51
|
Zhang L, Li C, Huang R, Teng H, Zhang Y, Zhou M, Liu X, Fan B, Luo H, He A, Zhao A, Lu M, Chopp M, Zhang ZG. Cerebral endothelial cell derived small extracellular vesicles improve cognitive function in aged diabetic rats. Front Aging Neurosci 2022; 14:926485. [PMID: 35912073 PMCID: PMC9330338 DOI: 10.3389/fnagi.2022.926485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Small extracellular vesicles (sEVs) mediate cell-cell communication by transferring their cargo biological materials into recipient cells. Diabetes mellitus (DM) induces cerebral vascular dysfunction and neurogenesis impairment, which are associated with cognitive decline and an increased risk of developing dementia. Whether the sEVs are involved in DM-induced cerebral vascular disease, is unknown. Therefore, we studied sEVs derived from cerebral endothelial cells (CEC-sEVs) of aged DM rats (DM-CEC-sEVs) and found that DM-CEC-sEVs robustly inhibited neural stem cell (NSC) generation of new neuroblasts and damaged cerebral endothelial function. Treatment of aged DM-rats with CEC-sEVs derived from adult healthy normal rats (N-CEC-sEVs) ameliorated cognitive deficits and improved cerebral vascular function and enhanced neurogenesis. Intravenously administered N-CEC-sEVs crossed the blood brain barrier and were internalized by neural stem cells in the neurogenic region, which were associated with augmentation of miR-1 and –146a and reduction of myeloid differentiation primary response gene 88 and thrombospondin 1 proteins. In addition, uptake of N-CEC-sEVs by the recipient cells was mediated by clathrin and caveolin dependent endocytosis signaling pathways. The present study provides ex vivo and in vivo evidence that DM-CEC-sEVs induce cerebral vascular dysfunction and neurogenesis impairment and that N-CEC-sEVs have a therapeutic effect on improvement of cognitive function by ameliorating dysfunction of cerebral vessels and increasing neurogenesis in aged DM rats, respectively.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
- *Correspondence: Li Zhang,
| | - Chao Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Rui Huang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Hua Teng
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Yi Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Min Zhou
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Xiangshuang Liu
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Baoyan Fan
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Hao Luo
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Annie He
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Anna Zhao
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Mei Lu
- Department of Biostatistics and Research Epidemiology, Henry Ford Hospital, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| |
Collapse
|
52
|
Davis CM, Zhang WH, Bah TM, Roese NE, Allen EM, Leung P, Boutros SJ, Marzulla T, Patel E, Nie X, Alkayed FN, Huang JH, Jensen MA, Raber J, Pike MM, Alkayed NJ. Age-dependent cognitive impairment, hydrocephalus and leukocyte infiltration in transgenic mice with endothelial expression of human EPHX2. NPJ AGING 2022; 8:9. [PMID: 35927273 PMCID: PMC9256583 DOI: 10.1038/s41514-022-00090-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 05/31/2022] [Indexed: 12/30/2022]
Abstract
Soluble epoxide hydrolase (sEH) is upregulated in microvascular endothelium of human brain with vascular cognitive impairment (VCI). Transgenic endothelial expression of human sEH in mice (Tie2hsEH) induces endothelial dysfunction (ED), a pathogenetic mechanism of VCI. We sought to determine if endothelial upregulation of sEH is sufficient to cause cognitive impairment, and if cognitive impairment due to chronic hypoperfusion induced by unilateral common carotid artery occlusion (CCAO) is exacerbated in Tie2hsEH mice. Behavioral performance was assessed by the open field, rotarod, novel object, Morris water maze and fear conditioning tests. Cerebral blood flow and brain morphology were evaluated by MRI, and inflammatory changes investigated using immunohistochemistry and flow cytometry. We demonstrate that transgenic endothelial expression of sEH is sufficient to induce cognitive impairment, associated with leukocyte infiltration, brain atrophy and accelerated, age-dependent ventriculomegaly, identifying ED and sEH upregulation as potential underlying mechanisms and therapeutic targets for VCI.
Collapse
Affiliation(s)
- Catherine M Davis
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Wenri H Zhang
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Thierno M Bah
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Natalie E Roese
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Elyse M Allen
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Philberta Leung
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Sydney J Boutros
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Tessa Marzulla
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Esha Patel
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Xiao Nie
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Farah N Alkayed
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Justin H Huang
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Michael A Jensen
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
- Departments of Neurology and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Martin M Pike
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Nabil J Alkayed
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, 97239, USA.
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
53
|
Lim KG, Varatharajan R, Muthuraman A. The Attenuating Effect of Beta-Carotene on Streptozotocin Induced Diabetic Vascular Dementia Symptoms in Rats. Molecules 2022; 27:molecules27134293. [PMID: 35807538 PMCID: PMC9268603 DOI: 10.3390/molecules27134293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated the ameliorative effects of beta-carotene (BC) on diabetes-associated vascular dementia and its action against biomolecule oxidation. The diabetic vascular dementia (VaD) was induced by administration of nicotinamide (NA; 50 mg/kg; i.p.) and streptozotocin (STZ; 50 mg/kg; i.p.). The test compound, BC (50 and 100 mg/kg; p.o.), and the reference compound, donepezil (DP) (1 mg/kg; p.o.), were administered for 15 consecutive days. Changes in learning and memory were assessed by escape latency time (ELT) and times spent in target quadrant (TSTQ) in the Morris water maze (MWM) test. The changes in neurotransmitter, i.e., acetylcholinesterase (AChE) and oxidative stress markers, i.e., thiobarbituric acid reactive substance (TBARS) and reduced glutathione (GSH), were estimated in hippocampal tissue of the rat brain. The administration of STZ caused significant deterioration of cognitive function (decreased ELT and raised the TSTQ) as compared to the normal group. Treatment with BC and DP diminished the increased AChE activity, TBARS level and decreased GSH level caused by STZ. Thus, BC ameliorates the diabetic vascular complications in VaD due to its potential anticholinergic, antioxidative and free radical scavenging actions.
Collapse
|
54
|
Alfieri A, Koudelka J, Li M, Scheffer S, Duncombe J, Caporali A, Kalaria RN, Smith C, Shah AM, Horsburgh K. Nox2 underpins microvascular inflammation and vascular contributions to cognitive decline. J Cereb Blood Flow Metab 2022; 42:1176-1191. [PMID: 35102790 PMCID: PMC9207496 DOI: 10.1177/0271678x221077766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022]
Abstract
Chronic microvascular inflammation and oxidative stress are inter-related mechanisms underpinning white matter disease and vascular cognitive impairment (VCI). A proposed mediator is nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (Nox2), a major source of reactive oxygen species (ROS) in the brain. To assess the role of Nox2 in VCI, we studied a tractable model with white matter pathology and cognitive impairment induced by bilateral carotid artery stenosis (BCAS). Mice with genetic deletion of Nox2 (Nox2 KO) were compared to wild-type (WT) following BCAS. Sustained BCAS over 12 weeks in WT mice induced Nox2 expression, indices of microvascular inflammation and oxidative damage, along with white matter pathology culminating in a marked cognitive impairment, which were all protected by Nox2 genetic deletion. Neurovascular coupling was impaired in WT mice post-BCAS and restored in Nox2 KO mice. Increased vascular expression of chemoattractant mediators, cell-adhesion molecules and endothelial activation factors in WT mice post-BCAS were ameliorated by Nox2 deficiency. The clinical relevance was confirmed by increased vascular Nox2 and indices of microvascular inflammation in human post-mortem subjects with cerebral vascular disease. Our results support Nox2 activity as a critical determinant of VCI, whose targeting may be of therapeutic benefit in cerebral vascular disease.
Collapse
Affiliation(s)
- Alessio Alfieri
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- National Heart and Lung Institute, Vascular Science, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| | - Juraj Koudelka
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Mosi Li
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Sanny Scheffer
- Department of Pathology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Jessica Duncombe
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Andrea Caporali
- British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Rajesh N Kalaria
- Neurovascular Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Ajay M Shah
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, London, UK
| | - Karen Horsburgh
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
55
|
Lifestyle modification and cognitive function among individuals with resistant hypertension: cognitive outcomes from the TRIUMPH trial. J Hypertens 2022; 40:1359-1368. [PMID: 35703293 PMCID: PMC9246836 DOI: 10.1097/hjh.0000000000003151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Resistant hypertension is associated with increased risk of cognitive decline, stroke, and dementia. Lifestyle modification has been suggested to improve cognitive function through its salutary effects on vascular function. METHODS Participants included 140 patients with resistant hypertension participating in the TRIUMPH trial. Participants were randomized to a cardiac rehabilitation-based lifestyle program (C-LIFE) or a standardized education and physician advice condition (SEPA). Participants completed a 45-min cognitive test battery consisting of tests of Executive Functioning and Learning, Memory, and Processing Speed. Biomarkers of vascular [flow mediated dilation of the brachial artery (FMD)], microvascular, and cerebrovascular function were also collected, in addition to weight, fitness, and ambulatory blood pressure. RESULTS Participants averaged 63 years of age, 48% women, 59% black, and obese [mean BMI = 36 kg/m 2 (SD = 4)]. Cognitive performance improved across the entire cohort during the 4-month trial [ t -scores pretreatment = 48.9 (48, 50) vs. posttreatment = 50.0 (49, 51), P < 0.001]. Postintervention Executive Function/Learning composite performance was higher for participants in C-LIFE compared to SEPA ( d = 0.37, P = 0.039). C-LIFE intervention effects on Memory and Processing Speed were moderated by sex and baseline stroke risk, respectively ( P = 0.026 and P = 0.043 for interactions), such that males and participants with greater stroke risk showed the greatest cognitive changes. FMD [C-LIFE: +0.3% (-0.3, 1.0) vs. SEPA: -1.4% (-2.5, -0.3), P = 0.022], and microvascular function [C-LIFE: 97 (65, 130) vs. SEPA: 025 (-75, 23), P < 0.001] were improved in C-LIFE compared with SEPA, whereas cerebrovascular reactivity was not [C-LIFE: -0.2 (-0.4, 0) vs. SEPA: 0.1 (-0.2, 0.4), P = 0.197). Mediation analyses suggested that increased executive function/learning was associated with reduced ambulatory SBP levels secondary to weight loss [indirect effect: B = 0.25 (0.03, 0.71)]. CONCLUSION Lifestyle modification individuals with resistant hypertension improves cognition, which appeared to be associated with reduced ambulatory SBP changes through weight loss. Cognitive improvements were accompanied by parallel improvements in endothelial and microvascular function.
Collapse
|
56
|
Murdock KW, Stowe RP, Engeland CG. Diminished Cellular Immunity and Executive Cognitive Functioning Among Middle-Aged and Elderly Adults. Psychosom Med 2022; 84:679-684. [PMID: 35420592 DOI: 10.1097/psy.0000000000001080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Within the field of psychoneuroimmunology, much attention has been given to immune dysregulation and its impact on cognitive functioning. Some of this work has focused on the association between high levels of basal proinflammatory cytokines and poorer performance on measures of executive functioning; however, effect sizes have been quite small in human studies. METHODS We investigated whether Epstein-Barr virus (EBV) antibody titers, a marker of immune dysregulation related to cellular immunity, may be associated with executive functioning while also attempting to replicate prior studies using two markers of proinflammatory cytokine production (i.e., circulating and lipopolysaccharide [LPS]-stimulated cytokines [interleukin 6, interleukin 1β, interferon-γ]). A total of 71 community-dwelling adults (mean [standard deviation] age = 60.87 [6.26] years) who were seropositive for EBV infection participated in the study. RESULTS Findings indicated that greater EBV antibody titers were associated with poorer performance on measures of the executive functions of inhibition ( B = -2.36, standard error = 1.06, p = .028) and cognitive flexibility ( B = -2.89, standard error = 1.13, p = .013) when including circulating and LPS-stimulated cytokines and other relevant covariates (i.e., age, sex, and body mass index) in linear regression analyses. Neither circulating nor LPS-stimulated cytokines were associated with performance on the cognitive tasks in the regression analyses. CONCLUSIONS These results suggest that EBV antibody titers may be an indicator of immune dysregulation that is more relevant to executive functioning performance than either circulating or stimulated proinflammatory cytokines among community-dwelling adults.
Collapse
Affiliation(s)
- Kyle W Murdock
- From the Department of Biobehavioral Health (Murdock, Engeland), The Pennsylvania State University, University Park, Pennsylvania; Microgen Laboratories (Stowe), La Marque, Texas; and College of Nursing, The Pennsylvania State University (Engeland), University Park, Pennsylvania
| | | | | |
Collapse
|
57
|
Preininger MK, Kaufer D. Blood-Brain Barrier Dysfunction and Astrocyte Senescence as Reciprocal Drivers of Neuropathology in Aging. Int J Mol Sci 2022; 23:6217. [PMID: 35682895 PMCID: PMC9180977 DOI: 10.3390/ijms23116217] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 01/27/2023] Open
Abstract
As the most abundant cell types in the brain, astrocytes form a tissue-wide signaling network that is responsible for maintaining brain homeostasis and regulating various brain activities. Here, we review some of the essential functions that astrocytes perform in supporting neurons, modulating the immune response, and regulating and maintaining the blood-brain barrier (BBB). Given their importance in brain health, it follows that astrocyte dysfunction has detrimental effects. Indeed, dysfunctional astrocytes are implicated in age-related neuropathology and participate in the onset and progression of neurodegenerative diseases. Here, we review two mechanisms by which astrocytes mediate neuropathology in the aging brain. First, age-associated blood-brain barrier dysfunction (BBBD) causes the hyperactivation of TGFβ signaling in astrocytes, which elicits a pro-inflammatory and epileptogenic phenotype. Over time, BBBD-associated astrocyte dysfunction results in hippocampal and cortical neural hyperexcitability and cognitive deficits. Second, senescent astrocytes accumulate in the brain with age and exhibit a decreased functional capacity and the secretion of senescent-associated secretory phenotype (SASP) factors, which contribute to neuroinflammation and neurotoxicity. Both BBBD and senescence progressively increase during aging and are associated with increased risk of neurodegenerative disease, but the relationship between the two has not yet been established. Thus, we discuss the potential relationship between BBBD, TGFβ hyperactivation, and senescence with respect to astrocytes in the context of aging and disease and identify future areas of investigation in the field.
