51
|
Dominguez LJ, Veronese N, Vernuccio L, Catanese G, Inzerillo F, Salemi G, Barbagallo M. Nutrition, Physical Activity, and Other Lifestyle Factors in the Prevention of Cognitive Decline and Dementia. Nutrients 2021; 13:4080. [PMID: 34836334 PMCID: PMC8624903 DOI: 10.3390/nu13114080] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Multiple factors combined are currently recognized as contributors to cognitive decline. The main independent risk factor for cognitive impairment and dementia is advanced age followed by other determinants such as genetic, socioeconomic, and environmental factors, including nutrition and physical activity. In the next decades, a rise in dementia cases is expected due largely to the aging of the world population. There are no hitherto effective pharmaceutical therapies to treat age-associated cognitive impairment and dementia, which underscores the crucial role of prevention. A relationship among diet, physical activity, and other lifestyle factors with cognitive function has been intensively studied with mounting evidence supporting the role of these determinants in the development of cognitive decline and dementia, which is a chief cause of disability globally. Several dietary patterns, foods, and nutrients have been investigated in this regard, with some encouraging and other disappointing results. This review presents the current evidence for the effects of dietary patterns, dietary components, some supplements, physical activity, sleep patterns, and social engagement on the prevention or delay of the onset of age-related cognitive decline and dementia.
Collapse
Affiliation(s)
- Ligia J. Dominguez
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
- Faculty of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy
| | - Nicola Veronese
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| | - Laura Vernuccio
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| | - Giuseppina Catanese
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| | - Flora Inzerillo
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| | - Giuseppe Salemi
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, 90100 Palermo, Italy;
- UOC of Neurology, University Hospital “Paolo Giaccone”, 90100 Palermo, Italy
| | - Mario Barbagallo
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| |
Collapse
|
52
|
Pashaei S, Mohammadi P, Yarani R, Haghgoo SM, Emami Aleagha MS. Carbohydrate and lipid metabolism in multiple sclerosis: Clinical implications for etiology, pathogenesis, diagnosis, prognosis, and therapy. Arch Biochem Biophys 2021; 712:109030. [PMID: 34517010 DOI: 10.1016/j.abb.2021.109030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/16/2021] [Accepted: 09/06/2021] [Indexed: 01/28/2023]
Abstract
Multiple sclerosis (MS) is a complicated autoimmune disease characterized by inflammatory and demyelinating events in the central nervous system. The exact etiology and pathogenesis of MS have not been elucidated. However, a set of metabolic changes and their effects on immune cells and neural functions have been explained. This review highlights the contribution of carbohydrates and lipids metabolism to the etiology and pathogenesis of MS. Then, we have proposed a hypothetical relationship between such metabolic changes and the immune system in patients with MS. Finally, the potential clinical implications of these metabolic changes in diagnosis, prognosis, and discovering therapeutic targets have been discussed. It is concluded that research on the pathophysiological alterations of carbohydrate and lipid metabolism may be a potential strategy for paving the way toward MS treatment.
Collapse
Affiliation(s)
- Somayeh Pashaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Yarani
- Translational Type 1 Diabetes Biology, Department of Clinical Research, Steno Diabetes Center Copenhagen, Copenhagen, Denmark; Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Seyyed Mortaza Haghgoo
- Department of Clinical Biochemistry, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Sajad Emami Aleagha
- Medical Technology Research Center (MTRC), School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
53
|
Robberechts R, Stalmans M, Poffé C. Exogenous ketosis, a nutritional strategy to preserve brain health? J Physiol 2021; 599:5335-5336. [PMID: 34761818 DOI: 10.1113/jp282434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Ruben Robberechts
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Myrthe Stalmans
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Chiel Poffé
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
54
|
Liśkiewicz AD, Liśkiewicz D, Marczak Ł, Przybyła M, Grabowska K, Student S, Dębiec M, Sługocka A, Lewin-Kowalik J. Obesity-associated deterioration of the hippocampus is partially restored after weight loss. Brain Behav Immun 2021; 96:212-226. [PMID: 34087424 DOI: 10.1016/j.bbi.2021.05.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVE Obesity is a multidimensional condition that is treatable by the restoration of a lean phenotype; however, some obesity-related outcomes may persist after weight normalization. Among the organs of the human body, the brain possesses a relatively low regenerative capacity and could retain perturbations established as a result of developmental obesity. Calorie restriction (CR) or a restricted ketogenic diet (KD) are successfully used as weight loss approaches, but their impact on obesity-related effects in the brain have not been previously evaluated. METHODS We performed a series of experiments in a rat model of developmental obesity induced by a 12-week cafeteria diet, followed by CR to implement weight loss. First, we assessed the impact of obesity on neurogenesis (BrdU incorporation into the hippocampus), cognitive function (water maze), and concomitant changes in hippocampal protein expression (GC/MS-MS, western blot). Next, we repeated these experiments in a rat model of weight loss induced by CR. We also measured mitochondrial enzyme activity in rats after weight loss during the fed or fasting state. This study was extended by additional experiments with restricted KD used as a weight loss approach in order to compare the efficacy of two different nutritional interventions used in the treatment of obesity on hippocampal functions. By using a modified version of the water maze we evaluated cognitive abilities in rats subjected to weight loss by CR or a restricted KD. RESULTS In this study, obesity affected metabolic processes, upregulated hippocampal NF-κB, and induced proteomic differences which were associated with impaired cognition and neurogenesis. Weight loss improved neurogenesis and enhanced cognition. While the expression pattern of some proteins persisted after weight loss, most of the changes appeared de novo revealing metabolic adjustment by overactivation of citrate synthase and downregulation of ATP synthase. As a consequence of fasting, the activity of these enzymes indicated hippocampal adaptation to negative energy balance during the weight loss phase of CR. Moreover, the effects on cognitive abilities measured after weight loss were negatively correlated with the animal weight measured at the final stage of weight gain. This was alleviated by KD, which improved cognition when used as a weight loss approach. CONCLUSIONS The study shows that cognition and mitochondrial metabolism in the hippocampus are affected by CR- or KD-induced weight loss.
Collapse
Affiliation(s)
- Arkadiusz D Liśkiewicz
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice 40-752, Poland; Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice 40-065, Poland.
| | - Daniela Liśkiewicz
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice 40-065, Poland; Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice 40-752, Poland
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Marta Przybyła
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice 40-752, Poland
| | - Konstancja Grabowska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice 40-065, Poland; Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice 40-752, Poland
| | - Sebastian Student
- Institute of Automatic Control, Silesian University of Technology, Gliwice 44-100, Poland; Biotechnology Centre, Silesian University of Technology, Gliwice 44-100, Poland
| | - Magdalena Dębiec
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice 40-065, Poland
| | - Anna Sługocka
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice 40-752, Poland
| | - Joanna Lewin-Kowalik
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice 40-752, Poland
| |
Collapse
|
55
|
Niepoetter P, Butts‐Wilmsmeyer C, Kaviani S, Viernow C, Ruholl H, Gopalan C. Correlation between ketones and mental fatigue in high fat-induced obese and non-obese rats. Physiol Rep 2021; 9:e14930. [PMID: 34197701 PMCID: PMC8248918 DOI: 10.14814/phy2.14930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 01/20/2023] Open
Abstract
Obesity, often caused by a diet high in calories and low physical activity, may induce physical fatigue, as experienced via decreased locomotor activity and mental fatigue such as impaired cognition. This study aims to evaluate glucose and ketone levels secondary to high-fat diet (HFD) exposure and signs of physical and mental fatigue. Fifty-four 7-week-old male Sprague Dawley rats (Rattus norvegicus) were assigned to either an HFD (n = 28) or a standard diet (SD; n = 26) for a 6-week period during which body weight, blood glucose, and ketones were measured twice per week. An open field (OF) paradigm was used to measure locomotor activity, while novel object recognition (NOR) test was used as an indicator of cognition. Animals in the HFD group weighed more than SD rats (8.4 g; p < 0.05) starting at Day 11, blood glucose levels were higher in the HFD group versus SD rats (3.9 mg/dl; p < 0.05) beginning in Week 5, and ketones were lower for the HFD versus the SD group throughout the study (0.34 mmol/L on average; p < 0.05). Although there was no significant difference in locomotor activity between the HFD and SD groups (p = 0.12), regardless of diet, higher ketone levels were associated with increased NOR time and ratio between the familiar and novel objects (p < 0.01). Thus, this study provides evidence that an increased level of ketones is associated with greater cognitive performance and a lesser probability of experiencing mental fatigue.
