51
|
Chandran E, Meininger L, Karzai F, Madan RA. Signaling new therapeutic opportunities: cytokines in prostate cancer. Expert Opin Biol Ther 2022; 22:1233-1243. [PMID: 35930001 DOI: 10.1080/14712598.2022.2108701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Despite FDA approval of sipuleucel-T in 2010, endeavors to use immune checkpoint inhibitors in unselected prostate cancer patients have not improved clinical outcomes. These efforts include studies with anti-PD1/PD-L1 and anti-CTLA-4 alone and in combination with existing standards of care. These strategies are generally T-cell centric and disregard the broader complex and pleiotropic components of the prostate cancer tumor microenvironment such as natural killer cells, myeloid-derived suppressor cells and tumor associated macrophages. AREAS COVERED We performed an online literature search and undertook a review of existing pre-clinical and clinical literature for cytokine-based therapy relating to prostate cancer, specifically on interleukin (IL)-2, IL-15, IL-12, IL-23, IL-8 and transforming growth factor (TGF)-β. EXPERT OPINION Cytokine-based therapies present an alternative immune strategy to target the pleiotropic prostate cancer tumor microenvironment beyond T-cells. Future immunotherapy strategies in prostate cancer should address these immune cell populations which may play more important roles in the prostate cancer tumor microenvironment.
Collapse
Affiliation(s)
- Elias Chandran
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Luke Meininger
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fatima Karzai
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ravi A Madan
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
52
|
The Immunotherapy and Immunosuppressive Signaling in Therapy-Resistant Prostate Cancer. Biomedicines 2022; 10:biomedicines10081778. [PMID: 35892678 PMCID: PMC9394279 DOI: 10.3390/biomedicines10081778] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer is one of the most common malignant tumors in men. Initially, it is androgen-dependent, but it eventually develops into castration-resistant prostate cancer (CRPC), which is incurable with current androgen receptor signaling target therapy and chemotherapy. Immunotherapy, specifically with immune checkpoint inhibitors, has brought hope for the treatment of this type of prostate cancer. Approaches such as vaccines, adoptive chimeric antigen receptor-T (CAR-T) cells, and immune checkpoint inhibitors have been employed to activate innate and adaptive immune responses to treat prostate cancer, but with limited success. Only Sipuleucel-T and the immune checkpoint inhibitor pembrolizumab are approved by the US FDA for the treatment of limited prostate cancer patients. Prostate cancer has a complex tumor microenvironment (TME) in which various immunosuppressive molecules and mechanisms coexist and interact. Additionally, prostate cancer is considered a “cold” tumor with low levels of tumor mutational burden, low amounts of antigen-presenting and cytotoxic T-cell activation, and high levels of immunosuppressive molecules including cytokines/chemokines. Thus, understanding the mechanisms of immunosuppressive signaling activation and immune evasion will help develop more effective treatments for prostate cancer. The purpose of this review is to summarize emerging advances in prostate cancer immunotherapy, with a particular focus on the molecular mechanisms that lead to immune evasion in prostate cancer. At the same time, we also highlight some potential therapeutic targets to provide a theoretical basis for the treatment of prostate cancer.
Collapse
|
53
|
Staniszewska AD, Armenia J, King M, Michaloglou C, Reddy A, Singh M, San Martin M, Prickett L, Wilson Z, Proia T, Russell D, Thomas M, Delpuech O, O'Connor MJ, Leo E, Angell H, Valge-Archer V. PARP inhibition is a modulator of anti-tumor immune response in BRCA-deficient tumors. Oncoimmunology 2022; 11:2083755. [PMID: 35756843 PMCID: PMC9225208 DOI: 10.1080/2162402x.2022.2083755] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PARP inhibitors are synthetically lethal with BRCA1/2 mutations, and in this setting, accumulation of DNA damage leads to cell death. Because increased DNA damage and subsequent immune activation can prime an anti-tumor immune response, we studied the impact of olaparib ± immune checkpoint blockade (ICB) on anti-tumor activity and the immune microenvironment. Concurrent combination of olaparib, at clinically relevant exposures, with ICB gave durable and deeper anti-tumor activity in the Brca1m BR5 model vs. monotherapies. Olaparib and combination treatment modulated the immune microenvironment, including increases in CD8+ T cells and NK cells, and upregulation of immune pathways, including type I IFN and STING signaling. Olaparib also induced a dose-dependent upregulation of immune pathways, including JAK/STAT, STING and type I IFN, in the tumor cell compartment of a BRCA1m (HBCx-10) but not a BRCA WT (HBCx-9) breast PDX model. In vitro, olaparib induced BRCAm tumor cell–specific dendritic cell transactivation. Relevance to human disease was assessed using patient samples from the MEDIOLA (NCT02734004) trial, which showed increased type I IFN, STING, and JAK/STAT pathway expression following olaparib treatment, in line with preclinical findings. These data together provide evidence for a mechanism and schedule underpinning potential benefit of ICB combination with olaparib.
Collapse
Affiliation(s)
| | - Joshua Armenia
- Early Oncology, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Matthew King
- Early Oncology, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | - Avinash Reddy
- Early Oncology, Oncology R&D, AstraZeneca, Boston, MA, USA
| | - Maneesh Singh
- Early Oncology, Oncology R&D, AstraZeneca, Boston, MA, USA
| | | | - Laura Prickett
- Early Oncology, Oncology R&D, AstraZeneca, Boston, MA, USA
| | - Zena Wilson
- Early Oncology, Oncology R&D, AstraZeneca, Alderley Park, Macclesfield, UK
| | - Theresa Proia
- Early Oncology, Oncology R&D, AstraZeneca, Boston, MA, USA
| | - Deanna Russell
- Early Oncology, Oncology R&D, AstraZeneca, Boston, MA, USA
| | - Morgan Thomas
- Early Oncology, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Oona Delpuech
- Early Oncology, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | - Elisabetta Leo
- Early Oncology, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Helen Angell
- Early Oncology, Oncology R&D, AstraZeneca, Cambridge, UK
| | | |
Collapse
|
54
|
Rojas F, Hernandez S, Lazcano R, Laberiano-Fernandez C, Parra ER. Multiplex Immunofluorescence and the Digital Image Analysis Workflow for Evaluation of the Tumor Immune Environment in Translational Research. Front Oncol 2022; 12:889886. [PMID: 35832550 PMCID: PMC9271766 DOI: 10.3389/fonc.2022.889886] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
A robust understanding of the tumor immune environment has important implications for cancer diagnosis, prognosis, research, and immunotherapy. Traditionally, immunohistochemistry (IHC) has been regarded as the standard method for detecting proteins in situ, but this technique allows for the evaluation of only one cell marker per tissue sample at a time. However, multiplexed imaging technologies enable the multiparametric analysis of a tissue section at the same time. Also, through the curation of specific antibody panels, these technologies enable researchers to study the cell subpopulations within a single immunological cell group. Thus, multiplexed imaging gives investigators the opportunity to better understand tumor cells, immune cells, and the interactions between them. In the multiplexed imaging technology workflow, once the protocol for a tumor immune micro environment study has been defined, histological slides are digitized to produce high-resolution images in which regions of interest are selected for the interrogation of simultaneously expressed immunomarkers (including those co-expressed by the same cell) by using an image analysis software and algorithm. Most currently available image analysis software packages use similar machine learning approaches in which tissue segmentation first defines the different components that make up the regions of interest and cell segmentation, then defines the different parameters, such as the nucleus and cytoplasm, that the software must utilize to segment single cells. Image analysis tools have driven dramatic evolution in the field of digital pathology over the past several decades and provided the data necessary for translational research and the discovery of new therapeutic targets. The next step in the growth of digital pathology is optimization and standardization of the different tasks in cancer research, including image analysis algorithm creation, to increase the amount of data generated and their accuracy in a short time as described herein. The aim of this review is to describe this process, including an image analysis algorithm creation for multiplex immunofluorescence analysis, as an essential part of the optimization and standardization of the different processes in cancer research, to increase the amount of data generated and their accuracy in a short time.
Collapse
|
55
|
Comprehensive characterization of the prostate tumor microenvironment identifies CXCR4/CXCL12 crosstalk as a novel antiangiogenic therapeutic target in prostate cancer. Mol Cancer 2022; 21:132. [PMID: 35717322 PMCID: PMC9206324 DOI: 10.1186/s12943-022-01597-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/15/2022] [Indexed: 12/26/2022] Open
Abstract
Background Crosstalk between neoplastic and stromal cells fosters prostate cancer (PCa) progression and dissemination. Insight in cell-to-cell communication networks provides new therapeutic avenues to mold processes that contribute to PCa tumor microenvironment (TME) alterations. Here we performed a detailed characterization of PCa tumor endothelial cells (TEC) to delineate intercellular crosstalk between TEC and the PCa TME. Methods TEC isolated from 67 fresh radical prostatectomy (RP) specimens underwent multi-omic ex vivo characterization as well as orthogonal validation of both TEC functions and key markers by immunohistochemistry (IHC) and immunofluorescence (IF). To identify cell–cell interaction targets in TEC, we performed single-cell RNA sequencing (scRNA-seq) in four PCa patients who underwent a RP to catalogue cellular TME composition. Targets were cross-validated using IHC, publicly available datasets, cell culture expriments as well as a PCa xenograft mouse model. Results Compared to adjacent normal endothelial cells (NEC) bulk RNA-seq analysis revealed upregulation of genes associated with tumor vasculature, collagen modification and extracellular matrix remodeling in TEC. PTGIR, PLAC9, CXCL12 and VDR were identified as TEC markers and confirmed by IF and IHC in an independent patient cohort. By scRNA-seq we identified 27 cell (sub)types, including endothelial cells (EC) with arterial, venous and immature signatures, as well as angiogenic tip EC. A focused molecular analysis revealed that arterial TEC displayed highest CXCL12 mRNA expression levels when compared to all other TME cell (sub)populations and showed a negative prognostic role. Receptor-ligand interaction analysis predicted interactions between arterial TEC derived CXCL12 and its cognate receptor CXCR4 on angiogenic tip EC. CXCL12 was in vitro and in vivo validated as actionable TEC target by highlighting the vessel number- and density- reducing activity of the CXCR4-inhibitor AMD3100 in murine PCa as well as by inhibition of TEC proliferation and migration in vitro. Conclusions Overall, our comprehensive analysis identified novel PCa TEC targets and highlights CXCR4/CXCL12 interaction as a potential novel target to interfere with tumor angiogenesis in PCa. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01597-7.
Collapse
|
56
|
Sentana-Lledo D, Sartor O, Balk SP, Einstein DJ. Immune mechanisms behind prostate cancer in men of African ancestry: A review. Prostate 2022; 82:883-893. [PMID: 35254710 PMCID: PMC9875381 DOI: 10.1002/pros.24333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Men of African ancestry (AA) with prostate cancer suffer from worse outcomes. However, a recent analysis of patients treated with the dendritic cell vaccine sipuleucel-T for prostate cancer suggested that AA patients could have improved outcomes relative to whites. METHODS We conducted a focused literature review of Medline-indexed articles and clinical trials listed on clinicaltrials.gov. RESULTS We identify several studies pointing to enrichment of inflammatory cellular infiltrates and cytokine signaling among AA patients with prostate cancer. We outline potential genomic and transcriptomic alterations that may contribute to immunogenicity. Last, we investigate differences in host immunity and vaccine responsiveness that may be enhanced in AA patients. CONCLUSIONS AA patients with prostate cancer may be enriched for an immunogenic phenotype. Dedicated studies are needed to better understand the immune mechanisms that contribute to existing cancer disparities and test immune-based therapies in this population.
Collapse
Affiliation(s)
- Daniel Sentana-Lledo
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Oliver Sartor
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Steven P. Balk
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - David J. Einstein
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
57
|
Nascente EDP, Amorim RL, Fonseca-Alves CE, de Moura VMBD. Comparative Pathobiology of Canine and Human Prostate Cancer: State of the Art and Future Directions. Cancers (Basel) 2022; 14:2727. [PMID: 35681707 PMCID: PMC9179314 DOI: 10.3390/cancers14112727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 02/01/2023] Open
Abstract
First described in 1817, prostate cancer is considered a complex neoplastic entity, and one of the main causes of death in men in the western world. In dogs, prostatic carcinoma (PC) exhibits undifferentiated morphology with different phenotypes, is hormonally independent of aggressive character, and has high rates of metastasis to different organs. Although in humans, the risk factors for tumor development are known, in dogs, this scenario is still unclear, especially regarding castration. Therefore, with the advent of molecular biology, studies were and are carried out with the aim of identifying the main molecular mechanisms and signaling pathways involved in the carcinogenesis and progression of canine PC, aiming to identify potential biomarkers for diagnosis, prognosis, and targeted treatment. However, there are extensive gaps to be filled, especially when considering the dog as experimental model for the study of this neoplasm in humans. Thus, due to the complexity of the subject, the objective of this review is to present the main pathobiological aspects of canine PC from a comparative point of view to the same neoplasm in the human species, addressing the historical context and current understanding in the scientific field.
Collapse
Affiliation(s)
- Eduardo de Paula Nascente
- School of Veterinary Medicine and Animal Science, Federal University of Goiás, Goiânia 74001-970, Brazil;
| | - Renée Laufer Amorim
- Veterinary Clinic Department, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-970, Brazil;
| | - Carlos Eduardo Fonseca-Alves
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-970, Brazil;
| | | |
Collapse
|
58
|
Chakravarty D, Ratnani P, Huang L, Dovey Z, Sobotka S, Berryhill R, Merisaari H, Al Shaarani M, Rai R, Jambor I, Yadav KK, Mittan S, Parekh S, Kodysh J, Wagaskar V, Brody R, Cordon-Cardo C, Rykunov D, Reva B, Davicioni E, Wiklund P, Bhardwaj N, Nair SS, Tewari AK. Association between Incidental Pelvic Inflammation and Aggressive Prostate Cancer. Cancers (Basel) 2022; 14:2734. [PMID: 35681714 PMCID: PMC9179284 DOI: 10.3390/cancers14112734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/07/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
The impact of pelvic inflammation on prostate cancer (PCa) biology and aggressive phenotype has never been studied. Our study objective was to evaluate the role of pelvic inflammation on PCa aggressiveness and its association with clinical outcomes in patients following radical prostatectomy (RP). This study has been conducted on a retrospective single-institutional consecutive cohort of 2278 patients who underwent robot-assisted laparoscopic prostatectomy (RALP) between 01/2013 and 10/2019. Data from 2085 patients were analyzed to study the association between pelvic inflammation and adverse pathology (AP), defined as Gleason Grade Group (GGG) > 2 and ≥ pT3 stage, at resection. In a subset of 1997 patients, the association between pelvic inflammation and biochemical recurrence (BCR) was studied. Alteration in tumor transcriptome and inflammatory markers in patients with and without pelvic inflammation were studied using microarray analysis, immunohistochemistry, and culture supernatants derived from inflamed sites used in functional assays. Changes in blood inflammatory markers in the study cohort were analyzed by O-link. In univariate analyses, pelvic inflammation emerged as a significant predictor of AP. Multivariate cox proportional-hazards regression analyses showed that high pelvic inflammation with pT3 stage and positive surgical margins significantly affected the time to BCR (p ≤ 0.05). PCa patients with high inflammation had elevated levels of pro-inflammatory cytokines in their tissues and in blood. Genes involved in epithelial-to-mesenchymal transition (EMT) and DNA damage response were upregulated in patients with pelvic inflammation. Attenuation of STAT and IL-6 signaling decreased tumor driving properties of conditioned medium from inflamed sites. Pelvic inflammation exacerbates the progression of prostate cancer and drives an aggressive phenotype.