Collapse
Affiliation(s)
- Marcela K. Preininger
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA;
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Daniela Kaufer
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA;
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
58
|
Robbins JP, Solito E. Does Neuroinflammation Underlie the Cognitive Changes Observed With Dietary Interventions? Front Neurosci 2022; 16:854050. [PMID: 35620671 PMCID: PMC9127342 DOI: 10.3389/fnins.2022.854050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Dietary interventions, such as calorie restriction and ketogenic diet, have been extensively studied in ageing research, including in cognitive decline. Epidemiological studies indicate beneficial effects of certain dietary regimes on mental health, including mood disorders and dementia. However, randomised-controlled trials (the gold-standard of evidence-based medicine) on calorie restriction diets and the ketogenic diet have yet to show clinically convincing effects in neuropsychiatric disorders. This review will examine the quality of studies and evidence base for the ketogenic and calorie restriction diets in common neuropsychiatric conditions, collating findings from preclinical experiments, case reports or small clinical studies, and randomised controlled clinical trials. The major cellular mechanisms that mediate the effects of these dietary interventions on brain health include neuroinflammation, neuroprotection, and neuromodulation. We will discuss the studies that have investigated the roles of these pathways and their interactions. Popularity of the ketogenic and calorie restriction diets has grown both in the public domain and in psychiatry research, allowing for informed review of the efficacy, the limitations, and the side effects of these diets in specific patient populations. In this review we will summarise the clinical evidence for these diets in neuropsychiatry and make suggestions to improve clinical translation of future research studies.
Collapse
Affiliation(s)
- Jacqueline P. Robbins
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Egle Solito
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
59
|
Cazzaniga A, Fedele G, Castiglioni S, Maier JA. The Presence of Blood-Brain Barrier Modulates the Response to Magnesium Salts in Human Brain Organoids. Int J Mol Sci 2022; 23:ijms23095133. [PMID: 35563524 PMCID: PMC9104490 DOI: 10.3390/ijms23095133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 12/22/2022] Open
Abstract
Magnesium (Mg) is fundamental in the brain, where it regulates metabolism and neurotransmission and protects against neuroinflammation. To obtain insights into the molecular basis of Mg action in the brain, we investigated the effects of Mg in human brain organoids, a revolutionary 3D model to study neurobiology and neuropathology. In particular, brain organoids derived from human induced pluripotent stem cells were cultured in the presence or in the absence of an in vitro-generated blood–brain barrier (BBB), and then exposed to 1 or 5 mM concentrations of inorganic and organic Mg salts (Mg sulphate (MgSO4); Mg pidolate (MgPid)). We evaluated the modulation of NMDA and GABAergic receptors, and BDNF. Our data suggest that the presence of the BBB is essential for Mg to exert its effects on brain organoids, and that 5 mM of MgPid is more effective than MgSO4 in increasing the levels of GABA receptors and BDNF, and decreasing those of NMDA receptor. These results might illuminate novel pathways explaining the neuroprotective role of Mg.
Collapse
Affiliation(s)
- Alessandra Cazzaniga
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157 Milano, Italy; (G.F.); (S.C.); (J.A.M.)
- Correspondence:
| | - Giorgia Fedele
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157 Milano, Italy; (G.F.); (S.C.); (J.A.M.)
| | - Sara Castiglioni
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157 Milano, Italy; (G.F.); (S.C.); (J.A.M.)
| | - Jeanette A. Maier
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157 Milano, Italy; (G.F.); (S.C.); (J.A.M.)
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa), Università di Milano, 20133 Milano, Italy
| |
Collapse
|
60
|
Shu J, Wei W, Zhang L. Identification of Molecular Signatures and Candidate Drugs in Vascular Dementia by Bioinformatics Analyses. Front Mol Neurosci 2022; 15:751044. [PMID: 35221911 PMCID: PMC8873373 DOI: 10.3389/fnmol.2022.751044] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/17/2022] [Indexed: 01/30/2023] Open
Abstract
Vascular dementia (VaD) is considered to be the second most common form of dementia after Alzheimer’s disease, and no specific drugs have been approved for VaD treatment. We aimed to identify shared transcriptomic signatures between the frontal cortex and temporal cortex in VaD by bioinformatics analyses. Gene ontology and pathway enrichment analyses, protein–protein interaction (PPI) and hub gene identification, hub gene–transcription factor interaction, hub gene–microRNA interaction, and hub gene–drug interaction analyses were performed. We identified 159 overlapping differentially expressed genes (DEGs) between the frontal cortex and temporal cortex that were enriched mainly in inflammation and innate immunity, synapse pruning, regeneration, positive regulation of angiogenesis, response to nutrient levels, and positive regulation of the digestive system process. We identified 10 hub genes in the PPI network (GNG13, CD163, C1QA, TLR2, SST, C1QB, ITGB2, CCR5, CRH, and TAC1), four central regulatory transcription factors (FOXC1, CREB1, GATA2, and HINFP), and four microRNAs (miR-27a-3p, miR-146a-5p, miR-335-5p, and miR-129-2-3p). Hub gene–drug interaction analysis found four drugs (maraviroc, cenicriviroc, PF-04634817, and efalizumab) that could be potential drugs for VaD treatment. Together, our results may contribute to understanding the underlying mechanisms in VaD and provide potential targets and drugs for therapeutic intervention.
Collapse
|
61
|
Squillace S, Salvemini D. Nitroxidative stress in pain and opioid-induced adverse effects: therapeutic opportunities. Pain 2022; 163:205-213. [PMID: 34145168 DOI: 10.1097/j.pain.0000000000002347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/17/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Silvia Squillace
- Department of Pharmacology and Physiology, Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO, United States
| | | |
Collapse
|
62
|
Noh B, Blasco-Conesa MP, Lai YJ, Ganesh BP, Urayama A, Moreno-Gonzalez I, Marrelli SP, McCullough LD, Moruno-Manchon JF. G-quadruplexes Stabilization Upregulates CCN1 and Accelerates Aging in Cultured Cerebral Endothelial Cells. FRONTIERS IN AGING 2022; 2:797562. [PMID: 35822045 PMCID: PMC9261356 DOI: 10.3389/fragi.2021.797562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/07/2021] [Indexed: 11/27/2022]
Abstract
Senescence in the cerebral endothelium has been proposed as a mechanism that can drive dysfunction of the cerebral vasculature, which precedes vascular dementia. Cysteine-rich angiogenic inducer 61 (Cyr61/CCN1) is a matricellular protein secreted by cerebral endothelial cells (CEC). CCN1 induces senescence in fibroblasts. However, whether CCN1 contributes to senescence in CEC and how this is regulated requires further study. Aging has been associated with the formation of four-stranded Guanine-quadruplexes (G4s) in G-rich motifs of DNA and RNA. Stabilization of the G4 structures regulates transcription and translation either by upregulation or downregulation depending on the gene target. Previously, we showed that aged mice treated with a G4-stabilizing compound had enhanced senescence-associated (SA) phenotypes in their brains, and these mice exhibited enhanced cognitive deficits. A sequence in the 3'-UTR of the human CCN1 mRNA has the ability to fold into G4s in vitro. We hypothesize that G4 stabilization regulates CCN1 in cultured primary CEC and induces endothelial senescence. We used cerebral microvessel fractions and cultured primary CEC from young (4-months old, m/o) and aged (18-m/o) mice to determine CCN1 levels. SA phenotypes were determined by high-resolution fluorescence microscopy in cultured primary CEC, and we used Thioflavin T to recognize RNA-G4s for fluorescence spectra. We found that cultured CEC from aged mice exhibited enhanced levels of SA phenotypes, and higher levels of CCN1 and G4 stabilization. In cultured CEC, CCN1 induced SA phenotypes, such as SA β-galactosidase activity, and double-strand DNA damage. Furthermore, CCN1 levels were upregulated by a G4 ligand, and a G-rich motif in the 3'-UTR of the Ccn1 mRNA was folded into a G4. In conclusion, we demonstrate that CCN1 can induce senescence in cultured primary CEC, and we provide evidence that G4 stabilization is a novel mechanism regulating the SASP component CCN1.
Collapse
Affiliation(s)
- Brian Noh
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Maria P. Blasco-Conesa
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yun-Ju Lai
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
- Solomont School of Nursing, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA, United States
| | - Bhanu Priya Ganesh
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Akihiko Urayama
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Ines Moreno-Gonzalez
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Cell Biology, Faculty of Sciences, Instituto de Investigacion Biomedica de Malaga-IBIMA, Malaga University, Malaga, Spain
- Networking Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Sean P. Marrelli
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Louise D. McCullough
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jose Felix Moruno-Manchon
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
63
|
Finger CE, Moreno-Gonzalez I, Gutierrez A, Moruno-Manchon JF, McCullough LD. Age-related immune alterations and cerebrovascular inflammation. Mol Psychiatry 2022; 27:803-818. [PMID: 34711943 PMCID: PMC9046462 DOI: 10.1038/s41380-021-01361-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/20/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
Aging is associated with chronic systemic inflammation, which contributes to the development of many age-related diseases, including vascular disease. The world's population is aging, leading to an increasing prevalence of both stroke and vascular dementia. The inflammatory response to ischemic stroke is critical to both stroke pathophysiology and recovery. Age is a predictor of poor outcomes after stroke. The immune response to stroke is altered in aged individuals, which contributes to the disparate outcomes between young and aged patients. In this review, we describe the current knowledge of the effects of aging on the immune system and the cerebral vasculature and how these changes alter the immune response to stroke and vascular dementia in animal and human studies. Potential implications of these age-related immune alterations on chronic inflammation in vascular disease outcome are highlighted.
Collapse
Affiliation(s)
- Carson E. Finger
- Department of Neurology, McGovern Medical School, UTHealth Science Center at Houston, Houston, TX USA
| | - Ines Moreno-Gonzalez
- Department of Neurology, McGovern Medical School, UTHealth Science Center at Houston, Houston, TX USA ,grid.10215.370000 0001 2298 7828Department of Cell Biology, Genetics and Physiology, Instituto de Investigacion Biomedica de Malaga-IBIMA, Faculty of Sciences, Malaga University, Malaga, Spain ,grid.418264.d0000 0004 1762 4012Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Malaga, Spain
| | - Antonia Gutierrez
- grid.10215.370000 0001 2298 7828Department of Cell Biology, Genetics and Physiology, Instituto de Investigacion Biomedica de Malaga-IBIMA, Faculty of Sciences, Malaga University, Malaga, Spain ,grid.418264.d0000 0004 1762 4012Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Malaga, Spain
| | - Jose Felix Moruno-Manchon
- Department of Neurology, McGovern Medical School, UTHealth Science Center at Houston, Houston, TX USA
| | - Louise D. McCullough
- Department of Neurology, McGovern Medical School, UTHealth Science Center at Houston, Houston, TX USA
| |
Collapse
|
64
|
Wakayama K, Shimamura M, Yoshida S, Hayashi H, Ju N, Nakagami H, Morishita R. Prevention of vascular dementia via immunotherapeutic blockade of renin-angiotensin system in a rat model. Brain Res 2021; 1772:147667. [PMID: 34587500 DOI: 10.1016/j.brainres.2021.147667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION As several clinical trials have revealed that angiotensin-converting enzyme inhibitors and angiotensin II (Ang II) receptor blockers may be efficient in treating vascular dementia (VaD), the long-acting blockade of the renin-angiotensin system (RAS) would be useful considering the poor adherence of antihypertensive drugs. Accordingly, we continuously blocked RAS via vaccination and examined the effectiveness of the VaD model in rats. METHODS Male Wistar rats were exposed to two-vessel occlusions (2VO) after three injections of Ang II peptide vaccine. The effects of the vaccine were evaluated in the novel object recognition test, brain RAS components, and markers for oligodendrocytes. RESULTS In the vaccinated rats, anti-Ang II antibody titer level was increased in serum until Day 168, but not in cerebral parenchyma. Vaccinated rats showed better object recognition memory with inhibited demyelination in the corpus callosum and activation of astrocytes and microglia. Also, levels of BrdU/GSTπ-positive cells and the phosphorylation of cAMP response element binding protein was increased in vaccinated rats, indicating that the differentiation of oligodendrocyte progenitor cells to mature oligodendrocytes was accelerated. Vaccinated rats showed increased expression of fibroblast growth factor-2 (FGF2), which was observed in endothelial cells. Angiotensinogen mRNA was decreased at 7 days after 2VO but increased at 14 and 28 days. CONCLUSION Ang II vaccine might have promoted oligodendrocyte differentiation and inhibited astrocytic and microglial activation by stimulating FGF2 signaling in the endothelial cells-oligodendrocyte/astrocyte/microglia coupling. These data indicate the feasibility of Ang II vaccine for preventing progression of vascular dementia.
