51
|
Lauman P, Dennis JJ. Advances in Phage Therapy: Targeting the Burkholderia cepacia Complex. Viruses 2021; 13:1331. [PMID: 34372537 PMCID: PMC8310193 DOI: 10.3390/v13071331] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 01/16/2023] Open
Abstract
The increasing prevalence and worldwide distribution of multidrug-resistant bacterial pathogens is an imminent danger to public health and threatens virtually all aspects of modern medicine. Particularly concerning, yet insufficiently addressed, are the members of the Burkholderia cepacia complex (Bcc), a group of at least twenty opportunistic, hospital-transmitted, and notoriously drug-resistant species, which infect and cause morbidity in patients who are immunocompromised and those afflicted with chronic illnesses, including cystic fibrosis (CF) and chronic granulomatous disease (CGD). One potential solution to the antimicrobial resistance crisis is phage therapy-the use of phages for the treatment of bacterial infections. Although phage therapy has a long and somewhat checkered history, an impressive volume of modern research has been amassed in the past decades to show that when applied through specific, scientifically supported treatment strategies, phage therapy is highly efficacious and is a promising avenue against drug-resistant and difficult-to-treat pathogens, such as the Bcc. In this review, we discuss the clinical significance of the Bcc, the advantages of phage therapy, and the theoretical and clinical advancements made in phage therapy in general over the past decades, and apply these concepts specifically to the nascent, but growing and rapidly developing, field of Bcc phage therapy.
Collapse
Affiliation(s)
| | - Jonathan J. Dennis
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada;
| |
Collapse
|
52
|
Nasser A, Dallal MMS, Jahanbakhshi S, Azimi T, Nikouei L. Staphylococcus aureus: biofilm formation and strategies against it. Curr Pharm Biotechnol 2021; 23:664-678. [PMID: 34238148 DOI: 10.2174/1389201022666210708171123] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/09/2021] [Accepted: 05/31/2021] [Indexed: 11/22/2022]
Abstract
The formation of Staphylococcus aureus biofilm causes significant infections in the human body. Biofilm forms through the aggregation of bacterial species and brings about many complications. It mediates drug resistance and persistence and facilitates the recurrence of infection at the end of antimicrobial therapy. Biofilm formation goes through a series of steps to complete, and any interference in these steps can disrupt its formation. Such interference may occur at any stage of biofilm production, including attachment, monolayer formation, and accumulation. Interfering agents can act as quorum sensing inhibitors and interfere in the functionality of quorum sensing receptors, attachment inhibitors and affect the cell hydrophobicity. Among these inhibiting strategies, attachment inhibitors could serve as the best agents against biofilm formation. If pathogens abort the attachment, the following stages of biofilm formation, e.g., accumulation and dispersion, will fail to materialize. Inhibition at this stage leads to suppression of virulence factors and invasion. One of the best-known inhibitors is a chelator that collects metal, Fe+, Zn+, and magnesium critical for biofilm formation. These influential factors in the binding and formation of biofilm are investigated, and the coping strategy is discussed. This review examines the stages of biofilm formation and determines what factors interfere in the continuity of these steps. Finally, the inhibition strategies are investigated, reviewed, and discussed. Keywords: Biofilm, Staphylococcus, Biofilm inhibitor, Dispersion, Antibiofilm agent, EPS, PIA.
Collapse
Affiliation(s)
- Ahmad Nasser
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shiva Jahanbakhshi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Taher Azimi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Nikouei
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
53
|
Improving Phage-Biofilm In Vitro Experimentation. Viruses 2021; 13:v13061175. [PMID: 34205417 PMCID: PMC8234374 DOI: 10.3390/v13061175] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Bacteriophages or phages, the viruses of bacteria, are abundant components of most ecosystems, including those where bacteria predominantly occupy biofilm niches. Understanding the phage impact on bacterial biofilms therefore can be crucial toward understanding both phage and bacterial ecology. Here, we take a critical look at the study of bacteriophage interactions with bacterial biofilms as carried out in vitro, since these studies serve as bases of our ecological and therapeutic understanding of phage impacts on biofilms. We suggest that phage-biofilm in vitro experiments often may be improved in terms of both design and interpretation. Specific issues discussed include (a) not distinguishing control of new biofilm growth from removal of existing biofilm, (b) inadequate descriptions of phage titers, (c) artificially small overlying fluid volumes, (d) limited explorations of treatment dosing and duration, (e) only end-point rather than kinetic analyses, (f) importance of distinguishing phage enzymatic from phage bacteriolytic anti-biofilm activities, (g) limitations of biofilm biomass determinations, (h) free-phage interference with viable-count determinations, and (i) importance of experimental conditions. Toward bettering understanding of the ecology of bacteriophage-biofilm interactions, and of phage-mediated biofilm disruption, we discuss here these various issues as well as provide tips toward improving experiments and their reporting.
Collapse
|
54
|
Walsh L, Johnson CN, Hill C, Ross RP. Efficacy of Phage- and Bacteriocin-Based Therapies in Combatting Nosocomial MRSA Infections. Front Mol Biosci 2021; 8:654038. [PMID: 33996906 PMCID: PMC8116899 DOI: 10.3389/fmolb.2021.654038] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is a pathogen commonly found in nosocomial environments where infections can easily spread - especially given the reduced immune response of patients and large overlap between personnel in charge of their care. Although antibiotics are available to treat nosocomial infections, the increased occurrence of antibiotic resistance has rendered many treatments ineffective. Such is the case for methicillin resistant S. aureus (MRSA), which has continued to be a threat to public health since its emergence. For this reason, alternative treatment technologies utilizing antimicrobials such as bacteriocins, bacteriophages (phages) and phage endolysins are being developed. These antimicrobials provide an advantage over antibiotics in that many have narrow inhibition spectra, enabling treatments to be selected based on the target (pathogenic) bacterium while allowing for survival of commensal bacteria and thus avoiding collateral damage to the microbiome. Bacterial resistance to these treatments occurs less frequently than with antibiotics, particularly in circumstances where combinatory antimicrobial therapies are used. Phage therapy has been well established in Eastern Europe as an effective treatment against bacterial infections. While there are no Randomized Clinical Trials (RCTs) to our knowledge examining phage treatment of S. aureus infections that have completed all trial phases, numerous clinical trials are underway, and several commercial phage preparations are currently available to treat S. aureus infections. Bacteriocins have primarily been used in the food industry for bio-preservation applications. However, the idea of repurposing bacteriocins for human health is an attractive one considering their efficacy against many bacterial pathogens. There are concerns about the ability of bacteriocins to survive the gastrointestinal tract given their proteinaceous nature, however, this obstacle may be overcome by altering the administration route of the therapy through encapsulation, or by bioengineering protease-resistant variants. Obstacles such as enzymatic digestion are less of an issue for topical/local administration, for example, application to the surface of the skin. Bacteriocins have also shown impressive synergistic effects when used in conjunction with other antimicrobials, including antibiotics, which may allow antibiotic-based therapies to be used more sparingly with less resistance development. This review provides an updated account of known bacteriocins, phages and phage endolysins which have demonstrated an impressive ability to kill S. aureus strains. In particular, examples of antimicrobials with the ability to target MRSA strains and their subsequent use in a clinical setting are outlined.
Collapse
Affiliation(s)
- Lauren Walsh
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Crystal N Johnson
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Cork, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Cork, Ireland
| |
Collapse
|
55
|
Characterization of a Novel Bacteriophage Henu2 and Evaluation of the Synergistic Antibacterial Activity of Phage-Antibiotics. Antibiotics (Basel) 2021; 10:antibiotics10020174. [PMID: 33572473 PMCID: PMC7916345 DOI: 10.3390/antibiotics10020174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus phage Henu2 was isolated from a sewage sample collected in Kaifeng, China, in 2017. In this study, Henu2, a linear double-stranded DNA virus, was sequenced and found to be 43,513 bp long with 35% G + C content and 63 putative open reading frames (ORFs). Phage Henu2 belongs to the family Siphoviridae and possesses an isometric head (63 nm in diameter). The latent time and burst size of Henu2 were approximately 20 min and 7.8 plaque forming unit (PFU)/infected cells. The Henu2 maintained infectivity over a wide range of temperature (10–60 °C) and pH values (4–12). Phylogenetic and comparative genomic analyses indicate that Staphylococcus aureus phage Henu2 should be a new member of the family of Siphoviridae class-II. In this paper, Phage Henu2 alone exhibited weak inhibitory activity on the growth of S. aureus. However, the combination of phage Henu2 and some antibiotics or oxides could effectively inhibit the growth of S. aureus, with a decrease of more than three logs within 24 h in vitro. These results provide useful information that phage Henu2 can be combined with antibiotics to increase the production of phage Henu2 and thus enhance the efficacy of bacterial killing.
Collapse
|
56
|
Kranjec C, Morales Angeles D, Torrissen Mårli M, Fernández L, García P, Kjos M, Diep DB. Staphylococcal Biofilms: Challenges and Novel Therapeutic Perspectives. Antibiotics (Basel) 2021; 10:131. [PMID: 33573022 PMCID: PMC7911828 DOI: 10.3390/antibiotics10020131] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Staphylococci, like Staphylococcus aureus and S. epidermidis, are common colonizers of the human microbiota. While being harmless in many cases, many virulence factors result in them being opportunistic pathogens and one of the major causes of hospital-acquired infections worldwide. One of these virulence factors is the ability to form biofilms-three-dimensional communities of microorganisms embedded in an extracellular polymeric matrix (EPS). The EPS is composed of polysaccharides, proteins and extracellular DNA, and is finely regulated in response to environmental conditions. This structured environment protects the embedded bacteria from the human immune system and decreases their susceptibility to antimicrobials, making infections caused by staphylococci particularly difficult to treat. With the rise of antibiotic-resistant staphylococci, together with difficulty in removing biofilms, there is a great need for new treatment strategies. The purpose of this review is to provide an overview of our current knowledge of the stages of biofilm development and what difficulties may arise when trying to eradicate staphylococcal biofilms. Furthermore, we look into promising targets and therapeutic methods, including bacteriocins and phage-derived antibiofilm approaches.