Collapse
Affiliation(s)
- Dimple Chakravarty
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (P.R.); (Z.D.); (S.S.); (R.B.); (K.K.Y.); (S.P.); (V.W.); (P.W.); (N.B.); (S.S.N.); (A.K.T.)
| | - Parita Ratnani
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (P.R.); (Z.D.); (S.S.); (R.B.); (K.K.Y.); (S.P.); (V.W.); (P.W.); (N.B.); (S.S.N.); (A.K.T.)
| | - Li Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510275, China;
| | - Zachary Dovey
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (P.R.); (Z.D.); (S.S.); (R.B.); (K.K.Y.); (S.P.); (V.W.); (P.W.); (N.B.); (S.S.N.); (A.K.T.)
| | - Stanislaw Sobotka
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (P.R.); (Z.D.); (S.S.); (R.B.); (K.K.Y.); (S.P.); (V.W.); (P.W.); (N.B.); (S.S.N.); (A.K.T.)
| | - Roy Berryhill
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (P.R.); (Z.D.); (S.S.); (R.B.); (K.K.Y.); (S.P.); (V.W.); (P.W.); (N.B.); (S.S.N.); (A.K.T.)
| | - Harri Merisaari
- Department of Radiology, University of Turku, 20014 Turku, Finland; (H.M.); (I.J.)
- Medical Imaging Centre of Southwest Finland, Turku University Hospital, 20521 Turku, Finland
| | - Majd Al Shaarani
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.A.S.); (R.B.); (C.C.-C.)
- Department of Pathology, George Washington University Hospital, Washington, DC 20037, USA
| | - Richa Rai
- Department of Hematology & Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Ivan Jambor
- Department of Radiology, University of Turku, 20014 Turku, Finland; (H.M.); (I.J.)
- Medical Imaging Centre of Southwest Finland, Turku University Hospital, 20521 Turku, Finland
| | - Kamlesh K. Yadav
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (P.R.); (Z.D.); (S.S.); (R.B.); (K.K.Y.); (S.P.); (V.W.); (P.W.); (N.B.); (S.S.N.); (A.K.T.)
- School of Engineering Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Sandeep Mittan
- Division of Cardiovascular Research, Albert Einstein College of Medicine, New York, NY 10467, USA;
| | - Sneha Parekh
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (P.R.); (Z.D.); (S.S.); (R.B.); (K.K.Y.); (S.P.); (V.W.); (P.W.); (N.B.); (S.S.N.); (A.K.T.)
| | - Julia Kodysh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (J.K.); (D.R.); (B.R.)
| | - Vinayak Wagaskar
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (P.R.); (Z.D.); (S.S.); (R.B.); (K.K.Y.); (S.P.); (V.W.); (P.W.); (N.B.); (S.S.N.); (A.K.T.)
| | - Rachel Brody
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.A.S.); (R.B.); (C.C.-C.)
| | - Carlos Cordon-Cardo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.A.S.); (R.B.); (C.C.-C.)
| | - Dmitry Rykunov
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (J.K.); (D.R.); (B.R.)
| | - Boris Reva
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (J.K.); (D.R.); (B.R.)
| | - Elai Davicioni
- Decipher Biosciences, A Subsidiary of Veracyte Inc., South San Francisco, CA 94080, USA;
| | - Peter Wiklund
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (P.R.); (Z.D.); (S.S.); (R.B.); (K.K.Y.); (S.P.); (V.W.); (P.W.); (N.B.); (S.S.N.); (A.K.T.)
| | - Nina Bhardwaj
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (P.R.); (Z.D.); (S.S.); (R.B.); (K.K.Y.); (S.P.); (V.W.); (P.W.); (N.B.); (S.S.N.); (A.K.T.)
- Department of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sujit S. Nair
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (P.R.); (Z.D.); (S.S.); (R.B.); (K.K.Y.); (S.P.); (V.W.); (P.W.); (N.B.); (S.S.N.); (A.K.T.)
| | - Ashutosh K. Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (P.R.); (Z.D.); (S.S.); (R.B.); (K.K.Y.); (S.P.); (V.W.); (P.W.); (N.B.); (S.S.N.); (A.K.T.)
| |
Collapse
|
59
|
Immunotherapy in Genitourinary Malignancy: Evolution in Revolution or Revolution in Evolution. Cancer Treat Res 2022; 183:201-223. [PMID: 35551661 DOI: 10.1007/978-3-030-96376-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Immunotherapy, the 5th pillar of cancer care after surgery, radiotherapy, cytotoxic chemotherapy, and precision therapy (molecular targeted therapy), is revolutionizing the standard of care in certain patients with genitourinary malignancies. As modest clinical benefits of IL-2 for metastatic renal cell carcinoma and Bacillus Calmette-Guerin therapy for early-stage bladder cancers in the past years, immune checkpoint inhibitors therapies demonstrate meaningful survival benefit and durable clinical response in renal cell carcinoma, urothelial carcinoma, and some prostate cancer. Despite best efforts, the benefits are limited to a minority of unselected patients due to the complexities of biomarker development. Now come the next hurdles: figuring out which patients best respond to immune checkpoint inhibitors and which patients won't respond to immune checkpoint inhibitors? How best to approach immune checkpoint inhibitors therapies to extend/maximize the treatment response as long as possible? How to overcome therapeutic resistance by specific concurrent immunomodulators or targeted therapy or chemotherapy? The role of immune checkpoint inhibitors in combination or sequencing with chemotherapy or other targeted therapies or other immunomodulating therapeutics in the early disease, neoadjuvant, adjuvant, and metastatic setting is actively under exploration. Ideal strategy for cancer care is to provide not just more time, but more quality time: there remain unmet needs for novel therapies that exploit molecular or genetic pathways to extend survival without compromising health-related quality of life for patients with advanced genitourinary malignancies. Further research is needed to discover new therapeutic strategies, and validate efficacy and effectiveness in real-world settings.
Collapse
|
60
|
Ozbek B, Ertunc O, Erickson A, Vidal ID, Gomes-Alexandre C, Guner G, Hicks JL, Jones T, Taube JM, Sfanos KS, Yegnasubramanian S, De Marzo AM. Multiplex immunohistochemical phenotyping of T cells in primary prostate cancer. Prostate 2022; 82:706-722. [PMID: 35188986 DOI: 10.1002/pros.24315] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/03/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Most prostate cancers are "immune cold" and poorly responsive to immune checkpoint inhibitors. However, the mechanisms responsible for the lack of a robust antitumor adaptive immune response in the prostate are poorly understood, which hinders the development of novel immunotherapeutic approaches. AIMS Most inflammatory infiltrates in the prostate are centered around benign glands and stroma, which can confound the molecular characterization of the antitumor immune response. We sought to analytically validate a chromogenic-based multiplex immunohistochemistry (IHC) approach applicable to whole slide digital image analysis to quantify T cell subsets from the tumor microenvironment of primary prostatic adenocarcinomas. As an initial application, we tested the hypothesis that PTEN loss leads to an altered antitumor immune response by comparing matched regions of tumors within the same individual with and without PTEN loss. MATERIALS & METHODS Using the HALO Image Analysis Platform (Indica Labs), we trained a classifier to quantify the densities of eight T cell phenotypes separately in the tumor epithelial and stromal subcompartments. RESULTS The iterative chromogenic approach using 7 different antibodies on the same slide provides highly similar findings to results using individually stained slides with single antibodies. Our main findings in carcinomas (benign removed) include the following: i) CD4+ T cells are present at higher density than CD8+ T cells; ii) all T cell subsets are present at higher densities in the stromal compartment compared to the epithelial tumor compartment; iii) most CD4+ and CD8+ T cells are PD1+; iv) cancer foci with PTEN loss harbored increased numbers of T cells compared to regions without PTEN loss, in both stromal and epithelial compartments; and v) the increases in T cells in PTEN loss regions were associated with ERG gene fusion status. DISCUSSION This modular approach can apply to any IHC-validated antibody combination and sets the groundwork for more detailed spatial analyses. CONCLUSION Iterative chromogenic IHC can be used for whole slide analysis of prostate tissue samples and can complement transcriptomic results including those using single cell and spatial genomic approaches.
Collapse
Affiliation(s)
- Busra Ozbek
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Onur Ertunc
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew Erickson
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Igor D Vidal
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Carolina Gomes-Alexandre
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gunes Guner
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jessica L Hicks
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tracy Jones
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Janis M Taube
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, Maryland, USA
- The Mark Foundation Center for Advanced Genomics and Imaging, Johns Hopkins University, Baltimore, Maryland, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Karen S Sfanos
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, Maryland, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Brady Urological Research Institute, Johns Hopkins, Baltimore, Maryland, USA
| | - Srinivasan Yegnasubramanian
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, Maryland, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Brady Urological Research Institute, Johns Hopkins, Baltimore, Maryland, USA
| | - Angelo M De Marzo
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, Maryland, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Brady Urological Research Institute, Johns Hopkins, Baltimore, Maryland, USA
| |
Collapse
|
61
|
Nazarian A, Arbeev KG, Yashkin AP, Kulminski AM. Genome-wide analysis of genetic predisposition to common polygenic cancers. J Appl Genet 2022; 63:315-325. [PMID: 34981446 PMCID: PMC8983541 DOI: 10.1007/s13353-021-00679-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 12/13/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022]
Abstract
Lung, breast, prostate, and colorectal cancers are among the most common and fatal malignancies worldwide. They are mainly caused by multifactorial mechanisms and are genetically heterogeneous. We investigated the genetic architecture of these cancers through genome-wide association, pathway-based, and summary-based transcriptome-/methylome-wide association analyses using three independent cohorts. Our genome-wide association analyses identified the associations of 33 single-nucleotide polymorphisms (SNPs) at P < 5E - 06, of which 32 SNPs were not previously reported and did not have proxy variants within their ± 1 Mb flanking regions. Moreover, other polymorphisms mapped to their closest genes were not previously associated with the same cancers at P < 5E - 06. Our pathway enrichment analyses revealed associations of 32 pathways; mainly related to the immune system, DNA replication/transcription, and chromosomal organization; with the studied cancers. Also, 60 probes were associated with these cancers in our transcriptome-wide and methylome-wide analyses. The ± 1 Mb flanking regions of most probes had not attained P < 5E - 06 in genome-wide association studies. The genes corresponding to the significant probes can be considered as potential targets for further functional studies. Two genes (i.e., CDC14A and PMEL) demonstrated stronger evidence of associations with lung cancer as they had significant probes in both transcriptome-wide and methylome-wide association analyses. The novel cancer-associated SNPs and genes identified here would advance our understanding of the genetic heterogeneity of the common cancers.
Collapse
Affiliation(s)
- Alireza Nazarian
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Erwin Mill Building, 2024 W. Main St., Durham, NC, 27705, USA.
| | - Konstantin G Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Erwin Mill Building, 2024 W. Main St., Durham, NC, 27705, USA
| | - Arseniy P Yashkin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Erwin Mill Building, 2024 W. Main St., Durham, NC, 27705, USA
| | - Alexander M Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Erwin Mill Building, 2024 W. Main St., Durham, NC, 27705, USA.
| |
Collapse
|
62
|
Sakellakis M, Flores L, Ramachandran S. Patterns of indolence in prostate cancer (Review). Exp Ther Med 2022; 23:351. [PMID: 35493432 PMCID: PMC9019743 DOI: 10.3892/etm.2022.11278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/11/2022] [Indexed: 11/20/2022] Open
Abstract
Although prostate cancer is a major cause of cancer-related mortality worldwide, most patients will have a relatively indolent clinical course. Contrary to most other types of cancer, even the diagnosis of locally advanced or metastatic disease is not always lethal. The present review aimed to summarize what is known regarding the underlying mechanisms related to the indolent course of subsets of prostate cancer, at various stages. The data suggested that no specific gene alteration by itself was responsible for carcinogenesis or disease aggressiveness. However, pathway analysis identified genetic aberrations in multiple critical pathways that tend to accumulate over the course of the disease. The progression from indolence into aggressive disease is associated with a complex interplay in which genetic and epigenetic factors are involved. The effect of the immune tumor microenvironment is also very important. Emerging evidence has suggested that the upregulation of pathways related to cellular aging and senescence can identify patients with indolent disease. In addition, a number of tumors enter a long-lasting quiescent state. Further research will determine whether halting tumor evolution is a feasible option, and whether the life of patients can be markedly prolonged by inducing tumor senescence or long-term dormancy.
