51
|
Tillage RP, Foster SL, Lustberg D, Liles LC, McCann KE, Weinshenker D. Co-released norepinephrine and galanin act on different timescales to promote stress-induced anxiety-like behavior. Neuropsychopharmacology 2021; 46:1535-1543. [PMID: 33911187 PMCID: PMC8208976 DOI: 10.1038/s41386-021-01011-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/22/2021] [Accepted: 04/06/2021] [Indexed: 02/02/2023]
Abstract
Both the noradrenergic and galaninergic systems have been implicated in stress-related neuropsychiatric disorders, and these two neuromodulators are co-released from the stress-responsive locus coeruleus (LC); however, the individual contributions of LC-derived norepinephrine (NE) and galanin to behavioral stress responses are unclear. Here we aimed to disentangle the functional roles of co-released NE and galanin in stress-induced behavior. We used foot shock, optogenetics, and behavioral pharmacology in wild-type (WT) mice and mice lacking either NE (Dbh-/-) or galanin (GalcKO-Dbh) specifically in noradrenergic neurons to isolate the roles of these co-transmitters in regulating anxiety-like behavior in the elevated zero maze (EZM) either immediately or 24 h following stress. Foot shock and optogenetic LC stimulation produced immediate anxiety-like behavior in WT mice, and the effects of foot shock persisted for 24 h. NE-deficient mice were resistant to the anxiogenic effects of acute stress and optogenetic LC stimulation, while mice lacking noradrenergic-derived galanin displayed typical increases in anxiety-like behavior. However, when tested 24 h after foot shock, both Dbh-/- and GalcKO-Dbh mice lacked normal expression of anxiety-like behavior. Pharmacological rescue of NE, but not galanin, in knockout mice during EZM testing was anxiogenic. In contrast, restoring galanin, but not NE, signaling during foot shock normalized stress-induced anxiety-like behavior 24 h later. These results indicate that NE and noradrenergic-derived galanin play complementary, but distinguishable roles in behavioral responses to stress. NE is required for the expression of acute stress-induced anxiety, while noradrenergic-derived galanin mediates the development of more persistent responses following a stressor.
Collapse
Affiliation(s)
- Rachel P. Tillage
- grid.189967.80000 0001 0941 6502Department of Human Genetics, Emory University, Atlanta, GA USA
| | - Stephanie L. Foster
- grid.189967.80000 0001 0941 6502Department of Human Genetics, Emory University, Atlanta, GA USA
| | - Daniel Lustberg
- grid.189967.80000 0001 0941 6502Department of Human Genetics, Emory University, Atlanta, GA USA
| | - L. Cameron Liles
- grid.189967.80000 0001 0941 6502Department of Human Genetics, Emory University, Atlanta, GA USA
| | - Katharine E. McCann
- grid.189967.80000 0001 0941 6502Department of Human Genetics, Emory University, Atlanta, GA USA
| | | |
Collapse
|
52
|
Analgesic effect of central relaxin receptor activation on persistent inflammatory pain in mice: behavioral and neurochemical data. Pain Rep 2021; 6:e937. [PMID: 34159282 PMCID: PMC8213244 DOI: 10.1097/pr9.0000000000000937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/26/2021] [Accepted: 04/23/2021] [Indexed: 01/02/2023] Open
Abstract
Supplemental Digital Content is Available in the Text. Relaxin peptide analogues produce strong but transient analgesia in inflammatory pain in mouse. Relaxin and its RXFP1 receptor represent a new peptidergic system that modulates pain processing in the forebrain areas. Introduction: The relaxin peptide signaling system is involved in diverse physiological processes, but its possible roles in the brain, including nociception, are largely unexplored. Objective: In light of abundant expression of relaxin receptor (RXFP1) mRNA/protein in brain regions involved in pain processing, we investigated the effects of central RXFP1 activation on nociceptive behavior in a mouse model of inflammatory pain and examined the neurochemical phenotype and connectivity of relaxin and RXFP1 mRNA-positive neurons. Methods: Mice were injected with Complete Freund Adjuvant (CFA) into a hind paw. After 4 days, the RXFP1 agonist peptides, H2-relaxin or B7-33, ± the RXFP1 antagonist, B-R13/17K-H2, were injected into the lateral cerebral ventricle, and mechanical and thermal sensitivity were assessed at 30 to 120 minutes. Relaxin and RXFP1 mRNA in excitatory and inhibitory neurons were examined using multiplex, fluorescent in situ hybridization. Relaxin-containing neurons were detected using immunohistochemistry and their projections assessed using fluorogold retrograde tract-tracing. Results: Both H2-relaxin and B7-33 produced a strong, but transient, reduction in mechanical and thermal sensitivity of the CFA-injected hind paw alone, at 30 minutes postinjection. Notably, coinjection of B-R13/17K-H2 blocked mechanical, but not thermal, analgesia. In the claustrum, cingulate cortex, and subiculum, RXFP1 mRNA was expressed in excitatory neurons. Relaxin immunoreactivity was detected in neurons in forebrain and midbrain areas involved in pain processing and sending projections to the RXFP1-rich, claustrum and cingulate cortex. No changes were detected in CFA mice. Conclusion: Our study identified a previously unexplored peptidergic system that can control pain processing in the brain and produce analgesia.
Collapse
|
53
|
Involvement of Scratch2 in GalR1-mediated depression-like behaviors in the rat ventral periaqueductal gray. Proc Natl Acad Sci U S A 2021; 118:1922586118. [PMID: 34108238 DOI: 10.1073/pnas.1922586118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Galanin receptor1 (GalR1) transcript levels are elevated in the rat ventral periaqueductal gray (vPAG) after chronic mild stress (CMS) and are related to depression-like behavior. To explore the mechanisms underlying the elevated GalR1 expression, we carried out molecular biological experiments in vitro and in animal behavioral experiments in vivo. It was found that a restricted upstream region of the GalR1 gene, from -250 to -220, harbors an E-box and plays a negative role in the GalR1 promoter activity. The transcription factor Scratch2 bound to the E-box to down-regulate GalR1 promoter activity and lower expression levels of the GalR1 gene. The expression of Scratch2 was significantly decreased in the vPAG of CMS rats. Importantly, local knockdown of Scratch2 in the vPAG caused elevated expression of GalR1 in the same region, as well as depression-like behaviors. RNAscope analysis revealed that GalR1 mRNA is expressed together with Scratch2 in both GABA and glutamate neurons. Taking these data together, our study further supports the involvement of GalR1 in mood control and suggests a role for Scratch2 as a regulator of depression-like behavior by repressing the GalR1 gene in the vPAG.
