical industry.
Collapse
Affiliation(s)
- Ajay C. Lagashetti
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS’ Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, India; (A.C.L.); (P.N.S.)
- Faculty of Science, Savitribai Phule Pune University, Pune 411007, India
| | - Sanjay K. Singh
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS’ Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, India; (A.C.L.); (P.N.S.)
- Faculty of Science, Savitribai Phule Pune University, Pune 411007, India
| | - Laurent Dufossé
- CHEMBIOPRO Chimie et Biotechnologie des Produits Naturels, ESIROI Département Agroalimentaire, Université de la Réunion, F-97490 Sainte-Clotilde, Ile de La Réunion, France
| | - Pratibha Srivastava
- Faculty of Science, Savitribai Phule Pune University, Pune 411007, India
- Bioprospecting Group, MACS’ Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, India;
| | - Paras N. Singh
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS’ Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, India; (A.C.L.); (P.N.S.)
- Faculty of Science, Savitribai Phule Pune University, Pune 411007, India
| |
Collapse
|
59
|
Vrabl P, Siewert B, Winkler J, Schöbel H, Schinagl CW, Knabl L, Orth-Höller D, Fiala J, Meijer MS, Bonnet S, Burgstaller W. Xanthoepocin, a photolabile antibiotic of Penicillium ochrochloron CBS 123823 with high activity against multiresistant gram-positive bacteria. Microb Cell Fact 2022; 21:1. [PMID: 34983506 PMCID: PMC8725544 DOI: 10.1186/s12934-021-01718-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022] Open
Abstract
Background With the steady increase of antibiotic resistance, several strategies have been proposed in the scientific community to overcome the crisis. One of many successful strategies is the re-evaluation of known compounds, which have been early discarded out of the pipeline, with state-of-the-art know-how. Xanthoepocin, a polyketide widespread among the genus Penicillium with an interesting bioactivity spectrum against gram-positive bacteria, is such a discarded antibiotic. The purpose of this work was to (i) isolate larger quantities of this metabolite and chemically re-evaluate it with modern technology, (ii) to explore which factors lead to xanthoepocin biosynthesis in P. ochrochloron, and (iii) to test if it is beside its known activity against methicillin-resistant Staphylococcus aureus (MRSA), also active against linezolid and vancomycin-resistant Enterococcus faecium (LVRE)—a very problematic resistant bacterium which is currently on the rise. Results In this work, we developed several new protocols to isolate, extract, and quantify xanthoepocin out of bioreactor batch and petri dish-grown mycelium of P. ochrochloron. The (photo)chemical re-evaluation with state-of-the-art techniques revealed that xanthoepocin is a photolabile molecule, which produces singlet oxygen under blue light irradiation. The intracellular xanthoepocin content, which was highest under ammonium-limited conditions, varied considerably with the applied irradiation conditions in petri dish and bioreactor batch cultures. Using light-protecting measures, we achieved MIC values against gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), which were up to 5 times lower than previously published. In addition, xanthoepocin was highly active against a clinical isolate of linezolid and vancomycin-resistant Enterococcus faecium (LVRE). Conclusions This interdisciplinary work underlines that the re-evaluation of known compounds with state-of-the-art techniques is an important strategy in the combat against multiresistant bacteria and that light is a crucial factor on many levels that needs to receive more attention. With appropriate light protecting measures in the susceptibility tests, xanthoepocin proved to be a powerful antibiotic against MRSA and LVRE. Exploring the light response of other polyketides may be pivotal for re-introducing previously discarded metabolites into the antibiotic pipeline and to identify photosensitizers which might be used for (antimicrobial) photodynamic therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01718-9.
Collapse
Affiliation(s)
- Pamela Vrabl
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria.
| | - Bianka Siewert
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria.
