51
|
Vitamin D Receptor Influences Intestinal Barriers in Health and Disease. Cells 2022; 11:cells11071129. [PMID: 35406694 PMCID: PMC8997406 DOI: 10.3390/cells11071129] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
Vitamin D receptor (VDR) executes most of the biological functions of vitamin D. Beyond this, VDR is a transcriptional factor regulating the expression levels of many target genes, such as genes for tight junction proteins claudin-2, -5, -12, and -15. In this review, we discuss the progress of research on VDR that influences intestinal barriers in health and disease. We searched PubMed and Google Scholar using key words vitamin D, VDR, tight junctions, cancer, inflammation, and infection. We summarize the literature and progress reports on VDR regulation of tight junction distribution, cellular functions, and mechanisms (directly or indirectly). We review the impacts of VDR on barriers in various diseases, e.g., colon cancer, infection, inflammatory bowel disease, and chronic inflammatory lung diseases. We also discuss the limits of current studies and future directions. Deeper understanding of the mechanisms by which the VDR signaling regulates intestinal barrier functions allow us to develop efficient and effective therapeutic strategies based on levels of tight junction proteins and vitamin D/VDR statuses for human diseases.
Collapse
|
52
|
Micronutrient Improvement of Epithelial Barrier Function in Various Disease States: A Case for Adjuvant Therapy. Int J Mol Sci 2022; 23:ijms23062995. [PMID: 35328419 PMCID: PMC8951934 DOI: 10.3390/ijms23062995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
The published literature makes a very strong case that a wide range of disease morbidity associates with and may in part be due to epithelial barrier leak. An equally large body of published literature substantiates that a diverse group of micronutrients can reduce barrier leak across a wide array of epithelial tissue types, stemming from both cell culture as well as animal and human tissue models. Conversely, micronutrient deficiencies can exacerbate both barrier leak and morbidity. Focusing on zinc, Vitamin A and Vitamin D, this review shows that at concentrations above RDA levels but well below toxicity limits, these micronutrients can induce cell- and tissue-specific molecular-level changes in tight junctional complexes (and by other mechanisms) that reduce barrier leak. An opportunity now exists in critical care—but also medical prophylactic and therapeutic care in general—to consider implementation of select micronutrients at elevated dosages as adjuvant therapeutics in a variety of disease management. This consideration is particularly pointed amidst the COVID-19 pandemic.
Collapse
|
53
|
Schützhold V, Gravemeyer J, Bicker A, Hager T, Padberg C, Schäfer J, Wrobeln A, Steinbrink M, Zeynel S, Hankeln T, Becker JC, Fandrey J, Winning S. Knockout of Factor-Inhibiting HIF ( Hif1an) in Colon Epithelium Attenuates Chronic Colitis but Does Not Reduce Colorectal Cancer in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1280-1291. [PMID: 35121641 DOI: 10.4049/jimmunol.2100418] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Inflammatory bowel disease such as chronic colitis promotes colorectal cancer, which is a common cause of cancer mortality worldwide. Hypoxia is a characteristic of inflammation as well as of solid tumors and enforces a gene expression response controlled by hypoxia-inducible factors (HIFs). Once established, solid tumors are immunosuppressive to escape their abatement through immune cells. Although HIF activity is known to 1) promote cancer development and 2) drive tumor immune suppression through the secretion of adenosine, both prolyl hydroxylases and an asparaginyl hydroxylase termed factor-inhibiting HIF (FIH) negatively regulate HIF. Thus, FIH may act as a tumor suppressor in colorectal cancer development. In this study, we examined the role of colon epithelial FIH in a mouse model of colitis-induced colorectal cancer. We recapitulated colitis-associated colorectal cancer development in mice using the azoxymethane/dextran sodium sulfate model in Vil1-Cre/FIH+f/+f and wild-type siblings. Colon samples were analyzed regarding RNA and protein expression and histology. Vil1-Cre/FIH+f/+f mice showed a less severe colitis progress compared with FIH+f/+f animals and a lower number of infiltrating macrophages in the inflamed tissue. RNA sequencing analyses of colon tissue revealed a lower expression of genes associated with the immune response in Vil1-Cre/FIH+f/+f mice. However, tumor occurrence did not significantly differ between Vil1-Cre/FIH+f/+f and wild-type mice. Thus, FIH knockout in colon epithelial cells did not modulate colorectal cancer development but reduced the inflammatory response in chronic colitis.
Collapse
Affiliation(s)
- Vera Schützhold
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| | - Jan Gravemeyer
- Translational Skin Cancer Research, Dermatologie, Universitätsmedizin Essen, Essen, Germany
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Anne Bicker
- Molekulargenetik und Genomanalyse, Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-Universität Mainz, Mainz, Germany; and
| | - Thomas Hager
- Institut für Pathologie, Universität Duisburg-Essen, Essen, Germany
| | - Claudia Padberg
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| | - Jana Schäfer
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| | - Anna Wrobeln
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| | | | - Seher Zeynel
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| | - Thomas Hankeln
- Molekulargenetik und Genomanalyse, Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-Universität Mainz, Mainz, Germany; and
| | - Jürgen Christian Becker
- Translational Skin Cancer Research, Dermatologie, Universitätsmedizin Essen, Essen, Germany
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Joachim Fandrey
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany;
| | - Sandra Winning
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| |
Collapse
|
54
|
Lee SY, Lee BH, Park JH, Park MS, Ji GE, Sung MK. Bifidobacterium bifidum BGN4 Paraprobiotic Supplementation Alleviates Experimental Colitis by Maintaining Gut Barrier and Suppressing Nuclear Factor Kappa B Activation Signaling Molecules. J Med Food 2022; 25:146-157. [PMID: 35148194 DOI: 10.1089/jmf.2021.k.0150] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Inflammatory bowel diseases, including Crohn's disease and ulcerative colitis, are characterized by chronic gastrointestinal inflammation with continuous relapse-remission cycles. This study aimed to evaluate the protective effect of Bifidobacterium bifidum BGN4 as a probiotic or paraprobiotic against dextran sulfate sodium (DSS)-induced colitis in mice. Ten-week-old female BALB/c mice were randomly divided into five groups. The control (CON) and DSS groups received oral gavage of PBS, whereas the live B. bifidum (LIVE), heat-killed B. bifidum BGN4 (HEAT), and lysozyme-treated B. bifidum BGN4 (LYSOZYME) groups received live B. bifidum BGN4, heat-killed B. bifidum BGN4, and lysozyme-treated B. bifidum BGN4, respectively, for 10 days, followed by DSS supply to induce colitis. The paraprobiotic (HEAT and LYSOZYME) groups had less body weight loss and colon length shortening than the DSS or LIVE groups. The LYSOZYME group exhibited better preserved intestinal barrier integrity than the LIVE group by upregulating gap junction protein expression possibly through activating NOD-like receptor family pyrin domain containing 6/caspase-1/interleukin (IL)-18 signaling. The LYSOZYME group showed downregulated proinflammatory molecules, including p-inhibitor of kappa B proteins alpha (IκBα), cycloxygenase 2 (COX2), IL-1β, and T-bet, whereas the expression of the regulatory T cell transcription factor, forkhead box P3 expression, was increased. The paraprobiotic groups showed distinct separation of microbiota distribution and improved inflammation-associated dysbiosis. These results suggest that B. bifidum BGN4 paraprobiotics, especially lysozyme-treated BGN4, have a preventive effect against DSS-induced colitis, impacting intestinal barrier integrity, inflammation, and dysbiosis.
Collapse
Affiliation(s)
- So-Young Lee
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women's University, Seoul, Korea
| | - Byung-Hoo Lee
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, Korea
| | - Jong-Hyun Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, Korea
| | | | - Geun-Eog Ji
- Research Center, BIFIDO Co., Ltd., Hongcheon, Korea
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul, Korea
| | - Mi-Kyung Sung
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women's University, Seoul, Korea
| |
Collapse
|
55
|
Zhuang X, Chen B, Huang S, Han J, Zhou G, Xu S, Chen M, Zeng Z, Zhang S. Hypermethylation of miR-145 promoter-mediated SOX9-CLDN8 pathway regulates intestinal mucosal barrier in Crohn's disease. EBioMedicine 2022; 76:103846. [PMID: 35124427 PMCID: PMC8829091 DOI: 10.1016/j.ebiom.2022.103846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/20/2022] Open
Abstract
Background Intestinal barrier impairment plays an essential role in the pathogenesis of Crohn's disease (CD), and claudins (CLDNs) dysfunction contributes to intestinal mucosa injury. SOX9, an important transcription factor, is upregulated in the disease-affected colon of patients with CD; however, its precise role in CD remains largely unknown. Our aim was to explore the interaction between SOX9 and CLDNs, and further elucidate the underlying mechanisms in CD. Methods SOX9 expression in patients with CD was evaluated using quantitative polymerase chain reaction, immunoblotting, and immunohistochemistry. The regulatory relationship between SOX9 and CLDNs was analyzed via a dual-luciferase reporter assay, chromatin immunoprecipitation, overexpression, and RNA interference methods. MicroRNAs (miRNAs) involved in the SOX9-CLDN pathway were predicted with bioinformatics analysis, and the upstream molecular mechanism was interpreted using MassARRAY methylation detection. Findings Upregulated expression of SOX9 in the disease-affected intestine mucosa was identified in both patients with CD and mice challenged with trinitrobenzene sulfonic acid (TNBS). SOX9 negatively regulated the expression of CLDN8, accompanying reduced intestinal permeability. MiR-145-5p downregulation was found in patients with CD and TNBS-induced colitis mice owing to an aberrant miR-145 promoter hypermethylation, which subsequently interfered the SOX9-CLDN8 pathway. MiR-145-5p agomir treatment alleviated TNBS-induced colitis in wild-type mice by inhibiting Sox9 expression and restoring Cldn8 expression, whereas similar findings were not apparent in the Cldn8−/− mice. Interpretation SOX9 mediates the crosstalk between upstream miR-145-5p and downstream CLDN8, and further impairs intestinal mucosal barrier homeostasis in CD. Targeting the miR-145-5p/SOX9/CLDN8 pathway represents a promising therapeutic strategy for CD. Funding The National Natural Science Foundation of China (#81870374, #81670498, #81630018, #82070538, #8210031148), the Guangdong Science and Technology (#2017A030306021, #2020A1515111087), the Guangzhou Science and Technology Department (#202002030041), and the Fundamental Research Funds for the Central Universities (#19ykzd11).