Collapse
Affiliation(s)
- Kouji Wakayama
- Department of Advanced Clinical Science and Therapeutics, Graduate School of Medicine, The University of Tokyo, Japan
| | - Munehisa Shimamura
- Department of Neurology, Osaka University, Graduate School of Medicine, Japan; Department of Health Development and Medicine, Osaka University, Graduate School of Medicine, Japan.
| | - Shota Yoshida
- Department of Health Development and Medicine, Osaka University, Graduate School of Medicine, Japan
| | - Hiroki Hayashi
- Department of Health Development and Medicine, Osaka University, Graduate School of Medicine, Japan
| | - Nan Ju
- Department of Health Development and Medicine, Osaka University, Graduate School of Medicine, Japan
| | - Hironori Nakagami
- Department of Health Development and Medicine, Osaka University, Graduate School of Medicine, Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Osaka University, Graduate School of Medicine, Japan.
| |
Collapse
|
65
|
Hussain B, Fang C, Chang J. Blood-Brain Barrier Breakdown: An Emerging Biomarker of Cognitive Impairment in Normal Aging and Dementia. Front Neurosci 2021; 15:688090. [PMID: 34489623 PMCID: PMC8418300 DOI: 10.3389/fnins.2021.688090] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
The blood–brain barrier (BBB) plays a vital role in maintaining the specialized microenvironment of the neural tissue. It separates the peripheral circulatory system from the brain parenchyma while facilitating communication. Alterations in the distinct physiological properties of the BBB lead to BBB breakdown associated with normal aging and various neurodegenerative diseases. In this review, we first briefly discuss the aging process, then review the phenotypes and mechanisms of BBB breakdown associated with normal aging that further cause neurodegeneration and cognitive impairments. We also summarize dementia such as Alzheimer's disease (AD) and vascular dementia (VaD) and subsequently discuss the phenotypes and mechanisms of BBB disruption in dementia correlated with cognition decline. Overlaps between AD and VaD are also discussed. Techniques that could identify biomarkers associated with BBB breakdown are briefly summarized. Finally, we concluded that BBB breakdown could be used as an emerging biomarker to assist to diagnose cognitive impairment associated with normal aging and dementia.
Collapse
Affiliation(s)
- Basharat Hussain
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Fang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Junlei Chang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
66
|
Chu CS, Tsai SJ, Cheng CM, Su TP, Chen TJ, Bai YM, Liang CS, Chen MH. Dengue and dementia risk: A nationwide longitudinal study. J Infect 2021; 83:601-606. [PMID: 34454958 DOI: 10.1016/j.jinf.2021.08.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Accumulating evidence suggests neurological manifestations after dengue infection. However, the relationship between dengue and long-term neurocognitive sequel remains unclear. METHODS We recruited 816 patients with dengue and 8,160 controls between 1997 and 2012 using data from Taiwan National Health Insurance Research Database and followed them up until the end of 2013. Individuals who exhibited any type of dementia were identified during the follow-up period. Cox regression analyses were performed with adjustments for demographic data and medical and mental comorbidities (cerebrovascular diseases, traumatic brain injury, hypertension, dyslipidemia, diabetes mellitus, depression, alcohol use disorder, and substance use disorder). The E-value for the causality of the evidence was calculated. Sensitivity analysis was conducted to exclude patients with prodromal dementia. RESULTS Patients with dengue were more likely to develop dementia (hazard ratio [HR]: 2.23, 95% confidence interval [CI]: 1.51-3.28), Alzheimer's disease (HR: 3.03, 95% CI: 1.08-8.45), and unspecified dementia (HR: 2.25, 95% CI: 1.43-3.53), but not vascular dementia compared to controls during the follow-up period. Sensitivity analyses after exclusion of the observation period over the first three years or first five years and after exclusion of patients' enrollment before 2010 or 2008 showed consistent findings. The E-values for the HR (range 3.62-5.51) supported the association between dengue and subsequent dementia among the whole population, men, and women. CONCLUSION The risk of dementia was 2.23-fold higher in patients diagnosed with dengue during the follow-up period than in the controls. Further studies are necessary to investigate the underlying pathophysiology of dengue and dementia.
Collapse
Affiliation(s)
- Che-Sheng Chu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan; Center for Geriatric and Gerontology, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan; Non-invasive Neuromodulation Consortium for Mental Disorders, Society of Psychophysiology, Taipei, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Ming Cheng
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tung-Ping Su
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Psychiatry, General Cheng Hsin Hospital, Taipei, Taiwan
| | - Tzeng-Ji Chen
- Department of Family Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Hospital and Health Care Administration, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, Taipei, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
67
|
Lee JM, Lee JH, Song MK, Kim YJ. NXP031 Improves Cognitive Impairment in a Chronic Cerebral Hypoperfusion-Induced Vascular Dementia Rat Model through Nrf2 Signaling. Int J Mol Sci 2021; 22:6285. [PMID: 34208092 PMCID: PMC8230952 DOI: 10.3390/ijms22126285] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 11/25/2022] Open
Abstract
Vascular dementia (VaD) is a progressive cognitive impairment caused by a reduced blood supply to the brain. Chronic cerebral hypoperfusion (CCH) is one cause of VaD; it induces oxidative stress, neuroinflammation, and blood-brain barrier (BBB) disruption, damaging several brain regions. Vitamin C plays a vital role in preventing oxidative stress-related diseases induced by reactive oxygen species, but it is easily oxidized and loses its antioxidant activity. To overcome this weakness, we have developed a vitamin C/DNA aptamer complex (NXP031) that increases vitamin C's antioxidant efficacy. Aptamers are short single-stranded nucleic acid polymers (DNA or RNA) that can interact with their corresponding target with high affinity. We established an animal model of VaD by permanent bilateral common carotid artery occlusion (BCCAO) in 12 week old Wistar rats. Twelve weeks after BCCAO, we injected NXP031 into the rats intraperitoneally for two weeks at moderate (200 mg/4 mg/kg) and high concentrations (200 mg/20 mg/kg). NXP031 administration alleviates cognitive impairment, microglial activity, and oxidative stress after CCH. NXP031 increased the expression of basal lamina (laminin), endothelial cell (RECA-1, PECAM-1), and pericyte (PDGFRβ); these markers maintain the BBB integrity. We found that NXP031 administration activated the Nrf2-ARE pathway and increased the expression of SOD-1 and GSTO1/2. These results suggest that this new aptamer complex, NXP031, could be a therapeutic intervention in CCH-induced VaD.
Collapse
Affiliation(s)
- Jae-Min Lee
- College of Nursing Science, Kyung Hee University, Seoul 02447, Korea;
| | - Joo-Hee Lee
- Department of Nursing, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Min-Kyung Song
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA;
| | - Youn-Jung Kim
- College of Nursing Science, Kyung Hee University, Seoul 02447, Korea;
| |
Collapse
|
68
|
Life after Cell Death-Survival and Survivorship Following Chemotherapy. Cancers (Basel) 2021; 13:cancers13122942. [PMID: 34208331 PMCID: PMC8231100 DOI: 10.3390/cancers13122942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Treatment of aggressive cancers often relies on chemotherapy. This treatment has improved survival rates, but while effective at killing cancer cells, inevitably it also kills or alters the function of others. While many of the known effects are transient and resolve after treatment, as survival rates increase, so does our understanding of the long-term health costs that accompany cancer survivors. Here we provide an overview of common long-term morbidities known to be caused by conventional chemotherapy, including the risk of relapse, but more importantly, the cost of quality of life experienced, especially by those who have cancer in early life. We aim to highlight the importance of the development of targeted therapies to replace the use of conventional chemotherapy, but also that of treating the patients along with the disease to enable not only longer but also healthier life after cancer. Abstract To prevent cancer cells replacing and outnumbering their functional somatic counterparts, the most effective solution is their removal. Classical treatments rely on surgical excision, chemical or physical damage to the cancer cells by conventional interventions such as chemo- and radiotherapy, to eliminate or reduce tumour burden. Cancer treatment has in the last two decades seen the advent of increasingly sophisticated therapeutic regimens aimed at selectively targeting cancer cells whilst sparing the remaining cells from severe loss of viability or function. These include small molecule inhibitors, monoclonal antibodies and a myriad of compounds that affect metabolism, angiogenesis or immunotherapy. Our increased knowledge of specific cancer types, stratified diagnoses, genetic and molecular profiling, and more refined treatment practices have improved overall survival in a significant number of patients. Increased survival, however, has also increased the incidence of associated challenges of chemotherapy-induced morbidity, with some pathologies developing several years after termination of treatment. Long-term care of cancer survivors must therefore become a focus in itself, such that along with prolonging life expectancy, treatments allow for improved quality of life.
Collapse
|
69
|
An L, Shen Y, Chopp M, Zacharek A, Venkat P, Chen Z, Li W, Qian Y, Landschoot-Ward J, Chen J. Deficiency of Endothelial Nitric Oxide Synthase (eNOS) Exacerbates Brain Damage and Cognitive Deficit in A Mouse Model of Vascular Dementia. Aging Dis 2021; 12:732-746. [PMID: 34094639 PMCID: PMC8139201 DOI: 10.14336/ad.2020.0523] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/23/2020] [Indexed: 12/19/2022] Open
Abstract
Vascular Dementia (VaD) accounts for nearly 20% of all cases of dementia. eNOS plays an important role in neurovascular remodeling, anti-inflammation, and cognitive functional recovery after stroke. In this study, we investigated whether eNOS regulates brain damage, cognitive function in mouse model of bilateral common carotid artery stenosis (BCAS) induced VaD. Late-adult (6-8 months) C57BL/6J and eNOS knockout (eNOS-/-) mice were subjected to BCAS (n=12/group) or sham group (n=8/group). BCAS was performed by applying microcoils to both common carotid arteries. Cerebral blood flow (CBF) and blood pressure were measured. A battery of cognitive functional tests was performed, and mice were sacrificed 30 days after BCAS. Compared to corresponding sham mice, BCAS in wild-type (WT) and eNOS-/- mice significantly: 1) induces short term, long term memory loss, spatial learning and memory deficits; 2) decreases CBF, increases ischemic cell damage, including apoptosis, white matter (WM) and axonal damage; 3) increases blood brain barrier (BBB) leakage, decreases aquaporin-4 (AQP4) expression and vessel density; 4) increases microglial, astrocyte activation and oxidative stress in the brain; 5) increases inflammatory factor interleukin-1 receptor-associated kinase-1(IRAK-1) and amyloid beta (Aβ) expression in brain; 6) increases IL-6 and IRAK4 expression in brain. eNOS-/-sham mice exhibit increased blood pressure, decreased iNOS and nNOS in brain compared to WT-sham mice. Compared to WT-BCAS mice, eNOS-/-BCAS mice exhibit worse vascular and WM/axonal damage, increased BBB leakage and inflammatory response, increased cognitive deficit, decreased iNOS, nNOS in brain. eNOS deficit exacerbates BCAS induced brain damage and cognitive deficit.
Collapse
Affiliation(s)
- Lulu An
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| | - Yi Shen
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA.,2Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China (Current address)
| | - Michael Chopp
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA.,3Department of Physics, Oakland University, Rochester, MI-48309, USA
| | - Alex Zacharek
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| | - Poornima Venkat
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| | - Zhili Chen
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| | - Wei Li
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| | - Yu Qian
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| | | | - Jieli Chen
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| |
Collapse
|
70
|
Guebel DV, Torres NV, Acebes Á. Mapping the transcriptomic changes of endothelial compartment in human hippocampus across aging and mild cognitive impairment. Biol Open 2021; 10:bio057950. [PMID: 34184731 PMCID: PMC8181899 DOI: 10.1242/bio.057950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/07/2021] [Indexed: 12/17/2022] Open
Abstract
Compromise of the vascular system has important consequences on cognitive abilities and neurodegeneration. The identification of the main molecular signatures present in the blood vessels of human hippocampus could provide the basis to understand and tackle these pathologies. As direct vascular experimentation in hippocampus is problematic, we achieved this information by computationally disaggregating publicly available whole microarrays data of human hippocampal homogenates. Three conditions were analyzed: 'Young Adults', 'Aged', and 'aged with Mild Cognitive Impairment' (MCI). The genes identified were contrasted against two independent data-sets. Here we show that the endothelial cells from the Younger Group appeared in an 'activated stage'. In turn, in the Aged Group, the endothelial cells showed a significant loss of response to shear stress, changes in cell adhesion molecules, increased inflammation, brain-insulin resistance, lipidic alterations, and changes in the extracellular matrix. Some specific changes in the MCI group were also detected. Noticeably, in this study the features arisen from the Aged Group (high tortuosity, increased bifurcations, and smooth muscle proliferation), pose the need for further experimental verification to discern between the occurrence of arteriogenesis and/or vascular remodeling by capillary arterialization. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Daniel V. Guebel
- Program Agustín de Betancourt, Universidad de La Laguna, Tenerife 38200, Spain
- Department of Biochemistry, Cellular Biology and Genetics, Institute of Biomedical Technologies, Universidad de La Laguna, Tenerife 38200, Spain
| | - Néstor V. Torres
- Department of Biochemistry, Cellular Biology and Genetics, Institute of Biomedical Technologies, Universidad de La Laguna, Tenerife 38200, Spain
| | - Ángel Acebes
- Department of Basic Medical Sciences, Institute of Biomedical Technologies, University of La Laguna, Tenerife 38200, Spain
| |
Collapse
|
71
|
Zhu HY, Hong FF, Yang SL. The Roles of Nitric Oxide Synthase/Nitric Oxide Pathway in the Pathology of Vascular Dementia and Related Therapeutic Approaches. Int J Mol Sci 2021; 22:ijms22094540. [PMID: 33926146 PMCID: PMC8123648 DOI: 10.3390/ijms22094540] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022] Open
Abstract
Vascular dementia (VaD) is the second most common form of dementia worldwide. It is caused by cerebrovascular disease, and patients often show severe impairments of advanced cognitive abilities. Nitric oxide synthase (NOS) and nitric oxide (NO) play vital roles in the pathogenesis of VaD. The functions of NO are determined by its concentration and bioavailability, which are regulated by NOS activity. The activities of different NOS subtypes in the brain are partitioned. Pathologically, endothelial NOS is inactivated, which causes insufficient NO production and aggravates oxidative stress before inducing cerebrovascular endothelial dysfunction, while neuronal NOS is overactive and can produce excessive NO to cause neurotoxicity. Meanwhile, inflammation stimulates the massive expression of inducible NOS, which also produces excessive NO and then induces neuroinflammation. The vicious circle of these kinds of damage having impacts on each other finally leads to VaD. This review summarizes the roles of the NOS/NO pathway in the pathology of VaD and also proposes some potential therapeutic methods that target this pathway in the hope of inspiring novel ideas for VaD therapeutic approaches.