| | - Jacqueline Winkler
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria
| | - Harald Schöbel
- MCI - The Entrepreneurial University, Maximilianstraße 2, 6020, Innsbruck, Austria
| | - Christoph W Schinagl
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria
| | - Ludwig Knabl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstraße 41, 6020, Innsbruck, Austria.,Tyrolpath Obrist Brunhuber GmbH, Hauptplatz 4, 6511, Zams, Austria
| | - Dorothea Orth-Höller
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstraße 41, 6020, Innsbruck, Austria.,MB-Lab, Clinical Microbiology Laboratory, Franz Fischer Str. 7b, 6020, Innsbruck, Austria
| | - Johannes Fiala
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria.,Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Michael S Meijer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands.,Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, Netherlands
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Wolfgang Burgstaller
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria
| |
Collapse
|
60
|
Šimonovičová A, Takáčová A, Šimkovic I, Nosalj S. Experimental Treatment of Hazardous Ash Waste by Microbial Consortium Aspergillus niger and Chlorella sp.: Decrease of the Ni Content and Identification of Adsorption Sites by Fourier-Transform Infrared Spectroscopy. Front Microbiol 2021; 12:792987. [PMID: 34950123 PMCID: PMC8689076 DOI: 10.3389/fmicb.2021.792987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Despite the negative impact on the environment, incineration is one of the most commonly used methods for dealing with waste. Besides emissions, the production of ash, which usually shows several negative properties, such as a higher content of hazardous elements or strongly alkaline pH, is problematic from an environmental viewpoint as well. The subject of our paper was the assessment of biosorption of Ni from ash material by a microbial consortium of Chlorella sp. and Aspergillus niger. The solid substrate represented a fraction of particles of size <0.63 mm with a Ni content of 417 mg kg-1. We used a biomass consisting of two different organisms as the sorbent: a non-living algae culture of Chlorella sp. (an autotrophic organism) and the microscopic filamentous fungus A. niger (a heterotrophic organism) in the form of pellets. The experiments were conducted under static conditions as well as with the use of shaker (170 rpm) with different modifications: solid substrate, Chlorella sp. and pellets of A. niger; solid substrate and pellets of A. niger. The humidity-temperature conditions were also changed. Sorption took place under dry and also wet conditions (with distilled water in a volume of 30-50 ml), partially under laboratory conditions at a temperature of 25°C as well as in the exterior. The determination of the Ni content was done using inductively coupled plasma optical emission spectrometry (ICP-OES). The removal of Ni ranged from 13.61% efficiency (Chlorella sp., A. niger with the addition of 30 ml of distilled water, outdoors under static conditions after 48 h of the experiment) to 46.28% (Chlorella sp., A. niger with the addition of 30 ml of distilled water, on a shaker under laboratory conditions after 48 h of the experiment). For the purpose of analyzing the representation of functional groups in the microbial biomass and studying their interaction with the ash material, we used Fourier-transform infrared (FTIR) spectroscopy. We observed that the amount of Ni adsorbed positively correlates with absorbance in the spectral bands where we detect the vibrations of several organic functional groups. These groups include hydroxyl, aliphatic, carbonyl, carboxyl and amide structural units. The observed correlations indicate that, aside from polar and negatively charged groups, aliphatic or aromatic structures may also be involved in sorption processes due to electrostatic attraction. The correlation between absorbance and the Ni content reached a maximum in amide II band (r = 0.9; P < 0.001), where vibrations of the C=O, C-N, and N-H groups are detected. The presented results suggest that the simultaneous use of both microorganisms in biosorption represents an effective method for reducing Ni content in a solid substrate, which may be useful as a partial process for waste disposal.
Collapse
Affiliation(s)
- Alexandra Šimonovičová
- Department of Soil Science, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Alžbeta Takáčová
- Department of Environmental Ecology and Landscape Management, Comenius University, Bratislava, Slovakia
| | - Ivan Šimkovic
- Department of Soil Science, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Sanja Nosalj
- Department of Soil Science, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| |
Collapse
|
61
|
Chaudhary V, Katyal P, Poonia AK, Kaur J, Puniya AK, Panwar H. Natural pigment from Monascus: The production and therapeutic significance. J Appl Microbiol 2021; 133:18-38. [PMID: 34569683 DOI: 10.1111/jam.15308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The present review highlights the advantages of using natural colorant over the synthetic one. We have discussed the fermentation parameters that can enhance the productivity of Monascus pigment on agricultural wastes. BACKGROUND Food industry is looking for natural colours because these can enhance the esthetic value, attractiveness, and acceptability of food while remaining nontoxic. Many synthetic food colours (Azorubine Carmoisine, quinoline) have been prohibited due to their toxicity and carcinogenicity. Increasing consumer awareness towards the food safety has forced the manufacturing industries to look for suitable alternatives. In addition to safety, natural colorants have been found to have nutritional and therapeutic significance. Among the natural colorants, microbial pigments can be considered as a viable option because of scalability, easier production, no seasonal dependence, cheaper raw materials and easier extraction. Fungi such as Monascus have a long history of safety and therefore can be used for production of biopigments. METHOD The present review summarizes the predicted biosynthetic pathways and pigment gene clusters in Monascus purpureus. RESULTS The challenges faced during the pilot-scale production of Monascus biopigment and taming it by us of low-cost agro-industrial substrates for solid state fermentation has been suggested. CONCLUSION Keeping in mind, therapeutic properties of Monascus pigments and their derivatives, they have huge potential for industrial and pharmaceutical application. APPLICATION Though the natural pigments have wide scope in the food industry. However, stabilization of pigment is the greatest challenge and attempts are being made to overcome this by complexion with hydrocolloids or metals and by microencapsulation.