Collapse
Affiliation(s)
- Paige Niepoetter
- Department of Nurse AnesthesiaSouthern Illinois University EdwardsvilleEdwardsvilleILUSA
| | - Carrie Butts‐Wilmsmeyer
- Department of Biological SciencesSouthern Illinois University EdwardsvilleEdwardsvilleILUSA
- Center for Predictive AnalyticsSouthern Illinois University EdwardsvilleEdwardsvilleILUSA
| | - Sepideh Kaviani
- Department of Applied HealthSouthern Illinois University EdwardsvilleEdwardsvilleILUSA
| | - Coral Viernow
- Department of Applied HealthSouthern Illinois University EdwardsvilleEdwardsvilleILUSA
| | - Hannah Ruholl
- Department of Nurse AnesthesiaSouthern Illinois University EdwardsvilleEdwardsvilleILUSA
| | - Chaya Gopalan
- Department of Nurse AnesthesiaSouthern Illinois University EdwardsvilleEdwardsvilleILUSA
- Department of Applied HealthSouthern Illinois University EdwardsvilleEdwardsvilleILUSA
| |
Collapse
|
56
|
An fMRI Investigation into the Effects of Ketogenic Medium-Chain Triglycerides on Cognitive Function in Elderly Adults: A Pilot Study. Nutrients 2021; 13:nu13072134. [PMID: 34206642 PMCID: PMC8308254 DOI: 10.3390/nu13072134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/29/2021] [Accepted: 06/18/2021] [Indexed: 12/29/2022] Open
Abstract
Evidence suggests that oral intake of medium-chain triglycerides (MCTs), which promote the production of ketone bodies, may improve cognitive functions in elderly people; however, the underlying brain mechanisms remain elusive. We tested the hypothesis that cognitive improvement accompanies physiological changes in the brain and reflects the use of ketone bodies as an extra energy source. To this end, by using functional magnetic resonance imaging, cerebral blood oxygenation level-dependent (BOLD) signals were measured while 20 healthy elderly subjects (14 females and 6 males; mean age: 65.7 ± 3.9 years) were engaged in executive function tasks (N-back and Go-Nogo) after ingesting a single MCT meal (Ketonformula®) or placebo meal in a randomized, double-blind placebo-controlled design (UMIN000031539). Morphological characteristics of the brain were also examined in relation to the effects of an MCT meal. The MCT meal improved N-back task performance, and this was prominent in subjects who had reduced grey matter volume in the dorsolateral prefrontal cortex (DLPFC), a region known to promote executive functions. When the participants were dichotomized into high/low level groups of global cognitive function at baseline, the high group showed improved N-back task performance, while the low group showed improved Go-Nogo task performance. This was accompanied by decreased BOLD signals in the DLPFC, indicative of the consumption of ketone bodies as an extra energy source.
Collapse
|
57
|
Duregon E, Pomatto-Watson LCDD, Bernier M, Price NL, de Cabo R. Intermittent fasting: from calories to time restriction. GeroScience 2021; 43:1083-1092. [PMID: 33686571 PMCID: PMC8190218 DOI: 10.1007/s11357-021-00335-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
The global human population has recently experienced an increase in life expectancy with a mounting concern about the steady rise in the incidence of age-associated chronic diseases and socio-economic burden. Calorie restriction (CR), the reduction of energy intake without malnutrition, is a dietary manipulation that can increase health and longevity in most model organisms. However, the practice of CR in day-to-day life is a challenging long-term goal for human intervention. Recently, daily fasting length and periodicity have emerged as potential drivers behind CR's beneficial health effects. Numerous strategies and eating patterns have been successfully developed to recapitulate many of CR's benefits without its austerity. These novel feeding protocols range from shortened meal timing designed to interact with our circadian system (e.g., daily time-restricted feeding) to more extended fasting regimens known as intermittent fasting. Here, we provide a glimpse of the current status of knowledge on different strategies to reap the benefits of CR on metabolic health in murine models and in humans, without the rigor of continuous reduction in caloric intake as presented at the USU State of the Science Symposium.
Collapse
Affiliation(s)
- Eleonora Duregon
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Laura C D D Pomatto-Watson
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Nathan L Price
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
58
|
Prakapenka AV, Korol DL. Estradiol selectively regulates metabolic substrates across memory systems in models of menopause. Climacteric 2021; 24:366-372. [PMID: 33982614 DOI: 10.1080/13697137.2021.1917537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Estrogen loss at menopause is thought to contribute to specific memory problems commonly encountered by women who are transitioning through or who have experienced menopause. Work in preclinical models suggests that estrogens bidirectionally regulate cognition through direct actions on different neural systems called memory systems, enhancing some types of learning and memory while impairing others. The energy load in the brain during cognitive activity is notoriously high, requiring sufficient provisions of metabolic substrates such as glucose, lactate, or ketones for optimal cognition. Thus, it is possible that estrogens bidirectionally regulate energy substrate availability within each system to produce the improvements and impairments in learning and memory. Indeed, estradiol increases extracellular levels of glucose in the hippocampus, a shift that corresponds to the hormone's beneficial effects on hippocampus-sensitive cognition. In contrast, estradiol decreases levels of lactate and ketones in the striatum, a shift that corresponds to the impairing effects of estradiol on striatum-sensitive cognition. Menopause may thus be associated with both cognitive improvements and impairments depending on estradiol status and on the problem to be solved. We propose that regulation of neural metabolism is one likely mechanism for these bidirectional effects of estradiol on cognition.
Collapse
Affiliation(s)
- A V Prakapenka
- Biology Department, Syracuse University, Syracuse, NY, USA
| | - D L Korol
- Biology Department, Syracuse University, Syracuse, NY, USA
| |
Collapse
|
59
|
Erbaba B, Arslan-Ergul A, Adams MM. Effects of caloric restriction on the antagonistic and integrative hallmarks of aging. Ageing Res Rev 2021; 66:101228. [PMID: 33246078 DOI: 10.1016/j.arr.2020.101228] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022]
Abstract
Aging is a significant risk factor for cognitive decline associated with neurodegenerative diseases, which makes understanding what promotes 'healthy brain aging' very important. Studies suggest that caloric restriction (CR) is a non-genetic intervention that reliably extends life- and healthspan. Here, we review the CR literature related to both the subject of aging and alterations in cell cycle machinery, especially surrounding the regulation of the E2F/DP1 complex, to elucidate the cellular protection mechanisms in the brain induced via dietary applications. The alterations extending lifespan via CR appear to exert their effects by promoting survival of individual cells, downregulating cell proliferation, and inducing stem cell quiescence, which results in keeping the stem cell reserve for extreme needs. This survival instinct of cells is believed to cause some molecular adaptations for their maintenance of the system. Avoiding energy waste of proliferation machinery promotes the long term survival of the individual cells and this is due to adaptations to the limited nutrient supply in the environment. Such a protective mechanism induced by diet could be promoted via the downregulation of crucial cell cycle-related transcription activators. This review article aims to bring attention to the importance of molecular adaptations induced by diet that promote healthy brain aging. It will provide insights into alternative targets for new treatments or neuroprotective approaches against neurodegenerative pathophysiologies.