Collapse
Affiliation(s)
- Xiaojun Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Baili Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shanshan Huang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jing Han
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Gaoshi Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shu Xu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhirong Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Shenghong Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
56
|
Gieryńska M, Szulc-Dąbrowska L, Struzik J, Mielcarska MB, Gregorczyk-Zboroch KP. Integrity of the Intestinal Barrier: The Involvement of Epithelial Cells and Microbiota-A Mutual Relationship. Animals (Basel) 2022; 12:ani12020145. [PMID: 35049768 PMCID: PMC8772550 DOI: 10.3390/ani12020145] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The gastrointestinal tract is a complex organization of various types of epithelial cells forming a single layer of the mucosal barrier, the host mucosal immune system, and microorganisms termed as gut microbiota inhabiting this area. The mucosal barrier, including physical and chemical factors, spatially segregates gut microbiota and the host immune system preventing the development of immune response directed towards non-pathogenic commensals and dietary antigens. However, for the maintenance of the integrity of the mucosal surfaces, cross-talk between epithelial cells and microbiota is required. The microbiome and the intestinal epithelium developed a complex dependence necessary for sustaining intestinal homeostasis. In this review, we highlight the role of specific epithelial cell subtypes and their role in barrier arrangement, the mechanisms employed by them to control intestinal microbiota as well as the mechanisms utilized by the microbiome to regulate intestinal epithelial function. This review will provide information regarding the development of inflammatory disorders dependent on the loss of intestinal barrier function and composition of the intestinal microbiota. Abstract The gastrointestinal tract, which is constantly exposed to a multitude of stimuli, is considered responsible for maintaining the homeostasis of the host. It is inhabited by billions of microorganisms, the gut microbiota, which form a mutualistic relationship with the host. Although the microbiota is generally recognized as beneficial, at the same time, together with pathogens, they are a permanent threat to the host. Various populations of epithelial cells provide the first line of chemical and physical defense against external factors acting as the interface between luminal microorganisms and immunocompetent cells in lamina propria. In this review, we focus on some essential, innate mechanisms protecting mucosal integrity, thus responsible for maintaining intestine homeostasis. The characteristics of decisive cell populations involved in maintaining the barrier arrangement, based on mucus secretion, formation of intercellular junctions as well as production of antimicrobial peptides, responsible for shaping the gut microbiota, are presented. We emphasize the importance of cross-talk between gut microbiota and epithelial cells as a factor vital for the maintenance of the homeostasis of the GI tract. Finally, we discuss how the imbalance of these regulations leads to the compromised barrier integrity and dysbiosis considered to contribute to inflammatory disorders and metabolic diseases.
Collapse
|
57
|
Sohn J, Li L, Zhang L, Settem PR, Honma K, Sharma A, Falkner KL, Novak JM, Sun Y, Kirkwood KL. Porphyromonas gingivalis
indirectly elicits intestinal inflammation by altering the gut microbiota and disrupting epithelial barrier function through IL9‐producing CD4
+
T cells. Mol Oral Microbiol 2021; 37:42-52. [DOI: 10.1111/omi.12359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/29/2021] [Accepted: 12/22/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Jiho Sohn
- Genetics, Genomics, and Bioinformatics Program State University of New York at Buffalo University at Buffalo NY USA
- Department of Medicine State University of New York at Buffalo University at Buffalo NY USA
- Department of Oral Biology State University of New York at Buffalo University at Buffalo NY USA
| | - Lu Li
- Department of Oral Biology State University of New York at Buffalo University at Buffalo NY USA
| | - Lixia Zhang
- Department of Oral Biology State University of New York at Buffalo University at Buffalo NY USA
| | - Prasad R. Settem
- Department of Medicine State University of New York at Buffalo University at Buffalo NY USA
| | - Kiyonobu Honma
- Department of Oral Biology State University of New York at Buffalo University at Buffalo NY USA
| | - Ashu Sharma
- Department of Oral Biology State University of New York at Buffalo University at Buffalo NY USA
| | - Karen L. Falkner
- Department of Oral Biology State University of New York at Buffalo University at Buffalo NY USA
| | - Jan M. Novak
- Department of Medicine State University of New York at Buffalo University at Buffalo NY USA
| | - Yijun Sun
- Department of Microbiology and Immunology State University of New York at Buffalo University at Buffalo NY USA
| | - Keith L. Kirkwood
- Department of Medicine State University of New York at Buffalo University at Buffalo NY USA
- Department of Head & Neck/Plastic & Reconstructive Surgery Roswell Park Comprehensive Cancer Center Buffalo NY USA
| |
Collapse
|
58
|
Tremblay A, Simard M, Morin S, Pouliot R. Docosahexaenoic Acid Modulates Paracellular Absorption of Testosterone and Claudin-1 Expression in a Tissue-Engineered Skin Model. Int J Mol Sci 2021; 22:13091. [PMID: 34884896 PMCID: PMC8658185 DOI: 10.3390/ijms222313091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Healthy skin moLEdels produced by tissue-engineering often present a suboptimal skin barrier function as compared with normal human skin. Moreover, skin substitutes reconstructed according to the self-assembly method were found to be deficient in polyunsaturated fatty acids (PUFAs). Therefore, in this study, we investigated the effects of a supplementation of the culture media with docosahexaenoic acid (DHA) on the barrier function of skin substitutes. To this end, 10 μM DHA-supplemented skin substitutes were produced (n = 3), analyzed, and compared with controls (substitutes without supplementation). A Franz cell diffusion system, followed by ultra-performance liquid chromatography, was used to perform a skin permeability to testosterone assay. We then used gas chromatography to quantify the PUFAs found in the epidermal phospholipid fraction of the skin substitutes, which showed successful DHA incorporation. The permeability to testosterone was decreased following DHA supplementation and the lipid profile was improved. Differences in the expression of the tight junction (TJ) proteins claudin-1, claudin-4, occludin, and TJ protein-1 were observed, principally a significant increase in claudin-1 expression, which was furthermore confirmed by Western blot analyses. In conclusion, these results confirm that the DHA supplementation of cell culture media modulates different aspects of skin barrier function in vitro and reflects the importance of n-3 PUFAs regarding the lipid metabolism in keratinocytes.
Collapse
Affiliation(s)
- Andréa Tremblay
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada; (A.T.); (M.S.); (S.M.)
- Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1J 1Z4, Canada
- Faculté de Pharmacie de l’Université Laval, Québec, QC G1V 0A6, Canada
| | - Mélissa Simard
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada; (A.T.); (M.S.); (S.M.)
- Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1J 1Z4, Canada
- Faculté de Pharmacie de l’Université Laval, Québec, QC G1V 0A6, Canada
| | - Sophie Morin
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada; (A.T.); (M.S.); (S.M.)
- Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1J 1Z4, Canada
- Faculté de Pharmacie de l’Université Laval, Québec, QC G1V 0A6, Canada
| | - Roxane Pouliot
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada; (A.T.); (M.S.); (S.M.)
- Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1J 1Z4, Canada
- Faculté de Pharmacie de l’Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
59
|
Liang J, Tang M, Wang L, Huang R, Fu A, Zhou J. Design and development of novel fasudil derivatives as potent antibreast cancer agent that improves intestinal flora and intestinal barrier function in rats. Chem Biol Drug Des 2021; 98:1065-1078. [PMID: 34587363 DOI: 10.1111/cbdd.13963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/01/2021] [Accepted: 09/18/2021] [Indexed: 11/28/2022]
Abstract
This study was conducted to develop novel fasudil derivatives after incorporation of substituted thiazoles as potent anti-breast cancer (BC) agents. The compounds were developed using a facile synthetic route in excellent yields. The entire set of developed compounds was tested for inhibitory activity against rho-associated coiled-coil kinase (ROCK; ROCK1 and ROCK2) kinase, where they exhibit potent and selective inhibition of ROCK1 as compared to ROCK2. The most potent ROCK2 inhibitor, compound 6h significantly inhibited the viability of BC cells (MCF-7). It also causes inhibition of migration and invasion of MCF-7 cells. Moreover, the anti-BC activity of compound 6h was studied in 7,12 dimethyl Benz(a)anthracene (DMBA)-induced BC in female Sprague Dawley rats. Results suggest that it causes significant improvement in the bodyweight of the animals with a reduction in oxidative stress in the liver and mammary tissues of rats. It showed improvement in the intestinal barrier function of rats by restoring the level of Diamine oxidase, d-lactate, and endotoxin. In western blot analysis, it showed improvement in (ZO-1), occludin, and claudin-1 in the colon tissue of the rat as compared to the DMBA group. Our study demonstrated the development of the novel class of fasudil derivatives potent anti-BC agent that improves intestinal flora and intestinal barrier function in rats.