Collapse
Affiliation(s)
- Vishu Chaudhary
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Priya Katyal
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Anuj Kumar Poonia
- Department of Applied Sciences and Biotechnology, School of Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Jaspreet Kaur
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Anil Kumar Puniya
- Department of Dairy Microbiology, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Harsh Panwar
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| |
Collapse
|
62
|
Kallingal A, Ayyolath A, Thachan Kundil V, Joseph TM, Chandra D N, Haponiuk JT, Thomas S, Variyar E J. Extraction and optimization of Penicillium sclerotiorum strain AK-1 pigment for fabric dyeing. J Basic Microbiol 2021; 61:900-909. [PMID: 34467566 DOI: 10.1002/jobm.202100349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 01/14/2023]
Abstract
Recently, the demand for fungal pigments has increased due to their several benefits over synthetic dyes. Many species of fungi are known to produce pigments and a large number of fungal strains for pigment production are yet to be extensively investigated. The natural pigment from sustainable natural sources has good economic and industrial value. Many synthetic colorants used in textile and various industries have many harmful effects on the human population and environment. Pigments and coloring agents may be extracted from a wide range of fungal species. These compounds are among the natural compounds having the most significant promise for medicinal, culinary, cosmetics, and textile applications. This study attempts to isolate and optimize the fermentation conditions of Penicillium sclerotiorum strain AK-1 for pigment production. A dark yellow-colored pigment was isolated from the strain with significant extractive value and antioxidant capacity. This study also identifies that the pigment does not have any cytotoxic effect and is multicomponent. The pigment production was optimized for the parameters such as pH, temperature, carbon and nitrogen source. Fabric dyeing experiments showed significant dyeing capacity of the pigment on cotton fabrics. Accordingly, the natural dye isolated from P. sclerotiorum strain AK-1 has a high potential for industrial-scale dyeing of cotton materials.
Collapse
Affiliation(s)
- Anoop Kallingal
- Department of Biotechnology and Microbiology, Kannur University, Palayad, Kerala, India
| | - Aravind Ayyolath
- Department of Biotechnology and Microbiology, Kannur University, Palayad, Kerala, India
| | - Varun Thachan Kundil
- Department of Biotechnology and Microbiology, Kannur University, Palayad, Kerala, India
| | - Tomy M Joseph
- Polymers Technology Department, Chemical Faculty, Gdansk University of Technology, Gdansk, Poland
| | - Naveen Chandra D
- Biotechnology Unit, Department of Biosciences, Mangalore University, Mangalagangothri, Karnataka, India
| | - Józef T Haponiuk
- Polymers Technology Department, Chemical Faculty, Gdansk University of Technology, Gdansk, Poland
| | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Jayadevi Variyar E
- Department of Biotechnology and Microbiology, Kannur University, Palayad, Kerala, India
| |
Collapse
|
63
|
Loum J, Byamukama R, Wanyama PAG. Efficient Extraction of Natural Dyes from Selected Plant Species. CHEMISTRY AFRICA 2021. [DOI: 10.1007/s42250-021-00248-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
64
|
Safety Evaluation of Fungal Pigments for Food Applications. J Fungi (Basel) 2021; 7:jof7090692. [PMID: 34575730 PMCID: PMC8466146 DOI: 10.3390/jof7090692] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Pigments play a major role in many industries. Natural colors are usually much safer when compared to synthetic colors and may even possess some medicinal benefits. Synthetic colors are economical and can easily be produced compared to natural colors. In addition, raw plant materials for natural colors are limited and season dependent. Microorganisms provide an alternative source for natural colors and, among them, fungi provide a wide range of natural colorants that could easily be produced cheaply and with high yield. Along with pigment, some microbial strains are also capable of producing a number of mycotoxins. The commercial use of microbial pigments relies on the safety of colorants. This review provides a toxicity evaluation of pigments from fungal origins for food application.