Collapse
Affiliation(s)
- Minas Sakellakis
- Fourth Oncology Department and Comprehensive Clinical Trials Center, Metropolitan Hospital, 18547 Athens, Greece
| | - Laura Flores
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, University of Texas, Houston, TX 77025, USA
| | - Sumankalai Ramachandran
- Department of Genitourinary Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX 77025, USA
| |
Collapse
|
63
|
Immune Checkpoint Inhibitors in Advanced Prostate Cancer: Current Data and Future Perspectives. Cancers (Basel) 2022; 14:cancers14051245. [PMID: 35267553 PMCID: PMC8909751 DOI: 10.3390/cancers14051245] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The treatment landscape of advanced prostate cancer (PCa) is constantly improving with the approval of many new therapeutic options. Immunotherapy in PCa has been investigated with disappointing results. This review aims to evaluate the potential role of immunotherapy in both castration-sensitive and castration-resistant PCa, discussing the immunobiology of PCa, the results of the current literature, and the ongoing clinical trials. Potential prognostic and/or predictive factors and future perspectives are also discussed. Abstract In the last 10 years, many new therapeutic options have been approved in advanced prostate cancer (PCa) patients, granting a more prolonged survival in patients with metastatic disease, which, nevertheless, remains incurable. The emphasis on immune checkpoint inhibitors (ICIs) has led to many trials in this setting, with disappointing results until now. Therefore, we discuss the immunobiology of PCa, presenting ongoing trials and the available clinical data, to understand if immunotherapy could represent a valid option in this disease, and which subset of patients may be more likely to benefit. Current evidence suggests that the tumor microenvironment needs a qualitative rather than quantitative evaluation, along with the genomic determinants of prostate tumor cells. The prognostic or predictive value of immunotherapy biomarkers, such as PD-L1, TMB, or dMMR/MSI-high, needs further evaluation in PCa. Monotherapy with immune checkpoint inhibitors (ICIs) has been modestly effective. In contrast, combined strategies with other standard treatments (hormonal agents, chemotherapy, PARP inhibitors, radium-223, and TKIs) have shown some results. Immunotherapy should be better investigated in biomarker-selected patients, particularly with specific pathway aberrations (e.g., AR-V7 variant, HRD, CDK12 inactivated tumors, MSI-high tumors). Lastly, we present new possible targets in PCa that could potentially modulate the tumor microenvironment and improve antitumor activity with ICIs.
Collapse
|
64
|
Huang W, Randhawa R, Jain P, Hubbard S, Eickhoff J, Kummar S, Wilding G, Basu H, Roy R. A Novel Artificial Intelligence-Powered Method for Prediction of Early Recurrence of Prostate Cancer After Prostatectomy and Cancer Drivers. JCO Clin Cancer Inform 2022; 6:e2100131. [PMID: 35192404 DOI: 10.1200/cci.21.00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To develop a novel artificial intelligence (AI)-powered method for the prediction of prostate cancer (PCa) early recurrence and identification of driver regions in PCa of all Gleason Grade Group (GGG). MATERIALS AND METHODS Deep convolutional neural networks were used to develop the AI model. The AI model was trained on The Cancer Genome Atlas Prostatic Adenocarcinoma (TCGA-PRAD) whole slide images (WSI) and data set (n = 243) to predict 3-year biochemical recurrence after radical prostatectomy (RP) and was subsequently validated on WSI from patients with PCa (n = 173) from the University of Wisconsin-Madison. RESULTS Our AI-powered platform can extract visual and subvisual morphologic features from WSI to identify driver regions predictive of early recurrence of PCa (regions of interest [ROIs]) after RP. The ROIs were ranked with AI-morphometric scores, which were prognostic for 3-year biochemical recurrence (area under the curve [AUC], 0.78), which is significantly better than the GGG overall (AUC, 0.62). The AI-morphometric scores also showed high accuracy in the prediction of recurrence for low- or intermediate-risk PCa-AUC, 0.76, 0.84, and 0.81 for GGG1, GGG2, and GGG3, respectively. These patients could benefit the most from timely adjuvant therapy after RP. The predictive value of the high-scored ROIs was validated by known PCa biomarkers studied. With this focused biomarker analysis, a potentially new STING pathway-related PCa biomarker-TMEM173-was identified. CONCLUSION Our study introduces a novel approach for identifying patients with PCa at risk for early recurrence regardless of their GGG status and for identifying cancer drivers for focused evolution-aware novel biomarker discovery.
Collapse
Affiliation(s)
- Wei Huang
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI.,PathomIQ, Inc, Cupertino, CA
| | - Ramandeep Randhawa
- PathomIQ, Inc, Cupertino, CA.,University of Southern California Marshall School of Business, Los Angeles, CA
| | | | - Samuel Hubbard
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI
| | - Jens Eickhoff
- Department of Biostatistics and Informatics, University of Wisconsin-Madison, Madison, WI
| | - Shivaani Kummar
- PathomIQ, Inc, Cupertino, CA.,Division of Hematology & Medical Oncology, Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | | | - Hirak Basu
- Department of Genitourinary Medical Oncology, MD Anderson Cancer Center, Houston, TX
| | | |
Collapse
|
65
|
Yeh SJ, Chung YC, Chen BS. Investigating the Role of Obesity in Prostate Cancer and Identifying Biomarkers for Drug Discovery: Systems Biology and Deep Learning Approaches. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030900. [PMID: 35164166 PMCID: PMC8840188 DOI: 10.3390/molecules27030900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 12/21/2022]
Abstract
Prostate cancer (PCa) is the second most frequently diagnosed cancer for men and is viewed as the fifth leading cause of death worldwide. The body mass index (BMI) is taken as a vital criterion to elucidate the association between obesity and PCa. In this study, systematic methods are employed to investigate how obesity influences the noncutaneous malignancies of PCa. By comparing the core signaling pathways of lean and obese patients with PCa, we are able to investigate the relationships between obesity and pathogenic mechanisms and identify significant biomarkers as drug targets for drug discovery. Regarding drug design specifications, we take drug–target interaction, drug regulation ability, and drug toxicity into account. One deep neural network (DNN)-based drug–target interaction (DTI) model is trained in advance for predicting drug candidates based on the identified biomarkers. In terms of the application of the DNN-based DTI model and the consideration of drug design specifications, we suggest two potential multiple-molecule drugs to prevent PCa (covering lean and obese PCa) and obesity-specific PCa, respectively. The proposed multiple-molecule drugs (apigenin, digoxin, and orlistat) not only help to prevent PCa, suppressing malignant metastasis, but also result in lower production of fatty acids and cholesterol, especially for obesity-specific PCa.
Collapse
|
66
|
Ke ZB, You Q, Sun JB, Zhu JM, Li XD, Chen DN, Su L, Zheng QS, Wei Y, Xue XY, Xu N. A Novel Ferroptosis-Based Molecular Signature Associated with Biochemical Recurrence-Free Survival and Tumor Immune Microenvironment of Prostate Cancer. Front Cell Dev Biol 2022; 9:774625. [PMID: 35071228 PMCID: PMC8773967 DOI: 10.3389/fcell.2021.774625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/02/2021] [Indexed: 01/13/2023] Open
Abstract
Objective: To identify ferroptosis-related molecular clusters, and to develop and validate a ferroptosis-based molecular signature for predicting biochemical recurrence-free survival (BCRFS) and tumor immune microenvironment of prostate cancer (PCa). Materials and Methods: The clinical data and transcriptome data of PCa were downloaded from TCGA and GEO database. Ferroptosis-related genes (FRGs) were obtained from FerrDb database. We performed consensus clustering analysis to identify ferroptosis-related molecular subtypes for PCa. Univariate and multivariate Cox regression analysis were used to establish a ferroptosis-based signature for predicting BCRFS. Internal verification, external verification and subgroup survival analysis were then successfully performed. Results: There was a total of 40 differentially expressed FRGs in PCa. We then identified three ferroptosis-related molecular clusters of PCa, which have significantly different immune infiltrating cells, tumor immune microenvironment and PD-L1 expression level. More importantly, a novel ferroptosis-based signature for predicting BCRFS of PCa based on four FRGs (including ASNS, GPT2, NFE2L2, RRM2) was developed. Internal and external verifications were then successfully performed. Patients with high-risk score were associated with significant poor BCRFS compared with those with low-risk score in training cohort, testing cohort and validating cohort, respectively. The area under time-dependent Receiver Operating Characteristic (ROC) curve were 0.755, 0.705 and 0.726 in training cohort, testing cohort and validating cohort, respectively, indicating the great performance of this signature. Independent prognostic analysis indicated that this signature was an independent predictor for BCRFS of PCa. Subgroup analysis revealed that this signature was particularly suitable for younger or stage T III-IV or stage N0 or cluster 1-2 PCa patients. Patients with high-risk score have significantly different tumor immune microenvironment in comparison with those with low-risk score. The results of qRT-PCR successfully verified the mRNA expression levels of ASNS, GPT2, RRM2 and NFE2L2 in DU-145 and RWPE-1 cells while the results of IHC staining exactly verified the relative protein expression levels of ASNS, GPT2, RRM2 and NFE2L2 between PCa and BPH tissues. Conclusions: This study successfully identified three ferroptosis-related molecular clusters. Besides, we developed and validated a novel ferroptosis-based molecular signature, which performed well in predicting BCRFS and tumor immune microenvironment of PCa.
Collapse
Affiliation(s)
- Zhi-Bin Ke
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qi You
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jiang-Bo Sun
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jun-Ming Zhu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiao-Dong Li
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Dong-Ning Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Li Su
- Department of Radiotherapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qing-Shui Zheng
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yong Wei
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xue-Yi Xue
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ning Xu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
67
|
Perera MP, Thomas PB, Risbridger GP, Taylor R, Azad A, Hofman MS, Williams ED, Vela I. Chimeric Antigen Receptor T-Cell Therapy in Metastatic Castrate-Resistant Prostate Cancer. Cancers (Basel) 2022; 14:cancers14030503. [PMID: 35158771 PMCID: PMC8833489 DOI: 10.3390/cancers14030503] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Prostate cancer is one of the most frequently diagnosed cancers amongst men worldwide. Treatment for metastatic disease is often in the form of androgen deprivation therapy. However, over the course of treatment affected men may become castrate-resistant. Options for men with metastatic castrate-resistant cancer are limited. This review focuses on the role of chimeric antigen receptor T-cell therapy (CAR-T) in men with metastatic castrate-resistant prostate cancer. This review is a contemporary appraisal of preclinical and clinical studies conducted in this emerging form of immunotherapy. A thorough evaluation of the role of CAR-T therapy in prostate cancer is provided, as well as the obstacles we must overcome to clinically translate this therapy for men affected with this rapidly fatal disease. Abstract Prostate cancer is the most commonly diagnosed solid-organ cancer amongst males worldwide. Metastatic castrate-resistant prostate cancer (mCRPC) is a rapidly fatal end-sequelae of prostate cancer. Therapeutic options for men with mCRPC are limited and are not curative in nature. The recent development of chimeric antigen receptor T-cell (CAR-T) therapy has revolutionised the treatment of treatment-resistant haematological malignancies, and several studies are underway investigating the utility of this technology in the treatment of solid tumours. In this review, we evaluate the current treatment options for men with mCRPC as well as the current landscape of preclinical and clinical trials of CAR-T cell therapy against prostate cancer. We also appraise the various prostate cancer-specific tumour-associated antigens that may be targeted by CAR-T cell technology. Finally, we examine the potential translational barriers of CAR-T cell therapy in solid tumours. Despite preclinical success, preliminary clinical trials in men with prostate cancer have had limited efficacy. Therefore, further clinically translatable preclinical models are required to enhance the understanding of the role of this investigational therapeutic in men with mCRPC. In the era of precision medicine, tailored immunotherapy administered to men in a tumour-agnostic approach provides hope to a group of men who otherwise have few treatment options available.
Collapse
Affiliation(s)
- Mahasha P.J. Perera
- School of Biomedical Sciences at Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.); (E.D.W.)
- Queensland Bladder Cancer Initiative (QBCI), Woolloongabba, QLD 4102, Australia
- Department of Urology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
- Centre for Personalised Analysis of Cancers (CPAC), Brisbane, QLD 4102, Australia
- Correspondence: (M.P.P.); (I.V.)
| | - Patrick B. Thomas
- School of Biomedical Sciences at Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.); (E.D.W.)
- Queensland Bladder Cancer Initiative (QBCI), Woolloongabba, QLD 4102, Australia
- Centre for Personalised Analysis of Cancers (CPAC), Brisbane, QLD 4102, Australia
| | - Gail P. Risbridger
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3168, Australia; (G.P.R.); (R.T.)
| | - Renea Taylor
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3168, Australia; (G.P.R.); (R.T.)
| | - Arun Azad
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (A.A.); (M.S.H.)
| | - Michael S. Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (A.A.); (M.S.H.)
| | - Elizabeth D. Williams
- School of Biomedical Sciences at Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.); (E.D.W.)
- Queensland Bladder Cancer Initiative (QBCI), Woolloongabba, QLD 4102, Australia
- Centre for Personalised Analysis of Cancers (CPAC), Brisbane, QLD 4102, Australia
| | - Ian Vela
- School of Biomedical Sciences at Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.); (E.D.W.)
- Queensland Bladder Cancer Initiative (QBCI), Woolloongabba, QLD 4102, Australia
- Department of Urology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
- Centre for Personalised Analysis of Cancers (CPAC), Brisbane, QLD 4102, Australia
- Correspondence: (M.P.P.); (I.V.)
| |
Collapse
|
68
|
Macrophages as a Therapeutic Target in Metastatic Prostate Cancer: A Way to Overcome Immunotherapy Resistance? Cancers (Basel) 2022; 14:cancers14020440. [PMID: 35053602 PMCID: PMC8773572 DOI: 10.3390/cancers14020440] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PC) is the most common malignancy and the fifth cause of cancer death in men. The treatment for localized or locally advanced stages offers a high probability of cure. Even though the therapeutic landscape has significantly improved over the last decade, metastatic PC (mPC) still has a poor prognosis mainly due to the development of therapy resistance. In this context, the use of immunotherapy alone or in combination with other drugs has been explored in recent years. However, T-cell directed immune checkpoint inhibitors (ICIs) have shown limited activity with inconclusive results in mPC patients, most likely due to the highly immunosuppressive PC tumor microenvironment (TME). In this scenario, targeting macrophages, a highly abundant immunosuppressive cell type in the TME, could offer a new therapeutic strategy to improve immunotherapy efficacy. In this review, we summarize the growing field of macrophage-directed immunotherapies and discuss how these could be applied in the treatment of mPC, focusing on their combination with ICIs.