Collapse
|
54
|
De-Miguel FF, Leon-Pinzon C, Torres-Platas SG, Del-Pozo V, Hernández-Mendoza GA, Aguirre-Olivas D, Méndez B, Moore S, Sánchez-Sugía C, García-Aguilera MA, Martínez-Valencia A, Ramírez-Santiago G, Rubí JM. Extrasynaptic Communication. Front Mol Neurosci 2021; 14:638858. [PMID: 33994942 PMCID: PMC8119753 DOI: 10.3389/fnmol.2021.638858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/01/2021] [Indexed: 12/18/2022] Open
Abstract
Streams of action potentials or long depolarizations evoke a massive exocytosis of transmitters and peptides from the surface of dendrites, axons and cell bodies of different neuron types. Such mode of exocytosis is known as extrasynaptic for occurring without utilization of synaptic structures. Most transmitters and all peptides can be released extrasynaptically. Neurons may discharge their contents with relative independence from the axon, soma and dendrites. Extrasynaptic exocytosis takes fractions of a second in varicosities or minutes in the soma or dendrites, but its effects last from seconds to hours. Unlike synaptic exocytosis, which is well localized, extrasynaptic exocytosis is diffuse and affects neuronal circuits, glia and blood vessels. Molecules that are liberated may reach extrasynaptic receptors microns away. The coupling between excitation and exocytosis follows a multistep mechanism, different from that at synapses, but similar to that for the release of hormones. The steps from excitation to exocytosis have been studied step by step for the vital transmitter serotonin in leech Retzius neurons. The events leading to serotonin exocytosis occur similarly for the release of other transmitters and peptides in central and peripheral neurons. Extrasynaptic exocytosis occurs commonly onto glial cells, which react by releasing the same or other transmitters. In the last section, we discuss how illumination of the retina evokes extrasynaptic release of dopamine and ATP. Dopamine contributes to light-adaptation; ATP activates glia, which mediates an increase in blood flow and oxygenation. A proper understanding of the workings of the nervous system requires the understanding of extrasynaptic communication.
Collapse
Affiliation(s)
- Francisco F De-Miguel
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, México City, Mexico
| | - Carolina Leon-Pinzon
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México City, Mexico
| | - Susana G Torres-Platas
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México City, Mexico
| | - Vanessa Del-Pozo
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México City, Mexico
| | | | - Dilia Aguirre-Olivas
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México City, Mexico
| | - Bruno Méndez
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México City, Mexico
| | - Sharlen Moore
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México City, Mexico
| | - Celeste Sánchez-Sugía
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México City, Mexico
| | | | | | | | - J Miguel Rubí
- Facultat de Fisica, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
55
|
Patthy Á, Murai J, Hanics J, Pintér A, Zahola P, Hökfelt TGM, Harkany T, Alpár A. Neuropathology of the Brainstem to Mechanistically Understand and to Treat Alzheimer's Disease. J Clin Med 2021; 10:jcm10081555. [PMID: 33917176 PMCID: PMC8067882 DOI: 10.3390/jcm10081555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disorder as yet without effective therapy. Symptoms of this disorder typically reflect cortical malfunction with local neurohistopathology, which biased investigators to search for focal triggers and molecular mechanisms. Cortex, however, receives massive afferents from caudal brain structures, which do not only convey specific information but powerfully tune ensemble activity. Moreover, there is evidence that the start of AD is subcortical. The brainstem harbors monoamine systems, which establish a dense innervation in both allo- and neocortex. Monoaminergic synapses can co-release neuropeptides either by precisely terminating on cortical neurons or, when being “en passant”, can instigate local volume transmission. Especially due to its early damage, malfunction of the ascending monoaminergic system emerges as an early sign and possible trigger of AD. This review summarizes the involvement and cascaded impairment of brainstem monoaminergic neurons in AD and discusses cellular mechanisms that lead to their dysfunction. We highlight the significance and therapeutic challenges of transmitter co-release in ascending activating system, describe the role and changes of local connections and distant afferents of brainstem nuclei in AD, and summon the rapidly increasing diagnostic window during the last few years.
Collapse
Affiliation(s)
- Ágoston Patthy
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
| | - János Murai
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
| | - János Hanics
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Hungarian Academy of Sciences, H-1094 Budapest, Hungary
| | - Anna Pintér
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
| | - Péter Zahola
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
| | - Tomas G. M. Hökfelt
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, 17165 Stockholm, Sweden; (T.G.M.H.); (T.H.)
| | - Tibor Harkany
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, 17165 Stockholm, Sweden; (T.G.M.H.); (T.H.)
- Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, 1090 Vienna, Austria
| | - Alán Alpár
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Hungarian Academy of Sciences, H-1094 Budapest, Hungary
- Correspondence:
| |
Collapse
|
56
|
Gupta PR, Prabhavalkar K. Combination therapy with neuropeptides for the treatment of anxiety disorder. Neuropeptides 2021; 86:102127. [PMID: 33607407 DOI: 10.1016/j.npep.2021.102127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/29/2020] [Accepted: 01/26/2021] [Indexed: 11/29/2022]
Abstract
Anxiety is a neurological disorder that is characterized by excessive, persistent, and unreasonable worry about everyday things like family, work, money, and relationships. The current therapy used for the treatment has many disadvantages like higher cost, severe adverse reactions, and has suboptimal efficiency. There is a need to look for more innovative approaches for the treatment of anxiety disorder which overcomes the disadvantages of conventional treatment. Recent findings suggest a strong correlation of glutamate with anxiety. Some promising drugs which have a novel mechanism for anxiolytic action are currently under clinical development for generalized anxiety disorder, social anxiety disorder, panic disorder, obsessive-compulsive disorder, or post-traumatic stress disorder. Similarly, an interrelation of oxytocin with neuropeptide S or glutamate or vasopressin can also be considered for further evaluation for the development of new drugs for anxiety treatment. Anxiolytic drug development is a multi-target approach, with the idea of more efficiently equilibrating perturbed circuits. This review focuses on targeting unconventional targets like the glutamate system, voltage-gated ion channels, and neuropeptides system either alone or in combination for the treatment of anxiety disorder.
Collapse
Affiliation(s)
- Priti Ramakant Gupta
- Department of Pharmacology, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India
| | - Kedar Prabhavalkar
- Department of Pharmacology, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India.
| |
Collapse
|
57
|
Rajkumar RP. Harnessing the Neurobiology of Resilience to Protect the Mental Well-Being of Healthcare Workers During the COVID-19 Pandemic. Front Psychol 2021; 12:621853. [PMID: 33815205 PMCID: PMC8012770 DOI: 10.3389/fpsyg.2021.621853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/22/2021] [Indexed: 01/26/2023] Open
Abstract
Healthcare workers are at a high risk of psychological morbidity in the face of the COVID-19 pandemic. However, there is significant variability in the impact of this crisis on individual healthcare workers, which can be best explained through an appreciation of the construct of resilience. Broadly speaking, resilience refers to the ability to successfully adapt to stressful or traumatic events, and thus plays a key role in determining mental health outcomes following exposure to such events. A proper understanding of resilience is vital in enabling a shift from a reactive to a proactive approach for protecting and promoting the mental well-being of healthcare workers. Research in the past decade has identified six areas that provide promising leads in understanding the biological basis of individual variations in resilience. These are: (1) the key role played by the monoamines noradrenaline and serotonin, (2) the centrality of the hypothalamic-pituitary-adrenal axis in influencing stress vulnerability and resilience, (3) the intimate links between the immune system and stress sensitivity, (4) the role of epigenetic modulation of gene expression in influencing the stress response, (5) the role played by certain neuropeptides as a natural “brake” mechanism in the face of stress, and (6) the neurobiological mechanisms by which environmental factors, such as exercise, diet, and social support, influence resilience to subsequent life events. Though much of this research is still in its early stages, it has already provided valuable information on which strategies – including dietary changes, lifestyle modification, environmental modification, psychosocial interventions, and even pharmacological treatments – may prove to be useful in fostering resilience in individuals and groups. This paper examines the above evidence more closely, with a specific focus on the challenges faced by healthcare workers during the COVID-19 pandemic, and provides suggestions regarding how it may be translated into real-world interventions, as well as how the more tentative hypotheses advanced in this field may be tested during this critical period.
