51
|
Dhikav V, Jadeja B, Gupta P. Community Screening of Probable Dementia at Primary Care Center in Western India: A Pilot Project. J Neurosci Rural Pract 2022; 13:490-494. [PMID: 35946022 PMCID: PMC9357469 DOI: 10.1055/s-0042-1750102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
Introduction
Timely detecting dementia is an important goal of clinicians and public health professionals alike for better management and prevention of complications. Community screening of dementia could be a powerful strategy. Facilities for dementia screening at primary care level are virtually nonexistent and are a prominent implementation gap. Hence, a study was done to assess the feasibility of dementia screening at primary care using General Practitioner Assessment of Cognition (GPCoG) scale among older adults with subjective memory complaints. It was further aimed to assess the frequency of cardiovascular risk factors in those who met screening criteria for cognitive impairment.
Materials and Methods
Older adults coming to three urban primary care centers in western India for screening of noncommunicable diseases such as diabetes and hypertension (opportunistic screening) with subjective memory complaints were enrolled and screened for dementia using GPCoG. A Mini-Mental State Examination (MMSE) was done in patients who came alone for referral purpose in case the score levels in GPCoG examination met cutoff limits for informant interview. Written medical records were examined to assess status of comorbid vascular risk factors such as diabetes, hypertension, coronary artery disease, and cerebrovascular accidents.
Results
A total of 350 older adults (M:F = 276: 74; mean age ± 68 ± 6.7 years) were screened out of 3,000 older adults who reported during the study period. There were 161 older adults with GPCoG score less than or equal to 5 (56.14%) and 149 subjects with MMSE less than or equal to 24 indicating significant cognitive impairment (42.5%). There were very few (
n
= 11, 3.14%) out of 350 people who came with caregivers; hence, MMSE was done along with for referral to healthcare providers. A total of 142 had comorbid diabetes/and or hypertension (40.5%). A total of 86 had diabetes alone (24.5%) and a total of 128 had hypertension (36.5%).
Conclusion
Current study results indicate that using a simple screening tool such as GPCoG, community screening of probable dementia, is feasible in primary care settings, as is indicated by significant yield of probable dementia cases (42.5%). These cases can be referred to appropriate centers for further workup, confirmation of diagnosis, and treatment. Also, detection of comorbid cardiovascular conditions, for example, diabetes and hypertension, that can be managed along with cognitive impairment/dementia for potential prevention/further deterioration, which can strengthen noncommunicable disease screening.
Collapse
Affiliation(s)
- Vikas Dhikav
- Indian Council of Medical Research-National Institute for Implementation Research on Non Communicable Diseases, Jodhpur, Rajasthan.,Ministry of Health and Family Welfare, Government of India
| | - Bhargavi Jadeja
- Indian Council of Medical Research-National Institute for Implementation Research on Non Communicable Diseases, Jodhpur, Rajasthan.,Ministry of Health and Family Welfare, Government of India
| | - Pooja Gupta
- Indian Council of Medical Research-National Institute for Implementation Research on Non Communicable Diseases, Jodhpur, Rajasthan.,Ministry of Health and Family Welfare, Government of India
| |
Collapse
|
52
|
Ahmad W. Glucose enrichment impair neurotransmission and induce Aβ oligomerization that cannot be reversed by manipulating O-β-GlcNAcylation in the C. elegans model of Alzheimer's disease. J Nutr Biochem 2022; 108:109100. [PMID: 35779795 DOI: 10.1016/j.jnutbio.2022.109100] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/27/2022] [Accepted: 06/08/2022] [Indexed: 01/17/2023]
Abstract
Amyloid beta (Aβ) plaques formation and impaired neurotransmission and neuronal behaviors are primary hallmarks of Alzheimer's disease (AD) that are further associated with impaired glucose metabolism in elderly AD's patients. However, the exact role of glucose metabolism on disease progression has not been elucidated yet. In this study, the effect of glucose on Aβ-mediated toxicity, neurotransmission and neuronal behaviors has been investigated using a C. elegans model system expressing human Aβ. In addition to regular diet, worms expressing Aβ were supplemented with different concentrations of glucose and glycerol and 5 mM 2-deoxyglucose to draw any conclusions. Addition of glucose to the growth medium delayed Aβ-associated paralysis, promoted abnormal body shapes and movement, unable to restore impaired acetylcholine neurotransmission, inhibited egg laying and hatching in pre-existing Aβ-mediated pathology. The harmful effects of glucose may associate with an increase in toxic Aβ oligomers and impaired neurotransmission. O-β-GlcNAcylation (O-GlcNAc), a well-known post-translational modification is directly associated with glucose metabolism and has been found to ameliorates the Aβ- toxicity. We reasoned that glucose addition might induce O-GlcNAc, thereby protect against Aβ. Contrary to our expectations, induced glucose levels were not protective. Increasing O-GlcNAc, either with Thiamet-G (TMG) or by suppressing the O-GlcNAcase (oga-1) gene does interfere with and, therefore, reduce Aβ- toxicity but not in the presence of high glucose. The effects of glucose cannot be effectively managed by manipulating O-GlcNAc in AD models of C. elegans. Our observations suggest that glucose enrichment is unlikely to be an appropriate therapy to minimize AD progression.
Collapse
Affiliation(s)
- Waqar Ahmad
- School of Biological Sciences, the University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
53
|
Near-infrared light reduces glia activation and modulates neuroinflammation in the brains of diet-induced obese mice. Sci Rep 2022; 12:10848. [PMID: 35761012 PMCID: PMC9237037 DOI: 10.1038/s41598-022-14812-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 06/13/2022] [Indexed: 12/06/2022] Open
Abstract
Neuroinflammation is a key event in neurodegenerative conditions such as Alzheimer's disease (AD) and characterizes metabolic pathologies like obesity and type 2 diabetes (T2D). Growing evidence in humans shows that obesity increases the risk of developing AD by threefold. Hippocampal neuroinflammation in rodents correlates with poor memory performance, suggesting that it contributes to cognitive decline. Here we propose that reducing obesity/T2D-driven neuroinflammation may prevent the progression of cognitive decline associated with AD-like neurodegenerative states. Near-infrared light (NIR) has attracted increasing attention as it was shown to improve learning and memory in both humans and animal models. We previously reported that transcranial NIR delivery reduced amyloid beta and Tau pathology and improved memory function in mouse models of AD. Here, we report the effects of NIR in preventing obesity-induced neuroinflammation in a diet-induced obese mouse model. Five-week-old wild-type mice were fed a high-fat diet (HFD) for 13 weeks to induce obesity prior to transcranial delivery of NIR for 4 weeks during 90-s sessions given 5 days a week. After sacrifice, brain slices were subjected to free-floating immunofluorescence for microglia and astrocyte markers to evaluate glial activation and quantitative real-time polymerase chain reaction (PCR) to evaluate expression levels of inflammatory cytokines and brain-derived neurotrophic factor (BDNF). The hippocampal and cortical regions of the HFD group had increased expression of the activated microglial marker CD68 and the astrocytic marker glial fibrillary acidic protein. NIR-treated HFD groups showed decreased levels of these markers. PCR revealed that hippocampal tissue from the HFD group had increased levels of pro-inflammatory interleukin (IL)-1β and tumor necrosis factor-α. Interestingly, the same samples showed increased levels of the anti-inflammatory IL-10. All these changes were attenuated by NIR treatment. Lastly, hippocampal levels of the neurotrophic factor BDNF were increased in NIR-treated HFD mice, compared to untreated HFD mice. The marked reductions in glial activation and pro-inflammatory cytokines along with elevated BDNF provide insights into how NIR could reduce neuroinflammation. These results support the use of NIR as a potential non-invasive and preventive therapeutic approach against chronic obesity-induced deficits that are known to occur with AD neuropathology.
Collapse
|
54
|
Santiago JA, Quinn JP, Potashkin JA. Physical Activity Rewires the Human Brain against Neurodegeneration. Int J Mol Sci 2022; 23:6223. [PMID: 35682902 PMCID: PMC9181322 DOI: 10.3390/ijms23116223] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023] Open
Abstract
Physical activity may offset cognitive decline and dementia, but the molecular mechanisms by which it promotes neuroprotection remain elusive. In the absence of disease-modifying therapies, understanding the molecular effects of physical activity in the brain may be useful for identifying novel targets for disease management. Here we employed several bioinformatic methods to dissect the molecular underpinnings of physical activity in brain health. Network analysis identified 'switch genes' associated with drastic hippocampal transcriptional changes in aged cognitively intact individuals. Switch genes are key genes associated with dramatic transcriptional changes and thus may play a fundamental role in disease pathogenesis. Switch genes are associated with protein processing pathways and the metabolic control of glucose, lipids, and fatty acids. Correlation analysis showed that transcriptional patterns associated with physical activity significantly overlapped and negatively correlated with those of neurodegenerative diseases. Functional analysis revealed that physical activity might confer neuroprotection in Alzheimer's (AD), Parkinson's (PD), and Huntington's (HD) diseases via the upregulation of synaptic signaling pathways. In contrast, in frontotemporal dementia (FTD) its effects are mediated by restoring mitochondrial function and energy precursors. Additionally, physical activity is associated with the downregulation of genes involved in inflammation in AD, neurogenesis in FTD, regulation of growth and transcriptional repression in PD, and glial cell differentiation in HD. Collectively, these findings suggest that physical activity directs transcriptional changes in the brain through different pathways across the broad spectrum of neurodegenerative diseases. These results provide new evidence on the unique and shared mechanisms between physical activity and neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Judith A. Potashkin
- Center for Neurodegenerative Diseases and Therapeutics, Cellular and Molecular Pharmacology Department, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| |
Collapse
|
55
|
Piccialli I, Tedeschi V, Caputo L, D’Errico S, Ciccone R, De Feo V, Secondo A, Pannaccione A. Exploring the Therapeutic Potential of Phytochemicals in Alzheimer’s Disease: Focus on Polyphenols and Monoterpenes. Front Pharmacol 2022; 13:876614. [PMID: 35600880 PMCID: PMC9114803 DOI: 10.3389/fphar.2022.876614] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/11/2022] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a chronic, complex neurodegenerative disorder mainly characterized by the irreversible loss of memory and cognitive functions. Different hypotheses have been proposed thus far to explain the etiology of this devastating disorder, including those centered on the Amyloid-β (Aβ) peptide aggregation, Tau hyperphosphorylation, neuroinflammation and oxidative stress. Nonetheless, the therapeutic strategies conceived thus far to treat AD neurodegeneration have proven unsuccessful, probably due to the use of single-target drugs unable to arrest the progressive deterioration of brain functions. For this reason, the theoretical description of the AD etiology has recently switched from over-emphasizing a single deleterious process to considering AD neurodegeneration as the result of different pathogenic mechanisms and their interplay. Moreover, much relevance has recently been conferred to several comorbidities inducing insulin resistance and brain energy hypometabolism, including diabetes and obesity. As consequence, much interest is currently accorded in AD treatment to a multi-target approach interfering with different pathways at the same time, and to life-style interventions aimed at preventing the modifiable risk-factors strictly associated with aging. In this context, phytochemical compounds are emerging as an enormous source to draw on in the search for multi-target agents completing or assisting the traditional pharmacological medicine. Intriguingly, many plant-derived compounds have proven their efficacy in counteracting several pathogenic processes such as the Aβ aggregation, neuroinflammation, oxidative stress and insulin resistance. Many strategies have also been conceived to overcome the limitations of some promising phytochemicals related to their poor pharmacokinetic profiles, including nanotechnology and synthetic routes. Considering the emerging therapeutic potential of natural medicine, the aim of the present review is therefore to highlight the most promising phytochemical compounds belonging to two major classes, polyphenols and monoterpenes, and to report the main findings about their mechanisms of action relating to the AD pathogenesis.