Collapse
Affiliation(s)
- Han-Yan Zhu
- Department of Physiology, College of Medicine, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China;
- Queen Marry College, College of Medicine, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China
| | - Fen-Fang Hong
- Teaching Center, Department of Experimental, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China
- Correspondence: (F.-F.H.); (S.-L.Y.)
| | - Shu-Long Yang
- Department of Physiology, College of Medicine, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China;
- Correspondence: (F.-F.H.); (S.-L.Y.)
| |
Collapse
|
72
|
Bhatia P, Kaur G, Singh N. Ozagrel a thromboxane A2 synthase inhibitor extenuates endothelial dysfunction, oxidative stress and neuroinflammation in rat model of bilateral common carotid artery occlusion induced vascular dementia. Vascul Pharmacol 2021; 137:106827. [PMID: 33346090 DOI: 10.1016/j.vph.2020.106827] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/14/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022]
Abstract
The present study investigates the potential of ozagrel, a thromboxane A2 (TXA2) synthase inhibitor, in bilateral common carotid artery occlusion (BCCAo) induced vascular dementia (VaD). Wistar rats were subjected to BCCAo procedure under anesthesia to induce VaD. Morris water maze (MWM) test was employed on 7th day post-surgery to determine learning and memory. Endothelial dysfunction was assessed in isolated aorta by observing endothelial dependent vasorelaxation and levels of serum nitrite. A battery of biochemical and histopathological estimations was performed. Expression analysis of inflammatory cytokines TNF-α and IL-6 was carried out by RT-PCR. BCCAo produced significant impairment in endothelium dependent vasorelaxation and decrease in serum nitrite levels indicating endothelial dysfunction along with poor performance on MWM represents impairment of learning and memory. There was a significant rise in brain oxidative stress level (indicated by increase in brain thiobarbituric acid reactive species and decrease in reduced glutathione levels); increase in brain acetylcholinesterase activity; brain myeloperoxidase activity; brain TNF-α & IL-6 levels, brain TNF-α & IL-6 mRNA expression and brain neutrophil infiltration (as marker of inflammation) were also observed. Treatment of ozagrel (10 & 20 mg/kg, p. o.)/donepezil (0. 5 mg/kg, i.p., serving as standard) ameliorated BCCAo induced endothelial dysfunction; memory deficits; biochemical and histopathological changes in a significant manner. It may be concluded that ozagrel markedly improved endothelial dysfunction; learning and memory; biochemical and histopathological alteration associated with BCCAo induced VaD and that TXA2 can be considered as an important therapeutic target for the treatment of VaD.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Brain/drug effects
- Brain/enzymology
- Brain/physiopathology
- Carotid Artery, Common/surgery
- Carotid Stenosis/complications
- Dementia, Vascular/drug therapy
- Dementia, Vascular/enzymology
- Dementia, Vascular/etiology
- Dementia, Vascular/physiopathology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/physiopathology
- Enzyme Inhibitors/pharmacology
- Female
- Inflammation Mediators/metabolism
- Ligation
- Male
- Methacrylates/pharmacology
- Morris Water Maze Test/drug effects
- Oxidative Stress/drug effects
- Rats, Wistar
- Thromboxane-A Synthase/antagonists & inhibitors
- Thromboxane-A Synthase/metabolism
- Rats
Collapse
Affiliation(s)
- Pankaj Bhatia
- CNS Research lab., Pharmacology division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala 147002, Punjab, India
| | - Gagandeep Kaur
- CNS Research lab., Pharmacology division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala 147002, Punjab, India
| | - Nirmal Singh
- Pharmacology division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala 147002, Punjab, India.
| |
Collapse
|
73
|
Molecular Factors Mediating Neural Cell Plasticity Changes in Dementia Brain Diseases. Neural Plast 2021; 2021:8834645. [PMID: 33854544 PMCID: PMC8021472 DOI: 10.1155/2021/8834645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 02/25/2021] [Accepted: 03/16/2021] [Indexed: 11/18/2022] Open
Abstract
Neural plasticity-the ability to alter a neuronal response to environmental stimuli-is an important factor in learning and memory. Short-term synaptic plasticity and long-term synaptic plasticity, including long-term potentiation and long-term depression, are the most-characterized models of learning and memory at the molecular and cellular level. These processes are often disrupted by neurodegeneration-induced dementias. Alzheimer's disease (AD) accounts for 50% of cases of dementia. Vascular dementia (VaD), Parkinson's disease dementia (PDD), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD) constitute much of the remaining cases. While vascular lesions are the principal cause of VaD, neurodegenerative processes have been established as etiological agents of many dementia diseases. Chief among such processes is the deposition of pathological protein aggregates in vivo including β-amyloid deposition in AD, the formation of neurofibrillary tangles in AD and FTD, and the accumulation of Lewy bodies composed of α-synuclein aggregates in DLB and PDD. The main symptoms of dementia are cognitive decline and memory and learning impairment. Nonetheless, accurate diagnoses of neurodegenerative diseases can be difficult due to overlapping clinical symptoms and the diverse locations of cortical lesions. Still, new neuroimaging and molecular biomarkers have improved clinicians' diagnostic capabilities in the context of dementia and may lead to the development of more effective treatments. Both genetic and environmental factors may lead to the aggregation of pathological proteins and altered levels of cytokines, such that can trigger the formation of proinflammatory immunological phenotypes. This cascade of pathological changes provides fertile ground for the development of neural plasticity disorders and dementias. Available pharmacotherapy and disease-modifying therapies currently in clinical trials may modulate synaptic plasticity to mitigate the effects neuropathological changes have on cognitive function, memory, and learning. In this article, we review the neural plasticity changes seen in common neurodegenerative diseases from pathophysiological and clinical points of view and highlight potential molecular targets of disease-modifying therapies.
Collapse
|
74
|
Liu H, Zhang Z, Zang C, Wang L, Yang H, Sheng C, Shang J, Zhao Z, Yuan F, Yu Y, Yao X, Bao X, Zhang D. GJ-4 ameliorates memory impairment in focal cerebral ischemia/reperfusion of rats via inhibiting JAK2/STAT1-mediated neuroinflammation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113491. [PMID: 33091490 DOI: 10.1016/j.jep.2020.113491] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/30/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gardenia jasminoides J. Ellis (Fructus Gardenia) is a traditional Chinese medicine with diverse pharmacological functions, such as anti-inflammation, anti-depression, as well as improvement of cognition and ischemia brain injury. GJ-4 is a natural extract from Gardenia jasminoides J. Ellis (Fructus Gardenia) and has been proved to improve memory impairment in Alzheimer's disease (AD) mouse model in our previous studies. AIM OF THE STUDY This study aimed to evaluate the therapeutic effects of GJ-4 on vascular dementia (VD) and explore the potential mechanisms. MATERIAL AND METHODS In our experiment, a focal cerebral ischemia and reperfusion rat model was successfully developed by the middle cerebral artery occlusion and reperfusion (MCAO/R). GJ-4 (10 mg/kg, 25 mg/kg, 50 mg/kg) and nimodipine (10 mg/kg) were orally administered to rats once a day for consecutive 12 days. Learning and memory behavioral performance was assayed by step-down test and Morris water maze test. The neurological scoring test was performed to evaluate the neurological function of rats. 2,3,5-Triphenyltetrazolium chloride (TTC) staining and Nissl staining were respectively employed to determine the infarct condition and neuronal injury of the brain. Iba1 immunohistochemistry was used to show the activation of microglia. Moreover, the synaptic damage and inflammatory level were detected by Western blot. RESULTS GJ-4 could significantly improve memory impairment, cerebral infraction, as well as neurological deficits of VD rats induced by MCAO/R. Further research indicated VD-induced neuronal injury was alleviated by GJ-4. In addition, GJ-4 could protect synapse of VD rats by upregulating synaptophysin (SYP) expression, post synaptic density 95 protein (PSD95) expression, and downregulating N-Methyl-D-Aspartate receptor 1 (NMDAR1) expression. Subsequent investigation of the underlying mechanisms identified that GJ-4 could suppress neuroinflammatory responses, supported by inhibited activation of microglia and reduced expression of inflammatory proteins, which ultimately exerted neuroprotective effects on VD. Further mechanistic study indicated that janus kinase 2 (JAK2)/signal transducer and activator of transcription 1 (STAT1) pathway was inhibited by GJ-4 treatment. CONCLUSION These results suggested that GJ-4 might serve as a potential drug to improve VD. In addition, our study indicated that inhibition of neuroinflammation might be a promising target to treat VD.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Brain/drug effects
- Brain/enzymology
- Brain/pathology
- Brain/physiopathology
- Dementia, Vascular/enzymology
- Dementia, Vascular/etiology
- Dementia, Vascular/prevention & control
- Dementia, Vascular/psychology
- Disease Models, Animal
- Drugs, Chinese Herbal/pharmacology
- Gardenia
- Infarction, Middle Cerebral Artery/complications
- Infarction, Middle Cerebral Artery/drug therapy
- Infarction, Middle Cerebral Artery/enzymology
- Infarction, Middle Cerebral Artery/physiopathology
- Inflammation Mediators/metabolism
- Janus Kinase 2/metabolism
- Male
- Memory/drug effects
- Memory Disorders/enzymology
- Memory Disorders/etiology
- Memory Disorders/prevention & control
- Memory Disorders/psychology
- Microglia/drug effects
- Microglia/metabolism
- Microglia/pathology
- Neuroprotective Agents/pharmacology
- Nootropic Agents/pharmacology
- Plant Extracts/pharmacology
- Rats, Sprague-Dawley
- Reperfusion Injury/enzymology
- Reperfusion Injury/etiology
- Reperfusion Injury/physiopathology
- Reperfusion Injury/prevention & control
- STAT1 Transcription Factor/metabolism
- Signal Transduction
- Synapses/drug effects
- Synapses/metabolism
- Synapses/pathology
- Rats
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Zihong Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Caixia Zang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Lu Wang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Hanyu Yang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Chanjuan Sheng
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Junmei Shang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Zhe Zhao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Fangyu Yuan
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Yang Yu
- Institute of TCM, Natural Products College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xinsheng Yao
- Institute of TCM, Natural Products College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xiuqi Bao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China.
| | - Dan Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China.
| |
Collapse
|
75
|
Knopp R, Jastaniah A, Dubrovskyi O, Gaisina I, Tai L, Thatcher GRJ. Extending the Calpain-Cathepsin Hypothesis to the Neurovasculature: Protection of Brain Endothelial Cells and Mice from Neurotrauma. ACS Pharmacol Transl Sci 2021; 4:372-385. [PMID: 33615187 PMCID: PMC7887848 DOI: 10.1021/acsptsci.0c00217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Indexed: 12/13/2022]
Abstract
The calpain-cathepsin hypothesis posits a key role for elevated calpain-1 and cathepsin-B activity in the neurodegeneration underlying neurotrauma and multiple disorders including Alzheimer's disease (AD). AD clinical trials were recently halted on alicapistat, a selective calpain-1 inhibitor, because of insufficient exposure of neurons to the drug. In contrast to neuroprotection, the ability of calpain-1 and cathepsin-B inhibitors to protect the blood-brain barrier (BBB), is understudied. Since cerebrovascular dysfunction underlies vascular dementia, is caused by ischemic stroke, and is emerging as an early feature in the progression of AD, we studied protection of brain endothelial cells (BECs) by selective and nonselective calpain-1 and cathepsin-B inhibitors. We show these inhibitors protect both neurons and murine BECs from ischemia-reperfusion injury. Cultures of primary BECs from ALDH2 -/- mice that manifest enhanced oxidative stress were sensitive to ischemia, leading to reduced cell viability and loss of tight junction proteins; this damage was rescued by calpain-1 and cathepsin-B inhibitors. In ALDH2 -/- mice 24 h after mild traumatic brain injury (mTBI), BBB damage was reflected by significantly increased fluorescein extravasation and perturbation of tight junction proteins, eNOS, MMP-9, and GFAP. Both calpain and cathepsin-B inhibitors alleviated BBB dysfunction caused by mTBI. No clear advantage was shown by selective versus nonselective calpain inhibitors in these studies. The lack of recognition of the ability of calpain inhibitors to protect the BBB may have led to the premature abandonment of this therapeutic approach in AD clinical trials and requires further mechanistic studies of cerebrovascular protection by calpain-1 inhibitors.