Collapse
|
65
|
Mishra RC, Kalra R, Dilawari R, Deshmukh SK, Barrow CJ, Goel M. Characterization of an Endophytic Strain Talaromyces assiutensis, CPEF04 With Evaluation of Production Medium for Extracellular Red Pigments Having Antimicrobial and Anticancer Properties. Front Microbiol 2021; 12:665702. [PMID: 34421835 PMCID: PMC8371755 DOI: 10.3389/fmicb.2021.665702] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
Considering the worldwide demand for colorants of natural origin, the utilization of ascomycete fungi as a prolific pigment producer unfolds a novel way to obtain these pigments for various applications, including food, cosmetic, and medical use. The presence of very few natural red pigment alternatives in the market also attracts research and industry priorities to unearth novel and sustainable red pigment producers. The present work is an attempt to identify a novel source of red color obtained from endophytic fungi isolated from terrestrial and marine habitats. Based upon the fungal capacity for pigment production, seven isolates of endophytic fungi were recognized as prospective pigment producers. Out of all, fungal isolate CPE04 was selected based upon its capacity to produce profuse extracellular red pigment. The isolate was identified as Talaromyces assiutensis, employing morphological features and phylogenetic characterization by internal transcribed spacer (ITS) sequences. To understand the chemical behavior of pigment molecules, an investigation of the chemical profile of fungal culture filtrate dried powder (CFDP) was performed using ultra-high-performance liquid chromatography-diode array detector-mass spectrometry (UPLC–DAD–MS). In total, eight compounds having pigment and pharmaceutical application were tentatively identified using UPLC–DAD–MS. Considering the commercial aspect of the stated work, an effort was also made for standardizing the upscaling of the pigment molecule. Investigations were performed for optimum medium and culturing conditions for maximum pigment production. CFDP was found to have a significant antibacterial activity against the bacterial pathogens Staphylococcus aureus (MTCC737), Vibrio cholerae (N16961), and methicillin-resistant S. aureus (MRSA) (ATCC BAA811). The CFDP showed a minimum inhibitory concentration at 64, 128, and 256 μg/ml against S. aureus, MRSA, and V. cholerae. A concentration-dependent (50–400 μg/ml) anticancer effect on HeLa cancer line was also observed, having a half-maximal inhibitory concentration (IC50) at 300 μg/ml. The antioxidant potential of CFDP has also been proven with the help of an antioxidant assay against 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical (IC50, 32.01 μg/ml); DNA nicking assay and reactive oxygen species were generated in HeLa cancer line cells. The CFDP was also found to have no cytotoxicity toward HEK 293 T cell line using alamar blue (resazurin), a cell metabolic activity reagent.
Collapse
Affiliation(s)
- Rahul Chandra Mishra
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute (TERI), TERI GRAM, Gurgaon, India
| | - Rishu Kalra
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute (TERI), TERI GRAM, Gurgaon, India
| | - Rahul Dilawari
- Central Council of Scientific Research (CSIR)-Institute of Microbial Technology, Chandigarh, India
| | - Sunil Kumar Deshmukh
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute (TERI), TERI GRAM, Gurgaon, India
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University Geelong, Geelong, VIC, Australia
| | - Mayurika Goel
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute (TERI), TERI GRAM, Gurgaon, India
| |
Collapse
|
66
|
Aman Mohammadi M, Ahangari H, Mousazadeh S, Hosseini SM, Dufossé L. Microbial pigments as an alternative to synthetic dyes and food additives: a brief review of recent studies. Bioprocess Biosyst Eng 2021; 45:1-12. [PMID: 34373951 DOI: 10.1007/s00449-021-02621-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022]
Abstract
Synthetic coloring agents have been broadly utilized in several industries such as food, pharmaceuticals, cosmetic and textile. Recent surveys on the potential of teratogenicity and carcinogenicity of synthetic dyes have expressed concerns regarding their use in foods. Worldwide, food industries have need for safe, natural and new colorings to add variety to foods and make them appealing to consumers. Natural colorings not only expand the marketability of the food product, but also add further healthful features such as antibacterial, antioxidant, anticancer and antiviral properties. Novel microbial strains should be explored to meet the increasing global search of natural pigments and suitable techniques must be developed for the marketable production of new pigments, using microbial cultures, viz., fungi, and bacteria. To address the issue of the natural coloring agents, this review presents the recent trends in several studies of microbial pigments, their biological properties and industrial applications.
Collapse
Affiliation(s)
- Masoud Aman Mohammadi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ahangari
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Mousazadeh
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyede Marzieh Hosseini
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Laurent Dufossé
- CHEMBIOPRO Lab, Ecole Supérieure d'Ingénieurs Réunion Océan Indien (ESIROI), Université de La Réunion, Département Agroalimentaire, 97744, Saint-Denis, France.