Collapse
Affiliation(s)
- Ravi Philip Rajkumar
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| |
Collapse
|
58
|
Curtis GR, Oakes K, Barson JR. Expression and Distribution of Neuropeptide-Expressing Cells Throughout the Rodent Paraventricular Nucleus of the Thalamus. Front Behav Neurosci 2021; 14:634163. [PMID: 33584216 PMCID: PMC7873951 DOI: 10.3389/fnbeh.2020.634163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) has been shown to make significant contributions to affective and motivated behavior, but a comprehensive description of the neurochemicals expressed in the cells of this brain region has never been presented. While the PVT is believed to be composed of projection neurons that primarily use as their neurotransmitter the excitatory amino acid, glutamate, several neuropeptides have also been described in this brain region. In this review article, we combine published literature with our observations from the Allen Brain Atlas to describe in detail the expression and distribution of neuropeptides in cells throughout the mouse and rat PVT, with a special focus on neuropeptides known to be involved in behavior. Several themes emerge from this investigation. First, while the majority of neuropeptides are expressed across the antero-posterior axis of the PVT, they generally exist in a gradient, in which expression is most dense but not exclusive in either the anterior or posterior PVT, although other neuropeptides display somewhat more equal expression in the anterior and posterior PVT but have reduced expression in the middle PVT. Second, we find overall that neuropeptides involved in arousal are more highly expressed in the anterior PVT, those involved in depression-like behavior are more highly expressed in the posterior PVT, and those involved in reward are more highly expressed in the medial PVT, while those involved in the intake of food and drugs of abuse are distributed throughout the PVT. Third, the pattern and content of neuropeptide expression in mice and rats appear not to be identical, and many neuropeptides found in the mouse PVT have not yet been demonstrated in the rat. Thus, while significantly more work is required to uncover the expression patterns and specific roles of individual neuropeptides in the PVT, the evidence thus far supports the existence of a diverse yet highly organized system of neuropeptides in this nucleus. Determined in part by their location within the PVT and their network of projections, the function of the neuropeptides in this system likely involves intricate coordination to influence both affective and motivated behavior.
Collapse
Affiliation(s)
- Genevieve R Curtis
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Kathleen Oakes
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jessica R Barson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
59
|
McEwan A, Erickson JC, Davidson C, Heijkoop J, Turnbull Y, Delibegovic M, Murgatroyd C, MacKenzie A. The anxiety and ethanol intake controlling GAL5.1 enhancer is epigenetically modulated by, and controls preference for, high-fat diet. Cell Mol Life Sci 2020; 78:3045-3055. [PMID: 33313982 PMCID: PMC8004485 DOI: 10.1007/s00018-020-03705-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/28/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022]
Abstract
Excess maternal fat intake and obesity increase offspring susceptibility to conditions such as chronic anxiety and substance abuse. We hypothesised that environmentally modulated DNA methylation changes (5mC/5hmC) in regulatory regions of the genome that modulate mood and consumptive behaviours could contribute to susceptibility to these conditions. We explored the effects of environmental factors on 5mC/5hmC levels within the GAL5.1 enhancer that controls anxiety-related behaviours and alcohol intake. We first observed that 5mC/5hmC levels within the GAL5.1 enhancer differed significantly in different parts of the brain. Moreover, we noted that early life stress had no significant effect of 5mC/5hmC levels within GAL5.1. In contrast, we identified that allowing access of pregnant mothers to high-fat diet (> 60% calories from fat) had a significant effect on 5mC/5hmC levels within GAL5.1 in hypothalamus and amygdala of resulting male offspring. Cell transfection-based studies using GAL5.1 reporter plasmids showed that 5mC has a significant repressive effect on GAL5.1 activity and its response to known stimuli, such as EGR1 transcription factor expression and PKC agonism. Intriguingly, CRISPR-driven disruption of GAL5.1 from the mouse genome, although having negligible effects on metabolism or general appetite, significantly decreased intake of high-fat diet suggesting that GAL5.1, in addition to being epigenetically modulated by high-fat diet, also actively contributes to the consumption of high-fat diet suggesting its involvement in an environmentally influenced regulatory loop. Furthermore, considering that GAL5.1 also controls alcohol preference and anxiety these studies may provide a first glimpse into an epigenetically controlled mechanism that links maternal high-fat diet with transgenerational susceptibility to alcohol abuse and anxiety.
Collapse
Affiliation(s)
- Andrew McEwan
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Johanna Celene Erickson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Connor Davidson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Jenny Heijkoop
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Yvonne Turnbull
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Mirela Delibegovic
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | | | - Alasdair MacKenzie
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK.
| |
Collapse
|
60
|
Borodovitsyna O, Duffy BC, Pickering AE, Chandler DJ. Anatomically and functionally distinct locus coeruleus efferents mediate opposing effects on anxiety-like behavior. Neurobiol Stress 2020; 13:100284. [PMID: 33344735 PMCID: PMC7739179 DOI: 10.1016/j.ynstr.2020.100284] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 01/08/2023] Open
Abstract
The locus coeruleus (LC) is a critical node in the stress response, and its activation has been shown to promote hypervigilance and anxiety-like behavior. This noradrenergic nucleus has historically been considered homogeneous with highly divergent neurons that operate en masse to collectively affect central nervous system function and behavioral state. However, in recent years, LC has been identified as a heterogeneous structure whose neurons innervate discrete terminal fields and contribute to distinct aspects of behavior. We have previously shown that in late adolescent male rats, an acute traumatic stressor, simultaneous physical restraint and exposure to predator odor, preferentially induces c-Fos expression in a subset of dorsal LC neurons and persistently increases anxiety-like behavior. To investigate how these neurons respond to and contribute to the behavioral response to stress, we used a combination of retrograde tracing, whole-cell patch clamp electrophysiology, and chemogenetics. Here we show that LC neurons innervating the central nucleus of the amygdala (CeA) and medial prefrontal cortex (mPFC) undergo distinct electrophysiological changes in response to stressor exposure and have opposing roles in mediating anxiety-like behavior. While neurons innervating CeA become more excitable in response to stress and promote anxiety-like behavior, those innervating mPFC become less excitable and appear to promote exploration. These findings show that LC neurons innervating distinct terminal fields have unique physiological responses to particular stimuli. Furthermore, these observations advance the understanding of the LC as a complex and heterogeneous structure whose neurons maintain unique roles in various forms of behavior. Locus coeruleus-central amygdala projections are hyperactive one week after stress. Locus coeruleus-prefrontal cortex projections are hypoactive one week after stress. Chemogenetic manipulation of each pathway distinctly affects anxiety-like behavior.