Collapse
Affiliation(s)
- Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Stefano D’Errico
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Roselia Ciccone
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
- *Correspondence: Anna Pannaccione,
| |
Collapse
|
56
|
Bhatti JS, Sehrawat A, Mishra J, Sidhu IS, Navik U, Khullar N, Kumar S, Bhatti GK, Reddy PH. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radic Biol Med 2022; 184:114-134. [PMID: 35398495 DOI: 10.1016/j.freeradbiomed.2022.03.019] [Citation(s) in RCA: 223] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes (T2DM) is a persistent metabolic disorder rising rapidly worldwide. It is characterized by pancreatic insulin resistance and β-cell dysfunction. Hyperglycemia induced reactive oxygen species (ROS) production and oxidative stress are correlated with the pathogenesis and progression of this metabolic disease. To counteract the harmful effects of ROS, endogenous antioxidants of the body or exogenous antioxidants neutralise it and maintain bodily homeostasis. Under hyperglycemic conditions, the imbalance between the cellular antioxidant system and ROS production results in oxidative stress, which subsequently results in the development of diabetes. These ROS are produced in the endoplasmic reticulum, phagocytic cells and peroxisomes, with the mitochondrial electron transport chain (ETC) playing a pivotal role. The exacerbated ROS production can directly cause structural and functional modifications in proteins, lipids and nucleic acids. It also modulates several intracellular signaling pathways that lead to insulin resistance and impairment of β-cell function. In addition, the hyperglycemia-induced ROS production contributes to micro- and macro-vascular diabetic complications. Various in-vivo and in-vitro studies have demonstrated the anti-oxidative effects of natural products and their derived bioactive compounds. However, there is conflicting clinical evidence on the beneficial effects of these antioxidant therapies in diabetes prevention. This review article focused on the multifaceted role of oxidative stress caused by ROS overproduction in diabetes and related complications and possible antioxidative therapeutic strategies targeting ROS in this disease.
Collapse
Affiliation(s)
- Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Abhishek Sehrawat
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Jayapriya Mishra
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Inderpal Singh Sidhu
- Department of Zoology, Sri Guru Gobind Singh College, Sector 26, Chandigarh, India.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, India.
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India.
| | - Shashank Kumar
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India.
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
57
|
Dyshlyuk S, Vesnina AD, Dmitrieva AI, Kozlova OV, Prosekov AY. Optimization of parameters for obtaining callus, suspension, and root cultures of meadowsweet (filipendula ulmaria) to isolate the largest number of biologically active substances with geroprotective properties. BRAZ J BIOL 2022; 84:e257074. [PMID: 35195180 DOI: 10.1590/1519-6984.257074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/16/2021] [Indexed: 12/06/2022] Open
Abstract
The study of biologically active substances-secondary metabolites of plants that exhibit geroprotective properties is an actual and popular direction in medicine to prevent early aging. This work aims to select the cultivation parameters for obtaining in vitro cell cultures of meadowsweet containing the largest amount of biologically active substances (BAS) for their further extraction as candidate substances for geroprotectors. To specify the effectiveness of the selected cell culture cultivation parameters, biomass growth for callus and root cultures, growth index, specific growth rate, and viability for suspension cultures was carried out. The study results made it possible to select the nutrient media for the cultivation of cell cultures of meadowsweet. It has been found that the greater the antioxidant activity of the extracts, the greater the antimicrobial properties it exhibits. In this study, cell cultures in vitro and alcohol extracts from the plant Filipendula ulmaria were considered as raw materials rich in candidate substances for geroprotectors. According to the data obtained, the plant is rich in hydroxybenzoic and salicylic acids, spireoside, avicularin, and hyperoside.
Collapse
Affiliation(s)
- S Dyshlyuk
- Kemerovo State University, Kemerovo, Russia
| | | | | | | | | |
Collapse
|
58
|
Al Qasem W, Abubaker M, Kvašňák E. Working Memory and Transcranial-Alternating Current Stimulation-State of the Art: Findings, Missing, and Challenges. Front Psychol 2022; 13:822545. [PMID: 35237214 PMCID: PMC8882605 DOI: 10.3389/fpsyg.2022.822545] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/19/2022] [Indexed: 12/06/2022] Open
Abstract
Working memory (WM) is a cognitive process that involves maintaining and manipulating information for a short period of time. WM is central to many cognitive processes and declines rapidly with age. Deficits in WM are seen in older adults and in patients with dementia, schizophrenia, major depression, mild cognitive impairment, Alzheimer's disease, etc. The frontal, parietal, and occipital cortices are significantly involved in WM processing and all brain oscillations are implicated in tackling WM tasks, particularly theta and gamma bands. The theta/gamma neural code hypothesis assumes that retained memory items are recorded via theta-nested gamma cycles. Neuronal oscillations can be manipulated by sensory, invasive- and non-invasive brain stimulations. Transcranial alternating-current stimulation (tACS) and repetitive transcranial magnetic stimulation (rTMS) are frequency-tuned non-invasive brain stimulation (NIBS) techniques that have been used to entrain endogenous oscillations in a frequency-specific manner. Compared to rTMS, tACS demonstrates superior cost, tolerability, portability, and safety profile, making it an attractive potential tool for improving cognitive performance. Although cognitive research with tACS is still in its infancy compared to rTMS, a number of studies have shown a promising WM enhancement effect, especially in the elderly and patients with cognitive deficits. This review focuses on the various methods and outcomes of tACS on WM in healthy and unhealthy human adults and highlights the established findings, unknowns, challenges, and perspectives important for translating laboratory tACS into realistic clinical settings. This will allow researchers to identify gaps in the literature and develop frequency-tuned tACS protocols with promising safety and efficacy outcomes. Therefore, research efforts in this direction should help to consider frequency-tuned tACS as a non-pharmacological tool of cognitive rehabilitation in physiological aging and patients with cognitive deficits.
Collapse
Affiliation(s)
- Wiam Al Qasem
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Praha, Czechia
| | | | | |
Collapse
|
59
|
Kim CK, Sachdev PS, Braidy N. Recent Neurotherapeutic Strategies to Promote Healthy Brain Aging: Are we there yet? Aging Dis 2022; 13:175-214. [PMID: 35111369 PMCID: PMC8782556 DOI: 10.14336/ad.2021.0705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
Owing to the global exponential increase in population ageing, there is an urgent unmet need to develop reliable strategies to slow down and delay the ageing process. Age-related neurodegenerative diseases are among the main causes of morbidity and mortality in our contemporary society and represent a major socio-economic burden. There are several controversial factors that are thought to play a causal role in brain ageing which are continuously being examined in experimental models. Among them are oxidative stress and brain inflammation which are empirical to brain ageing. Although some candidate drugs have been developed which reduce the ageing phenotype, their clinical translation is limited. There are several strategies currently in development to improve brain ageing. These include strategies such as caloric restriction, ketogenic diet, promotion of cellular nicotinamide adenine dinucleotide (NAD+) levels, removal of senescent cells, 'young blood' transfusions, enhancement of adult neurogenesis, stem cell therapy, vascular risk reduction, and non-pharmacological lifestyle strategies. Several studies have shown that these strategies can not only improve brain ageing by attenuating age-related neurodegenerative disease mechanisms, but also maintain cognitive function in a variety of pre-clinical experimental murine models. However, clinical evidence is limited and many of these strategies are awaiting findings from large-scale clinical trials which are nascent in the current literature. Further studies are needed to determine their long-term efficacy and lack of adverse effects in various tissues and organs to gain a greater understanding of their potential beneficial effects on brain ageing and health span in humans.