Collapse
Affiliation(s)
- Rachel
C. Knopp
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Ammar Jastaniah
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Oleksii Dubrovskyi
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Irina Gaisina
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
- UICentre
(Drug Discovery @ UIC), University of Illinois
at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Leon Tai
- Department
of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Gregory R. J. Thatcher
- Department
of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
76
|
Lin Q, Wang W, Yang L, Duan X. 4-Methoxybenzylalcohol protects brain microvascular endothelial cells against oxygen-glucose deprivation/reperfusion-induced injury via activation of the PI3K/AKT signaling pathway. Exp Ther Med 2021; 21:252. [PMID: 33613705 PMCID: PMC7856387 DOI: 10.3892/etm.2021.9684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/02/2020] [Indexed: 11/07/2022] Open
Abstract
Damage to the blood-brain barrier (BBB) during the process of cerebral ischemic injury is a key factor that affects the treatment of this condition. The present study aimed to assess the potential effects of 4-methoxybenzyl alcohol (4-MA) on brain microvascular endothelial cells (bEnd.3) against oxygen-glucose deprivation/reperfusion (OGD/Rep) using an in vitro model that mimics in vivo ischemia/reperfusion injury. In addition, the present study aimed to explore whether this underlying mechanism was associated with the inhibition of pro-inflammatory factors and the activation status of the PI3K/Akt signaling pathway. bEnd.3 cells were subjected to OGD/Rep-induced injury before being treated with 4-MA, following which cell viability, lactate dehydrogenase (LDH) release and levels of nitric oxidase (NO) were detected by colorimetry, pro-inflammatory factors including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6, were detected by ELISA. The expression levels of occluding and claudin-5were evaluated by immunofluorescence staining. The expression levels of AKT, phosphorylated (p)-Akt, endothelial nitric oxide synthase (eNOS) and p-eNOS were also measured by western blot analysis. After bEnd.3 cells were subjected to OGD/Rep-induced injury, cell viability and NO levels were significantly decreased, whilst LDH leakage and inflammatory factor (TNF-α, IL-1β and IL-6) levels were significantly increased. Treatment with 4-MA significantly ameliorated cell viability, LDH release and the levels of NO and pro-inflammatory factors TNF-α, IL-1β and IL-6 as a result of OGD/Rep. Furthermore, treatment with 4-MA upregulated the expression of occludin, claudin-5, Akt and eNOS, in addition to increasing eNOS and AKT phosphorylation in bEnd.3 cells. These results suggest that 4-MA can alleviate OGD/Rep-induced injury in bEnd.3 cells by inhibiting inflammation and by activating the PI3K/AKT signaling pathway as a possible mechanism. Therefore, 4-MA can serve as a potential candidate for treating OGD/Rep-induced injury.
Collapse
Affiliation(s)
- Qing Lin
- Department of Pharmacology, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Weili Wang
- Department of Pharmacology, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Liping Yang
- Yunnan Key Laboratory of Dai and Yi Medicine, University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Xiaohua Duan
- Yunnan Key Laboratory of Dai and Yi Medicine, University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
77
|
Beishon L, Clough RH, Kadicheeni M, Chithiramohan T, Panerai RB, Haunton VJ, Minhas JS, Robinson TG. Vascular and haemodynamic issues of brain ageing. Pflugers Arch 2021; 473:735-751. [PMID: 33439324 PMCID: PMC8076154 DOI: 10.1007/s00424-020-02508-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/17/2023]
Abstract
The population is ageing worldwide, thus increasing the burden of common age-related disorders to the individual, society and economy. Cerebrovascular diseases (stroke, dementia) contribute a significant proportion of this burden and are associated with high morbidity and mortality. Thus, understanding and promoting healthy vascular brain ageing are becoming an increasing priority for healthcare systems. In this review, we consider the effects of normal ageing on two major physiological processes responsible for vascular brain function: Cerebral autoregulation (CA) and neurovascular coupling (NVC). CA is the process by which the brain regulates cerebral blood flow (CBF) and protects against falls and surges in cerebral perfusion pressure, which risk hypoxic brain injury and pressure damage, respectively. In contrast, NVC is the process by which CBF is matched to cerebral metabolic activity, ensuring adequate local oxygenation and nutrient delivery for increased neuronal activity. Healthy ageing is associated with a number of key physiological adaptations in these processes to mitigate age-related functional and structural declines. Through multiple different paradigms assessing CA in healthy younger and older humans, generating conflicting findings, carbon dioxide studies in CA have provided the greatest understanding of intrinsic vascular anatomical factors that may mediate healthy ageing responses. In NVC, studies have found mixed results, with reduced, equivalent and increased activation of vascular responses to cognitive stimulation. In summary, vascular and haemodynamic changes occur in response to ageing and are important in distinguishing “normal” ageing from disease states and may help to develop effective therapeutic strategies to promote healthy brain ageing.
Collapse
Affiliation(s)
- Lucy Beishon
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK.
| | - Rebecca H Clough
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK
| | - Meeriam Kadicheeni
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK
| | - Tamara Chithiramohan
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK.,NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Victoria J Haunton
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK.,NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Jatinder S Minhas
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK.,NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Thompson G Robinson
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK.,NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
78
|
The Role of Acupuncture Improving Cognitive Deficits due to Alzheimer's Disease or Vascular Diseases through Regulating Neuroplasticity. Neural Plast 2021; 2021:8868447. [PMID: 33505460 PMCID: PMC7815402 DOI: 10.1155/2021/8868447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/29/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Dementia affects millions of elderly worldwide causing remarkable costs to society, but effective treatment is still lacking. Acupuncture is one of the complementary therapies that has been applied to cognitive deficits such as Alzheimer's disease (AD) and vascular cognitive impairment (VCI), while the underlying mechanisms of its therapeutic efficiency remain elusive. Neuroplasticity is defined as the ability of the nervous system to adapt to internal and external environmental changes, which may support some data to clarify mechanisms how acupuncture improves cognitive impairments. This review summarizes the up-to-date and comprehensive information on the effectiveness of acupuncture treatment on neurogenesis and gliogenesis, synaptic plasticity, related regulatory factors, and signaling pathways, as well as brain network connectivity, to lay ground for fully elucidating the potential mechanism of acupuncture on the regulation of neuroplasticity and promoting its clinical application as a complementary therapy for AD and VCI.
Collapse
|
79
|
Abstract
The global increase in lifespan noted not only in developed nations, but also in large developing countries parallels an observed increase in a significant number of non-communicable diseases, most notable neurodegenerative disorders. Neurodegenerative disorders present a number of challenges for treatment options that do not resolve disease progression. Furthermore, it is believed by the year 2030, the services required to treat cognitive disorders in the United States alone will exceed $2 trillion annually. Mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae), the mechanistic target of rapamycin, and the pathways of autophagy and apoptosis offer exciting avenues to address these challenges by focusing upon core cellular mechanisms that may significantly impact nervous system disease. These pathways are intimately linked such as through cell signaling pathways involving protein kinase B and can foster, sometimes in conjunction with trophic factors, enhanced neuronal survival, reduction in toxic intracellular accumulations, and mitochondrial stability. Feedback mechanisms among these pathways also exist that can oversee reparative processes in the nervous system. However, mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1, mechanistic target of rapamycin, and autophagy can lead to cellular demise under some scenarios that may be dependent upon the precise cellular environment, warranting future studies to effectively translate these core pathways into successful clinical treatment strategies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling New York, New York, NY, USA
| |
Collapse
|
80
|
Shafi R, Poublanc J, Venkatraghavan L, Crawley AP, Sobczyk O, McKetton L, Bayley M, Chandra T, Foster E, Ruttan L, Comper P, Tartaglia MC, Tator CH, Duffin J, Mutch WA, Fisher J, Mikulis DJ. A Promising Subject-Level Classification Model for Acute Concussion Based on Cerebrovascular Reactivity Metrics. J Neurotrauma 2020; 38:1036-1047. [PMID: 33096952 DOI: 10.1089/neu.2020.7272] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Concussion imaging research has primarily focused on neuronal disruption with lesser emphasis directed toward vascular dysfunction. However, blood flow metrics may be more sensitive than measures of neuronal integrity. Vascular dysfunction can be assessed by measuring cerebrovascular reactivity (CVR)-the change in cerebral blood flow per unit change in vasodilatory stimulus. CVR metrics, including speed and magnitude of flow responses to a standardized well-controlled vasoactive stimulus, are potentially useful for assessing individual subjects following concussion given that blood flow dysregulation is known to occur with traumatic brain injury. We assessed changes in CVR metrics to a standardized vasodilatory stimulus during the acute phase of concussion. Using a case control design, 20 concussed participants and 20 healthy controls (HCs) underwent CVR assessment measuring blood oxygen-level dependent (BOLD) magnetic resonance imaging using precise changes in end-tidal partial pressure of CO2 (PETCO2). Metrics were calculated for the whole brain, gray matter (GM), and white matter (WM) using sex-stratification. A leave-one-out receiver operating characteristic (ROC) analysis classified concussed from HCs based on CVR metrics. CVR magnitude was greater and speed of response faster in concussed participants relative to HCs, with WM showing higher classification accuracy compared with GM. ROC analysis for WM-CVR metrics revealed an area under the curve of 0.94 in males and 0.90 in females for speed and magnitude of response respectively. These greater than normal responses to a vasodilatory stimulus warrant further investigation to compare the predictive ability of CVR metrics against structural injury metrics for diagnosis and prognosis in acute concussion.
Collapse
Affiliation(s)
- Reema Shafi
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Julien Poublanc
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Lashmi Venkatraghavan
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Adrian P Crawley
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Olivia Sobczyk
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Larissa McKetton
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Mark Bayley
- Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - Tharshini Chandra
- Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - Evan Foster
- Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - Lesley Ruttan
- Graduate Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada.,Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada.,Canadian Concussion Center, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Paul Comper
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada.,Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - Maria Carmela Tartaglia
- Department of Medicine (Neurology), University of Toronto, Toronto, Ontario, Canada.,Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Tanz Center for Research in Neurodegenerative Diseases, Toronto, Ontario, Canada.,Canadian Concussion Center, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Charles H Tator
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Canadian Concussion Center, Toronto Western Hospital, Toronto, Ontario, Canada
| | - James Duffin
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - W Alan Mutch
- Department of Anesthesiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Joseph Fisher
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - David J Mikulis
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada.,Canadian Concussion Center, Toronto Western Hospital, Toronto, Ontario, Canada
| |
Collapse
|
81
|
Mahmoud D, El-Sisi O, Sheta M, Ahmed S, Fathy M, Gomaa K, Ramzy T. Association of miR-196a2 and miR-149 single-nucleotide polymorphisms with atherosclerotic ischemic stroke susceptibility. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2020. [DOI: 10.1186/s41983-020-00219-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Beside common risk factors for stroke such as diabetes and hypertension, single-nucleotide variants occurring within micro RNA genes have been identified as susceptibility loci for ischemic stroke risk.
Objectives
Investigate the possible association of two variants in pre miRNA sequences, rs11614913 within miR-196a2 C > T and rs2292832 within miR-149 T > C, with ischemic stroke.
Subjects and methods
One hundred ischemic stroke patients and 100 age and sex-matched controls having > 1 risk factor for atherosclerosis were enrolled in a case-control study. Degree of atherosclerosis was assessed using ultrasonography. Micro RNA variants were assessed by real-time PCR TaqMan probe assay.
Results
The TT genotype and T allele frequencies of miR-196a2 C > T were protective against ischemic stroke (OR 0.168, P 0.001; OR 0.482, P < 0.001 respectively). While among miR-149 T > C variants, CC genotype was associated with increased risk by threefold (OR 3.061, P 0.005) and C allele was associated with about 1.9 fold risk of stroke (OR 1.909, P 0.002). Haplotypes analysis revealed miR-196a2T/-149 T allele combination was significantly lower among stroke patients than the controls (P < 0.001) with a protective effect (OR 0.196, 95% CI 0.083-0.466).
Conclusion
A decrease in the incidence of ischemic stroke is associated with miR-196a2 TT genotype and T allele and increases in the likelihood risk of ischemic stroke are associated with CC genotype and C allele within miR-149, and the two miRNAs under study are closely associated with vascular damage responses.
Collapse
|
82
|
Notch1-mediated inflammation is associated with endothelial dysfunction in human brain microvascular endothelial cells upon particulate matter exposure. Arch Toxicol 2020; 95:529-540. [PMID: 33159583 DOI: 10.1007/s00204-020-02942-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
Exposure to atmospheric particulate matter (PM) is an emerging risk factor for the pathogenesis of several diseases in humans, including cerebrovascular diseases. However, the mechanisms underlying PM-induced endothelial dysfunction are currently unclear. In this study, we examined how PM leads to endothelial dysfunction in human brain microvascular endothelial cells (HBMECs). We demonstrated that PM10 exposure (up to 25 μg/mL) increase Notch1 cleavage, and it regulates endothelial dysfunction through NICD-mediated inflammation and senescence. PM10-induced NICD signaling causes increased expression of interleukin-1 beta (IL-1β) and enhances characteristics of cellular senescence, which leads to increased endothelial permeability in HBMECs. Knockdown of Notch1 by siRNA blocks PM10-induced endothelial dysfunction via the suppression of inflammation and senescence. Furthermore, we found that Notch1-mediated inflammation accelerates endothelial senescence, which eventually leads to endothelial dysfunction. Altogether, our data suggest that Notch1 and NICD are potential target regulators for the prevention of cerebrovascular endothelial dysfunction induced by ambient air pollutants such as PM.