Collapse
Key Words
- AHP, afterhyperpolarization
- Anxiety-like behavior
- CRF, corticotropin releasing factor
- CeA, central nucleus of the amygdala
- Central nucleus of amygdala
- EPM, elevated plus maze
- LC, locus coeruleus
- Locus coeruleus
- Medial prefrontal cortex
- NE, norepinephrine
- OFT, open field test
- PBS, phosphate buffered saline
- Stress
- TMT, 2,4,5-trimethylthiazole
- aCSF, artificial cerebrospinal fluid
- mPFC, medial prefrontal cortex
Collapse
Affiliation(s)
- Olga Borodovitsyna
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 42 E. Laurel Road, Stratford, NJ, 08084, USA
| | - Brenna C Duffy
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 42 E. Laurel Road, Stratford, NJ, 08084, USA
| | - Anthony E Pickering
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS81TD, UK
| | - Daniel J Chandler
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 42 E. Laurel Road, Stratford, NJ, 08084, USA
| |
Collapse
|
61
|
Yu M, Fang P, Wang H, Shen G, Zhang Z, Tang Z. Beneficial effects of galanin system on diabetic peripheral neuropathic pain and its complications. Peptides 2020; 134:170404. [PMID: 32898581 DOI: 10.1016/j.peptides.2020.170404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022]
Abstract
Diabetic peripheral neuropathic pain (DPNP) is a distal spontaneous pain, caused by lesion of sensory neurons and accompanied by depression and anxiety frequently, which reduce life quality of patients and increase society expenditure. To date, antidepressants, serotonin-noradrenaline reuptake inhibitors and anticonvulsants are addressed as first-line therapy to DPNP, alone or jointly. It is urgently necessary to develop novel agents to treat DPNP and its complications. Evidences indicate that neuropeptide galanin can regulate multiple physiologic and pathophysiological processes. Pain, depression and anxiety may upregulate galanin expression. In return, galanin can modulate depression, anxiety, pain threshold and pain behaviors. This article provides a new insight into regulative effects of galanin and its subtype receptors on antidepressant, antianxiety and against DPNP. Through activating GALR1, galanin reinforces depression-like and anxiogenic-like behaviors, but exerts antinociceptive roles. While via activating GALR2, galanin is referred to as anti-depressive and anti-anxiotropic compounds, and at low and high concentration facilitates and inhibits nociceptor activity, respectively. The mechanism of the galanin roles is relative to increase in K+ currents and decrease in Ca2+ currents, as well as neurotrophic and neuroprotective roles. These data are helpful to develop novel drugs to treat DPNP and its complications.
Collapse
Affiliation(s)
- Mei Yu
- Department of Physiology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; Department of Pharmacy, Taizhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Taizhou, Jiangsu, 225300, China
| | - Penghua Fang
- Department of Physiology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Hua Wang
- Department of Pharmacy, Taizhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Taizhou, Jiangsu, 225300, China
| | - Guiqin Shen
- Department of Pharmacy, Taizhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Taizhou, Jiangsu, 225300, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China.
| | - Zongxiang Tang
- Department of Physiology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
62
|
Kawa L, Arborelius UP, Hökfelt T, Risling M. Sex-Specific Differences in Rodents Following a Single Primary Blast Exposure: Focus on the Monoamine and Galanin Systems. Front Neurol 2020; 11:540144. [PMID: 33178100 PMCID: PMC7593658 DOI: 10.3389/fneur.2020.540144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/25/2020] [Indexed: 01/16/2023] Open
Abstract
Most blast-induced traumatic brain injuries (bTBI) are mild in severity and culpable for the lingering and persistent neuropsychological complaints in affected individuals. There is evidence that the prevalence of symptoms post-exposure may be sex-specific. Our laboratory has focused on changes in the monoamine and the neuropeptide, galanin, systems in male rodents following primary bTBI. In this study, we aimed to replicate these findings in female rodents. Brainstem sections from the locus coeruleus (LC) and dorsal raphe nuclei (DRN) were processed for in situ hybridisation at 1 and 7 days post-bTBI. We investigated changes in the transcripts for tyrosine hydroxylase (TH), tryptophan hydroxylase two (TPH2) and galanin. Like in males, we found a transient increase in TH transcript levels bilaterally in the female LC. Changes in TPH2 mRNA were more pronounced and extensive in the DRN of females compared to males. Galanin mRNA was increased bilaterally in the LC and DRN, although this increase was not apparent until day 7 in the LC. Serum analysis revealed an increase in corticosterone, but only in exposed females. These changes occurred without any visible signs of white matter injury, cell death, or blood–brain barrier breakdown. Taken together, in the apparent absence of visible structural damage to the brain, the monoamine and galanin systems, two key players in emotional regulation, are activated deferentially in males and females following primary blast exposure. These similarities and differences should be considered when developing and evaluating diagnostic and therapeutic interventions for bTBI.
Collapse
Affiliation(s)
- Lizan Kawa
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Ulf P Arborelius
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
63
|
Nässel DR, Zandawala M. Hormonal axes in Drosophila: regulation of hormone release and multiplicity of actions. Cell Tissue Res 2020; 382:233-266. [PMID: 32827072 PMCID: PMC7584566 DOI: 10.1007/s00441-020-03264-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022]
Abstract
Hormones regulate development, as well as many vital processes in the daily life of an animal. Many of these hormones are peptides that act at a higher hierarchical level in the animal with roles as organizers that globally orchestrate metabolism, physiology and behavior. Peptide hormones can act on multiple peripheral targets and simultaneously convey basal states, such as metabolic status and sleep-awake or arousal across many central neuronal circuits. Thereby, they coordinate responses to changing internal and external environments. The activity of neurosecretory cells is controlled either by (1) cell autonomous sensors, or (2) by other neurons that relay signals from sensors in peripheral tissues and (3) by feedback from target cells. Thus, a hormonal signaling axis commonly comprises several components. In mammals and other vertebrates, several hormonal axes are known, such as the hypothalamic-pituitary-gonad axis or the hypothalamic-pituitary-thyroid axis that regulate reproduction and metabolism, respectively. It has been proposed that the basic organization of such hormonal axes is evolutionarily old and that cellular homologs of the hypothalamic-pituitary system can be found for instance in insects. To obtain an appreciation of the similarities between insect and vertebrate neurosecretory axes, we review the organization of neurosecretory cell systems in Drosophila. Our review outlines the major peptidergic hormonal pathways known in Drosophila and presents a set of schemes of hormonal axes and orchestrating peptidergic systems. The detailed organization of the larval and adult Drosophila neurosecretory systems displays only very basic similarities to those in other arthropods and vertebrates.
Collapse
Affiliation(s)
- Dick R. Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Meet Zandawala
- Department of Neuroscience, Brown University, Providence, RI USA
| |
Collapse
|
64
|
McEwan AR, MacKenzie A. Perspective: Quality Versus Quantity; Is It Important to Assess the Role of Enhancers in Complex Disease from an In Vivo Perspective? Int J Mol Sci 2020; 21:E7856. [PMID: 33113946 PMCID: PMC7660172 DOI: 10.3390/ijms21217856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
Sequencing of the human genome has permitted the development of genome-wide association studies (GWAS) to analyze the genetics of a number of complex disorders such as depression, anxiety and substance abuse. Thanks to their ability to analyze huge cohort sizes, these studies have successfully identified thousands of loci associated with a broad spectrum of complex diseases. Disconcertingly, the majority of these GWAS hits occur in non-coding regions of the genome, much of which controls the cell-type-specific expression of genes essential to health. In contrast to gene coding sequences, it is a challenge to understand the function of this non-coding regulatory genome using conventional biochemical techniques in cell lines. The current commentary scrutinizes the field of complex genetics from the standpoint of the large-scale whole-genome functional analysis of the promoters and cis-regulatory elements using chromatin markers. We contrast these large scale quantitative techniques against comparative genomics and in vivo analyses including CRISPR/CAS9 genome editing to determine the functional characteristics of these elements and to understand how polymorphic variation and epigenetic changes within these elements might contribute to complex disease and drug response. Most importantly, we suggest that, although the role of chromatin markers will continue to be important in identifying and characterizing enhancers, more emphasis must be placed on their analysis in relevant in-vivo models that take account of the appropriate cell-type-specific roles of these elements. It is hoped that offering these insights might refocus progress in analyzing the data tsunami of non-coding GWAS and whole-genome sequencing "hits" that threatens to overwhelm progress in the field.