Collapse
Affiliation(s)
- Jinghui Liang
- Oncology Radiotherapy Department, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Mu Tang
- Department of Breast Surgery, Jiangxi Provincial Cancer Hospital, Nanchang, Jiangxi, China
| | - Lieliang Wang
- Department of Breast Surgery, Jiangxi Provincial Cancer Hospital, Nanchang, Jiangxi, China
| | - Rui Huang
- Department of Clinical Laboratory, Jiangxi Provincial Cancer Hospital, Nanchang, Jiangxi, China
| | - Ailong Fu
- Department of Pathology, Jiangxi Provincial Cancer Hospital, Nanchang, Jiangxi, China
| | - Juying Zhou
- Oncology Radiotherapy Department, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
60
|
Čužić S, Antolić M, Ognjenović A, Stupin-Polančec D, Petrinić Grba A, Hrvačić B, Dominis Kramarić M, Musladin S, Požgaj L, Zlatar I, Polančec D, Aralica G, Banić M, Urek M, Mijandrušić Sinčić B, Čubranić A, Glojnarić I, Bosnar M, Eraković Haber V. Claudins: Beyond Tight Junctions in Human IBD and Murine Models. Front Pharmacol 2021; 12:682614. [PMID: 34867313 PMCID: PMC8635807 DOI: 10.3389/fphar.2021.682614] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
Claudins are transmembrane proteins constituting one of three tight junction protein families. In patients with inflammatory bowel disease (IBD), disease activity–dependent changes in expression of certain claudins have been noted, thus making certain claudin family members potential therapy targets. A study was undertaken with the aim of exploring expression of claudins in human disease and two different animal models of IBD: dextrane sulfate sodium–induced colitis and adoptive transfer model of colitis. The expression of sealing claudin-1, claudin-3, claudin-4, and claudin-8, and pore-forming claudin-2 in humans and rodents has been evaluated by immunohistochemistry and quantitative polymerase chain reaction. Claudins were expressed by epithelial and cells of mesodermal origin and were found to be situated at the membrane, within the cytoplasm, or within the nuclei. Claudin expression by human mononuclear cells isolated from lamina propria has been confirmed by Western blot and flow cytometry. The claudin expression pattern in uninflamed and inflamed colon varied between species and murine strains. In IBD and both animal models, diverse alterations in claudin expression by epithelial and inflammatory cells were recorded. Tissue mRNA levels for each studied claudin reflected changes within cell lineage and, at the same time, mirrored the ratio between various cell types. Based on the results of the study, it can be concluded that 1) claudins are not expressed exclusively by epithelial cells, but by certain types of cells of mesodermal origin as well; 2) changes in the claudin mRNA level should be interpreted in the context of overall tissue alterations; and 3) both IBD animal models that were analyzed can be used for investigating claudins as a therapy target, respecting their similarities and differences highlighted in this study.
Collapse
Affiliation(s)
- Snježana Čužić
- Fidelta, Zagreb, Croatia
- *Correspondence: Snježana Čužić, ; Vesna Eraković Haber,
| | | | | | | | | | | | | | | | | | | | | | - Gorana Aralica
- School of Medicine, University Zagreb, Zagreb, Croatia
- Department of Pathology Clinical Hospital Dubrava, Zagreb, Croatia
| | - Marko Banić
- School of Medicine, University Zagreb, Zagreb, Croatia
- Department of Internal Medicine Clinical Hospital Dubrava, Zagreb, Croatia
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Marija Urek
- School of Medicine, University Zagreb, Zagreb, Croatia
- Department of Pathology Clinical Hospital Dubrava, Zagreb, Croatia
| | - Brankica Mijandrušić Sinčić
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Internal Medicine, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Aleksandar Čubranić
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Internal Medicine, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | | | | | - Vesna Eraković Haber
- Fidelta, Zagreb, Croatia
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- *Correspondence: Snježana Čužić, ; Vesna Eraković Haber,
| |
Collapse
|
61
|
Kaminsky LW, Al-Sadi R, Ma TY. IL-1β and the Intestinal Epithelial Tight Junction Barrier. Front Immunol 2021; 12:767456. [PMID: 34759934 PMCID: PMC8574155 DOI: 10.3389/fimmu.2021.767456] [Citation(s) in RCA: 218] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
The intestinal epithelial tight junction (TJ) barrier controls the paracellular permeation of contents from the intestinal lumen into the intestinal tissue and systemic circulation. A defective intestinal TJ barrier has been implicated as an important pathogenic factor in inflammatory diseases of the gut including Crohn's disease, ulcerative colitis, necrotizing enterocolitis, and celiac disease. Previous studies have shown that pro-inflammatory cytokines, which are produced during intestinal inflammation, including interleukin-1β (IL-1β), tumor necrosis factor-α, and interferon-γ, have important intestinal TJ barrier-modulating actions. Recent studies have shown that the IL-1β-induced increase in intestinal TJ permeability is an important contributing factor of intestinal inflammation. The IL-1β-induced increase in intestinal TJ permeability is mediated by regulatory signaling pathways and activation of nuclear transcription factor nuclear factor-κB, myosin light chain kinase gene activation, and post-transcriptional occludin gene modulation by microRNA and contributes to the intestinal inflammatory process. In this review, the regulatory role of IL-1β on intestinal TJ barrier, the intracellular mechanisms that mediate the IL-1β modulation of intestinal TJ permeability, and the potential therapeutic targeting of the TJ barrier are discussed.
Collapse
Affiliation(s)
- Lauren W Kaminsky
- Section of Allergy, Asthma, and Immunology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Rana Al-Sadi
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Thomas Y Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
62
|
Godínez-Méndez LA, Gurrola-Díaz CM, Zepeda-Nuño JS, Vega-Magaña N, Lopez-Roa RI, Íñiguez-Gutiérrez L, García-López PM, Fafutis-Morris M, Delgado-Rizo V. In Vivo Healthy Benefits of Galacto-Oligosaccharides from Lupinus albus (LA-GOS) in Butyrate Production through Intestinal Microbiota. Biomolecules 2021; 11:1658. [PMID: 34827656 PMCID: PMC8615603 DOI: 10.3390/biom11111658] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022] Open
Abstract
Animal digestive systems host microorganism ecosystems, including integrated bacteria, viruses, fungi, and others, that produce a variety of compounds from different substrates with healthy properties. Among these substrates, α-galacto-oligosaccharides (GOS) are considered prebiotics that promote the grow of gut microbiota with a metabolic output of Short Chain Fatty Acids (SCFAs). In this regard, we evaluated Lupinus albus GOS (LA-GOS) as a natural prebiotic using different animal models. Therefore, the aim of this work was to evaluate the effect of LA-GOS on the gut microbiota, SCFA production, and intestinal health in healthy and induced dysbiosis conditions (an ulcerative colitis (UC) model). Twenty C57BL/6 mice were randomly allocated in four groups (n = 5/group): untreated and treated non-induced animals, and two groups induced with 2% dextran sulfate sodium to UC with and without LA-GOS administration (2.5 g/kg bw). We found that the UC treated group showed a higher goblet cell number, lower disease activity index, and reduced histopathological damage in comparison to the UC untreated group. In addition, the abundance of positive bacteria to butyryl-CoA transferase in gut microbiota was significantly increased by LA-GOS treatment, in healthy conditions. We measured the SCFA production with significant differences in the butyrate concentration between treated and untreated healthy groups. Finally, the pH level in cecum feces was reduced after LA-GOS treatment. Overall, we point out the in vivo health benefits of LA-GOS administration on the preservation of the intestinal ecosystem and the promotion of SCFA production.
Collapse
Affiliation(s)
- Lucila A. Godínez-Méndez
- Departamento de Fisiología, CIINDE, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (L.A.G.-M.); (L.Í.-G.); (M.F.-M.)
| | - Carmen M. Gurrola-Díaz
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | - José Sergio Zepeda-Nuño
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (J.S.Z.-N.); (N.V.-M.)
| | - Natali Vega-Magaña
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (J.S.Z.-N.); (N.V.-M.)
| | - Rocio Ivette Lopez-Roa
- Departamento de Farmacobiología, Centro Universitaro de Ciencias Exactas e Ingenierias, Universidad de Guadalajara, Guadalajara 44430, Jalisco, Mexico;
| | - Liliana Íñiguez-Gutiérrez
- Departamento de Fisiología, CIINDE, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (L.A.G.-M.); (L.Í.-G.); (M.F.-M.)
| | - Pedro M. García-López
- Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biologíco y Agropecuarias, Universidad de Guadalajara, Guadalajara 45200, Jalisco, Mexico;
| | - Mary Fafutis-Morris
- Departamento de Fisiología, CIINDE, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (L.A.G.-M.); (L.Í.-G.); (M.F.-M.)
| | - Vidal Delgado-Rizo
- Departamento de Fisiología, CIINDE, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (L.A.G.-M.); (L.Í.-G.); (M.F.-M.)
| |
Collapse
|
63
|
Alizadeh A, Akbari P, Garssen J, Fink-Gremmels J, Braber S. Epithelial integrity, junctional complexes, and biomarkers associated with intestinal functions. Tissue Barriers 2021; 10:1996830. [PMID: 34719339 PMCID: PMC9359365 DOI: 10.1080/21688370.2021.1996830] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
An intact intestinal barrier is crucial for immune homeostasis and its impairment activates the immune system and may result in chronic inflammation. The epithelial cells of the intestinal barrier are connected by tight junctions, which form an anastomosing network sealing adjacent epithelial cells. Tight junctions are composed of transmembrane and cytoplasmic scaffolding proteins. Transmembrane tight junction proteins at the apical-lateral membrane of the cell consist of occludin, claudins, junctional adhesion molecules, and tricellulin. Cytoplasmic scaffolding proteins, including zonula occludens, cingulin and afadin, provide a direct link between transmembrane tight junction proteins and the intracellular cytoskeleton. Each individual component of the tight junction network closely interacts with each other to form an efficient intestinal barrier. This review aims to describe the molecular structure of intestinal epithelial tight junction proteins and to characterize their organization and interaction. Moreover, clinically important biomarkers associated with impairment of gastrointestinal integrity are discussed.