Collapse
Affiliation(s)
- Chul-Kyu Kim
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Perminder S Sachdev
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| |
Collapse
|
60
|
Kwok SS, Nguyen XMT, Wu DD, Mudar RA, Llano DA. Pure Tone Audiometry and Hearing Loss in Alzheimer's Disease: A Meta-Analysis. Front Psychol 2022; 12:788045. [PMID: 35153910 PMCID: PMC8833234 DOI: 10.3389/fpsyg.2021.788045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/27/2021] [Indexed: 12/22/2022] Open
Abstract
An association between age-related hearing loss (ARHL) and Alzheimer's Disease (AD) has been widely reported. However, the nature of this relationship remains poorly understood. Quantification of hearing loss as it relates to AD is imperative for the creation of reliable, hearing-related biomarkers for earlier diagnosis and development of ARHL treatments that may slow the progression of AD. Previous studies that have measured the association between peripheral hearing function and AD have yielded mixed results. Most of these studies have been small and underpowered to reveal an association. Therefore, in the current report, we sought to estimate the degree to which AD patients have impaired hearing by performing a meta-analysis to increase statistical power. We reviewed 248 published studies that quantified peripheral hearing function using pure-tone audiometry for subjects with AD. Six studies, with a combined total of 171 subjects with AD compared to 222 age-matched controls, met inclusion criteria. We found a statistically significant increase in hearing threshold as measured by pure tone audiometry for subjects with AD compared to controls. For a three-frequency pure tone average calculated for air conduction thresholds at 500-1,000-2,000 Hz (0.5-2 kHz PTA), an increase of 2.3 decibel hearing level (dB HL) was found in subjects with AD compared to controls (p = 0.001). Likewise, for a four-frequency pure tone average calculated at 500-1,000-2,000-4,000 (0.5-4 kHz PTA), an increase of 4.5 dB HL was measured (p = 0.002), and this increase was significantly greater than that seen for 0.5-2 kHz PTA. There was no difference in the average age of the control and AD subjects. These data confirm the presence of poorer hearing ability in AD subjects, provided a quantitative estimate of the magnitude of hearing loss, and suggest that the magnitude of the effect is greater at higher sound frequencies. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier: CRD42021288280.
Collapse
Affiliation(s)
- Susanna S. Kwok
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Xuan-Mai T. Nguyen
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Diana D. Wu
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Raksha A. Mudar
- Department of Speech and Hearing Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Daniel A. Llano
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Department of Speech and Hearing Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Carle Neuroscience Institute, Carle Foundation Hospital, Urbana, IL, United States
| |
Collapse
|
61
|
Anderson M, Sathe N, Polacek C, Vawter J, Fritz T, Mann M, Hernandez P, Nguyen MC, Thompson J, Penderville J, Arling M, Safo S, Christopher R. Site Readiness Framework to Improve Health System Preparedness for a Potential New Alzheimer's Disease Treatment Paradigm. J Prev Alzheimers Dis 2022; 9:542-549. [PMID: 35841255 PMCID: PMC8978498 DOI: 10.14283/jpad.2022.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/02/2022] [Indexed: 11/11/2022]
Abstract
New therapies that address the underlying pathophysiology of Alzheimer's Disease (AD), coupled with the growth of the AD population, will transform the AD care pathway and present significant challenges to health systems. We explored real-world challenges health systems may face in delivering potential new AD therapies with diverse stakeholders. Key challenges in care included integrating primary care providers into assessment and management, availability of memory care specialists, understanding payment and coverage issues and training mid-level providers to help coordinate care and serve as a shared resource across the system. This input informed a novel Site Readiness Framework for AD, comprising self-assessment exercises to identify health system capabilities and gaps and a framework of core strategies and responsive tools to help prepare to integrate new AD therapies. These resources may help health systems improve readiness to modify care pathways to integrate new therapies for AD.
Collapse
Affiliation(s)
- M Anderson
- Cate Polacek, Premier Inc, Charlotte, NC, USA, E-Mail:
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Lopes PKF, Engel DF, Bertolini NO, de Azevedo Martins MS, Pereira CA, Velloso LA, Thomasi SS, de Moura RF. Behavioral, neuroplasticity and metabolic effects of 7,8-dihydroxy-4-methylcoumarin associated with physical activity in mice. Metab Brain Dis 2021; 36:2425-2436. [PMID: 34599738 DOI: 10.1007/s11011-021-00849-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/21/2021] [Indexed: 12/06/2022]
Abstract
The search for strategies to develop resilience against metabolic and neuropsychiatric disorders has motivated the clinical and experimental assessment of early life interventions such as lifestyle-based and use of unconventional pharmacological compounds. In this study, we assessed the effects of voluntary physical activity and 7,8-Dihydroxy-4-methylcoumarin (DHMC), independently or in combination, over mice physiological and behavioral parameters, adult hippocampal and hypothalamic neurogenesis, and neurotrophic factors expression in the hypothalamus. C57Bl/6J mice were submitted to a 29-day treatment with DHMC and allowed free access to a running wheel. We found that DHMC treatment alone reduced fasting blood glucose levels. Moreover, physical activity showed an anxiolytic effect in the elevated plus maze task and DHMC produced additional anxiolytic behavior, evidenced by reduced activity during the light cycle in the physical activity group. Although we did not find any differences in hypothalamic or hippocampal adult neurogenesis, DHMC increased gene expression levels of VEGF, which was correlated to the reduced fasting glucose levels. In conclusion, our data emphasize the potential of physical activity in reducing development of neuropsychiatric conditions, such as anxiety, and highlights DHMC as an attractive compound to be investigated in future studies addressing neuropsychiatric disorders associated with metabolic conditions.
Collapse
Affiliation(s)
| | - Daiane Fátima Engel
- Laboratory of Cell Signaling and Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, 13084-970, Brazil.
- School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, MG, 35400-000, Brazil.
| | | | | | | | - Licio Augusto Velloso
- Laboratory of Cell Signaling and Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, 13084-970, Brazil
| | | | | |
Collapse
|
63
|
Calfio C, Gonzalez A, Singh SK, Rojo LE, Maccioni RB. The Emerging Role of Nutraceuticals and Phytochemicals in the Prevention and Treatment of Alzheimer's Disease. J Alzheimers Dis 2021; 77:33-51. [PMID: 32651325 DOI: 10.3233/jad-200443] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the major challenges of medical sciences has been finding a reliable compound for the pharmacological treatment of Alzheimer's disease (AD). As most of the drugs directed to a variety of targets have failed in finding a medical solution, natural products from Ayurvedic medicine or nutraceutical compounds emerge as a viable preventive therapeutics' pathway. Considering that AD is a multifactorial disease, nutraceutical compounds offer the advantage of a multitarget approach, tagging different molecular sites in the human brain, as compared with the single-target activity of most of the drugs used for AD treatment. We review in-depth important medicinal plants that have been already investigated for therapeutic uses against AD, focusing on a diversity of pharmacological actions. These targets include inhibition of acetylcholinesterase, β-amyloid senile plaques, oxidation products, inflammatory pathways, specific brain receptors, etc., and pharmacological actions so diverse as anti-inflammatory, memory enhancement, nootropic effects, glutamate excitotoxicity, anti-depressants, and antioxidants. In addition, we also discuss the activity of nutraceutical compounds and phytopharmaceuticals formulae, mainly directed to tau protein aggregates mechanisms of action. These include compounds such as curcumin, resveratrol, epigallocatechin-3-gallate, morin, delphinidins, quercetin, luteolin, oleocanthal, and meganatural-az and other phytochemicals such as huperzine A, limonoids, azaphilones, and aged garlic extract. Finally, we revise the nutraceutical formulae BrainUp-10 composed of Andean shilajit and B-complex vitamins, with memory enhancement activity and the control of neuropsychiatric distress in AD patients. This integrated view on nutraceutical opens a new pathway for future investigations and clinical trials that are likely to render some results based on medical evidence.
Collapse
Affiliation(s)
- Camila Calfio
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago, Chile
| | - Andrea Gonzalez
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago, Chile
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow, India.,Centre of Biomedical Research (CBMR), Lucknow, India
| | - Leonel E Rojo
- Department of Biology, University of Santiago, Santiago, Chile
| | - Ricardo B Maccioni
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago, Chile.,Department of Neurology, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
64
|
Young S, Chung E, Chen MA. Cardiovascular Complications of Acetylcholinesterase Inhibitors in Patients with Alzheimer's Disease: A Narrative Review. Ann Geriatr Med Res 2021; 25:170-177. [PMID: 34610666 PMCID: PMC8497945 DOI: 10.4235/agmr.21.0079] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 12/06/2022] Open
Abstract
While acetylcholinesterase inhibitors are used to treat a wide range of patients with Alzheimer's disease, acetylcholinesterase inhibitor use has also been associated with a variety of cardiovascular complications, including bradycardia and syncope. Herein, we review the pathophysiology and clinical evidence for cardiovascular complications caused by acetylcholinesterase inhibitors in patients being treated for dementia and discuss options for their management.
Collapse
Affiliation(s)
- Sara Young
- Boston University School of Medicine, Boston, MA, USA
| | - Enoch Chung
- Boston University School of Medicine, Boston, MA, USA
| | - Michael A. Chen
- Division of Cardiology, Harborview Medical Center, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
65
|
John A, Ali K, Marsh H, Reddy PH. Can healthy lifestyle reduce disease progression of Alzheimer's during a global pandemic of COVID-19? Ageing Res Rev 2021; 70:101406. [PMID: 34242809 PMCID: PMC8259043 DOI: 10.1016/j.arr.2021.101406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/05/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022]
Abstract
The novel coronavirus disease 2019 (COVID-19) has pushed the medical system to its breaking point. While the virus does not discriminate, the elderly and those with comorbidities, including hypertension severe obesity, diabetes mellitus, coronary disease, pneumonia and dementia, are at a greater risk for adverse outcomes due to COVID-19. While many people navigate their new normal, the question of what the long-lasting effects of the pandemic may be, lingers. To investigate how vulnerable populations are affected by the pandemic, we focused on Alzheimer's disease, a vector to understanding how the virus has impacted AD progression and risk via aging. By assessing the effect of COVID-19 on AD patients, we explore genetics, metabolism, and lifestyle factors in both COVID-19 and Alzheimer's disease that can work synergistically to precipitate adverse outcomes. This article also discusses how age-related conditions and/or age-related comorbidities susceptible to COVID-19. We also discuss possible healthy lifestyle factors reduce and/or combat COVID-19 now and in the future.