Collapse
Affiliation(s)
- Christian Kranjec
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Danae Morales Angeles
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Marita Torrissen Mårli
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Lucía Fernández
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute of Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (L.F.); (P.G.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Pilar García
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute of Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (L.F.); (P.G.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Dzung B. Diep
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| |
Collapse
|
57
|
Tian F, Li J, Nazir A, Tong Y. Bacteriophage - A Promising Alternative Measure for Bacterial Biofilm Control. Infect Drug Resist 2021; 14:205-217. [PMID: 33505163 PMCID: PMC7829120 DOI: 10.2147/idr.s290093] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/23/2020] [Indexed: 01/09/2023] Open
Abstract
Bacterial biofilms can enhance bacteria's viability by providing resistance against antibiotics and conventional disinfectants. The existence of biofilm is a serious threat to human health, causing incalculable loss. Therefore, new strategies to deal with bacterial biofilms are needed. Bacteriophages are unique due to their activity on bacteria and do not pose a threat to humans. Consequently, they are considered safe alternatives to drugs for the treatment of bacterial diseases. They can effectively obliterate bacterial biofilms and have great potential in medical treatment, the food industry, and pollution control. There are intricate mechanisms of interaction between phages and biofilms. Biofilms may prevent the invasion of phages, and phages can kill bacteria for biofilm control purposes or influence the formation of biofilms. At present, there are various measures for the prevention and control of biofilms through phages, including the combined use of drugs and the application of phage cocktails. This article mainly reviews the function and formation process of bacterial biofilms, summarizes the different mechanisms between phages and biofilms, briefly explains the phage usage for the control of bacterial biofilms, and promotes phage application maintenance human health and the protection of the natural environment.
Collapse
Affiliation(s)
- Fengjuan Tian
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Jing Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Amina Nazir
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| |
Collapse
|
58
|
The Role of Subinhibitory Concentrations of Daptomycin and Tigecycline in Modulating Virulence in Staphylococcus aureus. Antibiotics (Basel) 2021; 10:antibiotics10010039. [PMID: 33401579 PMCID: PMC7823975 DOI: 10.3390/antibiotics10010039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/06/2020] [Accepted: 12/17/2020] [Indexed: 11/28/2022] Open
Abstract
Staphylococcus aureus (S. aureus) infections are notoriously complicated by the ability of the organism to grow in biofilms and are difficult to eradicate with antimicrobial therapy. The purpose of the current study was to clarify the influence of sub-inhibitory concentrations (sub-MICs) of daptomycin and tigecycline antibiotics on biofilm adhesion factors and exoproteins expressions by S. aureus clinical isolates. Six clinical isolates representing positive biofilm S. aureus clones (3 methicillin-sensitive S. aureus (MSSA) and 3 methicillin-resistant S. aureus (MRSA)) were grown with sub-MICs (0.5 MIC) of two antibiotics (daptomycin and tigecycline) for 12 h of incubation. RNA extracted from culture pellets was used via relative quantitative real-time-PCR (qRT-PCR) to determine expression of specific adhesion (fnbA, fnbB, clfA, clfB, fib, ebps, cna, eno) and biofilm (icaADBC) genes. To examine the effect of sub-MIC of these antibiotics on the expression of extracellular proteins, samples from the culture supernatants of six isolates were collected after 12 h of treatment with or without tigecycline in order to profile protein production via 2D gel sodium dodecyl sulfate-polyacrylamide gel electrophoresis (2D gel-SDS-PAGE). Sub-MIC treatment of all clinical MRSA and MSSA strains with daptomycin or tigecycline dramatically induced or suppressed fnbA, fnbB, clfA, clfB, fib, ebps, cna, eno, and icaADBC gene expression. Furthermore, sub-MIC use of tigecycline significantly reduced the total number of separated protein spots across all the isolates, as well as decreasing production of certain individual proteins. Collectively, this study showed very different responses in terms of both gene expression and protein secretion across the various isolates. In addition, our results suggest that sub-MIC usage of daptomycin and tigecycline could signal virulence induction by S. aureus via the regulation of biofilm adhesion factor genes and exoproteins. If translating findings to the clinical treatment of S. aureus, the therapeutic regimen should be adapted depending on antibiotic, the virulence factor and strain type.
Collapse
|
59
|
Meretoudi A, Banti CN, Siafarika P, Kalampounias AG, Hadjikakou SK. Tetracycline Water Soluble Formulations with Enhanced Antimicrobial Activity. Antibiotics (Basel) 2020; 9:E845. [PMID: 33256054 PMCID: PMC7760183 DOI: 10.3390/antibiotics9120845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 11/17/2022] Open
Abstract
The negligible water solubility of tetracycline (TC), a well-known antibiotic of clinical use, is the major disadvantage for its oral administration. With the aim to improve the water solubility of TC, the micelles of formulae SLS@TC and CTAB@TC (SLS = sodium lauryl sulphate and CTAB = cetrimonium bromide) were synthesized. The micelles SLS@TC and CTAB@TC were characterized by melting point (m.p.), thermogravimetric differential thermal analysis (TG-DTA), differential scanning calorimetry (DTG/DSC), attenuated total reflection spectroscopy (FT-IR-ATR), ultra-violet visible (UV/vis) spectroscopy, proton nucleus magnetic resonance (1H-NMR) spectroscopy, and the ultrasonically-induced biregringence technique. The antimicrobial activity of SLS@TC and CTAB@TC was evaluated, by means of minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and inhibition zone (IZ), against the Gram negative bacterial strains Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli) and the Gram positive ones of the genus of Staphylococcus epidermidis (S. epidermidis) and Staphylococcus aureus (S. aureus). Generally, both micelles show better activity than that of TC against the microbial strains tested. Thus, the MIC value of CTAB@TC is 550-fold higher than that of free TC against S. epidermidis. Despite the stronger activity of CTAB@TC than SLS@TC against both Gram negative and Gram positive microbes, SLS@TC is classified as a bactericidal agent (in that it eliminates 99.9% of the microbes), in contrast to CTAB@TC, which is bacteriostatic one (inhibits, but does not kill the organisms). The toxicity of SLS@TC and CTAB@TC was evaluated against human corneal eukaryotic cells (HCECs). Moreover, SLS@TC and CTAB@TC exhibit low in vivo toxicity against Artemia salina, even at concentrations up to threefold higher than those of their MICmax. Therefore, SLS@TC and CTAB@TC can be candidates for the development of new antibiotics.
Collapse
Affiliation(s)
- A. Meretoudi
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
| | - C. N. Banti
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
| | - P. Siafarika
- Physical Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
| | - A. G. Kalampounias
- Physical Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| | - S. K. Hadjikakou
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|
60
|
Wang L, Tkhilaishvili T, Trampuz A, Gonzalez Moreno M. Evaluation of Staphylococcal Bacteriophage Sb-1 as an Adjunctive Agent to Antibiotics Against Rifampin-Resistant Staphylococcus aureus Biofilms. Front Microbiol 2020; 11:602057. [PMID: 33262752 PMCID: PMC7686474 DOI: 10.3389/fmicb.2020.602057] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Rifampin plays a crucial role in the treatment of staphylococcal implant-associated infection, as it is the only antibiotic capable of eradicating Staphylococcus aureus biofilms. However, the emergence of rifampin resistance strongly limits its use. Combinatorial therapy of antibiotics and bacteriophages may represent a strategy to overcome the resistance. Here, we evaluated the activity of staphylococcal bacteriophage Sb-1 in combination with different antibiotics against the biofilms of 10 rifampin-resistant S. aureus clinical strains, including MRSA and MSSA. S. aureus biofilms formed on porous glass beads were exposed to antibiotics alone or combined with Sb-1 simultaneously or staggered (first Sb-1 for 24 h followed by antibiotic). Recovered bacteria were detected by measuring growth-related heat production at 37°C (isothermal microcalorimetry) and the biofilm eradication was assessed by sonication of beads and plating of the resulting sonication fluid. Minimum biofilm eradication concentration (MBEC) was defined as the lowest concentration of antibiotic required to kill all adherent bacteria, resulting in absence of growth after plating the sonication fluid. Tested antibiotics presented high MBEC values when administered alone (64 to > 1,024 μg/ml). The simultaneous or staggered combination of Sb-1 with daptomycin showed the highest activity against all MRSA biofilms, whereas the exposure to Sb-1 with vancomycin showed no improved anti-biofilm activity. Staggered administration of Sb-1 and flucloxacillin, cefazolin, or fosfomycin improved the antibiofilm activity in four out of six MSSA, whereas simultaneous exposure exhibited similar or lesser synergy. In conclusion, the combinatorial effect of Sb-1 and antibiotics enabled to eradicate rifampin-resistant S. aureus biofilms in vitro.
Collapse
Affiliation(s)
- Lei Wang
- Center for Musculoskeletal Surgery, Humboldt-Universität zu Berlin and Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tamta Tkhilaishvili
- Center for Musculoskeletal Surgery, Humboldt-Universität zu Berlin and Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andrej Trampuz
- Center for Musculoskeletal Surgery, Humboldt-Universität zu Berlin and Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,BIH Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mercedes Gonzalez Moreno
- Center for Musculoskeletal Surgery, Humboldt-Universität zu Berlin and Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,BIH Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
61
|
Adjunctive Use of Phage Sb-1 in Antibiotics Enhances Inhibitory Biofilm Growth Activity versus Rifampin-Resistant Staphylococcus aureus Strains. Antibiotics (Basel) 2020; 9:antibiotics9110749. [PMID: 33138034 PMCID: PMC7692760 DOI: 10.3390/antibiotics9110749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 01/06/2023] Open
Abstract
Effective antimicrobials are crucial for managing Staphylococcus aureus implant-associated bone infections (IABIs), particularly for infections due to rifampin-resistant S. aureus (RRSA). Failure to remove the implant results in persistent infection; thus, prolonged suppressive antibiotic therapy may be a reasonable alternative. However, a high incidence of adverse events can necessitate the discontinuation of therapy. In this scenario, commercial Staphylococcal bacteriophage Sb-1 combined with antibiotics is an option, showing a promising synergistic activity to facilitate the treatment of biofilm infections. Therefore, we evaluated the efficacy of the inhibitory activity of five antibiotics (doxycycline, levofloxacin, clindamycin, linezolid, and rifampin) alone or combined with phage Sb-1 (106 PFU/mL) in a simultaneous and staggered manner, to combat five clinical RRSA strains and the laboratory strain MRSA ATCC 43300 in 72 h by isothermal microcalorimetry. The synergistic effects were observed when phage Sb-1 (106 PFU/mL) combined with antibiotics had at least 2 log-reduction lower concentrations, represented by a fractional biofilm inhibitory concentration (FBIC) of <0.25. Among the antibiotics that we tested, the synergistic effect of all six strains was achieved in phage/doxycycline and phage/linezolid combinations in a staggered manner, whereas a distinctly noticeable improvement in inhibitory activity was observed in the phage/doxycycline combination with a low concentration of doxycycline. Moreover, phage/levofloxacin and phage/clindamycin combinations also showed a synergistic inhibitory effect against five strains and four strains, respectively. Interestingly, the synergistic inhibitory activity was also observed in the doxycycline-resistant and levofloxacin-resistant profile strains. However, no inhibitory activity was observed for all of the combinations in a simultaneous manner, as well as for the phage/rifampin combination in a staggered manner. These results have implications for alternative, combined, and prolonged suppressive antimicrobial treatment approaches.