Collapse
Affiliation(s)
- Arash Alizadeh
- Division of Pharmacology and Toxicology, Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Peyman Akbari
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Department of Immunology, Danone Nutricia Research, Utrecht, The Netherlands
| | - Johanna Fink-Gremmels
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
64
|
Panneerselvam J, Madka V, Rai R, Morris KT, Houchen CW, Chandrakesan P, Rao CV. Inflammatory Mediators and Gut Microbial Toxins Drive Colon Tumorigenesis by IL-23 Dependent Mechanism. Cancers (Basel) 2021; 13:5159. [PMID: 34680308 PMCID: PMC8533859 DOI: 10.3390/cancers13205159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 01/01/2023] Open
Abstract
Obesity-associated chronic inflammation predisposes colon cancer risk development. Interleukin-23 (IL-23) is a potential inflammatory mediator linking obesity to chronic colonic inflammation, altered gut microbiome, and colon carcinogenesis. We aimed to elucidate the role of pro-inflammatory eicosanoids and gut bacterial toxins in priming dendritic cells and macrophages for IL-23 secretion to promote colon tumor progression. To investigate the association of IL-23 with obesity and colon tumorigenesis, we utilized TCGA data set and colonic tumors from humans and preclinical models. To understand IL-23 production by inflammatory mediators and gut microbial toxins, we performed several in vitro mechanistic studies to mimic the tumor microenvironment. Colonic tumors were utilized to perform the ex vivo experiments. Our findings showed that IL-23 is elevated in obese individuals, colonic tumors and correlated with reduced disease-free survival. In vitro studies showed that IL-23 treatment increased the colon tumor cell self-renewal, migration, and invasion while disrupting epithelial barrier permeability. Co-culture experiments of educated dendritic cells/macrophages with colon cancer cells significantly increased the tumor aggression by increasing the secretory levels of IL-23, and these observations are further supported by ex vivo rat colonic tumor organotypic experiments. Our results demonstrate gut microbe toxins and eicosanoids facilitate IL-23 production, which plays an important role in obesity-associated colonic tumor progression. This newly identified nexus represents a potential target for the prevention and treatment of obesity-associated colon cancer.
Collapse
Affiliation(s)
- Janani Panneerselvam
- Center for Cancer Prevention and Drug Development, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.P.); (V.M.)
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.R.); (C.W.H.); (P.C.)
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.P.); (V.M.)
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.R.); (C.W.H.); (P.C.)
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Rajani Rai
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.R.); (C.W.H.); (P.C.)
| | - Katherine T. Morris
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Courtney W. Houchen
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.R.); (C.W.H.); (P.C.)
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Parthasarathy Chandrakesan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.R.); (C.W.H.); (P.C.)
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Chinthalapally V. Rao
- Center for Cancer Prevention and Drug Development, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.P.); (V.M.)
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.R.); (C.W.H.); (P.C.)
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- VA Medical Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
65
|
Panwar S, Sharma S, Tripathi P. Role of Barrier Integrity and Dysfunctions in Maintaining the Healthy Gut and Their Health Outcomes. Front Physiol 2021; 12:715611. [PMID: 34630140 PMCID: PMC8497706 DOI: 10.3389/fphys.2021.715611] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/27/2021] [Indexed: 01/08/2023] Open
Abstract
Mucosal surface layers are the critical borders throughout epithelial membranes. These epithelial cells segregate luminal material from external environments. However, mucosal linings are also accountable for absorbing nutrients and requiring specific barrier permeability. These functional acts positioned the mucosal epithelium at the epicenter of communications concerning the mucosal immune coordination and foreign materials, such as dietary antigens and microbial metabolites. Current innovations have revealed that external stimuli can trigger several mechanisms regulated by intestinal mucosal barrier system. Crucial constituents of this epithelial boundary are physical intercellular structures known as tight junctions (TJs). TJs are composed of different types transmembrane proteins linked with cytoplasmic adaptors which helps in attachment to the adjacent cells. Disruption of this barrier has direct influence on healthy or diseased condition, as barrier dysfunctions have been interrelated with the initiation of inflammation, and pathogenic effects following metabolic complications. In this review we focus and overview the TJs structure, function and the diseases which are able to influence TJs during onset of disease. We also highlighted and discuss the role of phytochemicals evidenced to enhance the membrane permeability and integrity through restoring TJs levels.
Collapse
Affiliation(s)
- Shruti Panwar
- Infection and Immunology, Translational Health Science and Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Sapna Sharma
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Prabhanshu Tripathi
- Food Drug and Chemical Toxicology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Toxicology Research, Lucknow, India
| |
Collapse
|
66
|
Li Y, Zhu L, Chen P, Wang Y, Yang G, Zhou G, Li L, Feng R, Qiu Y, Han J, Chen B, He Y, Zeng Z, Chen M, Zhang S. MALAT1 Maintains the Intestinal Mucosal Homeostasis in Crohn's Disease via the miR-146b-5p-CLDN11/NUMB Pathway. J Crohns Colitis 2021; 15:1542-1557. [PMID: 33677577 DOI: 10.1093/ecco-jcc/jjab040] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Intestinal homeostasis disorder is critical for developing Crohn's disease [CD]. Maintaining mucosal barrier integrity is essential for intestinal homeostasis, preventing intestinal injury and complications. Among the remarkably altered long non-coding RNAs [lncRNAs] in CD, we aimed to investigate whether metastasis-associated lung adenocarcinoma transcript 1 [MALAT1] modulated CD and consequent disruption of intestinal homeostasis. METHODS Microarray analyses on intestinal mucosa of CD patients and controls were performed to identify dysregulated lncRNAs. MALAT1 expression was investigated via qRT-PCR and its distribution in intestinal tissues was detected using BaseScope. Intestines from MALAT1 knockout mice with colitis were investigated using histological, molecular, and biochemical approaches. Effects of intestinal epithelial cells, transfected with MALAT1 lentiviruses and Smart Silencer, on monolayer permeability and apical junction complex [AJC] proteins were analysed. MiR-146b-5p was confirmed as a critical MALAT1 mediator in cells transfected with miR-146b-5p mimic/inhibitor and in colitis mice administered agomir-146b-5p/antagomir-146b-5p. Interaction between MALAT1 and miR-146b-5p was predicted via bioinformatics and validated using Dual-luciferase reporter assay and Ago2-RIP. RESULTS MALAT1 was aberrantly downregulated in the intestine mucosa of CD patients and mice with experimental colitis. MALAT1 knockout mice were hypersensitive to DSS-induced experimental colitis. MALAT1 regulated the intestinal mucosal barrier and regained intestinal homeostasis by sequestering miR-146b-5p and maintaining the expression of the AJC proteins NUMB and CLDN11. CONCLUSIONS Downregulation of MALAT1 contributed to the pathogenesis of CD by disrupting AJC. Thus, a specific MALAT1-miR-146b-5p-NUMB/CLDN11 pathway that plays a vital role in maintaining intestinal mucosal homeostasis may serve as a novel target for CD treatment.
Collapse
Affiliation(s)
- Ying Li
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Liguo Zhu
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Peng Chen
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Ying Wang
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Guang Yang
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Gaoshi Zhou
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Li Li
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Rui Feng
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yun Qiu
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Jing Han
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Baili Chen
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yao He
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zhirong Zeng
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Minhu Chen
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Shenghong Zhang
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
67
|
Hyun CK. Molecular and Pathophysiological Links between Metabolic Disorders and Inflammatory Bowel Diseases. Int J Mol Sci 2021; 22:ijms22179139. [PMID: 34502047 PMCID: PMC8430512 DOI: 10.3390/ijms22179139] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 02/07/2023] Open
Abstract
Despite considerable epidemiological evidence indicating comorbidity between metabolic disorders, such as obesity, type 2 diabetes, and non-alcoholic fatty liver disease, and inflammatory bowel diseases (IBD), such as Crohn’s disease and ulcerative colitis, as well as common pathophysiological features shared by these two categories of diseases, the relationship between their pathogenesis at molecular levels are not well described. Intestinal barrier dysfunction is a characteristic pathological feature of IBD, which also plays causal roles in the pathogenesis of chronic inflammatory metabolic disorders. Increased intestinal permeability is associated with a pro-inflammatory response of the intestinal immune system, possibly leading to the development of both diseases. In addition, dysregulated interactions between the gut microbiota and the host immunity have been found to contribute to immune-mediated disorders including the two diseases. In connection with disrupted gut microbial composition, alterations in gut microbiota-derived metabolites have also been shown to be closely related to the pathogeneses of both diseases. Focusing on these prominent pathophysiological features observed in both metabolic disorders and IBD, this review highlights and summarizes the molecular risk factors that may link between the pathogeneses of the two diseases, which is aimed at providing a comprehensive understanding of molecular mechanisms underlying their comorbidity.