| |
Collapse
|
67
|
Pimenta LPS, Gomes DC, Cardoso PG, Takahashi JA. Recent Findings in Azaphilone Pigments. J Fungi (Basel) 2021; 7:541. [PMID: 34356920 PMCID: PMC8307326 DOI: 10.3390/jof7070541] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 12/23/2022] Open
Abstract
Filamentous fungi are known to biosynthesize an extraordinary range of azaphilones pigments with structural diversity and advantages over vegetal-derived colored natural products such agile and simple cultivation in the lab, acceptance of low-cost substrates, speed yield improvement, and ease of downstream processing. Modern genetic engineering allows industrial production, providing pigments with higher thermostability, water-solubility, and promising bioactivities combined with ecological functions. This review, covering the literature from 2020 onwards, focuses on the state-of-the-art of azaphilone dyes, the global market scenario, new compounds isolated in the period with respective biological activities, and biosynthetic pathways. Furthermore, we discussed the innovations of azaphilone cultivation and extraction techniques, as well as in yield improvement and scale-up. Potential applications in the food, cosmetic, pharmaceutical, and textile industries were also explored.
Collapse
Affiliation(s)
- Lúcia P. S. Pimenta
- Department of Chemistry, Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, 6627, Belo Horizonte CEP 31270-901, MG, Brazil;
| | - Dhionne C. Gomes
- Department of Food Science, Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, 6627, Belo Horizonte CEP 31270-901, MG, Brazil;
| | - Patrícia G. Cardoso
- Department of Biology, Universidade Federal de Lavras, Av. Dr. Sylvio Menicucci, 1001, Lavras CEP 37200-900, MG, Brazil;
| | - Jacqueline A. Takahashi
- Department of Chemistry, Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, 6627, Belo Horizonte CEP 31270-901, MG, Brazil;
| |
Collapse
|
68
|
Isolation and Identification of Natural Colorant Producing Soil-Borne Aspergillus niger from Bangladesh and Extraction of the Pigment. Foods 2021; 10:foods10061280. [PMID: 34205202 PMCID: PMC8227025 DOI: 10.3390/foods10061280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/22/2021] [Accepted: 05/30/2021] [Indexed: 11/17/2022] Open
Abstract
Natural colorants have been used in several ways throughout human history, such as in food, dyes, pharmaceuticals, cosmetics, and many other products. The study aimed to isolate the natural colorant-producing filamentous fungi Aspergillus niger from soil and extract pigments for its potential use specially for food production. Fourteen soil samples were collected from Madhupur National Park at Madhupur Upazila in the Mymensingh district, Bangladesh. The Aspergillus niger was isolated and identified from the soil samples by following conventional mycological methods (cultural and morphological characteristics), followed by confirmatory identification by a polymerase chain reaction (PCR) of conserved sequences of ITS1 ribosomal DNA using specific oligonucleotide primers. This was followed by genus- and species-specific primers targeting Aspergillus niger with an amplicon size of 521 and 310 bp, respectively. For pigment production, a mass culture of Aspergillus niger was conducted in Sabouraud dextrose broth in shaking conditions for seven days. The biomass was subjected to extraction of the pigments following an ethanol-based extraction method and concentrated using a rotary evaporator. Aspergillus niger could be isolated from three samples. The yield of extracted brown pigment from Aspergillus niger was 0.75% (w/v). Spectroscopic analysis of the pigments was carried out using a UV-VIS spectrophotometer. An in vivo experiment was conducted with mice to assess the toxicity of the pigments. From the colorimetric and sensory evaluations, pigment-supplemented products (cookies and lemon juice) were found to be more acceptable than the control products. This could be the first attempt to use Aspergillus niger extracted pigment from soil samples in food products in Bangladesh, but for successful food production, the food colorants must be approved by a responsible authority, e.g., the FDA or the BSTI. Moreover, fungal pigments could be used in the emerging fields of the food and textile industries in Bangladesh.
Collapse
|
69
|
Ugwu CT, Ogbonna CN, Ogbonna JC, Aoyagi H. Production and stability of pigments by Talaromyces purpurogenus LC128689 in an alternating air phase-liquid phase cultivation system. Biotechnol Appl Biochem 2021; 69:1317-1326. [PMID: 34053121 DOI: 10.1002/bab.2204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 05/19/2021] [Indexed: 11/06/2022]
Abstract
Effects of carbon source, nitrogen source, and alternatingly submerging the cells and exposing to gaseous oxygen on pigment production by Talaromyces purpurogenus LC128689, as well as pH, temperature, and UV stability of the pigments were investigated. Although fructose supported higher cell growth, a mixture of glucose and glycerol resulted in higher pigment production. Out of the organic and inorganic nitrogen sources investigated, peptone gave the highest cell concentration (7.2 ± 1.1 g/L) and pigment production (p ≤ 0 .05). The cells were then immobilized in loofa sponge and cultivated under alternating liquid phase-air phase (ALAP) system whereby the cells were alternatingly submerged and exposed to gaseous oxygen. After 20 days of cultivation, the concentrations of the red, orange, and yellow pigments were 30.15 AU500 nm , 15 AU460 nm , and 6.25 AU400 nm , respectively. In comparison with submerged culture in flasks, the red and orange pigments were 100% and 50% higher (p ≤ 0.05) in ALAP system. On the other hand, the yellow pigment was 100% higher in flask cultures than in ALAP. The three pigments were stable within a pH range of 2-12, retained more than 80% of their color intensity after autoclaving at (121°C and 1.0 atm) for 15 min and exposure to UV (3 uW/cm2 ) for 24 h.