Collapse
Affiliation(s)
- Begun Erbaba
- Interdisciplinary Graduate Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey
| | - Ayca Arslan-Ergul
- National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey
| | - Michelle M Adams
- Interdisciplinary Graduate Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey; Department of Psychology, Bilkent University, Ankara, Turkey.
| |
Collapse
|
60
|
Swerdlow NS, Wilkins HM. Mitophagy and the Brain. Int J Mol Sci 2020; 21:ijms21249661. [PMID: 33352896 PMCID: PMC7765816 DOI: 10.3390/ijms21249661] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Stress mechanisms have long been associated with neuronal loss and neurodegenerative diseases. The origin of cell stress and neuronal loss likely stems from multiple pathways. These include (but are not limited to) bioenergetic failure, neuroinflammation, and loss of proteostasis. Cells have adapted compensatory mechanisms to overcome stress and circumvent death. One mechanism is mitophagy. Mitophagy is a form of macroautophagy, were mitochondria and their contents are ubiquitinated, engulfed, and removed through lysosome degradation. Recent studies have implicated mitophagy dysregulation in several neurodegenerative diseases and clinical trials are underway which target mitophagy pathways. Here we review mitophagy pathways, the role of mitophagy in neurodegeneration, potential therapeutics, and the need for further study.
Collapse
Affiliation(s)
- Natalie S. Swerdlow
- University of Kansas Alzheimer’s Disease Center, University of Kansas, Kansas City, KS 66160, USA;
| | - Heather M. Wilkins
- University of Kansas Alzheimer’s Disease Center, University of Kansas, Kansas City, KS 66160, USA;
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Correspondence:
| |
Collapse
|
61
|
Anton SD, Cruz-Almeida Y, Singh A, Alpert J, Bensadon B, Cabrera M, Clark DJ, Ebner NC, Esser KA, Fillingim RB, Goicolea SM, Han SM, Kallas H, Johnson A, Leeuwenburgh C, Liu AC, Manini TM, Marsiske M, Moore F, Qiu P, Mankowski RT, Mardini M, McLaren C, Ranka S, Rashidi P, Saini S, Sibille KT, Someya S, Wohlgemuth S, Tucker C, Xiao R, Pahor M. Innovations in Geroscience to enhance mobility in older adults. Exp Gerontol 2020; 142:111123. [PMID: 33191210 PMCID: PMC7581361 DOI: 10.1016/j.exger.2020.111123] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
Aging is the primary risk factor for functional decline; thus, understanding and preventing disability among older adults has emerged as an important public health challenge of the 21st century. The science of gerontology - or geroscience - has the practical purpose of "adding life to the years." The overall goal of geroscience is to increase healthspan, which refers to extending the portion of the lifespan in which the individual experiences enjoyment, satisfaction, and wellness. An important facet of this goal is preserving mobility, defined as the ability to move independently. Despite this clear purpose, this has proven to be a challenging endeavor as mobility and function in later life are influenced by a complex interaction of factors across multiple domains. Moreover, findings over the past decade have highlighted the complexity of walking and how targeting multiple systems, including the brain and sensory organs, as well as the environment in which a person lives, can have a dramatic effect on an older person's mobility and function. For these reasons, behavioral interventions that incorporate complex walking tasks and other activities of daily living appear to be especially helpful for improving mobility function. Other pharmaceutical interventions, such as oxytocin, and complementary and alternative interventions, such as massage therapy, may enhance physical function both through direct effects on biological mechanisms related to mobility, as well as indirectly through modulation of cognitive and socioemotional processes. Thus, the purpose of the present review is to describe evolving interventional approaches to enhance mobility and maintain healthspan in the growing population of older adults in the United States and countries throughout the world. Such interventions are likely to be greatly assisted by technological advances and the widespread adoption of virtual communications during and after the COVID-19 era.
Collapse
Affiliation(s)
- Stephen D Anton
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Yenisel Cruz-Almeida
- University of Florida, Department of Community Dentistry and Behavioral Science, 1329 SW Archer Road, Gainesville, FL 32610, United States.
| | - Arashdeep Singh
- University of Florida, Department of Pharmacodynamics, College of Pharmacy, 1345 Center Drive, Gainesville, FL 32610, United States.
| | - Jordan Alpert
- University of Florida, College of Journalism and Communications, Gainesville, FL 32610, United States.
| | - Benjamin Bensadon
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Melanie Cabrera
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - David J Clark
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Natalie C Ebner
- University of Florida, Department of Psychology, 945 Center Drive, Gainesville, FL 32611, United States.
| | - Karyn A Esser
- University of Florida, Department of Physiology and Functional Genomics, 1345 Center Drive, Gainesville, FL, United States.
| | - Roger B Fillingim
- University of Florida, Department of Community Dentistry and Behavioral Science, 1329 SW Archer Road, Gainesville, FL 32610, United States.
| | - Soamy Montesino Goicolea
- University of Florida, Department of Community Dentistry and Behavioral Science, 1329 SW Archer Road, Gainesville, FL 32610, United States.
| | - Sung Min Han
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Henrique Kallas
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Alisa Johnson
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Christiaan Leeuwenburgh
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Andrew C Liu
- University of Florida, Department of Physiology and Functional Genomics, 1345 Center Drive, Gainesville, FL, United States.
| | - Todd M Manini
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Michael Marsiske
- University of Florida, Department of Clinical & Health Psychology, 1225 Center Drive, Gainesville, FL 32610, United States.
| | - Frederick Moore
- University of Florida, Department of Surgery, Gainesville, FL 32610, United States.
| | - Peihua Qiu
- University of Florida, Department of Biostatistics, Gainesville, FL 32611, United States.
| | - Robert T Mankowski
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Mamoun Mardini
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Christian McLaren
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Sanjay Ranka
- University of Florida, Department of Computer & Information Science & Engineering, Gainesville, FL 32611, United States.
| | - Parisa Rashidi
- University of Florida, Department of Biomedical Engineering. P.O. Box 116131. Gainesville, FL 32610, United States.
| | - Sunil Saini
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Kimberly T Sibille
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Shinichi Someya
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Stephanie Wohlgemuth
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Carolyn Tucker
- University of Florida, Department of Psychology, 945 Center Drive, Gainesville, FL 32611, United States.
| | - Rui Xiao
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Marco Pahor
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| |
Collapse
|
62
|
Grammatikopoulou MG, Goulis DG, Gkiouras K, Theodoridis X, Gkouskou KK, Evangeliou A, Dardiotis E, Bogdanos DP. To Keto or Not to Keto? A Systematic Review of Randomized Controlled Trials Assessing the Effects of Ketogenic Therapy on Alzheimer Disease. Adv Nutr 2020; 11:1583-1602. [PMID: 32597927 PMCID: PMC7666893 DOI: 10.1093/advances/nmaa073] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/16/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
Alzheimer disease (AD) is a global health concern with the majority of pharmacotherapy choices consisting of symptomatic treatment. Recently, ketogenic therapies have been tested in randomized controlled trials (RCTs), focusing on delaying disease progression and ameliorating cognitive function. The present systematic review aimed to aggregate the results of trials examining the effects of ketogenic therapy on patients with AD/mild cognitive impairment (MCI). A systematic search was conducted on PubMed, CENTRAL, clinicaltrials.gov, and gray literature for RCTs performed on adults, published in English until 1 April, 2019, assessing the effects of ketogenic therapy on MCI and/or AD compared against placebo, usual diet, or meals lacking ketogenic agents. Two researchers independently extracted data and assessed risk of bias with the Cochrane tool. A total of 10 RCTs were identified, fulfilling the inclusion criteria. Interventions were heterogeneous, acute or long term (45-180 d), including adherence to a ketogenic diet, intake of ready-to-consume drinks, medium-chain triglyceride (MCT) powder for drinks preparation, yoghurt enriched with MCTs, MCT capsules, and ketogenic formulas/meals. The use of ketoneurotherapeutics proved effective in improving general cognition using the Alzheimer's Disease Assessment Scale-Cognitive, in interventions of either duration. In addition, long-term ketogenic therapy improved episodic and secondary memory. Psychological health, executive ability, and attention were not improved. Increases in blood ketone concentrations were unanimous and correlated to the neurocognitive battery based on various tests. Cerebral ketone uptake and utilization were improved, as indicated by the global brain cerebral metabolic rate for ketones and [11C] acetoacetate. Ketone concentrations and cognitive performance differed between APOE ε4(+) and APOE ε4(-) participants, indicating a delayed response among the former and an improved response among the latter. Although research on the subject is still in the early stages and highly heterogeneous in terms of study design, interventions, and outcome measures, ketogenic therapy appears promising in improving both acute and long-term cognition among patients with AD/MCI. This systematic review was registered at www.crd.york.ac.uk/prospero as CRD42019128311.
