51
|
Alioli C, Demesmay L, Peyruchaud O, Machuca-Gayet I. Autotaxin/Lysophosphatidic Acid Axis: From Bone Biology to Bone Disorders. Int J Mol Sci 2022; 23:ijms23073427. [PMID: 35408784 PMCID: PMC8998661 DOI: 10.3390/ijms23073427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 02/01/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a natural bioactive phospholipid with pleiotropic activities affecting multiple tissues, including bone. LPA exerts its biological functions by binding to G-protein coupled LPA receptors (LPA1-6) to stimulate cell migration, proliferation, and survival. It is largely produced by autotaxin (ATX), a secreted enzyme with lysophospholipase D activity that converts lysophosphatidylcholine (LPC) into active LPA. Beyond its enzymatic activity, ATX serves as a docking molecule facilitating the efficient delivery of LPA to its specific cell surface receptors. Thus, LPA effects are the result of local production by ATX in a given tissue or cell type. As a consequence, the ATX/LPA axis should be considered as an entity to better understand their roles in physiology and pathophysiology and to propose novel therapeutic strategies. Herein, we provide not only an extensive overview of the relevance of the ATX/LPA axis in bone cell commitment and differentiation, skeletal development, and bone disorders, but also discuss new working hypotheses emerging from the interplay of ATX/LPA with well-established signaling pathways regulating bone mass.
Collapse
|
52
|
Murakami K, Tamada T, Saigusa D, Miyauchi E, Nara M, Ichinose M, Kurano M, Yatomi Y, Sugiura H. Urine autotaxin levels reflect the disease activity of sarcoidosis. Sci Rep 2022; 12:4372. [PMID: 35288647 PMCID: PMC8921313 DOI: 10.1038/s41598-022-08388-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/04/2022] [Indexed: 12/17/2022] Open
Abstract
Since the clinical outcome of patients with sarcoidosis is still unpredictable, a good prognostic biomarker is necessary. Autotaxin (ATX) and phosphatidylserine-specific phospholipase A1 (PS-PLA1) function as main enzymes to produce lysophospholipids (LPLs), and these enzymes are attracting attention as useful biomarkers for several chronic inflammatory diseases. Here, we investigated the relationships between LPLs-producing enzymes and the disease activity of sarcoidosis. In total, 157 patients with sarcoidosis (active state, 51%) were consecutively enrolled. Using plasma or urine specimens, we measured the values of LPLs-producing enzymes. Urine ATX (U-ATX) levels were significantly lower in the active state compared to those in the inactive state, while the plasma ATX (P-ATX) and PS-PLA1 levels showed no significant difference between these two states. Concerning the comparison with existing clinical biomarkers for sarcoidosis, U-ATX showed a weak negative correlation to ACE, P-ATX a weak positive correlation to both ACE and sIL-2R, and PS-PLA1 a weak positive one to sIL-2R. Notably, only the U-ATX levels inversely fluctuated depending on the status of disease activity whether OCS had been used or not. These findings suggest that U-ATX is likely to be a novel and useful molecule for assessing the disease activity of sarcoidosis.
Collapse
|
53
|
Helmer E, Willson A, Brearley C, Westerhof M, Delage S, Shaw I, Cooke R, Sidhu S. Pharmacokinetics and Metabolism of Ziritaxestat (GLPG1690) in Healthy Male Volunteers Following Intravenous and Oral Administration. Clin Pharmacol Drug Dev 2022; 11:246-256. [PMID: 34633152 PMCID: PMC9292235 DOI: 10.1002/cpdd.1021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/09/2021] [Indexed: 12/31/2022]
Abstract
Ziritaxestat is a novel inhibitor of autotaxin, an enzyme responsible for the production of lysophosphatidic acid, the downstream signaling of which mediates responses to tissue injury and has been implicated in the pathogenesis of fibrotic conditions such as idiopathic pulmonary fibrosis and systemic sclerosis. This study (Clinical Trial Registration: NCT03787186) was designed to assess the absorption, distribution, metabolism, and excretion of orally administered 600-mg ziritaxestat labeled with a carbon-14 tracer (14 C-ziritaxestat). To understand the absolute bioavailability of ziritaxestat, an intravenous 100-μg microdose, labeled with a microtracer amount of 14 C radiation, was administered in a separate part of the study, following an unlabeled 600-mg therapeutic oral dose of ziritaxestat. Six healthy male subjects completed each study part. The majority of the labeled oral dose was recovered in feces (77%), with a total mass balance of 84%. The absolute bioavailability of ziritaxestat was 54%. Ziritaxestat was the main (76%) circulating drug-related product. There were 7 treatment-emergent adverse events, all of which were considered mild and not considered to be related to the study drug.
Collapse
|
54
|
Glass DS, Grossfeld D, Renna HA, Agarwala P, Spiegler P, DeLeon J, Reiss AB. Idiopathic pulmonary fibrosis: Current and future treatment. THE CLINICAL RESPIRATORY JOURNAL 2022; 16:84-96. [PMID: 35001525 PMCID: PMC9060042 DOI: 10.1111/crj.13466] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/21/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022]
Abstract
Objectives Idiopathic pulmonary fibrosis (IPF) is a chronic fibrotic lung disease characterized by dry cough, fatigue, and progressive exertional dyspnea. Lung parenchyma and architecture is destroyed, compliance is lost, and gas exchange is compromised in this debilitating condition that leads inexorably to respiratory failure and death within 3–5 years of diagnosis. This review discusses treatment approaches to IPF in current use and those that appear promising for future development. Data Source The data were obtained from the Randomized Controlled Trials and scientific studies published in English literature. We used search terms related to IPF, antifibrotic treatment, lung transplant, and management. Results Etiopathogenesis of IPF is not fully understood, and treatment options are limited. Pathological features of IPF include extracellular matrix remodeling, fibroblast activation and proliferation, immune dysregulation, cell senescence, and presence of aberrant basaloid cells. The mainstay therapies are the oral antifibrotic drugs pirfenidone and nintedanib, which can improve quality of life, attenuate symptoms, and slow disease progression. Unilateral or bilateral lung transplantation is the only treatment for IPF shown to increase life expectancy. Conclusion Clearly, there is an unmet need for accelerated research into IPF mechanisms so that progress can be made in therapeutics toward the goals of increasing life expectancy, alleviating symptoms, and improving well‐being.
Collapse
Affiliation(s)
- Daniel S Glass
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - David Grossfeld
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Heather A Renna
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Priya Agarwala
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Peter Spiegler
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Joshua DeLeon
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Allison B Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| |
Collapse
|
55
|
Benfaremo D, Svegliati S, Paolini C, Agarbati S, Moroncini G. Systemic Sclerosis: From Pathophysiology to Novel Therapeutic Approaches. Biomedicines 2022; 10:biomedicines10010163. [PMID: 35052842 PMCID: PMC8773282 DOI: 10.3390/biomedicines10010163] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/30/2022] Open
Abstract
Systemic sclerosis (SSc) is a systemic, immune-mediated chronic disorder characterized by small vessel alterations and progressive fibrosis of the skin and internal organs. The combination of a predisposing genetic background and triggering factors that causes a persistent activation of immune system at microvascular and tissue level is thought to be the pathogenetic driver of SSc. Endothelial alterations with subsequent myofibroblast activation, excessive extracellular matrix (ECM) deposition, and unrestrained tissue fibrosis are the pathogenetic steps responsible for the clinical manifestations of this disease, which can be highly heterogeneous according to the different entity of each pathogenic step in individual subjects. Although substantial progress has been made in the management of SSc in recent years, disease-modifying therapies are still lacking. Several molecular pathways involved in SSc pathogenesis are currently under evaluation as possible therapeutic targets in clinical trials. These include drugs targeting fibrotic and metabolic pathways (e.g., TGF-β, autotaxin/LPA, melanocortin, and mTOR), as well as molecules and cells involved in the persistent activation of the immune system (e.g., IL4/IL13, IL23, JAK/STAT, B cells, and plasma cells). In this review, we provide an overview of the most promising therapeutic targets that could improve the future clinical management of SSc.
Collapse
Affiliation(s)
- Devis Benfaremo
- Clinica Medica, Department of Internal Medicine, Ospedali Riuniti “Umberto I-G.M. Lancisi-G. Salesi”, 60126 Ancona, Italy;
| | - Silvia Svegliati
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (S.S.); (C.P.); (S.A.)
| | - Chiara Paolini
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (S.S.); (C.P.); (S.A.)
| | - Silvia Agarbati
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (S.S.); (C.P.); (S.A.)
| | - Gianluca Moroncini
- Clinica Medica, Department of Internal Medicine, Ospedali Riuniti “Umberto I-G.M. Lancisi-G. Salesi”, 60126 Ancona, Italy;
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (S.S.); (C.P.); (S.A.)
- Correspondence:
| |
Collapse
|
56
|
Tanaka T, Koyama K, Takahashi N, Morito K, Ali H, Azuma M, Kagawa K, Kawano H, Has RY, Aihara M, Nishioka Y. Lysophosphatidic acid, ceramide 1-phosphate and sphingosine 1-phosphate in peripheral blood of patients with idiopathic pulmonary fibrosis. THE JOURNAL OF MEDICAL INVESTIGATION 2022; 69:196-203. [PMID: 36244770 DOI: 10.2152/jmi.69.196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common idiopathic interstitial pneumonias. Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) are signaling lipids that evoke growth factor-like responses to many cells. Recent studies revealed the involvement of LPA and S1P in the pathology of IPF. In this study, we determined LPA, S1P and ceramide 1-phosphate (C1P) in peripheral blood plasma of IPF patients, and examined correlation to the vital capacity of lung (VC), an indicator of development of fibrosis. Blood plasma samples were taken from eleven patients with IPF and seven healthy volunteers. The lipids of the sample were extracted and subjected to liquid chromatography-tandem mass spectrometry for analysis. Results showed that there is a significant negative correlation between VC and plasma LPA levels, indicating that IPF patients with advanced fibrosis had higher concentration of LPA in their plasma. Average of S1P levels were significantly higher in IPF patients than those in healthy subjects. Although it is not statistically significant, a similar correlation trend that observed in LPA levels also found between VC and S1P levels. These results indicated that plasma LPA and S1P may be associated with deterioration of pulmonary function of IPF patients. J. Med. Invest. 69 : 196-203, August, 2022.