Collapse
|
62
|
Wang L, Tkhilaishvili T, Bernal Andres B, Trampuz A, Gonzalez Moreno M. Bacteriophage-antibiotic combinations against ciprofloxacin/ceftriaxone-resistant Escherichia coli in vitro and in an experimental Galleria mellonella model. Int J Antimicrob Agents 2020; 56:106200. [PMID: 33075514 DOI: 10.1016/j.ijantimicag.2020.106200] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/07/2020] [Accepted: 10/11/2020] [Indexed: 02/08/2023]
Abstract
Escherichia coli is the most common cause of Gram-negative prosthetic joint infections (PJIs) and ciprofloxacin is the first-line antibiofilm antibiotic. Due to the emergence of fluoroquinolone resistance, management of E. coli PJIs has become challenging and is associated with high treatment failure rates. We evaluated the efficacy of a newly isolated bacteriophage ɸWL-3 as a therapeutic agent in combination with ciprofloxacin, fosfomycin, gentamicin, meropenem or ceftriaxone against biofilm of a ciprofloxacin/ceftriaxone-resistant E. coli strain and the ATCC 25922 reference strain. ɸWL-3 was first characterised in terms of virion morphology, absorption rate, burst size and killing kinetics against both E. coli strains. The tested antibiotics presented high inhibitory concentrations (ranging from 16 to >1024 μg/mL) when tested alone against biofilms. Co-administration of ɸWL-3 with antibiotics improved the antibiotic efficacy against biofilm, especially after staggered exposure, reducing the minimum biofilm bactericidal concentration (MBBC) up to 512 times. The in vivo antimicrobial activity of ɸWL-3/fosfomycin combination against both E. coli strains was assessed in a Galleria mellonella invertebrate infection model. Treatment of infected larvae after lethal doses of E. coli resulted in enhanced survival rates when combinatorial therapy with ɸWL-3/fosfomycin was applied on E. coli ATCC 25922-infected larvae compared with monotherapy, but not for EC1-infected larvae, which we speculated could be due to higher release of endotoxins in a shorter period in EC1-infected larvae exposed to ɸWL-3. Our study provides new insights into the use of bacteriophages and antibiotics in the treatment of biofilm-associated infections caused by antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Lei Wang
- Centre for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Tamta Tkhilaishvili
- Centre for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Beatriz Bernal Andres
- Centre for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Andrej Trampuz
- BIH Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin; Augustenburger Platz 1 (Südstraße 2), 13353 Berlin, Germany
| | - Mercedes Gonzalez Moreno
- BIH Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin; Augustenburger Platz 1 (Südstraße 2), 13353 Berlin, Germany.
| |
Collapse
|
63
|
Rotman SG, Sumrall E, Ziadlou R, Grijpma DW, Richards RG, Eglin D, Moriarty TF. Local Bacteriophage Delivery for Treatment and Prevention of Bacterial Infections. Front Microbiol 2020; 11:538060. [PMID: 33072008 PMCID: PMC7531225 DOI: 10.3389/fmicb.2020.538060] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
As viruses with high specificity for their bacterial hosts, bacteriophages (phages) are an attractive means to eradicate bacteria, and their potential has been recognized by a broad range of industries. Against a background of increasing rates of antibiotic resistance in pathogenic bacteria, bacteriophages have received much attention as a possible "last-resort" strategy to treat infections. The use of bacteriophages in human patients is limited by their sensitivity to acidic pH, enzymatic attack and short serum half-life. Loading phage within a biomaterial can shield the incorporated phage against many of these harmful environmental factors, and in addition, provide controlled release for prolonged therapeutic activity. In this review, we assess the different classes of biomaterials (i.e., biopolymers, synthetic polymers, and ceramics) that have been used for phage delivery and describe the processing methodologies that are compatible with phage embedding or encapsulation. We also elaborate on the clinical or pre-clinical data generated using these materials. While a primary focus is placed on the application of phage-loaded materials for treatment of infection, we also include studies from other translatable fields such as food preservation and animal husbandry. Finally, we summarize trends in the literature and identify current barriers that currently prevent clinical application of phage-loaded biomaterials.
Collapse
Affiliation(s)
- Stijn Gerard Rotman
- AO Research Institute Davos, AO Foundation, Davos, Switzerland.,MIRA Institute for Biomedical Engineering and Technical Medicine, Department of Biomaterials Science and Technology, University of Twente, Enschede, Netherlands
| | - Eric Sumrall
- AO Research Institute Davos, AO Foundation, Davos, Switzerland
| | - Reihane Ziadlou
- AO Research Institute Davos, AO Foundation, Davos, Switzerland.,Department of Biomedical Engineering, Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Dirk W Grijpma
- MIRA Institute for Biomedical Engineering and Technical Medicine, Department of Biomaterials Science and Technology, University of Twente, Enschede, Netherlands
| | | | - David Eglin
- AO Research Institute Davos, AO Foundation, Davos, Switzerland.,MIRA Institute for Biomedical Engineering and Technical Medicine, Department of Biomaterials Science and Technology, University of Twente, Enschede, Netherlands
| | | |
Collapse
|
64
|
Lamret F, Colin M, Mongaret C, Gangloff SC, Reffuveille F. Antibiotic Tolerance of Staphylococcus aureus Biofilm in Periprosthetic Joint Infections and Antibiofilm Strategies. Antibiotics (Basel) 2020; 9:E547. [PMID: 32867208 PMCID: PMC7558573 DOI: 10.3390/antibiotics9090547] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
The need for bone and joint prostheses is currently growing due to population aging, leading to an increase in prosthetic joint infection cases. Biofilms represent an adaptive and quite common bacterial response to several stress factors which confer an important protection to bacteria. Biofilm formation starts with bacterial adhesion on a surface, such as an orthopedic prosthesis, further reinforced by matrix synthesis. The biofilm formation and structure depend on the immediate environment of the bacteria. In the case of infection, the periprosthetic joint environment represents a particular interface between bacteria, host cells, and the implant, favoring biofilm initiation and maturation. Treating such an infection represents a huge challenge because of the biofilm-specific high tolerance to antibiotics and its ability to evade the immune system. It is crucial to understand these mechanisms in order to find new and adapted strategies to prevent and eradicate implant-associated infections. Therefore, adapted models mimicking the infectious site are of utmost importance to recreate a relevant environment in order to test potential antibiofilm molecules. In periprosthetic joint infections, Staphylococcus aureus is mainly involved because of its high adaptation to the human physiology. The current review deals with the mechanisms involved in the antibiotic resistance and tolerance of Staphylococcus aureus in the particular periprosthetic joint infection context, and exposes different strategies to manage these infections.
Collapse
Affiliation(s)
- Fabien Lamret
- EA 4691 Biomatériaux et Inflammation en Site Osseux (BIOS), Université de Reims Champagne-Ardenne, SFR Cap Santé (FED 4231), 51097 Reims, France; (F.L.); (M.C.); (C.M.); (S.C.G.)
| | - Marius Colin
- EA 4691 Biomatériaux et Inflammation en Site Osseux (BIOS), Université de Reims Champagne-Ardenne, SFR Cap Santé (FED 4231), 51097 Reims, France; (F.L.); (M.C.); (C.M.); (S.C.G.)
| | - Céline Mongaret
- EA 4691 Biomatériaux et Inflammation en Site Osseux (BIOS), Université de Reims Champagne-Ardenne, SFR Cap Santé (FED 4231), 51097 Reims, France; (F.L.); (M.C.); (C.M.); (S.C.G.)
- Service Pharmacie, CHU Reims, 51097 Reims, France
| | - Sophie C. Gangloff
- EA 4691 Biomatériaux et Inflammation en Site Osseux (BIOS), Université de Reims Champagne-Ardenne, SFR Cap Santé (FED 4231), 51097 Reims, France; (F.L.); (M.C.); (C.M.); (S.C.G.)
| | - Fany Reffuveille
- EA 4691 Biomatériaux et Inflammation en Site Osseux (BIOS), Université de Reims Champagne-Ardenne, SFR Cap Santé (FED 4231), 51097 Reims, France; (F.L.); (M.C.); (C.M.); (S.C.G.)
| |
Collapse
|
65
|
Mahmoud ERA, Ahmed HAH, Abo-senna ASM, Riad OKM, Abo- Shadi MMAA–R. Isolation and characterization of six gamma-irradiated bacteriophages specific for MRSA and VRSA isolated from skin infections. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2020. [DOI: 10.1080/16878507.2020.1795564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Hala Ahmed Hussein Ahmed
- Department of Radiation Microbiology, National Center for Radiation Research and Technology, Egyptian Atomic, Energy Authority, Cairo, Egypt
| | | | - Omnia Karem M. Riad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | | |
Collapse
|
66
|
Ferry T, Batailler C, Petitjean C, Chateau J, Fevre C, Forestier E, Brosset S, Leboucher G, Kolenda C, Laurent F, Lustig S. The Potential Innovative Use of Bacteriophages Within the DAC ® Hydrogel to Treat Patients With Knee Megaprosthesis Infection Requiring "Debridement Antibiotics and Implant Retention" and Soft Tissue Coverage as Salvage Therapy. Front Med (Lausanne) 2020; 7:342. [PMID: 32850878 PMCID: PMC7410981 DOI: 10.3389/fmed.2020.00342] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022] Open
Abstract
Infection is the most dramatic complication in patients with knee megaprosthesis. Its management is more complex in comparison with patients with primary arthroplasty, with a high risk of relapse. Lytic bacteriophages are considered to have a high potential in patients with prosthetic joint infection as it has been demonstrated that they have a synergistic anti-biofilm activity with antibiotics. The Defensive Antibacterial Coating (DAC®) hydrogel is a hydrogel available in the market that has been designed to prevent the adherence of bacteria on a prosthetic joint and to have the ability to transport and release anti-bacterial substances such as antibiotics. We report here the case of a patient with a catastrophic relapsing Staphylococcus aureus knee megaprosthesis infection without prosthesis loosening. We firstly perform phage susceptibility testing of the patient's strain to select an active cocktail, under the supervision of the French health authority. Then, we performed, as salvage therapy, a debridement and implant retention procedure with application of a selected cocktail of bacteriophages that was prepared extemporaneously within the DAC® hydrogel. A free flap for soft tissue coverage was required and empirical antibiotic treatment was started immediately after the surgery. Unfortunately, at 5 days after the surgery, while the local aspect of the surgical site was favorable, the patient developed myocardial infarction which required emergency stenting and dual antiplatelet therapy that were rapidly associated with bleeding at the surgical site, leading to a new prosthesis exposition. As a consequence, a transfemoral amputation was finally performed several months later. We also evaluated in vitro the impact of DAC® hydrogel on bacteriophage activity and showed that the selected phages were released very rapidly from the DAC® hydrogel, and then their titers were stable for at least 6 h. This case demonstrated the feasibility of the use of bacteriophages within a hydrogel to treat patients for knee megaprosthesis infection during a debridement procedure. The implementation requires identification of the pathogen before the debridement in order to perform phage susceptibility testing of the patient's strain and to identify a hospital pharmacist who will accept to do the preparation and to take the responsibility of the magistral preparation.