Collapse
Affiliation(s)
- Albin John
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kiran Ali
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Harrison Marsh
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
66
|
Dietary and supplemental long-chain omega-3 fatty acids as moderators of cognitive impairment and Alzheimer's disease. Eur J Nutr 2021; 61:589-604. [PMID: 34392394 PMCID: PMC8854294 DOI: 10.1007/s00394-021-02655-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/04/2021] [Indexed: 12/06/2022]
Abstract
Purpose There is an ever-growing body of literature examining the relationship between dietary omega-3 polyunsaturated fatty acids (ω3 PUFAs) and cerebral structure and function throughout life. In light of this, the use of ω3 PUFAs, namely, long-chain (LC) ω3 PUFAs (i.e., eicosapentaenoic acid and docosahexaenoic acid), as a therapeutic strategy to mitigate cognitive impairment, and progression to Alzheimer’s disease is an attractive prospect. This review aims to summarise evidence reported by observational studies and clinical trials that investigated the role of LC ω3 PUFAs against cognition impairment and future risk of Alzheimer’s disease. Methods Studies were identified in PubMed and Scopus using the search terms “omega-3 fatty acids”, “Alzheimer’s disease” and “cognition”, along with common variants. Inclusion criteria included observational or randomised controlled trials (RCTs) with all participants aged ≥ 50 years that reported on the association between LC ω3 PUFAs and cognitive function or biological markers indicative of cognitive function linked to Alzheimer’s disease. Results Evidence from 33 studies suggests that dietary and supplemental LC ω3 PUFAs have a protective effect against cognitive impairment. Synaptic plasticity, neuronal membrane fluidity, neuroinflammation, and changes in expression of genes linked to cognitive decline have been identified as potential targets of LC ω3 PUFAs. The protective effects LC ω3 PUFAs on cognitive function and reduced risk of Alzheimer’s disease were supported by both observational studies and RCTs, with RCTs suggesting a more pronounced effect in individuals with early and mild cognitive impairment. Conclusion The findings of this review suggest that individuals consuming higher amounts of LC ω3 PUFAs are less likely to develop cognitive impairment and that, as a preventative strategy against Alzheimer’s disease, it is most effective when dietary LC ω3 PUFAs are consumed prior to or in the early stages of cognitive decline. Supplementary Information The online version contains supplementary material available at 10.1007/s00394-021-02655-4.
Collapse
|
67
|
Identification of the Hub Genes in Alzheimer's Disease. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:6329041. [PMID: 34326892 PMCID: PMC8302378 DOI: 10.1155/2021/6329041] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/03/2021] [Indexed: 12/29/2022]
Abstract
Purpose Alzheimer's disease (AD) is considered to be the most common neurodegenerative disease and also one of the major fatal diseases affecting the elderly, thus bringing a huge burden to society. Therefore, identifying AD-related hub genes is extremely important for developing novel strategies against AD. Materials and Methods Here, we extracted the gene expression profile GSE63061 from the National Center for Biotechnology Information (NCBI) GEO database. Once the unverified gene chip was removed, we standardized the microarray data after quality control. We utilized the Limma software package to screen the differentially expressed genes (DEGs). We conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of DEGs. Subsequently, we constructed a protein-protein interaction (PPI) network using the STRING database. Result We screened 2169 DEGs, comprising 1313 DEGs with upregulation and 856 DEGs with downregulation. Functional enrichment analysis showed that the response of immune, the degranulation of neutrophils, lysosome, and the differentiation of osteoclast were greatly enriched in DEGs with upregulation; peptide biosynthetic process, translation, ribosome, and oxidative phosphorylation were dramatically enriched in DEGs with downregulation. 379 nodes and 1149 PPI edges were demonstrated in the PPI network constructed by upregulated DEGs; 202 nodes and 1963 PPI edges were shown in the PPI network constructed by downregulated DEGs. Four hub genes, including GAPDH, RHOA, RPS29, and RPS27A, were identified to be the newly produced candidates involved in AD pathology. Conclusion GAPDH, RHOA, RPS29, and RPS27A are expected to be key candidates for AD progression. The results of this study can provide comprehensive insight into understanding AD's pathogenesis and potential new therapeutic targets.
Collapse
|
68
|
Orjuela A, Lakey-Beitia J, Mojica-Flores R, Hegde ML, Lans I, Alí-Torres J, Rao KS. Computational Evaluation of Interaction Between Curcumin Derivatives and Amyloid-β Monomers and Fibrils: Relevance to Alzheimer's Disease. J Alzheimers Dis 2021; 82:S321-S333. [PMID: 33337368 DOI: 10.3233/jad-200941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
BACKGROUND The most important hallmark in the neuropathology of Alzheimer's disease (AD) is the formation of amyloid-β (Aβ) fibrils due to the misfolding/aggregation of the Aβ peptide. Preventing or reverting the aggregation process has been an active area of research. Naturally occurring products are a potential source of molecules that may be able to inhibit Aβ42 peptide aggregation. Recently, we and others reported the anti-aggregating properties of curcumin and some of its derivatives in vitro, presenting an important therapeutic avenue by enhancing these properties. OBJECTIVE To computationally assess the interaction between Aβ peptide and a set of curcumin derivatives previously explored in experimental assays. METHODS The interactions of ten ligands with Aβ monomers were studied by combining molecular dynamics and molecular docking simulations. We present the in silico evaluation of the interaction between these derivatives and the Aβ42 peptide, both in the monomeric and fibril forms. RESULTS The results show that a single substitution in curcumin could significantly enhance the interaction between the derivatives and the Aβ42 monomers when compared to a double substitution. In addition, the molecular docking simulations showed that the interaction between the curcumin derivatives and the Aβ42 monomers occur in a region critical for peptide aggregation. CONCLUSION Results showed that a single substitution in curcumin improved the interaction of the ligands with the Aβ monomer more so than a double substitution. Our molecular docking studies thus provide important insights for further developing/validating novel curcumin-derived molecules with high therapeutic potential for AD.
Collapse
Affiliation(s)
- Adrian Orjuela
- Departamento de Química, Universidad Nacional de Colombia, Bogotá DC, Colombia
| | - Johant Lakey-Beitia
- Centre for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
| | - Randy Mojica-Flores
- Centre for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
| | - Muralidhar L Hegde
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA.,Weill Medical College of Cornell University, New York, NY, USA
| | - Isaias Lans
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia, Medellín, Colombia
| | - Jorge Alí-Torres
- Departamento de Química, Universidad Nacional de Colombia, Bogotá DC, Colombia
| | - K S Rao
- Centre for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
| |
Collapse
|
69
|
Rojas M, Chávez-Castillo M, Bautista J, Ortega Á, Nava M, Salazar J, Díaz-Camargo E, Medina O, Rojas-Quintero J, Bermúdez V. Alzheimer’s disease and type 2 diabetes mellitus: Pathophysiologic and pharmacotherapeutics links. World J Diabetes 2021; 12:745-766. [PMID: 34168725 PMCID: PMC8192246 DOI: 10.4239/wjd.v12.i6.745] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/20/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
At present, Alzheimer’s disease (AD) and type 2 diabetes mellitus (T2DM) are two highly prevalent disorders worldwide, especially among elderly individuals. T2DM appears to be associated with cognitive dysfunction, with a higher risk of developing neurocognitive disorders, including AD. These diseases have been observed to share various pathophysiological mechanisms, including alterations in insulin signaling, defects in glucose transporters (GLUTs), and mitochondrial dysfunctions in the brain. Therefore, the aim of this review is to summarize the current knowledge regarding the molecular mechanisms implicated in the association of these pathologies as well as recent therapeutic alternatives. In this context, the hyperphosphorylation of tau and the formation of neurofibrillary tangles have been associated with the dysfunction of the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways in the nervous tissues as well as the decrease in the expression of GLUT-1 and GLUT-3 in the different areas of the brain, increase in reactive oxygen species, and production of mitochondrial alterations that occur in T2DM. These findings have contributed to the implementation of overlapping pharmacological interventions based on the use of insulin and antidiabetic drugs, or, more recently, azeliragon, amylin, among others, which have shown possible beneficial effects in diabetic patients diagnosed with AD.
Collapse
Affiliation(s)
- Milagros Rojas
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Mervin Chávez-Castillo
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Jordan Bautista
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Ángel Ortega
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Manuel Nava
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Juan Salazar
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Edgar Díaz-Camargo
- Universidad Simón Bolívar, Facultad de Ciencias Jurídicas y Sociales, Cúcuta 540006, Colombia
| | - Oscar Medina
- Universidad Simón Bolívar, Facultad de Ciencias Jurídicas y Sociales, Cúcuta 540006, Colombia
| | - Joselyn Rojas-Quintero
- Pulmonary and Critical Care Medicine Department, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02155, United States
| | - Valmore Bermúdez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla 080001, Colombia
| |
Collapse
|
70
|
Bhattacharyya KK, Craft Morgan J, Burgess EO. Person-Centered Care in Nursing Homes: Potential of Complementary and Alternative Approaches and Their Challenges. J Appl Gerontol 2021; 41:817-825. [PMID: 34114482 DOI: 10.1177/07334648211023661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
A person-centered approach to care shifts the mind-set of care partners from a traditional medical model to a social model in managing chronic conditions. Using a qualitative descriptive approach, this study examines the barriers and facilitators to the implementation of person-centered care (PCC) and how the integration of complementary and alternative approaches (CAA) has the potential to improve residents' quality of life in nursing homes (NHs). Findings indicate that NHs offer a wide range of engagement activities, but these activities are not purposefully integrated into a person-centered plan of care. Factors such as turnover, "working short," supervisor support, and rising resident care needs make it challenging to implement PCC in NHs. This knowledge of the landscape of activities will help us identify and improve strategies for supporting residents at a deeper, more meaningful level. CAA has the potential to be therapeutic for residents if integrated into collaborative approaches to care.