Collapse
Affiliation(s)
- Maria G Grammatikopoulou
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Dimitrios G Goulis
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Gkiouras
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Xenophon Theodoridis
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | | | - Athanasios Evangeliou
- 4th Department of Pediatrics, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Efthimis Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, Faculty of Medicine, School of Health Sciences, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
- Division of Transplantation Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London Medical School, London, United Kingdom
| |
Collapse
|
63
|
Hernandez AR, Truckenbrod LM, Barrett ME, Lubke KN, Clark BJ, Burke SN. Age-Related Alterations in Prelimbic Cortical Neuron Arc Expression Vary by Behavioral State and Cortical Layer. Front Aging Neurosci 2020; 12:588297. [PMID: 33192482 PMCID: PMC7655965 DOI: 10.3389/fnagi.2020.588297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/06/2020] [Indexed: 11/13/2022] Open
Abstract
Prefrontal cortical and medial temporal lobe connectivity is critical for higher cognitive functions that decline in older adults. Likewise, these cortical areas are among the first to show anatomical, functional, and biochemical alterations in advanced age. The prelimbic subregion of the prefrontal cortex and the perirhinal cortex of the medial temporal lobe are densely reciprocally connected and well-characterized as undergoing age-related neurobiological changes that correlate with behavioral impairment. Despite this fact, it remains to be determined how changes within these brain regions manifest as alterations in their functional connectivity. In our previous work, we observed an increased probability of age-related dysfunction for perirhinal cortical neurons that projected to the prefrontal cortex in old rats compared to neurons that were not identified as projection neurons. The current study was designed to investigate the extent to which aged prelimbic cortical neurons also had altered patterns of Arc expression during behavior, and if this was more evident in those cells that had long-range projections to the perirhinal cortex. The expression patterns of the immediate-early gene Arc were quantified in behaviorally characterized rats that also received the retrograde tracer cholera toxin B (CTB) in the perirhinal cortex to identify projection neurons to this region. As in our previous work, the current study found that CTB+ cells were more active than those that did not have the tracer. Moreover, there were age-related reductions in prelimbic cortical neuron Arc expression that correlated with a reduced ability of aged rats to multitask. Unlike the perirhinal cortex, however, the age-related reduction in Arc expression was equally likely in CTB+ and CTB- negative cells. Thus, the selective vulnerability of neurons with long-range projections to dysfunction in old age may be a unique feature of the perirhinal cortex. Together, these observations identify a mechanism involving prelimbic-perirhinal cortical circuit disruption in cognitive aging.
Collapse
Affiliation(s)
- Abbi R. Hernandez
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Leah M. Truckenbrod
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, United States
| | - Maya E. Barrett
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Katelyn N. Lubke
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Benjamin J. Clark
- Department of Psychology, The University of New Mexico, Albuquerque, NM, United States
| | - Sara N. Burke
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States,*Correspondence: Sara N. Burke,
| |
Collapse
|
64
|
Valenzuela PL, Castillo-García A, Morales JS, Lucia A. Perspective: Ketone Supplementation in Sports-Does It Work? Adv Nutr 2020; 12:305-315. [PMID: 33094332 PMCID: PMC8243601 DOI: 10.1093/advances/nmaa130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/20/2020] [Accepted: 09/18/2020] [Indexed: 11/14/2022] Open
Abstract
Oral ketone supplements have gained popularity in recent years. There is biological rationale for a potential ergogenic effect of this type of supplement, as they might not only alter muscle fuel preference during exercise (and promote glycogen sparing, with potential benefits for endurance performance) but also favor cognition performance during exertion or muscle glycogen synthesis after exercise. However, as discussed in this Perspective, evidence to date does not support a benefit of acute ketone supplementation on sports performance, cognition, or muscle recovery [although further research with long-duration exercise (i.e., >60 min), is needed], and the evidence for chronic supplementation is sparse. In addition, acute intake of ketone supplements might be associated with gastrointestinal symptoms, and further research is warranted on the long-term safety of repeated use of ketone supplements. In summary, there is currently insufficient evidence to support the overall effectiveness of ketone supplements in sports.
Collapse
Affiliation(s)
| | | | - Javier S Morales
- Faculty of Sport Sciences, European University of Madrid, Madrid, Spain
| | | |
Collapse
|
65
|
Hernandez AR, Winesett SP, Federico QP, Williams SA, Burke SN, Clark DJ. A Cross-species Model of Dual-Task Walking in Young and Older Humans and Rats. Front Aging Neurosci 2020; 12:276. [PMID: 32982717 PMCID: PMC7492995 DOI: 10.3389/fnagi.2020.00276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/11/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: Dual-task walking is common in daily life but becomes more difficult with aging. Little is known about the neurobiological mechanisms affecting competing cognitive demands. Translational studies with human and animal models are needed to address this gap. This pilot study investigated the feasibility of implementing a novel cross-species dual-task model in humans and rats and aimed to establish preliminary evidence that the model induces a dual-task cost. Methods: Young and older humans and rats performed an object discrimination task (OD), a baseline task of typical walking (baseline), an alternation turning task on a Figure 8 walking course (Alt), and a dual-task combining object discrimination with the alternation task (AltOD). Primary behavioral assessments including walking speed and correct selections for object discrimination and turning direction. In humans, left prefrontal cortex activity was measured with functional near-infrared spectroscopy (fNIRS). Results: Human subjects generally performed well on all tasks, but the older adults exhibited a trend for a slowing of walking speed immediately before the turning decision for Alt and AltOD compared to baseline. Older adults also had heightened prefrontal activity relative to young adults for the Alt and AltOD tasks. Older rodents required more training than young rodents to learn the alternation task. When tested on AltOD with and without a 15-s delay between trials, older rodents exhibited a substantial performance deficit for the delayed version on the initial day of testing. Old rats, however, did not show a significant slowing in walking speed with increasing task demand, as was evident in the young rats. Discussion: This study demonstrates the feasibility and challenges associated with implementing a cross-species dual-task model. While there was preliminary evidence of dual-task cost in both humans and rats, the magnitude of effects was small and not consistent across species. This is likely due to the relative ease of each task in humans and the walking component in rats not being sufficiently challenging. Future versions of this test should make the cognitive tasks more challenging and the motor task in rats more complex.