Collapse
Affiliation(s)
| | - Alasdair MacKenzie
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK;
| |
Collapse
|
65
|
Chen WC, Liu YB, Liu WF, Zhou YY, He HF, Lin S. Neuropeptide Y Is an Immunomodulatory Factor: Direct and Indirect. Front Immunol 2020; 11:580378. [PMID: 33123166 PMCID: PMC7573154 DOI: 10.3389/fimmu.2020.580378] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Neuropeptide Y (NPY), which is widely distributed in the nervous system, is involved in regulating a variety of biological processes, including food intake, energy metabolism, and emotional expression. However, emerging evidence points to NPY also as a critical transmitter between the nervous system and immune system, as well as a mediator produced and released by immune cells. In vivo and in vitro studies based on gene-editing techniques and specific NPY receptor agonists and antagonists have demonstrated that NPY is responsible for multifarious direct modulations on immune cells by acting on NPY receptors. Moreover, via the central or peripheral nervous system, NPY is closely connected to body temperature regulation, obesity development, glucose metabolism, and emotional expression, which are all immunomodulatory factors for the immune system. In this review, we focus on the direct role of NPY in immune cells and particularly discuss its indirect impact on the immune response.
Collapse
Affiliation(s)
- Wei-Can Chen
- Department of Anesthesiology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Yi-Bin Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Wei-Feng Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Ying-Ying Zhou
- Department of Anesthesiology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - He-Fan He
- Department of Anesthesiology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Department of Anesthesiology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China.,Centre of Neurological and Metabolic Research, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| |
Collapse
|
66
|
Autio J, Stenbäck V, Gagnon DD, Leppäluoto J, Herzig KH. (Neuro) Peptides, Physical Activity, and Cognition. J Clin Med 2020; 9:jcm9082592. [PMID: 32785144 PMCID: PMC7464334 DOI: 10.3390/jcm9082592] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Regular physical activity (PA) improves cognitive functions, prevents brain atrophy, and delays the onset of cognitive decline, dementia, and Alzheimer’s disease. Presently, there are no specific recommendations for PA producing positive effects on brain health and little is known on its mediators. PA affects production and release of several peptides secreted from peripheral and central tissues, targeting receptors located in the central nervous system (CNS). This review will provide a summary of the current knowledge on the association between PA and cognition with a focus on the role of (neuro)peptides. For the review we define peptides as molecules with less than 100 amino acids and exclude myokines. Tachykinins, somatostatin, and opioid peptides were excluded from this review since they were not affected by PA. There is evidence suggesting that PA increases peripheral insulin growth factor 1 (IGF-1) levels and elevated serum IGF-1 levels are associated with improved cognitive performance. It is therefore likely that IGF-1 plays a role in PA induced improvement of cognition. Other neuropeptides such as neuropeptide Y (NPY), ghrelin, galanin, and vasoactive intestinal peptide (VIP) could mediate the beneficial effects of PA on cognition, but the current literature regarding these (neuro)peptides is limited.
Collapse
Affiliation(s)
- Juho Autio
- Institute of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, Oulu University Hospital, 90220 Oulu, Finland; (J.A.); (V.S.); (D.D.G.); (J.L.)
| | - Ville Stenbäck
- Institute of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, Oulu University Hospital, 90220 Oulu, Finland; (J.A.); (V.S.); (D.D.G.); (J.L.)
- Biocenter Oulu, 90220 Oulu, Finland
| | - Dominique D. Gagnon
- Institute of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, Oulu University Hospital, 90220 Oulu, Finland; (J.A.); (V.S.); (D.D.G.); (J.L.)
- Laboratory of Environmental Exercise Physiology, School of Human Kinetics, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Center of Research in Occupational Safety and Health, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - Juhani Leppäluoto
- Institute of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, Oulu University Hospital, 90220 Oulu, Finland; (J.A.); (V.S.); (D.D.G.); (J.L.)
| | - Karl-Heinz Herzig
- Institute of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, Oulu University Hospital, 90220 Oulu, Finland; (J.A.); (V.S.); (D.D.G.); (J.L.)
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, 60-572 Poznan, Poland
- Correspondence:
| |
Collapse
|
67
|
Bin Y, Zhang W, Tang W, Dai R, Li M, Zhu Q, Xia J. Prediction of Neuropeptides from Sequence Information Using Ensemble Classifier and Hybrid Features. J Proteome Res 2020; 19:3732-3740. [DOI: 10.1021/acs.jproteome.0c00276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yannan Bin
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
- School of Computer Science and Technology, Anhui University, Hefei, Anhui 230601, China
| | - Wei Zhang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Wending Tang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Ruyu Dai
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Menglu Li
- School of Computer Science and Technology, Anhui University, Hefei, Anhui 230601, China
| | - Qizhi Zhu
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Junfeng Xia
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
- School of Computer Science and Technology, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
68
|
Pulver A, Kiive E, Kanarik M, Harro J. Association of orexin/hypocretin receptor gene (HCRTR1) with reward sensitivity, and interaction with gender. Brain Res 2020; 1746:147013. [PMID: 32652147 DOI: 10.1016/j.brainres.2020.147013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
Orexins/hypocretins maintain wakefulness, increase appetite and participate in the coordination of stress response. We have recently provided evidence on the role of orexins in aggression, showing the association of the HCRTR1 genotype. (rs2271933 G > A; leading to amino acid substitution Ile408Val) with aggressiveness or breach of law in four independent cohorts. Aggressive behaviour can be reward driven and hence we have examined the association of HCRTR1 rs2271933 genotype with different aspects of reward sensitivity in the birth cohort representative Estonian Children Personality Behaviour and Health Study. HCRTR1 genotype was associated with reward sensitivity in a gender dependent manner. Male HCRTR1 A/A homozygotes had higher Openness to Rewards and the overall reward sensitivity score while, in contrast, female A/A homozygotes scored lower than G-allele carriers in Openness to Rewards. In the total sample, aggressiveness correlated positively with reward sensitivity, but this was on account of Insatiability by Reward. In contrast, the HCRTR1 A/A homozygotes had a positive association of aggressiveness and Openness to Rewards. Experience of stressful life events had a small but significant increasing effect on both aspects of reward sensitivity, and correlated in an anomalous way with reward sensitivity in the HCRTR1 A/A homozygotes. Conclusively, the higher aggressiveness of HCRTR1 A/A homozygotes appears based on a qualitative difference in sensitivity to rewards, in the form that suggests their lower ability to prevent responses to challenges being converted into overt aggression.
Collapse
Affiliation(s)
- Aleksander Pulver
- School of Natural Sciences and Health, Tallinn University, Narva Road 29, Astra Building, 10120 Tallinn, Estonia
| | - Evelyn Kiive
- Division of Special Education, Department of Education, University of Tartu, Näituse 2, 50409 Tartu, Estonia
| | - Margus Kanarik
- Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Ravila 14A Chemicum, 50411 Tartu, Estonia
| | - Jaanus Harro
- School of Natural Sciences and Health, Tallinn University, Narva Road 29, Astra Building, 10120 Tallinn, Estonia; Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Ravila 14A Chemicum, 50411 Tartu, Estonia.