Collapse
Affiliation(s)
- Cosmas T Ugwu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Christiana N Ogbonna
- Department of Plant Science and Biotechnology, University of Nigeria Nsukka, Nsukka, Nigeria
| | - James C Ogbonna
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Hideki Aoyagi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
70
|
Kristensen SB, Pedersen TB, Nielsen MR, Wimmer R, Muff J, Sørensen JL. Production and Selectivity of Key Fusarubins from Fusarium solani due to Media Composition. Toxins (Basel) 2021; 13:376. [PMID: 34070644 PMCID: PMC8230112 DOI: 10.3390/toxins13060376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 11/21/2022] Open
Abstract
Natural products display a large structural variation and different uses within a broad spectrum of industries. In this study, we investigate the influence of carbohydrates and nitrogen sources on the production and selectivity of production of four different polyketides produced by Fusarium solani, fusarubin, javanicin, bostrycoidin and anhydrofusarubin. We introduce four different carbohydrates and two types of nitrogen sources. Hereafter, a full factorial design was applied using combinations of three levels of sucrose and three levels of the two types of nitrogen. Each combination displayed different selectivity and production yields for all the compounds of interest. Response surface design was utilized to investigate possible maximum yields for the surrounding combinations of media. It was also shown that the maximum yields were not always the ones illustrating high selectivity, which is an important factor for making purification steps easier. We visualized the production over time for one of the media types, illustrating high yields and selectivity.
Collapse
Affiliation(s)
- Sebastian Birkedal Kristensen
- Department of Chemistry and Bioscience, Aalborg University, 6700 Esbjerg, Denmark; (S.B.K.); (T.B.P.); (M.R.N.); (J.M.)
| | - Tobias Bruun Pedersen
- Department of Chemistry and Bioscience, Aalborg University, 6700 Esbjerg, Denmark; (S.B.K.); (T.B.P.); (M.R.N.); (J.M.)
| | - Mikkel Rank Nielsen
- Department of Chemistry and Bioscience, Aalborg University, 6700 Esbjerg, Denmark; (S.B.K.); (T.B.P.); (M.R.N.); (J.M.)
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark;
| | - Jens Muff
- Department of Chemistry and Bioscience, Aalborg University, 6700 Esbjerg, Denmark; (S.B.K.); (T.B.P.); (M.R.N.); (J.M.)
| | - Jens Laurids Sørensen
- Department of Chemistry and Bioscience, Aalborg University, 6700 Esbjerg, Denmark; (S.B.K.); (T.B.P.); (M.R.N.); (J.M.)
| |
Collapse
|
71
|
Abstract
Colorants find social and commercial applications in cosmetics, food, pharmaceuticals, textiles, and other industrial sectors. Among the available options, chemically synthesized colorants are popular due to their low-cost and flexible production modes, but health and environmental concerns have encouraged the valorization of biopigments that are natural and ecofriendly. Among natural biopigment producers, microorganisms are noteworthy for their all-seasonal production of stable and low-cost pigments with high-yield titers. Fungi are paramount sources of natural pigments. They occupy diverse ecological niches with adaptive metabolisms and biocatalytic pathways, making them entities with an industrial interest. Industrially important biopigments like carotenoids, melanins, riboflavins, azaphilones, and quinones produced by filamentous fungi are described within the context of this review. Most recent information about fungal pigment characteristics, biochemical production routes and pathways, potential applications, limitations, and future research perspectives are described.