Collapse
Affiliation(s)
- Tristan Ferry
- Service des Maladies Infectieuses et Tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France.,Centre Interrégional de Référence pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.,CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, Lyon, France
| | - Cécile Batailler
- Université Claude Bernard Lyon 1, Lyon, France.,Centre Interrégional de Référence pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.,Service de Chirurgie Orthopédique, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | | | - Joseph Chateau
- Service de Chirurgie Plastique et Reconstructrice, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | | | - Emmanuel Forestier
- Service de Maladies Infectieuses, Centre Hospitalier Metropole Savoie, Chambéry, France
| | - Sophie Brosset
- Service de Chirurgie Plastique et Reconstructrice, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Gilles Leboucher
- Pharmacie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Camille Kolenda
- Université Claude Bernard Lyon 1, Lyon, France.,Centre Interrégional de Référence pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.,CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, Lyon, France.,Institut des Agents Infectieux, Laboratoire de Bactériologie, Centre National de Référence des Staphylocoques, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Frédéric Laurent
- Université Claude Bernard Lyon 1, Lyon, France.,Centre Interrégional de Référence pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.,CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, Lyon, France.,Institut des Agents Infectieux, Laboratoire de Bactériologie, Centre National de Référence des Staphylocoques, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Sébastien Lustig
- Université Claude Bernard Lyon 1, Lyon, France.,Centre Interrégional de Référence pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.,Service de Chirurgie Orthopédique, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
67
|
Bacteriophages and Lysins as Possible Alternatives to Treat Antibiotic-Resistant Urinary Tract Infections. Antibiotics (Basel) 2020; 9:antibiotics9080466. [PMID: 32751681 PMCID: PMC7460213 DOI: 10.3390/antibiotics9080466] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 01/10/2023] Open
Abstract
Urinary tract infections represent a major public health problem as the rapid emergence of antibiotic-resistant strains among uropathogens is causing the failure of many current treatments. The use of bacteriophages (phages) and their derivatives to combat infectious diseases is an old approach that has been forgotten by the West for a long time, mostly due to the discovery and great success of antibiotics. In the present so-called “post-antibiotic era”, many researchers are turning their attention to the re-discovered phage therapy, as an effective alternative to antibiotics. Phage therapy includes the use of natural or engineered phages, as well as their purified lytic enzymes to destroy pathogenic strains. Many in vitro and in vivo studies have been conducted, and these have proved the great potential for this therapy against uropathogenic bacteria. Nevertheless, to date, the lack of appropriate clinical trials has hindered its widespread clinic application.
Collapse
|
68
|
Duplessis CA, Biswas B. A Review of Topical Phage Therapy for Chronically Infected Wounds and Preparations for a Randomized Adaptive Clinical Trial Evaluating Topical Phage Therapy in Chronically Infected Diabetic Foot Ulcers. Antibiotics (Basel) 2020; 9:antibiotics9070377. [PMID: 32635429 PMCID: PMC7400337 DOI: 10.3390/antibiotics9070377] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 11/21/2022] Open
Abstract
The advent and increasing prevalence of antimicrobial resistance commensurate with the absence of novel antibiotics on the horizon raises the specter of untreatable infections. Phages have been safely administered to thousands of patients exhibiting signals of efficacy in many experiencing infections refractory to antecedent antibiotics. Topical phage therapy may represent a convenient and efficacious treatment modality for chronic refractory infected cutaneous wounds spanning all classifications including venous stasis, burn-mediated, and diabetic ulcers. We will initially provide results from a systematic literature review of topical phage therapy used clinically in refractorily infected chronic wounds. We will then segue into a synopsis of the preparations for a forthcoming phase II a randomized placebo-controlled clinical trial assessing the therapeutic efficacy exploiting adjunctive personalized phage administration, delivered topically, intravenously (IV) and via a combination of both modalities (IV + topical) in the treatment of infected diabetic foot ulcers (perhaps the canonical paradigm representing complicated recalcitrant infected cutaneous wounds).
Collapse
|
69
|
Jubeh B, Breijyeh Z, Karaman R. Resistance of Gram-Positive Bacteria to Current Antibacterial Agents and Overcoming Approaches. Molecules 2020; 25:E2888. [PMID: 32586045 PMCID: PMC7356343 DOI: 10.3390/molecules25122888] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022] Open
Abstract
The discovery of antibiotics has created a turning point in medical interventions to pathogenic infections, but unfortunately, each discovery was consistently followed by the emergence of resistance. The rise of multidrug-resistant bacteria has generated a great challenge to treat infections caused by bacteria with the available antibiotics. Today, research is active in finding new treatments for multidrug-resistant pathogens. In a step to guide the efforts, the WHO has published a list of the most dangerous bacteria that are resistant to current treatments and requires the development of new antibiotics for combating the resistance. Among the list are various Gram-positive bacteria that are responsible for serious healthcare and community-associated infections. Methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium, and drug-resistant Streptococcus pneumoniae are of particular concern. The resistance of bacteria is an evolving phenomenon that arises from genetic mutations and/or acquired genomes. Thus, antimicrobial resistance demands continuous efforts to create strategies to combat this problem and optimize the use of antibiotics. This article aims to provide a review of the most critical resistant Gram-positive bacterial pathogens, their mechanisms of resistance, and the new treatments and approaches reported to circumvent this problem.
Collapse
Affiliation(s)
| | | | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem P.O. Box 20002, Palestine; (B.J.); (Z.B.)
| |
Collapse
|
70
|
Bacteriophage-Antibiotic Combination Strategy: an Alternative against Methicillin-Resistant Phenotypes of Staphylococcus aureus. Antimicrob Agents Chemother 2020; 64:AAC.00461-20. [PMID: 32393490 DOI: 10.1128/aac.00461-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Comparative time-kill experiments with Staphylococcus aureus bacteriophage (phage) Sb-1 alone and phage-antibiotic combinations (PACs) against two methicillin-resistant S. aureus (MRSA) strains have shown synergy with both daptomycin-phage and vancomycin-phage combinations. PACs prevented development of phage resistance and demonstrated bactericidal activity for all triple combinations. In addition, the extracellular membrane vesicle (MV) formation and the potential impact of phage on MV suppression were examined. Our results demonstrate the potential of PAC for combating MRSA infections.
Collapse
|
71
|
Antibiotic Resistance Profiles, Molecular Mechanisms and Innovative Treatment Strategies of Acinetobacter baumannii. Microorganisms 2020; 8:microorganisms8060935. [PMID: 32575913 PMCID: PMC7355832 DOI: 10.3390/microorganisms8060935] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 12/18/2022] Open
Abstract
Antibiotic resistance is one of the biggest challenges for the clinical sector and industry, environment and societal development. One of the most important pathogens responsible for severe nosocomial infections is Acinetobacter baumannii, a Gram-negative bacterium from the Moraxellaceae family, due to its various resistance mechanisms, such as the β-lactamases production, efflux pumps, decreased membrane permeability and altered target site of the antibiotic. The enormous adaptive capacity of A. baumannii and the acquisition and transfer of antibiotic resistance determinants contribute to the ineffectiveness of most current therapeutic strategies, including last-line or combined antibiotic therapy. In this review, we will present an update of the antibiotic resistance profiles and underlying mechanisms in A. baumannii and the current progress in developing innovative strategies for combating multidrug-resistant A. baumannii (MDRAB) infections.
Collapse
|
72
|
Grygorcewicz B, Wojciuk B, Roszak M, Łubowska N, Błażejczak P, Jursa-Kulesza J, Rakoczy R, Masiuk H, Dołęgowska B. Environmental Phage-Based Cocktail and Antibiotic Combination Effects on Acinetobacter baumannii Biofilm in a Human Urine Model. Microb Drug Resist 2020; 27:25-35. [PMID: 32543337 DOI: 10.1089/mdr.2020.0083] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The emergence of multidrug-resistant (MDR) bacterial infections poses a catastrophic threat to medicine. The development of phage-based therapy combined with antibiotics might be an advantageous weapon in the arms race between human and MDR bacteria. A cocktail composed of the MDR Acinetobacter baumannii infecting bacteriophages with high lytic activity was used in combination with antibiotics to destroy a bacterial biofilm in human urine. A. baumannii exhibited varying susceptibility to the host range of bacteriophages used in this study, ranging from 56% to 84%. This study demonstrated that bacteriophages could reduce biofilm biomass in a human urine model, and some of the antibiotics commonly used in the treatment of urinary tract infection (UTI) act synergistically with phage cocktails. Additionally, the combined treatment showed a significantly greater reduction of biofilm biomass and clearance of persister cells.
Collapse
Affiliation(s)
- Bartłomiej Grygorcewicz
- Department of Laboratory Medicine, Chair of Microbiology, Immunology, and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Bartosz Wojciuk
- Department of Diagnostic Immunology, Chair of Microbiology, Immunology, and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Marta Roszak
- Department of Laboratory Medicine, Chair of Microbiology, Immunology, and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Natalia Łubowska
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| | - Piotr Błażejczak
- Department of Laboratory Medicine, Chair of Microbiology, Immunology, and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Joanna Jursa-Kulesza
- Department of Medical Microbiology, Chair of Microbiology, Immunology, and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Rafał Rakoczy
- Department of Chemical Technology and Engineering, Institute of Chemical Engineering and Environmental Protection Processes, West Pomeranian University of Technology, Szczecin, Poland
| | - Helena Masiuk
- Department of Medical Microbiology, Chair of Microbiology, Immunology, and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Chair of Microbiology, Immunology, and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
73
|
Kuehl R, Morata L, Meylan S, Mensa J, Soriano A. When antibiotics fail: a clinical and microbiological perspective on antibiotic tolerance and persistence of Staphylococcus aureus. J Antimicrob Chemother 2020; 75:1071-1086. [PMID: 32016348 DOI: 10.1093/jac/dkz559] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen causing a vast array of infections with significant mortality. Its versatile physiology enables it to adapt to various environments. Specific physiological changes are thought to underlie the frequent failure of antimicrobial therapy despite susceptibility in standard microbiological assays. Bacteria capable of surviving high antibiotic concentrations despite having a genetically susceptible background are described as 'antibiotic tolerant'. In this review, we put current knowledge on environmental triggers and molecular mechanisms of increased antibiotic survival of S. aureus into its clinical context. We discuss animal and clinical evidence of its significance and outline strategies to overcome infections with antibiotic-tolerant S. aureus.