Collapse
|
69
|
Mitsogiannis I, Tzelves L, Dellis A, Issa H, Papatsoris A, Moussa M. Prostate cancer immunotherapy. Expert Opin Biol Ther 2022; 22:577-590. [PMID: 35037527 DOI: 10.1080/14712598.2022.2027904] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Medical treatment for prostate cancer (PC) targets hormonal pathways used by malignant cells. Research advances aided in gaining knowledge about implicated molecular pathways and opened the way for establishment of new types of therapies by modifying immunological mechanisms. The aim of this review is to present completed and ongoing research projects regarding PC immunotherapy. AREAS COVERED A literature search was conducted in PubMed/MEDLINE, Scopus, Cochrane Central Register of Controlled Trials, and https://www.clinicaltrials.gov/ from inception until 07/2021, to identify completed or ongoing Phase III trials regarding several immunotherapies against PC. Studies on vaccine therapies, CTLA-4 inhibitors, PD-1/PD-L1 inhibitors, PARP inhibitors, PSMA-targeted therapies, and tyrosine kinase inhibitors were considered eligible. EXPERT OPINION Although many molecules are being tested against PC cells, only sipuleucel-T has gain approval in the USA. The main reason for this delay in establishing immunotherapy as a standard option for managing PC is the heterogeneity and tumor immune microenvironment complexities. Ipilimumab and olaparib were proved to prolong overall survival significantly against placebo, but a lot of research is going on to identify which patients and at what stage of disease will benefit the most before incorporating them in clinical practice. More recent options such as PSMA-targeted treatments are currently evaluated. ARTICLE HIGHLIGHTS Intense research performed on immunotherapy for prostate cancer.Vaccine therapy with sipuleucel-T, the only approved immunotherapy for prostate cancer.Ipilimumab shows survival benefits.Olaparib shows survival benefits.Findings should be confirmed on further trials to identify target population characteristics and proper disease stage.Immunotherapy is not yet a standard due to tumor environment complex interaction between immune system and malignant cells.
Collapse
Affiliation(s)
- Iraklis Mitsogiannis
- 2nd Department of Urology, School of Medicine, Sismanoglio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Lazaros Tzelves
- 2nd Department of Urology, School of Medicine, Sismanoglio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Dellis
- 2nd Department of Urology, School of Medicine, Sismanoglio Hospital, National and Kapodistrian University of Athens, Athens, Greece.,Department of Surgery, School of Medicine, Aretaieion Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Hussein Issa
- Department of Urology, Al Zahraa Hospital, University Medical Center, Lebanese University, Beirut, Lebanon
| | - Athanasios Papatsoris
- 2nd Department of Urology, School of Medicine, Sismanoglio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Mohammad Moussa
- Department of Urology, Al Zahraa Hospital, University Medical Center, Lebanese University, Beirut, Lebanon
| |
Collapse
|
70
|
Lu G, Cai W, Wang X, Huang B, Zhao Y, Shao Y, Wang D. Identifying prognostic signatures in the microenvironment of prostate cancer. Transl Androl Urol 2022; 10:4206-4218. [PMID: 34984186 PMCID: PMC8661256 DOI: 10.21037/tau-21-819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/12/2021] [Indexed: 11/18/2022] Open
Abstract
Background An increasing number of studies has indicated that the tumor microenvironment (TME), an important component of tumor tissue, has clinicopathological significance in predicting disease outcome and therapeutic efficacy. However, little evidence in prostate cancer (PCa) is available. Methods The cohort of TCGA-PRAD (n=477) was used in this study. Based on the proportion of 22 types of immune cells calculated by CIBERSORT, the TME was classified by K-means clustering and differentially expressed genes (DEGs) were determined. The TMEscore was calculated based on cluster signature genes, which were obtained from DEGs by the random forest method, and the samples were classified into two subtypes. Analyses of somatic mutation and copy number variation (CNVs) were further conducted to identify the genetic characteristics of the two subtypes. Correlation analysis was performed to explore the correlation between TMEscore and the tumor response to immune checkpoint inhibitors (ICIs) as well as the prognosis of PCa. Results Based on the distribution of infiltrating immune cells in the TME, we constructed the TMEscore model and classified PCa samples into high and low TMEscore groups. Survival analysis indicated that the high TMEscore group had significantly better survival outcome than the low TMEscore group. Correlation analysis showed a significantly positive correlation between TMEscore and the known prognostic factors of PCa. Conclusions Our study indicates that the TMEscore could be a potential prognostic biomarker in PCa. A comprehensive description of the characteristics of TME may help predict the response to therapies and provide new treatment strategies for PCa patients.
Collapse
Affiliation(s)
- Guoliang Lu
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Weijing Cai
- Shanghai Tongshu Biotechnology Co., Ltd., Shanghai, China
| | - Xiaojing Wang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Baoxing Huang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yang Zhao
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yuan Shao
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Dawei Wang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
71
|
Goswami S, Sarkar C, Singh S, Singh AP, Chakroborty D. Racial differences in prostate tumor microenvironment: implications for disparate clinical outcomes and potential opportunities. CANCER HEALTH DISPARITIES 2022; 6:214. [PMID: 36777283 PMCID: PMC9910060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Disparities in cancer incidence and outcome are common among the racial and ethnical minorities in the United States and are of significant social and clinical concern. Prostate cancer is the most commonly diagnosed non-cutaneous malignancy in American men and exhibits substantial racial disparities with African American men bearing the highest burden in terms of incidence and mortality. A multitude of factors, including socioeconomic, behavioral, and access to healthcare, have been implicated as the underlying causes of such disparities. More recent data also suggest that there are inherent molecular and biological differences in prostate tumors of patients having distinct racial backgrounds. Tumor microenvironment has tremendous impact on the course of cancer progression and clinical outcome and may also contribute to the racial disparities observed in prostate cancer. Therefore, a better understanding of critical differences in the tumor microenvironment components may provide newer directions to study the biological causes of prostate cancer health disparities and may identify novel therapeutic targets. This review discusses the findings related to the tumor microenvironment differences between African American and Caucasian American prostate cancer patients and makes suggestion regarding their potential significance in prostate cancer disparities.
Collapse
Affiliation(s)
- Sandeep Goswami
- Department of Pathology, University of South Alabama, Mobile, Alabama, USA.,Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Chandrani Sarkar
- Department of Pathology, University of South Alabama, Mobile, Alabama, USA.,Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Seema Singh
- Department of Pathology, University of South Alabama, Mobile, Alabama, USA.,Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Ajay Pratap Singh
- Department of Pathology, University of South Alabama, Mobile, Alabama, USA.,Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Debanjan Chakroborty
- Department of Pathology, University of South Alabama, Mobile, Alabama, USA.,Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
72
|
van de Merbel AF, van der Horst G, van der Mark MH, Bots STF, van den Wollenberg DJM, de Ridder CMA, Stuurman D, Aalders T, Erkens-Schulz S, van Montfoort N, Karthaus WR, Mehra N, Smits M, Schalken JA, van Weerden WM, Hoeben RC, van der Pluijm G. Reovirus mutant jin-3 exhibits lytic and immune-stimulatory effects in preclinical human prostate cancer models. Cancer Gene Ther 2022; 29:793-802. [PMID: 34135475 PMCID: PMC9209329 DOI: 10.1038/s41417-021-00360-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/08/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Treatment of castration-resistant prostate cancer remains a challenging clinical problem. Despite the promising effects of immunotherapy in other solid cancers, prostate cancer has remained largely unresponsive. Oncolytic viruses represent a promising therapeutic avenue, as oncolytic virus treatment combines tumour cell lysis with activation of the immune system and mounting of effective anti-tumour responses. Mammalian Orthoreoviruses are non-pathogenic human viruses with a preference of lytic replication in human tumour cells. In this study, we evaluated the oncolytic efficacy of the bioselected oncolytic reovirus mutant jin-3 in multiple human prostate cancer models. The jin-3 reovirus displayed efficient infection, replication, and anti-cancer responses in 2D and 3D prostate cancer models, as well as in ex vivo cultured human tumour slices. In addition, the jin-3 reovirus markedly reduced the viability and growth of human cancer cell lines and patient-derived xenografts. The infection induced the expression of mediators of immunogenic cell death, interferon-stimulated genes, and inflammatory cytokines. Taken together, our data demonstrate that the reovirus mutant jin-3 displays tumour tropism, and induces potent oncolytic and immunomodulatory responses in human prostate cancer models. Therefore, jin-3 reovirus represents an attractive candidate for further development as oncolytic agent for treatment of patients with aggressive localised or advanced prostate cancer.
Collapse
Affiliation(s)
- Arjanneke F. van de Merbel
- grid.10419.3d0000000089452978Department of Urology, Leiden University Medical Center, Leiden, The Netherlands
| | - Geertje van der Horst
- grid.10419.3d0000000089452978Department of Urology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maaike H. van der Mark
- grid.10419.3d0000000089452978Department of Urology, Leiden University Medical Center, Leiden, The Netherlands
| | - Selas T. F. Bots
- grid.10419.3d0000000089452978Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Diana J. M. van den Wollenberg
- grid.10419.3d0000000089452978Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Corrina M. A. de Ridder
- grid.5645.2000000040459992XDepartment of Experimental Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Debra Stuurman
- grid.5645.2000000040459992XDepartment of Experimental Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Tilly Aalders
- grid.10417.330000 0004 0444 9382Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sigrun Erkens-Schulz
- grid.5645.2000000040459992XDepartment of Experimental Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Nadine van Montfoort
- grid.10419.3d0000000089452978Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Wouter R. Karthaus
- grid.51462.340000 0001 2171 9952Human Pathology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Niven Mehra
- grid.10417.330000 0004 0444 9382Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Minke Smits
- grid.10417.330000 0004 0444 9382Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jack A. Schalken
- grid.10417.330000 0004 0444 9382Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wytske M. van Weerden
- grid.5645.2000000040459992XDepartment of Experimental Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Rob C. Hoeben
- grid.10419.3d0000000089452978Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gabri van der Pluijm
- grid.10419.3d0000000089452978Department of Urology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
73
|
Yue W, Du X, Wang X, Gui N, Zhang W, Sun J, You J, He D, Geng X, Huang Y, Hou J. Prognostic values of the core components of the mammalian circadian clock in prostate cancer. PeerJ 2021; 9:e12539. [PMID: 34966582 PMCID: PMC8667750 DOI: 10.7717/peerj.12539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
Background Prostate cancer (PC) is one of the most common malignancies in males. Extensive and complex connections between circadian rhythm and cancer were found. Nonetheless, in PC, the potential role of the core components of the mammalian circadian clock (CCMCCs) in prognosis prediction has not been fully clarified. Methods We firstly collected 605 patients with PC from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. Survival analysis was carried out for each CCMCC. Then, we investigated the prognostic ability of CCMCCs by Cox regression analysis. Independent prognostic signatures were extracted for the establishment of the circadian clock-based risk score model. We explored the predictive performance of the risk score model in the TCGA training cohort and the independent GEO dataset. Finally, the relationships between risk score and clinicopathological parameters, biological processes, and signaling pathways were evaluated. Results The expression levels of CCMCCs were widely correlated with age, tumor status, lymph node status, disease-free survival (DFS), progression-free survival (PFS), and overall survival (OS). Nine circadian clock genes, including CSNK1D, BTRC, CLOCK, CSNK1E, FBXL3, PRKAA2, DBP, NR1D2, and RORB, were identified as vital prognostic factors in PC and were used to construct the circadian clock-based risk score model. For DFS, the area under the 3-year or 5-year receiver operating characteristic curves ranged from 0.728 to 0.821, suggesting better predictive performance. When compared with T3-4N1 stage, PC patients at T2N0 stage might be benefited more from the circadian clock-based risk score model. Furthermore, a high circadian clock-based risk score indicated shorter DFS (p < 0.0001), early progression (p < 0.0001), and higher 5-year death rate (p = 0.007) in PC. The risk score was related to tumor status (p < 0.001), lymph node status (p < 0.001), and ribosome-related biogenesis and pathways. Conclusions The vital roles of circadian clock genes in clinical outcomes were fully depicted. The circadian clock-based risk score model could reflect and predict the prognosis of patients with PC.
Collapse
Affiliation(s)
- Wenchang Yue
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao Du
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xuhong Wang
- Department of Urology, Tongcheng people's Hospital, Tongcheng, China
| | - Niu Gui
- General Surgery Ward 2, Fengtaixian Hospital of Chinese Medicine, Huainan, China
| | - Weijie Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiale Sun
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiawei You
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dong He
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinyu Geng
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuhua Huang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
74
|
Mollica V, Marchetti A, Rosellini M, Nuvola G, Rizzo A, Santoni M, Cimadamore A, Montironi R, Massari F. An Insight on Novel Molecular Pathways in Metastatic Prostate Cancer: A Focus on DDR, MSI and AKT. Int J Mol Sci 2021; 22:ijms222413519. [PMID: 34948314 PMCID: PMC8708596 DOI: 10.3390/ijms222413519] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer is still one of the main causes of cancer-related death in the male population, regardless of the advancements in the treatment scenario. The genetic knowledge on prostate cancer is widely increasing, allowing researchers to identify novel promising molecular targets and treatment approaches. Genomic profiling has evidenced that DNA damage repair genes’ alterations are quite frequent in metastatic, castration resistant prostate cancer and specific therapies can interfere with this pathway, showing promising activity in this setting. Microsatellite instability is gaining attention as it seems to represent a predictive factor of the response to immunotherapy. Furthermore, the PTEN-PI3K-AKT pathway is another possible treatment target being investigated. In this review, we explore the current knowledge on these frequent genomic alterations of metastatic prostate cancer, their possible therapeutic repercussions and the promising future treatments under evaluation.
Collapse
Affiliation(s)
- Veronica Mollica
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni-15, 40138 Bologna, Italy; (V.M.); (A.M.); (M.R.); (G.N.); (A.R.); (F.M.)
| | - Andrea Marchetti
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni-15, 40138 Bologna, Italy; (V.M.); (A.M.); (M.R.); (G.N.); (A.R.); (F.M.)
| | - Matteo Rosellini
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni-15, 40138 Bologna, Italy; (V.M.); (A.M.); (M.R.); (G.N.); (A.R.); (F.M.)
| | - Giacomo Nuvola
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni-15, 40138 Bologna, Italy; (V.M.); (A.M.); (M.R.); (G.N.); (A.R.); (F.M.)
| | - Alessandro Rizzo
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni-15, 40138 Bologna, Italy; (V.M.); (A.M.); (M.R.); (G.N.); (A.R.); (F.M.)
| | - Matteo Santoni
- Oncology Unit, Macerata Hospital, 62100 Macerata, Italy;
| | - Alessia Cimadamore
- Section of Pathological Anatomy, School of Medicine, Polytechnic University of the Marche Region, United Hospitals, 60126 Ancona, Italy
- Correspondence:
| | - Rodolfo Montironi
- Molecular Medicine and Cell Therapy Foundation, Department of Clinical and Molecular Sciences, Polytechnic University of the Marche Region, 60100 Ancona, Italy;
| | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni-15, 40138 Bologna, Italy; (V.M.); (A.M.); (M.R.); (G.N.); (A.R.); (F.M.)
| |
Collapse
|
75
|
Mao C, Ding Y, Xu N. A Double-Edged Sword Role of Cytokines in Prostate Cancer Immunotherapy. Front Oncol 2021; 11:688489. [PMID: 34868907 PMCID: PMC8635015 DOI: 10.3389/fonc.2021.688489] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 10/25/2021] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer (PC) is one of the most common malignancies among men and is the second leading cause of cancer death. PC immunotherapy has taken relatively successful steps in recent years, and these treatments are still being developed and tested. Evidence suggests that immunotherapy using cytokines as essential mediators in the immune system may help treat cancer. It has been shown that cytokines play an important role in anti-tumor defense. On the other hand, other cytokines can also favor the tumor and suppress anti-tumor responses. Moreover, the dose of cytokine in cancer cytokine-based immunotherapy, as well as the side effects of high doses, can also affect the outcomes of treatment. Cytokines can also be determinative in the outcome of other immunotherapy methods used in PC. In this review, the role of cytokines in the pathogenesis of cancer and their impacts on the main types of immunotherapies in the treatment of PC are discussed.