Collapse
Affiliation(s)
- Tamotsu Tanaka
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Kazuya Koyama
- Department of Respiratory Medicine and Rheumatology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Naoko Takahashi
- Department of Pharmaceutical Health Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Katsuya Morito
- Department of Pharmaceutical Health Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hanif Ali
- Department of Medical Pharmacology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Momoyo Azuma
- Department of Infection Control and Prevention, Tokushima University Hospital, Tokushima, Japan
| | - Kozo Kagawa
- Department of Respiratory Medicine and Rheumatology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hiroshi Kawano
- Department of Respiratory Medicine and Rheumatology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Rumana Yesmin Has
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Mutsumi Aihara
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
57
|
Structure and function of the Ecto-Nucleotide Pyrophosphatase-Phosphodiesterase (ENPP) family: tidying up diversity. J Biol Chem 2021; 298:101526. [PMID: 34958798 PMCID: PMC8808174 DOI: 10.1016/j.jbc.2021.101526] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP) family members (ENPP1–7) have been implicated in key biological and pathophysiological processes, including nucleotide and phospholipid signaling, bone mineralization, fibrotic diseases, and tumor-associated immune cell infiltration. ENPPs are single-pass transmembrane ecto-enzymes, with notable exceptions of ENPP2 (Autotaxin) and ENNP6, which are secreted and glycosylphosphatidylinositol (GPI)-anchored, respectively. ENNP1 and ENNP2 are the best characterized and functionally the most interesting members. Here, we review the structural features of ENPP1–7 to understand how they evolved to accommodate specific substrates and mediate different biological activities. ENPPs are defined by a conserved phosphodiesterase (PDE) domain. In ENPP1–3, the PDE domain is flanked by two N-terminal somatomedin B-like domains and a C-terminal inactive nuclease domain that confers structural stability, whereas ENPP4–7 only possess the PDE domain. Structural differences in the substrate-binding site endow each protein with unique characteristics. Thus, ENPP1, ENPP3, ENPP4, and ENPP5 hydrolyze nucleotides, whereas ENPP2, ENPP6, and ENNP7 evolved as phospholipases through adaptions in the catalytic domain. These adaptations explain the different biological and pathophysiological functions of individual members. Understanding the ENPP members as a whole advances our insights into common mechanisms, highlights their functional diversity, and helps to explore new biological roles.
Collapse
|
58
|
Evaluation of lipid metabolism imbalance in HIV-infected patients with metabolic disorders using high-performance liquid chromatography-tandem mass spectrometry. Clin Chim Acta 2021; 526:30-42. [PMID: 34942169 DOI: 10.1016/j.cca.2021.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022]
Abstract
Human immunodeficiency virus (HIV) infection and highly active antiretroviral therapy use are associated with the disruption of lipid and glucose metabolism. Herein, a sensitive and robust high-performance liquid chromatography-tandem mass spectrometry method for the quantitation of lysophosphatidylcholines (LPCs) and acylcarnitines (ACs) in human blood serum was developed and validated to investigate them as markers of metabolic disorders in HIV-infected patients. Under optimal extraction and detection conditions, the lower limits of quantification reached 5 ng/mL (LPCs) and 0.1 ng/mL (ACs), and precision and accuracy for both intra- and inter-day analyses were generally below 15%. Serum samples were stable for at least six months when stored at - 80 °C and for at least 12 h when stored at 4 °C or 25 °C. We investigated inter-group differences and associations between the biomarkers and observed a particular volatilitytrend of LPCs and ACs for HIV-infected patients with metabolic disorders. Thus, the developed method can be used for the rapid and sensitive quantitation of LPCs and ACs in vivo to further appraise the process of HIV infection, evaluate interveningmeasures, conduct mechanistic investigations, and further study the utility of LPCs and ACs as biomarkers of HIV infection coupled with metabolic disorders.
Collapse
|
59
|
Li Y, Zhang L, Xu T, Zhao X, Jiang X, Xiao F, Sun H, Wang L. Aberrant ENPP2 expression promotes tumor progression in multiple myeloma. Leuk Lymphoma 2021; 63:963-974. [PMID: 34847837 DOI: 10.1080/10428194.2021.2010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2) has been recently linked to tumor development. However, its role in modulating multiple myeloma (MM) disease progression remains unclear. Here, we demonstrated that CD138+ cells isolated from MM patients presented with higher expression of ENPP2 compared with CD138- cells. Treatment of MM cells with IL-6 resulted in ENPP2 upregulation. ENPP2 overexpression promoted proliferation, inhibited apoptosis, increased lysophosphatidic acid (LPA) generation, and upregulated osteoclastogenesis mediator expression in MM cells. In contrast, ENPP2 inhibition induced apoptosis, suppressed proliferation and survival, decreased LPA generation and downregulated osteoclastogenesis mediator expression. In an MM xenograft mouse model, ENPP2 knockdown significantly reduced MM tumor burden by inhibiting cell proliferation and inducing apoptosis. Furthermore, ENPP2 knockdown decreased the levels of LPA, osteoclastogenesis mediators in sera of mice with MM. Our findings revealed the tumor-promoting role of ENPP2 in MM, thus providing new molecular evidence for targeting the ENPP2-LPA axis in MM therapy.
Collapse
Affiliation(s)
- Yuxiang Li
- Laboratory of Molecular Diagnosis and Regenerative Medicine, the Affiliate Hospital of Qingdao University, Qingdao, P. R. China.,Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing, P.R. China
| | - Lin Zhang
- Laboratory of Molecular Diagnosis and Regenerative Medicine, the Affiliate Hospital of Qingdao University, Qingdao, P. R. China
| | - Tianxin Xu
- School of Nursing, Jilin University, Changchun, P. R. China
| | - Xia Zhao
- Laboratory of Molecular Diagnosis and Regenerative Medicine, the Affiliate Hospital of Qingdao University, Qingdao, P. R. China
| | - Xiaona Jiang
- Laboratory of Molecular Diagnosis and Regenerative Medicine, the Affiliate Hospital of Qingdao University, Qingdao, P. R. China
| | - Fengjun Xiao
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Huiyan Sun
- Central Laboratory, Hebei Yanda Medical Research Institute, Sanhe, P. R. China
| | - Lisheng Wang
- Laboratory of Molecular Diagnosis and Regenerative Medicine, the Affiliate Hospital of Qingdao University, Qingdao, P. R. China.,Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| |
Collapse
|
60
|
Stevens NC, Edwards PC, Tran LM, Ding X, Van Winkle LS, Fiehn O. Metabolomics of Lung Microdissections Reveals Region- and Sex-Specific Metabolic Effects of Acute Naphthalene Exposure in Mice. Toxicol Sci 2021; 184:214-222. [PMID: 34498071 PMCID: PMC8633889 DOI: 10.1093/toxsci/kfab110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Naphthalene is a ubiquitous environmental contaminant produced by combustion of fossil fuels and is a primary constituent of both mainstream and side stream tobacco smoke. Naphthalene elicits region-specific toxicity in airway club cells through cytochrome P450 (P450)-mediated bioactivation, resulting in depletion of glutathione and subsequent cytotoxicity. Although effects of naphthalene in mice have been extensively studied, few experiments have characterized global metabolomic changes in the lung. In individual lung regions, we found metabolomic changes in microdissected mouse lung conducting airways and parenchyma obtained from animals sacrificed at 3 timepoints following naphthalene treatment. Data on 577 unique identified metabolites were acquired by accurate mass spectrometry-based assays focusing on lipidomics and nontargeted metabolomics of hydrophilic compounds. Statistical analyses revealed distinct metabolite profiles between the 2 lung regions. Additionally, the number and magnitude of statistically significant exposure-induced changes in metabolite abundance were different between airways and parenchyma for unsaturated lysophosphatidylcholines, dipeptides, purines, pyrimidines, and amino acids. Importantly, temporal changes were found to be highly distinct for male and female mice with males exhibiting predominant treatment-specific changes only at 2 h postexposure. In females, metabolomic changes persisted until 6 h postnaphthalene treatment, which may explain the previously characterized higher susceptibility of female mice to naphthalene toxicity. In both males and females, treatment-specific changes corresponding to lung remodeling, oxidative stress response, and DNA damage were observed. Overall, this study provides insights into potential mechanisms contributing to naphthalene toxicity and presents a novel approach for lung metabolomic analysis that distinguishes responses of major lung regions.
Collapse
Affiliation(s)
- Nathanial C Stevens
- UC Davis Genome Center, University of California Davis, Davis, California 95616, USA
| | - Patricia C Edwards
- Center for Health and the Environment, University of California Davis, Davis, California, USA
| | - Lisa M Tran
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA
| | - Laura S Van Winkle
- Center for Health and the Environment, University of California Davis, Davis, California, USA
| | - Oliver Fiehn
- UC Davis Genome Center, University of California Davis, Davis, California 95616, USA
| |
Collapse
|
61
|
Plasmacytoid dendritic cell activation is dependent on coordinated expression of distinct amino acid transporters. Immunity 2021; 54:2514-2530.e7. [PMID: 34717796 DOI: 10.1016/j.immuni.2021.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 07/01/2021] [Accepted: 10/12/2021] [Indexed: 01/03/2023]
Abstract
Human plasmacytoid dendritic cells (pDCs) are interleukin-3 (IL-3)-dependent cells implicated in autoimmunity, but the role of IL-3 in pDC biology is poorly understood. We found that IL-3-induced Janus kinase 2-dependent expression of SLC7A5 and SLC3A2, which comprise the large neutral amino acid transporter, was required for mammalian target of rapamycin complex 1 (mTORC1) nutrient sensor activation in response to toll-like receptor agonists. mTORC1 facilitated increased anabolic activity resulting in type I interferon, tumor necrosis factor, and chemokine production and the expression of the cystine transporter SLC7A11. Loss of function of these amino acid transporters synergistically blocked cytokine production by pDCs. Comparison of in vitro-activated pDCs with those from lupus nephritis lesions identified not only SLC7A5, SLC3A2, and SLC7A11 but also ectonucleotide pyrophosphatase-phosphodiesterase 2 (ENPP2) as components of a shared transcriptional signature, and ENPP2 inhibition also blocked cytokine production. Our data identify additional therapeutic targets for autoimmune diseases in which pDCs are implicated.