Collapse
Affiliation(s)
- Abbi R Hernandez
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Steven P Winesett
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, United States
| | - Quinten P Federico
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Sonora A Williams
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Sara N Burke
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
| | - David J Clark
- Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, FL, United States.,Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
| |
Collapse
|
66
|
Valenzuela PL, Castillo-García A, Morales JS, de la Villa P, Hampel H, Emanuele E, Lista S, Lucia A. Exercise benefits on Alzheimer's disease: State-of-the-science. Ageing Res Rev 2020; 62:101108. [PMID: 32561386 DOI: 10.1016/j.arr.2020.101108] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 05/29/2020] [Accepted: 06/06/2020] [Indexed: 01/15/2023]
Abstract
Although there is no unanimity, growing evidence supports the value of regular physical exercise to prevent Alzheimer's disease as well as cognitive decline in affected patients. Together with an introductory summary on epidemiological evidence, the aim of this review is to summarize the current knowledge on the potential biological mechanisms underlying exercise benefits in this condition. Regular physical exercise has proven to be beneficial for traditional cardiovascular risk factors (e.g., reduced vascular flow, diabetes) involved in the pathogenesis of Alzheimer's disease. Exercise also promotes neurogenesis via increases in exercise-induced metabolic factors (e.g., ketone bodies, lactate) and muscle-derived myokines (cathepsin-B, irisin), which in turn stimulate the production of neurotrophins such as brain-derived neurotrophic factor. Finally, regular exercise exerts anti-inflammatory effects and improves the brain redox status, thereby ameliorating the pathophysiological hallmarks of Alzheimer's disease (e.g., amyloid-β deposition). In summary, physical exercise might provide numerous benefits through different pathways that might, in turn, help prevent risk and progression of Alzheimer's disease. More evidence is needed, however, based on human studies.
Collapse
|
67
|
Jackson JM, Bay AA, Barter JD, Ni L, Caudle WM, Serra MC, Wharton W, Hackney ME. The Role of Nutrition and Inflammation on Cognition in a High-Risk Group for Alzheimer's Disease. J Alzheimers Dis Rep 2020; 4:345-352. [PMID: 33024941 PMCID: PMC7504978 DOI: 10.3233/adr-200224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background: Alzheimer’s disease (AD) is a prevalent neurodegenerative disease. Treatments are necessary to target people at high risk for AD. Inflammation, particularly tumor necrosis factor alpha (TNFα), appears to be an important marker associated with the development of AD pathophysiology. Consuming a high-fat diet induces tissue expression of TNFα. Objective: This study investigates the relationship between nutrition, circulating inflammation, and cognition in African American women (age: M = 59.5 (±8.20) [42–73] years) at risk for developing AD. Methods: Participants were split into high-fat and low-fat groups based on total dietary fat consumption self-reported on the Lower Mississippi Delta Nutrition Intervention Research Initiative Food Frequency Questionnaire (Delta NIRI FFQ). Results: A high-fat diet was associated with increased blood serum TNFα (p = 0.02) compared to the low-fat diet. In addition, global cognition scores were 9.0% better in those who consumed a higher fat diet (p = 0.04). No significant differences across groups were noted for executive function, dual-tasking, and visuospatial performance. Conclusion: These results indicate that there may be multiple biological pathways involved in AD development, suggesting the need for more holistic approaches to mitigate AD-development risk.
Collapse
Affiliation(s)
- Jordan M Jackson
- Emory University's Rollins School of Public Health, Gangarosa Department of Environmental Health, Atlanta, GA, USA
| | - Allison A Bay
- Emory University School of Medicine Department of Medicine, Division of General Medicine and Geriatrics, Atlanta, GA, USA
| | - Jolie Denise Barter
- Emory University School of Medicine Department of Medicine, Division of General Medicine and Geriatrics, Atlanta, GA, USA
| | - Liang Ni
- Emory University School of Medicine Department of Medicine, Division of General Medicine and Geriatrics, Atlanta, GA, USA
| | - William Michael Caudle
- Emory University's Rollins School of Public Health, Gangarosa Department of Environmental Health, Atlanta, GA, USA.,Emory Center for Neurodegenerative Disease, Atlanta, GA, USA
| | - Monica C Serra
- Division of Geriatrics, Gerontology & Palliative Medicine, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,San Antonio Geriatrics Research, Education & Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA
| | | | - Madeleine E Hackney
- Emory University School of Medicine Department of Medicine, Division of General Medicine and Geriatrics, Atlanta, GA, USA.,Emory University School of Nursing, Atlanta, GA, USA.,Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, GA, USA.,Emory University School of Medicine, Department of Rehabilitation Medicine, Atlanta, GA, USA
| |
Collapse
|
68
|
Ghahremani H, Nabati S, Tahmori H, Peirouvi T, Sirati-Sabet M, Salami S. Long-Term Glucose Restriction with or without β-Hydroxybutyrate Enrichment Distinctively Alters Epithelial-Mesenchymal Transition-Related Signalings in Ovarian Cancer Cells. Nutr Cancer 2020; 73:1708-1726. [PMID: 32799692 DOI: 10.1080/01635581.2020.1804947] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The beneficial impacts of the ketogenic diet and metabolic reprograming were recently reported for ovarian cancer patients. In this study, the effects of glucose restriction with or without beta-hydroxybutyrate (bHB) enrichment were studied in drug-resistant CD133high A2780CP and CD133low SK-OV-3 ovarian cancer cells to scrutinize the impact of experimental ketosis on ATP production, epithelial to mesenchymal transition (EMT), and related signaling pathways including Wnt, Hippo, and Hedgehog. Cells were adapted and maintained for a month with restricted levels of glucose (250 mg/l) with or without the therapeutic concentration of bHB (5 mM). Quantitative PCR, Western blot analysis, flow cytometry, chemiluminescence, and wound healing assay were used in this study. Glucose restriction and bHB enrichment reduced the stemness marker and diminished In Vitro migration in both cell lines. Glucose restriction significantly reduced ATP levels in both cells, but bHB enrichment was partially compensated for the ATP levels solely in SK-OV-3 cells. Glucose restriction mainly inhibited the Wnt pathway in the CD133high A2780CP cells, but the Hedgehog pathway was the main target in CD133low SK-OV-3 cells. In Conclusion, Prior targeted evaluations of key genes' expression would help to predict the distinctive impacts of metabolic fuels and to optimize the efficacy of ketogenic diets.
Collapse
Affiliation(s)
- Hossein Ghahremani
- Cell Death and Differentiation Signaling Research Lab, Clinical Biochemistry Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeedeh Nabati
- Cell Death and Differentiation Signaling Research Lab, Clinical Biochemistry Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Tahmori
- Cell Death and Differentiation Signaling Research Lab, Clinical Biochemistry Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahmineh Peirouvi
- Departments of Histology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Majid Sirati-Sabet
- Cell Death and Differentiation Signaling Research Lab, Clinical Biochemistry Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siamak Salami
- Cell Death and Differentiation Signaling Research Lab, Clinical Biochemistry Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
69
|
Maffezzini C, Calvo-Garrido J, Wredenberg A, Freyer C. Metabolic regulation of neurodifferentiation in the adult brain. Cell Mol Life Sci 2020; 77:2483-2496. [PMID: 31912194 PMCID: PMC7320050 DOI: 10.1007/s00018-019-03430-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022]
Abstract
Understanding the mechanisms behind neurodifferentiation in adults will be an important milestone in our quest to identify treatment strategies for cognitive disorders observed during our natural ageing or disease. It is now clear that the maturation of neural stem cells to neurones, fully integrated into neuronal circuits requires a complete remodelling of cellular metabolism, including switching the cellular energy source. Mitochondria are central for this transition and are increasingly seen as the regulatory hub in defining neural stem cell fate and neurodevelopment. This review explores our current knowledge of metabolism during adult neurodifferentiation.
Collapse
Affiliation(s)
- Camilla Maffezzini
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Javier Calvo-Garrido
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anna Wredenberg
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden.
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden.
| | - Christoph Freyer
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden.