Collapse
Affiliation(s)
- Chenyu Mao
- Department of Medical Oncology Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yongfeng Ding
- Department of Medical Oncology Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Nong Xu
- Department of Medical Oncology Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
76
|
Fonseca NM, Roberts ME, Wyatt AW. A marrow-minded look at immune checkpoint blockade resistance in metastatic castration resistant prostate cancer. Transl Androl Urol 2021; 10:4009-4013. [PMID: 34804843 PMCID: PMC8575591 DOI: 10.21037/tau-20-1205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022] Open
Affiliation(s)
- Nicolette M Fonseca
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Morgan E Roberts
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Alexander W Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
77
|
Jarvis EM, Collings S, Authier-Hall A, Dasyam N, Luey B, Nacey J, Painter GF, Delahunt B, Hermans IF, Weinkove R. Mucosal-Associated Invariant T (MAIT) Cell Dysfunction and PD-1 Expression in Prostate Cancer: Implications for Immunotherapy. Front Immunol 2021; 12:748741. [PMID: 34737749 PMCID: PMC8560687 DOI: 10.3389/fimmu.2021.748741] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is the second most common cancer in men worldwide. Despite an abundance of prostate-specific antigens, immunotherapies have yet to become a standard of care, potentially limited by T-cell dysfunction. Up to 10% of human circulating T-cells, and a significant fraction in the urogenital tract, are mucosal-associated invariant T (MAIT) cells. MAIT cells express stereotyped T-cell receptors that recognize riboflavin metabolites derived from microbes presented by MR-1. We evaluated the number, phenotype and function of circulating MAIT cells, alongside two other innate-like T (ILT) -cell subsets, in men with prostate cancer and age- and sex-matched controls. MAIT cells in men with prostate cancer circulated at similar frequencies to controls, but their cytokine production and proliferation was impaired. In contrast, the function of two other ILT-cell populations (natural killer T-cells and Vγ9Vδ2 T-cells) was not impaired. In both patients and controls, MAIT cells expressed high levels of the immune checkpoint molecule PD-1 at rest, while upregulation of PD-1 in response to the MR-1 ligand 5-amino-6D-ribitylaminouracil (5-A-RU) was greater in patients. 5-A-RU also induced upregulation of PD-L1 and -L2 RNA in primary mononuclear cells. We confirmed that circulating MAIT cell number and function were preserved before and during anti-PD1 therapy with pembrolizumab in a cohort of patients with melanoma. In vitro, 5-A-RU enhanced mononuclear cell cytotoxicity against the PD-L1 positive prostate cancer cell line PC3 in an MR-1-dependent manner. Addition of pembrolizumab enhanced this cytotoxicity, and was associated with increased MAIT cell expression of CD107a and IFN-γ. We conclude that prostate cancer is associated with MAIT-cell dysfunction, and that this might be overcome through the application of potent MR-1 ligands with PD-1 blockade. These findings may have implications for the development of cancer immunotherapies that exploit MAIT cells.
Collapse
Affiliation(s)
- Ellie-May Jarvis
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand.,Wellington Blood and Cancer Centre, Capital & Coast District Health Board, Wellington, New Zealand.,Department of Pathology and Molecular Medicine, University of Otago Wellington, Wellington, New Zealand
| | - Shaun Collings
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand.,Wellington Blood and Cancer Centre, Capital & Coast District Health Board, Wellington, New Zealand
| | - Astrid Authier-Hall
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Nathaniel Dasyam
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Brendan Luey
- Wellington Blood and Cancer Centre, Capital & Coast District Health Board, Wellington, New Zealand
| | - John Nacey
- Department of Surgery and Anaesthesia, University of Otago Wellington, Wellington, New Zealand
| | - Gavin F Painter
- The Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand.,Immuno-oncology Programme, Maurice Wilkins Centre, Auckland, New Zealand
| | - Brett Delahunt
- Department of Pathology and Molecular Medicine, University of Otago Wellington, Wellington, New Zealand
| | - Ian F Hermans
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand.,Immuno-oncology Programme, Maurice Wilkins Centre, Auckland, New Zealand
| | - Robert Weinkove
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand.,Wellington Blood and Cancer Centre, Capital & Coast District Health Board, Wellington, New Zealand.,Department of Pathology and Molecular Medicine, University of Otago Wellington, Wellington, New Zealand
| |
Collapse
|
78
|
Peng S, Hu P, Xiao YT, Lu W, Guo D, Hu S, Xie J, Wang M, Yu W, Yang J, Chen H, Zhang X, Zhu Y, Wang Y, Yang Y, Zhu G, Chen S, Wang J, Zhang B, Chen W, Wu H, Sun Z, Ding T, Zhang H, Yi Z, Liu M, Ren S. Single-cell analysis reveals EP4 as a target for restoring T cell infiltration and sensitizing prostate cancer to immunotherapy. Clin Cancer Res 2021; 28:552-567. [PMID: 34740924 DOI: 10.1158/1078-0432.ccr-21-0299] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/22/2021] [Accepted: 10/29/2021] [Indexed: 12/09/2022]
Abstract
PURPOSE Immunotherapies targeting immune checkpoint molecules have shown promising treatment for a subset of cancers; however, many "cold" tumors, such as prostate cancer, remain unresponsive. We aimed to identify a potential targetable marker relevant to prostate cancer and develop novel immunotherapy. EXPERIMENTAL DESIGN Analysis of transcriptomic profiles at single-cell resolution was performed in clinical patients' samples, along with integrated analysis of multiple RNA-seq datasets. The antitumor activity of YY001, a novel EP4 antagonist, combined with anti-programmed cell death protein 1 (PD-1) antibody was evaluated both in vitro and in vivo Results: We identified EP4 (PTGER4) as expressed in epithelial cells and various immune cells and involved in modulating the prostate cancer immune microenvironment. YY001, a novel EP4 antagonist, inhibited the differentiation, maturation, and immunosuppressive function of myeloid-derived suppressor cells (MDSCs) while enhancing the proliferation and anticancer functions of T cells. Furthermore, it reversed the infiltration levels of MDSCs and T cells in the tumor microenvironment by overturning the chemokine profile of tumor cells in vitro and in vivo The combined immunotherapy demonstrated a robust antitumor immune response as indicated by the robust accumulation and activation of CD8+ cytotoxic T cells, with a significantly decreased MDSC ratio and reduced MDSC immunosuppression function. CONCLUSIONS Our study identified EP4 as a specific target for prostate cancer immunotherapy and demonstrated that YY001 inhibited the growth of prostate tumors by regulating the immune microenvironment and strongly synergized with anti-PD-1 antibodies to convert completely unresponsive prostate cancers into responsive cancers, resulting in marked tumor regression, long-term survival, and lasting immunologic memory.
Collapse
Affiliation(s)
- Shihong Peng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University
| | - Pan Hu
- East China Normal University
| | - Yu-Tian Xiao
- Department of Urology, Shanghai Changhai Hospital
| | - Weiqiang Lu
- East China Normal University, Institute of Biomedical Sciences and School of Life Sciences
| | - Dandan Guo
- Biomedical Sciences and School of Life Sciences, East China Normal University
| | - Shixiu Hu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University
| | | | | | - Weiwei Yu
- School of Life Sciences, Institute of Biomedical Sciences
| | - Junjie Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University
| | | | | | - Yasheng Zhu
- Department of Urology, Second Military Medical University
| | | | - Yue Yang
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University
| | | | | | | | | | | | - Huangan Wu
- Shanghai University of Traditional Chinese Medicine
| | - Zhenliang Sun
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus
| | - Tao Ding
- Urology, Shanghai Putuo Hospital, Shanghai Traditional Chinese Medicine University
| | - Hankun Zhang
- East China Normal University, Institute of Biomedical Sciences and School of Life Sciences
| | - Zhengfang Yi
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University
| | | |
Collapse
|
79
|
Fahmy O, Alhakamy NA, Rizg WY, Bagalagel A, Alamoudi AJ, Aldawsari HM, Khateb AM, Eldakhakhny BM, Fahmy UA, Abdulaal WH, Fresta CG, Caruso G. Updates on Molecular and Biochemical Development and Progression of Prostate Cancer. J Clin Med 2021; 10:5127. [PMID: 34768647 PMCID: PMC8585085 DOI: 10.3390/jcm10215127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) represents the most commonly non-cutaneous diagnosed cancer in men worldwide and occupies a very wide area of preclinical and clinical research. Targeted therapy for any cancer depends on the understanding of the molecular bases and natural behaviour of the diseases. Despite the well-known effect of androgen deprivation on PCa, many patients develop resistance either for antiandrogen therapy or other new treatment modalities such as checkpoint inhibitors and chemotherapy. Comprehensive understanding of the development of PCa as well as of the mechanisms underlying its progression is mandatory to maximise the benefit of the current approved medications or to guide the future research for targeted therapy of PCa. The aim of this review was to provide updates on the most recent mechanisms regarding the development and the progression of PCa. According to the current understanding, future treatment strategies should include more predictive genetic and biomarker analysis to assign different patients to the expected most appropriate and effective treatment.
Collapse
Affiliation(s)
- Omar Fahmy
- Department of Urology, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.Y.R.); (H.M.A.); (U.A.F.)
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.Y.R.); (H.M.A.); (U.A.F.)
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alaa Bagalagel
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Abdulmohsin J. Alamoudi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Hibah M. Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.Y.R.); (H.M.A.); (U.A.F.)
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Aiah M. Khateb
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Madinah 42224, Saudi Arabia;
| | - Basmah M. Eldakhakhny
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21555, Saudi Arabia;
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.Y.R.); (H.M.A.); (U.A.F.)
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wesam H. Abdulaal
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21555, Saudi Arabia;
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21555, Saudi Arabia
| | - Claudia G. Fresta
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy;
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| |
Collapse
|
80
|
Sabanathan D, Lund ME, Campbell DH, Walsh BJ, Gurney H. Radioimmunotherapy for solid tumors: spotlight on Glypican-1 as a radioimmunotherapy target. Ther Adv Med Oncol 2021; 13:17588359211022918. [PMID: 34646364 PMCID: PMC8504276 DOI: 10.1177/17588359211022918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
Radioimmunotherapy (i.e., the use of radiolabeled tumor targeting antibodies) is an emerging approach for the diagnosis, therapy, and monitoring of solid tumors. Often using paired agents, each targeting the same tumor molecule, but labelled with an imaging or therapeutic isotope, radioimmunotherapy has achieved promising clinical results in relatively radio-resistant solid tumors such as prostate. Several approaches to optimize therapeutic efficacy, such as dose fractionation and personalized dosimetry, have seen clinical success. The clinical use and optimization of a radioimmunotherapy approach is, in part, influenced by the targeted tumor antigen, several of which have been proposed for different solid tumors. Glypican-1 (GPC-1) is a heparan sulfate proteoglycan that is expressed in a variety of solid tumors, but whose expression is restricted in normal adult tissue. Here, we discuss the preclinical and clinical evidence for the potential of GPC-1 as a radioimmunotherapy target. We describe the current treatment paradigm for several solid tumors expressing GPC-1 and suggest the potential clinical utility of a GPC-1 directed radioimmunotherapy for these tumors.
Collapse
Affiliation(s)
- Dhanusha Sabanathan
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | | | | | | | - Howard Gurney
- Faculty of Medicine, Health and Human Sciences, Macquarie University, 2 Technology Place, Sydney, NSW 2109, Australia
| |
Collapse
|
81
|
Dovey ZS, Nair SS, Chakravarty D, Tewari AK. Racial disparity in prostate cancer in the African American population with actionable ideas and novel immunotherapies. Cancer Rep (Hoboken) 2021; 4:e1340. [PMID: 33599076 PMCID: PMC8551995 DOI: 10.1002/cnr2.1340] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/22/2020] [Accepted: 12/02/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND African Americans (AAs) in the United States are known to have a higher incidence and mortality for Prostate Cancer (PCa). The drivers of this epidemiological disparity are multifactorial, including socioeconomic factors leading to lifestyle and dietary issues, healthcare access problems, and potentially tumor biology. RECENT FINDINGS Although recent evidence suggests once access is equal, AA men have equal outcomes to Caucasian American (CA) men, differences in PCa incidence remain, and there is much to do to reverse disparities in mortality across the USA. A deeper understanding of these issues, both at the clinical and molecular level, can facilitate improved outcomes in the AA population. This review first discusses PCa oncogenesis in the context of its diverse hallmarks before benchmarking key molecular and genomic differences for PCa in AA men that have emerged in the recent literature. Studies have emphasized the importance of tumor microenvironment that contributes to both the unequal cancer burden and differences in clinical outcome between the races. Management of comorbidities like obesity, hypertension, and diabetes will provide an essential means of reducing prostate cancer incidence in AA men. Although requiring further AA specific research, several new treatment strategies such as immune checkpoint inhibitors used in combination PARP inhibitors and other emerging vaccines, including Sipuleucel-T, have demonstrated some proven efficacy. CONCLUSION Genomic profiling to integrate clinical and genomic data for diagnosis, prognosis, and treatment will allow physicians to plan a "Precision Medicine" approach to AA men. There is a pressing need for further research for risk stratification, which may allow early identification of AA men with higher risk disease based on their unique clinical, genomic, and immunological profiles, which can then be mapped to appropriate clinical trials. Treatment options are outlined, with a concise description of recent work in AA specific populations, detailing several targeted therapies, including immunotherapy. Also, a summary of current clinical trials involving AA men is presented, and it is important that policies are adopted to ensure that AA men are actively recruited. Although it is encouraging that many of these explore the lifestyle and educational initiatives and therapeutic interventions, there is much still work to be done to reduce incidence and mortality in AA men and equalize current racial disparities.