Collapse
Affiliation(s)
- Haritha Meruvu
- Department of Chemical Engineering, Andhra University College of Engineering - AU North Campus, Andhra University, Visakhapatnam, India.,Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, India.,Department of Bioengineering, Faculty of Engineering and Natural Sciences, Gaziosmanpaşa University, Tokat, Turkey
| | - Júlio César Dos Santos
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo (USP), Estrada Municipal do Campinho, Lorena/SP, Brazil
| |
Collapse
|
72
|
Dark-pigmented biodeteriogenic fungi in etruscan hypogeal tombs: New data on their culture-dependent diversity, favouring conditions, and resistance to biocidal treatments. Fungal Biol 2021; 125:609-620. [PMID: 34281654 DOI: 10.1016/j.funbio.2021.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 02/08/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022]
Abstract
Subterranean Cultural Heritage sites are frequently subject to biological colonization due to the high levels of humidity, even in conditions of low irradiance and oligotrophy. Here microorganisms form complex communities that may be dangerous through mineral precipitation, through the softening of materials or causing frequent surface discolorations. A reduction of contamination's sources along with the control of microclimatic conditions and biocide treatments (overall performed with benzalkonium chloride) are necessary to reduce microbial growths. Dark discolorations have been recorded in the painted Etruscan tombs of Tarquinia, two of which have been analyzed to collect taxonomical, physiological, and ecological information. Eighteen dark-pigmented fungi were isolated among a wider culturable fraction: nine from blackening areas and nine from door sealings, a possible route of contamination. Isolates belonged to three major groups: Chaetothyriales, Capnodiales (Family Cladosporiaceae), and Acremonium-like fungi. Exophiala angulospora and Cyphellophora olivacea, a novelty for hypogea, were identified, while others need further investigations as possible new taxa. The metabolic skills of the detected species showed their potential dangerousness for the materials. Their tolerance to benzalkonium chloride-based products suggested a certain favouring effect through the decreasing competitiveness of less resistant species. The type of covering of the dromos may influence the risk of outer contamination. Fungal occurrence can be favoured by root penetration.
Collapse
|
73
|
Chatragadda R, Dufossé L. Ecological and Biotechnological Aspects of Pigmented Microbes: A Way Forward in Development of Food and Pharmaceutical Grade Pigments. Microorganisms 2021; 9:637. [PMID: 33803896 PMCID: PMC8003166 DOI: 10.3390/microorganisms9030637] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/04/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
Microbial pigments play multiple roles in the ecosystem construction, survival, and fitness of all kinds of organisms. Considerably, microbial (bacteria, fungi, yeast, and microalgae) pigments offer a wide array of food, drug, colorants, dyes, and imaging applications. In contrast to the natural pigments from microbes, synthetic colorants are widely used due to high production, high intensity, and low cost. Nevertheless, natural pigments are gaining more demand over synthetic pigments as synthetic pigments have demonstrated side effects on human health. Therefore, research on microbial pigments needs to be extended, explored, and exploited to find potential industrial applications. In this review, the evolutionary aspects, the spatial significance of important pigments, biomedical applications, research gaps, and future perspectives are detailed briefly. The pathogenic nature of some pigmented bacteria is also detailed for awareness and safe handling. In addition, pigments from macro-organisms are also discussed in some sections for comparison with microbes.
Collapse
Affiliation(s)
- Ramesh Chatragadda
- Biological Oceanography Division (BOD), Council of Scientific and Industrial Research-National Institute of Oceanography (CSIR-NIO), Dona Paula 403004, Goa, India
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products (CHEMBIOPRO Lab), Ecole Supérieure d’Ingénieurs Réunion Océan Indien (ESIROI), Département Agroalimentaire, Université de La Réunion, F-97744 Saint-Denis, France
| |
Collapse
|
74
|
Saleem H, Mazhar S, Syed Q, Javed MQ, Adnan A. Bio-characterization of food grade pyocyanin bio-pigment extracted from chromogenic Pseudomonas species found in Pakistani native flora. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
75
|
Exploring Endophytes Using “Omics”: An Approach for Sustainable Production of Bioactive Metabolites. Fungal Biol 2021. [DOI: 10.1007/978-3-030-54422-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
76
|
Lin L, Xu J. Fungal Pigments and Their Roles Associated with Human Health. J Fungi (Basel) 2020; 6:E280. [PMID: 33198121 PMCID: PMC7711509 DOI: 10.3390/jof6040280] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
Fungi can produce myriad secondary metabolites, including pigments. Some of these pigments play a positive role in human welfare while others are detrimental. This paper reviews the types and biosynthesis of fungal pigments, their relevance to human health, including their interactions with host immunity, and recent progresses in their structure-activity relationships. Fungal pigments are grouped into carotenoids, melanin, polyketides, and azaphilones, etc. These pigments are phylogenetically broadly distributed. While the biosynthetic pathways for some fungal pigments are known, the majority remain to be elucidated. Understanding the genes and metabolic pathways involved in fungal pigment synthesis is essential to genetically manipulate the production of both the types and quantities of specific pigments. A variety of fungal pigments have shown wide-spectrum biological activities, including promising pharmacophores/lead molecules to be developed into health-promoting drugs to treat cancers, cardiovascular disorders, infectious diseases, Alzheimer's diseases, and so on. In addition, the mechanistic elucidation of the interaction of fungal pigments with the host immune system provides valuable clues for fighting fungal infections. The great potential of fungal pigments have opened the avenues for academia and industries ranging from fundamental biology to pharmaceutical development, shedding light on our endeavors for disease prevention and treatment.