Collapse
|
62
|
ENPP2 Methylation in Health and Cancer. Int J Mol Sci 2021; 22:ijms222111958. [PMID: 34769391 PMCID: PMC8585013 DOI: 10.3390/ijms222111958] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
Autotaxin (ATX) encoded by Ectonucleotide Pyrophosphatase/Phosphodiesterase 2 (ENPP2) is a key enzyme in Lysophosphatidic Acid (LPA) synthesis implicated in cancer. Although its aberrant expression has been reported, ENPP2 methylation profiles in health and malignancy are not described. We examined in silico the methylation of ENPP2 analyzing publicly available methylome datasets, to identify Differentially Methylated CpGs (DMCs) which were then correlated with expression at gene and isoform levels. Significance indication was set to be FDR corrected p-value < 0.05. Healthy tissues presented methylation in all gene body CGs and lower levels in Promoter Associated (PA) regions, whereas in the majority of the tumors examined (HCC, melanoma, CRC, LC and PC) the methylation pattern was reversed. DMCs identified in the promoter were located in sites recognized by multiple transcription factors, suggesting involvement in gene expression. Alterations in methylation were correlated to an aggressive phenotype in cancer cell lines. In prostate and lung adenocarcinomas, increased methylation of PA CGs was correlated to decreased ENPP2 mRNA expression and to poor prognosis parameters. Collectively, our results corroborate that methylation is an active level of ATX expression regulation in cancer. Our study provides an extended description of the methylation status of ENPP2 in health and cancer and points out specific DMCs of value as prognostic biomarkers.
Collapse
|
63
|
Ntatsoulis K, Karampitsakos T, Tsitoura E, Stylianaki EA, Matralis AN, Tzouvelekis A, Antoniou K, Aidinis V. Commonalities Between ARDS, Pulmonary Fibrosis and COVID-19: The Potential of Autotaxin as a Therapeutic Target. Front Immunol 2021; 12:687397. [PMID: 34671341 PMCID: PMC8522582 DOI: 10.3389/fimmu.2021.687397] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022] Open
Abstract
Severe COVID-19 is characterized by acute respiratory distress syndrome (ARDS)-like hyperinflammation and endothelial dysfunction, that can lead to respiratory and multi organ failure and death. Interstitial lung diseases (ILD) and pulmonary fibrosis confer an increased risk for severe disease, while a subset of COVID-19-related ARDS surviving patients will develop a fibroproliferative response that can persist post hospitalization. Autotaxin (ATX) is a secreted lysophospholipase D, largely responsible for the extracellular production of lysophosphatidic acid (LPA), a pleiotropic signaling lysophospholipid with multiple effects in pulmonary and immune cells. In this review, we discuss the similarities of COVID-19, ARDS and ILDs, and suggest ATX as a possible pathologic link and a potential common therapeutic target.
Collapse
Affiliation(s)
- Konstantinos Ntatsoulis
- Institute of Bio-Innovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Theodoros Karampitsakos
- Department of Respiratory Medicine, School of Medicine, University of Patras, Patras, Greece
| | - Eliza Tsitoura
- Laboratory of Molecular & Cellular Pneumonology, Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Elli-Anna Stylianaki
- Institute of Bio-Innovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Alexios N. Matralis
- Institute of Bio-Innovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Argyrios Tzouvelekis
- Department of Respiratory Medicine, School of Medicine, University of Patras, Patras, Greece
| | - Katerina Antoniou
- Laboratory of Molecular & Cellular Pneumonology, Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Vassilis Aidinis
- Institute of Bio-Innovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| |
Collapse
|
64
|
Increased Autotaxin Levels in Severe COVID-19, Correlating with IL-6 Levels, Endothelial Dysfunction Biomarkers, and Impaired Functions of Dendritic Cells. Int J Mol Sci 2021; 22:ijms221810006. [PMID: 34576169 PMCID: PMC8469279 DOI: 10.3390/ijms221810006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/15/2022] Open
Abstract
Autotaxin (ATX; ENPP2) is a secreted lysophospholipase D catalyzing the extracellular production of lysophosphatidic acid (LPA), a pleiotropic signaling phospholipid. Genetic and pharmacologic studies have previously established a pathologic role for ATX and LPA signaling in pulmonary injury, inflammation, and fibrosis. Here, increased ENPP2 mRNA levels were detected in immune cells from nasopharyngeal swab samples of COVID-19 patients, and increased ATX serum levels were found in severe COVID-19 patients. ATX serum levels correlated with the corresponding increased serum levels of IL-6 and endothelial damage biomarkers, suggesting an interplay of the ATX/LPA axis with hyperinflammation and the associated vascular dysfunction in COVID-19. Accordingly, dexamethasone (Dex) treatment of mechanically ventilated patients reduced ATX levels, as shown in two independent cohorts, indicating that the therapeutic benefits of Dex include the suppression of ATX. Moreover, large scale analysis of multiple single cell RNA sequencing datasets revealed the expression landscape of ENPP2 in COVID-19 and further suggested a role for ATX in the homeostasis of dendritic cells, which exhibit both numerical and functional deficits in COVID-19. Therefore, ATX has likely a multifunctional role in COVID-19 pathogenesis, suggesting that its pharmacological targeting might represent an additional therapeutic option, both during and after hospitalization.
Collapse
|
65
|
Joshi L, Plastira I, Bernhart E, Reicher H, Triebl A, Köfeler HC, Sattler W. Inhibition of Autotaxin and Lysophosphatidic Acid Receptor 5 Attenuates Neuroinflammation in LPS-Activated BV-2 Microglia and a Mouse Endotoxemia Model. Int J Mol Sci 2021; 22:8519. [PMID: 34445223 PMCID: PMC8395174 DOI: 10.3390/ijms22168519] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 12/22/2022] Open
Abstract
Increasing evidence suggests that systemic inflammation triggers a neuroinflammatory response that involves sustained microglia activation. This response has deleterious consequences on memory and learning capability in experimental animal models and in patients. However, the mechanisms connecting systemic inflammation and microglia activation remain poorly understood. Here, we identify the autotaxin (ATX)/lysophosphatidic acid (LPA)/LPA-receptor axis as a potential pharmacological target to modulate the LPS-mediated neuroinflammatory response in vitro (the murine BV-2 microglia cell line) and in vivo (C57BL/6J mice receiving a single i.p. LPS injection). In LPS-stimulated (20 ng/mL) BV-2 cells, we observed increased phosphorylation of transcription factors (STAT1, p65, and c-Jun) that are known to induce a proinflammatory microglia phenotype. LPS upregulated ATX, TLR4, and COX2 expression, amplified NO production, increased neurotoxicity of microglia conditioned medium, and augmented cyto-/chemokine concentrations in the cellular supernatants. PF8380 (a type I ATX inhibitor, used at 10 and 1 µM) and AS2717638 (an LPA5 antagonist, used at 1 and 0.1 µM) attenuated these proinflammatory responses, at non-toxic concentrations, in BV-2 cells. In vivo, we demonstrate accumulation of PF8380 in the mouse brain and an accompanying decrease in LPA concentrations. In vivo, co-injection of LPS (5 mg/kg body weight) and PF8380 (30 mg/kg body weight), or LPS/AS2717638 (10 mg/kg body weight), significantly attenuated LPS-induced iNOS, TNFα, IL-1β, IL-6, and CXCL2 mRNA expression in the mouse brain. On the protein level, PF8380 and AS2717638 significantly reduced TLR4, Iba1, GFAP and COX2 expression, as compared to LPS-only injected animals. In terms of the communication between systemic inflammation and neuroinflammation, both inhibitors significantly attenuated LPS-mediated systemic TNFα and IL-6 synthesis, while IL-1β was only reduced by PF8380. Inhibition of ATX and LPA5 may thus provide an opportunity to protect the brain from the toxic effects that are provoked by systemic endotoxemia.
Collapse
Affiliation(s)
- Lisha Joshi
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (L.J.); (I.P.); (E.B.); (H.R.)
| | - Ioanna Plastira
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (L.J.); (I.P.); (E.B.); (H.R.)
| | - Eva Bernhart
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (L.J.); (I.P.); (E.B.); (H.R.)
| | - Helga Reicher
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (L.J.); (I.P.); (E.B.); (H.R.)
| | - Alexander Triebl
- Core Facility Mass Spectrometry, Medical University of Graz, 8010 Graz, Austria; (A.T.); (H.C.K.)
| | - Harald C. Köfeler
- Core Facility Mass Spectrometry, Medical University of Graz, 8010 Graz, Austria; (A.T.); (H.C.K.)
- BioTechMed Graz, 8010 Graz, Austria
| | - Wolfgang Sattler
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (L.J.); (I.P.); (E.B.); (H.R.)
- BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|
66
|
Dobersalske C, Grundmann M, Timmermann A, Theisen L, Kölling F, Harris RC, Fuerstner C, Becker MS, Wunder F. Establishment of a novel, cell-based autotaxin assay. Anal Biochem 2021; 630:114322. [PMID: 34343482 DOI: 10.1016/j.ab.2021.114322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022]
Abstract
Autotaxin (ATX) plays an important role in (patho-)physiological lysophosphatidic acid (LPA) signaling. Here we describe the establishment of novel cell-based ATX assay formats. ATX-mediated LPA generation is detected by using a stable LPA receptor reporter cell line. In a first assay variant, ATX-mediated LPA generation is started in the absence of cells and the reaction mix is transferred to the reporter cells after stopping the reaction (two-tube assay). In a second assay variant, ATX is added to the reporter cells expressing the known autotaxin binding partners integrin β1, integrin β3 and the LPA receptor 1. LPA generation is started in the presence of cells and is detected in real-time (one-tube assay). Structurally diverse ATX inhibitors with different binding modes were characterized in both cell-based assay variants and were also tested in the well-established biochemical choline release assay. ATX inhibitors displayed similar potencies, regardless if the assay was performed in the absence or presence of cells, and comparable results were obtained in all three assay formats. In summary, our novel cell-based ATX assay formats are well-suited for sensitive detection of enzyme activity as well as for the characterization of ATX inhibitors in the presence and absence of cells.