Collapse
Affiliation(s)
- Richard Kuehl
- Service of Infectious Diseases, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Laura Morata
- Service of Infectious Diseases, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Sylvain Meylan
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
- Division de Maladies Infectieuses, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Josep Mensa
- Service of Infectious Diseases, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Alex Soriano
- Service of Infectious Diseases, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain
| |
Collapse
|
74
|
Toushik SH, Mizan MFR, Hossain MI, Ha SD. Fighting with old foes: The pledge of microbe-derived biological agents to defeat mono- and mixed-bacterial biofilms concerning food industries. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
75
|
Tkhilaishvili T, Wang L, Perka C, Trampuz A, Gonzalez Moreno M. Using Bacteriophages as a Trojan Horse to the Killing of Dual-Species Biofilm Formed by Pseudomonas aeruginosa and Methicillin Resistant Staphylococcus aureus. Front Microbiol 2020; 11:695. [PMID: 32351494 PMCID: PMC7174619 DOI: 10.3389/fmicb.2020.00695] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/25/2020] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus are pathogens able to colonize surfaces and form together a mixed biofilm. Dual-species biofilms are significantly more resistant to antimicrobials than a monomicrobial community, leading to treatment failure. Due to their rapid bactericidal activity, the self-amplification ability and the biofilm degrading properties, bacteriophages represent a promising therapeutic option in fighting biofilm-related infections. In this study, we investigated the effect of either the simultaneous or staggered application of commercially available phages and ciprofloxacin versus S. aureus/P. aeruginosa dual-species biofilms in vitro. Biofilms were grown on porous glass beads and analyzed over time. Different techniques such as microcalorimetry, sonication and scanning electron microscopy were combined for the evaluation of anti-biofilm activities. Both bacterial species were susceptible to ciprofloxacin and to phages in their planktonic form of growth. Ciprofloxacin tested alone against biofilms required high concentration ranging from 256 to >512 mg/L to show an inhibitory effect, whereas phages alone showed good and moderate activity against MRSA biofilms and dual-species biofilms, respectively, but low activity against P. aeruginosa biofilms. The combination of ciprofloxacin with phages showed a remarkable improvement in the anti-biofilm activity of both antimicrobials with complete eradication of dual-species biofilms after staggered exposure to Pyophage or Pyophage + Staphylococcal phage for 12 h followed by 1 mg/L of ciprofloxacin, a dose achievable by intravenous or oral antibiotic administration. Our study provides also valuable data regarding not only dosage but also an optimal time of antimicrobial exposure, which is crucial in the implementation of combined therapies.
Collapse
Affiliation(s)
- Tamta Tkhilaishvili
- Centre for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,BIH Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lei Wang
- Centre for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carsten Perka
- Centre for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,BIH Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andrej Trampuz
- Centre for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,BIH Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mercedes Gonzalez Moreno
- Centre for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,BIH Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
76
|
Bacteriophage Therapy: Developments and Directions. Antibiotics (Basel) 2020; 9:antibiotics9030135. [PMID: 32213955 PMCID: PMC7148498 DOI: 10.3390/antibiotics9030135] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 02/06/2023] Open
Abstract
In an era of proliferating multidrug resistant bacterial infections that are exhausting the capacity of existing chemical antibiotics and in which the development of new antibiotics is significantly rarer, Western medicine must seek additional therapeutic options that can be employed to treat these infections. Among the potential antibacterial solutions are bacteriophage therapeutics, which possess very different properties from broad spectrum antibiotics that are currently the standard of care, and which can be used in combination with them and often provide synergies. In this review we summarize the state of the development of bacteriophage therapeutics and discuss potential paths to the implementation of phage therapies in contemporary medicine, focused on fixed phage cocktail therapeutics since these are likely to be the first bacteriophage products licensed for broad use in Western countries.
Collapse
|
77
|
Abstract
To formulate the optimal strategy of combatting bacterial biofilms, in this review we update current knowledge on the growing problem of biofilm formation and its resistance to antibiotics which has spurred the search for new strategies to deal with this complication. Based on recent findings, the role of bacteriophages in the prevention and elimination of biofilm-related infections has been emphasized. In vitro, ex vivo and in vivo biofilm treatment models with single bacteriophages or phage cocktails have been compared. A combined use of bacteriophages with antibiotics in vitro or in vivo confirms earlier reports of the synergistic effect of these agents in improving biofilm removal. Furthermore, studies on the application of phage-derived lysins in vitro, ex vivo or in vivo against biofilm-related infections are encouraging. The strategy of combined use of phage and antibiotics seems to be different from using lysins and antibiotics. These findings suggest that phages and lysins alone or in combination with antibiotics may be an efficient weapon against biofilm formation in vivo and ex vivo, which could be useful in formulating novel strategies to combat bacterial infections. Those findings proved to be relevant in the prevention and destruction of biofilms occurring during urinary tract infections, orthopedic implant-related infections, periodontal and peri-implant infections. In conclusion, it appears that most efficient strategy of eliminating biofilms involves phages or lysins in combination with antibiotics, but the optimal scheme of their administration requires further studies.
Collapse
|
78
|
Evaluation of the Activity of a Combination of Three Bacteriophages Alone or in Association with Antibiotics on Staphylococcus aureus Embedded in Biofilm or Internalized in Osteoblasts. Antimicrob Agents Chemother 2020; 64:AAC.02231-19. [PMID: 31871084 DOI: 10.1128/aac.02231-19] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022] Open
Abstract
Staphylococcus aureus is responsible for difficult-to-treat bone and joint infections (BJIs). This is related to its ability to form biofilm and to be internalized and persist inside osteoblasts. Recently, bacteriophage therapy has emerged as a promising option to improve treatment of such infections, but data on its activity against the specific bacterial lifestyles presented above remain scarce. We evaluated the activity of a combination of three bacteriophages, recently used for compassionate treatment in France, against S. aureus HG001 in a model of staphylococcal biofilm and a model of osteoblasts infection, alone or in association with vancomycin or rifampin. The activity of bacteriophages against biofilm-embedded S. aureus was dose dependent. In addition, synergistic effects were observed when bacteriophages were combined with antibiotics used at the lowest concentrations. Phage penetration into osteoblasts was observed only when the cells were infected, suggesting a S. aureus-dependent Trojan horse mechanism for internalization. The intracellular bacterial count of bacteria in infected osteoblasts treated with bacteriophages as well as with vancomycin was significantly higher than in cells treated with lysostaphin, used as a control condition, owing to the absence of intracellular activity and the rapid killing of bacteria released after the death of infected cells. These results suggest that bacteriophages are both inactive in the intracellular compartment after being internalized in infected osteoblasts and present a delayed killing effect on bacteria released after cell lysis into the extracellular compartment, which avoids preventing them from infecting other osteoblasts. The combination of bacteriophages tested was highly active against S. aureus embedded in biofilm but showed no activity against intracellular bacteria in the cell model used.
Collapse
|
79
|
Tkhilaishvili T, Wang L, Tavanti A, Trampuz A, Di Luca M. Antibacterial Efficacy of Two Commercially Available Bacteriophage Formulations, Staphylococcal Bacteriophage and PYO Bacteriophage, Against Methicillin-Resistant Staphylococcus aureus: Prevention and Eradication of Biofilm Formation and Control of a Systemic Infection of Galleria mellonella Larvae. Front Microbiol 2020; 11:110. [PMID: 32117136 PMCID: PMC7018685 DOI: 10.3389/fmicb.2020.00110] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/17/2020] [Indexed: 12/16/2022] Open
Abstract
Sessile bacteria growing on surfaces are more resistant to standard antibiotics than their planktonic counterpart. Due to their antimicrobial properties, bacteriophages have re-emerged as a promising approach to treat bacterial biofilm-associated infections. Here, we evaluated the ability of two commercially available phage formulations, Staphylococcal bacteriophage (containing the monophage Sb-1) and PYO bacteriophage (a polyphage), in preventing and eradicating an in vitro biofilm of methicillin-resistant Staphylococcus aureus (MRSA) by isothermal microcalorimetry and high-resolution confocal laser scanning microscopy (CLSM). Moreover, to assess the potential in vivo efficacy of both phage preparations, a Galleria mellonella model of MRSA systemic infection was used. Microcalorimetry measurement showed that 107 PFU/ml (the highest tested titer) of both phage formulations were able to inhibit planktonic growth in a concentration-dependent manner. However, MRSA biofilm was eradicated only by co-incubation of 5–7 days with the highest phage titers, respectively. In the experiments of biofilm prevention, isothermal microcalorimetry revealed that the heat production was completely abolished in the presence of sub-inhibitory titers (104 PFU/ml) of phages. These data were also confirmed by confocal laser scanning microscopy. Both phage formulations increased the survival of G. mellonella larvae preventing or treating MRSA infection compared to untreated control. In conclusion, tested phage formulations are promising for preventing device colonization and killing biofilm bacteria attached on a surface. Novel strategies for direct coating and release of phages from material should be investigated.
Collapse
Affiliation(s)
- Tamta Tkhilaishvili
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lei Wang
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Andrej Trampuz
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mariagrazia Di Luca
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
80
|
Bacteriophages as Adjuvant to Antibiotics for the Treatment of Periprosthetic Joint Infection Caused by Multidrug-Resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 2019; 64:AAC.00924-19. [PMID: 31527029 DOI: 10.1128/aac.00924-19] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022] Open
Abstract
We documented the adjunctive bacteriophage therapy to treat a chronic relapsing periprosthetic joint infection of the knee and chronic osteomyelitis of the femur caused by multidrug-resistant Pseudomonas aeruginosa The combined antibiotic-phage treatment eradicated the infection, and no side effects to phages were observed.
Collapse
|
81
|
Affiliation(s)
- Philipp Leucht
- Department of Orthopaedic Surgery, New York University Langone Health, New York, NY
- Department of Cell Biology, New York University School of Medicine, New York, NY
| | - Thomas A Einhorn
- Department of Orthopaedic Surgery, New York University Langone Health, New York, NY
| |
Collapse
|
82
|
Caflisch KM, Suh GA, Patel R. Biological challenges of phage therapy and proposed solutions: a literature review. Expert Rev Anti Infect Ther 2019; 17:1011-1041. [PMID: 31735090 DOI: 10.1080/14787210.2019.1694905] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: In light of the emergence of antibiotic-resistant bacteria, phage (bacteriophage) therapy has been recognized as a potential alternative or addition to antibiotics in Western medicine for use in humans.Areas covered: This review assessed the scientific literature on phage therapy published between 1 January 2007 and 21 October 2019, with a focus on the successes and challenges of this prospective therapeutic.Expert opinion: Efficacy has been shown in animal models and experimental findings suggest promise for the safety of human phagotherapy. Significant challenges remain to be addressed prior to the standardization of phage therapy in the West, including the development of phage-resistant bacteria; the pharmacokinetic complexities of phage; and any potential human immune response incited by phagotherapy.