Collapse
Affiliation(s)
- Chang-Kee Hyun
- School of Life Science, Handong Global University, Pohang 37554, Gyungbuk, Korea
| |
Collapse
|
68
|
Bioactive Compounds in Food as a Current Therapeutic Approach to Maintain a Healthy Intestinal Epithelium. Microorganisms 2021; 9:microorganisms9081634. [PMID: 34442713 PMCID: PMC8401766 DOI: 10.3390/microorganisms9081634] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/08/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium serves as an effective barrier against the external environment, hampering the passage of potentially harmful substances (such as pathogenic microbes) that could trigger an exacerbated host immune response. The integrity of this barrier is thus essential for the maintenance of proper intestinal homeostasis and efficient protective reactions against chemical and microbial challenges. The principal consequence of intestinal barrier defects is an increase in intestinal permeability, which leads to an increased influx of luminal stressors, such as pathogens, toxins, and allergens, which in turn trigger inflammation and immune response. The fine and fragile balance of intestinal homeostasis can be altered by multiple factors that regulate barrier function, many of which are poorly understood. This review will address the role of gut microbiota as well as food supplements (such as probiotics, prebiotics, and synbiotics) in modulating gut health and regulating intestinal barrier function. In particular, we will focus on three human pathologies: inflammatory bowel disease, irritable bowel syndrome, and food allergy.
Collapse
|
69
|
Popova OP, Kuznetsova AV, Bogomazova SY, Ivanov AA. Claudins as biomarkers of differential diagnosis and prognosis of tumors. J Cancer Res Clin Oncol 2021; 147:2803-2817. [PMID: 34241653 DOI: 10.1007/s00432-021-03725-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/30/2021] [Indexed: 12/30/2022]
Abstract
Claudins are a superfamily of transmembrane proteins, the optimal expression and localization of which are important for the normal physiological function of the epithelium and any imbalance may have pathological consequences. Not only insufficient but also excessive production of claudins in cancer cells, as well as their aberrant localization, equally manifest the formation of a malignant phenotype. Many works are distinguished by contradictory data, which demonstrate the action of the same claudins both in the role of tumor-growth suppressors and promoters in the same cancers. The most important possible causes of significant discrepancies in the results of the works are a considerable variability of sampling and the absence of a consistent approach both to the assessment of the immune reactivity of claudins and to the differential analysis of their subcellular localization. Combined, these drawbacks hinder the histological assessment of the link between claudins and tumor progression. In particular, ambiguous expression of claudins in breast cancer subtypes, revealed by various authors in immunohistochemical analysis, not only fails to facilitate the identification of the claudin-low molecular subtype but rather complicates these efforts. Research into the role of claudins in carcinogenesis has undoubtedly confirmed the potential value of this class of proteins as significant biomarkers in some cancer types; however, the immunohistochemical approach to the assessment of claudins still has limitations, needs standardization, and, to date, has not reached a diagnostic or a prognostic value.
Collapse
Affiliation(s)
- Olga P Popova
- A.I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of the Russian Federation, 20, Bld 1, Delegatskaya Street, Moscow, 127473, Russia
| | - Alla V Kuznetsova
- A.I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of the Russian Federation, 20, Bld 1, Delegatskaya Street, Moscow, 127473, Russia.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia
| | - Svetlana Yu Bogomazova
- Department of Pathology, National Medical Research Treatment and Rehabilitation Centre, Ministry of Health of the Russian Federation, Ivankovskoe shosse, 3, Moscow, 125367, Russia
| | - Alexey A Ivanov
- A.I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of the Russian Federation, 20, Bld 1, Delegatskaya Street, Moscow, 127473, Russia.
| |
Collapse
|
70
|
Wang K, Ding Y, Xu C, Hao M, Li H, Ding L. Cldn-7 deficiency promotes experimental colitis and associated carcinogenesis by regulating intestinal epithelial integrity. Oncoimmunology 2021; 10:1923910. [PMID: 34026335 PMCID: PMC8118418 DOI: 10.1080/2162402x.2021.1923910] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 02/08/2023] Open
Abstract
Intestinal epithelial barrier protects intestine from infection and injury, while chronic inflammation is a trigger for tumorigenesis. As a member of tight junctions (TJs) family, Claudin-7 (Cldn-7) is dedicated to maintaining cell polarity and TJs barrier integrity, and closely related to the development of inflammation and tumors. However, potential roles of Cldn-7 in intestinal inflammation and colitis-associated colorectal cancer (CAC) have not been well characterized in vivo. Here, we analyzed the expression profile of Cldn-7 in inflammatory bowel disease (IBD) and CAC. Colitis and colitis-cancer transformation models were established based on inducible intestinal conditional Cldn-7 gene knockout mice (Cldn7fl/fl;villin-CreERT2), by intraperitoneal injection of azomethane (AOM) and dextran sodium sulfate (DSS) feeding. Cldn-7 knockout promoted susceptibility to colitis and CAC, aggravated clinical symptoms, severely damaged intestinal epithelium, increased mucosal inflammation accompanied dysregulated cell proliferation-apoptosis. Epithelial barrier integrity was destroyed, and intercellular permeability was increased. After AOM/DSS induction, tumor burden and volume were increased, characterized by enhanced proliferation and activation of Wnt/β-catenin signaling pathway. Mechanistically, Cldn-7 deficiency promoted colitis and subsequently malignant transformation by destroying TJs integrity and increasing inflammatory cascade. Overall, based on Cldn-7 knockout mouse model, we have first demonstrated the key roles of Cldn-7 in maintaining intestinal homeostasis and preventing IBD and consequent CAC. Abbreviations: AJs: adherens junctions; AOM: azomethane; Cldn-7: Claudin-7; CRC: colorectal cancer; CAC: colitis-associated colorectal cancer; CD: Crohn's disease; DSS: dextran sodium sulfate; DAI: disease activity index; EMT: epithelial-mesenchymal transition; FITC: fluorescence isothiocyanate; HB: hemoglobin; IBD: inflammatory bowel disease; IECs: intestinal epithelial cells; ISCs: intestinal stem cells; PLT: platelet; RBC: red blood cell; ROS: reactive oxygen species; TAM: tamoxifen; TJs: tight junctions; TCF/LEF: T-cell factor/lymphoid enhancer factor; UC: ulcerative colitis; WBC: white blood cell.
Collapse
Affiliation(s)
- Kun Wang
- Department of Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Oncology Surgery, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Yuhan Ding
- Department of Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Oncology Surgery, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Chang Xu
- Department of Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Hepato-Pancreato-Biliary Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Mengdi Hao
- Department of Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Oncology Surgery, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Huimin Li
- Department of Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Oncology Surgery, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Lei Ding
- Department of Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Oncology Surgery, Ninth School of Clinical Medicine, Peking University, Beijing, China
| |
Collapse
|
71
|
Arbizu S, Chew B, Mertens-Talcott SU, Noratto G. Commercial whey products promote intestinal barrier function with glycomacropeptide enhanced activity in downregulating bacterial endotoxin lipopolysaccharides (LPS)-induced inflammation in vitro. Food Funct 2021; 11:5842-5852. [PMID: 32633745 DOI: 10.1039/d0fo00487a] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cheese whey contains bioactive compounds which have shown multiple health-promoting benefits. This study aimed to assess the commercial whey products (CWP) whey protein isolate (WPI), galacto-oligosaccharide-whey protein concentrate (GOS-W) and glycomacropeptide (GMP) for their potential to improve intestinal health in vitro using HT29-MTX intestinal goblet and Caco-2 epithelial cells. Results from HT29-MTX culture showed that WPI mitigated reactive oxygen species (ROS) production at a higher extent compared to GOS-W or GMP. However, GMP downregulated the lipopolysaccharide (LPS)-induced TLR-4 inflammatory pathway with the highest potency compared to the other CWP. Biomarkers of epithelial integrity assessed on both cell lines showed tight junction proteins claudin-1, claudin-3, occludin (OCC), and zonula occludens-1 (ZO-1) upregulation by GMP in HT29-MTX (1.33-1.93-fold of control) and in Caco-2 cells (1.56-2.09-fold of control). All CWP increased transepithelial electrical resistance (TEER) in TNF-α challenged Caco-2/HT29-MTX co-culture monolayer (p < 0.05), but only GMP was similar to the positive control TGF-β1, known for its role in promoting epithelial barrier function. The TNF-α-induced co-culture monolayer permeability was prevented at similar levels by all CWP (p < 0.05). In conclusion, CWP may be used as functional food ingredients to protect against intestinal disorders with emphasis on the GMP enhanced anti-inflammatory and intestinal barrier function properties. Further in vivo studies are guaranteed to validate these findings.