Collapse
Affiliation(s)
- Celia Dobersalske
- Lead Discovery, Bayer AG, Pharma Research and Development Center, Aprather Weg 18a, D-42096, Wuppertal, Germany
| | - Manuel Grundmann
- Cardiovascular Research, Bayer AG, Pharma Research and Development Center, Aprather Weg 18a, D-42096, Wuppertal, Germany
| | - Andreas Timmermann
- Lead Discovery, Bayer AG, Pharma Research and Development Center, Aprather Weg 18a, D-42096, Wuppertal, Germany
| | - Laura Theisen
- Lead Discovery, Bayer AG, Pharma Research and Development Center, Aprather Weg 18a, D-42096, Wuppertal, Germany
| | - Florian Kölling
- Computational Molecular Design. Bayer AG, Pharma Research and Development Center, Aprather Weg 18a, D-42096, Wuppertal, Germany
| | | | - Chantal Fuerstner
- Medicinal Chemistry, Bayer AG, Pharma Research and Development Center, Aprather Weg 18a, D-42096, Wuppertal, Germany
| | - Michael S Becker
- Cardiovascular Research, Bayer AG, Pharma Research and Development Center, Aprather Weg 18a, D-42096, Wuppertal, Germany
| | - Frank Wunder
- Lead Discovery, Bayer AG, Pharma Research and Development Center, Aprather Weg 18a, D-42096, Wuppertal, Germany.
| |
Collapse
|
67
|
Ghumman M, Dhamecha D, Gonsalves A, Fortier L, Sorkhdini P, Zhou Y, Menon JU. Emerging drug delivery strategies for idiopathic pulmonary fibrosis treatment. Eur J Pharm Biopharm 2021; 164:1-12. [PMID: 33882301 PMCID: PMC8154728 DOI: 10.1016/j.ejpb.2021.03.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/03/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a debilitating and fatal condition that causes severe scarring of the lungs. While the pathogenesis of IPF continues to be extensively studied and several factors have been considered, an exact cause has yet to be established. With inadequate treatment options and no cure available, overall disease prognosis is still poor. Existing oral therapies, pirfenidone and nintedanib, may attempt to improve the patients' quality of life by mitigating symptoms and slowing disease progression, however chronic doses and systemic deliveries of these drugs can lead to severe side effects. The lack of effective treatment options calls for further investigation of restorative as well as additional palliative therapies for IPF. Nanoparticle-based sustained drug delivery strategies can be utilized to ensure targeted delivery for site-specific treatment as well as long-acting therapy, improving overall patient compliance. This review provides an update on promising strategies for the delivery of anti-fibrotic agents, along with an overview of key therapeutic targets as well as relevant emerging therapies currently being evaluated for IPF treatment.
Collapse
Affiliation(s)
- Moez Ghumman
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Dinesh Dhamecha
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Andrea Gonsalves
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Lauren Fortier
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Parand Sorkhdini
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Yang Zhou
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA.
| | - Jyothi U Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
68
|
O'Regan A, O'Brien CJ, Eivers SB. The lysophosphatidic acid axis in fibrosis: Implications for glaucoma. Wound Repair Regen 2021; 29:613-626. [PMID: 34009724 DOI: 10.1111/wrr.12929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 12/27/2022]
Abstract
Glaucoma is a common progressive optic neuropathy that results in visual field defects and can lead to irreversible blindness. The pathophysiology of glaucoma involves dysregulated extracellular matrix remodelling in both the trabecular meshwork in the anterior chamber and in the lamina cribrosa of the optic nerve head. Fibrosis in these regions leads to raised intraocular pressure and retinal ganglion cell degeneration, respectively. Lysophosphatidic acid (LPA) is a bioactive lipid mediator which acts via six G-protein coupled receptors on the cell surface to activate intracellular pathways that promote cell proliferation, transcription and survival. LPA signalling has been implicated in both normal wound healing and pathological fibrosis. LPA enhances fibroblast proliferation, migration and contraction, and induces expression of pro-fibrotic mediators such as connective tissue growth factor. The LPA axis plays a major role in diseases such as idiopathic pulmonary fibrosis, where it has been identified as an important pharmacological target. In glaucoma, LPA is present in high levels in the aqueous humour, and its signalling has been found to increase resistance to aqueous humour outflow through altered trabecular meshwork cellular contraction and extracellular matrix deposition. LPA signalling may, therefore, also represent an attractive target for treatment of glaucoma. In this review we wish to describe the role of LPA and its related proteins in tissue fibrosis and glaucoma.
Collapse
Affiliation(s)
- Amy O'Regan
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Colm J O'Brien
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, Dublin, Ireland.,Department of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Sarah B Eivers
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
69
|
Lysophospholipids in Lung Inflammatory Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:373-391. [PMID: 33788203 DOI: 10.1007/978-3-030-63046-1_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The lysophospholipids (LPLs) belong to a group of bioactive lipids that play pivotal roles in several physiological and pathological processes. LPLs are derivatives of phospholipids and consist of a single hydrophobic fatty acid chain, a hydrophilic head, and a phosphate group with or without a large molecule attached. Among the LPLs, lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are the simplest, and have been shown to be involved in lung inflammatory symptoms and diseases such as acute lung injury, asthma, and chronic obstructive pulmonary diseases. G protein-coupled receptors (GPCRs) mediate LPA and S1P signaling. In this chapter, we will discuss on the role of LPA, S1P, their metabolizing enzymes, inhibitors or agonists of their receptors, and their GPCR-mediated signaling in lung inflammatory symptoms and diseases, focusing specially on acute respiratory distress syndrome, asthma, and chronic obstructive pulmonary disease.
Collapse
|
70
|
Nikitopoulou I, Ninou I, Manitsopoulos N, Dimopoulou I, Orfanos SE, Aidinis V, Kotanidou A. A role for bronchial epithelial autotaxin in ventilator-induced lung injury. Intensive Care Med Exp 2021; 9:12. [PMID: 33778909 PMCID: PMC8005331 DOI: 10.1186/s40635-021-00379-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/22/2021] [Indexed: 01/13/2023] Open
Abstract
Background The pathophysiology of acute respiratory distress syndrome (ARDS) may eventually result in heterogeneous lung collapse and edema-flooded airways, predisposing the lung to progressive tissue damage known as ventilator-induced lung injury (VILI). Autotaxin (ATX; ENPP2), the enzyme largely responsible for extracellular lysophosphatidic acid (LPA) production, has been suggested to play a pathogenic role in, among others, pulmonary inflammation and fibrosis. Methods C57BL/6 mice were subjected to low and high tidal volume mechanical ventilation using a small animal ventilator: respiratory mechanics were evaluated, and plasma and bronchoalveolar lavage fluid (BALF) samples were obtained. Total protein concentration was determined, and lung histopathology was further performed Results Injurious ventilation resulted in increased BALF levels of ATX. Genetic deletion of ATX from bronchial epithelial cells attenuated VILI-induced pulmonary edema. Conclusion ATX participates in VILI pathogenesis.
Collapse
Affiliation(s)
- Ioanna Nikitopoulou
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, National and Kapodistrian University of Athens Medical School, Evangelismos Hospital, 45, Ipsilantou Street, Athens, Greece
| | - Ioanna Ninou
- Institute of Immunology, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Nikolaos Manitsopoulos
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, National and Kapodistrian University of Athens Medical School, Evangelismos Hospital, 45, Ipsilantou Street, Athens, Greece
| | - Ioanna Dimopoulou
- 1st Department of Critical Care Medicine & Pulmonary Services, National and Kapodistrian University of Athens Medical School, Evangelismos Hospital, 45, Ipsilantou Street, Athens, Greece
| | - Stylianos E Orfanos
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, National and Kapodistrian University of Athens Medical School, Evangelismos Hospital, 45, Ipsilantou Street, Athens, Greece.,2nd Department of Critical Care, National and Kapodistrian University of Athens Medical School, Attikon" Hospital, Athens, Greece
| | - Vassilis Aidinis
- Institute of Immunology, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Anastasia Kotanidou
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, National and Kapodistrian University of Athens Medical School, Evangelismos Hospital, 45, Ipsilantou Street, Athens, Greece. .,1st Department of Critical Care Medicine & Pulmonary Services, National and Kapodistrian University of Athens Medical School, Evangelismos Hospital, 45, Ipsilantou Street, Athens, Greece.
| |
Collapse
|
71
|
The linkage between inflammation and fibrosis in muscular dystrophies: The axis autotaxin-lysophosphatidic acid as a new therapeutic target? J Cell Commun Signal 2021; 15:317-334. [PMID: 33689121 PMCID: PMC8222483 DOI: 10.1007/s12079-021-00610-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
Muscular dystrophies (MDs) are a diverse group of severe disorders characterized by increased skeletal muscle feebleness. In many cases, respiratory and cardiac muscles are also compromised. Skeletal muscle inflammation and fibrosis are hallmarks of several skeletal muscle diseases, including MDs. Until now, several keys signaling pathways and factors that regulate inflammation and fibrosis have been identified. However, no curative treatments are available. Therefore, it is necessary to find new therapeutic targets to fight these diseases and improve muscle performance. Lysophosphatidic acid (LPA) is an active glycerophospholipid mainly synthesized by the secreted enzyme autotaxin (ATX), which activates six different G protein-coupled receptors named LPA1 to LPA6 (LPARs). In conjunction, they are part of the ATX/LPA/LPARs axis, involved in the inflammatory and fibrotic response in several organs-tissues. This review recapitulates the most relevant aspects of inflammation and fibrosis in MDs. It analyzes experimental evidence of the effects of the ATX/LPA/LPARs axis on inflammatory and fibrotic responses. Finally, we speculate about its potential role as a new therapeutic pharmacological target to treat these diseases.