Collapse
|
71
|
Reddy AP, Yin X, Sawant N, Reddy PH. Protective effects of antidepressant citalopram against abnormal APP processing and amyloid beta-induced mitochondrial dynamics, biogenesis, mitophagy and synaptic toxicities in Alzheimer's disease. Hum Mol Genet 2021; 30:847-864. [PMID: 33615359 PMCID: PMC8355469 DOI: 10.1093/hmg/ddab054] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/24/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
The purpose of this study is to study the neuroprotective role of selective serotonin reuptake inhibitor (SSRI), citalopram, against Alzheimer's disease (AD). Multiple SSRIs, including citalopram, are reported to treat patients with depression, anxiety and AD. However, their protective cellular mechanisms have not been studied completely. In the current study, we investigated the protective role of citalopram against impaired mitochondrial dynamics, defective mitochondrial biogenesis, defective mitophagy and synaptic dysfunction in immortalized mouse primary hippocampal cells (HT22) expressing mutant APP (SWI/IND) mutations. Using quantitative RT-PCR, immunoblotting, biochemical methods and transmission electron microscopy methods, we assessed mutant full-length APP/C-terminal fragments and Aβ levels and mRNA and protein levels of mitochondrial dynamics, biogenesis, mitophagy and synaptic genes in mAPP-HT22 cells and mAPP-HT22 cells treated with citalopram. Increased levels of mRNA levels of mitochondrial fission genes, decreased levels of fusion biogenesis, autophagy, mitophagy and synaptic genes were found in mAPP-HT22 cells relative to WT-HT22 cells. However, mAPP-HT22 cells treated with citalopram compared to mAPP-HT22 cells revealed reduced levels of the mitochondrial fission genes, increased fusion, biogenesis, autophagy, mitophagy and synaptic genes. Our protein data agree with mRNA levels. Transmission electron microscopy revealed significantly increased mitochondrial numbers and reduced mitochondrial length in mAPP-HT22 cells; these were reversed in citalopram-treated mAPP-HT22 cells. Cell survival rates were increased in citalopram-treated mAPP-HT22 relative to citalopram-untreated mAPP-HT22. Further, mAPP and C-terminal fragments werealso reduced in citalopram-treated cells. These findings suggest that citalopram reduces mutant APP and Aβ and mitochondrial toxicities and may have a protective role of mutant APP and Aβ-induced injuries in patients with depression, anxiety and AD.
Collapse
Affiliation(s)
- Arubala P Reddy
- Nutritional Sciences Department, Texas Tech University, Lubbock, TX, USA
| | - Xiangling Yin
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Neha Sawant
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Neurology Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
72
|
Narbutas J, Chylinski D, Van Egroo M, Bahri MA, Koshmanova E, Besson G, Muto V, Schmidt C, Luxen A, Balteau E, Phillips C, Maquet P, Salmon E, Vandewalle G, Bastin C, Collette F. Positive Effect of Cognitive Reserve on Episodic Memory, Executive and Attentional Functions Taking Into Account Amyloid-Beta, Tau, and Apolipoprotein E Status. Front Aging Neurosci 2021; 13:666181. [PMID: 34122044 PMCID: PMC8194490 DOI: 10.3389/fnagi.2021.666181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/20/2021] [Indexed: 01/01/2023] Open
Abstract
Studies exploring the simultaneous influence of several physiological and environmental factors on domain-specific cognition in late middle-age remain scarce. Therefore, our objective was to determine the respective contribution of modifiable risk/protective factors (cognitive reserve and allostatic load) on specific cognitive domains (episodic memory, executive functions, and attention), taking into account non-modifiable factors [sex, age, and genetic risk for Alzheimer's disease (AD)] and AD-related biomarker amount (amyloid-beta and tau/neuroinflammation) in a healthy late-middle-aged population. One hundred and one healthy participants (59.4 ± 5 years; 68 women) were evaluated for episodic memory, executive and attentional functioning via neuropsychological test battery. Cognitive reserve was determined by the National Adult Reading Test. The allostatic load consisted of measures of lipid metabolism and sympathetic nervous system functioning. The amyloid-beta level was assessed using positron emission tomography in all participants, whereas tau/neuroinflammation positron emission tomography scans and apolipoprotein E genotype were available for 58 participants. Higher cognitive reserve was the main correlate of better cognitive performance across all domains. Moreover, age was negatively associated with attentional functioning, whereas sex was a significant predictor for episodic memory, with women having better performance than men. Finally, our results did not show clear significant associations between performance over any cognitive domain and apolipoprotein E genotype and AD biomarkers. This suggests that domain-specific cognition in late healthy midlife is mainly determined by a combination of modifiable (cognitive reserve) and non-modifiable factors (sex and age) rather than by AD biomarkers and genetic risk for AD.
Collapse
Affiliation(s)
- Justinas Narbutas
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit, Faculty of Psychology and Educational Sciences, University of Liège, Liège, Belgium
| | - Daphne Chylinski
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Maxime Van Egroo
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Mohamed Ali Bahri
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Ekaterina Koshmanova
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Gabriel Besson
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Vincenzo Muto
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Christina Schmidt
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit, Faculty of Psychology and Educational Sciences, University of Liège, Liège, Belgium
| | - André Luxen
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Evelyne Balteau
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Christophe Phillips
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Pierre Maquet
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
- Department of Neurology, CHU de Liège, Liège, Belgium
| | - Eric Salmon
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit, Faculty of Psychology and Educational Sciences, University of Liège, Liège, Belgium
- Department of Neurology, CHU de Liège, Liège, Belgium
| | - Gilles Vandewalle
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Christine Bastin
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit, Faculty of Psychology and Educational Sciences, University of Liège, Liège, Belgium
| | - Fabienne Collette
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit, Faculty of Psychology and Educational Sciences, University of Liège, Liège, Belgium
| |
Collapse
|
73
|
Alves SS, Silva-Junior RMPD, Servilha-Menezes G, Homolak J, Šalković-Petrišić M, Garcia-Cairasco N. Insulin Resistance as a Common Link Between Current Alzheimer's Disease Hypotheses. J Alzheimers Dis 2021; 82:71-105. [PMID: 34024838 DOI: 10.3233/jad-210234] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Almost 115 years ago, Alois Alzheimer described Alzheimer's disease (AD) for the first time. Since then, many hypotheses have been proposed. However, AD remains a severe health public problem. The current medical approaches for AD are limited to symptomatic interventions and the complexity of this disease has led to a failure rate of approximately 99.6%in AD clinical trials. In fact, no new drug has been approved for AD treatment since 2003. These failures indicate that we are failing in mimicking this disease in experimental models. Although most studies have focused on the amyloid cascade hypothesis of AD, the literature has made clear that AD is rather a multifactorial disorder. Therefore, the persistence in a single theory has resulted in lost opportunities. In this review, we aim to present the striking points of the long scientific path followed since the description of the first AD case and the main AD hypotheses discussed over the last decades. We also propose insulin resistance as a common link between many other hypotheses.
Collapse
Affiliation(s)
- Suélen Santos Alves
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Rui Milton Patrício da Silva-Junior
- Department of Internal Medicine, Ribeirão Preto Medical School -University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Gabriel Servilha-Menezes
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Melita Šalković-Petrišić
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
74
|
de Farias JM, Dos Santos Tramontin N, Pereira EV, de Moraes GL, Furtado BG, Tietbohl LTW, Da Costa Pereira B, Simon KU, Muller AP. Physical Exercise Training Improves Judgment and Problem-Solving and Modulates Serum Biomarkers in Patients with Alzheimer's Disease. Mol Neurobiol 2021; 58:4217-4225. [PMID: 33963521 DOI: 10.1007/s12035-021-02411-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/28/2021] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is characterized by progressive impairment of memory, with an etiology involving oxidative stress and inflammation. Exercise training is a safe, efficacious, and economic approach to manage neurodegenerative diseases. In AD, the biomarkers of oxidative damage to lipids, proteins, and DNA are elevated. In the present study, we aimed to evaluate whether exercise is effective in patients with AD by assessing the serum biomarkers associated with the redox status, neurotrophin levels, and inflammatory system. This nonrandomized clinical study (n = 15) involved 22 training sessions performed twice a week (60 min/session) in patients diagnosed with AD. The cognitive and self-awareness tests were performed 48 h before and after the physical training session. In patients with AD, physical training significantly improved the judgment and problem-solving domains of the memory score; however, general mental health, memory, orientation, and home/hobby domains were improved slightly, and the neurotrophin levels remained unaltered. Significantly, the markers of protein integrity also increased following exercise. Furthermore, catalase activity and ROS levels decreased, nitrite levels increased, and interleukin-4 level increased following physical training in patients with AD. Although proinflammatory cytokines remained unaltered, the levels of neuron-specific enolase, a marker of neuronal damage, decreased following exercise training in these patients. In conclusion, physical exercise training could be a safe and effective method for blocking the AD progression and improving the antioxidant capacity and anti-inflammatory system, whereas certain assessed biomarkers could be utilized to monitor AD therapy.