| |
Collapse
|
69
|
Verkhratsky A, Zimmermann H, Abbracchio MP, Illes P, DiVirgilio F. In Memoriam Geoffrey Burnstock: Creator of Purinergic Signaling. FUNCTION 2020. [PMCID: PMC8788863 DOI: 10.1093/function/zqaa006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Geoff Burnstock (1929–2020) discovered purinergic signaling in a fastidious research that started in early 1960 and culminated in a concept of purinergic nerves in 1972. Subsequently, Geoff developed the concept of purinergic transmission and demonstrated ATP storage, release, and degradation in the context of cotransmission, which was another fundamental concept developed by him. Purinergic transmission contributes to the most fundamental physiological functions such as sensory transduction, regulation of heart rate, smooth muscle contraction, bile secretion, endocrine regulation, immune responses, as well as to various pathophysiological conditions, including inflammation, cancer, neuropathic pain, diabetes, and kidney failure.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Achucarro Centre for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain
| | - Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Molecular and Cellular Neurobiology, Goethe-University, Frankfurt am Main, Germany
| | - Maria P Abbracchio
- Department of Pharmacological Sciences, Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, University of Milan, Milan, Italy
| | - Peter Illes
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Germany
| | | |
Collapse
|
70
|
D-Serine, the Shape-Shifting NMDA Receptor Co-agonist. Neurochem Res 2020; 45:1344-1353. [PMID: 32189130 DOI: 10.1007/s11064-020-03014-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/17/2022]
Abstract
Shape-shifting, a phenomenon wide-spread in folklore, refers to the ability to physically change from one identity to another, typically from an innocuous entity to a destructive one. The amino acid D-serine over the last 25 years has "shape-shifted" into several identities: a purported glial transmitter activating N-methyl-D-aspartate receptors (NMDARs), a co-transmitter concentrated in excitatory glutamatergic neurons, an autocrine that is released at dendritic spines to prime their post-synaptic NMDARs for an instantaneous response to glutamate and an excitotoxic moiety released from inflammatory (A1) astrocytes. This article will review evidence in support of these scenarios and the artifacts that misled investigators of the true identity of D-serine.
Collapse
|
71
|
Tillage RP, Sciolino NR, Plummer NW, Lustberg D, Liles LC, Hsiang M, Powell JM, Smith KG, Jensen P, Weinshenker D. Elimination of galanin synthesis in noradrenergic neurons reduces galanin in select brain areas and promotes active coping behaviors. Brain Struct Funct 2020; 225:785-803. [PMID: 32065256 DOI: 10.1007/s00429-020-02035-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/27/2020] [Indexed: 01/08/2023]
Abstract
Accumulating evidence indicates that disruption of galanin signaling is associated with neuropsychiatric disease, but the precise functions of this neuropeptide remain largely unresolved due to lack of tools for experimentally disrupting its transmission in a cell type-specific manner. To examine the function of galanin in the noradrenergic system, we generated and crossed two novel knock-in mouse lines to create animals lacking galanin specifically in noradrenergic neurons (GalcKO-Dbh). We observed reduced levels of galanin peptide in pons, hippocampus, and prefrontal cortex of GalcKO-Dbh mice, indicating that noradrenergic neurons are a significant source of galanin to those brain regions, while midbrain and hypothalamic galanin levels were comparable to littermate controls. In these same brain regions, we observed no change in levels of norepinephrine or its major metabolite at baseline or after an acute stressor, suggesting that loss of galanin does not affect noradrenergic synthesis or turnover. GalcKO-Dbh mice had normal performance in tests of depression, learning, and motor-related behavior, but had an altered response in some anxiety-related tasks. Specifically, GalcKO-Dbh mice showed increased marble and shock probe burying and had a reduced latency to eat in a novel environment, indicative of a more proactive coping strategy. Together, these findings indicate that noradrenergic neurons provide a significant source of galanin to discrete brain areas, and noradrenergic-specific galanin opposes adaptive coping responses.
Collapse
Affiliation(s)
- Rachel P Tillage
- Department of Human Genetics, Emory University School of Medicine, Whitehead 301, 615 Michael St., Atlanta, GA, 30322, USA
| | - Natale R Sciolino
- Neurobiology Laboratory, Developmental Neurobiology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Nicholas W Plummer
- Neurobiology Laboratory, Developmental Neurobiology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Daniel Lustberg
- Department of Human Genetics, Emory University School of Medicine, Whitehead 301, 615 Michael St., Atlanta, GA, 30322, USA
| | - L Cameron Liles
- Department of Human Genetics, Emory University School of Medicine, Whitehead 301, 615 Michael St., Atlanta, GA, 30322, USA
| | - Madeline Hsiang
- Neurobiology Laboratory, Developmental Neurobiology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Jeanne M Powell
- Neurobiology Laboratory, Developmental Neurobiology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Kathleen G Smith
- Neurobiology Laboratory, Developmental Neurobiology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Patricia Jensen
- Neurobiology Laboratory, Developmental Neurobiology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA.
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Whitehead 301, 615 Michael St., Atlanta, GA, 30322, USA.
| |
Collapse
|
72
|
Messanvi F, Perkins A, du Hoffmann J, Chudasama Y. Fronto-temporal galanin modulates impulse control. Psychopharmacology (Berl) 2020; 237:291-303. [PMID: 31705163 PMCID: PMC7024046 DOI: 10.1007/s00213-019-05365-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022]
Abstract
RATIONALE The neuropeptide galanin has been implicated in a wide range of pathological conditions in which frontal and temporal structures are compromised. It works through three subtypes of G-protein-coupled receptors. One of these, the galanin receptor 1 (Gal-R1) subtype, is densely expressed in the ventral hippocampus (vHC) and ventral prefrontal cortex (vPFC); two brain structures that have similar actions on behavioral control. We hypothesize that Gal-R1 contributes to cognitive-control mechanisms that require hippocampal-prefrontal cortical circuitry. OBJECTIVE To examine the effect of local vHC and vPFC infusions of M617, a Gal-R1 agonist, on inhibitory mechanisms of response control. METHODS Different cohorts of rats were implanted with bilateral guide cannulae targeting the vPFC or the vHC. Following infusion of the Gal-R1 agonist, we examined the animals' behavior using a touchscreen version of the 5-choice reaction time task (5-choice task). RESULTS The Gal-R1 agonist produced opposing behaviors in the vPFC and vHC, leading to disruption of impulse control when infused in the vPFC but high impulse control when infused into the vHC. This contrast between areas was accentuated when we added variability to the timing of the stimulus, which led to long decision times and reduced accuracy in the vPFC group but a general improvement in performance accuracy in the vHC group. CONCLUSIONS These results provide the first evidence of a selective mechanism of Gal-R1-mediated modulation of impulse control in prefrontal-hippocampal circuitry.
Collapse
Affiliation(s)
- F Messanvi
- Section on Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD, USA.