Collapse
Affiliation(s)
- Zachary S. Dovey
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Sujit S. Nair
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Dimple Chakravarty
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ashutosh K. Tewari
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
82
|
Sena LA, Denmeade SR, Antonarakis ES. Targeting the spectrum of immune checkpoints in prostate cancer. Expert Rev Clin Pharmacol 2021; 14:1253-1266. [PMID: 34263692 PMCID: PMC8484035 DOI: 10.1080/17512433.2021.1949287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/25/2021] [Indexed: 12/26/2022]
Abstract
Introduction: The proven efficacy of the cellular vaccine sipuleucel-T in 2010 led to optimism about immunotherapeutic approaches for the treatment of prostate cancer. Some surmised that prostate cancer might be an ideal target for immune-mediated killing given that the prostate is not an essential organ and expresses unique proteins including prostate-specific antigen, prostate-specific membrane antigen, and prostatic acid phosphatase that could be targeted without side effects. Subsequently, antibodies that inhibit the T cell checkpoints PD1 and CTLA4 were shown to stimulate antitumor immune responses, leading to tumor regression in several cancer types. These therapies have since been tested in several studies as treatments for prostate cancer, but appear to have limited efficacy in molecularly unselected patients.Areas covered: In this review, we discuss these studies and evaluate features of prostate cancer and its host environment that may render it generally resistant to CTLA4 and PD1 blockade. We provide an overview of alternate immune checkpoints that may hold greater significance in this disease.Expert opinion: Combination therapies to target multiple layers of alternate immune checkpoints may be required for an effective immune response to prostate cancer. We discuss combination therapies currently being investigated.
Collapse
Affiliation(s)
- Laura A. Sena
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samuel R. Denmeade
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emmanuel S. Antonarakis
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
83
|
Siefert JC, Cioni B, Muraro MJ, Alshalalfa M, Vivié J, van der Poel HG, Schoots IG, Bekers E, Feng FY, Wessels LFA, Zwart W, Bergman AM. The Prognostic Potential of Human Prostate Cancer-Associated Macrophage Subtypes as Revealed by Single-Cell Transcriptomics. Mol Cancer Res 2021; 19:1778-1791. [PMID: 34131070 PMCID: PMC9398107 DOI: 10.1158/1541-7786.mcr-20-0740] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/18/2020] [Accepted: 06/07/2021] [Indexed: 01/07/2023]
Abstract
Macrophages in the tumor microenvironment are causally linked with prostate cancer development and progression, yet little is known about their composition in neoplastic human tissue. By performing single cell transcriptomic analysis of human prostate cancer resident macrophages, three distinct populations were identified in the diseased prostate. Unexpectedly, no differences were observed between macrophages isolated from the tumorous and nontumorous portions of the prostatectomy specimens. Markers associated with canonical M1 and M2 macrophage phenotypes were identifiable, however these were not the main factors defining unique subtypes. The genes selectively associated with each macrophage cluster were used to develop a gene signature which was highly associated with both recurrence-free and metastasis-free survival. These results highlight the relevance of tissue-specific macrophage subtypes in the tumor microenvironment for prostate cancer progression and demonstrates the utility of profiling single-cell transcriptomics in human tumor samples as a strategy to design gene classifiers for patient prognostication. IMPLICATIONS: The specific macrophage subtypes present in a diseased human prostate have prognostic value, suggesting that the relative proportions of these populations are related to patient outcome. Understanding the relative contributions of these subtypes will not only inform patient prognostication, but will enable personalized immunotherapeutic strategies to increase beneficial populations or reduce detrimental populations.
Collapse
Affiliation(s)
- Joseph C Siefert
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, the Netherlands.,Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Bianca Cioni
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Mauro J Muraro
- Single Cell Discoveries B.V., the Netherlands.,Hubrecht Institute-KNAW and University Medical Center Utrecht, the Netherlands
| | - Mohammed Alshalalfa
- Department of Radiation Oncology, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Judith Vivié
- Single Cell Discoveries B.V., the Netherlands.,Hubrecht Institute-KNAW and University Medical Center Utrecht, the Netherlands
| | - Henk G van der Poel
- Division of Urology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ivo G Schoots
- Department of Radiology and Nuclear Medicine, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Elise Bekers
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Felix Y Feng
- Department of Radiation Oncology, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands. .,Oncode Institute, the Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, the Netherlands. .,Oncode Institute, the Netherlands
| | - Andries M Bergman
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, the Netherlands. .,Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
84
|
Xia H, Yang D, He W, Zhu X, Yan Y, Liu Z, Liu T, Yang J, Tan S, Jiang J, Hou X, Gao H, Ni L, Lu J. Ultrasound-mediated microbubbles cavitation enhanced chemotherapy of advanced prostate cancer by increasing the permeability of blood-prostate barrier. Transl Oncol 2021; 14:101177. [PMID: 34271256 PMCID: PMC8287239 DOI: 10.1016/j.tranon.2021.101177] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/04/2021] [Accepted: 07/08/2021] [Indexed: 12/25/2022] Open
Abstract
Although chemotherapy is an important treatment for advanced prostate cancer, its efficacy is relatively limited. Ultrasound-induced cavitation plays an important role in drug delivery and gene transfection. However, whether cavitation can improve the efficacy of chemotherapy for prostate cancer remains unclear. In this study, we treated RM-1 mouse prostate carcinoma cells with a combination of ultrasound-mediated microbubble cavitation and paclitaxel. Our results showed that combination therapy led to a more pronounced inhibition of cell viability and increased cell apoptosis. The enhanced efficacy of chemotherapy was attributed to the increased cell permeability induced by cavitation. Importantly, compared with chemotherapy alone (nab-paclitaxel), chemotherapy combined with ultrasound-mediated microbubble cavitation significantly inhibited tumor growth and prolonged the survival of tumor-bearing mice in an orthotopic mouse model of RM-1 prostate carcinoma, indicating the synergistic effects of combined therapy on tumor reduction. Furthermore, we analyzed tumor-infiltrating lymphocytes and found that during chemotherapy, the proportions of CTLA4+ cells and PD-1+/CTLA4+ cells in CD8+ T cells slightly increased after cavitation treatment.
Collapse
Affiliation(s)
- Haizhui Xia
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Decao Yang
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Wei He
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Xuehua Zhu
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Ye Yan
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Zenan Liu
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Tong Liu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Jianling Yang
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Shi Tan
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Jie Jiang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Xiaofei Hou
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Ling Ni
- Institute for Immunology and School of Medicine, Tsinghua University, Medical Research Building, Beijing 100084, China
| | - Jian Lu
- Department of Urology, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
85
|
Movassaghi M, Chung R, Anderson CB, Stein M, Saenger Y, Faiena I. Overcoming Immune Resistance in Prostate Cancer: Challenges and Advances. Cancers (Basel) 2021; 13:cancers13194757. [PMID: 34638243 PMCID: PMC8507531 DOI: 10.3390/cancers13194757] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Immunotherapy has changed the landscape of treatment modalities available for many different types of malignancies. However, the factors that influence the success of immunotherapeutics have not been as clearly seen in advanced prostate cancer, likely due to immunosuppressive factors that exist within the prostate cancer tumor microenvironment. While there have been many immunotherapeutics used for prostate cancer, the majority have targeted a single immunosuppressive mechanism resulting in limited clinical efficacy. More recent research centered on elucidating the key mechanisms of immune resistance in the prostate tumor microenvironment has led to the discovery of a range of new treatment targets. With that in mind, many clinical trials have now set out to evaluate combination immunotherapeutic strategies in patients with advanced prostate cancer, in the hopes of circumventing the immunosuppressive mechanisms. Abstract The use of immunotherapy has become a critical treatment modality in many advanced cancers. However, immunotherapy in prostate cancer has not been met with similar success. Multiple interrelated mechanisms, such as low tumor mutational burden, immunosuppressive cells, and impaired cellular immunity, appear to subvert the immune system, creating an immunosuppressive tumor microenvironment and leading to lower treatment efficacy in advanced prostate cancer. The lethality of metastatic castrate-resistant prostate cancer is driven by the lack of therapeutic regimens capable of generating durable responses. Multiple strategies are currently being tested to overcome immune resistance including combining various classes of treatment modalities. Several completed and ongoing trials have shown that combining vaccines or checkpoint inhibitors with hormonal therapy, radiotherapy, antibody–drug conjugates, chimeric antigen receptor T cell therapy, or chemotherapy may enhance immune responses and induce long-lasting clinical responses without significant toxicity. Here, we review the current state of immunotherapy for prostate cancer, as well as tumor-specific mechanisms underlying therapeutic resistance, with a comprehensive look at the current preclinical and clinical immunotherapeutic strategies aimed at overcoming the immunosuppressive tumor microenvironment and impaired cellular immunity that have largely limited the utility of immunotherapy in advanced prostate cancer.
Collapse
Affiliation(s)
- Miyad Movassaghi
- Department of Urology, Columbia University Irving Medical Center, New York, NY 10032, USA; (R.C.); (C.B.A.)
- Correspondence: (M.M.); (I.F.)
| | - Rainjade Chung
- Department of Urology, Columbia University Irving Medical Center, New York, NY 10032, USA; (R.C.); (C.B.A.)
| | - Christopher B. Anderson
- Department of Urology, Columbia University Irving Medical Center, New York, NY 10032, USA; (R.C.); (C.B.A.)
| | - Mark Stein
- Department of Medicine, Division of Medical Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (Y.S.)
| | - Yvonne Saenger
- Department of Medicine, Division of Medical Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (Y.S.)
| | - Izak Faiena
- Department of Urology, Columbia University Irving Medical Center, New York, NY 10032, USA; (R.C.); (C.B.A.)
- Correspondence: (M.M.); (I.F.)
| |
Collapse
|
86
|
Melo CM, Vidotto T, Chaves LP, Lautert-Dutra W, dos Reis RB, Squire JA. The Role of Somatic Mutations on the Immune Response of the Tumor Microenvironment in Prostate Cancer. Int J Mol Sci 2021; 22:9550. [PMID: 34502458 PMCID: PMC8431051 DOI: 10.3390/ijms22179550] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy has improved patient survival in many types of cancer, but for prostate cancer, initial results with immunotherapy have been disappointing. Prostate cancer is considered an immunologically excluded or cold tumor, unable to generate an effective T-cell response against cancer cells. However, a small but significant percentage of patients do respond to immunotherapy, suggesting that some specific molecular subtypes of this tumor may have a better response to checkpoint inhibitors. Recent findings suggest that, in addition to their function as cancer genes, somatic mutations of PTEN, TP53, RB1, CDK12, and DNA repair, or specific activation of regulatory pathways, such as ETS or MYC, may also facilitate immune evasion of the host response against cancer. This review presents an update of recent discoveries about the role that the common somatic mutations can play in changing the tumor microenvironment and immune response against prostate cancer. We describe how detailed molecular genetic analyses of the tumor microenvironment of prostate cancer using mouse models and human tumors are providing new insights into the cell types and pathways mediating immune responses. These analyses are helping researchers to design drug combinations that are more likely to target the molecular and immunological pathways that underlie treatment failure.
Collapse
Affiliation(s)
- Camila Morais Melo
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (C.M.M.); (T.V.); (L.P.C.); (W.L.-D.)
| | - Thiago Vidotto
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (C.M.M.); (T.V.); (L.P.C.); (W.L.-D.)
| | - Luiz Paulo Chaves
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (C.M.M.); (T.V.); (L.P.C.); (W.L.-D.)
| | - William Lautert-Dutra
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (C.M.M.); (T.V.); (L.P.C.); (W.L.-D.)
| | - Rodolfo Borges dos Reis
- Division of Urology, Department of Surgery and Anatomy, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil;
| | - Jeremy Andrew Squire
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (C.M.M.); (T.V.); (L.P.C.); (W.L.-D.)
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L3N6, Canada
| |
Collapse
|
87
|
Boldrini L, Faviana P, Galli L, Paolieri F, Erba PA, Bardi M. Multi-Dimensional Scaling Analysis of Key Regulatory Genes in Prostate Cancer Using the TCGA Database. Genes (Basel) 2021; 12:1350. [PMID: 34573332 PMCID: PMC8468120 DOI: 10.3390/genes12091350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PC) is a polygenic disease with multiple gene interactions. Therefore, a detailed analysis of its epidemiology and evaluation of risk factors can help to identify more accurate predictors of aggressive disease. We used the transcriptome data from a cohort of 243 patients from the Cancer Genome Atlas (TCGA) database. Key regulatory genes involved in proliferation activity, in the regulation of stress, and in the regulation of inflammation processes of the tumor microenvironment were selected to test a priori multi-dimensional scaling (MDS) models and create a combined score to better predict the patients' survival and disease-free intervals. Survival was positively correlated with cortisol expression and negatively with Mini-Chromosome Maintenance 7 (MCM7) and Breast-Related Cancer Antigen2 (BRCA2) expression. The disease-free interval was negatively related to the expression of enhancer of zeste homolog 2 (EZH2), MCM7, BRCA2, and programmed cell death 1 ligand 1 (PD-L1). MDS suggested two separate pathways of activation in PC. Within these two dimensions three separate clusters emerged: (1) cortisol and brain-derived neurotrophic factor BDNF, (2) PD-L1 and cytotoxic-T-lymphocyte-associated protein 4 (CTL4); (3) and finally EZH2, MCM7, BRCA2, and c-Myc. We entered the three clusters of association shown in the MDS in several Kaplan-Meier analyses. It was found that only Cluster 3 was significantly related to the interval-disease free, indicating that patients with an overall higher activity of regulatory genes of proliferation and DNA repair had a lower probability to have a longer disease-free time. In conclusion, our data study provided initial evidence that selecting patients with a high grade of proliferation and DNA repair activity could lead to an early identification of an aggressive PC with a potentials for metastatic development.