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
70
|
Abstract
PURPOSE OF REVIEW This review summarises the most recent evidence regarding the effects of diet in preventing and reducing age-related cognitive decline and neurodegenerative diseases. RECENT FINDINGS Recent evidence indicates that nutraceuticals and whole diet approaches may protect against the development of age-related cognitive decline and pathological neurodegeneration. The neuroprotective effects are diverse depending on the nutrient employed and may involve a reduction of neuroinflammation, an activation of the endogenous antioxidant defence system and a modulation of the gut microbiota structure and function. SUMMARY This review summarises the existing evidence in favour of diet as a viable alternative approach to directly impact cognitive decline and neurodegenerative diseases. The single nutrient (polyphenols, B vitamins, long-chain polyunsaturated fatty acids) versus whole diet approach (Mediterranean diet, Dietary Approaches to Stop Hypertension, MIND, Nordic, ketogenic) is presented and discussed. Potential mechanisms of action underlying the beneficial effects of these diets are also described. Implementation of large-scale preventive interventions based on dietary patterns identified as being beneficial to brain health should be a research and public health priority, ideally in conjunction with other health-promoting lifestyle factors.
Collapse
|
71
|
Hernandez A, Truckenbrod L, Federico Q, Campos K, Moon B, Ferekides N, Hoppe M, D’Agostino D, Burke S. Metabolic switching is impaired by aging and facilitated by ketosis independent of glycogen. Aging (Albany NY) 2020; 12:7963-7984. [PMID: 32369441 PMCID: PMC7244089 DOI: 10.18632/aging.103116] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/31/2020] [Indexed: 12/17/2022]
Abstract
The ability to switch between glycolysis and ketosis promotes survival by enabling metabolism through fat oxidation during periods of fasting. Carbohydrate restriction or stress can also elicit metabolic switching. Keto-adapting from glycolysis is delayed in aged rats, but factors mediating this age-related impairment have not been identified. We measured metabolic switching between glycolysis and ketosis, as well as glycogen dynamics, in young and aged rats undergoing time-restricted feeding (TRF) with a standard diet or a low carbohydrate ketogenic diet (KD). TRF alone reversed markers of insulin-related metabolic deficits and accelerated metabolic switching in aged animals. A KD+TRF, however, provided additive benefits on these variables. Remarkably, the ability to keto-adapt was not related to glycogen levels and KD-fed rats showed an enhanced elevation in glucose following epinephrine administration. This study provides new insights into the mechanisms of keto-adaptation demonstrating the utility of dietary interventions to treat metabolic impairments across the lifespan.
Collapse
Affiliation(s)
- Abbi Hernandez
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
- University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Leah Truckenbrod
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Quinten Federico
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Keila Campos
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Brianna Moon
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Nedi Ferekides
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Meagan Hoppe
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Dominic D’Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33612, USA
- Institute for Human and Machine Cognition, Ocala, FL 34471, USA
| | - Sara Burke
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
- Institute on Aging, University of Florida, Gainesville, FL 32603, USA
| |
Collapse
|
72
|
Lilamand M, Porte B, Cognat E, Hugon J, Mouton-Liger F, Paquet C. Are ketogenic diets promising for Alzheimer's disease? A translational review. ALZHEIMERS RESEARCH & THERAPY 2020; 12:42. [PMID: 32290868 PMCID: PMC7158135 DOI: 10.1186/s13195-020-00615-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/02/2020] [Indexed: 01/22/2023]
Abstract
Background Brain amyloid deposition and neurofibrillary tangles in Alzheimer’s disease (AD) are associated with complex neuroinflammatory reactions such as microglial activation and cytokine production. Glucose metabolism is closely related to neuroinflammation. Ketogenic diets (KDs) include a high amount of fat, low carbohydrate and medium-chain triglyceride (MCT) intake. KDs lead to the production of ketone bodies to fuel the brain, in the absence of glucose. These nutritional interventions are validated treatments of pharmacoresistant epilepsy, consequently leading to a better intellectual development in epileptic children. In neurodegenerative diseases and cognitive decline, potential benefits of KD were previously pointed out, but the published evidence remains scarce. The main objective of this review was to critically examine the evidence regarding KD or MCT intake effects both in AD and ageing animal models and in humans. Main body We conducted a review based on a systematic search of interventional trials published from January 2000 to March 2019 found on MEDLINE and Cochrane databases. Overall, 11 animal and 11 human studies were included in the present review. In preclinical studies, this review revealed an improvement of cognition and motor function in AD mouse model and ageing animals. However, the KD and ketone supplementation were also associated with significant weight loss. In human studies, most of the published articles showed a significant improvement of cognitive outcomes (global cognition, memory and executive functions) with ketone supplementation or KD, regardless of the severity of cognitive impairments previously detected. Both interventions seemed acceptable and efficient to achieve ketosis. Conclusion The KD or MCT intake might be promising ways to alter cognitive symptoms in AD, especially at the prodromal stage of the disease. The need for efficient disease-modifying strategies suggests to pursue further KD interventional studies to assess the efficacy, the adherence to this diet and the potential adverse effects of these nutritional approaches.
Collapse
Affiliation(s)
- Matthieu Lilamand
- INSERM U1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France. .,Centre de Neurologie Cognitive/CMRR Paris Nord Ile de France, APHP Nord Université de Paris, Lariboisière Hospital 200, rue du Faubourg Saint Denis, 75010, Paris, France. .,Department of Geriatrics, Bichat and Bretonneau Hospitals, APHP Nord Université de Paris, 75018, Paris, France.
| | - Baptiste Porte
- INSERM U1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France.,Centre de Neurologie Cognitive/CMRR Paris Nord Ile de France, APHP Nord Université de Paris, Lariboisière Hospital 200, rue du Faubourg Saint Denis, 75010, Paris, France
| | - Emmanuel Cognat
- INSERM U1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France.,Centre de Neurologie Cognitive/CMRR Paris Nord Ile de France, APHP Nord Université de Paris, Lariboisière Hospital 200, rue du Faubourg Saint Denis, 75010, Paris, France
| | - Jacques Hugon
- INSERM U1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France.,Centre de Neurologie Cognitive/CMRR Paris Nord Ile de France, APHP Nord Université de Paris, Lariboisière Hospital 200, rue du Faubourg Saint Denis, 75010, Paris, France
| | - François Mouton-Liger
- INSERM U1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France.,Centre de Neurologie Cognitive/CMRR Paris Nord Ile de France, APHP Nord Université de Paris, Lariboisière Hospital 200, rue du Faubourg Saint Denis, 75010, Paris, France
| | - Claire Paquet
- INSERM U1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France.,Centre de Neurologie Cognitive/CMRR Paris Nord Ile de France, APHP Nord Université de Paris, Lariboisière Hospital 200, rue du Faubourg Saint Denis, 75010, Paris, France
| |
Collapse
|
73
|
Vinciguerra F, Graziano M, Hagnäs M, Frittitta L, Tumminia A. Influence of the Mediterranean and Ketogenic Diets on Cognitive Status and Decline: A Narrative Review. Nutrients 2020; 12:E1019. [PMID: 32276339 PMCID: PMC7231139 DOI: 10.3390/nu12041019] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/29/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of senile dementia, accounting for up to 70% of dementia cases. AD is a slowly progressive disease, which causes global mental deterioration by affecting various cognitive areas. A growing body of evidence has demonstrated that lifestyle habits and nutritional patterns could delay the natural course of the neurodegeneration process. There is no single dietary pattern unequivocally proven to prevent AD. Nevertheless, epidemiological data suggest that by adopting several dietary habits, especially if accompanied with a healthy lifestyle, the negative consequences of AD could potentially be delayed. Alongside with others, two specific eating patterns have been well investigated concerning their potential beneficial effect on cognitive status: the Mediterranean diet (MedDi) and the Ketogenic Diet (KD). Despite the different underlying mechanisms, both of them have demonstrated a fairly profitable role in reducing or delaying cognitive impairment. The aim of the present narrative review is to overview the existing research on the efficacy of MedDi and KD against AD-related cognitive decline, focusing on the proposed protective mechanisms of action. Although the current knowledge on this complex topic does not allow us, at this point, to make exhaustive conclusions, this information could be of help in order to better characterize the possible role of MedDi and KD as nonpharmacological therapies in the treatment of AD and, more generically, of neurodegenerative disorders.