Collapse
Affiliation(s)
- Katherine M Caflisch
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Gina A Suh
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Robin Patel
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
83
|
Abedon ST. Phage-Antibiotic Combination Treatments: Antagonistic Impacts of Antibiotics on the Pharmacodynamics of Phage Therapy? Antibiotics (Basel) 2019; 8:antibiotics8040182. [PMID: 31614449 PMCID: PMC6963693 DOI: 10.3390/antibiotics8040182] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022] Open
Abstract
Bacteria can evolve resistance to antibiotics. Even without changing genetically, bacteria also can display tolerance to antibiotic treatments. Many antibiotics are also broadly acting, as can result in excessive modifications of body microbiomes. Particularly for antibiotics of last resort or in treating extremely ill patients, antibiotics furthermore can display excessive toxicities. Antibiotics nevertheless remain the standard of care for bacterial infections, and rightly so given their long track records of both antibacterial efficacy and infrequency of severe side effects. Antibiotics do not successfully cure all treated bacterial infections, however, thereby providing a utility to alternative antibacterial approaches. One such approach is the use of bacteriophages, the viruses of bacteria. This nearly 100-year-old bactericidal, anti-infection technology can be effective against antibiotic-resistant or -tolerant bacteria, including bacterial biofilms and persister cells. Ideally phages could be used in combination with standard antibiotics while retaining their anti-bacterial pharmacodynamic activity, this despite antibiotics interfering with aspects of bacterial metabolism that are also required for full phage infection activity. Here I examine the literature of pre-clinical phage-antibiotic combination treatments, with emphasis on antibiotic-susceptible bacterial targets. I review evidence of antibiotic interference with phage infection activity along with its converse: phage antibacterial functioning despite antibiotic presence.
Collapse
Affiliation(s)
- Stephen T Abedon
- Department of Microbiology, The Ohio State University, Mansfield, OH 44906, USA.
| |
Collapse
|
84
|
Wright RCT, Friman VP, Smith MCM, Brockhurst MA. Resistance Evolution against Phage Combinations Depends on the Timing and Order of Exposure. mBio 2019; 10:e01652-19. [PMID: 31551330 PMCID: PMC6759759 DOI: 10.1128/mbio.01652-19] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/29/2019] [Indexed: 01/07/2023] Open
Abstract
Phage therapy is a promising alternative to chemotherapeutic antibiotics for the treatment of bacterial infections. However, despite recent clinical uses of combinations of phages to treat multidrug-resistant infections, a mechanistic understanding of how bacteria evolve resistance against multiple phages is lacking, limiting our ability to deploy phage combinations optimally. Here, we show, using Pseudomonas aeruginosa and pairs of phages targeting shared or distinct surface receptors, that the timing and order of phage exposure determine the strength, cost, and mutational basis of resistance. Whereas sequential exposure allowed bacteria to acquire multiple resistance mutations effective against both phages, this evolutionary trajectory was prevented by simultaneous exposure, resulting in quantitatively weaker resistance. The order of phage exposure determined the fitness costs of sequential resistance, such that certain sequential orders imposed much higher fitness costs than the same phage pair in the reverse order. Together, these data suggest that phage combinations can be optimized to limit the strength of evolved resistances while maximizing their associated fitness costs to promote the long-term efficacy of phage therapy.IMPORTANCE Globally rising rates of antibiotic resistance have renewed interest in phage therapy where combinations of phages have been successfully used to treat multidrug-resistant infections. To optimize phage therapy, we first need to understand how bacteria evolve resistance against combinations of multiple phages. Here, we use simple laboratory experiments and genome sequencing to show that the timing and order of phage exposure determine the strength, cost, and mutational basis of resistance evolution in the opportunistic pathogen Pseudomonas aeruginosa These findings suggest that phage combinations can be optimized to limit the emergence and persistence of resistance, thereby promoting the long-term usefulness of phage therapy.
Collapse
Affiliation(s)
- Rosanna C T Wright
- Department of Biology, University of York, York, United Kingdom
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | | | | | - Michael A Brockhurst
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
85
|
Sharahi JY, Azimi T, Shariati A, Safari H, Tehrani MK, Hashemi A. Advanced strategies for combating bacterial biofilms. J Cell Physiol 2019; 234:14689-14708. [PMID: 30693517 DOI: 10.1002/jcp.28225] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/16/2019] [Indexed: 01/24/2023]
Abstract
Biofilms are communities of microorganisms that are formed on and attached to living or nonliving surfaces and are surrounded by an extracellular polymeric material. Biofilm formation enjoys several advantages over the pathogens in the colonization process of medical devices and patients' organs. Unlike planktonic cells, biofilms have high intrinsic resistance to antibiotics and sanitizers, and overcoming them is a significant problematic challenge in the medical and food industries. There are no approved treatments to specifically target biofilms. Thus, it is required to study and present innovative and effective methods to combat a bacterial biofilm. In this review, several strategies have been discussed for combating bacterial biofilms to improve healthcare, food safety, and industrial process.
Collapse
Affiliation(s)
- Javad Yasbolaghi Sharahi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Taher Azimi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Aref Shariati
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Safari
- Health Promotion Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Melika Khanzadeh Tehrani
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
86
|
Peng C, Hanawa T, Azam AH, LeBlanc C, Ung P, Matsuda T, Onishi H, Miyanaga K, Tanji Y. Silviavirus phage ɸMR003 displays a broad host range against methicillin-resistant Staphylococcus aureus of human origin. Appl Microbiol Biotechnol 2019; 103:7751-7765. [PMID: 31388727 DOI: 10.1007/s00253-019-10039-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/05/2019] [Accepted: 07/14/2019] [Indexed: 12/17/2022]
Abstract
The emergence of life-threatening methicillin-resistant Staphylococcus aureus (MRSA) has led to increased interest in the use of bacteriophages as an alternative therapy to antibiotics. The success of phage therapy is greatly dependent on the selected phage possessing a wide host range. This study describes phage ɸMR003 isolated from sewage influent at a municipal wastewater treatment plant in Tokyo, Japan. ɸMR003 could infect 97% of 104 healthcare- and community-associated MRSA strains tested, compared with 73% for phage ɸSA012, which has a broad host range against bovine mastitis S. aureus. Genome analysis revealed that ɸMR003 belongs to the genus Silviavirus which has not been studied extensively. ɸMR003 recognizes and binds to wall teichoic acid (WTA) of S. aureus during infection. In silico comparisons of the genomes of ɸMR003 and ɸSA012 revealed that ORF117 and ORF119 of ɸMR003 are homologous to the putative receptor-binding proteins ORF103 and ORF105 of ɸSA012, with amino acid similarities of 75% and 72%, respectively. ORF104, which is an N-acetylglucosaminidase found in the ɸMR003 tail, may facilitate phage's infection onto the WTA-null S. aureus RN4220. The differences in tail and baseplate proteins may be key contributing factors to the different host specificities of ɸMR003 and ɸSA012. ɸMR003 showed strong adsorptivity, but not infectivity, against S. aureus SA003, which may be influenced by the bacterium's restriction modification system. This study expands our knowledge of the genomic diversity and host specificity of Silviavirus, which is a potential phage therapy candidate for MRSA infections.
Collapse
Affiliation(s)
- Chanthol Peng
- School of Life Science and Technology, Tokyo Institute of Technology, 4259J2-15 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
- Faculty of Chemical and Food Engineering, Institute of Technology of Cambodia, Russian Federation Blvd., P.O. Box 86, Phnom Penh, 12156, Cambodia
| | - Tomoko Hanawa
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611, Japan
| | - Aa Haeruman Azam
- School of Life Science and Technology, Tokyo Institute of Technology, 4259J2-15 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Cierra LeBlanc
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Porsry Ung
- Faculty of Chemical and Food Engineering, Institute of Technology of Cambodia, Russian Federation Blvd., P.O. Box 86, Phnom Penh, 12156, Cambodia
| | - Takeaki Matsuda
- Department of Traumatology and Critical Care Medicine, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611, Japan
| | - Hiroaki Onishi
- Department of Laboratory Medicine, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611, Japan
| | - Kazuhiko Miyanaga
- School of Life Science and Technology, Tokyo Institute of Technology, 4259J2-15 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Yasunori Tanji
- School of Life Science and Technology, Tokyo Institute of Technology, 4259J2-15 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
87
|
Geng H, Zou W, Zhang M, Xu L, Liu F, Li X, Wang L, Xu Y. Evaluation of phage therapy in the treatment of Staphylococcus aureus-induced mastitis in mice. Folia Microbiol (Praha) 2019; 65:339-351. [PMID: 31256341 DOI: 10.1007/s12223-019-00729-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/17/2019] [Indexed: 01/10/2023]
Abstract
Mastitis in dairy cows is generally considered to be the most expensive disease for dairy farmers worldwide. The overuse of antibiotics is a major problem in the treatment of bovine mastitis, and bacteriophage therapy is expected to provide an alternative treatment. The primary aim of this study was to evaluate the efficacy of a phage cocktail against mastitis in a mouse model. First, a Staphylococcus aureus strain was isolated from milk samples taken from mastitis cows from dairy farms in Xinjiang, China, and it was designated as Sau-XJ-21. Next, two phages (designated as vBSM-A1 and vBSP-A2) with strong lytic activity against Sau-XJ-21 were isolated from mixed sewage samples collected from three cattle farms in Xinjiang. Phages vBSM-A1 and vBSP-A2 were identified as members of the Myoviridae and Podoviridae families, respectively. The two phages exhibited a wide range of hosts, especially phage vBSM-A1. To evaluate the effectiveness of the two phages in the treatment against mastitis, female lactating mice were used 10-14 days after giving births. The mice were divided into six groups; one group was kept as healthy control, while the remaining five groups were inoculated with the isolated S. aureus strain to induce mastitis. Four hours after bacterial inoculation, mice in these groups were injected with 25 μL phosphate buffer saline (negative control), ceftiofur sodium (positive control), or phage, either individually or as a cocktail. The mice were sacrificed 20 h later, and the mammary glands were removed and subjected to further analysis, including the quantitation of colony-forming units (CFU), plaque-forming units (PFU), and gross macroscopic as well as histopathology observation. Mice with induced mastitis exhibited significantly improved mastitic pathology and decreased bacterial counts after they had been given phage treatments, with the phage cocktail being more superior than either phage alone. Furthermore, the cocktail treatment also maintained the highest intramammary phage titer without spreading systemically. The effectiveness of the phage cocktail was comparable to that produced by ceftiofur sodium. According to the data obtained for the mouse model of mastitis, phage therapy could be considered as an innovative alternative to antibiotics for the treatment of bovine mastitis.