Collapse
|
72
|
Antoniou KM, Tsitoura E, Vasarmidi E, Symvoulakis EK, Aidinis V, Tzilas V, Tzouvelekis A, Bouros D. Precision medicine in idiopathic pulmonary fibrosis therapy: From translational research to patient-centered care. Curr Opin Pharmacol 2021; 57:71-80. [PMID: 33556824 DOI: 10.1016/j.coph.2020.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible fibrotic chronic lung disease affecting predominantly older adults, with a history of smoking. The current model of disease natural course is that recurrent injury of the alveolar epithelium in the context of advanced aging/cellular senescence is followed by defective re-epithelialization and scar tissue formation. Currently, two drugs, nintedanib and pirfenidone, that modify disease progression have been approved worldwide for the treatment of IPF. However, despite treatment, patients with IPF are not cured, and eventually, disease advances in most treated patients. Enhancing biogenomic and metabolic research output, its translation into clinical precision and optimal service delivery through patient-centeredness are key elements to support effective IPF care. In this review, we summarize therapeutic options currently investigated for IPF based on the major pathogenetic pathways and molecular targets that drive pulmonary fibrosis.
Collapse
Affiliation(s)
- Katerina M Antoniou
- Molecular & Cellular Pneumonology Laboratory, Department of Respiratory Medicine, Faculty of Medicine, University of Crete, Greece.
| | - Eliza Tsitoura
- Molecular & Cellular Pneumonology Laboratory, Department of Respiratory Medicine, Faculty of Medicine, University of Crete, Greece
| | - Eirini Vasarmidi
- Molecular & Cellular Pneumonology Laboratory, Department of Respiratory Medicine, Faculty of Medicine, University of Crete, Greece
| | | | - Vassilis Aidinis
- Division of Immunology, Alexander Fleming Biomedical Sciences Research Center, Athens, Greece
| | - Vassilis Tzilas
- Center for Diseases of the Chest, Athens Medical Center, Athens, Greece
| | | | - Demosthenes Bouros
- Center for Diseases of the Chest, Athens Medical Center, Athens, Greece; Medical School, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
73
|
Jinno N, Yoshida M, Hayashi K, Naitoh I, Hori Y, Natsume M, Kato A, Kachi K, Asano G, Atsuta N, Sahashi H, Kataoka H. Autotaxin in ascites promotes peritoneal dissemination in pancreatic cancer. Cancer Sci 2021; 112:668-678. [PMID: 33053268 PMCID: PMC7893983 DOI: 10.1111/cas.14689] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Peritoneal dissemination and malignant ascites in pancreatic ductal adenocarcinoma (PDAC) patients represent a major clinical issue. Lysophosphatidic acid (LPA) is a lipid mediator that modulates the progression of various cancers. Based on the increasing evidence showing that LPA is abundant in malignant ascites, we focused on autotaxin (ATX), which is a secreted enzyme that is important for the production of LPA. This study aimed to elucidate the importance of the ATX-LPA axis in malignant ascites in PDAC and to determine whether ATX works as a molecular target for treating peritoneal dissemination. In a PDAC peritoneal dissemination mouse model, the amount of ATX was significantly higher in ascites than in serum. An in vitro study using two PDAC cell lines, AsPC-1 and PANC-1, showed that ATX-LPA signaling promoted cancer cell migration via the activation of the downstream signaling, and this increased cell migration was suppressed by an ATX inhibitor, PF-8380. An in vivo study showed that PF-8380 suppressed peritoneal dissemination and decreased malignant ascites, and these results were validated by the biological analysis as well as the in vitro study. Moreover, there was a positive correlation between the amount of ATX in ascites and the degree of disseminated cancer progression. These findings demonstrated that ATX in ascites works as a promotor of peritoneal dissemination, and the targeting of ATX must represent a useful and novel therapy for peritoneal dissemination of PDAC.
Collapse
Affiliation(s)
- Naruomi Jinno
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Michihiro Yoshida
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Kazuki Hayashi
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Itaru Naitoh
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Yasuki Hori
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Makoto Natsume
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Akihisa Kato
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Kenta Kachi
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Go Asano
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Naoki Atsuta
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Hidenori Sahashi
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Hiromi Kataoka
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| |
Collapse
|
74
|
Cao P, Walker NM, Braeuer RR, Mazzoni-Putman S, Aoki Y, Misumi K, Wheeler DS, Vittal R, Lama VN. Loss of FOXF1 expression promotes human lung-resident mesenchymal stromal cell migration via ATX/LPA/LPA1 signaling axis. Sci Rep 2020; 10:21231. [PMID: 33277571 PMCID: PMC7718269 DOI: 10.1038/s41598-020-77601-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
Forkhead box F1 (FOXF1) is a lung embryonic mesenchyme-associated transcription factor that demonstrates persistent expression into adulthood in mesenchymal stromal cells. However, its biologic function in human adult lung-resident mesenchymal stromal cells (LR-MSCs) remain to be elucidated. Here, we demonstrate that FOXF1 expression acts as a restraint on the migratory function of LR-MSCs via its role as a novel transcriptional repressor of autocrine motility-stimulating factor Autotaxin (ATX). Fibrotic human LR-MSCs demonstrated lower expression of FOXF1 mRNA and protein, compared to non-fibrotic controls. RNAi-mediated FOXF1 silencing in LR-MSCs was associated with upregulation of key genes regulating proliferation, migration, and inflammatory responses and significantly higher migration were confirmed in FOXF1-silenced LR-MSCs by Boyden chamber. ATX is a secreted lysophospholipase D largely responsible for extracellular lysophosphatidic acid (LPA) production, and was among the top ten upregulated genes upon Affymetrix analysis. FOXF1-silenced LR-MSCs demonstrated increased ATX activity, while mFoxf1 overexpression diminished ATX expression and activity. The FOXF1 silencing-induced increase in LR-MSC migration was abrogated by genetic and pharmacologic targeting of ATX and LPA1 receptor. Chromatin immunoprecipitation analyses identified three putative FOXF1 binding sites in the 1.5 kb ATX promoter which demonstrated transcriptional repression of ATX expression. Together these findings identify FOXF1 as a novel transcriptional repressor of ATX and demonstrate that loss of FOXF1 promotes LR-MSC migration via the ATX/LPA/LPA1 signaling axis.
Collapse
Affiliation(s)
- Pengxiu Cao
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 1500 W Medical Center Drive, 3916 Taubman Center, Ann Arbor, MI, 48109-0360, USA
| | - Natalie M Walker
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 1500 W Medical Center Drive, 3916 Taubman Center, Ann Arbor, MI, 48109-0360, USA
| | - Russell R Braeuer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 1500 W Medical Center Drive, 3916 Taubman Center, Ann Arbor, MI, 48109-0360, USA
| | - Serina Mazzoni-Putman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 1500 W Medical Center Drive, 3916 Taubman Center, Ann Arbor, MI, 48109-0360, USA
| | - Yoshiro Aoki
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 1500 W Medical Center Drive, 3916 Taubman Center, Ann Arbor, MI, 48109-0360, USA
| | - Keizo Misumi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 1500 W Medical Center Drive, 3916 Taubman Center, Ann Arbor, MI, 48109-0360, USA
| | - David S Wheeler
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 1500 W Medical Center Drive, 3916 Taubman Center, Ann Arbor, MI, 48109-0360, USA
| | - Ragini Vittal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 1500 W Medical Center Drive, 3916 Taubman Center, Ann Arbor, MI, 48109-0360, USA
| | - Vibha N Lama
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 1500 W Medical Center Drive, 3916 Taubman Center, Ann Arbor, MI, 48109-0360, USA.
| |
Collapse
|
75
|
Fang Y, Tian J, Fan Y, Cao P. Latest progress on the molecular mechanisms of idiopathic pulmonary fibrosis. Mol Biol Rep 2020; 47:9811-9820. [PMID: 33230784 DOI: 10.1007/s11033-020-06000-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/11/2020] [Indexed: 01/11/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a serious life-threatening lung disease, and the median survival period of PF patients after diagnosis is only 2.5-3.5 years. At present, there are no effective drugs or therapeutics to reverse or even inhibit IPF. The main pathological characteristics of pulmonary fibrosis (PF) include damage to alveolar epithelial cells, fibroblast activation and extracellular matrix accumulation, which gradually lead to damage to the lung structure and decreased lung function. It is important to understand the cellular and molecular mechanisms of PF comprehensively and clearly. In this paper, critical signaling pathways related to PF were reviewed to present updates on the molecular mechanisms of PF.
Collapse
Affiliation(s)
- Yue Fang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, 20 East Road of 2nd South Ring, Yuhua District, Shijiazhuang, 050024, China.,Key Laboratory of Brain Functional Genomics of Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Jingya Tian
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, 20 East Road of 2nd South Ring, Yuhua District, Shijiazhuang, 050024, China.,College of Chemistry and Environmental Sciences, Hebei University, Baoding, China
| | - Yumei Fan
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, 20 East Road of 2nd South Ring, Yuhua District, Shijiazhuang, 050024, China.
| | - Pengxiu Cao
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, 20 East Road of 2nd South Ring, Yuhua District, Shijiazhuang, 050024, China.
| |
Collapse
|
76
|
Szóstek-Mioduchowska A, Leciejewska N, Zelmańska B, Staszkiewicz-Chodor J, Ferreira-Dias G, Skarzynski D. Lysophosphatidic acid as a regulator of endometrial connective tissue growth factor and prostaglandin secretion during estrous cycle and endometrosis in the mare. BMC Vet Res 2020; 16:343. [PMID: 32943074 PMCID: PMC7499873 DOI: 10.1186/s12917-020-02562-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 09/08/2020] [Indexed: 12/22/2022] Open
Abstract
Background Equine endometrosis is a chronic degenerative condition, described as endometrial fibrosis that forms in the stroma, under the basement membrane and around the endometrial glands. The role of lysophosphatidic acid (LPA) in the development of tissue fibrosis varies depending on the organ, and its profibrotic role in mare endometrosis remains unclear. The study aimed to establish the endometrial presence of LPA and its receptors (LPAR1–4), together with its effects on connective tissue growth factor (CTGF) and prostaglandins (PG) secretion from equine endometrium under physiological (estrous cycle), or pathological conditions (endometrosis). Mare endometria in the mid-luteal phase (n = 5 for each category I, IIA, IIB, III of Kenney and Doig) and in the follicular phase (n = 5 for each category I, IIA, III and n = 4 for IIB) were used. In experiment 1, the levels of LPA, LPAR1–4 mRNA level and protein abundance were investigated in endometria at different stages of endometrosis. In experiment 2, the in vitro effect of LPA (10− 9 M) on the secretion of CTGF and PGs from endometrial tissue explants at different stages of endometrosis were determined. Results Endometrial LPA concentration was higher in the mid-luteal phase compared to the follicular phase in category I endometrium (P < 0.01). There was an alteration in endometrial concentrations of LPA and LPAR1–4 protein abundance in the follicular phase at different stages of endometrosis (P < 0.05). Additionally, LPA increased the secretion of PGE2 from category I endometrium in both phases of the estrous cycle (P < 0.05). The effect of LPA on the secretion of CTGF and PGF2α from endometrial tissue was altered depending on different stages of endometrosis (P < 0.05). Conclusion Our data indicate that endometrosis disturbs proper endometrial function and is associated with altered endometrial LPA concentration, its receptor expression and protein abundance, PGE2/PGF2α ratio, and CTGF secretion in response to LPA. These changes could influence several physiological events occurring in endometrium in mare during estrous cycle and early pregnancy.