Collapse
Affiliation(s)
- Lan Lin
- School of Life Science and Technology, Department of Bioengineering, Key Laboratory of Developmental Genes and Human Diseases (MOE), Southeast University, Nanjing 210096, Jiangsu, China;
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
77
|
Takahashi JA, Barbosa BVR, Martins BDA, P. Guirlanda C, A. F. Moura M. Use of the Versatility of Fungal Metabolism to Meet Modern Demands for Healthy Aging, Functional Foods, and Sustainability. J Fungi (Basel) 2020; 6:E223. [PMID: 33076336 PMCID: PMC7711925 DOI: 10.3390/jof6040223] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/22/2020] [Accepted: 09/27/2020] [Indexed: 01/27/2023] Open
Abstract
Aging-associated, non-transmissible chronic diseases (NTCD) such as cancer, dyslipidemia, and neurodegenerative disorders have been challenged through several strategies including the consumption of healthy foods and the development of new drugs for existing diseases. Consumer health consciousness is guiding market trends toward the development of additives and nutraceutical products of natural origin. Fungi produce several metabolites with bioactivity against NTCD as well as pigments, dyes, antioxidants, polysaccharides, and enzymes that can be explored as substitutes for synthetic food additives. Research in this area has increased the yields of metabolites for industrial applications through improving fermentation conditions, application of metabolic engineering techniques, and fungal genetic manipulation. Several modern hyphenated techniques have impressively increased the rate of research in this area, enabling the analysis of a large number of species and fermentative conditions. This review thus focuses on summarizing the nutritional, pharmacological, and economic importance of fungi and their metabolites resulting from applications in the aforementioned areas, examples of modern techniques for optimizing the production of fungi and their metabolites, and methodologies for the identification and analysis of these compounds.
Collapse
Affiliation(s)
- Jacqueline A. Takahashi
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais, Pres. Antônio Carlos Avenue, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil; (B.V.R.B.); (B.d.A.M.)
| | - Bianca V. R. Barbosa
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais, Pres. Antônio Carlos Avenue, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil; (B.V.R.B.); (B.d.A.M.)
| | - Bruna de A. Martins
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais, Pres. Antônio Carlos Avenue, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil; (B.V.R.B.); (B.d.A.M.)
| | - Christiano P. Guirlanda
- Department of Food Science, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Pres. Antônio Carlos Avenue, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil; (C.P.G.); (M.A.F.M.)
| | - Marília A. F. Moura
- Department of Food Science, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Pres. Antônio Carlos Avenue, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil; (C.P.G.); (M.A.F.M.)
| |
Collapse
|
78
|
Pailliè-Jiménez ME, Stincone P, Brandelli A. Natural Pigments of Microbial Origin. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.590439] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
79
|
Derbyshire EJ. Is There Scope for a Novel Mycelium Category of Proteins alongside Animals and Plants? Foods 2020; 9:E1151. [PMID: 32825591 PMCID: PMC7555420 DOI: 10.3390/foods9091151] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
In the 21st century, we face a troubling trilemma of expanding populations, planetary and public wellbeing. Given this, shifts from animal to plant food protein are gaining momentum and are an important part of reducing carbon emissions and consumptive water use. However, as this fast-pace of change sets in and begins to firmly embed itself within food-based dietary guidelines (FBDG) and food policies we must raise an important question-is now an opportunistic time to include other novel, nutritious and sustainable proteins within FBGD? The current paper describes how food proteins are typically categorised within FBDG and discusses how these could further evolve. Presently, food proteins tend to fall under the umbrella of being 'animal-derived' or 'plant-based' whilst other valuable proteins i.e., fungal-derived appear to be comparatively overlooked. A PubMed search of systematic reviews and meta-analytical studies published over the last 5 years shows an established body of evidence for animal-derived proteins (although some findings were less favourable), plant-based proteins and an expanding body of science for mycelium/fungal-derived proteins. Given this, along with elevated demands for alternative proteins there appears to be scope to introduce a 'third' protein category when compiling FBDG. This could fall under the potential heading of 'fungal' protein, with scope to include mycelium such as mycoprotein within this, for which the evidence-base is accruing.
Collapse
|