Collapse
Affiliation(s)
- Federica Vinciguerra
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi Medical Center, Via Palermo 636, 95122 Catania, Italy; (F.V.); (M.G.); (M.H.); (L.F.)
| | - Marco Graziano
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi Medical Center, Via Palermo 636, 95122 Catania, Italy; (F.V.); (M.G.); (M.H.); (L.F.)
| | - Maria Hagnäs
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi Medical Center, Via Palermo 636, 95122 Catania, Italy; (F.V.); (M.G.); (M.H.); (L.F.)
- Center for Life Course Health Research, University of Oulu, Aapistie 5/PO Box 5000, 90014 Oulu, Finland
- Rovaniemi Health Center, Koskikatu 25, 96200 Rovaniemi, Finland
| | - Lucia Frittitta
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi Medical Center, Via Palermo 636, 95122 Catania, Italy; (F.V.); (M.G.); (M.H.); (L.F.)
- Diabetes, Obesity and Dietetic Center, Garibaldi Medical Center, Via Palermo 636, 95122 Catania, Italy
| | - Andrea Tumminia
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi Medical Center, Via Palermo 636, 95122 Catania, Italy; (F.V.); (M.G.); (M.H.); (L.F.)
| |
Collapse
|
74
|
Hernandez AR, Truckenbrod LM, Campos KT, Williams SA, Burke SN. Sex differences in age-related impairments vary across cognitive and physical assessments in rats. Behav Neurosci 2020; 134:69-81. [PMID: 31886694 PMCID: PMC7078049 DOI: 10.1037/bne0000352] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inclusion of female subjects in preclinical biomedical research is imperative for understanding mechanisms of age-related cognitive decline, as more than half of individuals older than 65 are female. In rodents, however, few behavioral and physical assessments have been conducted in both sexes within the same study. The current article documents data obtained from young and aged rats of both sexes that performed a battery of cognitive and physical assessments to examine for potential interactions between sex and age. Physical performance was measured with a rotarod test of motor coordination, assessment of maximum grip strength, and swim speed. While females outperformed males in rotarod and grip strength, there was also an age-dependent decline in physical performance in both sexes. Cognitive assessments included the Morris watermaze test of hippocampal dependent spatial memory and a biconditional association task with a working memory (WM) component, both of which were not significantly different across sex. Notably, a cognitive dual task that simultaneously tests working memory (WM) and biconditional association task (BAT) acquisition has previously been shown to be more sensitive to age-related cognitive decline than the watermaze in male rats, which is replicated here in both female and male rats. Furthermore, young and aged females (<27 months) spent a similar percent of time in each estrus cycle phase and phase did not influence WM/BAT performance. Future studies utilizing similar behavioral paradigms to examine the neurobiology of cognitive aging should be representative of the human population they intend to model through the inclusion of female subjects. (PsycINFO Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
- Abbi R. Hernandez
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | | | - Keila T. Campos
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | | | - Sara N. Burke
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- Institute on Aging, University of Florida, Gainesville, FL, USA
| |
Collapse
|
75
|
Smith PJ. Pathways of Prevention: A Scoping Review of Dietary and Exercise Interventions for Neurocognition. Brain Plast 2019; 5:3-38. [PMID: 31970058 PMCID: PMC6971820 DOI: 10.3233/bpl-190083] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease and related dementias (ADRD) represent an increasingly urgent public health concern, with an increasing number of baby boomers now at risk. Due to a lack of efficacious therapies among symptomatic older adults, an increasing emphasis has been placed on preventive measures that can curb or even prevent ADRD development among middle-aged adults. Lifestyle modification using aerobic exercise and dietary modification represents one of the primary treatment modalities used to mitigate ADRD risk, with an increasing number of trials demonstrating that exercise and dietary change, individually and together, improve neurocognitive performance among middle-aged and older adults. Despite several optimistic findings, examination of treatment changes across lifestyle interventions reveals a variable pattern of improvements, with large individual differences across trials. The present review attempts to synthesize available literature linking lifestyle modification to neurocognitive changes, outline putative mechanisms of treatment improvement, and discuss discrepant trial findings. In addition, previous mechanistic assumptions linking lifestyle to neurocognition are discussed, with a focus on potential solutions to improve our understanding of individual neurocognitive differences in response to lifestyle modification. Specific recommendations include integration of contemporary causal inference approaches for analyzing parallel mechanistic pathways and treatment-exposure interactions. Methodological recommendations include trial multiphase optimization strategy (MOST) design approaches that leverage individual differences for improved treatment outcomes.
Collapse
Affiliation(s)
- Patrick J. Smith
- Department of Psychiatry and Behavioral Sciences (Primary), Duke University Medical Center, NC, USA
- Department of Medicine (Secondary), Duke University Medical Center, NC, USA
- Department of Population Health Sciences (Secondary), Duke University, NC, USA
| |
Collapse
|
76
|
The behavioural and pathophysiological effects of the ketogenic diet on mild traumatic brain injury in adolescent rats. Behav Brain Res 2019; 376:112225. [DOI: 10.1016/j.bbr.2019.112225] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/16/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
|
77
|
Hernandez AR, Hernandez CM, Truckenbrod LM, Campos KT, McQuail JA, Bizon JL, Burke SN. Age and Ketogenic Diet Have Dissociable Effects on Synapse-Related Gene Expression Between Hippocampal Subregions. Front Aging Neurosci 2019; 11:239. [PMID: 31607897 PMCID: PMC6755342 DOI: 10.3389/fnagi.2019.00239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/19/2019] [Indexed: 01/01/2023] Open
Abstract
As the number of individuals living beyond the age of 65 is rapidly increasing, so is the need to develop strategies to combat the age-related cognitive decline that may threaten independent living. Although the link between altered neuronal signaling and age-related cognitive impairments is not completely understood, it is evident that declining cognitive abilities are at least partially due to synaptic dysfunction. Aging is accompanied by well-documented changes in both excitatory and inhibitory synaptic signaling across species. Age-related synaptic alterations are not uniform across the brain, however, with different regions showing unique patterns of vulnerability in advanced age. In the hippocampus, increased activity within the CA3 subregion has been observed across species, and this can be reversed with anti-epileptic medication. In contrast to CA3, the dentate gyrus shows reduced activity with age and declining metabolic activity. Ketogenic diets have been shown to decrease seizure incidence and severity in epilepsy, improve metabolic function in diabetes type II, and improve cognitive function in aged rats. This link between neuronal activity and metabolism suggests that metabolic interventions may be able to ameliorate synaptic signaling deficits accompanying advanced age. We therefore investigated the ability of a dietary regimen capable of inducing nutritional ketosis and improving cognition to alter synapse-related gene expression across the dentate gyrus, CA3 and CA1 subregions of the hippocampus. Following 12 weeks of a ketogenic or calorie-matched standard diet, RTq-PCR was used to quantify expression levels of excitatory and inhibitory synaptic signaling genes within CA1, CA3 and dentate gyrus. While there were no age or diet-related changes in CA1 gene expression, expression levels were significantly altered within CA3 by age and within the dentate gyrus by diet for several genes involved in presynaptic glutamate regulation and postsynaptic excitation and plasticity. These data demonstrate subregion-specific alterations in synaptic signaling with age and the potential for a ketogenic diet to alter these processes in dissociable ways across different brain structures that are uniquely vulnerable in older animals.