Collapse
Affiliation(s)
- Anna Szóstek-Mioduchowska
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Tuwima-st 10, 10-748, Olsztyn, Poland.
| | - Natalia Leciejewska
- Department of Animal Physiology and Biochemistry and Biostructure, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Poznan, Poland
| | - Beata Zelmańska
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Tuwima-st 10, 10-748, Olsztyn, Poland
| | - Joanna Staszkiewicz-Chodor
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Tuwima-st 10, 10-748, Olsztyn, Poland
| | - Graça Ferreira-Dias
- CIISA, Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Dariusz Skarzynski
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Tuwima-st 10, 10-748, Olsztyn, Poland
| |
Collapse
|
77
|
Role of Adipose Tissue-Derived Autotaxin, Lysophosphatidate Signaling, and Inflammation in the Progression and Treatment of Breast Cancer. Int J Mol Sci 2020; 21:ijms21165938. [PMID: 32824846 PMCID: PMC7460696 DOI: 10.3390/ijms21165938] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022] Open
Abstract
Autotaxin (ATX) is a secreted enzyme that produces lysophosphatidate (LPA), which signals through six G-protein coupled receptors, promoting tumor growth, metastasis, and survival from chemotherapy and radiotherapy. Many cancer cells produce ATX, but breast cancer cells express little ATX. In breast tumors, ATX is produced by tumor-associated stroma. Breast tumors are also surrounded by adipose tissue, which is a major bodily source of ATX. In mice, a high-fat diet increases adipocyte ATX production. ATX production in obesity is also increased because of low-level inflammation in the expanded adipose tissue. This increased ATX secretion and consequent LPA signaling is associated with decreased adiponectin production, which results in adverse metabolic profiles and glucose homeostasis. Increased ATX production by inflamed adipose tissue may explain the obesity-breast cancer association. Breast tumors produce inflammatory mediators that stimulate ATX transcription in tumor-adjacent adipose tissue. This drives a feedforward inflammatory cycle since increased LPA signaling increases production of more inflammatory mediators and cyclooxygenase-2. Inhibiting ATX activity, which has implications in breast cancer adjuvant treatments, attenuates this cycle. Targeting ATX activity and LPA signaling may potentially increase chemotherapy and radiotherapy efficacy, and decrease radiation-induced fibrosis morbidity independently of breast cancer type because most ATX is not derived from breast cancer cells.
Collapse
|
78
|
Junaid A, Schoeman J, Yang W, Stam W, Mashaghi A, van Zonneveld AJ, Hankemeier T. Metabolic response of blood vessels to TNFα. eLife 2020; 9:54754. [PMID: 32749215 PMCID: PMC7476757 DOI: 10.7554/elife.54754] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 08/02/2020] [Indexed: 12/11/2022] Open
Abstract
TNFα signaling in the vascular endothelium elicits multiple inflammatory responses that drive vascular destabilization and leakage. Bioactive lipids are main drivers of these processes. In vitro mechanistic studies of bioactive lipids have been largely based on two-dimensional endothelial cell cultures that, due to lack of laminar flow and the growth of the cells on non-compliant stiff substrates, often display a pro-inflammatory phenotype. This complicates the assessment of inflammatory processes. Three-dimensional microvessels-on-a-chip models provide a unique opportunity to generate endothelial microvessels in a more physiological environment. Using an optimized targeted liquid chromatography–tandem mass spectrometry measurements of a panel of pro- and anti-inflammatory bioactive lipids, we measure the profile changes upon administration of TNFα. We demonstrate that bioactive lipid profiles can be readily detected from three-dimensional microvessels-on-a-chip and display a more dynamic, less inflammatory response to TNFα, that resembles more the human situation, compared to classical two-dimensional endothelial cell cultures. In a range of conditions called autoimmune diseases, the immune system attacks the body rather than foreign elements. This can cause inflammation that is harmful for many organs. In particular, immune cells can produce excessive amounts of a chemical messenger called tumor necrosis factor alpha (TNFα for short), which can lead to the release of fatty molecules that damage blood vessels. This process is normally studied in blood vessels cells that are grown on a dish, without any blood movement. However, in this rigid 2D environment, the cells become ‘stressed’ and show higher levels of inflammation than in the body. This makes it difficult to assess the exact role that TNFα plays in disease. A new technology is addressing this issue by enabling scientist to culture blood vessels cells in dishes coated with gelatin. This allows the cells to organize themselves in 3D, creating tiny blood vessels in which fluids can flow. However, it was unclear whether these ‘microvessels-on-a-chip’ were better models to study the role of TNFα compared to cells grown on a plate. Here, Junaid et al. compared the levels of inflammation in blood vessels cells grown in the two environments, showing that cells are less inflamed when they are cultured in 3D. In addition, when the artificial 3D-blood vessels were exposed to TNFα, they responded more like real blood vessels than the 2D models. Finally, experiments showed that it was possible to monitor the release of fatty molecules in this environment. Together, this work suggests that microvessels-on-a-chip are better models to study how TNFα harms blood vessels. Next, systems and protocols could be develop to allow automated mass drug testing in microvessels-on-a-chip. This would help scientists to quickly screen thousands of drugs and find candidates that can protect blood vessels from TNFα.
Collapse
Affiliation(s)
- Abidemi Junaid
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands.,Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, Netherlands.,Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Johannes Schoeman
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Wei Yang
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Wendy Stam
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, Netherlands.,Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Alireza Mashaghi
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, Netherlands.,Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Thomas Hankemeier
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| |
Collapse
|
79
|
Zulfikar S, Mulholland S, Adamali H, Barratt SL. Inhibitors of the Autotaxin-Lysophosphatidic Acid Axis and Their Potential in the Treatment of Interstitial Lung Disease: Current Perspectives. Clin Pharmacol 2020; 12:97-108. [PMID: 32765123 PMCID: PMC7367740 DOI: 10.2147/cpaa.s228362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive fibrosing interstitial lung disease for which there is no known cure. Currently available therapeutic options have been shown at best to slow the progression of the disease and thus there remains an urgent unmet need to identify new therapies. In this article, we will discuss the mechanisms of action, pre-clinical and clinical trial data surrounding inhibitors of the autotaxin-lysophosphatidic acid axis, which show promise as emerging novel therapies for fibrotic lung disease.
Collapse
Affiliation(s)
- Sabrina Zulfikar
- Bristol Interstitial Lung Disease Service, North Bristol NHS Trust, Bristol, UK
| | - Sarah Mulholland
- Bristol Interstitial Lung Disease Service, North Bristol NHS Trust, Bristol, UK
| | - Huzaifa Adamali
- Bristol Interstitial Lung Disease Service, North Bristol NHS Trust, Bristol, UK
| | - Shaney L Barratt
- Bristol Interstitial Lung Disease Service, North Bristol NHS Trust, Bristol, UK
| |
Collapse
|
80
|
Leuti A, Fazio D, Fava M, Piccoli A, Oddi S, Maccarrone M. Bioactive lipids, inflammation and chronic diseases. Adv Drug Deliv Rev 2020; 159:133-169. [PMID: 32628989 DOI: 10.1016/j.addr.2020.06.028] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Endogenous bioactive lipids are part of a complex network that modulates a plethora of cellular and molecular processes involved in health and disease, of which inflammation represents one of the most prominent examples. Inflammation serves as a well-conserved defence mechanism, triggered in the event of chemical, mechanical or microbial damage, that is meant to eradicate the source of damage and restore tissue function. However, excessive inflammatory signals, or impairment of pro-resolving/anti-inflammatory pathways leads to chronic inflammation, which is a hallmark of chronic pathologies. All main classes of endogenous bioactive lipids - namely eicosanoids, specialized pro-resolving lipid mediators, lysoglycerophopsholipids and endocannabinoids - have been consistently involved in the chronic inflammation that characterises pathologies such as cancer, diabetes, atherosclerosis, asthma, as well as autoimmune and neurodegenerative disorders and inflammatory bowel diseases. This review gathers the current knowledge concerning the involvement of endogenous bioactive lipids in the pathogenic processes of chronic inflammatory pathologies.
Collapse
|
81
|
Sudhadevi T, Ha AW, Ebenezer DL, Fu P, Putherickal V, Natarajan V, Harijith A. Advancements in understanding the role of lysophospholipids and their receptors in lung disorders including bronchopulmonary dysplasia. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158685. [PMID: 32169655 PMCID: PMC7206974 DOI: 10.1016/j.bbalip.2020.158685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/25/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a devastating chronic neonatal lung disease leading to serious adverse consequences. Nearly 15 million babies are born preterm accounting for >1 in 10 births globally. The aetiology of BPD is multifactorial and the survivors suffer lifelong respiratory morbidity. Lysophospholipids (LPL), which include sphingosine-1-phosphate (S1P), and lysophosphatidic acid (LPA) are both naturally occurring bioactive lipids involved in a variety of physiological and pathological processes such as cell survival, death, proliferation, migration, immune responses and vascular development. Altered LPL levels have been observed in a number of lung diseases including BPD, which underscores the importance of these signalling lipids under normal and pathophysiological situations. Due to the paucity of information related to LPLs in BPD, most of the ideas related to BPD and LPL are speculative. This article is intended to promote discussion and generate hypotheses, in addition to the limited review of information related to BPD already established in the literature.