Collapse
Affiliation(s)
- Shirley Arbizu
- Department of Food Science and Technology, Texas A&M University, College Station, TX, USA.
| | - Boon Chew
- Department of Food Science and Technology, Texas A&M University, College Station, TX, USA.
| | | | - Giuliana Noratto
- Department of Food Science and Technology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
72
|
Zhao H, He M, Zhang M, Sun Q, Zeng S, Chen L, Yang H, Liu M, Ren S, Meng X, Xu H. Colorectal Cancer, Gut Microbiota and Traditional Chinese Medicine: A Systematic Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:805-828. [PMID: 33827382 DOI: 10.1142/s0192415x21500385] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Based on the study and research on the pathogenesis of colorectal cancer, the types and functions of gut microbiota, and its role in guiding and regulating the occurrence and development of diseases, we have explored the mechanism of traditional Chinese medicine in the treatment of colorectal cancer by regulating the gut microbiota. Genetic variation, abnormal responses of innate and adaptive immunity, mucosal barrier dysfunction, imbalance of intestinal microbial colonization, personal and environmental risk factors are the main pathogenesis of colorectal cancer. The gut microbiota mainly includes Sclerotium (including Clostridium, Enterococcus, Lactobacillus and Ruminococcus) and Bacteroides (including Bacteroides and Prevotella), which have biological antagonism, nutrition for the organism, metabolic abilities, immune stimulation, and ability to shape cancer genes functions to body. The gut microbiota can be related to the health of the host. Current studies have shown that Chinese herbal compound, single medicinal materials, and monomer components can treat colorectal cancer by regulating the gut microbiota, such as Xiaoyaosan can increase the abundance of Bacteroides, Lactobacillus, and Proteus and decrease the abundance of Desulfovibrio and Rickerella. Therefore, studying the regulation and mechanism of gut microbiota on colorectal cancer is of great benefit to disease treatment.
Collapse
Affiliation(s)
- Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Man He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Meng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sha Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
73
|
Ashaolu TJ, Ashaolu JO. Prebiotic peptides, their formation, fermentation in the gut, and health implications. Biotechnol Prog 2021; 37:e3142. [PMID: 33666376 DOI: 10.1002/btpr.3142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/20/2021] [Accepted: 01/30/2021] [Indexed: 12/19/2022]
Abstract
Prebiotics can be synthesized from sources other than dietary fibers, such as proteins. The proteins, when processed into peptides have healthful or deleterious effects on the host. Outside living systems, prebiotic peptides (PP) are formed via preformation of amino acids or related monomeric building blocks, resulting in nonenzymatic polymerization/ligation to produce peptides. Whereas, inside living systems like the human gut, many metabolic pathways are involved in PP production, and mostly involve host-microbiota interactions. The interplay is responsible for PP activities and their implications on host amino acid balance and metabolism. Similar to carbohydrates fermentation, PP will yield short chain fatty acids (SCFA), but also branched chain fatty acids (BCFAs), phenols, indole, hydrogen sulfide, amines, and ammonia, capable of biologically mediating molecular signals. This holistic review considers a brief description of prebiotics, and tracks down prebiotic peptides formation processes, interactions with gut microbes, and health outcomes.
Collapse
Affiliation(s)
- Tolulope Joshua Ashaolu
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.,Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, Vietnam
| | - Joseph O Ashaolu
- International Health Programme, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
74
|
Ma L, Ni L, Yang T, Mao P, Huang X, Luo Y, Jiang Z, Hu L, Zhao Y, Fu Z, Ni Y. Preventive and Therapeutic Spermidine Treatment Attenuates Acute Colitis in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1864-1876. [PMID: 33541082 DOI: 10.1021/acs.jafc.0c07095] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inflammatory bowel disease (IBD) is associated with acute and chronic inflammation of the gastrointestinal tract and has emerged to be a global disease. Spermidine, a natural polyamine, plays a critical role in maintaining cellular homeostasis. Herein, we investigated the impact and mechanism of spermidine on both dextran sulfate sodium (DSS)- and 2,4,6-trinitrobenzenesulfonic acid solution (TNBS)-induced colitis in mice. We found that spermidine exerted protective effects against acute colitis, evidenced by reduced disease activity index (DAI) and colonic inflammation, increased colonic length, and upregulated tight junction proteins in these two colitis models. Importantly, spermidine exerted significant therapeutic and preventive effects against DSS-induced colitis. Pre- and post-treatment with spermidine reduced the expression of proinflammatory cytokines, phosphorylation of (nuclear factor-κB) NF-κB and (mitogen-activated protein kinase) MAPK, and the activation of F4/80 macrophages and T cells in the colon. Furthermore, spermidine upregulated M2 macrophage markers, whereas it downregulated M1 markers in the inflamed colons. In parallel, spermidine reduced M1 pro-inflammatory markers and enhanced M2 anti-inflammatory genes in RAW264.7 cells. These results revealed that spermidine-ameliorated colitis might be through the regulation of M1/M2 macrophage polarization. In addition, spermidine treatment also alleviated LPS/TNF-α-induced inflammation in Caco-2 cells. Taken together, spermidine prevented and reversed colonic inflammation in colitis mice and might be a promising candidate for IBD intervention.
Collapse
Affiliation(s)
- Lingyan Ma
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Liyang Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Tianqi Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Pei Mao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xin Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yeqin Luo
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhiyuan Jiang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Luting Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yufeng Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
75
|
Pang L, Huynh J, Alorro MG, Li X, Ernst M, Chand AL. STAT3 Signalling via the IL-6ST/gp130 Cytokine Receptor Promotes Epithelial Integrity and Intestinal Barrier Function during DSS-Induced Colitis. Biomedicines 2021; 9:biomedicines9020187. [PMID: 33673239 PMCID: PMC7918037 DOI: 10.3390/biomedicines9020187] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 12/22/2022] Open
Abstract
The intestinal epithelium provides a barrier against commensal and pathogenic microorganisms. Barrier dysfunction promotes chronic inflammation, which can drive the pathogenesis of inflammatory bowel disease (IBD) and colorectal cancer (CRC). Although the Signal Transducer and Activator of Transcription-3 (STAT3) is overexpressed in both intestinal epithelial cells and immune cells in IBD patients, the role of the interleukin (IL)-6 family of cytokines through the shared IL-6ST/gp130 receptor and its associated STAT3 signalling in intestinal barrier integrity is unclear. We therefore investigated the role of STAT3 in retaining epithelial barrier integrity using dextran sulfate sodium (DSS)-induced colitis in two genetically modified mouse models, to either reduce STAT1/3 activation in response to IL-6 family cytokines with a truncated gp130∆STAT allele (GP130∆STAT/+), or by inducing short hairpin-mediated knockdown of Stat3 (shStat3). Here, we show that mice with reduced STAT3 activity are highly susceptible to DSS-induced colitis. Mechanistically, the IL-6/gp130/STAT3 signalling cascade orchestrates intestinal barrier function by modulating cytokine secretion and promoting epithelial integrity to maintain a defence against bacteria. Our study also identifies a crucial role of STAT3 in controlling intestinal permeability through tight junction proteins. Thus, therapeutically targeting the IL-6/gp130/STAT3 signalling axis to promote barrier function may serve as a treatment strategy for IBD patients.
Collapse
Affiliation(s)
- Lokman Pang
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Heidelberg, VIC 3084, Australia; (J.H.); (M.G.A.); (M.E.)
- Correspondence: (L.P.); (A.L.C.)
| | - Jennifer Huynh
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Heidelberg, VIC 3084, Australia; (J.H.); (M.G.A.); (M.E.)
| | - Mariah G. Alorro
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Heidelberg, VIC 3084, Australia; (J.H.); (M.G.A.); (M.E.)
| | - Xia Li
- Department of Mathematics and Statistics, La Trobe University, Bundoora, VIC 3083, Australia;
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Heidelberg, VIC 3084, Australia; (J.H.); (M.G.A.); (M.E.)
| | - Ashwini L. Chand
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Heidelberg, VIC 3084, Australia; (J.H.); (M.G.A.); (M.E.)
- Correspondence: (L.P.); (A.L.C.)
| |
Collapse
|
76
|
Huang Y, Wang C, Tian X, Mao Y, Hou B, Sun Y, Gu X, Ma Z. Pioglitazone Attenuates Experimental Colitis-Associated Hyperalgesia through Improving the Intestinal Barrier Dysfunction. Inflammation 2021; 43:568-578. [PMID: 31989391 PMCID: PMC7170986 DOI: 10.1007/s10753-019-01138-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Impaired intestinal mucosal integrity during colitis involves the peroxisome proliferator-activated receptor-γ (PPARγ), an important anti-inflammatory factor in intestinal mucosa homoeostasis, which is a potential target in colitis. Recurrent chronic pain is a vital pathogenetic feature of colitis. Nevertheless, potential functions of PPARγ in the colitis-associated hyperalgesia remain unclear. This study aimed to investigate biological roles of pioglitazone in relieving colitis-associated pain hypersensitivity by a PPARγ tight junction protein-dependent mechanism during the course of dextran sodium sulfate (DSS)-induced intestinal inflammation. The DSS-induced colitis model was generated in C57BL/6 mice. Changes in colitis induced the injury of intestinal mucosal barrier and hyperalgesia after a 6-day treatment of pioglitazone (25 mg/kg, IP injection) were assessed through immunofluorescent, hematoxylin and eosin (H&E) staining, western blot analysis, and determination of paw withdrawal mechanical threshold. A significant reduction of paw withdrawal mechanical threshold occurred after DSS treatment. Follow-up data showed that systematic administration of PPARγ agonist pioglitazone ameliorated the DSS-induced colitis and the development of colitis-associated hyperalgesia by repairing the intestinal mucosal barrier. The tight junction proteins ZO-1 and Claudin-5 were upregulated by PPARγ signaling, which in turn promoted the improvement of intestinal barrier function. Moreover, pioglitazone inhibited phosphorylation of ERK and NF-κB in the colon and decreased the levels of inflammatory cytokines in both colon spine tissues. Furthermore, systemically pioglitazone treatment inhibited the activation of microglia and astrocytes, as well as DSS-induced phosphorylation of NR2B subunit in spinal cord, which was correspondingly consistent with the pain behavior. Pioglitazone ameliorates DSS-induced colitis and attenuates colitis-associated mechanical hyperalgesia, with improving integrity of the intestinal mucosal barrier by directly upregulating tight junction proteins. The PPARγ-tight junction protein signaling might be a potential therapeutic target for the treatment of colitis-associated chronic pain.