Collapse
Affiliation(s)
- Laura Boldrini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy;
| | - Pinuccia Faviana
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy;
| | - Luca Galli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (L.G.); (F.P.); (P.A.E.)
| | - Federico Paolieri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (L.G.); (F.P.); (P.A.E.)
| | - Paola Anna Erba
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (L.G.); (F.P.); (P.A.E.)
| | - Massimo Bardi
- Department of Psychology & Behavioral Neuroscience, Randolph-Macon College, Ashland, VA 23005, USA;
| |
Collapse
|
88
|
Abstract
PURPOSE OF REVIEW This review aims to highlight recent advances in prostate cancer tumor-immune microenvironment research and summarize the state-of-the-art knowledge of immune checkpoint inhibitors in prostate cancer. RECENT FINDINGS Immune checkpoint inhibitors are the cornerstone of modern immunotherapy which have shown encouraging results across a spectrum of cancers. However, only limited survival benefit has been seen in patients with prostate cancer. Prostate cancer progression and its response to immunotherapies are strongly influenced by the tumor-immune microenvironment, whose feature can be summarized as low amounts of tumor-specific antigens, low frequency of tumor-infiltrating lymphocytes and high frequency of tumor-associated macrophages. To improve the therapeutic effect of immunotherapies, in recent years, many strategies have been applied, of which the most promising ones include the combination of multiple immunotherapeutic agents, the combination of an immunotherapeutic agent with other modalities in parallel or in sequential, and the development of biomarkers to find a subgroup of patients who may benefit the most from immunotherapeutic agents. SUMMARY The impact of immune content and specific immune cell types on prostate cancer biology is highly complex. Recent clinical trials have shed light on the optimal use of immunotherapies for prostate cancer.
Collapse
|
89
|
Wang L, Ren G, Lin B. Expression of 5-methylcytosine regulators is highly associated with the clinical phenotypes of prostate cancer and DNMTs expression predicts biochemical recurrence. Cancer Med 2021; 10:5681-5695. [PMID: 34227253 PMCID: PMC8366102 DOI: 10.1002/cam4.4108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
In patients with prostate cancer (PCa), there is a high rate of overdiagnosis and frequent overtreatment. Therefore, there is an urgent need for more accurate prediction of biochemical recurrence (BCR). DNA methylation regulation patterns play crucial roles in tumorigenicity, progression, and treatment efficacy in PCa. However, the global relationship between epigenetic alterations, changes in mRNA levels, and pathologic phenotypes of PCa remain largely undefined. Here, we conducted a systematic analysis to identify global coexpression and comethylation modules in PCa. We identified coregulated methylation and expression modules and the relationships between epigenetic modifications, tumor progression, and the corresponding immune microenvironment in PCa. Our results show that DNA methyltransferases (DNMTs) are strongly associated with pathologic phenotypes and immune infiltration patterns in PCa. We built a two-factor predictive model using the expression features of DNMT3B and DNMT1. The model was used to predict the BCR status of patients with PCa and achieved area under the receiver operating characteristic curve values of 0.70 and 0.88 in the training and independent testing datasets, respectively.
Collapse
Affiliation(s)
- Lin Wang
- College of Life ScienceZhejiang UniversityHangzhouChina
- Systems Biology Division, Zhejiang California International Nanosystems Institute (ZCNI)Zhejiang UniversityHangzhouChina
| | - Guoping Ren
- Department of Pathology, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Biaoyang Lin
- College of Life ScienceZhejiang UniversityHangzhouChina
- Systems Biology Division, Zhejiang California International Nanosystems Institute (ZCNI)Zhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Department of UrologyUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
90
|
Del Piccolo N, Shirure VS, Bi Y, Goedegebuure SP, Gholami S, Hughes CC, Fields RC, George SC. Tumor-on-chip modeling of organ-specific cancer and metastasis. Adv Drug Deliv Rev 2021; 175:113798. [PMID: 34015419 DOI: 10.1016/j.addr.2021.05.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 02/08/2023]
Abstract
Every year, cancer claims millions of lives around the globe. Unfortunately, model systems that accurately mimic human oncology - a requirement for the development of more effective therapies for these patients - remain elusive. Tumor development is an organ-specific process that involves modification of existing tissue features, recruitment of other cell types, and eventual metastasis to distant organs. Recently, tissue engineered microfluidic devices have emerged as a powerful in vitro tool to model human physiology and pathology with organ-specificity. These organ-on-chip platforms consist of cells cultured in 3D hydrogels and offer precise control over geometry, biological components, and physiochemical properties. Here, we review progress towards organ-specific microfluidic models of the primary and metastatic tumor microenvironments. Despite the field's infancy, these tumor-on-chip models have enabled discoveries about cancer immunobiology and response to therapy. Future work should focus on the development of autologous or multi-organ systems and inclusion of the immune system.
Collapse
|
91
|
Szabo PM, Pant S, Ely S, Desai K, Anguiano E, Wang L, Edwards R, Green G, Zhang N. Development and Performance of a CD8 Gene Signature for Characterizing Inflammation in the Tumor Microenvironment across Multiple Tumor Types. J Mol Diagn 2021; 23:1159-1173. [PMID: 34197924 DOI: 10.1016/j.jmoldx.2021.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/22/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Across multiple tumor types, immune checkpoint inhibitors (ICIs) have demonstrated clinical benefit to patients with cancer, yet there is a need to identify predictive biomarkers of response to these therapies. A multiparameter gene expression profiling-based tumor inflammation assay may offer robust characterization of the tumor microenvironment, thereby extending the utility of single-gene analysis or immunohistochemistry (IHC) in predicting response to ICIs. The authors interrogated 1778 commercially procured, formalin-fixed, paraffin-embedded samples using gene expression profiling and pathology-assisted digital CD8 IHC. A machine-learning approach was used to develop gene expression signatures that predicted CD8+ immune cell abundance as surrogates for tumor inflammation in melanoma and squamous cell carcinoma of the head and neck samples. An assay for a 16-gene CD8 signature was developed and analytically validated across 12 tumor types. CD8 signature scores correlated with CD8 IHC in a platform-independent manner, and inflammation prevalence was similar between assay methods for all tumor types except prostate cancer and small cell lung cancer. In retrospective analyses, CD8 signature scores were associated with progression-free survival and overall survival with nivolumab in patients with urothelial carcinoma from CheckMate 275. This study demonstrated that the CD8 signature assay can be used to accurately quantify CD8+ immune cell abundance in the tumor microenvironment and has potential clinical utility for determining patients with cancer likely to respond to ICIs.
Collapse
Affiliation(s)
- Peter M Szabo
- Precision Medicine, Bristol Myers Squibb, Princeton, New Jersey
| | - Saumya Pant
- Precision Medicine, Bristol Myers Squibb, Princeton, New Jersey
| | - Scott Ely
- Precision Medicine, Bristol Myers Squibb, Princeton, New Jersey
| | - Keyur Desai
- Precision Medicine, Bristol Myers Squibb, Princeton, New Jersey.
| | | | - Lisu Wang
- Precision Medicine, Bristol Myers Squibb, Princeton, New Jersey
| | - Robin Edwards
- Precision Medicine, Bristol Myers Squibb, Princeton, New Jersey
| | - George Green
- Precision Medicine, Bristol Myers Squibb, Princeton, New Jersey
| | - Nancy Zhang
- Precision Medicine, Bristol Myers Squibb, Princeton, New Jersey
| |
Collapse
|
92
|
Pachynski RK, Kim EH, Miheecheva N, Kotlov N, Ramachandran A, Postovalova E, Galkin I, Svekolkin V, Lyu Y, Zou Q, Cao D, Gaut J, Ippolito JE, Bagaev A, Bruttan M, Gancharova O, Nomie K, Tsiper M, Andriole GL, Ataullakhanov R, Hsieh JJ. Single-cell Spatial Proteomic Revelations on the Multiparametric MRI Heterogeneity of Clinically Significant Prostate Cancer. Clin Cancer Res 2021; 27:3478-3490. [PMID: 33771855 DOI: 10.1158/1078-0432.ccr-20-4217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/08/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Multiparametric MRI (mpMRI) has become an indispensable radiographic tool in diagnosing prostate cancer. However, mpMRI fails to visualize approximately 15% of clinically significant prostate cancer (csPCa). The molecular, cellular, and spatial underpinnings of such radiographic heterogeneity in csPCa are unclear. EXPERIMENTAL DESIGN We examined tumor tissues from clinically matched patients with mpMRI-invisible and mpMRI-visible csPCa who underwent radical prostatectomy. Multiplex immunofluorescence single-cell spatial imaging and gene expression profiling were performed. Artificial intelligence-based analytic algorithms were developed to examine the tumor ecosystem and integrate with corresponding transcriptomics. RESULTS More complex and compact epithelial tumor architectures were found in mpMRI-visible than in mpMRI-invisible prostate cancer tumors. In contrast, similar stromal patterns were detected between mpMRI-invisible prostate cancer and normal prostate tissues. Furthermore, quantification of immune cell composition and tumor-immune interactions demonstrated a lack of immune cell infiltration in the malignant but not in the adjacent nonmalignant tissue compartments, irrespective of mpMRI visibility. No significant difference in immune profiles was detected between mpMRI-visible and mpMRI-invisible prostate cancer within our patient cohort, whereas expression profiling identified a 24-gene stromal signature enriched in mpMRI-invisible prostate cancer. Prostate cancer with strong stromal signature exhibited a favorable survival outcome within The Cancer Genome Atlas prostate cancer cohort. Notably, five recurrences in the 8 mpMRI-visible patients with csPCa and no recurrence in the 8 clinically matched patients with mpMRI-invisible csPCa occurred during the 5-year follow-up post-prostatectomy. CONCLUSIONS Our study identified distinct molecular, cellular, and structural characteristics associated with mpMRI-visible csPCa, whereas mpMRI-invisible tumors were similar to normal prostate tissue, likely contributing to mpMRI invisibility.
Collapse
Affiliation(s)
- Russell K Pachynski
- Molecular Oncology, Division of Oncology, Department of Medicine, Washington University, St Louis, Missouri
| | - Eric H Kim
- Division of Urological Surgery, Department of Surgery, Washington University, St. Louis, Missouri
| | | | | | - Akshaya Ramachandran
- Molecular Oncology, Division of Oncology, Department of Medicine, Washington University, St Louis, Missouri
| | | | - Ilia Galkin
- BostonGene Corporation, Waltham, Massachusetts
| | | | - Yang Lyu
- Molecular Oncology, Division of Oncology, Department of Medicine, Washington University, St Louis, Missouri
| | - Qiong Zou
- Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Dengfeng Cao
- Department of Pathology and Immunology, Washington University, St. Louis, Missouri
| | - Joseph Gaut
- Department of Pathology and Immunology, Washington University, St. Louis, Missouri
| | | | | | | | | | | | | | - Gerald L Andriole
- Division of Urological Surgery, Department of Surgery, Washington University, St. Louis, Missouri
| | | | - James J Hsieh
- Molecular Oncology, Division of Oncology, Department of Medicine, Washington University, St Louis, Missouri.
| |
Collapse
|
93
|
Vanhooren J, Derpoorter C, Depreter B, Deneweth L, Philippé J, De Moerloose B, Lammens T. TARP as antigen in cancer immunotherapy. Cancer Immunol Immunother 2021; 70:3061-3068. [PMID: 34050774 PMCID: PMC8164403 DOI: 10.1007/s00262-021-02972-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022]
Abstract
In recent decades, immunotherapy has become a pivotal element in cancer treatment. A remaining challenge is the identification of cancer-associated antigens suitable as targets for immunotherapeutics with potent on-target and few off-tumor effects. The T-cell receptor gamma (TCRγ) chain alternate reading frame protein (TARP) was first discovered in the human prostate and androgen-sensitive prostate cancer. Thereafter, TARP was also identified in breast and endometrial cancers, salivary gland tumors, and pediatric and adult acute myeloid leukemia. Interestingly, TARP promotes tumor cell proliferation and migration, which is reflected in an association with worse survival. TARP expression in malignant cells, its role in oncogenesis, and its limited expression in normal tissues raised interest in its potential utility as a therapeutic target, and led to development of immunotherapeutic targeting strategies. In this review, we provide an overview of TARP expression, its role in different cancer types, and currently investigated TARP-directed immunotherapeutic options.
Collapse
Affiliation(s)
- Jolien Vanhooren
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium. .,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium. .,Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Charlotte Derpoorter
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Barbara Depreter
- Department of Haematology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Larissa Deneweth
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jan Philippé
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Diagnostic Sciences, Ghent University Hospital, Ghent, Belgium
| | - Barbara De Moerloose
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Tim Lammens
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
94
|
Venkatachalam S, McFarland TR, Agarwal N, Swami U. Immune Checkpoint Inhibitors in Prostate Cancer. Cancers (Basel) 2021; 13:cancers13092187. [PMID: 34063238 PMCID: PMC8125096 DOI: 10.3390/cancers13092187] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Metastatic prostate cancer is an incurable disease with limited treatment options. Immunotherapy has demonstrated significant success in multiple cancer types but efforts to harness its benefit in prostate cancer have so far largely been unsuccessful. In this review, we analyze the preclinical rationale for the use of immunotherapy and underlying barriers preventing responses to it. We summarize clinical studies evaluating checkpoint inhibitors in prostate cancer. In the end, we review ongoing trials exploring combination immune checkpoint inhibitors in combination with other agents with the intent to modulate the immune system to improve treatment outcomes. Abstract Metastatic prostate cancer is a lethal disease with limited treatment options. Immune checkpoint inhibitors have dramatically changed the treatment landscape of multiple cancer types but have met with limited success in prostate cancer. In this review, we discuss the preclinical studies providing the rationale for the use of immunotherapy in prostate cancer and underlying biological barriers inhibiting their activity. We discuss the predictors of response to immunotherapy in prostate cancer. We summarize studies evaluating immune checkpoint inhibitors either as a single agent or in combination with other checkpoint inhibitors or with other agents such as inhibitors of androgen axis, poly ADP-ribose polymerase (PARP), radium-223, radiotherapy, cryotherapy, tumor vaccines, chemotherapy, tyrosine kinase inhibitors, and granulocyte-macrophage colony-stimulating factor. We thereafter review future directions including the combination of immune checkpoint blockade with inhibitors of adenosine axis, bispecific T cell engagers, PSMA directed therapies, adoptive T-cell therapy, and multiple other miscellaneous agents.
Collapse
Affiliation(s)
- Shobi Venkatachalam
- Department of Internal Medicine, Nazareth Hospital, Philadelphia, PA 19152, USA;
| | - Taylor R. McFarland
- Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; (T.R.M.); (N.A.)
| | - Neeraj Agarwal
- Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; (T.R.M.); (N.A.)
| | - Umang Swami
- Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; (T.R.M.); (N.A.)