Collapse
Affiliation(s)
- Tara Sudhadevi
- Department of Pediatrics, University of Illinois, Chicago, IL, United States of America
| | - Alison W Ha
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL, United States of America
| | - David L Ebenezer
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL, United States of America
| | - Panfeng Fu
- Department of Pharmacology, University of Illinois, Chicago, IL, United States of America
| | - Vijay Putherickal
- Department of Pharmacology, University of Illinois, Chicago, IL, United States of America
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois, Chicago, IL, United States of America; Department of Medicine, University of Illinois, Chicago, IL, United States of America
| | - Anantha Harijith
- Department of Pediatrics, University of Illinois, Chicago, IL, United States of America; Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL, United States of America; Department of Pharmacology, University of Illinois, Chicago, IL, United States of America.
| |
Collapse
|
82
|
Lipid Mediators Regulate Pulmonary Fibrosis: Potential Mechanisms and Signaling Pathways. Int J Mol Sci 2020; 21:ijms21124257. [PMID: 32549377 PMCID: PMC7352853 DOI: 10.3390/ijms21124257] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease of unknown etiology characterized by distorted distal lung architecture, inflammation, and fibrosis. The molecular mechanisms involved in the pathophysiology of IPF are incompletely defined. Several lung cell types including alveolar epithelial cells, fibroblasts, monocyte-derived macrophages, and endothelial cells have been implicated in the development and progression of fibrosis. Regardless of the cell types involved, changes in gene expression, disrupted glycolysis, and mitochondrial oxidation, dysregulated protein folding, and altered phospholipid and sphingolipid metabolism result in activation of myofibroblast, deposition of extracellular matrix proteins, remodeling of lung architecture and fibrosis. Lipid mediators derived from phospholipids, sphingolipids, and polyunsaturated fatty acids play an important role in the pathogenesis of pulmonary fibrosis and have been described to exhibit pro- and anti-fibrotic effects in IPF and in preclinical animal models of lung fibrosis. This review describes the current understanding of the role and signaling pathways of prostanoids, lysophospholipids, and sphingolipids and their metabolizing enzymes in the development of lung fibrosis. Further, several of the lipid mediators and enzymes involved in their metabolism are therapeutic targets for drug development to treat IPF.
Collapse
|
83
|
Dexamethasone Attenuates X-Ray-Induced Activation of the Autotaxin-Lysophosphatidate-Inflammatory Cycle in Breast Tissue and Subsequent Breast Fibrosis. Cancers (Basel) 2020; 12:cancers12040999. [PMID: 32325715 PMCID: PMC7226295 DOI: 10.3390/cancers12040999] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
We recently showed that radiation-induced DNA damage in breast adipose tissue increases autotaxin secretion, production of lysophosphatidate (LPA) and expression of LPA1/2 receptors. We also established that dexamethasone decreases autotaxin production and LPA signaling in non-irradiated adipose tissue. In the present study, we showed that dexamethasone attenuated the radiation-induced increases in autotaxin activity and the concentrations of inflammatory mediators in cultured human adipose tissue. We also exposed a breast fat pad in mice to three daily 7.5 Gy fractions of X-rays. Dexamethasone attenuated radiation-induced increases in autotaxin activity in plasma and mammary adipose tissue and LPA1 receptor levels in adipose tissue after 48 h. DEX treatment during five daily fractions of 7.5 Gy attenuated fibrosis by ~70% in the mammary fat pad and underlying lungs at 7 weeks after radiotherapy. This was accompanied by decreases in CXCL2, active TGF-β1, CTGF and Nrf2 at 7 weeks in adipose tissue of dexamethasone-treated mice. Autotaxin was located at the sites of fibrosis in breast tissue and in the underlying lungs. Consequently, our work supports the premise that increased autotaxin production and lysophosphatidate signaling contribute to radiotherapy-induced breast fibrosis and that dexamethasone attenuated the development of fibrosis in part by blocking this process.
Collapse
|
84
|
Genetic deletion of Autotaxin from CD11b+ cells decreases the severity of experimental autoimmune encephalomyelitis. PLoS One 2020; 15:e0226050. [PMID: 32240164 PMCID: PMC7117669 DOI: 10.1371/journal.pone.0226050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/17/2020] [Indexed: 02/08/2023] Open
Abstract
Autotaxin (ATX) is a secreted lysophospholipase D catalyzing the extracellular production of lysophosphatidic acid (LPA), a growth factor-like signaling lysophospholipid. ATX and LPA signaling have been incriminated in the pathogenesis of different chronic inflammatory diseases and various types of cancer. In this report, deregulated ATX and LPA levels were detected in the spinal cord and plasma of mice during the development of experimental autoimmune encephalomyelitis (EAE). Among the different sources of ATX expression in the inflamed spinal cord, F4/80+ CD11b+ cells, mostly activated macrophages and microglia, were found to express ATX, further suggesting an autocrine role for ATX/LPA in their activation, an EAE hallmark. Accordingly, ATX genetic deletion from CD11b+ cells attenuated the severity of EAE, thus proposing a pathogenic role for the ATX/LPA axis in neuroinflammatory disorders.
Collapse
|
85
|
The roles of autotaxin/lysophosphatidic acid in immune regulation and asthma. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158641. [PMID: 32004685 DOI: 10.1016/j.bbalip.2020.158641] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/26/2019] [Accepted: 01/23/2020] [Indexed: 12/18/2022]
Abstract
Lysophosphatidic acid (LPA) species are present in almost all organ systems and play diverse roles through its receptors. Asthma is an airway disease characterized by chronic allergic inflammation where various innate and adaptive immune cells participate in establishing Th2 immune response. Here, we will review the contribution of LPA and its receptors to the functions of immune cells that play a key role in establishing allergic airway inflammation and aggravation of allergic asthma.
Collapse
|
86
|
Mir SS, Bhat HF, Bhat ZF. Dynamic actin remodeling in response to lysophosphatidic acid. J Biomol Struct Dyn 2020; 38:5253-5265. [PMID: 31920158 DOI: 10.1080/07391102.2019.1696230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Lysophosphatidic acid (LPA) is a multifunctional regulator of actin cytoskeleton that exerts a dramatic impact on the actin cytoskeleton to build a platform for diverse cellular processes including growth cone guidance, neurite retraction and cell motility. It has been implicated in the formation and dissociation of complexes between actin and actin binding proteins, supporting its role in actin remodeling. Several studies point towards its ability to facilitate formation of special cellular structures including focal adhesions and actin stress fibres by phosphoregulation of several actin associated proteins and their multiple regulatory kinases and phosphatases. In addition, multiple levels of crosstalk among the signaling cascades activated by LPA, affect actin cytoskeleton-mediated cell migration and chemotaxis which in turn play a crucial role in cancer metastasis. In the current review, we have attempted to highlight the role of LPA as an actin modulator which functions by controlling activities of specific cellular proteins that underlie mechanisms employed in cytoskeletal and pathophysiological events within the cell. Further studies on the actin affecting/remodeling activity of LPA in different cell types will no doubt throw up many surprises essential to gain a full understanding of its contribution in physiological processes as well as in diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saima S Mir
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu And Kashmir, India.,Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, Jammu And Kashmir, India
| | - Hina F Bhat
- Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, Jammu And Kashmir, India
| | - Zuhaib F Bhat
- Department of Wine, Food & Molecular Biosciences, Lincoln University, Lincoln, New Zealand.,Division of Livestock Products and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST-J), R.S. Pora, Jammu And Kashmir, India
| |
Collapse
|
87
|
Ho LTY, Osterwald A, Ruf I, Hunziker D, Mattei P, Challa P, Vann R, Ullmer C, Rao PV. Role of the autotaxin-lysophosphatidic acid axis in glaucoma, aqueous humor drainage and fibrogenic activity. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165560. [PMID: 31648019 DOI: 10.1016/j.bbadis.2019.165560] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/27/2019] [Accepted: 09/16/2019] [Indexed: 01/06/2023]
Abstract
Ocular hypertension due to impaired aqueous humor (AH) drainage through the trabecular meshwork (TM) is a major risk factor for glaucoma, a leading cause of irreversible blindness. However, the etiology of ocular hypertension remains unclear. Although autotaxin, a secreted lysophospholipase D and its catalytic product lysophosphatidic acid (LPA) have been shown to modulate AH drainage through TM, we do not have a complete understanding of their role and regulation in glaucoma patients, TM and AH outflow. This study reports a significant increase in the levels of autotaxin, lysophosphatidylcholine (LPC), LPA and connective tissue growth factor (CTGF) in the AH of Caucasian and African American open angle glaucoma patients relative to age-matched non-glaucoma patients. Treatment of human TM cells with dexamethasone, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) increased the levels of autotaxin protein, a response that was mitigated by inhibitors of glucocorticoid receptor, NF-kB and SMAD3. Dexamethasone, TNF-α, IL-1β and LPC treatment of TM cells also led to an increase in the levels of CTGF, fibronectin and collagen type 1 in an autotaxin dependent manner. Additionally, in perfused enucleated mouse eyes, autotaxin and LPC were noted to decrease, while inhibition of autotaxin was increased aqueous outflow through the TM. Taken together, these results provide additional evidence for dysregulation of the autotaxin-LPA axis in the AH of glaucoma patients, reveal molecular insights into the regulation of autotaxin expression in TM cells and the consequences of autotaxin inhibitors in suppressing the fibrogenic response and resistance to AH outflow through the TM.