Collapse
Affiliation(s)
- Joni Marcio de Farias
- Health Promotion Research and Study Group, University of Extremo Sul Catarinense, Criciúma, SC, Brazil
| | | | - Eduarda Valim Pereira
- Health Promotion Research and Study Group, University of Extremo Sul Catarinense, Criciúma, SC, Brazil
| | | | - Beatriz Giusti Furtado
- Health Promotion Research and Study Group, University of Extremo Sul Catarinense, Criciúma, SC, Brazil
| | | | - Bárbara Da Costa Pereira
- Laboratory of Biomedicine Translational, University of Extremo Sul Catarinense, Criciúma, SC, 88040900, Brazil
| | - Kellen Ugioni Simon
- Laboratory of Biomedicine Translational, University of Extremo Sul Catarinense, Criciúma, SC, 88040900, Brazil
| | - Alexandre Pastoris Muller
- Pharmacology Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil. .,Laboratory of Biomedicine Translational, University of Extremo Sul Catarinense, Criciúma, SC, 88040900, Brazil. .,Postgraduate Program in Pharmacology, Federal University of Santa Catarina-UFSC, Florianópolis, SC, 88040900, Brazil.
| |
Collapse
|
75
|
Pervin Z, Stephen JM. Effect of alcohol on the central nervous system to develop neurological disorder: pathophysiological and lifestyle modulation can be potential therapeutic options for alcohol-induced neurotoxication. AIMS Neurosci 2021; 8:390-413. [PMID: 34183988 PMCID: PMC8222771 DOI: 10.3934/neuroscience.2021021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/01/2021] [Indexed: 12/06/2022] Open
Abstract
The central nervous system (CNS) is the major target for adverse effects of alcohol and extensively promotes the development of a significant number of neurological diseases such as stroke, brain tumor, multiple sclerosis (MS), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS). Excessive alcohol consumption causes severe neuro-immunological changes in the internal organs including irreversible brain injury and it also reacts with the defense mechanism of the blood-brain barrier (BBB) which in turn leads to changes in the configuration of the tight junction of endothelial cells and white matter thickness of the brain. Neuronal injury associated with malnutrition and oxidative stress-related BBB dysfunction may cause neuronal degeneration and demyelination in patients with alcohol use disorder (AUD); however, the underlying mechanism still remains unknown. To address this question, studies need to be performed on the contributing mechanisms of alcohol on pathological relationships of neurodegeneration that cause permanent neuronal damage. Moreover, alcohol-induced molecular changes of white matter with conduction disturbance in neurotransmission are a likely cause of myelin defect or axonal loss which correlates with cognitive dysfunctions in AUD. To extend our current knowledge in developing a neuroprotective environment, we need to explore the pathophysiology of ethanol (EtOH) metabolism and its effect on the CNS. Recent epidemiological studies and experimental animal research have revealed the association between excessive alcohol consumption and neurodegeneration. This review supports an interdisciplinary treatment protocol to protect the nervous system and to improve the cognitive outcomes of patients who suffer from alcohol-related neurodegeneration as well as clarify the pathological involvement of alcohol in causing other major neurological disorders.
Collapse
Affiliation(s)
- Zinia Pervin
- Department of Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| | - Julia M Stephen
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA
| |
Collapse
|
76
|
The Role of Vitamin K in Humans: Implication in Aging and Age-Associated Diseases. Antioxidants (Basel) 2021; 10:antiox10040566. [PMID: 33917442 PMCID: PMC8067486 DOI: 10.3390/antiox10040566] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/17/2022] Open
Abstract
As human life expectancy is rising, the incidence of age-associated diseases will also increase. Scientific evidence has revealed that healthy diets, including good fats, vitamins, minerals, or polyphenolics, could have antioxidant and anti-inflammatory activities, with antiaging effects. Recent studies demonstrated that vitamin K is a vital cofactor in activating several proteins, which act against age-related syndromes. Thus, vitamin K can carboxylate osteocalcin (a protein capable of transporting and fixing calcium in bone), activate matrix Gla protein (an inhibitor of vascular calcification and cardiovascular events) and carboxylate Gas6 protein (involved in brain physiology and a cognitive decline and neurodegenerative disease inhibitor). By improving insulin sensitivity, vitamin K lowers diabetes risk. It also exerts antiproliferative, proapoptotic, autophagic effects and has been associated with a reduced risk of cancer. Recent research shows that protein S, another vitamin K-dependent protein, can prevent the cytokine storm observed in COVID-19 cases. The reduced activation of protein S due to the pneumonia-induced vitamin K depletion was correlated with higher thrombogenicity and possibly fatal outcomes in COVID-19 patients. Our review aimed to present the latest scientific evidence about vitamin K and its role in preventing age-associated diseases and/or improving the effectiveness of medical treatments in mature adults ˃50 years old.
Collapse
|
77
|
Abstract
One of the best strategies for healthy brain aging is regular aerobic exercise. Commonly studied "anti-aging" compounds may mimic some effects of exercise on the brain, but novel approaches that target energy-sensing pathways similar to exercise probably will be more effective in this context. We review evidence in support of this hypothesis by focusing on biological hallmarks of brain aging.
Collapse
|
78
|
Luchesi BM, Melo BRDS, Balderrama P, Gratão ACM, Chagas MHN, Pavarini SCI, Martins TCR. Prevalence of risk factors for dementia in middle- and older- aged people registered in Primary Health Care. Dement Neuropsychol 2021; 15:239-247. [PMID: 34345366 PMCID: PMC8283878 DOI: 10.1590/1980-57642021dn15-020012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/25/2021] [Indexed: 12/06/2022] Open
Abstract
It is important to assess the prevalence of risk factors for dementia to slow down the progression and evolution of the disease, and to support interventions and prevention programs. OBJECTIVE We aimed to evaluate the prevalence of these factors in individuals registered in Primary Health Care in Brazil and their relationship with sex and age group. METHODS This was a cross-sectional and quantitative study with n=300 individuals. We evaluated the prevalence of main risk factors (low education, hearing loss, high blood pressure, obesity, smoking, depression, physical inactivity, social isolation, and diabetes mellitus) and others (poor diet, alcohol use, head trauma, monolingualism, visual impairment, and sleep disorders) identified in the literature. Poisson regression was used, according to sex and age group (45-59 years/60+ years). RESULTS The main risk factors with the highest prevalence were physical inactivity (60.3%) and depressive symptoms and hypertension (56.7% each). Among the other factors, monolingualism (98.0%), visual impairment (84.7%), and irregular consumption of fruits (60.4%), and vegetables (53.5%) prevailed. No differences were identified between sexes. The regression analysis confirmed a significant difference for education and age group, with older individuals having a higher prevalence of low schooling. CONCLUSION The results can guide interventions, especially in developing countries. Practice of physical activity and healthy eating should be the focus of these interventions as they can indirectly help in reducing the prevalence of other factors. Early identification, screening and adequate treatment of depressive symptoms, high blood pressure and visual impairment can also contribute to reducing the prevalence of dementia.
Collapse
Affiliation(s)
- Bruna Moretti Luchesi
- Undergraduate Medical School, Universidade Federal de Mato Grosso do Sul, Campus de Três Lagoas - Três Lagoas, MS, Brazil
- Graduate Program in Nursing, Universidade Federal de Mato Grosso do Sul, Campus de Três Lagoas - Três Lagoas, MS, Brazil
| | | | - Priscila Balderrama
- Undergraduate Medical School, Universidade Federal de Mato Grosso do Sul, Campus de Três Lagoas - Três Lagoas, MS, Brazil
| | - Aline Cristina Martins Gratão
- Graduate Program in Nursing, Universidade Federal de São Carlos - São Carlos, SP, Brazil
- Graduate Program in Gerontology, Universidade Federal de São Carlos - São Carlos, SP, Brazil
| | - Marcos Hortes Nisihara Chagas
- Graduate Program in Gerontology, Universidade Federal de São Carlos - São Carlos, SP, Brazil
- Bairral Institute of Psychiatry - Itapira, SP, Brazil
| | - Sofia Cristina Iost Pavarini
- Graduate Program in Nursing, Universidade Federal de São Carlos - São Carlos, SP, Brazil
- Graduate Program in Gerontology, Universidade Federal de São Carlos - São Carlos, SP, Brazil
| | - Tatiana Carvalho Reis Martins
- Undergraduate Medical School, Universidade Federal de Mato Grosso do Sul, Campus de Três Lagoas - Três Lagoas, MS, Brazil
- Graduate Program in Nursing, Universidade Federal de Mato Grosso do Sul, Campus de Três Lagoas - Três Lagoas, MS, Brazil
| |
Collapse
|
79
|
Trajano GS, Blazevich AJ. Static Stretching Reduces Motoneuron Excitability: The Potential Role of Neuromodulation. Exerc Sport Sci Rev 2021; 49:126-132. [PMID: 33720914 PMCID: PMC7967995 DOI: 10.1249/jes.0000000000000243] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Prolonged static muscle stretching transiently reduces maximal muscle force, and this force loss has a strong neural component. In this review, we discuss the evidence suggesting that stretching reduces the motoneuron's ability to amplify excitatory drive. We propose a hypothetical model in which stretching causes physiological relaxation, reducing the brainstem-derived neuromodulatory drive necessary to maximize motoneuron discharge rates.
Collapse
Affiliation(s)
- Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane
| | - Anthony J Blazevich
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
80
|
Luo Z, Lv H, Chen Y, Xu X, Liu K, Li X, Deng Y, Zhou Y. Years of Life Lost Due to Premature Death and Their Trends in People With Selected Neurological Disorders in Shanghai, China, 1995-2018: A Population-Based Study. Front Neurol 2021; 12:625042. [PMID: 33746880 PMCID: PMC7973274 DOI: 10.3389/fneur.2021.625042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/01/2021] [Indexed: 12/06/2022] Open
Abstract
Background: Neurological disorders are the leading cause of long-term disability and the second leading cause of death in the world. We aimed to characterize the long-term trends in mortality and disease burden of selected neurological disorders and quantitatively analyze the contributions of demographic and non-demographic factors on the mortality of selected neurological disorders in Shanghai, China, 1995–2018. Methods: Mortality data were derived from the Vital Statistics System of Pudong New Area, Shanghai, China, during 1995–2018. Temporal trends for the mortality rates and burden of selected neurological disorders were analyzed by Joinpoint Regression Program. Years of life lost (YLL) was used to analyze the burden of disease. The increasing mortality rates related to demographic and non-demographic factors were estimated by the decomposition method. Results: A total of 4432 deaths from selected neurological disorders occurred during 1995–2018, accounting for 0.98% of total deaths. The crude mortality rates (CMR) and age-standardized mortality rates (ASMRW) of neurological disorders were 7.14/105 person–years and 4.08/105 person–years, respectively. Extrapyramidal and movement disorders, other degenerative diseases of the nervous system, and episodic and paroxysmal disorders were the three leading causes of mortality and YLL of selected neurological disorders. The CMR, ASMRW, and rate of YLL for deaths from selected neurological disorders showed significantly increasing trends in males, females, and the total population during 1995–2018 (all P < 0.001). The contribution rates of increased values of CMR related to demographic factors were more evident than non-demographic factors. Conclusion: The mortality rate and rate of YLL for death from selected neurological disorders increased significantly during 1995–2018 in Pudong New Area, Shanghai. The demographic factors, particularly aging, might be related to an increase in the mortality of neurological disorders. More effective prevention strategies are needed to prevent the aging-related death and burden from neurological disorders in the future.