Collapse
Affiliation(s)
- Yulin Huang
- Department of Anaesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China
| | - Chenchen Wang
- Department of Anaesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China
| | - Xinyu Tian
- Department of Anaesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China
| | - Yanting Mao
- Department of Anaesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China
| | - Bailin Hou
- Department of Anaesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China
| | - Yu'e Sun
- Department of Anaesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China
| | - Xiaoping Gu
- Department of Anaesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China.
| | - Zhengliang Ma
- Department of Anaesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China.
| |
Collapse
|
77
|
Protective Role of Natural and Semi-Synthetic Tocopherols on TNFα-Induced ROS Production and ICAM-1 and Cl-2 Expression in HT29 Intestinal Epithelial Cells. Antioxidants (Basel) 2021; 10:antiox10020160. [PMID: 33499140 PMCID: PMC7911239 DOI: 10.3390/antiox10020160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/31/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
Vitamin E, a fat-soluble compound, possesses both antioxidant and non-antioxidant properties. In this study we evaluated, in intestinal HT29 cells, the role of natural tocopherols, α-Toc and δ-Toc, and two semi-synthetic derivatives, namely bis-δ-Toc sulfide (δ-Toc)2S and bis-δ-Toc disulfide (δ-Toc)2S2, on TNFα-induced oxidative stress, and intercellular adhesion molecule-1 (ICAM-1) and claudin-2 (Cl-2) expression. The role of tocopherols was compared to that of N-acetylcysteine (NAC), an antioxidant precursor of glutathione synthesis. The results show that all tocopherol containing derivatives used, prevented TNFα-induced oxidative stress and the increase of ICAM-1 and Cl-2 expression, and that (δ-Toc)2S and (δ-Toc)2S2 are more effective than δ-Toc and α-Toc. The beneficial effects demonstrated were due to tocopherol antioxidant properties, but suppression of TNFα-induced Cl-2 expression seems not only to be related with antioxidant ability. Indeed, while ICAM-1 expression is strongly related to the intracellular redox state, Cl-2 expression is TNFα-up-regulated by both redox and non-redox dependent mechanisms. Since ICAM-1 and Cl-2 increase intestinal bowel diseases, and cause excessive recruitment of immune cells and alteration of the intestinal barrier, natural and, above all, semi-synthetic tocopherols may have a potential role as a therapeutic support against intestinal chronic inflammation, in which TNFα represents an important proinflammatory mediator.
Collapse
|
78
|
Bavaro SL, Mamone G, Picariello G, Callanan MJ, Chen Y, Brodkorb A, Giblin L. Thermal or membrane processing for Infant Milk Formula: Effects on protein digestion and integrity of the intestinal barrier. Food Chem 2021; 347:129019. [PMID: 33484955 DOI: 10.1016/j.foodchem.2021.129019] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/18/2020] [Accepted: 01/03/2021] [Indexed: 11/19/2022]
Abstract
Infant Milk Formula (IMF) is designed as a breastmilk substitute to satisfy the nutritional requirements during the first months of life. This study investigates the effects of two IMF processing technologies on cow milk protein digestion using an infant static in vitro gastrointestinal model. The degree of protein hydrolysis at the end of the gastric phase was 3.7-fold higher for IMF produced by high temperature (IMF-HT), compared to IMF produced by cascade membrane filtration (IMF-CMF), as assessed by free N-terminal group analysis. The processing type also influenced the panel of bioavailable peptides detected in basolateral compartments of Caco-2 monolayers exposed to gastrointestinal digested IMFs. In addition, IMF-CMF significantly increased tight junction protein, claudin 1, whilst IMF-HT significantly reduced tight junction integrity. In conclusion, producing IMF by CMF may preserve intestinal barrier integrity and can deliver its own unique inventory of bioavailable peptides with potential bioactivity.
Collapse
Affiliation(s)
- Simona L Bavaro
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Gianfranco Mamone
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | | | - Michael J Callanan
- School of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - Yihong Chen
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; School of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - André Brodkorb
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
79
|
Wu Q, Yin G, Luo J, Zhang Y, Ai T, Tian J, Jin Y, Lei J, Liu S. Comprehensive Analysis of the Expression and Prognostic Value of SPINT1/2 in Breast Carcinoma. Front Endocrinol (Lausanne) 2021; 12:665666. [PMID: 34381422 PMCID: PMC8351597 DOI: 10.3389/fendo.2021.665666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/26/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Hepatocyte growth factor (HGF) signaling plays a plethora of roles in tumorigenesis and progression in many cancer types. As HGF activator inhibitors, serine protease inhibitor, Kunitz types 1 and 2 (SPINT1 and SPINT2) have been reported to be differentially expressed in breast cancer, but their prognostic significance and functioning mechanism remain unclear. METHODS In our study, multiple databases and bioinformatics tools were used to investigate SPINT1/2 expression profiles, prognostic significance, genetic alteration, methylation, and regulatory network in breast carcinoma. RESULTS SPINT1/2 expression was upregulated in breast cancer, and was relatively higher in human epidermal growth factor receptor 2 (HER2) and node positive patients. Elevated SPINT1/2 expression was significantly correlated with a poorer prognosis. Genetic alterations and SPINT1/2 hypomethylation were observed. In breast carcinoma, SPINT1/2 were reciprocally correlated and shared common co-expressed genes. Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that their common co-expressed genes were primarily involved in regulating cell attachment and migration. CONCLUSIONS Our study identified the expression profiles, prognostic significance and potential roles of SPINT1/2 in breast carcinoma. These study results showed that the SPINT1/2 were potential prognostic biomarker for patients with breast cancer.
Collapse
Affiliation(s)
- Qiulin Wu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guobing Yin
- Department of Breast and Thyroid Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Luo
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Yingzi Zhang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tiantian Ai
- Department of Cardiovascular Sciences, Chongqing Kangxin Hospital, Chongqing, China
| | - Jiao Tian
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yudi Jin
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinwei Lei
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengchun Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Shengchun Liu,
| |
Collapse
|
80
|
Adil MS, Narayanan SP, Somanath PR. Cell-cell junctions: structure and regulation in physiology and pathology. Tissue Barriers 2020; 9:1848212. [PMID: 33300427 DOI: 10.1080/21688370.2020.1848212] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Epithelial and endothelial cell-cell contacts are established and maintained by several intercellular junctional complexes. These structurally and biochemically differentiated regions on the plasma membrane primarily include tight junctions (TJs), and anchoring junctions. While the adherens junctions (AJs) provide essential adhesive and mechanical properties, TJs hold the cells together and form a near leak-proof intercellular seal by the fusion of adjacent cell membranes. AJs and TJs play essential roles in vascular permeability. Considering their involvement in several key cellular functions such as barrier formation, proliferation, migration, survival, and differentiation, further research is warranted on the composition and signaling pathways regulating cell-cell junctions to develop novel therapeutics for diseases such as organ injuries. The current review article presents our current state of knowledge on various cell-cell junctions, their molecular composition, and mechanisms regulating their expression and function in endothelial and epithelial cells.
Collapse
Affiliation(s)
- Mir S Adil
- Clinical and Experimental Therapeutics, University of Georgia and Charlie Norwood VA Medical Center , Augusta, GA, USA
| | - S Priya Narayanan
- Clinical and Experimental Therapeutics, University of Georgia and Charlie Norwood VA Medical Center , Augusta, GA, USA
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, University of Georgia and Charlie Norwood VA Medical Center , Augusta, GA, USA
| |
Collapse
|
81
|
Gleeson JP, Fein KC, Chaudhary N, Doerfler R, Newby AN, Whitehead KA. The enhanced intestinal permeability of infant mice enables oral protein and macromolecular absorption without delivery technology. Int J Pharm 2020; 593:120120. [PMID: 33249250 DOI: 10.1016/j.ijpharm.2020.120120] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 12/14/2022]
Abstract
Oral delivery of macromolecular drugs is the most patient-preferred route of administration because it is painless and convenient. Over the past 30 years, significant attention has been paid to oral protein delivery in adults. Unfortunately, there is an outstanding need for similar efforts in infants, a patient population with distinct intestinal physiology and treatment needs. Here, we assess the intestinal permeability of neonatal and infant mice to determine the feasibility of orally delivering peptide and protein drugs without permeation enhancers or other assistance. Using the non-everted gut sac model, we found that macromolecular permeability depended on molecular size, mouse age, and intestinal tissue type using model dextrans. For example, the apparent permeability of 70 kDa FITC-Dextran (FD70) in infant small intestinal tissue was 2-5-fold higher than in adult tissue. As mice aged, the expression of barrier-forming and pore-forming tight junction proteins increased and decreased, respectively. The in vivo oral absorption of 4 kDa FITC-Dextran (FD4) and FD70 was significantly higher in younger mice, and there was a fourfold increase in oral absorption of the 80 kDa protein lactoferrin compared to adults. Oral gavage of insulin (5 IU/kg) reduced blood glucose levels in infants by >20% at 2 and 3 h but had no effect in adults. Oral insulin had 35% and <1% of the pharmacodynamic effect of a 1 IU/kg subcutaneous dose in infants and adults, as measured by area above the curve. These data indicate that the uniquely leaky nature of the infantile intestine may support the oral delivery of biologics without the need for traditional oral delivery technology.