Collapse
|
83
|
Mita-Mendoza NK, Magallon-Tejada A, Parmar P, Furtado R, Aldrich M, Saidi A, Taylor T, Smith J, Seydel K, Daily JP. Dimethyl fumarate reduces TNF and Plasmodium falciparum induced brain endothelium activation in vitro. Malar J 2020; 19:376. [PMID: 33087130 PMCID: PMC7579885 DOI: 10.1186/s12936-020-03447-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/16/2020] [Indexed: 11/10/2022] Open
Abstract
Background Cerebral malaria (CM) is associated with morbidity and mortality despite the use of potent anti-malarial agents. Brain endothelial cell activation and dysfunction from oxidative and inflammatory host responses and products released by Plasmodium falciparum-infected erythrocytes (IE), are likely the major contributors to the encephalopathy, seizures, and brain swelling that are associated with CM. The development of adjunctive therapy to reduce the pathological consequences of host response pathways could improve outcomes. A potentially protective role of the nuclear factor E2-related factor 2 (NRF2) pathway, which serves as a therapeutic target in brain microvascular diseases and central nervous system (CNS) inflammatory diseases such as multiple sclerosis was tested to protect endothelial cells in an in vitro culture system subjected to tumour necrosis factor (TNF) or infected red blood cell exposure. NRF2 is a transcription factor that mediates anti-oxidant and anti-inflammatory responses. Methods To accurately reflect clinically relevant parasite biology a unique panel of parasite isolates derived from patients with stringently defined CM was developed. The effect of TNF and these parasite lines on primary human brain microvascular endothelial cell (HBMVEC) activation in an in vitro co-culture model was tested. HBMVEC activation was measured by cellular release of IL6 and nuclear translocation of NFκB. The transcriptional and functional effects of dimethyl fumarate (DMF), an FDA approved drug which induces the NRF2 pathway, on host and parasite induced HBMVEC activation was characterized. In addition, the effect of DMF on parasite binding to TNF stimulated HBMVEC in a semi-static binding assay was examined. Results Transcriptional profiling demonstrates that DMF upregulates the NRF2-Mediated Oxidative Stress Response, ErbB4 Signaling Pathway, Peroxisome Proliferator-activated Receptor (PPAR) Signaling and downregulates iNOS Signaling and the Neuroinflammation Signaling Pathway on TNF activated HBMVEC. The parasite lines derived from eight paediatric CM patients demonstrated increased binding to TNF activated HBMVEC and varied in their binding and activation of HBMVEC. Overall DMF reduced both TNF and CM derived parasite activation of HBMVEC. Conclusions These findings provide evidence that targeting the NRF2 pathway in TNF and parasite activated HBMVEC mediates multiple protective pathways and may represent a novel adjunctive therapy to improve infection outcomes in CM.
Collapse
Affiliation(s)
- Neida K Mita-Mendoza
- Department of Microbiology & Immunology and Infectious Diseases, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ariel Magallon-Tejada
- Seattle Biomedical Research Institute, Seattle, WA, USA.,Department of Research in Parasitology, Gorgas Memorial Research Institute for Health Studies, Panama City, Panama
| | - Priyanka Parmar
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Raquel Furtado
- Department of Microbiology & Immunology and Infectious Diseases, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Margaret Aldrich
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alex Saidi
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre 3, Malawi
| | - Terrie Taylor
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre 3, Malawi.,Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Joe Smith
- Seattle Children's Research Institute, Seattle, WA, USA.,Department of Global Health, University of Washington, Seattle, WA, USA
| | - Karl Seydel
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre 3, Malawi.,Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Johanna P Daily
- Department of Microbiology & Immunology and Infectious Diseases, Albert Einstein College of Medicine, Bronx, NY, USA. .,Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
84
|
Bhatia P, Singh N. Ameliorative effect of ozagrel, a thromboxane A2 synthase inhibitor, in hyperhomocysteinemia-induced experimental vascular cognitive impairment and dementia. Fundam Clin Pharmacol 2020; 35:650-666. [PMID: 33020931 DOI: 10.1111/fcp.12610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 10/23/2022]
Abstract
The present study investigates the effect of ozagrel, a selective thromboxane A2 (TXA2) inhibitor, in rat model of hyperhomocysteinemia (HHcy)-induced vascular cognitive impairment and dementia (VCID). Wistar rats were administered L-methionine (1.7 g/kg/day; p.o. × 8 weeks) to induce VCID. Morris water maze (MWM) test was employed to assess learning and memory. Endothelial dysfunction was assessed in the isolated aorta by observing endothelial-dependent vasorelaxation and levels of serum nitrite. Various biochemical and histopathological estimations were also performed. L-methionine produced significant impairment in endothelium-dependent vasorelaxation and decreases serum nitrite levels indicating endothelial dysfunction. Further, these animals performed poorly on MWM, depicting impairment of learning and memory. Further, a significant rise in brain oxidative stress level (indicated by increase in brain thiobarbituric acid-reactive species and decrease in reduced glutathione levels), brain acetylcholinesterase activity, brain myeloperoxidase activity, brain TNF-α and IL-6 levels, and brain leukocyte (neutrophil) infiltration was also observed. Treatment of ozagrel (10 and 20 mg/kg, p. o.)/donepezil (0.5 mg/kg, i.p., serving as standard) ameliorated L-methionine-induced endothelial dysfunction, memory deficits, and biochemical and histopathological changes. It may be concluded that ozagrel markedly improved endothelial dysfunction, learning and memory, and biochemical and histopathological alteration associated with L-methionine-induced VCID and that TXA2 can be considered as an important therapeutic target for the management of VCID.
Collapse
Affiliation(s)
- Pankaj Bhatia
- CNS Research Lab., Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala, Punjab, 147002, India
| | - Nirmal Singh
- Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala, Punjab, 147002, India
| |
Collapse
|
85
|
Miceli V, Russelli G, Iannolo G, Gallo A, Lo Re V, Agnese V, Sparacia G, Conaldi PG, Bulati M. Role of non-coding RNAs in age-related vascular cognitive impairment: An overview on diagnostic/prognostic value in Vascular Dementia and Vascular Parkinsonism. Mech Ageing Dev 2020; 191:111332. [PMID: 32805261 DOI: 10.1016/j.mad.2020.111332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
Age is the pivotal risk factor for different common medical conditions such as cardiovascular diseases, cancer and dementia. Among age-related disorders, cardiovascular and cerebrovascular diseases, represent the leading causes of premature mortality strictly related to vascular ageing, a pathological condition characterized by endothelial dysfunction, atherosclerosis, hypertension, heart disease and stroke. These features negatively impact on the brain, owing to altered cerebral blood flow, neurovascular coupling and impaired endothelial permeability leading to cerebrovascular diseases (CVDs) as Vascular Dementia (VD) and Parkinsonism (VP). It is an increasing opinion that neurodegenerative disorders and cerebrovascular diseases are associated from a pathogenetic point of view, and in this review, we discuss how cerebrovascular dysfunctions, due to epigenetic alterations, are linked with neuronal degeneration/dysfunction that lead to cognitive impairment. The relation between neurodegenerative and cerebrovascular diseases are reviewed with a focus on role of ncRNAs in age-related vascular diseases impairing the endothelium in the blood-brain barrier with consequent dysfunction of cerebral blood flow. In this review we dissert about different regulatory mechanisms of gene expression implemented by ncRNAs in the pathogenesis of age-related neurovascular impairment, aiming to highlight the potential use of ncRNAs as biomarkers for diagnostic/prognostic purposes as well as novel therapeutic targets.
Collapse
Affiliation(s)
- V Miceli
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - G Russelli
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - G Iannolo
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - A Gallo
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - V Lo Re
- Neurology Service, Department of Diagnostic and Therapeutic Services, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - V Agnese
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - G Sparacia
- Radiology Service, Department of Diagnostic and Therapeutic Services, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - P G Conaldi
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - M Bulati
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy.
| |
Collapse
|
86
|
Vasquez EC, Aires R, Ton AMM, Amorim FG. New Insights on the Beneficial Effects of the Probiotic Kefir on Vascular Dysfunction in Cardiovascular and Neurodegenerative Diseases. Curr Pharm Des 2020; 26:3700-3710. [DOI: 10.2174/1381612826666200304145224] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/26/2020] [Indexed: 12/14/2022]
Abstract
The mechanisms responsible for cardiovascular and neurodegenerative diseases have been the focus of
experimental and clinical studies for decades. The relationship between the gut microbiota and the organs and
system tissues represents the research field that has generated the highest number of publications. Homeostasis of
the gut microbiota is important to the host because it promotes maturation of the autoimmune system, harmonic
integrative functions of the brain, and the normal function of organs related to cardiovascular and metabolic systems.
On the other hand, when a gut microbiota dysbiosis occurs, the target organs become vulnerable to the
onset or aggravation of complex chronic conditions, such as cardiovascular (e.g., arterial hypertension) and neurodegenerative
(e.g., dementia) diseases. In the present brief review, we discuss the main mechanisms involved in
those disturbances and the promising beneficial effects that have been revealed using functional food (nutraceuticals),
such as the traditional probiotic Kefir. Here, we highlight the current scientific advances, concerns, and
limitations about the use of this nutraceutical. The focus of our discussion is the endothelial dysfunction that
accompanies hypertension and the neurovascular dysfunction that characterizes ageing-related dementia in patients
suffering from Alzheimer's disease.
Collapse
Affiliation(s)
- Elisardo C. Vasquez
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil
| | - Rafaela Aires
- Physiological Sciences Graduate Program, Federal University of Espirito Santo (UFES), Vitoria, ES, Brazil
| | - Alyne M. M. Ton
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil
| | - Fernanda G. Amorim
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil
| |
Collapse
|
87
|
Maliszewska-Cyna E, Vecchio LM, Thomason LAM, Oore JJ, Steinman J, Joo IL, Dorr A, McLaurin J, Sled JG, Stefanovic B, Aubert I. The effects of voluntary running on cerebrovascular morphology and spatial short-term memory in a mouse model of amyloidosis. Neuroimage 2020; 222:117269. [PMID: 32818618 DOI: 10.1016/j.neuroimage.2020.117269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/27/2022] Open
Abstract
Physical activity has been correlated with a reduced risk of cognitive decline, including that associated with vascular dementia, mild cognitive impairment (MCI) and Alzheimer's disease (AD); recent literature suggests this may in part result from benefits to the cerebrovascular network. Using a transgenic (Tg) mouse model of AD, we evaluated the effect of running on cortical and hippocampal vascular morphology, cerebral amyloid angiopathy, amyloid plaque load, and spatial memory. TgCRND8 mice present with progressive amyloid pathology, advancing from the cortex to the hippocampus in a time-dependent manner. We postulated that the characteristic progression of pathology could lead to differential, time-dependent effects of physical activity on vascular morphology in these brain regions at 6 months of age. We used two-photon fluorescent microscopy and 3D vessel tracking to characterize vascular and amyloid pathology in sedentary TgCRND8 mice compared those who have a history of physical activity (unlimited access to a running wheel, from 3 to 6 months of age). In sedentary TgCRND8 mice, capillary density was found to be lower in the cortex and higher in the hippocampus compared to non-transgenic (nonTg) littermates. Capillary length, vessel branching, and non-capillary vessel tortuosity were also higher in the hippocampus of sedentary TgCRND8 compared to nonTg mice. Three months of voluntary running resulted in normalizing cortical and hippocampal microvascular morphology, with no significant difference between TgCRND8 and nonTg mice. The benefits of physical activity on cortical and hippocampal vasculature in 6-month old TgCRND8 mice were not paralleled by significant changes on parenchymal and cerebral amyloid pathology. Short-term spatial memory- as evaluated by performance in the Y-maze- was significantly improved in running compared to sedentary TgCRND8 mice. These results suggest that long-term voluntary running contributes to the maintenance of vascular morphology and spatial memory in TgCRND8 mice, even in the absence of an effect on amyloid pathology.
Collapse
Affiliation(s)
- Ewelina Maliszewska-Cyna
- Hurvitz Brain Sciences, Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Ave, S112, Toronto, Ontario M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Laura M Vecchio
- Hurvitz Brain Sciences, Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Ave, S112, Toronto, Ontario M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| | - Lynsie A M Thomason
- Hurvitz Brain Sciences, Physical Sciences, Sunnybrook Research Institute, Canada
| | - Jonathan J Oore
- Hurvitz Brain Sciences, Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Ave, S112, Toronto, Ontario M4N 3M5, Canada
| | - Joe Steinman
- Mouse Imaging Centre, Hospital for Sick Children, Canada; Department of Medical Biophysics, University of Toronto, Canada
| | - Illsung Lewis Joo
- Hurvitz Brain Sciences, Physical Sciences, Sunnybrook Research Institute, Canada
| | - Adrienne Dorr
- Hurvitz Brain Sciences, Physical Sciences, Sunnybrook Research Institute, Canada
| | - JoAnne McLaurin
- Hurvitz Brain Sciences, Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Ave, S112, Toronto, Ontario M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - John G Sled
- Mouse Imaging Centre, Hospital for Sick Children, Canada; Department of Medical Biophysics, University of Toronto, Canada
| | - Bojana Stefanovic
- Hurvitz Brain Sciences, Physical Sciences, Sunnybrook Research Institute, Canada; Department of Medical Biophysics, University of Toronto, Canada
| | - Isabelle Aubert
- Hurvitz Brain Sciences, Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Ave, S112, Toronto, Ontario M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
88
|
Freitas-Andrade M, Raman-Nair J, Lacoste B. Structural and Functional Remodeling of the Brain Vasculature Following Stroke. Front Physiol 2020; 11:948. [PMID: 32848875 PMCID: PMC7433746 DOI: 10.3389/fphys.2020.00948] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Maintenance of cerebral blood vessel integrity and regulation of cerebral blood flow ensure proper brain function. The adult human brain represents only a small portion of the body mass, yet about a quarter of the cardiac output is dedicated to energy consumption by brain cells at rest. Due to a low capacity to store energy, brain health is heavily reliant on a steady supply of oxygen and nutrients from the bloodstream, and is thus particularly vulnerable to stroke. Stroke is a leading cause of disability and mortality worldwide. By transiently or permanently limiting tissue perfusion, stroke alters vascular integrity and function, compromising brain homeostasis and leading to widespread consequences from early-onset motor deficits to long-term cognitive decline. While numerous lines of investigation have been undertaken to develop new pharmacological therapies for stroke, only few advances have been made and most clinical trials have failed. Overall, our understanding of the acute and chronic vascular responses to stroke is insufficient, yet a better comprehension of cerebrovascular remodeling following stroke is an essential prerequisite for developing novel therapeutic options. In this review, we present a comprehensive update on post-stroke cerebrovascular remodeling, an important and growing field in neuroscience, by discussing cellular and molecular mechanisms involved, sex differences, limitations of preclinical research design and future directions.