Collapse
Affiliation(s)
- Zheng Luo
- Department of Neurology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Huihui Lv
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yichen Chen
- Center for Disease Control and Prevention of Pudong New Area, Shanghai, China.,Office of Scientific Research and Information Management, Fudan University Pudong Institute of Preventive Medicine, Shanghai, China
| | - Xiaoyun Xu
- Department of Neurology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Kangyong Liu
- Department of Neurology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xiaopan Li
- Office of Scientific Research and Information Management, Fudan University Pudong Institute of Preventive Medicine, Shanghai, China
| | - Yang Deng
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Yi Zhou
- Center for Disease Control and Prevention of Pudong New Area, Shanghai, China.,Office of Scientific Research and Information Management, Fudan University Pudong Institute of Preventive Medicine, Shanghai, China
| |
Collapse
|
81
|
Bhatti JS, Tamarai K, Kandimalla R, Manczak M, Yin X, Ramasubramanian B, Sawant N, Pradeepkiran JA, Vijayan M, Kumar S, Reddy PH. Protective effects of a mitochondria-targeted small peptide SS31 against hyperglycemia-induced mitochondrial abnormalities in the liver tissues of diabetic mice, Tallyho/JngJ mice. Mitochondrion 2021; 58:49-58. [PMID: 33639273 DOI: 10.1016/j.mito.2021.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/17/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
Type 2 Diabetes mellitus (T2DM) has become a major public health issue associated with a high risk of late-onset Alzheimer's disease (LOAD). Mitochondrial dysfunction is one of the molecular events that occur in the LOAD pathophysiology. The present study was planned to investigate the molecular alterations induced by hyperglycemia in the mitochondria of diabetic mice and further explore the possible ameliorative role of the mitochondria-targeted small peptide, SS31 in diabetic mice. For this purpose, we used a polygenic mouse model of type 2 diabetes, TALLYHO/JngJ (TH), and nondiabetic, SWR/J mice strains. The diabetic status in TH mice was confirmed at 8 weeks of age. The 24 weeks old experimental animals were segregated into three groups: Non-diabetic controls (SWR/J mice), diabetic (TH mice) and, SS31 treated diabetic TH mice. The mRNA and protein expression levels of mitochondrial proteins were investigated in all the study groups in the liver tissues using qPCR and immunoblot analysis. Also, the mitochondrial functions including H2O2 production, ATP generation, and lipid peroxidation were assessed in all the groups. Mitochondrial dysfunction was observed in TH mice as evident by significantly elevated H2O2 production, lipid peroxidation, and reduced ATP production. The mRNA expression and Western blot analysis of mitochondrial dynamics (Drp1 and Fis1 - fission; Mfn1, Mfn2, and Opa1 -fusion), and biogenesis (PGC-1α, Nrf1, Nrf2, and TFAM) genes were significantly altered in diabetic TH mice. Furthermore, SS31 treatment significantly reduced the mitochondrial abnormalities and restore mitochondrial functions in diabetic TH mice.
Collapse
Affiliation(s)
- Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India; Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India; Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Kavya Tamarai
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Ramesh Kandimalla
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Department of Biochemistry, Kakatiya Medical College, Warangal, Telangana 506007, India; Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
| | - Maria Manczak
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Xiangling Yin
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Bhagavathi Ramasubramanian
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Neha Sawant
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Jangampalli Adi Pradeepkiran
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Murali Vijayan
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Subodh Kumar
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Cell Biology & Biochemistry Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Neurology Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States.
| |
Collapse
|
82
|
Izquierdo V, Palomera-Ávalos V, Pallàs M, Griñán-Ferré C. Resveratrol Supplementation Attenuates Cognitive and Molecular Alterations under Maternal High-Fat Diet Intake: Epigenetic Inheritance over Generations. Int J Mol Sci 2021; 22:1453. [PMID: 33535619 PMCID: PMC7867164 DOI: 10.3390/ijms22031453] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Environmental factors such as maternal high-fat diet (HFD) intake can increase the risk of age-related cognitive decline in adult offspring. Epigenetic mechanisms are a possible link between diet effect and neurodegeneration across generations. Here, we found a significant decrease in triglyceride levels in a high-fat diet with resveratrol (RSV) HFD + RSV group and the offspring. Firstly, we obtained better cognitive performance in HFD+RSV groups and their offspring. Molecularly, a significant increase in DNA methylation (5-mC) levels, as well as increased gene expression of DNA methyltransferase 1 (Dnmt1) and Dnmt3a in HFD + RSV F1 group, were found. Furthermore, a significant increase of N6-Methyladenosine methylation (m6A) levels in HFD+RSV F1, as well as changes in gene expression of its enzymes Methyltransferase like 3 (Mettl3) and FTO alpha-ketoglutarate dependent dioxygenase (Fto) were found. Moreover, we found a decrease in gene expression levels of pro-inflammatory markers such as Interleukin 1β (Il1-β), Interleukin 6 (Il-6), Tumor necrosis factor-α (Tnf-α), C-X-C motif chemokine ligand 10 (Cxcl-10), the pro-inflammatory factors monocyte chemoattractant protein 1 (Mcp-1) and Tumor growth factor-β1 (Tgf-β1) in HFD+RSV and HFD+RSV F1 groups. Moreover, there was increased gene expression of neurotrophins such as Neural growth factor (Ngf), Neurotrophin-3 (Nt3), and its receptors Tropomyosin receptor kinase TrkA and TrkB. Likewise, an increase in protein levels of brain-derived neurotrophic factor (BDNF) and phospho-protein kinase B (p-Akt) in HFD+RSV F1 was found. These results suggest that maternal RSV supplementation under HFD intake prevents cognitive decline in senescence-accelerated mice prone 8 (SAMP8) adult offspring, promoting a reduction in triglycerides and leptin plasma levels, changes in the pro-inflammatory profile, and restoring the epigenetic landscape as well as synaptic plasticity.
Collapse
Affiliation(s)
- Vanesa Izquierdo
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències—Universitat de Barcelona, Avda. Joan XXIII, 27, 08028 Barcelona, Spain; (V.I.); (M.P.)
| | - Verónica Palomera-Ávalos
- Department of Cellular and Molecular Biology, University Center of Biological and Agricultural Sciences, University of Guadalajara, km 15.5 Guadalajara-Nogales highway, 45110 Zapopan, Jalisco, Mexico;
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències—Universitat de Barcelona, Avda. Joan XXIII, 27, 08028 Barcelona, Spain; (V.I.); (M.P.)
| | - Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències—Universitat de Barcelona, Avda. Joan XXIII, 27, 08028 Barcelona, Spain; (V.I.); (M.P.)
| |
Collapse
|
83
|
de Bem AF, Krolow R, Farias HR, de Rezende VL, Gelain DP, Moreira JCF, Duarte JMDN, de Oliveira J. Animal Models of Metabolic Disorders in the Study of Neurodegenerative Diseases: An Overview. Front Neurosci 2021; 14:604150. [PMID: 33536868 PMCID: PMC7848140 DOI: 10.3389/fnins.2020.604150] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022] Open
Abstract
The incidence of metabolic disorders, as well as of neurodegenerative diseases—mainly the sporadic forms of Alzheimer’s and Parkinson’s disease—are increasing worldwide. Notably, obesity, diabetes, and hypercholesterolemia have been indicated as early risk factors for sporadic forms of Alzheimer’s and Parkinson’s disease. These conditions share a range of molecular and cellular features, including protein aggregation, oxidative stress, neuroinflammation, and blood-brain barrier dysfunction, all of which contribute to neuronal death and cognitive impairment. Rodent models of obesity, diabetes, and hypercholesterolemia exhibit all the hallmarks of these degenerative diseases, and represent an interesting approach to the study of the phenotypic features and pathogenic mechanisms of neurodegenerative disorders. We review the main pathological aspects of Alzheimer’s and Parkinson’s disease as summarized in rodent models of obesity, diabetes, and hypercholesterolemia.
Collapse
Affiliation(s)
- Andreza Fabro de Bem
- Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brazilia, Brazil
| | - Rachel Krolow
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Hémelin Resende Farias
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Victória Linden de Rezende
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Daniel Pens Gelain
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - José Cláudio Fonseca Moreira
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - João Miguel das Neves Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Jade de Oliveira
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
84
|
Lakey-Beitia J, Burillo AM, Penna GL, Hegde ML, Rao K. Polyphenols as Potential Metal Chelation Compounds Against Alzheimer's Disease. J Alzheimers Dis 2021; 82:S335-S357. [PMID: 32568200 PMCID: PMC7809605 DOI: 10.3233/jad-200185] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease affecting more than 50 million people worldwide. The pathology of this multifactorial disease is primarily characterized by the formation of amyloid-β (Aβ) aggregates; however, other etiological factors including metal dyshomeostasis, specifically copper (Cu), zinc (Zn), and iron (Fe), play critical role in disease progression. Because these transition metal ions are important for cellular function, their imbalance can cause oxidative stress that leads to cellular death and eventual cognitive decay. Importantly, these transition metal ions can interact with the amyloid-β protein precursor (AβPP) and Aβ42 peptide, affecting Aβ aggregation and increasing its neurotoxicity. Considering how metal dyshomeostasis may substantially contribute to AD, this review discusses polyphenols and the underlying chemical principles that may enable them to act as natural chelators. Furthermore, polyphenols have various therapeutic effects, including antioxidant activity, metal chelation, mitochondrial function, and anti-amyloidogenic activity. These combined therapeutic effects of polyphenols make them strong candidates for a moderate chelation-based therapy for AD.