Collapse
Affiliation(s)
- John P Gleeson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Katherine C Fein
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Namit Chaudhary
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Rose Doerfler
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Alexandra N Newby
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Kathryn A Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States.
| |
Collapse
|
82
|
Ren Y, Wang Z, Xie J, Wang P. Prognostic Value of the post-operative Red Blood Cell Distribution Width in rectal cancer patients with neoadjuvant chemoradiation followed surgery. Biosci Rep 2020; 40:BSR20201822. [PMID: 33141155 PMCID: PMC7753744 DOI: 10.1042/bsr20201822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/17/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Purposes Several studies have reported that elevated red cell distribution width (RDW) is related to poor prognosis in several cancers; however, the prognostic significance of perioperative RDW in rectal cancer patients which received neoadjuvant chemoradiation therapy (NACRT) is unclear. Methods A total of 120 rectal cancer patients who received NACRT followed surgery were retrospectively reviewed from Affiliated Cancer Hospital of Zhengzhou University between 2013 to 2015. Data for peripheral blood tests prior to the initiation of NACRT,before surgery and first chemotherapy after surgery were collected,respectively. The optimal cutoff values of RDW was determined by ROC analysis, respectively. The relationship between RDW and the prognosis of patients was evaluated by, respectively. Results The post-operative RDWHigh (≥15.55) patients had significantly worse five-year overall survival (OS, P=0.001) and disease-free survival (DFS, P=0.001) than the post-operative RDWLow (<15.55) patients, respectively. Whereas high pre-operative RDW (≥16.45) was the only marker correlated with worse DFS (P=0.005) than the pre-operative RDWLow (<16.45)patients, no relationship was found between pre-RDW and prognosis(OS, P=0.069; DFS, P=0.133). Multivariate analysis showed post-operative RDW had better predictive value than pre-RDW and pre-operative RDW. Conclusion Post-operative RDW might be a useful prognostic indicator in rectal cancer patients received neoadjuvant chemoradiation.
Collapse
Affiliation(s)
- Yingkun Ren
- General Surgery, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan province, China
| | - Zhiling Wang
- Department of SICU, Affiliated Children's Hospital of Zhengzhou University, Henan Children’s Hospital, Zhengzhou, Henan province, China
| | - Jianguo Xie
- General Surgery, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan province, China
| | - Peijun Wang
- General Surgery, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan province, China
| |
Collapse
|
83
|
Zou Q, Zhang X, Liu X, Li Y, Tan Q, Dan Q, Yuan T, Liu X, Liu RH, Liu Z. Ficus carica polysaccharide attenuates DSS-induced ulcerative colitis in C57BL/6 mice. Food Funct 2020; 11:6666-6679. [PMID: 32658237 DOI: 10.1039/d0fo01162b] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Ficus carica polysaccharide (FCPS) components of the common fig fruit have been demonstrated to exhibit antioxidant and immunity-enhancing activities. However, it is unclear whether it could prevent the ulcerative colitis development. Here, we reported that 5 week orally administered FCPS (150-300 mg per kg bw) significantly prevented DSS-induced colitis in C57BL/6J mice by improving the colon length and suppressing the infiltration of inflammatory cells in the gut. FCPS treatment protected the goblet cells, elevated the expression of tight junction protein claudin-1, and suppressed the formation of cytokines including TNF-α and IL-1β. FCPS supplementation significantly reformed the gut microbiome by enhancing the abundance of S24-7, Bacteroides, and Coprococus, and suppressing the abundance of Escherichia and Clostridium at the genus level. Consistently, the formation of beneficial microbial metabolites, short chain fatty acids, especially acetate and butyrate, were improved in FCPS-treated colitis mice. The correlation analysis indicated that the protective effects of FCPS on ulcerative colitis might be highly correlated with the microbiota composition changes and the formation of SCFAs. In conclusion, these results indicated that FCPS supplementation could be a promising nutritional strategy for reducing inflammatory bowel disease and the gut microbes play essential roles in providing these beneficial effects.
Collapse
Affiliation(s)
- Qianhui Zou
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Tian R, Liu X, Luo Y, Jiang S, Liu H, You F, Zheng C, Wu J. Apoptosis Exerts a Vital Role in the Treatment of Colitis-Associated Cancer by Herbal Medicine. Front Pharmacol 2020; 11:438. [PMID: 32410986 PMCID: PMC7199713 DOI: 10.3389/fphar.2020.00438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/20/2020] [Indexed: 12/24/2022] Open
Abstract
Colitis-associated cancer (CAC) is known as inflammatory bowel disease (IBD)-developed colorectal cancer, the pathogenesis of which involves the occurrence of apoptosis. Western drugs clinically applied to CAC are often single-targeted and exert many adverse reactions after long-term administration, so it is urgent to develop new drugs for the treatment of CAC. Herbal medicines commonly have multiple components with multiple targets, and most of them are low-toxicity. Some herbal medicines have been reported to ameliorate CAC through inducing apoptosis, but there is still a lack of systematic review. In this work, we reviewed articles published in Sci Finder, Web of Science, PubMed, Google Scholar, CNKI, and other databases in recent years by setting the keywords as apoptosis in combination with colitis-associated cancer. We summarized the herbal medicine extracts or their compounds that can prevent CAC by modulating apoptosis and analyzed the mechanism of action. The results show the following. (1) Herbal medicines regulate both the mitochondrial apoptosis pathway and death receptor apoptosis pathway. (2) Herbal medicines modulate the above two apoptotic pathways by affecting signal transductions of IL-6/STAT3, MAPK/NF-κ B, Oxidative stress, Non-canonical TGF-β1, WNT/β-catenin, and Cell cycle, thereby ameliorating CAC. We conclude that following. (1) Studies on the role of herbal medicine in regulating apoptosis through the Ras/Raf/ERK, WNT/β-catenin, and Cell cycle pathways have not yet been carried out in sufficient depth. (2) The active constituents of reported anti-CAC herbal medicine mainly include polyphenols, terpenoids, and saccharide. Also, we identified other herbal medicines with the constituents mentioned above as their main components, aiming to provide a reference for the clinical use of herbal medicine in the treatment of CAC. (3) New dosage forms can be utilized to elevate the targeting and reduce the toxicity of herbal medicine.
Collapse
Affiliation(s)
- Ruimin Tian
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacology, North Sichuan Medical College, Nanchong, China
| | - Xianfeng Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanqin Luo
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengnan Jiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiasi Wu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
85
|
Lei Z, Yang Y, Liu S, Lei Y, Yang L, Zhang X, Liu W, Wu H, Yang C, Guo J. Dihydroartemisinin ameliorates dextran sulfate sodium induced inflammatory bowel diseases in mice. Bioorg Chem 2020; 100:103915. [PMID: 32450383 DOI: 10.1016/j.bioorg.2020.103915] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/16/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
In the present study, the effects of dihydroartemisinin (DHA) on inflammatory bowel diseases (IBD) mice model induced by dextran sulfate sodium (DSS) were determined. Hematoxylin and eosin staining was used to assess the intestines of mice treated with DSS and DHA. The expression of inflammatory factors and cell junction-associated genes was measured using reverse transcription-quantitative PCR (RT-qPCR) and Western blot. The effects of DSS and DHA on the gut microbiome were measured using 16S recombinant (r) DNA gene analysis. DHA could improve the diarrhea and bloody stool induced by DSS, and decrease the serum levels of TNF-α, IL-1β and IL-23 of the DSS group. DHA could notably reduce the infiltration of the inflammatory cells and significantly decrease the expression of TNF-α and IL-1β in the intestines of the DSS treated mice. The expression of cell junction-associated genes such as EpCAM and Claudins, were down-regulated in the DSS group, and DHA could recover the expression of these cell junction-associated genes. The 16S rDNA gene analysis demonstrated that Bacteroidetes and Verrucomicrobia decreased, while Firmicutes and Proteobacteria increased in the DSS group, and DHA could recover the abundance of these gut bacteria altered by DSS. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that DHA could partly recover the pathways altered by DSS. DHA could obviously ameliorate the symptoms of IBD induced by DSS by regulation of the expression of inflammation and cell junction-associated genes and gut microbiota, suggesting its potential for the treatment of IBD.
Collapse
Affiliation(s)
- Zili Lei
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Yanhong Yang
- The First Affiliated Hospital (School of Clinical Medicine), Guangdong Pharmaceutical University, Nong-Lin-Xia Road 19(#), Yue-Xiu District, Guangzhou 510080, PR China
| | - Shaomin Liu
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Yuting Lei
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Lanxiang Yang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Xueying Zhang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Wanwan Liu
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Huijuan Wu
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Changyuan Yang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China.
| |
Collapse
|