Collapse
Affiliation(s)
| | - Joanna Raman-Nair
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
89
|
The Role of Neurovascular System in Neurodegenerative Diseases. Mol Neurobiol 2020; 57:4373-4393. [PMID: 32725516 DOI: 10.1007/s12035-020-02023-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022]
Abstract
The neurovascular system (NVS), which consisted of neurons, glia, and vascular cells, is a functional and structural unit of the brain. The NVS regulates blood-brain barrier (BBB) permeability and cerebral blood flow (CBF), thereby maintaining the brain's microenvironment for normal functioning, neuronal survival, and information processing. Recent studies have highlighted the role of vascular dysfunction in several neurodegenerative diseases. This is not unexpected since both nervous and vascular systems are functionally interdependent and show close anatomical apposition, as well as similar molecular pathways. However, despite extensive research, the precise mechanism by which neurovascular dysfunction contributes to neurodegeneration remains incomplete. Therefore, understanding the mechanisms of neurovascular dysfunction in disease conditions may allow us to develop potent and effective therapies for prevention and treatment of neurodegenerative diseases. This review article summarizes the current research in the context of neurovascular signaling associated with neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). We also discuss the potential implication of neurovascular factor as a novel therapeutic target and prognostic marker in patients with neurodegenerative conditions. Graphical Abstract.
Collapse
|
90
|
Cervellati C, Trentini A, Pecorelli A, Valacchi G. Inflammation in Neurological Disorders: The Thin Boundary Between Brain and Periphery. Antioxid Redox Signal 2020; 33:191-210. [PMID: 32143546 DOI: 10.1089/ars.2020.8076] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Accumulating evidence suggests that inflammation is a major contributor in the pathogenesis of several highly prevalent, but also rare, neurological diseases. In particular, the neurodegenerative processes of Alzheimer's disease (AD), vascular dementia (VAD), Parkinson's disease (PD), and multiple sclerosis (MS) are fueled by neuroinflammation, which, in turn, is accompanied by a parallel systemic immune dysregulation. This cross-talk between periphery and the brain becomes substantial when the blood-brain barrier loses its integrity, as often occurs in the course of these diseases. It has been hypothesized that the perpetual bidirectional flux of inflammatory mediators is not a mere "static" collateral effect of the neurodegeneration, but represents a proactive phenomenon sparking and driving the neuropathological processes. However, the upstream/downstream relationship between inflammatory events and neurological pathology is still unclear. Recent Advances: Solid recent evidence clearly suggests that metabolic factors, systemic infections, Microbiota dysbiosis, and oxidative stress are implicated, although to a different extent, in the development in brain diseases. Critical Issues: Here, we reviewed the most solid published evidence supporting the implication of the axis systemic inflammation-neuroinflammation-neurodegeneration in the pathogenesis of AD, VAD, PD, and MS, highlighting the possible cause of the putative downstream component of the axis. Future Directions: Reaching a definitive clinical/epidemiological appreciation of the etiopathogenic significance of the connection between peripheral and brain inflammation in neurologic disorders is pivotal since it could open novel therapeutic avenues for these diseases.
Collapse
Affiliation(s)
- Carlo Cervellati
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandro Trentini
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Animal Science Department, Plants for Human Health Institute, NC State University, Kannapolis, North Carolina, USA
| | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy.,Animal Science Department, Plants for Human Health Institute, NC State University, Kannapolis, North Carolina, USA.,Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
91
|
Kandasamy M, Anusuyadevi M, Aigner KM, Unger MS, Kniewallner KM, de Sousa DMB, Altendorfer B, Mrowetz H, Bogdahn U, Aigner L. TGF-β Signaling: A Therapeutic Target to Reinstate Regenerative Plasticity in Vascular Dementia? Aging Dis 2020; 11:828-850. [PMID: 32765949 PMCID: PMC7390515 DOI: 10.14336/ad.2020.0222] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/22/2020] [Indexed: 12/11/2022] Open
Abstract
Vascular dementia (VaD) is the second leading form of memory loss after Alzheimer's disease (AD). Currently, there is no cure available. The etiology, pathophysiology and clinical manifestations of VaD are extremely heterogeneous, but the impaired cerebral blood flow (CBF) represents a common denominator of VaD. The latter might be the result of atherosclerosis, amyloid angiopathy, microbleeding and micro-strokes, together causing blood-brain barrier (BBB) dysfunction and vessel leakage, collectively originating from the consequence of hypertension, one of the main risk factors for VaD. At the histopathological level, VaD displays abnormal vascular remodeling, endothelial cell death, string vessel formation, pericyte responses, fibrosis, astrogliosis, sclerosis, microglia activation, neuroinflammation, demyelination, white matter lesions, deprivation of synapses and neuronal loss. The transforming growth factor (TGF) β has been identified as one of the key molecular factors involved in the aforementioned various pathological aspects. Thus, targeting TGF-β signaling in the brain might be a promising therapeutic strategy to mitigate vascular pathology and improve cognitive functions in patients with VaD. This review revisits the recent understanding of the role of TGF-β in VaD and associated pathological hallmarks. It further explores the potential to modulate certain aspects of VaD pathology by targeting TGF-β signaling.
Collapse
Affiliation(s)
- Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
- Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi, India.
| | - Muthuswamy Anusuyadevi
- Molecular Gerontology Group, Department of Biochemistry, School of Life Sciences, Bharathidhasan University, Tiruchirappalli, Tamil Nadu, India.
| | - Kiera M Aigner
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Michael S Unger
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Kathrin M Kniewallner
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Diana M Bessa de Sousa
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Barbara Altendorfer
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Heike Mrowetz
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Ulrich Bogdahn
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
- Velvio GmbH, Regensburg, Germany.
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
92
|
Noureddine FY, Altara R, Fan F, Yabluchanskiy A, Booz GW, Zouein FA. Impact of the Renin-Angiotensin System on the Endothelium in Vascular Dementia: Unresolved Issues and Future Perspectives. Int J Mol Sci 2020; 21:E4268. [PMID: 32560034 PMCID: PMC7349348 DOI: 10.3390/ijms21124268] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 12/11/2022] Open
Abstract
The effects of the renin-angiotensin system (RAS) surpass the renal and cardiovascular systems to encompass other body tissues and organs, including the brain. Angiotensin II (Ang II), the most potent mediator of RAS in the brain, contributes to vascular dementia via different mechanisms, including neuronal homeostasis disruption, vascular remodeling, and endothelial dysfunction caused by increased inflammation and oxidative stress. Other RAS components of emerging significance at the level of the blood-brain barrier include angiotensin-converting enzyme 2 (ACE2), Ang(1-7), and the AT2, Mas, and AT4 receptors. The various angiotensin hormones perform complex actions on brain endothelial cells and pericytes through specific receptors that have either detrimental or beneficial actions. Increasing evidence indicates that the ACE2/Ang(1-7)/Mas axis constitutes a protective arm of RAS on the blood-brain barrier. This review provides an update of studies assessing the different effects of angiotensins on cerebral endothelial cells. The involved signaling pathways are presented and help highlight the potential pharmacological targets for the management of cognitive and behavioral dysfunctions associated with vascular dementia.
Collapse
Affiliation(s)
- Fatima Y. Noureddine
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon;
| | - Raffaele Altara
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, and KG Jebsen Center for Cardiac Research, 0424 Oslo, Norway;
| | - Fan Fan
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center, Jackson, MS 39216, USA; (F.F.); (G.W.B.)
| | - Andriy Yabluchanskiy
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - George W. Booz
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center, Jackson, MS 39216, USA; (F.F.); (G.W.B.)
| | - Fouad A. Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon;
| |
Collapse
|
93
|
Patwa J, Flora SJS. Heavy Metal-Induced Cerebral Small Vessel Disease: Insights into Molecular Mechanisms and Possible Reversal Strategies. Int J Mol Sci 2020; 21:ijms21113862. [PMID: 32485831 PMCID: PMC7313017 DOI: 10.3390/ijms21113862] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
Heavy metals are considered a continuous threat to humanity, as they cannot be eradicated. Prolonged exposure to heavy metals/metalloids in humans has been associated with several health risks, including neurodegeneration, vascular dysfunction, metabolic disorders, cancer, etc. Small blood vessels are highly vulnerable to heavy metals as they are directly exposed to the blood circulatory system, which has comparatively higher concentration of heavy metals than other organs. Cerebral small vessel disease (CSVD) is an umbrella term used to describe various pathological processes that affect the cerebral small blood vessels and is accepted as a primary contributor in associated disorders, such as dementia, cognitive disabilities, mood disorder, and ischemic, as well as a hemorrhagic stroke. In this review, we discuss the possible implication of heavy metals/metalloid exposure in CSVD and its associated disorders based on in-vitro, preclinical, and clinical evidences. We briefly discuss the CSVD, prevalence, epidemiology, and risk factors for development such as genetic, traditional, and environmental factors. Toxic effects of specific heavy metal/metalloid intoxication (As, Cd, Pb, Hg, and Cu) in the small vessel associated endothelium and vascular dysfunction too have been reviewed. An attempt has been made to highlight the possible molecular mechanism involved in the pathophysiology, such as oxidative stress, inflammatory pathway, matrix metalloproteinases (MMPs) expression, and amyloid angiopathy in the CSVD and related disorders. Finally, we discussed the role of cellular antioxidant defense enzymes to neutralize the toxic effect, and also highlighted the potential reversal strategies to combat heavy metal-induced vascular changes. In conclusion, heavy metals in small vessels are strongly associated with the development as well as the progression of CSVD. Chelation therapy may be an effective strategy to reduce the toxic metal load and the associated complications.
Collapse
|
94
|
Todd N, Angolano C, Ferran C, Devor A, Borsook D, McDannold N. Secondary effects on brain physiology caused by focused ultrasound-mediated disruption of the blood-brain barrier. J Control Release 2020; 324:450-459. [PMID: 32470359 DOI: 10.1016/j.jconrel.2020.05.040] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 12/12/2022]
Abstract
Focused ultrasound (FUS) combined with microbubbles is a non-invasive method for targeted, reversible disruption of the blood-brain barrier (FUS-BBB opening). This approach holds great promise for improving delivery of therapeutics to the brain. In order to achieve this clinically important goal, the approach necessarily breaks a protective barrier, temporarily, which plays a fundamental role in maintaining a homeostatic environment in the brain. Preclinical and clinical research has identified a set of treatment parameters under which this can be performed safely, whereby the BBB is disrupted to the point of being permeable to normally non-penetrant agents without causing significant acute damage to endothelial or neuronal cells. Much of the early work in this field focused on engineering questions around how to achieve optimal delivery of therapeutics via BBB disruption. However, there is increasing interest in addressing biological questions related to whether and how various aspects of neurophysiology might be affected when this fundamental protective barrier is compromised by the specific mechanisms of FUS-BBB opening. Improving our understanding of these secondary effects is becoming vital now that FUS-BBB opening treatments have entered clinical trials. Such information would help to safely expand FUS-BBB opening protocols into a wider range of drug delivery applications and may even lead to new types of treatments. In this paper, we will critically review our current knowledge of the secondary effects caused by FUS-BBB opening on brain physiology, identify areas that remain understudied, and discuss how a better understanding of these processes can be used to safely advance FUS-BBB opening into a wider range of clinical applications.
Collapse
Affiliation(s)
- Nick Todd
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| | - Cleide Angolano
- Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Christiane Ferran
- Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Anna Devor
- Department of Biomedical Engineering, Boston University, Boston, MA, United States; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - David Borsook
- Center for Pain and the Brain, Boston Children's Hospital, Boston, MA, United States; Department of Anesthesia, Perioperative, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Nathan McDannold
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
95
|
Trigiani LJ, Lacalle-Aurioles M, Bourourou M, Li L, Greenhalgh AD, Zarruk JG, David S, Fehlings MG, Hamel E. Benefits of physical exercise on cognition and glial white matter pathology in a mouse model of vascular cognitive impairment and dementia. Glia 2020; 68:1925-1940. [PMID: 32154952 DOI: 10.1002/glia.23815] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/06/2020] [Accepted: 02/24/2020] [Indexed: 12/16/2022]
Abstract
White matter (WM) pathology is a clinically predictive feature of vascular cognitive impairment and dementia (VCID). Mice overexpressing transforming growth factor-β1 (TGF) with an underlying cerebrovascular pathology when fed a high cholesterol diet (HCD) develop cognitive deficits (VCID mice) that we recently found could be prevented by physical exercise (EX). Here, we further investigated cognitive and WM pathology in VCID mice and examined the cellular substrates of the protective effects of moderate aerobic EX focusing on WM alterations. Six groups were studied: Wild-type (WT) and TGF mice (n = 20-24/group) fed standard lab chow or a 2% HCD, with two HCD-fed groups given concurrent access to running wheels. HCD had a significant negative effect in TGF mice that was prevented by EX on working and object recognition memory, the latter also altered in WT HCD mice. Whisker-evoked increases in cerebral blood flow (CBF) were reduced in HCD-fed mice, deficits that were countered by EX, and baseline WM CBF was similarly affected. VCID mice displayed WM functional deficits characterized by lower compound action potential amplitude not found in EX groups. Moreover, there was an increased number of collapsing capillaries, galectin-3-expressing microglial cells, as well as a reduced number of oligodendrocytes in the WM of VCID mice; all of which were prevented by EX. Our findings indicate that a compromised cerebral circulation precedes reduced WM vascularization, enhanced WM inflammation and impaired oligodendrogenesis that all likely account for the increased susceptibility to memory impairments in VCID mice, which can be prevented by EX. MAIN POINTS: A compromised cerebral circulation increases susceptibility to anatomical and functional white matter changes that develop alongside cognitive deficits when challenged with a high cholesterol diet; preventable by a translational regimen of exercise.