- Correspondence: ; Tel.: +1-801-213-8439
| |
Collapse
|
95
|
Ruiz de Porras V, Pardo JC, Notario L, Etxaniz O, Font A. Immune Checkpoint Inhibitors: A Promising Treatment Option for Metastatic Castration-Resistant Prostate Cancer? Int J Mol Sci 2021; 22:ijms22094712. [PMID: 33946818 PMCID: PMC8124759 DOI: 10.3390/ijms22094712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Since 2010, several treatment options have been available for men with metastatic castration-resistant prostate cancer (mCRPC), including immunotherapeutic agents, although the clinical benefit of these agents remains inconclusive in unselected mCRPC patients. In recent years, however, immunotherapy has re-emerged as a promising therapeutic option to stimulate antitumor immunity, particularly with the use of immune checkpoint inhibitors (ICIs), such as PD-1/PD-L1 and CTLA-4 inhibitors. There is increasing evidence that ICIs may be especially beneficial in specific subgroups of patients with high PD-L1 tumor expression, high tumor mutational burden, or tumors with high microsatellite instability/mismatch repair deficiency. If we are to improve the efficacy of ICIs, it is crucial to have a better understanding of the mechanisms of resistance to ICIs and to identify predictive biomarkers to determine which patients are most likely to benefit. This review focuses on the current status of ICIs for the treatment of mCRPC (either as monotherapy or in combination with other drugs), mechanisms of resistance, potential predictive biomarkers, and future challenges in the management of mCRPC.
Collapse
Affiliation(s)
- Vicenç Ruiz de Porras
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain
- Badalona Applied Research Group in Oncology (B·ARGO), Catalan Institute of Oncology, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.C.P.); (L.N.); (O.E.)
- Correspondence: (V.R.d.P.); (A.F.); Tel.: +34-93-554-6301 (V.R.d.P.); +34-93-497-8925 (A.F.); Fax: +34-93-497-8950 (A.F.)
| | - Juan Carlos Pardo
- Badalona Applied Research Group in Oncology (B·ARGO), Catalan Institute of Oncology, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.C.P.); (L.N.); (O.E.)
- Department of Medical Oncology, Catalan Institute of Oncology, University Hospital Germans Trias i Pujol, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain
| | - Lucia Notario
- Badalona Applied Research Group in Oncology (B·ARGO), Catalan Institute of Oncology, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.C.P.); (L.N.); (O.E.)
- Department of Medical Oncology, Catalan Institute of Oncology, University Hospital Germans Trias i Pujol, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain
| | - Olatz Etxaniz
- Badalona Applied Research Group in Oncology (B·ARGO), Catalan Institute of Oncology, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.C.P.); (L.N.); (O.E.)
- Department of Medical Oncology, Catalan Institute of Oncology, University Hospital Germans Trias i Pujol, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain
| | - Albert Font
- Badalona Applied Research Group in Oncology (B·ARGO), Catalan Institute of Oncology, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.C.P.); (L.N.); (O.E.)
- Department of Medical Oncology, Catalan Institute of Oncology, University Hospital Germans Trias i Pujol, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain
- Correspondence: (V.R.d.P.); (A.F.); Tel.: +34-93-554-6301 (V.R.d.P.); +34-93-497-8925 (A.F.); Fax: +34-93-497-8950 (A.F.)
| |
Collapse
|
96
|
Luo ZW, Xia K, Liu YW, Liu JH, Rao SS, Hu XK, Chen CY, Xu R, Wang ZX, Xie H. Extracellular Vesicles from Akkermansia muciniphila Elicit Antitumor Immunity Against Prostate Cancer via Modulation of CD8 + T Cells and Macrophages. Int J Nanomedicine 2021; 16:2949-2963. [PMID: 33907401 PMCID: PMC8068512 DOI: 10.2147/ijn.s304515] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Prostate cancer (PCa) is one of the most common malignancies in males. Despite the success of immunotherapy in many malignant cancers, strategies are still needed to improve therapeutic efficacy in PCa. This study aimed to investigate the effects of Akkermansia muciniphila-derived extracellular vesicles (Akk-EVs) on PCa and elucidate the underlying immune-related mechanism. METHODS Akk-EVs were isolated by ultracentrifugation and intravenously injected to treat syngeneic PCa-bearing immune-competent mice. Immunophenotypic changes in immune cells, such as cytotoxic T lymphocytes and macrophages, were measured via flow cytometry analysis. Histological examination was used to detect morphological changes in major organs after Akk-EVs treatments. In vitro, flow cytometry was performed to confirm the effects of Akk-EVs on the activation of CD8+ T cells. Quantitative PCR and immunofluorescence staining were carried out to test the impact of Akk-EVs on macrophage polarization. Cell counting kit-8 (CCK-8) analysis, colony formation assays, and scratch wound healing assays were conducted to assess the effects of Akk-EVs-treated macrophages on the proliferation and invasion of PCa cells. CCK-8 assays also confirmed the impact of Akk-EVs on the viability of normal cells. RESULTS Intravenous injection of Akk-EVs in immune-competent mice reduced the tumor burden of PCa without inducing obvious toxicity in normal tissues. This treatment elevated the proportion of granzyme B-positive (GZMB+) and interferon γ-positive (IFN-γ+) lymphocytes in CD8+ T cells and caused macrophage recruitment, with increased tumor-killing M1 macrophages and decreased immunosuppressive M2 macrophages. In vitro, Akk-EVs increased the number of GZMB+CD8+ and IFN-γ+CD8+ T cells and M1-like macrophages. In addition, conditioned medium from Akk-EVs-treated macrophages suppressed the proliferation and invasion of prostate cells. Furthermore, the effective dose of Akk-EVs was well-tolerated in normal cells. CONCLUSION Our study revealed the promising prospects of Akk-EVs as an efficient and biocompatible immunotherapeutic agent for PCa treatment.
Collapse
Affiliation(s)
- Zhong-Wei Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Kun Xia
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Yi-Wei Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Jiang-Hua Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Shan-Shan Rao
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Xiangya Nursing School, Central South University, Changsha, Hunan, People’s Republic of China
| | - Xiong-Ke Hu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Chun-Yuan Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Ran Xu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Zhen-Xing Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Hui Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Bone Joint Degeneration and Injury, Changsha, Hunan, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
97
|
Lin W, Li C, Xu N, Watanabe M, Xue R, Xu A, Araki M, Sun R, Liu C, Nasu Y, Huang P. Dual-Functional PLGA Nanoparticles Co-Loaded with Indocyanine Green and Resiquimod for Prostate Cancer Treatment. Int J Nanomedicine 2021; 16:2775-2787. [PMID: 33880023 PMCID: PMC8052122 DOI: 10.2147/ijn.s301552] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/24/2021] [Indexed: 12/28/2022] Open
Abstract
PURPOSE With the advance of screening techniques, there is a growing number of low-risk or intermediate-risk prostate cancer (PCa) cases, remaining a serious threat to men's health. To obtain better efficacy, a growing interest has been attracted to develop such emerging treatments as immunotherapy and focal therapy. However, few studies offer guidance on whether and how to combine these modalities against PCa. This study was designed to develop dual-functional nanoparticles (NPs) which combined photothermal therapy (PTT) with immunotherapy and determine the anti-tumor efficacy for PCa treatment. METHODS By a double emulsion technique, the drug nanocarrier, poly(lactic-co-glycolic acid) or PLGA, was applied for co-loading of a fluorescent dye, indocyanine green (ICG) and a toll-like receptor 7/8 (TLR7/8) agonist resiquimod (R848) to synthesize PLGA-ICG-R848 NPs. Next, we determined their characteristic features and evaluated whether they inhibited the cell viability in multiple PCa cell lines. After treatment with PLGA-ICG-R848, the maturation markers of bone marrow-derived dendritic cells (BMDCs) were detected by flow cytometry. By establishing a subcutaneous xenograft model of mouse PCa, we explored both the anti-tumor effect and immune response following the NPs-based laser ablation. RESULTS With a mean diameter of 157.7 nm, PLGA-ICG-R848 exhibited no cytotoxic effect in PCa cells, but they significantly decreased RM9 cell viability to (3.9±1.0)% after laser irradiation. Moreover, PLGA-ICG-R848 promoted BMDCs maturation with the significantly elevated proportions of CD11c+CD86+ and CD11c+CD80+ cells. Following PLGA-ICG-R848-based laser ablation in vivo, the decreased bioluminescent signals indicated a significant inhibition of PCa growth, while the ratio of splenic natural killer (NK) cells in PLGA-ICG-R848 was (3.96±1.88)% compared with (0.99±0.10)% in PBS group, revealing the enhanced immune response against PCa. CONCLUSION The dual-functional PLGA-ICG-R848 NPs under laser irradiation exhibit the anti-tumor efficacy for PCa treatment by combining PTT with immunotherapy.
Collapse
Affiliation(s)
- Wenfeng Lin
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Chaoming Li
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Naijin Xu
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Ruizhi Xue
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Abai Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Motoo Araki
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ruifen Sun
- Center for Scientific Research, Yunnan University of Chinese Traditional Medicine, Kunming, People’s Republic of China
| | - Chunxiao Liu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yasutomo Nasu
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Peng Huang
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Okayama Medical Innovation Center, Okayama University, Okayama, Japan
| |
Collapse
|
98
|
Pape J, Emberton M, Cheema U. 3D Cancer Models: The Need for a Complex Stroma, Compartmentalization and Stiffness. Front Bioeng Biotechnol 2021; 9:660502. [PMID: 33912551 PMCID: PMC8072339 DOI: 10.3389/fbioe.2021.660502] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
The use of tissue-engineered 3D models of cancer has grown in popularity with recent advances in the field of cancer research. 3D models are inherently more biomimetic compared to 2D cell monolayers cultured on tissue-culture plastic. Nevertheless 3D models still lack the cellular and matrix complexity of native tissues. This review explores different 3D models currently used, outlining their benefits and limitations. Specifically, this review focuses on stiffness and collagen density, compartmentalization, tumor-stroma cell population and extracellular matrix composition. Furthermore, this review explores the methods utilized in different models to directly measure cancer invasion and growth. Of the models evaluated, with PDX and in vivo as a relative "gold standard", tumoroids were deemed as comparable 3D cancer models with a high degree of biomimicry, in terms of stiffness, collagen density and the ability to compartmentalize the tumor and stroma. Future 3D models for different cancer types are proposed in order to improve the biomimicry of cancer models used for studying disease progression.
Collapse
Affiliation(s)
- Judith Pape
- Division of Surgery and Interventional Science, Department of Targeted Intervention, Centre for 3D Models of Health and Disease, University College London, London, United Kingdom
| | - Mark Emberton
- Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Umber Cheema
- Division of Surgery and Interventional Science, Department of Targeted Intervention, Centre for 3D Models of Health and Disease, University College London, London, United Kingdom
| |
Collapse
|
99
|
Huang H, Tang Y, Li P, Ye X, Chen W, Xie H, Zheng Y. Significance of TP53 and immune-related genes to prostate cancer. Transl Androl Urol 2021; 10:1754-1768. [PMID: 33968663 PMCID: PMC8100849 DOI: 10.21037/tau-21-179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Prostate cancer (PCa) is one of most common male neoplasms. TP53 is the tumor suppressor gene with the highest correlation with human tumorigenesis discovered so far. Besides the TP53, immune-related genes attracted much attention since the clinical application of PD-1/PD-L1 (programmed death 1/programmed cell death-ligand 1) related drugs. There is currently a lack of studies that combine TP53 with immune-related genes to analyze the prognosis of prostate cancer patients. Methods Differentially expressed genes were filtered out by R package (edgeR) based on the TCGA-PRAD (The Cancer Genome Atlas-Prostate adenocarcinoma) data set. Using the R package (coxph), we distinguished which ones were related to survival prognosis. Constructing high and low risk groups, we used GEO (Gene Expression Omnibus) data set to verify the prediction performance. Subsequently, we explored the functional differences in gene expression between high and low risk groups. Results A total of six immune-related genes can be seen as prognostic factors in individuals with TP53 mutations. In the high-risk group, genes related to macrophage activation, epithelial cell apoptosis, and inflammation of the skin should be highly expressed. In the low-risk group, highly expressed genes are mainly involved in nucleotide phosphorylation, tRNA metabolism, and mitochondrial metabolism. Conclusions Mutations in the TP53 gene can adversely affect the prognosis of prostate cancer and prostate cancer patients with mutations in some immune-related genes together have a worse prognosis. Compared with any other single clinical index, the prognostic score we proposed gave a more accurate forecast. In order to assist clinicians in making predictive assessments, we have also drawn a nomogram of the prognosis of prostate cancer patients.
Collapse
Affiliation(s)
- Hang Huang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yufan Tang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ping Li
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xueting Ye
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Chen
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hui Xie
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuancai Zheng
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
100
|
De Angulo A, Travis P, Galvan GC, Jolly C, deGraffenried L. Obesity-Modified CD4+ T-Cells Promote an Epithelial-Mesenchymal Transition Phenotype in Prostate Cancer Cells. Nutr Cancer 2021; 74:650-659. [PMID: 33715540 DOI: 10.1080/01635581.2021.1898649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Obesity is associated with low-grade chronic inflammation, and metabolic dysregulation. Evidence shows that chronic inflammation inhibits protective immunity mediated by CD4+ T cells. Additionally, obesity-induced inflammation affects prostate cancer progression. However, the effect of obesity on CD4+ T-cell- response to prostate cancer is not well understood. To investigate whether obesity induces changes in CD4+ T cell cytokine profile, cytokine expression was measured in splenic CD4+ T-cells from 10-week-old male C57Bl/6 mice exposed to conditioned media (CM) from macrophages grown in sera from obese subjects. Additionally, expression levels of key regulators of Epithelial-Mesenchymal Transition (EMT) were measure in prostate cancer epithelial cells exposed to conditioned media from obesity-modified T-cells. Cell migration and invasion was measured in prostate cancer epithelial cells exposed to CM from obesity-modified CD4+ T-cells. Obesity suppressed the expression of IFNγ and IL-2 in CD4+ T-cells but up-regulated the expression of IL-6. Prostate epithelial cancer cells exposed to conditioned media from obesity-modified T cell increased the expression of EMT markers and showed a higher invasive and migratory capacity.
Collapse
Affiliation(s)
- Alejandra De Angulo
- Department of Nutritional Sciences, Dell Pediatric Research Institute, University of Texas at Austin, Austin, Texas, USA
| | - Peyton Travis
- Department of Nutritional Sciences, Dell Pediatric Research Institute, University of Texas at Austin, Austin, Texas, USA
| | - Gloria Cecilia Galvan
- Department of Nutritional Sciences, Dell Pediatric Research Institute, University of Texas at Austin, Austin, Texas, USA
| | - Christopher Jolly
- Department of Nutritional Sciences, Dell Pediatric Research Institute, University of Texas at Austin, Austin, Texas, USA
| | - Linda deGraffenried
- Department of Nutritional Sciences, Dell Pediatric Research Institute, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|