Collapse
Affiliation(s)
- Leona T Y Ho
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Anja Osterwald
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Iris Ruf
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Daniel Hunziker
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Patrizio Mattei
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Pratap Challa
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Robin Vann
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Christoph Ullmer
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland.
| | - Ponugoti Vasanth Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
88
|
The Structural Binding Mode of the Four Autotaxin Inhibitor Types that Differentially Affect Catalytic and Non-Catalytic Functions. Cancers (Basel) 2019; 11:cancers11101577. [PMID: 31623219 PMCID: PMC6826961 DOI: 10.3390/cancers11101577] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022] Open
Abstract
Autotaxin (ATX) is a secreted lysophospholipase D, catalysing the conversion of lysophosphatidylcholine (LPC) to bioactive lysophosphatidic acid (LPA). LPA acts through two families of G protein-coupled receptors (GPCRs) controlling key cellular responses, and it is implicated in many physiological processes and pathologies. ATX, therefore, has been established as an important drug target in the pharmaceutical industry. Structural and biochemical studies of ATX have shown that it has a bimetallic nucleophilic catalytic site, a substrate-binding (orthosteric) hydrophobic pocket that accommodates the lipid alkyl chain, and an allosteric tunnel that can accommodate various steroids and LPA. In this review, first, we revisit what is known about ATX-mediated catalysis, crucially in light of allosteric regulation. Then, we present the known ATX catalysis-independent functions, including binding to cell surface integrins and proteoglycans. Next, we analyse all crystal structures of ATX bound to inhibitors and present them based on the four inhibitor types that are established based on the binding to the orthosteric and/or the allosteric site. Finally, in light of these data we discuss how mechanistic differences might differentially modulate the activity of the ATX-LPA signalling axis, and clinical applications including cancer.
Collapse
|
89
|
Briard E, Joshi AD, Shanmukhappa S, Ilovich O, Auberson YP. [
18
F]PRIMATX, a New Positron Emission Tomography Tracer for Imaging of Autotaxin in Lung Tissue and Tumor‐Bearing Mice. ChemMedChem 2019; 14:1493-1502. [DOI: 10.1002/cmdc.201900297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Emmanuelle Briard
- Global Discovery ChemistryNovartis Institutes for BioMedical ResearchNovartis Pharma AG Klybeckstrasse 141 4057 Basel Switzerland
| | - Aniket D. Joshi
- Clinical and Translational ImagingNovartis Pharmaceuticals 45 Sidney Street, 1203K Cambridge MA 01239 USA
| | - Shiva Shanmukhappa
- Discovery and Investigative Safety, Preclincial SafetyNovartis Institutes for BioMedical Research 250 Massachusetts Avenue Cambridge MA 01239 USA
| | - Ohad Ilovich
- inviCRO, LLC 27 Dry Dock Avenue, 7th Floor West Boston MA 02210 USA
| | - Yves P. Auberson
- Global Discovery ChemistryNovartis Institutes for BioMedical ResearchNovartis Pharma AG Klybeckstrasse 141 4057 Basel Switzerland
| |
Collapse
|
90
|
Maher TM, Kreuter M, Lederer DJ, Brown KK, Wuyts W, Verbruggen N, Stutvoet S, Fieuw A, Ford P, Abi-Saab W, Wijsenbeek M. Rationale, design and objectives of two phase III, randomised, placebo-controlled studies of GLPG1690, a novel autotaxin inhibitor, in idiopathic pulmonary fibrosis (ISABELA 1 and 2). BMJ Open Respir Res 2019; 6:e000422. [PMID: 31179008 PMCID: PMC6530501 DOI: 10.1136/bmjresp-2019-000422] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/23/2019] [Accepted: 05/02/2019] [Indexed: 12/19/2022] Open
Abstract
Introduction While current standard of care (SOC) for idiopathic pulmonary fibrosis (IPF) slows disease progression, prognosis remains poor. Therefore, an unmet need exists for novel, well-tolerated agents that reduce lung function decline and improve quality of life. Here we report the design of two phase III studies of the novel IPF therapy, GLPG1690. Methods and analysis Two identically designed, phase III, international, randomised, double-blind, placebo-controlled, parallel-group, multicentre studies (ISABELA 1 and 2) were initiated in November 2018. It is planned that, in each study, 750 subjects with IPF will be randomised 1:1:1 to receive oral GLPG1690 600 mg, GLPG1690 200 mg or placebo, once daily, on top of local SOC, for at least 52 weeks. The primary endpoint is rate of decline of forced vital capacity (FVC) over 52 weeks. Key secondary endpoints are week 52 composite endpoint of disease progression or all-cause mortality (defined as composite endpoint of first occurrence of ≥10% absolute decline in per cent predicted FVC or all-cause mortality at week 52); time to first respiratory-related hospitalisation until end of study; and week 52 change from baseline in the St George's Respiratory Questionnaire total score (a quality-of-life measure). Ethics and dissemination Studies will be conducted in accordance with Good Clinical Practice guidelines, Declaration of Helsinki principles, and local ethical and legal requirements. Results will be reported in a peer-reviewed publication. Trial registration numbers NCT03711162; NCT03733444.
Collapse
Affiliation(s)
- Toby M Maher
- NIHR Respiratory Clinical Research Facility, Royal Brompton Hospital, and Fibrosis Research Group, National Heart and Lung Institute, Imperial College, London, UK
| | - Michael Kreuter
- Centre for Interstitial and Rare Lung Diseases, Thoraxklinik, University Hospital Heidelberg, and German Center for Lung Research, Heidelberg, Germany
| | - David J Lederer
- Department of Medicine, Columbia University Irving Medical Center, New York City, New York, USA
| | - Kevin K Brown
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Wim Wuyts
- Unit for Interstitial Lung Diseases, Department of Pulmonary Medicine, University Hospitals Leuven, Leuven, Belgium
| | | | | | | | | | | | - Marlies Wijsenbeek
- Department of Respiratory Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
91
|
van der Aar E, Desrivot J, Dupont S, Heckmann B, Fieuw A, Stutvoet S, Fagard L, Van de Wal K, Helmer E. Safety, Pharmacokinetics, and Pharmacodynamics of the Autotaxin Inhibitor GLPG1690 in Healthy Subjects: Phase 1 Randomized Trials. J Clin Pharmacol 2019; 59:1366-1378. [PMID: 31012984 PMCID: PMC6767429 DOI: 10.1002/jcph.1424] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/28/2019] [Indexed: 12/29/2022]
Abstract
GLPG1690 is a novel autotaxin inhibitor in development for the treatment of idiopathic pulmonary fibrosis (IPF). We report phase 1 studies investigating the safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) of GLPG1690 in healthy subjects. We performed a first-in-human randomized, double-blind, placebo-controlled trial of single (20, 60, 150, 300, 600, 1000, 1500 mg) and multiple (14 days: 150 mg twice daily; 600 and 1000 mg once daily) ascending oral doses of GLPG1690 (NCT02179502), and a randomized, open-label, crossover relative bioavailability study to compare the PK of tablet and capsule formulations of GLPG1690 600 mg and to assess the effect of food on PK of the tablet formulation (NCT03143712). Forty and 13 subjects were randomized in the first-in-human and relative bioavailability studies, respectively. GLPG1690 was well tolerated, with no dose-limiting toxicity at all single and multiple doses. GLPG1690 was rapidly absorbed and eliminated, with a median tmax and mean t1/2 of approximately 2 and 5 hours, respectively. GLPG1690 exposure increased with increasing dose (mean Cmax , 0.09-19.01 µg/mL; mean AUC0-inf , 0.501-168 µg·h/mL, following single doses of GLPG1690 20-1500 mg). PD response, evidenced by rapid reduction in plasma lysophosphatidic acid (LPA) C18:2 levels, increased with increasing GLPG1690 plasma levels, plateauing at approximately 80% reduction in LPA C18:2 at around 0.6 µg/mL GLPG1690. Tablet and capsule formulations had similar PK profiles, and no clinically significant food effect was observed when comparing tablets taken in fed and fasted states. The safety, tolerability, and PK/PD profiles of GLPG1690 support continued clinical development for IPF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Eric Helmer
- Galapagos Biotech Limited, Cambridge, United Kingdom
| |
Collapse
|
92
|
Simiao Pill Attenuates Collagen-Induced Arthritis in Rats through Suppressing the ATX-LPA and MAPK Signalling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7498527. [PMID: 31001354 PMCID: PMC6437962 DOI: 10.1155/2019/7498527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/15/2019] [Accepted: 02/25/2019] [Indexed: 12/13/2022]
Abstract
Objective Simiao pill (SM), a traditional Chinese formula, has been used as an antirheumatic drug in clinical practice for hundreds of years. Rheumatoid arthritis (RA) is characterized by chronic synovial inflammation and hyperplasia, cartilage destruction, and joint damage. This study was designed to investigate the protective effects of SM on collagen-induced arthritis (CIA) in rats. It also aimed to explore whether this protective effect of SM was related to the inhibition of the ATX-LPA and MAPK signalling pathways. Materials and Methods Rats were injected with a collagen II emulsion at the end of the tail and on the back to induce arthritis. Treatment with different doses of SM was conducted by intragastric administration. Then, body weights and arthritis scores were measured. The serum levels of tumour necrosis factor (TNF)-α, interleukin (IL)-1β, C-reactive protein (CRP), osteoprotegerin (OPG), autotaxin (ATX), and lysophosphatidic acid (LPA) were determined by ELISA. Pathological changes in the joints were measured by micro-CT and assessed via haematoxylin-eosin (H&E) staining. The expression of ATX, LPA receptor 1 (LPA1) was detected by immunohistochemical staining, and the expression of mitogen-activated protein kinase (MAPK) was detected by Western blotting. Results SM significantly alleviated arthritis symptoms, inhibited bone erosion, and decreased the levels of TNF-α, IL-1β, CRP, ATX, and LPA in the sera of CIA rats. Importantly, SM clearly reduced the protein expression of LPA1 and ATX. The activation of the MAPK signalling pathway was also inhibited by SM in the synovial tissues of CIA rats. Conclusions The antirheumatic effects of SM were associated with the regulation of the ATX-LPA and MAPK pathways, the suppression of proinflammatory cytokine production, and the alleviation of cartilage and bone injury. These findings suggest that SM might be a promising alternative candidate for RA therapy.
Collapse
|
93
|
Ninou I, Kaffe E, Müller S, Budd DC, Stevenson CS, Ullmer C, Aidinis V. Pharmacologic targeting of the ATX/LPA axis attenuates bleomycin-induced pulmonary fibrosis. Pulm Pharmacol Ther 2018; 52:32-40. [DOI: 10.1016/j.pupt.2018.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/16/2018] [Indexed: 02/08/2023]
|