| | - A Perkins
- Section on Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - J du Hoffmann
- Rodent Behavioral Core, National Institute of Mental Health, Bethesda, MD, USA
| | - Y Chudasama
- Section on Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
- Rodent Behavioral Core, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
73
|
Li Y, Gao M, Zeng K, Xing JX, Xu FL, Xuan JF, Xia X, Liu YP, Yao J, Wang BJ. Association Between Polymorphisms in the 5' Region of the GALR1 Gene and Schizophrenia in the Northern Chinese Han Population: A Case-Control Study. Neuropsychiatr Dis Treat 2020; 16:1519-1532. [PMID: 32606704 PMCID: PMC7306470 DOI: 10.2147/ndt.s256644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/22/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Epidemiological studies have shown that genetic factors are among the causes of schizophrenia. Galanin receptor 1 is an inhibitory receptor of galanin that is widely distributed in the central nervous system. This study mainly explored the relationship between polymorphisms of the 5' region of the GALR1 gene and schizophrenia in the northern Chinese Han population. METHODS A 1545 bp fragment of the 5' regulatory region of the GALR1 gene was amplified and sequenced in 289 schizophrenia patients and 347 healthy controls. RESULTS Among the haplotypes composed of the 16 detected SNPs, the haplotype H3 was identified as conferring a risk of schizophrenia (p=0.011, OR=1.430, 95% CI=1.084-1.886). In addition, the haplotypes H4 and H7 were both protective against schizophrenia (p=0.024, OR=0.526, 95% CI=0.298-0.927; p=0.037, OR=0.197, 95% CI=0.044-0.885, respectively). In the subgroup analysis by sex, it was found that seven SNP alleles (rs72978691, rs11662010, rs11151014, rs11151015, rs13306374, rs5373, rs13306375) conferred a risk of schizophrenia in females (p<0.05), while allele G of rs7242919 (p=0.007) was protective against schizophrenia in females. Moreover, the rs72978691 AA+AC genotype (p=0.006, OR=1.874, 95% CI=1.196-2.937, power=0.780), rs7242919 CC+CG genotype (p=0.002, OR=2.027, 95% CI=1.292-3.180, power=0.861), rs11151014 GG+GT genotype (p=0.008, OR=1.834, 95% CI=1.168-2.879, power=0.735), rs11151015 GG+AG genotype (p=0.002, OR=2.013, 95% CI =1.291-3.137, power=0.843), rs13306374 CC+AC genotype (p=0.006, OR=1.881, 95% CI=1.198-2.953, power=0.788), and rs13306375 GG+AG genotype (p=0.006, OR=1.868, 95% CI=1.194-2.921, power=0.770) increased the risk of schizophrenia in females. The haplotype FH2 consisting of rs72978691, rs11662010, rs7242919, rs11151014, rs11151015, rs13306374, rs5373, and rs13306375 may also be associated with the risk of schizophrenia in females (p=0.024). CONCLUSION This study identified an association between polymorphisms in the 5' region of the GALR1 gene and schizophrenia, especially in females.
Collapse
Affiliation(s)
- Ya Li
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Meng Gao
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Kuo Zeng
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Jia-Xin Xing
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Feng-Ling Xu
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Jin-Feng Xuan
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Xi Xia
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Yong-Ping Liu
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Bao-Jie Wang
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| |
Collapse
|
74
|
Keszler G, Molnár Z, Rónai Z, Sasvári-Székely M, Székely A, Kótyuk E. Association between anxiety and non-coding genetic variants of the galanin neuropeptide. PLoS One 2019; 14:e0226228. [PMID: 31881033 PMCID: PMC6934320 DOI: 10.1371/journal.pone.0226228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/21/2019] [Indexed: 12/28/2022] Open
Abstract
Background Galanin, an inhibitory neuropeptide and cotransmitter has long been known to co-localize with noradrenaline and serotonin in the central nervous system. Several human studies demonstrated altered galanin expression levels in major depressive disorder and anxiety. Pharmacological modulation of galanin signaling and transgenic strategies provide further proof for the involvement of the galanin system in the pathophysiology of mood disorders. Little is known, however, on the dynamic regulation of galanin expression at the transcriptional level. The aim of the present study was to seek genetic association of non-coding single nucleotide variations in the galanin gene with anxiety and depression. Methods Six single nucleotide polymorphisms (SNP) occurring either in the regulatory 5’ or 3’ flanking regions or within intronic sequences of the galanin gene have been genotyped with a high-throughput TaqMan OpenArray qPCR system in 526 healthy students (40% males). Depression and anxiety scores were obtained by filling in the Hospital Anxiety and Depression Scale (HADS) questionnaire. Data were analyzed by ANCOVA and Bonferroni correction was applied for multiple testing. Linkage disequilibrium (LD) analysis was used to map two haploblocks in the analyzed region. Results and conclusions A single-locus and a haplotype genetic association proved to be statistically significant. In single-marker analysis, the T allele of the rs1042577 SNP within the 3’ untranslated region of the galanin gene associated with greater levels of anxiety (HADS scores were 7.05±4.0 vs 6.15±.15; p = 0.000407). Haplotype analysis revealed an association of the rs948854 C_rs4432027_C allele combination with anxiety [F(1,1046) = 4.140, p = 0.042141, η2 = 0.004, power = 0.529]. Neither of these associations turned out to be gender-specific. These promoter polymorphisms are supposed to participate in epigenetic regulation of galanin expression by creating potentially methylatable CpG dinucleotides. The functional importance of the rs1042577_T allele remains to be elucidated.
Collapse
Affiliation(s)
- Gergely Keszler
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Molnár
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Zsolt Rónai
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Mária Sasvári-Székely
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Anna Székely
- MTA-ELTE Lendület Adaptation Research Group, Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Eszter Kótyuk
- MTA-ELTE Lendület Adaptation Research Group, Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
75
|
Sartori SB, Singewald N. Novel pharmacological targets in drug development for the treatment of anxiety and anxiety-related disorders. Pharmacol Ther 2019; 204:107402. [PMID: 31470029 DOI: 10.1016/j.pharmthera.2019.107402] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/19/2019] [Indexed: 12/24/2022]
Abstract
Current medication for anxiety disorders is suboptimal in terms of efficiency and tolerability, highlighting the need for improved drug treatments. In this review an overview of drugs being studied in different phases of clinical trials for their potential in the treatment of fear-, anxiety- and trauma-related disorders is presented. One strategy followed in drug development is refining and improving compounds interacting with existing anxiolytic drug targets, such as serotonergic and prototypical GABAergic benzodiazepines. A more innovative approach involves the search for compounds with novel mechanisms of anxiolytic action using the growing knowledge base concerning the relevant neurocircuitries and neurobiological mechanisms underlying pathological fear and anxiety. The target systems evaluated in clinical trials include glutamate, endocannabinoid and neuropeptide systems, as well as ion channels and targets derived from phytochemicals. Examples of promising novel candidates currently in clinical development for generalised anxiety disorder, social anxiety disorder, panic disorder, obsessive compulsive disorder or post-traumatic stress disorder include ketamine, riluzole, xenon with one common pharmacological action of modulation of glutamatergic neurotransmission, as well as the neurosteroid aloradine. Finally, compounds such as D-cycloserine, MDMA, L-DOPA and cannabinoids have shown efficacy in enhancing fear-extinction learning in humans. They are thus investigated in clinical trials as an augmentative strategy for speeding up and enhancing the long-term effectiveness of exposure-based psychotherapy, which could render chronic anxiolytic drug treatment dispensable for many patients. These efforts are indicative of a rekindled interest and renewed optimism in the anxiety drug discovery field, after decades of relative stagnation.
Collapse
Affiliation(s)
- Simone B Sartori
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria
| | - Nicolas Singewald
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
76
|
Wiggins JW, Kozyrev N, Sledd JE, Wilson GG, Coolen LM. Chronic Spinal Cord Injury Reduces Gastrin-Releasing Peptide in the Spinal Ejaculation Generator in Male Rats. J Neurotrauma 2019; 36:3378-3393. [PMID: 31111794 DOI: 10.1089/neu.2019.6509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Spinal cord injury (SCI) causes sexual dysfunction, including anejaculation in men. Likewise, chronic mid-thoracic contusion injury impairs ejaculatory reflexes in male rats. Ejaculation is controlled by a spinal ejaculation generator (SEG) comprised of a population of lumbar spinothalamic (LSt) neurons. LSt neurons co-express four neuropeptides, including gastrin-releasing peptide (GRP) and galanin and control ejaculation via release of these peptides in lumbar and sacral autonomic and motor nuclei. Here, we tested the hypothesis that contusion injury causes a disruption of the neuropeptides that are expressed in LSt cell bodies and axon terminals, thereby causing ejaculatory dysfunction. Male Sprague Dawley rats received contusion or sham surgery at spinal levels T6-7. Five to six weeks later, animals were perfused and spinal cords were immunoprocessed for galanin and GRP. Results showed that numbers of cells immunoreactive for galanin were not altered by SCI, suggesting that LSt cells are not ablated by SCI. In contrast, GRP immunoreactivity was decreased in LSt cells following SCI, evidenced by fewer GRP and galanin/GRP dual labeled cells. However, SCI did not affect efferent connections of LSt, cells as axon terminals containing galanin or GRP in contact with autonomic cells were not reduced following SCI. Finally, no changes in testosterone plasma levels or androgen receptor expression were noted after SCI. In conclusion, chronic contusion injury decreased immunoreactivity for GRP in LSt cell soma, but did not affect LSt neurons per se or LSt connections within the SEG. Since GRP is essential for triggering ejaculation, such loss may contribute to ejaculatory dysfunction following SCI.