Collapse
Affiliation(s)
- Abbi R. Hernandez
- Department of Neurosciences, University of Florida, Gainesville, FL, United States
| | - Caesar M. Hernandez
- Department of Neurosciences, University of Florida, Gainesville, FL, United States
| | - Leah M. Truckenbrod
- Department of Neurosciences, University of Florida, Gainesville, FL, United States
| | - Keila T. Campos
- Department of Neurosciences, University of Florida, Gainesville, FL, United States
| | - Joseph A. McQuail
- Department of Physiology, Pharmacology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Jennifer L. Bizon
- Department of Neurosciences, University of Florida, Gainesville, FL, United States
| | - Sara N. Burke
- Department of Neurosciences, University of Florida, Gainesville, FL, United States
- Institute on Aging, University of Florida, Gainesville, FL, United States
| |
Collapse
|
78
|
Lindberg D, Ho AMC, Peyton L, Choi DS. Chronic Ethanol Exposure Disrupts Lactate and Glucose Homeostasis and Induces Dysfunction of the Astrocyte-Neuron Lactate Shuttle in the Brain. Alcohol Clin Exp Res 2019; 43:1838-1847. [PMID: 31237693 PMCID: PMC6722005 DOI: 10.1111/acer.14137] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/14/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Impairment of monocarboxylate transporter (MCT)-dependent astrocyte-neuron lactate transfer disrupts long-term memory and erases drug-associated memories in mice. However, few studies have examined how drugs of abuse alter astrocyte-neuron lactate transfer in neurocircuits related to addiction. This is particularly pertinent for ethanol (EtOH), which has been demonstrated to impair central nervious system (CNS) glucose uptake and significantly alter peripheral levels of glucose, lactate, acetate, and ketones. METHODS We subjected C57BL/6J mice to a chronic intermittent EtOH (CIE) exposure paradigm to investigate how chronic EtOH exposure alters the concentration of glucose and lactate within the serum and CNS during withdrawal. Next, we determine how chronic injections of lactate (1 g/kg, twice daily for 2 weeks) influence central and peripheral glucose and lactate concentrations. Finally, we determine how CIE and chronic lactate injection affect astrocyte-neuron lactate transfer by analyzing the expression of MCTs. RESULTS Our results show that CIE induces lasting changes in CNS glucose and lactate concentrations, accompanied by increased expression of MCTs. Interestingly, although chronic lactate injection mimics the effect of EtOH on CNS metabolites, chronic lactate injection is not associated with increased expression of MCTs. CONCLUSION CIE increases CNS concentrations of glucose and lactate and augments the expression of MCTs. Although we found that chronic lactate injection mimics EtOH-induced increases in CNS lactate and glucose, lactate failed to alter the expression of MCTs. This suggests that although lactate may influence the homeostasis of bioenergetic molecules in the CNS, EtOH-associated increases in lactate are not responsible for increased MCT expression.
Collapse
Affiliation(s)
- Daniel Lindberg
- Mayo Clinic MD/PhD Program, Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN, 55905
- Neuroscience Program, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905
| | - Ada Man Choi Ho
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic School of Medicine, Rochester, MN, 55905
| | - Lee Peyton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic School of Medicine, Rochester, MN, 55905
| | - Doo-Sup Choi
- Neuroscience Program, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic School of Medicine, Rochester, MN, 55905
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905
| |
Collapse
|
79
|
Benlloch M, López-Rodríguez MM, Cuerda-Ballester M, Drehmer E, Carrera S, Ceron JJ, Tvarijonaviciute A, Chirivella J, Fernández-García D, de la Rubia Ortí JE. Reply to "When Is a Ketogenic Diet Ketogenic? Comment on Satiating Effect of a Ketogenic Diet and Its Impact on Muscle Improvement and Oxidation State in Multiple Sclerosis Patients. Nutrients 2019, 11, 1156". Nutrients 2019; 11:nu11081919. [PMID: 31443268 PMCID: PMC6722773 DOI: 10.3390/nu11081919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 11/16/2022] Open
Affiliation(s)
- María Benlloch
- Department of Nursing, Catholic University San Vicente Mártir, 46001 Valencia, Spain
| | | | | | - Eraci Drehmer
- Department of Physical Activity and Sports Sciences, Catholic University San Vicente Mártir, 46001 Valencia, Spain
| | - Sandra Carrera
- Department of Health Sciences, Catholic University San Vicente Mártir, 46001 Valencia, Spain
| | - Jose Joaquin Ceron
- Interdisciplinary Laboratory of Clinical Analysis, Campus of Excellence Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis, Campus of Excellence Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| | | | | | | |
Collapse
|
80
|
Dietary Neuroketotherapeutics for Alzheimer's Disease: An Evidence Update and the Potential Role for Diet Quality. Nutrients 2019; 11:nu11081910. [PMID: 31443216 PMCID: PMC6722814 DOI: 10.3390/nu11081910] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/29/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disease with growing prevalence as the global population ages. Currently available treatments for AD have minimal efficacy and there are no proven treatments for its prodrome, mild cognitive impairment (MCI). AD etiology is not well understood and various hypotheses of disease pathogenesis are currently under investigation. A consistent hallmark in patients with AD is reduced brain glucose utilization; however, evidence suggests that brain ketone metabolism remains unimpaired, thus, there is a great deal of increased interest in the potential value of ketone-inducing therapies for the treatment of AD (neuroketotherapeutics; NKT). The goal of this review was to discuss dietary NKT approaches and mechanisms by which they exert a possible therapeutic benefit, update the evidence available on NKTs in AD and consider a potential role of diet quality in the clinical use of dietary NKTs. Whether NKTs affect AD symptoms through the restoration of bioenergetics, the direct and indirect modulation of antioxidant and inflammation pathways, or both, preliminary positive evidence suggests that further study of dietary NKTs as a disease-modifying treatment in AD is warranted.
Collapse
|
81
|
Satiating Effect of a Ketogenic Diet and Its Impact on Muscle Improvement and Oxidation State in Multiple Sclerosis Patients. Nutrients 2019; 11:nu11051156. [PMID: 31126118 PMCID: PMC6566517 DOI: 10.3390/nu11051156] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022] Open
Abstract
Background: It was previously established that Multiple sclerosis (MS) generates energy alterations at the mitochondrial level related to the loss of muscle mass. Ketone bodies, mainly beta-hydroxybutyrate (BHB), re-establish this energy alteration causing satiety, changes in body composition and a decrease in hormone-dependant hunger, such as ghrelin. The aim of this study was to establish possible improvements in body composition and the level of oxidation in patients with MS, by means of the satiating effect of a ketogenic diet. Methods: A pilot study was carried out with 27 MS patients who were given a Mediterranean isocaloric and ketogenic diet for 4 months. Anthropometric measurements, as well as satiety and hunger perception (VAS scale), were taken. In addition, BHB and paraoxonase 1 (PON1), as an oxidation marker, were measured by spectrophotometric automated assays, and ghrelin was determined by an enzyme immunoassay in the serum. All measurements were taken before and after the intervention. Results: A significant increase in satiety perception at lunch and dinner and of BHB in the blood was obtained. Hunger perception decreased significantly at lunch and dinner with similar levels of ghrelin. In addition, an important increase in lean mass and PON1 was observed. To our knowledge, this is the first study addressing improvements in body composition, oxidation state and metabolism in MS patients, based on the satiating effect of a Mediterranean isocaloric diet. Conclusion: A ketogenic diet increases lean mass and decreases inflammation and oxidation possibly as a consequence of an increase in satiety and decrease in hunger in MS patients.
Collapse
|