Collapse
Affiliation(s)
- Huijun Geng
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Wei Zou
- School of Life Science and Biotechnology, Liaoning Normal University, Dalian, 116029, People's Republic of China
| | - Meixia Zhang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Le Xu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Fanming Liu
- School of Life Science and Biotechnology, Liaoning Normal University, Dalian, 116029, People's Republic of China
| | - Xiaoyu Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Lili Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Yongping Xu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China.
- Ministry of Education Center for Food Safety of Animal Origin, Dalian, 116600, People's Republic of China.
| |
Collapse
|
88
|
Segall AM, Roach DR, Strathdee SA. Stronger together? Perspectives on phage-antibiotic synergy in clinical applications of phage therapy. Curr Opin Microbiol 2019; 51:46-50. [PMID: 31226502 DOI: 10.1016/j.mib.2019.03.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 01/21/2023]
Abstract
Increasingly, clinical infections are becoming recalcitrant or completely resistant to antibiotics treatment and multidrug resistance is rising alarmingly. Patients suffering from infections that used to be treated successfully by antibiotic regimens are running out of the treatment options. Bacteriophage (phage) therapy, long practiced in parts of Eastern Europe and the states of the former Soviet Union, is now being reevaluated as a treatment option complementary to and synergistic with antibiotic treatments. We discuss some current studies that have addressed synergistic killing activity between phages and antibiotics, the issues of treatment order and antibiotic class, and point to considerations that will have to be addressed by future studies. Overall, co-treatments with phages and antibiotics promise to extend the utility of antibiotics in current use. Nevertheless, a lot of work, both basic and clinical, remains to be done before such co-treatments become routine options in the hospital setting.
Collapse
Affiliation(s)
- Anca M Segall
- Department of Biology and the Viral Information Institute, San Diego State University, San Diego, CA 92182-4614, United States.
| | - Dwayne R Roach
- Department of Biology and the Viral Information Institute, San Diego State University, San Diego, CA 92182-4614, United States
| | - Steffanie A Strathdee
- Division of Infectious Diseases and Global Health, Department of Medicine, University of California San Diego, United States.
| |
Collapse
|
89
|
Azam AH, Tanji Y. Peculiarities of Staphylococcus aureus phages and their possible application in phage therapy. Appl Microbiol Biotechnol 2019; 103:4279-4289. [PMID: 30997551 DOI: 10.1007/s00253-019-09810-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/07/2019] [Accepted: 03/31/2019] [Indexed: 12/21/2022]
Abstract
Bacteriophage has become an attractive alternative for the treatment of antibiotic-resistant Staphylococcus aureus. For the success of phage therapy, phage host range is an important criterion when considering a candidate phage. Most reviews of S. aureus (SA) phages have focused on their impact on host evolution, especially their contribution to the spread of virulence genes and pathogenesis factors. The potential therapeutic use of SA phages, especially detailed characterizations of host recognition mechanisms, has not been extensively reviewed so far. In this report, we provide updates on the study of SA phages, focusing on host recognition mechanisms with the recent discovery of phage receptor-binding proteins (RBPs) and the possible applications of SA phages in phage therapy.
Collapse
Affiliation(s)
- Aa Haeruman Azam
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-15, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Yasunori Tanji
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-15, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
90
|
Bacteriophage-host arm race: an update on the mechanism of phage resistance in bacteria and revenge of the phage with the perspective for phage therapy. Appl Microbiol Biotechnol 2019; 103:2121-2131. [PMID: 30680434 DOI: 10.1007/s00253-019-09629-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/25/2018] [Accepted: 12/27/2018] [Indexed: 12/20/2022]
Abstract
Due to a constant attack by phage, bacteria in the environment have evolved diverse mechanisms to defend themselves. Several reviews on phage resistance mechanisms have been published elsewhere. Thanks to the advancement of molecular techniques, several new phage resistance mechanisms were recently identified. For the practical phage therapy, the emergence of phage-resistant bacteria could be an obstacle. However, unlike antibiotic, phages could evolve a mechanism to counter-adapt against phage-resistant bacteria. In this review, we summarized the most recent studies of the phage-bacteria arm race with the perspective of future applications of phages as antimicrobial agents.
Collapse
|
91
|
Gutiérrez D, Fernández L, Rodríguez A, García P. Role of Bacteriophages in the Implementation of a Sustainable Dairy Chain. Front Microbiol 2019; 10:12. [PMID: 30723460 PMCID: PMC6349743 DOI: 10.3389/fmicb.2019.00012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/07/2019] [Indexed: 12/16/2022] Open
Abstract
The growing human population is currently facing an unprecedented challenge regarding global food sustainability. Thus, it is of paramount to maintain food production and quality while avoiding a negative impact on climate change and the environment at large. Along the food chain, several practices could compromise future food safety and human health. One example is the widespread use of antibiotics and disinfectants in dairy production, which has contributed to the current antibiotic resistance crisis. Moreover, the uncontrolled release of antimicrobials to the environment poses a significant threat to natural ecosystems. For these reasons, research has recently focused on exploiting natural antimicrobials with the goal of achieving a safer and more sustainable dairy production chain. In this context, bacteriophages, viruses that infect bacteria, may become good allies to prevent and treat diseases in cattle, or be used as disinfectants in dairy facilities and as preservatives in dairy products. This review provides an overview of the current research regarding the use of phages as a global approach to reduce economic losses and food waste, while increasing food safety and reducing the environmental impact of food production. Our current understanding of progress, solutions, and future challenges in dairy production, processing, safety, waste processing, and quality assurance is also discussed.
Collapse
Affiliation(s)
| | | | | | - Pilar García
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
| |
Collapse
|
92
|
Dickey J, Perrot V. Adjunct phage treatment enhances the effectiveness of low antibiotic concentration against Staphylococcus aureus biofilms in vitro. PLoS One 2019; 14:e0209390. [PMID: 30650088 PMCID: PMC6334939 DOI: 10.1371/journal.pone.0209390] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/04/2018] [Indexed: 12/22/2022] Open
Abstract
Phage therapy is drawing more interest as antibiotic resistance becomes an ever more serious threat to public health. Bacterial biofilms represent a major obstacle in the fight against bacterial infections as they are inherently refractory to many types of antibiotics. Treating biofilms with phage has shown promise in a handful of experimental and case studies. However, quantification of the effect of phage combined with antibiotics is needed to pave the way for larger clinical trials. Here we explore the effect of using phage in combination with a total of nine antibiotics, applied simultaneously or as a pretreatment before antibiotics are applied to in vitro biofilms of Staphylococcus aureus. Most antibiotics alone were ineffective at low concentration (2×MIC), but the addition of phage to treatment regimens led to substantial improvements in efficacy. At high concentration (10×MIC), antibiotics alone were effective, and in most cases the addition of phage to treatment regimens did not improve efficacy. Using phage with rifampin was also very effective at reducing the outgrowth of resistant strains during the course of treatment.
Collapse
Affiliation(s)
- James Dickey
- Department of Biology, Emory University, Atlanta, GA, United States of America
| | - Véronique Perrot
- Department of Biology, Emory University, Atlanta, GA, United States of America
| |
Collapse
|
93
|
Patey O, McCallin S, Mazure H, Liddle M, Smithyman A, Dublanchet A. Clinical Indications and Compassionate Use of Phage Therapy: Personal Experience and Literature Review with a Focus on Osteoarticular Infections. Viruses 2018; 11:E18. [PMID: 30597868 PMCID: PMC6356659 DOI: 10.3390/v11010018] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 01/30/2023] Open
Abstract
The history of phage therapy started with its first clinical application in 1919 and continues its development to this day. Phages continue to lack any market approval in Western medicine as a recognized drug, but are increasingly used as an experimental therapy for the compassionate treatment of patients experiencing antibiotic failure. The few formal experimental phage clinical trials that have been completed to date have produced inconclusive results on the efficacy of phage therapy, which contradicts the many successful treatment outcomes observed in historical accounts and recent individual case reports. It would therefore be wise to identify why such a discordance exists between trials and compassionate use in order to better develop future phage treatment and clinical applications. The multitude of observations reported over the years in the literature constitutes an invaluable experience, and we add to this by presenting a number of cases of patients treated compassionately with phages throughout the past decade with a focus on osteoarticular infections. Additionally, an abundance of scientific literature into phage-related areas is transforming our knowledge base, creating a greater understanding that should be applied for future clinical applications. Due to the increasing number of treatment failures anticipatedfrom the perspective of a possible post-antibiotic era, we believe that the introduction of bacteriophages into the therapeutic arsenal seems a scientifically sound and eminently practicable consideration today as a substitute or adjuvant to antibiotic therapy.
Collapse
Affiliation(s)
- Olivier Patey
- Service of Infectious and Tropical Diseases, CHI Lucie et Raymond Aubrac, 94190 Villeneuve Saint Georges, France.
| | - Shawna McCallin
- Department of Musculoskeletal Medicine DAL, Centre Hospitalier Universitaire Vaudois CHUV, Service of Plastic, Reconstructive & Hand Surgery, Regenerative Therapy Unit (UTR), CHUV-EPCR/Croisettes 22, 1066 Epalinges, Switzerland.
| | - Hubert Mazure
- HGM Consultants, 63 Rebecca Parade, Winston Hills, NSW 2153, Australia.
| | - Max Liddle
- School of Life Sciences, University of Technology, Ultimo, NSW 2007, Australia.
| | - Anthony Smithyman
- Cellabs Pty Ltd, and Founder Special Phage Services Pty Ltd, both of 7/27 Dale St, Brookvale, NSW 2100, Australia.
| | - Alain Dublanchet
- Service of Infectious and Tropical Diseases, CHI Lucie et Raymond Aubrac, 94190 Villeneuve Saint Georges, France.
| |
Collapse
|
94
|
Phage-Antibiotic Synergy via Delayed Lysis. Appl Environ Microbiol 2018; 84:AEM.02085-18. [PMID: 30217844 DOI: 10.1128/aem.02085-18] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022] Open
Abstract
When phages infect bacteria cultured in the presence of sublethal doses of antibiotics, the sizes of the phage plaques are significantly increased. This phenomenon is known as phage-antibiotic synergy (PAS). In this study, the observation of PAS was extended to a wide variety of bacterium-phage pairs using different classes of antibiotics. PAS was shown in both Gram-positive and Gram-negative bacteria. Cells stressed with β-lactam antibiotics filamented or swelled extensively, resulting in an increase in phage production. PAS was also sometimes observed in the presence of other classes of antibiotics with or without bacterial filamentation. The addition of antibiotics induced recA expression in various bacteria, but a recA deletion mutant strain of Escherichia coli also showed filamentation and PAS in the presence of quinolone antibiotics. The phage adsorption efficiency did not change in the presence of the antibiotics when the cell surfaces were enlarged as they filamented. Increases in the production of phage DNA and mRNAs encoding phage proteins were observed in these cells, with only a limited increase in protein production. The data suggest that PAS is the product of a prolonged period of particle assembly due to delayed lysis. The increase in the cell surface area far exceeded the increase in phage holin production in the filamented host cells, leading to a relatively limited availability of intracellular holins for aggregating and forming holes in the host membrane. Reactive oxygen species (ROS) stress also led to an increased production of phages, while heat stress resulted in only a limited increase in phage production.IMPORTANCE Phage-antibiotic synergy (PAS) has been reported for a decade, but the underlying mechanism has never been vigorously investigated. This study shows the presence of PAS from a variety of phage-bacterium-antibiotic pairings. We show that increased phage production resulted directly from a lysis delay caused by the relative shortage of holin in filamented bacterial hosts in the presence of sublethal concentrations of stress-inducing substances, such as antibiotics and reactive oxygen species (ROS).