Collapse
Affiliation(s)
- J Walker Wiggins
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi.,Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, Mississippi
| | - Natalie Kozyrev
- Robarts Institute, Western University, London, Ontario, Canada
| | - Jonathan E Sledd
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - George G Wilson
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - Lique M Coolen
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Biological Sciences, Kent State University, Kent, Ohio
| |
Collapse
|
77
|
Zahola P, Hanics J, Pintér A, Máté Z, Gáspárdy A, Hevesi Z, Echevarria D, Adori C, Barde S, Törőcsik B, Erdélyi F, Szabó G, Wagner L, Kovacs GG, Hökfelt T, Harkany T, Alpár A. Secretagogin expression in the vertebrate brainstem with focus on the noradrenergic system and implications for Alzheimer's disease. Brain Struct Funct 2019; 224:2061-2078. [PMID: 31144035 PMCID: PMC6591208 DOI: 10.1007/s00429-019-01886-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/03/2019] [Indexed: 12/04/2022]
Abstract
Calcium-binding proteins are widely used to distinguish neuronal subsets in the brain. This study focuses on secretagogin, an EF-hand calcium sensor, to identify distinct neuronal populations in the brainstem of several vertebrate species. By using neural tube whole mounts of mouse embryos, we show that secretagogin is already expressed during the early ontogeny of brainstem noradrenaline cells. In adults, secretagogin-expressing neurons typically populate relay centres of special senses and vegetative regulatory centres of the medulla oblongata, pons and midbrain. Notably, secretagogin expression overlapped with the brainstem column of noradrenergic cell bodies, including the locus coeruleus (A6) and the A1, A5 and A7 fields. Secretagogin expression in avian, mouse, rat and human samples showed quasi-equivalent patterns, suggesting conservation throughout vertebrate phylogeny. We found reduced secretagogin expression in locus coeruleus from subjects with Alzheimer’s disease, and this reduction paralleled the loss of tyrosine hydroxylase, the enzyme rate limiting noradrenaline synthesis. Residual secretagogin immunoreactivity was confined to small submembrane domains associated with initial aberrant tau phosphorylation. In conclusion, we provide evidence that secretagogin is a useful marker to distinguish neuronal subsets in the brainstem, conserved throughout several species, and its altered expression may reflect cellular dysfunction of locus coeruleus neurons in Alzheimer’s disease.
Collapse
Affiliation(s)
- Péter Zahola
- SE NAP B Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary.,Department of Anatomy, Semmelweis University, Budapest, Hungary
| | - János Hanics
- SE NAP B Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary.,Department of Anatomy, Semmelweis University, Budapest, Hungary
| | - Anna Pintér
- Department of Anatomy, Semmelweis University, Budapest, Hungary
| | - Zoltán Máté
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Anna Gáspárdy
- Department of Anatomy, Semmelweis University, Budapest, Hungary
| | - Zsófia Hevesi
- SE NAP B Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary.,Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, 1090, Vienna, Austria
| | - Diego Echevarria
- Institute of Neuroscience, University of Miguel Hernandez de Elche, Alicante, Spain
| | - Csaba Adori
- Department of Neuroscience, Karolinska Institutet, Biomedicum 7D, SE-17165, Stockholm, Sweden
| | - Swapnali Barde
- Department of Neuroscience, Karolinska Institutet, Biomedicum 7D, SE-17165, Stockholm, Sweden
| | - Beáta Törőcsik
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Ferenc Erdélyi
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Szabó
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ludwig Wagner
- Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Biomedicum 7D, SE-17165, Stockholm, Sweden
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, 1090, Vienna, Austria.,Department of Neuroscience, Karolinska Institutet, Biomedicum 7D, SE-17165, Stockholm, Sweden
| | - Alán Alpár
- SE NAP B Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary. .,Department of Anatomy, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
78
|
Galanin Protects Rat Cortical Astrocyte from Oxidative Stress: Involvement of GalR2 and pERK1/2 Signal Pathway. Mediators Inflamm 2019; 2019:2716028. [PMID: 31249471 PMCID: PMC6556323 DOI: 10.1155/2019/2716028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/16/2019] [Indexed: 01/22/2023] Open
Abstract
The neuropeptide galanin and its receptors have been found to have protective effects on neurons. However, the role of galanin on astrocytes is still unclear. The present study is aimed at investigating the effects of galanin on the viability of cultured rat cortical astrocytes after oxidative stress induced by H2O2 and possible receptor and signaling mechanisms involved. Treatment of galanin had significant protective effects against H2O2-induced toxicity in the cultured cortical astrocytes. H2O2 induced an upregulation of phosphorylated extracellular signal-related kinase1/2 (pERK1/2) in astrocytes, which was suppressed by coapplication of galanin, suggesting an involvement of the pERK1/2 signal pathway in the protective effects of galanin. GalR2 has higher expression levels than GalR1 and GalR3 in the cultured cortical astrocytes, and GalR2 agonist AR-M1896 mimicked galanin effects on the astrocytes, implying that galanin protective effects mainly mediated by GalR2. Meanwhile, galanin had no effect on the A1-type transformation of rat cortical astrocytes. All those results suggest that galanin protects rat cortical astrocytes from oxidative stress by suppressing H2O2-induced upregulation of pERK1/2, mainly through GalR2.
Collapse
|
79
|
Zelikowsky M, Ding K, Anderson DJ. Neuropeptidergic Control of an Internal Brain State Produced by Prolonged Social Isolation Stress. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2019; 83:97-103. [PMID: 30948452 DOI: 10.1101/sqb.2018.83.038109] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Prolonged periods of social isolation can generate an internal state that exerts profound effects on the brain and behavior. However, the neurobiological underpinnings of protracted social isolation have been relatively understudied. Here, we review recent literature implicating peptide neuromodulators in the establishment and maintenance of such internal states. More specifically, we describe an evolutionarily conserved role for the neuropeptide tachykinin in the control of social isolation-induced aggression and review recent data that elucidate the manner by which Tac2 controls the widespread effects of social isolation on behavior in mice. Last, we discuss potential roles for additional neuromodulators in controlling social isolation and a more general role for Tac2 in the response to other forms of stress.
Collapse
Affiliation(s)
- Moriel Zelikowsky
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Keke Ding
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - David J Anderson
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
- TianQiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
80
|
Sharma A, Muresanu DF, Ozkizilcik A, Tian ZR, Lafuente JV, Manzhulo I, Mössler H, Sharma HS. Sleep deprivation exacerbates concussive head injury induced brain pathology: Neuroprotective effects of nanowired delivery of cerebrolysin with α-melanocyte-stimulating hormone. PROGRESS IN BRAIN RESEARCH 2019; 245:1-55. [PMID: 30961865 DOI: 10.1016/bs.pbr.2019.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|