Collapse
Affiliation(s)
- Johant Lakey-Beitia
- Centre for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
| | - Andrea M. Burillo
- Centre for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
| | - Giovanni La Penna
- National Research Council, Institute of Chemistry of Organometallic Compounds, Sesto Fiorentino (FI), Italy
| | - Muralidhar L. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
- Weill Medical College of Cornell University, New York, NY, USA
| | - K.S. Rao
- Centre for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
- Zhongke Jianlan Medical Institute, Hangzhou, Republic of China
| |
Collapse
|
85
|
Heese K. Gastrodia elata Blume (Tianma): Hope for Brain Aging and Dementia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8870148. [PMID: 33424999 PMCID: PMC7781687 DOI: 10.1155/2020/8870148] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Since aging-related diseases, including dementia, represent major public health threats to our society, physician-scientists must develop innovative, interdisciplinary strategies to open new avenues for development of alternative therapies. One such novel approach may lie in traditional Chinese medicine (TCM). Gastrodia elata Blume (G. elata, tianma) is a TCM frequently used for treatment of cerebrocardiovascular diseases (CCVDs). Recent studies of G. elata-based treatment modalities, which have investigated its pharmacologically relevant activity, potential efficacy, and safety, have employed G. elata in well-characterized, aging-related disease models, with a focus on models of aging-related dementia, such as Alzheimer's disease (AD). Here, I examine results from previous studies of G. elata, as well as related herbal preparations and pure natural products, as prophylaxis and remedies for aging-related CCVDs and dementia. Concluding, data suggest that tianma treatment may be used as a promising complementary therapy for AD.
Collapse
Affiliation(s)
- Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133791, Republic of Korea
| |
Collapse
|
86
|
Tryptophan Intake and Metabolism in Older Adults with Mood Disorders. Nutrients 2020; 12:nu12103183. [PMID: 33081001 PMCID: PMC7603218 DOI: 10.3390/nu12103183] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
The role of serotonin in the pathogenesis of depression is well-documented, while the involvement of other tryptophan (TRP) metabolites generated in the kynurenine pathway is less known. The aim of this study was to assess the intake and metabolism of TRP in elderly patients with mood disorders. Ninety subjects in three groups, 30 subjects each, were enrolled in this study: controls (healthy young adults, group I) and elderly individuals without (group II) or with (group III) symptoms of mild and moderate depression, as assessed by the Hamilton Depression Rating Scale (HAM-D) and further referred to as mood disorders. The average TRP intake was evaluated with the nutrition calculator. Urinary levels of TRP, 5-hydroxyindoleacetic acid (5-HIAA), L-kynurenine (KYN), kynurenic acid (KynA), xanthurenic acid (XA), and quinolinic acid (QA) were determined by liquid chromatography with tandem mass spectrometry and related to creatinine level. The average daily intake of TRP was significantly lower in group III than the remaining two groups, but group III was also characterized by higher urinary levels of KYN, KynA, XA, and QA as compared with younger adult individuals and elderly patients without mood disorders. Therefore, mild and moderate depression in the elderly may be associated with a lower intake of TRP and changes in its kynurenine metabolic pathway, which suggests a potential dietary TRP-based intervention in this group of patients.
Collapse
|
87
|
Ajibawo-Aganbi U, Saleem S, Khan SZA, Veliginti S, Perez Bastidas MV, Lungba RM, Cancarevic I. Can Nutritional Adequacy Help Evade Neurodegeneration in Older Age? A Review. Cureus 2020; 12:e10921. [PMID: 33062461 PMCID: PMC7556684 DOI: 10.7759/cureus.10921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
There is an increase in susceptibility to chronic and debilitating diseases with aging. The reason for the underlying neuronal degeneration and normal aging of the brain remains elusive. Different research studies have been conducted to discover how the brain degenerates and the importance of vitamins' role in the neurocognitive decline. Comprehensive literature research was conducted using all relevant data available from PubMed and Google scholar for this article. There has been evidence linking the consumption of essential nutrients to preventing the disease conditions that result in cognitive decline. This article provides the latest scientific advances specific to how dietary nutrients and non-nutrient may affect cognitive aging. An adequate supply of nutrients like vitamin B2 (riboflavin), vitamin B12, vitamin E, essential fatty acid (omega-3 fatty acid), and flavonoids play a vital role in ensuring healthy aging, enhancing memory, and strengthening neuroprotection. These nutrients help in neurodegenerative diseases like Alzheimer's disease and Parkinson's. We recommend more research studies to determine the underlying mechanism of how these essential nutrients work in the prevention of cognitive decline. These studies will help provide the evidence needed for new dietary recommendations for combating these diseases that often affect aging patients.
Collapse
Affiliation(s)
- Uvie Ajibawo-Aganbi
- Health Sciences, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sania Saleem
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Seyad Zulficar Ali Khan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.,Family Medicine, Ministry of Health Oman, Salalah, OMN
| | - Swathi Veliginti
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Maria V Perez Bastidas
- Pulmonary Research Department, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Rayan M Lungba
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ivan Cancarevic
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
88
|
Schechter G, Azad GK, Rao R, McKeany A, Matulaitis M, Kalos DM, Kennedy BK. A Comprehensive, Multi-Modal Strategy to Mitigate Alzheimer's Disease Risk Factors Improves Aspects of Metabolism and Offsets Cognitive Decline in Individuals with Cognitive Impairment. J Alzheimers Dis Rep 2020; 4:223-230. [PMID: 32715281 PMCID: PMC7369137 DOI: 10.3233/adr-200185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: Alzheimer’s disease (AD) is a chronic condition that progresses over time. While several therapeutic approaches have been developed, none have substantially altered disease progression. One explanation is that the disease is multi factorial. Objective: Using the Affirmativ Health Personal Therapeutic Program (PTPr), we sought to determine whether a comprehensive and personalized program could improve cognitive and metabolic function in individuals diagnosed with subjective cognitive impairment, mild cognitive impairment, and early stage AD. Methods: 35 individuals submitted blood samples and Montreal Cognitive Assessment (MoCA) scores, and answered intake questions. Individuals and caregivers participated in a four-day immersion program, which included Personal Therapeutic Plans (PTP), consultations with clinical practitioners, and explanations of the PTPr and PTP. Participants had follow-up by telemonitoring, with repeat blood sample analysis, updates regarding lifestyle choices, current medications and supplements, and MoCA testing at least once between 3 and 12 months after the PTPr. Results: By comparing baseline to follow-up testing, we determined several risk factor scores, including blood glucose and insulin levels, and levels of vitamins B12, D3, and E, improved either in the entire participant pool or specifically in individuals with measures outside the normal range for specific factors. MoCA scores were stabilized in the entire participant pool and significantly improved in individuals scoring 24 or less at baseline. Conclusion: Our findings provide evidence that a comprehensive and personalized approach designed to mitigate AD risk factors can improve risk factor scores and stabilize cognitive function, warranting more extensive and placebo-controlled clinical studies.
Collapse
Affiliation(s)
| | - Gajendra Kumar Azad
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Zoology, Patna University, Patna, Bihar, India
| | - Rammohan Rao
- Affirmativ Health, Sonoma, CA, USA.,Buck Institute for Research on Aging, Novato, CA, USA
| | | | | | | | - Brian K Kennedy
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Buck Institute for Research on Aging, Novato, CA, USA.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre for Healthy Longevity, National University Health System, Singapore.,Singapore Institute of Clinical Sciences, ASTAR, Singapore
| |
Collapse
|
89
|
History of Coffee Consumption and Risk of Alzheimer's Disease: a Meta-epidemiological Study of Population-based Cohort Studies. Dement Neurocogn Disord 2020; 19:108-113. [PMID: 32985150 PMCID: PMC7521955 DOI: 10.12779/dnd.2020.19.3.108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/29/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022] Open
Abstract
Background and Purpose Four published quantitative systematic reviews showed conflicting results involving coffee consumption and the risk of Alzheimer's disease (AD). The aim of this meta-epidemiological meta-analysis (MEMA) was to evaluate the factors underlying the conflicting results and estimate the effect size and direction of the AD risk associated with coffee consumption in population-based cohort studies. Methods The primary subjects of MEMA were derived from 3 cohort studies selected by the related systematic reviews. Additional studies involving the primary subjects were searched using citation discovery tools. Prospective cohort studies evaluating the association between coffee consumption and AD risk were selected. A fixed effects model was applied to estimate the summary relative risk (sRR) and its 95% confidence intervals (CIs). Subgroup analysis was conducted according to the level of coffee consumption. Egger's test was used to evaluate publication bias. Results Four cohort studies were finally selected. A total of 36,300 participants from Finland, Sweden, Germany, and the United States of America were selected. The sRR (and its 95% CI) (I-squared value) by highest-versus-lowest method was 0.98 (0.92–1.05) (0.0%). In addition, none of the results of subgroup analyses by the level of coffee consumption showed any statistical significance. Conclusions This MEMA found that there was no association between coffee consumption and AD risk. Based on recent evidence suggesting that gene-environment interactions contribute to AD pathogenesis, it is necessary to conduct population-based cohort studies involving non-Caucasians.
Collapse
|