Collapse
|
95
|
Ferry T, Leboucher G, Fevre C, Herry Y, Conrad A, Josse J, Batailler C, Chidiac C, Medina M, Lustig S, Laurent F. Salvage Debridement, Antibiotics and Implant Retention ("DAIR") With Local Injection of a Selected Cocktail of Bacteriophages: Is It an Option for an Elderly Patient With Relapsing Staphylococcus aureus Prosthetic-Joint Infection? Open Forum Infect Dis 2018; 5:ofy269. [PMID: 30474047 PMCID: PMC6240628 DOI: 10.1093/ofid/ofy269] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 10/19/2018] [Indexed: 01/21/2023] Open
Abstract
Local injection of a bacteriophages mix during debridement, antibiotics and implant retention ("DAIR") was performed to treat a relapsing Staphylococcus aureus chronic prosthetic joint infection (PJI). This salvage treatment was safe and associated with a clinical success. Scientific evaluation of the potential clinical benefit of bacteriophages as antibiofilm treatment in PJI is now feasible and required.
Collapse
Affiliation(s)
- Tristan Ferry
- Service de Maladies Infectieuses, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, France.,Université Claude Bernard Lyon 1, France.,Centre International de Recherche en Infectiologie, Lyon, France.,Centre Interrégional de Référence des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, France
| | - Gilles Leboucher
- Pharmacie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, France
| | | | - Yannick Herry
- Université Claude Bernard Lyon 1, France.,Centre Interrégional de Référence des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, France.,Service de Chirurgie Orthopédique, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, France
| | - Anne Conrad
- Service de Maladies Infectieuses, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, France.,Université Claude Bernard Lyon 1, France.,Centre International de Recherche en Infectiologie, Lyon, France.,Centre Interrégional de Référence des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, France
| | - Jérôme Josse
- Université Claude Bernard Lyon 1, France.,Centre International de Recherche en Infectiologie, Lyon, France.,Centre Interrégional de Référence des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, France.,Laboratoire de Bactériologie, Institut des Agents Infectieux, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, France
| | - Cécile Batailler
- Université Claude Bernard Lyon 1, France.,Centre Interrégional de Référence des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, France.,Service de Chirurgie Orthopédique, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, France
| | - Christian Chidiac
- Service de Maladies Infectieuses, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, France.,Université Claude Bernard Lyon 1, France.,Centre International de Recherche en Infectiologie, Lyon, France.,Centre Interrégional de Référence des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, France
| | | | - S Lustig
- Service de Chirurgie Orthopédique, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, France
| | - Frédéric Laurent
- Université Claude Bernard Lyon 1, France.,Centre International de Recherche en Infectiologie, Lyon, France.,Centre Interrégional de Référence des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, France.,Laboratoire de Bactériologie, Institut des Agents Infectieux, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, France
| | | |
Collapse
|
96
|
Bacteriophage Sb-1 enhances antibiotic activity against biofilm, degrades exopolysaccharide matrix and targets persisters of Staphylococcus aureus. Int J Antimicrob Agents 2018; 52:842-853. [PMID: 30236955 DOI: 10.1016/j.ijantimicag.2018.09.006] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/29/2018] [Accepted: 09/09/2018] [Indexed: 02/06/2023]
Abstract
Most antibiotics have limited or no activity against bacterial biofilms, whereas bacteriophages can eradicate biofilms. We evaluated whether Staphylococcus aureus-specific bacteriophage Sb-1 could eradicate biofilm, both alone and in combination with different classes of antibiotics, degrade the extracellular matrix and target persister cells. Biofilm of methicillin-resistant S. aureus (MRSA) ATCC 43300 was treated with Sb-1 alone or in (simultaneous or staggered) combination with fosfomycin, rifampin, vancomycin, daptomycin or ciprofloxacin. The matrix was visualized by confocal fluorescent microscopy. Persister cells were treated with 104 and 107 plaque-forming units (PFU)/mL Sb-1 for 3 h in phosphate-buffered saline (PBS), followed by colony-forming units (CFU) counting. Alternatively, bacteria were washed and incubated in fresh brain heart infusion (BHI) medium and bacterial growth assessed after a further 24 h. Pretreatment with Sb-1 followed by the administration of subinhibitory concentrations of antibiotic caused a synergistic effect in eradicating MRSA biofilm. Sb-1 determined a dose-dependent reduction of matrix exopolysaccharide. Sb-1 at 107 PFU/mL showed direct killing activity on ≈ 5 × 105 CFU/mL persisters. However, even a lower titer had lytic activity when phage-treated persister cells were inoculated in fresh medium, reverting to a normal-growing phenotype. This study provides valuable data on the enhancing effect of Sb-1 on antibiotic efficacy, exhibiting specific antibiofilm features. Sb-1 can degrade the MRSA polysaccharide matrix and target persister cells and is therefore suitable for treatment of biofilm-associated infections.
Collapse
|
97
|
Taha M, Abdelbary H, Ross FP, Carli AV. New Innovations in the Treatment of PJI and Biofilms-Clinical and Preclinical Topics. Curr Rev Musculoskelet Med 2018; 11:380-388. [PMID: 29926287 PMCID: PMC6105481 DOI: 10.1007/s12178-018-9500-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW Periprosthetic joint infection (PJI) is a devastating complication after total joint replacement. A main source for antibiotic tolerance and treatment failure is bacterial production of biofilm-a resilient barrier against antibiotics, immune system, and mechanical debridement. The purpose of this review is to explore some novel approaches to treat PJI and biofilm-related infections. RECENT FINDINGS Innovative treatment strategies of bacterial and biofilm infections revolve around (a) augmenting current therapies, such as improving the delivery and efficiency of conventional antibiotics and enhancing the efficacy of antiseptics and (b) administrating completely new therapeutic modalities, such as using immunotherapy, nanoparticles, lytic bacteriophages, photodynamic therapy, novel antibiotics, and antimicrobial peptides. Several promising treatment strategies for PJI are available to be tested further. The next requirement for most of the novel treatments is reproducing their effects in clinically representative animal models of PJI against clinical isolates of relevant bacteria.
Collapse
Affiliation(s)
- Mariam Taha
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Division of Orthopedic Surgery Ottawa, The Ottawa Hospital, Ottawa, ON, Canada
| | - Hesham Abdelbary
- Division of Orthopedic Surgery Ottawa, The Ottawa Hospital, Ottawa, ON, Canada
| | - F Patrick Ross
- Hospital for Special Surgery, 535 E 70th St, New York, NY, 10021, USA
| | - Alberto V Carli
- Division of Orthopedic Surgery Ottawa, The Ottawa Hospital, Ottawa, ON, Canada.
- Hospital for Special Surgery, 535 E 70th St, New York, NY, 10021, USA.
| |
Collapse
|
98
|
Ferry T, Boucher F, Fevre C, Perpoint T, Chateau J, Petitjean C, Josse J, Chidiac C, L’hostis G, Leboucher G, Laurent F, Ferry T, Valour F, Perpoint T, Boibieux A, Biron F, Miailhes P, Ader F, Becker A, Roux S, Triffault-Fillit C, Conrad A, Bosch A, Daoud F, Lippman J, Braun E, Chidiac C, Lustig S, Servien E, Gaillard R, Schneider A, Gunst S, Batailler C, Fessy MH, Herry Y, Viste A, Chaudier P, Courtin C, Louboutin L, Martres S, Trouillet F, Barrey C, Jouanneau E, Jacquesson T, Mojallal A, Braye F, Boucher F, Shipkov H, Chateau J, Gleizal A, Aubrun F, Dziadzko M, Macabéo C, Laurent F, Rasigade JP, Dupieux C, Craighero F, Boussel L, Pialat JB, Morelec I, Janier M, Giammarile F, Tod M, Gagnieu MC, Goutelle S, Mabrut E. Innovations for the treatment of a complex bone and joint infection due to XDR Pseudomonas aeruginosa including local application of a selected cocktail of bacteriophages. J Antimicrob Chemother 2018; 73:2901-2903. [DOI: 10.1093/jac/dky263] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Tristan Ferry
- Service de Maladies Infectieuses, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- Centre International de Recherche en Infectiologie, CIRI, Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, Lyon, France
- Centre Interrégional de Référence des Infections Ostéo-articulaires complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France
| | - Fabien Boucher
- Service de Maladies Infectieuses, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- Centre Interrégional de Référence des Infections Ostéo-articulaires complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France
- Service de Chirurgie Plastique et reconstructrice, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | | | - Thomas Perpoint
- Service de Maladies Infectieuses, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- Centre Interrégional de Référence des Infections Ostéo-articulaires complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France
| | - Joseph Chateau
- Service de Maladies Infectieuses, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- Centre Interrégional de Référence des Infections Ostéo-articulaires complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France
- Service de Chirurgie Plastique et reconstructrice, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | | | - Jérôme Josse
- Université Claude Bernard Lyon 1, Lyon, France
- Centre International de Recherche en Infectiologie, CIRI, Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, Lyon, France
- Centre Interrégional de Référence des Infections Ostéo-articulaires complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France
- Laboratoire de Bactériologie, Institut des Agents Infectieux, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Christian Chidiac
- Service de Maladies Infectieuses, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- Centre International de Recherche en Infectiologie, CIRI, Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, Lyon, France
- Centre Interrégional de Référence des Infections Ostéo-articulaires complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France
| | | | - Gilles Leboucher
- Pharmacie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Frédéric Laurent
- Université Claude Bernard Lyon 1, Lyon, France
- Centre International de Recherche en Infectiologie, CIRI, Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, Lyon, France
- Centre Interrégional de Référence des Infections Ostéo-articulaires complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France
- Laboratoire de Bactériologie, Institut des Agents Infectieux, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|