Collapse
Affiliation(s)
- Lianne J Trigiani
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - María Lacalle-Aurioles
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Miled Bourourou
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Lijun Li
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Andrew D Greenhalgh
- Center for Research in Neuroscience, The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Juan G Zarruk
- Center for Research in Neuroscience, The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Samuel David
- Center for Research in Neuroscience, The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
96
|
He M, Martin M, Marin T, Chen Z, Gongol B. Endothelial mechanobiology. APL Bioeng 2020; 4:010904. [PMID: 32095737 PMCID: PMC7032971 DOI: 10.1063/1.5129563] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/19/2020] [Indexed: 12/11/2022] Open
Abstract
Lining the luminal surface of the vasculature, endothelial cells (ECs) are in direct
contact with and differentially respond to hemodynamic forces depending on their anatomic
location. Pulsatile shear stress (PS) is defined by laminar flow and is predominantly
located in straight vascular regions, while disturbed or oscillatory shear stress (OS) is
localized to branch points and bifurcations. Such flow patterns have become a central
focus of vascular diseases, such as atherosclerosis, because the focal distribution of
endothelial dysfunction corresponds to regions exposed to OS, whereas endothelial
homeostasis is maintained in regions defined by PS. Deciphering the mechanotransduction
events that occur in ECs in response to differential flow patterns has required the
innovation of multidisciplinary approaches in both in vitro and
in vivo systems. The results from these studies have identified a
multitude of shear stress-regulated molecular networks in the endothelium that are
implicated in health and disease. This review outlines the significance of scientific
findings generated in collaboration with Dr. Shu Chien.
Collapse
Affiliation(s)
- Ming He
- Department of Medicine, University of California, San Diego, California 92093, USA
| | - Marcy Martin
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Traci Marin
- Department of Health Sciences, Victor Valley College, Victorville, California 92395, USA
| | - Zhen Chen
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, California 91010, USA
| | - Brendan Gongol
- Department of Medicine, University of California, San Diego, California 92093, USA
| |
Collapse
|
97
|
Mak S, Liu Z, Wu L, Guo B, Luo F, Liu Z, Hu S, Wang J, Cui G, Sun Y, Wang Y, Zhang G, Han Y, Zhang Z. Pharmacological Characterizations of anti-Dementia Memantine Nitrate via Neuroprotection and Vasodilation in Vitro and in Vivo. ACS Chem Neurosci 2020; 11:314-327. [PMID: 31922720 DOI: 10.1021/acschemneuro.9b00242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We have previously designed and synthesized a series of novel memantine nitrates, and some of them have shown neuroprotective effects; however, the detailed mechanisms remain unknown. In this study, we demonstrated that MN-12, one of the memantine nitrates, concentration-dependently protected against glutamate-induced neurotoxicity in rat primary cultured cerebellar granule neurons (CGNs). Western blotting assays revealed that MN-12 might possess neuroprotective effects through the inhibition of ERK pathway and activation of PI3K/Akt pathway concurrently. Moreover, MN-12 concentration-dependently dilated precontracted rat middle cerebral artery through activation of NO-cGMP pathway ex vivo. In the 2-vessel occlusion (2VO) rat model, MN-12 alleviated the impairments of spatial memory and motor dysfunction possibly via neuroprotection and improvement of the cerebral blood flow. Furthermore, the results of preliminary pharmacokinetic studies showed that MN-12 might quickly distribute to the major organs including the brain, indicating that MN-12 could penetrate the blood-brain barrier. Taken together, MN-12 might provide multifunctional therapeutic benefits for dementia associated with Alzheimer's disease, vascular dementia, and ischemic stroke, via neuroprotection and vessel dilation to improve the cerebral blood flow.
Collapse
Affiliation(s)
- Shinghung Mak
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) , The Hong Kong Polytechnic University Shenzhen Research Institute , Shenzhen 518057 , China
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine , The Hong Kong Polytechnic University , Hung Hom, Hong Kong , China
| | - Zheng Liu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases , Jinan University College of Pharmacy , Guangzhou 510632 , China
- Foshan Stomatology Hospital, School of Stomatology and Medicine , Foshan University , Foshan 528000 , China
- Foshan Magpie Pharmaceuticals Co., Ltd. , Foshan , 528000 Guangdong , China
| | - Liangmiao Wu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases , Jinan University College of Pharmacy , Guangzhou 510632 , China
| | - Baojian Guo
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) , The Hong Kong Polytechnic University Shenzhen Research Institute , Shenzhen 518057 , China
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases , Jinan University College of Pharmacy , Guangzhou 510632 , China
| | - Fangcheng Luo
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases , Jinan University College of Pharmacy , Guangzhou 510632 , China
- Foshan Magpie Pharmaceuticals Co., Ltd. , Foshan , 528000 Guangdong , China
| | - Ziyan Liu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases , Jinan University College of Pharmacy , Guangzhou 510632 , China
| | - Shengquan Hu
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) , The Hong Kong Polytechnic University Shenzhen Research Institute , Shenzhen 518057 , China
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine , The Hong Kong Polytechnic University , Hung Hom, Hong Kong , China
| | - Jiajun Wang
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine , The Hong Kong Polytechnic University , Hung Hom, Hong Kong , China
| | - Guozhen Cui
- Department of Bioengineering , Zunyi Medical University Zhuhai Campus , Zhuhai 519041 , China
| | - Yewei Sun
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases , Jinan University College of Pharmacy , Guangzhou 510632 , China
| | - Yuqiang Wang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases , Jinan University College of Pharmacy , Guangzhou 510632 , China
| | - Gaoxiao Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases , Jinan University College of Pharmacy , Guangzhou 510632 , China
| | - Yifan Han
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) , The Hong Kong Polytechnic University Shenzhen Research Institute , Shenzhen 518057 , China
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine , The Hong Kong Polytechnic University , Hung Hom, Hong Kong , China
| | - Zaijun Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases , Jinan University College of Pharmacy , Guangzhou 510632 , China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) , Jinan University College of Pharmacy , 601 Huangpu Avenue West , Guangzhou 510632 , China
| |
Collapse
|
98
|
Bálint AR, Puskás T, Menyhárt Á, Kozák G, Szenti I, Kónya Z, Marek T, Bari F, Farkas E. Aging Impairs Cerebrovascular Reactivity at Preserved Resting Cerebral Arteriolar Tone and Vascular Density in the Laboratory Rat. Front Aging Neurosci 2019; 11:301. [PMID: 31780917 PMCID: PMC6856663 DOI: 10.3389/fnagi.2019.00301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/21/2019] [Indexed: 12/26/2022] Open
Abstract
The age-related (mal)adaptive modifications of the cerebral microvascular system have been implicated in cognitive impairment and worse outcomes after ischemic stroke. The magnitude of the hyperemic response to spreading depolarization (SD), a recognized principle of ischemic lesion development has also been found to be reduced by aging. Here, we set out to investigate whether the SD-coupled reactivity of the pial arterioles is subject to aging, and whether concomitant vascular rarefaction may contribute to the age-related insufficiency of the cerebral blood flow (CBF) response. CBF was assessed with laser-speckle contrast analysis (LASCA), and the tone adjustment of pial arterioles was followed with intrinsic optical signal (IOS) imaging at green light illumination through a closed cranial window created over the parietal cortex of isoflurane-anesthetized young (2 months old) and old (18 months old) male Sprague-Dawley rats. Global forebrain ischemia and later reperfusion were induced by the bilateral occlusion and later release of both common carotid arteries. SDs were elicited repeatedly with topical 1M KCl. Pial vascular density was measured in green IOS images of the brain surface, while the density and resting diameter of the cortical penetrating vasculature was estimated with micro-computed tomography of paraformaldehyde-fixed cortical samples. Whilst pial arteriolar dilation in response to SD or ischemia induction were found reduced in the old rat brain, the density and resting diameter of pial cortical vessels, and the degree of SD-related oligemia emerged as variables unaffected by age in our experiments. Spatial flow distribution analysis identified an age-related shift to a greater representation of higher flow ranges in the reperfused cortex. According to our data, impairment of functional arteriolar dilation, at preserved vascular density and resting vascular tone, may be implicated in the age-related deficit of the CBF response to SD, and possibly in the reduced efficacy of neurovascular coupling in the aging brain. SD has been recognized as a potent pathophysiological contributor to ischemic lesion expansion, in part because of the insufficiency of the associated CBF response. Therefore, the age-related impairment of cerebral vasoreactivity as shown here is suggested to contribute to the age-related acceleration of ischemic lesion development.
Collapse
Affiliation(s)
- Armand R. Bálint
- Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Tamás Puskás
- Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Ákos Menyhárt
- Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gábor Kozák
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Imre Szenti
- Department of Applied and Environmental Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
- MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, University of Szeged, Szeged, Hungary
| | - Tamás Marek
- Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Ferenc Bari
- Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Eszter Farkas
- Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
99
|
Ajikumar A, Long MB, Heath PR, Wharton SB, Ince PG, Ridger VC, Simpson JE. Neutrophil-Derived Microvesicle Induced Dysfunction of Brain Microvascular Endothelial Cells In Vitro. Int J Mol Sci 2019; 20:E5227. [PMID: 31652502 PMCID: PMC6834153 DOI: 10.3390/ijms20205227] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022] Open
Abstract
The blood-brain barrier (BBB), composed of brain microvascular endothelial cells (BMEC) that are tightly linked by tight junction (TJ) proteins, restricts the movement of molecules between the periphery and the central nervous system. Elevated systemic levels of neutrophils have been detected in patients with altered BBB function, but the role of neutrophils in BMEC dysfunction is unknown. Neutrophils are key players of the immune response and, when activated, produce neutrophil-derived microvesicles (NMV). NMV have been shown to impact the integrity of endothelial cells throughout the body and we hypothesize that NMV released from circulating neutrophils interact with BMEC and induce endothelial cell dysfunction. Therefore, the current study investigated the interaction of NMV with human BMEC and determined whether they altered gene expression and function in vitro. Using flow cytometry and confocal imaging, NMV were shown to be internalized by the human cerebral microvascular endothelial cell line hCMEC/D3 via a variety of energy-dependent mechanisms, including endocytosis and macropinocytosis. The internalization of NMV significantly altered the transcriptomic profile of hCMEC/D3, specifically inducing the dysregulation of genes associated with TJ, ubiquitin-mediated proteolysis and vesicular transport. Functional studies confirmed NMV significantly increased permeability and decreased the transendothelial electrical resistance (TEER) of a confluent monolayer of hCMEC/D3. These findings indicate that NMV interact with and affect gene expression of BMEC as well as impacting their integrity. We conclude that NMV may play an important role in modulating the permeability of BBB during an infection.
Collapse
Affiliation(s)
- Anjana Ajikumar
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Merete B Long
- Department of Infection Immunity and Cardiovascular Diseases, University of Sheffield, Medical School, Sheffield S10 2RX, UK.
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Paul G Ince
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Victoria C Ridger
- Department of Infection Immunity and Cardiovascular Diseases, University of Sheffield, Medical School, Sheffield S10 2RX, UK.
| | - Julie E Simpson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| |
Collapse
|
100
|
Rui YN, Chen Y, Guo Y, Bock CE, Hagan JP, Kim DH, Xu Z. Podosome formation impairs endothelial barrier function by sequestering zonula occludens proteins. J Cell Physiol 2019; 235:4655-4666. [PMID: 31637713 DOI: 10.1002/jcp.29343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/30/2019] [Indexed: 01/09/2023]
Abstract
Podosomes and tight junctions (TJs) are subcellular compartments that both exist in endothelial cells and localize at cell surfaces. In contrast to the well-characterized role of TJs in maintaining cerebrovascular integrity, the specific function of endothelial podosomes remains unknown. Intriguingly, we discovered cross-talk between podosomes and TJs in human brain endothelial cells. Tight junction scaffold proteins ZO-1 and ZO-2 localize at podosomes in response to phorbol-12-myristate-13-acetate treatment. We found that both ZO proteins are essential for podosome formation and function. Rather than being derived from new protein synthesis, podosomal ZO-1 and ZO-2 are relocated from a pre-existing pool found at the peripheral plasma membrane with enhanced physical interaction with cortactin, a known protein marker for podosomes. Sequestration of ZO proteins in podosomes weakens tight junction complex formation, leading to increased endothelial cell permeability. This effect can be further attenuated by podosome inhibitor PP2. Altogether, our data revealed a novel cellular function of podosomes, specifically, their ability to negatively regulate tight junction and endothelial barrier integrity, which have been linked to a variety of cerebrovascular diseases.
Collapse
Affiliation(s)
- Yan-Ning Rui
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Yawen Chen
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yichen Guo
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Caroline E Bock
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - John P Hagan
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Dong H Kim
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Zhen Xu
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|